Linux Audio

Check our new training course

Loading...
   1/* Freescale Enhanced Local Bus Controller NAND driver
   2 *
   3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
   4 *
   5 * Authors: Nick Spence <nick.spence@freescale.com>,
   6 *          Scott Wood <scottwood@freescale.com>
   7 *          Jack Lan <jack.lan@freescale.com>
   8 *          Roy Zang <tie-fei.zang@freescale.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/string.h>
  30#include <linux/ioport.h>
  31#include <linux/of_platform.h>
  32#include <linux/platform_device.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35
  36#include <linux/mtd/mtd.h>
  37#include <linux/mtd/nand.h>
  38#include <linux/mtd/nand_ecc.h>
  39#include <linux/mtd/partitions.h>
  40
  41#include <asm/io.h>
  42#include <asm/fsl_lbc.h>
  43
  44#define MAX_BANKS 8
  45#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  46#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  47
  48/* mtd information per set */
  49
  50struct fsl_elbc_mtd {
  51	struct mtd_info mtd;
  52	struct nand_chip chip;
  53	struct fsl_lbc_ctrl *ctrl;
  54
  55	struct device *dev;
  56	int bank;               /* Chip select bank number           */
  57	u8 __iomem *vbase;      /* Chip select base virtual address  */
  58	int page_size;          /* NAND page size (0=512, 1=2048)    */
  59	unsigned int fmr;       /* FCM Flash Mode Register value     */
  60};
  61
  62/* Freescale eLBC FCM controller information */
  63
  64struct fsl_elbc_fcm_ctrl {
  65	struct nand_hw_control controller;
  66	struct fsl_elbc_mtd *chips[MAX_BANKS];
  67
  68	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  69	unsigned int page;       /* Last page written to / read from      */
  70	unsigned int read_bytes; /* Number of bytes read during command   */
  71	unsigned int column;     /* Saved column from SEQIN               */
  72	unsigned int index;      /* Pointer to next byte to 'read'        */
  73	unsigned int status;     /* status read from LTESR after last op  */
  74	unsigned int mdr;        /* UPM/FCM Data Register value           */
  75	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  76	unsigned int oob;        /* Non zero if operating on OOB data     */
  77	unsigned int counter;	 /* counter for the initializations	  */
  78	unsigned int max_bitflips;  /* Saved during READ0 cmd		  */
  79};
  80
  81/* These map to the positions used by the FCM hardware ECC generator */
  82
  83/* Small Page FLASH with FMR[ECCM] = 0 */
  84static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  85	.eccbytes = 3,
  86	.eccpos = {6, 7, 8},
  87	.oobfree = { {0, 5}, {9, 7} },
  88};
  89
  90/* Small Page FLASH with FMR[ECCM] = 1 */
  91static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  92	.eccbytes = 3,
  93	.eccpos = {8, 9, 10},
  94	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
  95};
  96
  97/* Large Page FLASH with FMR[ECCM] = 0 */
  98static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
  99	.eccbytes = 12,
 100	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
 101	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
 102};
 103
 104/* Large Page FLASH with FMR[ECCM] = 1 */
 105static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
 106	.eccbytes = 12,
 107	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
 108	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
 109};
 110
 111/*
 112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
 113 * 1, so we have to adjust bad block pattern. This pattern should be used for
 114 * x8 chips only. So far hardware does not support x16 chips anyway.
 115 */
 116static u8 scan_ff_pattern[] = { 0xff, };
 117
 118static struct nand_bbt_descr largepage_memorybased = {
 119	.options = 0,
 120	.offs = 0,
 121	.len = 1,
 122	.pattern = scan_ff_pattern,
 123};
 124
 125/*
 126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 127 * interfere with ECC positions, that's why we implement our own descriptors.
