Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/* Freescale Enhanced Local Bus Controller NAND driver
   2 *
   3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
   4 *
   5 * Authors: Nick Spence <nick.spence@freescale.com>,
   6 *          Scott Wood <scottwood@freescale.com>
   7 *          Jack Lan <jack.lan@freescale.com>
   8 *          Roy Zang <tie-fei.zang@freescale.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/string.h>
  30#include <linux/ioport.h>
  31#include <linux/of_platform.h>
  32#include <linux/platform_device.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35
  36#include <linux/mtd/mtd.h>
  37#include <linux/mtd/nand.h>
  38#include <linux/mtd/nand_ecc.h>
  39#include <linux/mtd/partitions.h>
  40
  41#include <asm/io.h>
  42#include <asm/fsl_lbc.h>
  43
  44#define MAX_BANKS 8
  45#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  46#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  47
  48/* mtd information per set */
  49
  50struct fsl_elbc_mtd {
  51	struct mtd_info mtd;
  52	struct nand_chip chip;
  53	struct fsl_lbc_ctrl *ctrl;
  54
  55	struct device *dev;
  56	int bank;               /* Chip select bank number           */
  57	u8 __iomem *vbase;      /* Chip select base virtual address  */
  58	int page_size;          /* NAND page size (0=512, 1=2048)    */
  59	unsigned int fmr;       /* FCM Flash Mode Register value     */
  60};
  61
  62/* Freescale eLBC FCM controller information */
  63
  64struct fsl_elbc_fcm_ctrl {
  65	struct nand_hw_control controller;
  66	struct fsl_elbc_mtd *chips[MAX_BANKS];
  67
  68	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  69	unsigned int page;       /* Last page written to / read from      */
  70	unsigned int read_bytes; /* Number of bytes read during command   */
  71	unsigned int column;     /* Saved column from SEQIN               */
  72	unsigned int index;      /* Pointer to next byte to 'read'        */
  73	unsigned int status;     /* status read from LTESR after last op  */
  74	unsigned int mdr;        /* UPM/FCM Data Register value           */
  75	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  76	unsigned int oob;        /* Non zero if operating on OOB data     */
  77	unsigned int counter;	 /* counter for the initializations	  */
  78	char *oob_poi;           /* Place to write ECC after read back    */
  79};
  80
  81/* These map to the positions used by the FCM hardware ECC generator */
  82
  83/* Small Page FLASH with FMR[ECCM] = 0 */
  84static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  85	.eccbytes = 3,
  86	.eccpos = {6, 7, 8},
  87	.oobfree = { {0, 5}, {9, 7} },
  88};
  89
  90/* Small Page FLASH with FMR[ECCM] = 1 */
  91static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  92	.eccbytes = 3,
  93	.eccpos = {8, 9, 10},
  94	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
  95};
  96
  97/* Large Page FLASH with FMR[ECCM] = 0 */
  98static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  99	.eccbytes = 12,
 100	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
 101	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
 102};
 103
 104/* Large Page FLASH with FMR[ECCM] = 1 */
 105static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
 106	.eccbytes = 12,
 107	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
 108	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
 109};
 110
 111/*
 112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
 113 * 1, so we have to adjust bad block pattern. This pattern should be used for
 114 * x8 chips only. So far hardware does not support x16 chips anyway.
 115 */
 116static u8 scan_ff_pattern[] = { 0xff, };
 117
 118static struct nand_bbt_descr largepage_memorybased = {
 119	.options = 0,
 120	.offs = 0,
 121	.len = 1,
 122	.pattern = scan_ff_pattern,
 123};
 124
 125/*
 126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 127 * interfere with ECC positions, that's why we implement our own descriptors.
 128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 129 */
 130static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 131static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 132
 133static struct nand_bbt_descr bbt_main_descr = {
 134	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 135		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 136	.offs =	11,
 137	.len = 4,
 138	.veroffs = 15,
 139	.maxblocks = 4,
 140	.pattern = bbt_pattern,
 141};
 142
 143static struct nand_bbt_descr bbt_mirror_descr = {
 144	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 145		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 146	.offs =	11,
 147	.len = 4,
 148	.veroffs = 15,
 149	.maxblocks = 4,
 150	.pattern = mirror_pattern,
 151};
 152
 153/*=================================*/
 154
 155/*
 156 * Set up the FCM hardware block and page address fields, and the fcm
 157 * structure addr field to point to the correct FCM buffer in memory
 158 */
 159static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 160{
 161	struct nand_chip *chip = mtd->priv;
 162	struct fsl_elbc_mtd *priv = chip->priv;
 163	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 164	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 165	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 166	int buf_num;
 167
 168	elbc_fcm_ctrl->page = page_addr;
 169
 170	out_be32(&lbc->fbar,
 171	         page_addr >> (chip->phys_erase_shift - chip->page_shift));
 172
 173	if (priv->page_size) {
 174		out_be32(&lbc->fpar,
 175		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 176		         (oob ? FPAR_LP_MS : 0) | column);
 177		buf_num = (page_addr & 1) << 2;
 178	} else {
 179		out_be32(&lbc->fpar,
 180		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 181		         (oob ? FPAR_SP_MS : 0) | column);
 182		buf_num = page_addr & 7;
 183	}
 184
 185	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 186	elbc_fcm_ctrl->index = column;
 187
 188	/* for OOB data point to the second half of the buffer */
 189	if (oob)
 190		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 191
 192	dev_vdbg(priv->dev, "set_addr: bank=%d, "
 193			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 194	                    "index %x, pes %d ps %d\n",
 195		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 196		 elbc_fcm_ctrl->index,
 197	         chip->phys_erase_shift, chip->page_shift);
 198}
 199
 200/*
 201 * execute FCM command and wait for it to complete
 202 */
 203static int fsl_elbc_run_command(struct mtd_info *mtd)
 204{
 205	struct nand_chip *chip = mtd->priv;
 206	struct fsl_elbc_mtd *priv = chip->priv;
 207	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 208	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 209	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 210
 211	/* Setup the FMR[OP] to execute without write protection */
 212	out_be32(&lbc->fmr, priv->fmr | 3);
 213	if (elbc_fcm_ctrl->use_mdr)
 214		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 215
 216	dev_vdbg(priv->dev,
 217	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 218	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 219	dev_vdbg(priv->dev,
 220	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 221	         "fbcr=%08x bank=%d\n",
 222	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 223	         in_be32(&lbc->fbcr), priv->bank);
 224
 225	ctrl->irq_status = 0;
 226	/* execute special operation */
 227	out_be32(&lbc->lsor, priv->bank);
 228
 229	/* wait for FCM complete flag or timeout */
 230	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 231	                   FCM_TIMEOUT_MSECS * HZ/1000);
 232	elbc_fcm_ctrl->status = ctrl->irq_status;
 233	/* store mdr value in case it was needed */
 234	if (elbc_fcm_ctrl->use_mdr)
 235		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 236
 237	elbc_fcm_ctrl->use_mdr = 0;
 238
 239	if (elbc_fcm_ctrl->status != LTESR_CC) {
 240		dev_info(priv->dev,
 241		         "command failed: fir %x fcr %x status %x mdr %x\n",
 242		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 243			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 244		return -EIO;
 245	}
 246
 247	return 0;
 248}
 249
 250static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 251{
 252	struct fsl_elbc_mtd *priv = chip->priv;
 253	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 254	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 255
 256	if (priv->page_size) {
 257		out_be32(&lbc->fir,
 258		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 259		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 260		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 261		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 262		         (FIR_OP_RBW << FIR_OP4_SHIFT));
 263
 264		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 265		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 266	} else {
 267		out_be32(&lbc->fir,
 268		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 269		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 270		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 271		         (FIR_OP_RBW << FIR_OP3_SHIFT));
 272
 273		if (oob)
 274			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 275		else
 276			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 277	}
 278}
 279
 280/* cmdfunc send commands to the FCM */
 281static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 282                             int column, int page_addr)
 283{
 284	struct nand_chip *chip = mtd->priv;
 285	struct fsl_elbc_mtd *priv = chip->priv;