 128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 129 */
 130static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 131static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 132
 133static struct nand_bbt_descr bbt_main_descr = {
 134	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 135		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 136	.offs =	11,
 137	.len = 4,
 138	.veroffs = 15,
 139	.maxblocks = 4,
 140	.pattern = bbt_pattern,
 141};
 142
 143static struct nand_bbt_descr bbt_mirror_descr = {
 144	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 145		   NAND_BBT_2BIT | NAND_BBT_VERSION,
 146	.offs =	11,
 147	.len = 4,
 148	.veroffs = 15,
 149	.maxblocks = 4,
 150	.pattern = mirror_pattern,
 151};
 152
 153/*=================================*/
 154
 155/*
 156 * Set up the FCM hardware block and page address fields, and the fcm
 157 * structure addr field to point to the correct FCM buffer in memory
 158 */
 159static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 160{
 161	struct nand_chip *chip = mtd->priv;
 162	struct fsl_elbc_mtd *priv = chip->priv;
 163	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 164	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 165	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 166	int buf_num;
 167
 168	elbc_fcm_ctrl->page = page_addr;
 169
 170	if (priv->page_size) {
 171		/*
 172		 * large page size chip : FPAR[PI] save the lowest 6 bits,
 173		 *                        FBAR[BLK] save the other bits.
 174		 */
 175		out_be32(&lbc->fbar, page_addr >> 6);
 176		out_be32(&lbc->fpar,
 177		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 178		         (oob ? FPAR_LP_MS : 0) | column);
 179		buf_num = (page_addr & 1) << 2;
 180	} else {
 181		/*
 182		 * small page size chip : FPAR[PI] save the lowest 5 bits,
 183		 *                        FBAR[BLK] save the other bits.
 184		 */
 185		out_be32(&lbc->fbar, page_addr >> 5);
 186		out_be32(&lbc->fpar,
 187		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 188		         (oob ? FPAR_SP_MS : 0) | column);
 189		buf_num = page_addr & 7;
 190	}
 191
 192	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
 193	elbc_fcm_ctrl->index = column;
 194
 195	/* for OOB data point to the second half of the buffer */
 196	if (oob)
 197		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
 198
 199	dev_vdbg(priv->dev, "set_addr: bank=%d, "
 200			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
 201	                    "index %x, pes %d ps %d\n",
 202		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
 203		 elbc_fcm_ctrl->index,
 204	         chip->phys_erase_shift, chip->page_shift);
 205}
 206
 207/*
 208 * execute FCM command and wait for it to complete
 209 */
 210static int fsl_elbc_run_command(struct mtd_info *mtd)
 211{
 212	struct nand_chip *chip = mtd->priv;
 213	struct fsl_elbc_mtd *priv = chip->priv;
 214	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 215	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 216	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 217
 218	/* Setup the FMR[OP] to execute without write protection */
 219	out_be32(&lbc->fmr, priv->fmr | 3);
 220	if (elbc_fcm_ctrl->use_mdr)
 221		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
 222
 223	dev_vdbg(priv->dev,
 224	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 225	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 226	dev_vdbg(priv->dev,
 227	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 228	         "fbcr=%08x bank=%d\n",
 229	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 230	         in_be32(&lbc->fbcr), priv->bank);
 231
 232	ctrl->irq_status = 0;
 233	/* execute special operation */
 234	out_be32(&lbc->lsor, priv->bank);
 235
 236	/* wait for FCM complete flag or timeout */
 237	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 238	                   FCM_TIMEOUT_MSECS * HZ/1000);
 239	elbc_fcm_ctrl->status = ctrl->irq_status;
 240	/* store mdr value in case it was needed */
 241	if (elbc_fcm_ctrl->use_mdr)
 242		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
 243
 244	elbc_fcm_ctrl->use_mdr = 0;
 245
 246	if (elbc_fcm_ctrl->status != LTESR_CC) {
 247		dev_info(priv->dev,
 248		         "command failed: fir %x fcr %x status %x mdr %x\n",
 249		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
 250			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
 251		return -EIO;
 252	}
 253
 254	if (chip->ecc.mode != NAND_ECC_HW)
 255		return 0;
 256
 257	elbc_fcm_ctrl->max_bitflips = 0;
 258
 259	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
 260		uint32_t lteccr = in_be32(&lbc->lteccr);
 261		/*
 262		 * if command was a full page read and the ELBC
 263		 * has the LTECCR register, then bits 12-15 (ppc order) of
 264		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
 265		 * bits 28-31 are uncorrectable errors, marked elsewhere.
 266		 * for small page nand only 1 bit is used.
 267		 * if the ELBC doesn't have the lteccr register it reads 0
 268		 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
 269		 * count the number of sub-pages with bitflips and update
 270		 * ecc_stats.corrected accordingly.
 271		 */
 272		if (lteccr & 0x000F000F)
 273			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
 274		if (lteccr & 0x000F0000) {
 275			mtd->ecc_stats.corrected++;
 276			elbc_fcm_ctrl->max_bitflips = 1;
 277		}
 278	}
 279
 280	return 0;
 281}
 282
 283static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 284{
 285	struct fsl_elbc_mtd *priv = chip->priv;
 286	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 287	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 288
 289	if (priv->page_size) {
 290		out_be32(&lbc->fir,
 291		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 292		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 293		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 294		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
 295		         (FIR_OP_RBW << FIR_OP4_SHIFT));
 296
 297		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 298		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 299	} else {
 300		out_be32(&lbc->fir,
 301		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 302		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 303		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 304		         (FIR_OP_RBW << FIR_OP3_SHIFT));
 305
 306		if (oob)
 307			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 308		else
 309			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 310	}
 311}
 312
 313/* cmdfunc send commands to the FCM */
 314static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 315                             int column, int page_addr)
 316{
 317	struct nand_chip *chip = mtd->priv;
 318	struct fsl_elbc_mtd *priv = chip->priv;
 319	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 320	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 321	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 322
 323	elbc_fcm_ctrl->use_mdr = 0;
 324
 325	/* clear the read buffer */
 326	elbc_fcm_ctrl->read_bytes = 0;
 327	if (command != NAND_CMD_PAGEPROG)
 328		elbc_fcm_ctrl->index = 0;
 329
 330	switch (command) {
 331	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
 332	case NAND_CMD_READ1:
 333		column += 256;
 334
 335	/* fall-through */
 336	case NAND_CMD_READ0:
 337		dev_dbg(priv->dev,
 338		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 339		        " 0x%x, column: 0x%x.\n", page_addr, column);
 340
 341
 342		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 343		set_addr(mtd, 0, page_addr, 0);
 344
 345		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 346		elbc_fcm_ctrl->index += column;
 347
 348		fsl_elbc_do_read(chip, 0);
 349		fsl_elbc_run_command(mtd);
 350		return;
 351
 352	/* READOOB reads only the OOB because no ECC is performed. */
 353	case NAND_CMD_READOOB:
 354		dev_vdbg(priv->dev,
 355		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 356			 " 0x%x, column: 0x%x.\n", page_addr, column);
 357
 358		out_be32(&lbc->fbcr, mtd->oobsize - column);
 359		set_addr(mtd, column, page_addr, 1);
 360
 361		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 362
 363		fsl_elbc_do_read(chip, 1);
 364		fsl_elbc_run_command(mtd);
 365		return;
 366
 367	case NAND_CMD_READID:
 368	case NAND_CMD_PARAM:
 369		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
 370
 371		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 372		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 373		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 374		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
 375		/*
 376		 * although currently it's 8 bytes for READID, we always read
 377		 * the maximum 256 bytes(for PARAM)
 378		 */
 379		out_be32(&lbc->fbcr, 256);
 380		elbc_fcm_ctrl->read_bytes = 256;
 381		elbc_fcm_ctrl->use_mdr = 1;
 382		elbc_fcm_ctrl->mdr = column;
 383		set_addr(mtd, 0, 0, 0);
 384		fsl_elbc_run_command(mtd);
 385		return;
 386
 387	/* ERASE1 stores the block and page address */
 388	case NAND_CMD_ERASE1:
 389		dev_vdbg(priv->dev,
 390		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 391		         "page_addr: 0x%x.\n", page_addr);
 392		set_addr(mtd, 0, page_addr, 0);
 393		return;
 394
 395	/* ERASE2 uses the block and page address from ERASE1 */
 396	case NAND_CMD_ERASE2:
 397		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 398
 399		out_be32(&lbc->fir,
 400		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 401		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 402		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
 403		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 404		         (FIR_OP_RS  << FIR_OP4_SHIFT));
 405
 406		out_be32(&lbc->fcr,
 407		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 408		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
 409		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
 410
 411		out_be32(&lbc->fbcr, 0);
 412		elbc_fcm_ctrl->read_bytes = 0;
 413		elbc_fcm_ctrl->use_mdr = 1;
 414
 415		fsl_elbc_run_command(mtd);
 416		return;
 417
 418	/* SEQIN sets up the addr buffer and all registers except the length */
 419	case NAND_CMD_SEQIN: {
 420		__be32 fcr;
 421		dev_vdbg(priv->dev,
 422			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 423		         "page_addr: 0x%x, column: 0x%x.\n",
 424		         page_addr, column);
 425
 426		elbc_fcm_ctrl->column = column;