 286	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 287	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 288	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 289
 290	elbc_fcm_ctrl->use_mdr = 0;
 291
 292	/* clear the read buffer */
 293	elbc_fcm_ctrl->read_bytes = 0;
 294	if (command != NAND_CMD_PAGEPROG)
 295		elbc_fcm_ctrl->index = 0;
 296
 297	switch (command) {
 298	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
 299	case NAND_CMD_READ1:
 300		column += 256;
 301
 302	/* fall-through */
 303	case NAND_CMD_READ0:
 304		dev_dbg(priv->dev,
 305		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 306		        " 0x%x, column: 0x%x.\n", page_addr, column);
 307
 308
 309		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 310		set_addr(mtd, 0, page_addr, 0);
 311
 312		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 313		elbc_fcm_ctrl->index += column;
 314
 315		fsl_elbc_do_read(chip, 0);
 316		fsl_elbc_run_command(mtd);
 317		return;
 318
 319	/* READOOB reads only the OOB because no ECC is performed. */
 320	case NAND_CMD_READOOB:
 321		dev_vdbg(priv->dev,
 322		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 323			 " 0x%x, column: 0x%x.\n", page_addr, column);
 324
 325		out_be32(&lbc->fbcr, mtd->oobsize - column);
 326		set_addr(mtd, column, page_addr, 1);
 327
 328		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 329
 330		fsl_elbc_do_read(chip, 1);
 331		fsl_elbc_run_command(mtd);
 332		return;
 333
 334	/* READID must read all 5 possible bytes while CEB is active */
 335	case NAND_CMD_READID:
 336		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
 337
 338		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 339		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 340		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 341		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
 342		/* nand_get_flash_type() reads 8 bytes of entire ID string */
 343		out_be32(&lbc->fbcr, 8);
 344		elbc_fcm_ctrl->read_bytes = 8;
 345		elbc_fcm_ctrl->use_mdr = 1;
 346		elbc_fcm_ctrl->mdr = 0;
 347
 348		set_addr(mtd, 0, 0, 0);
 349		fsl_elbc_run_command(mtd);
 350		return;
 351
 352	/* ERASE1 stores the block and page address */
 353	case NAND_CMD_ERASE1:
 354		dev_vdbg(priv->dev,
 355		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 356		         "page_addr: 0x%x.\n", page_addr);
 357		set_addr(mtd, 0, page_addr, 0);
 358		return;
 359
 360	/* ERASE2 uses the block and page address from ERASE1 */
 361	case NAND_CMD_ERASE2:
 362		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 363
 364		out_be32(&lbc->fir,
 365		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 366		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 367		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 368		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 369		         (FIR_OP_RS  << FIR_OP4_SHIFT));
 370
 371		out_be32(&lbc->fcr,
 372		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 373		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 374		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 375
 376		out_be32(&lbc->fbcr, 0);
 377		elbc_fcm_ctrl->read_bytes = 0;
 378		elbc_fcm_ctrl->use_mdr = 1;
 379
 380		fsl_elbc_run_command(mtd);
 381		return;
 382
 383	/* SEQIN sets up the addr buffer and all registers except the length */
 384	case NAND_CMD_SEQIN: {
 385		__be32 fcr;
 386		dev_vdbg(priv->dev,
 387			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 388		         "page_addr: 0x%x, column: 0x%x.\n",
 389		         page_addr, column);
 390
 391		elbc_fcm_ctrl->column = column;
 392		elbc_fcm_ctrl->oob = 0;
 393		elbc_fcm_ctrl->use_mdr = 1;
 394
 395		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 396		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 397		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 398
 399		if (priv->page_size) {
 400			out_be32(&lbc->fir,
 401			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 402			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 403			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 404			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
 405			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 406			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 407			         (FIR_OP_RS  << FIR_OP6_SHIFT));
 408		} else {
 409			out_be32(&lbc->fir,
 410			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 411			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 412			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
 413			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
 414			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
 415			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 416			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 417			         (FIR_OP_RS  << FIR_OP7_SHIFT));
 418
 419			if (column >= mtd->writesize) {
 420				/* OOB area --> READOOB */
 421				column -= mtd->writesize;
 422				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 423				elbc_fcm_ctrl->oob = 1;
 424			} else {
 425				WARN_ON(column != 0);
 426				/* First 256 bytes --> READ0 */
 427				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 428			}
 429		}
 430
 431		out_be32(&lbc->fcr, fcr);
 432		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 433		return;
 434	}
 435
 436	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 437	case NAND_CMD_PAGEPROG: {
 438		int full_page;
 439		dev_vdbg(priv->dev,
 440		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 441			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
 442
 443		/* if the write did not start at 0 or is not a full page
 444		 * then set the exact length, otherwise use a full page
 445		 * write so the HW generates the ECC.
 446		 */
 447		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 448		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) {
 449			out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
 450			full_page = 0;
 451		} else {
 452			out_be32(&lbc->fbcr, 0);
 453			full_page = 1;
 454		}
 455
 456		fsl_elbc_run_command(mtd);
 457
 458		/* Read back the page in order to fill in the ECC for the
 459		 * caller.  Is this really needed?
 460		 */
 461		if (full_page && elbc_fcm_ctrl->oob_poi) {
 462			out_be32(&lbc->fbcr, 3);
 463			set_addr(mtd, 6, page_addr, 1);
 464
 465			elbc_fcm_ctrl->read_bytes = mtd->writesize + 9;
 466
 467			fsl_elbc_do_read(chip, 1);
 468			fsl_elbc_run_command(mtd);
 469
 470			memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6,
 471				&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3);
 472			elbc_fcm_ctrl->index += 3;
 473		}
 474
 475		elbc_fcm_ctrl->oob_poi = NULL;
 476		return;
 477	}
 478
 479	/* CMD_STATUS must read the status byte while CEB is active */
 480	/* Note - it does not wait for the ready line */
 481	case NAND_CMD_STATUS:
 482		out_be32(&lbc->fir,
 483		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 484		         (FIR_OP_RBW << FIR_OP1_SHIFT));
 485		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 486		out_be32(&lbc->fbcr, 1);
 487		set_addr(mtd, 0, 0, 0);
 488		elbc_fcm_ctrl->read_bytes = 1;
 489
 490		fsl_elbc_run_command(mtd);
 491
 492		/* The chip always seems to report that it is
 493		 * write-protected, even when it is not.
 494		 */
 495		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 496		return;
 497
 498	/* RESET without waiting for the ready line */
 499	case NAND_CMD_RESET:
 500		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 501		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 502		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 503		fsl_elbc_run_command(mtd);
 504		return;
 505
 506	default:
 507		dev_err(priv->dev,
 508		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 509		        command);
 510	}
 511}
 512
 513static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 514{
 515	/* The hardware does not seem to support multiple
 516	 * chips per bank.
 517	 */
 518}
 519
 520/*
 521 * Write buf to the FCM Controller Data Buffer
 522 */
 523static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 524{
 525	struct nand_chip *chip = mtd->priv;
 526	struct fsl_elbc_mtd *priv = chip->priv;
 527	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 528	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 529
 530	if (len <= 0) {
 531		dev_err(priv->dev, "write_buf of %d bytes", len);
 532		elbc_fcm_ctrl->status = 0;
 533		return;
 534	}
 535
 536	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 537		dev_err(priv->dev,
 538		        "write_buf beyond end of buffer "
 539		        "(%d requested, %u available)\n",
 540			len, bufsize - elbc_fcm_ctrl->index);
 541		len = bufsize - elbc_fcm_ctrl->index;
 542	}
 543
 544	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 545	/*
 546	 * This is workaround for the weird elbc hangs during nand write,
 547	 * Scott Wood says: "...perhaps difference in how long it takes a
 548	 * write to make it through the localbus compared to a write to IMMR
 549	 * is causing problems, and sync isn't helping for some reason."
 550	 * Reading back the last byte helps though.
 551	 */
 552	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 553
 554	elbc_fcm_ctrl->index += len;
 555}
 556
 557/*
 558 * read a byte from either the FCM hardware buffer if it has any data left
 559 * otherwise issue a command to read a single byte.