 427		elbc_fcm_ctrl->use_mdr = 1;
 428
 429		if (column >= mtd->writesize) {
 430			/* OOB area */
 431			column -= mtd->writesize;
 432			elbc_fcm_ctrl->oob = 1;
 433		} else {
 434			WARN_ON(column != 0);
 435			elbc_fcm_ctrl->oob = 0;
 436		}
 437
 438		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
 439		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
 440		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
 441
 442		if (priv->page_size) {
 443			out_be32(&lbc->fir,
 444			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
 445			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 446			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 447			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
 448			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
 449			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
 450			         (FIR_OP_RS  << FIR_OP6_SHIFT));
 451		} else {
 452			out_be32(&lbc->fir,
 453			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 454			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 455			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
 456			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
 457			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
 458			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
 459			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
 460			         (FIR_OP_RS  << FIR_OP7_SHIFT));
 461
 462			if (elbc_fcm_ctrl->oob)
 463				/* OOB area --> READOOB */
 464				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 465			else
 466				/* First 256 bytes --> READ0 */
 467				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 468		}
 469
 470		out_be32(&lbc->fcr, fcr);
 471		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
 472		return;
 473	}
 474
 475	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 476	case NAND_CMD_PAGEPROG: {
 477		dev_vdbg(priv->dev,
 478		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 479			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
 480
 481		/* if the write did not start at 0 or is not a full page
 482		 * then set the exact length, otherwise use a full page
 483		 * write so the HW generates the ECC.
 484		 */
 485		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
 486		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
 487			out_be32(&lbc->fbcr,
 488				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
 489		else
 490			out_be32(&lbc->fbcr, 0);
 491
 492		fsl_elbc_run_command(mtd);
 493		return;
 494	}
 495
 496	/* CMD_STATUS must read the status byte while CEB is active */
 497	/* Note - it does not wait for the ready line */
 498	case NAND_CMD_STATUS:
 499		out_be32(&lbc->fir,
 500		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 501		         (FIR_OP_RBW << FIR_OP1_SHIFT));
 502		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 503		out_be32(&lbc->fbcr, 1);
 504		set_addr(mtd, 0, 0, 0);
 505		elbc_fcm_ctrl->read_bytes = 1;
 506
 507		fsl_elbc_run_command(mtd);
 508
 509		/* The chip always seems to report that it is
 510		 * write-protected, even when it is not.
 511		 */
 512		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
 513		return;
 514
 515	/* RESET without waiting for the ready line */
 516	case NAND_CMD_RESET:
 517		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 518		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 519		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 520		fsl_elbc_run_command(mtd);
 521		return;
 522
 523	default:
 524		dev_err(priv->dev,
 525		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 526		        command);
 527	}
 528}
 529
 530static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 531{
 532	/* The hardware does not seem to support multiple
 533	 * chips per bank.
 534	 */
 535}
 536
 537/*
 538 * Write buf to the FCM Controller Data Buffer
 539 */
 540static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 541{
 542	struct nand_chip *chip = mtd->priv;
 543	struct fsl_elbc_mtd *priv = chip->priv;
 544	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 545	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 546
 547	if (len <= 0) {
 548		dev_err(priv->dev, "write_buf of %d bytes", len);
 549		elbc_fcm_ctrl->status = 0;
 550		return;
 551	}
 552
 553	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
 554		dev_err(priv->dev,
 555		        "write_buf beyond end of buffer "
 556		        "(%d requested, %u available)\n",
 557			len, bufsize - elbc_fcm_ctrl->index);
 558		len = bufsize - elbc_fcm_ctrl->index;
 559	}
 560
 561	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
 562	/*
 563	 * This is workaround for the weird elbc hangs during nand write,
 564	 * Scott Wood says: "...perhaps difference in how long it takes a
 565	 * write to make it through the localbus compared to a write to IMMR
 566	 * is causing problems, and sync isn't helping for some reason."
 567	 * Reading back the last byte helps though.
 568	 */
 569	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
 570
 571	elbc_fcm_ctrl->index += len;
 572}
 573
 574/*
 575 * read a byte from either the FCM hardware buffer if it has any data left
 576 * otherwise issue a command to read a single byte.