 560 */
 561static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 562{
 563	struct nand_chip *chip = mtd->priv;
 564	struct fsl_elbc_mtd *priv = chip->priv;
 565	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 566
 567	/* If there are still bytes in the FCM, then use the next byte. */
 568	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 569		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 570
 571	dev_err(priv->dev, "read_byte beyond end of buffer\n");
 572	return ERR_BYTE;
 573}
 574
 575/*
 576 * Read from the FCM Controller Data Buffer
 577 */
 578static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 579{
 580	struct nand_chip *chip = mtd->priv;
 581	struct fsl_elbc_mtd *priv = chip->priv;
 582	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 583	int avail;
 584
 585	if (len < 0)
 586		return;
 587
 588	avail = min((unsigned int)len,
 589			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 590	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 591	elbc_fcm_ctrl->index += avail;
 592
 593	if (len > avail)
 594		dev_err(priv->dev,
 595		        "read_buf beyond end of buffer "
 596		        "(%d requested, %d available)\n",
 597		        len, avail);
 598}
 599
 600/*
 601 * Verify buffer against the FCM Controller Data Buffer
 602 */
 603static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
 604{
 605	struct nand_chip *chip = mtd->priv;
 606	struct fsl_elbc_mtd *priv = chip->priv;
 607	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 608	int i;
 609
 610	if (len < 0) {
 611		dev_err(priv->dev, "write_buf of %d bytes", len);
 612		return -EINVAL;
 613	}
 614
 615	if ((unsigned int)len >
 616			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
 617		dev_err(priv->dev,
 618			"verify_buf beyond end of buffer "
 619			"(%d requested, %u available)\n",
 620			len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 621
 622		elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
 623		return -EINVAL;
 624	}
 625
 626	for (i = 0; i < len; i++)
 627		if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
 628				!= buf[i])
 629			break;
 630
 631	elbc_fcm_ctrl->index += len;
 632	return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
 633}
 634
 635/* This function is called after Program and Erase Operations to
 636 * check for success or failure.
 637 */
 638static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 639{
 640	struct fsl_elbc_mtd *priv = chip->priv;
 641	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 642
 643	if (elbc_fcm_ctrl->status != LTESR_CC)
 644		return NAND_STATUS_FAIL;
 645
 646	/* The chip always seems to report that it is
 647	 * write-protected, even when it is not.
 648	 */
 649	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 650}
 651
 652static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
 653{
 654	struct nand_chip *chip = mtd->priv;
 655	struct fsl_elbc_mtd *priv = chip->priv;
 656	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 657	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 658	unsigned int al;
 659
 660	/* calculate FMR Address Length field */
 661	al = 0;
 662	if (chip->pagemask & 0xffff0000)
 663		al++;
 664	if (chip->pagemask & 0xff000000)
 665		al++;
 666
 667	/* add to ECCM mode set in fsl_elbc_init */
 668	priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
 669	             (al << FMR_AL_SHIFT);
 670
 671	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 672	        chip->numchips);
 673	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 674	        chip->chipsize);
 675	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 676	        chip->pagemask);
 677	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
 678	        chip->chip_delay);
 679	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 680	        chip->badblockpos);
 681	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 682	        chip->chip_shift);
 683	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 684	        chip->page_shift);
 685	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 686	        chip->phys_erase_shift);
 687	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
 688	        chip->ecclayout);
 689	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
 690	        chip->ecc.mode);
 691	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 692	        chip->ecc.steps);
 693	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 694	        chip->ecc.bytes);
 695	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 696	        chip->ecc.total);
 697	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
 698	        chip->ecc.layout);
 699	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 700	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 701	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 702	        mtd->erasesize);
 703	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 704	        mtd->writesize);
 705	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 706	        mtd->oobsize);
 707
 708	/* adjust Option Register and ECC to match Flash page size */
 709	if (mtd->writesize == 512) {
 710		priv->page_size = 0;
 711		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 712	} else if (mtd->writesize == 2048) {
 713		priv->page_size = 1;
 714		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 715		/* adjust ecc setup if needed */
 716		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 717		    BR_DECC_CHK_GEN) {
 718			chip->ecc.size = 512;
 719			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 720			                   &fsl_elbc_oob_lp_eccm1 :
 721			                   &fsl_elbc_oob_lp_eccm0;
 722			chip->badblock_pattern = &largepage_memorybased;
 723		}
 724	} else {
 725		dev_err(priv->dev,
 726		        "fsl_elbc_init: page size %d is not supported\n",
 727		        mtd->writesize);
 728		return -1;
 729	}
 730
 731	return 0;
 732}
 733
 734static int fsl_elbc_read_page(struct mtd_info *mtd,
 735                              struct nand_chip *chip,
 736			      uint8_t *buf,
 737			      int page)
 738{
 739	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
 740	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 741
 742	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 743		mtd->ecc_stats.failed++;
 744
 745	return 0;
 746}
 747
 748/* ECC will be calculated automatically, and errors will be detected in
 749 * waitfunc.
 750 */
 751static void fsl_elbc_write_page(struct mtd_info *mtd,
 752                                struct nand_chip *chip,
 753                                const uint8_t *buf)
 754{
 755	struct fsl_elbc_mtd *priv = chip->priv;
 756	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 757
 758	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 759	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 760
 761	elbc_fcm_ctrl->oob_poi = chip->oob_poi;
 762}
 763
 764static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 765{
 766	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 767	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 768	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 769	struct nand_chip *chip = &priv->chip;
 770
 771	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 772
 773	/* Fill in fsl_elbc_mtd structure */
 774	priv->mtd.priv = chip;
 775	priv->mtd.owner = THIS_MODULE;
 776
 777	/* Set the ECCM according to the settings in bootloader.*/
 778	priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
 779
 780	/* fill in nand_chip structure */
 781	/* set up function call table */
 782	chip->read_byte = fsl_elbc_read_byte;
 783	chip->write_buf = fsl_elbc_write_buf;
 784	chip->read_buf = fsl_elbc_read_buf;
 785	chip->verify_buf = fsl_elbc_verify_buf;
 786	chip->select_chip = fsl_elbc_select_chip;
 787	chip->cmdfunc = fsl_elbc_cmdfunc;
 788	chip->waitfunc = fsl_elbc_wait;
 789
 790	chip->bbt_td = &bbt_main_descr;
 791	chip->bbt_md = &bbt_mirror_descr;
 792
 793	/* set up nand options */
 794	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
 795			NAND_USE_FLASH_BBT;
 796
 797	chip->controller = &elbc_fcm_ctrl->controller;
 798	chip->priv = priv;
 799
 800	chip->ecc.read_page = fsl_elbc_read_page;
 801	chip->ecc.write_page = fsl_elbc_write_page;
 802
 803	/* If CS Base Register selects full hardware ECC then use it */
 804	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 805	    BR_DECC_CHK_GEN) {
 806		chip->ecc.mode = NAND_ECC_HW;
 807		/* put in small page settings and adjust later if needed */
 808		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 809				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
 810		chip->ecc.size = 512;
 811		chip->ecc.bytes = 3;
 812	} else {
 813		/* otherwise fall back to default software ECC */
 814		chip->ecc.mode = NAND_ECC_SOFT;
 815	}
 816
 817	return 0;
 818}
 819
 820static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 821{
 822	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 823	nand_release(&priv->mtd);
 824
 825	kfree(priv->mtd.name);
 826
 827	if (priv->vbase)
 828		iounmap(priv->vbase);
 829
 830	elbc_fcm_ctrl->chips[priv->bank] = NULL;
 831	kfree(priv);
 832	kfree(elbc_fcm_ctrl);
 833	return 0;
 834}
 835
 836static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 837
 838static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
 839{
 840	struct fsl_lbc_regs __iomem *lbc;
 841	struct fsl_elbc_mtd *priv;
 842	struct resource res;
 843	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 844	static const char *part_probe_types[]
 845		= { "cmdlinepart", "RedBoot", NULL };
 846	struct mtd_partition *parts;
 847	int ret;
 848	int bank;
 849	struct device *dev;
 850	struct device_node *node = pdev->dev.of_node;
 851
 852	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 853		return -ENODEV;
 854	lbc = fsl_lbc_ctrl_dev->regs;
 855	dev = fsl_lbc_ctrl_dev->dev;
 856
 857	/* get, allocate and map the memory resource */
 858	ret = of_address_to_resource(node, 0, &res);
 859	if (ret) {
 860		dev_err(dev, "failed to get resource\n");
 861		return ret;
 862	}
 863
 864	/* find which chip select it is connected to */
 865	for (bank = 0; bank < MAX_BANKS; bank++)
 866		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 867		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 868		    (in_be32(&lbc->bank[bank].br) &
 869		     in_be32(&lbc->bank[bank].or) & BR_BA)
 870		     == fsl_lbc_addr(res.start))
 871			break;
 872
 873	if (bank >= MAX_BANKS) {
 874		dev_err(dev, "address did not match any chip selects\n");
 875		return -ENODEV;
 876	}
 877
 878	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 879	if (!priv)
 880		return -ENOMEM;
 881
 882	mutex_lock(&fsl_elbc_nand_mutex);
 883	if (!fsl_lbc_ctrl_dev->nand) {
 884		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 885		if (!elbc_fcm_ctrl) {
 886			dev_err(dev, "failed to allocate memory\n");
 887			mutex_unlock(&fsl_elbc_nand_mutex);
 888			ret = -ENOMEM;
 889			goto err;
 890		}
 891		elbc_fcm_ctrl->counter++;
 892
 893		spin_lock_init(&elbc_fcm_ctrl->controller.lock);
 894		init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
 895		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 896	} else {
 897		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 898	}
 899	mutex_unlock(&fsl_elbc_nand_mutex);
 900
 901	elbc_fcm_ctrl->chips[bank] = priv;
 902	priv->bank = bank;
 903	priv->ctrl = fsl_lbc_ctrl_dev;
 904	priv->dev = dev;
 905
 906	priv->vbase = ioremap(res.start, resource_size(&res));
 907	if (!priv->vbase) {
 908		dev_err(dev, "failed to map chip region\n");
 909		ret = -ENOMEM;
 910		goto err;
 911	}
 912
 913	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
 914	if (!priv->mtd.name) {
 915		ret = -ENOMEM;
 916		goto err;
 917	}
 918
 919	ret = fsl_elbc_chip_init(priv);
 920	if (ret)
 921		goto err;
 922
 923	ret = nand_scan_ident(&priv->mtd, 1, NULL);
 924	if (ret)
 925		goto err;
 926
 927	ret = fsl_elbc_chip_init_tail(&priv->mtd);
 928	if (ret)
 929		goto err;
 930
 931	ret = nand_scan_tail(&priv->mtd);
 932	if (ret)
 933		goto err;
 934
 935	/* First look for RedBoot table or partitions on the command
 936	 * line, these take precedence over device tree information */
 937	ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
 938	if (ret < 0)
 939		goto err;
 940
 941	if (ret == 0) {
 942		ret = of_mtd_parse_partitions(priv->dev, node, &parts);
 943		if (ret < 0)
 944			goto err;
 945	}
 946
 947	mtd_device_register(&priv->mtd, parts, ret);
 948
 949	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
 950	       (unsigned long long)res.start, priv->bank);
 951	return 0;
 952
 953err:
 954	fsl_elbc_chip_remove(priv);
 955	return ret;
 956}
 957
 958static int fsl_elbc_nand_remove(struct platform_device *pdev)
 959{
 960	int i;
 961	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 962	for (i = 0; i < MAX_BANKS; i++)
 963		if (elbc_fcm_ctrl->chips[i])
 964			fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
 965
 966	mutex_lock(&fsl_elbc_nand_mutex);
 967	elbc_fcm_ctrl->counter--;
 968	if (!elbc_fcm_ctrl->counter) {
 969		fsl_lbc_ctrl_dev->nand = NULL;
 970		kfree(elbc_fcm_ctrl);
 971	}
 972	mutex_unlock(&fsl_elbc_nand_mutex);
 973
 974	return 0;
 975
 976}
 977
 978static const struct of_device_id fsl_elbc_nand_match[] = {
 979	{ .compatible = "fsl,elbc-fcm-nand", },
 980	{}
 981};
 982
 983static struct platform_driver fsl_elbc_nand_driver = {
 984	.driver = {
 985		.name = "fsl,elbc-fcm-nand",
 986		.owner = THIS_MODULE,
 987		.of_match_table = fsl_elbc_nand_match,
 988	},
 989	.probe = fsl_elbc_nand_probe,
 990	.remove = fsl_elbc_nand_remove,
 991};
 992
 993static int __init fsl_elbc_nand_init(void)
 994{
 995	return platform_driver_register(&fsl_elbc_nand_driver);
 996}
 997
 998static void __exit fsl_elbc_nand_exit(void)
 999{
1000	platform_driver_unregister(&fsl_elbc_nand_driver);
1001}
1002
1003module_init(fsl_elbc_nand_init);
1004module_exit(fsl_elbc_nand_exit);
1005
1006MODULE_LICENSE("GPL");
1007MODULE_AUTHOR("Freescale");
1008MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");