 577 */
 578static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 579{
 580	struct nand_chip *chip = mtd->priv;
 581	struct fsl_elbc_mtd *priv = chip->priv;
 582	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 583
 584	/* If there are still bytes in the FCM, then use the next byte. */
 585	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
 586		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
 587
 588	dev_err(priv->dev, "read_byte beyond end of buffer\n");
 589	return ERR_BYTE;
 590}
 591
 592/*
 593 * Read from the FCM Controller Data Buffer
 594 */
 595static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 596{
 597	struct nand_chip *chip = mtd->priv;
 598	struct fsl_elbc_mtd *priv = chip->priv;
 599	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 600	int avail;
 601
 602	if (len < 0)
 603		return;
 604
 605	avail = min((unsigned int)len,
 606			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 607	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
 608	elbc_fcm_ctrl->index += avail;
 609
 610	if (len > avail)
 611		dev_err(priv->dev,
 612		        "read_buf beyond end of buffer "
 613		        "(%d requested, %d available)\n",
 614		        len, avail);
 615}
 616
 617/*
 618 * Verify buffer against the FCM Controller Data Buffer
 619 */
 620static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
 621{
 622	struct nand_chip *chip = mtd->priv;
 623	struct fsl_elbc_mtd *priv = chip->priv;
 624	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 625	int i;
 626
 627	if (len < 0) {
 628		dev_err(priv->dev, "write_buf of %d bytes", len);
 629		return -EINVAL;
 630	}
 631
 632	if ((unsigned int)len >
 633			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
 634		dev_err(priv->dev,
 635			"verify_buf beyond end of buffer "
 636			"(%d requested, %u available)\n",
 637			len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
 638
 639		elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
 640		return -EINVAL;
 641	}
 642
 643	for (i = 0; i < len; i++)
 644		if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
 645				!= buf[i])
 646			break;
 647
 648	elbc_fcm_ctrl->index += len;
 649	return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
 650}
 651
 652/* This function is called after Program and Erase Operations to
 653 * check for success or failure.
 654 */
 655static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 656{
 657	struct fsl_elbc_mtd *priv = chip->priv;
 658	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 659
 660	if (elbc_fcm_ctrl->status != LTESR_CC)
 661		return NAND_STATUS_FAIL;
 662
 663	/* The chip always seems to report that it is
 664	 * write-protected, even when it is not.
 665	 */
 666	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 667}
 668
 669static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
 670{
 671	struct nand_chip *chip = mtd->priv;
 672	struct fsl_elbc_mtd *priv = chip->priv;
 673	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 674	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 675	unsigned int al;
 676
 677	/* calculate FMR Address Length field */
 678	al = 0;
 679	if (chip->pagemask & 0xffff0000)
 680		al++;
 681	if (chip->pagemask & 0xff000000)
 682		al++;
 683
 684	priv->fmr |= al << FMR_AL_SHIFT;
 685
 686	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
 687	        chip->numchips);
 688	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 689	        chip->chipsize);
 690	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 691	        chip->pagemask);
 692	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
 693	        chip->chip_delay);
 694	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 695	        chip->badblockpos);
 696	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 697	        chip->chip_shift);
 698	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 699	        chip->page_shift);
 700	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 701	        chip->phys_erase_shift);
 702	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
 703	        chip->ecclayout);
 704	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
 705	        chip->ecc.mode);
 706	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 707	        chip->ecc.steps);
 708	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 709	        chip->ecc.bytes);
 710	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 711	        chip->ecc.total);
 712	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
 713	        chip->ecc.layout);
 714	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 715	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 716	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 717	        mtd->erasesize);
 718	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 719	        mtd->writesize);
 720	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 721	        mtd->oobsize);
 722
 723	/* adjust Option Register and ECC to match Flash page size */
 724	if (mtd->writesize == 512) {
 725		priv->page_size = 0;
 726		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 727	} else if (mtd->writesize == 2048) {
 728		priv->page_size = 1;
 729		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 730		/* adjust ecc setup if needed */
 731		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 732		    BR_DECC_CHK_GEN) {
 733			chip->ecc.size = 512;
 734			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 735			                   &fsl_elbc_oob_lp_eccm1 :
 736			                   &fsl_elbc_oob_lp_eccm0;
 737			chip->badblock_pattern = &largepage_memorybased;
 738		}
 739	} else {
 740		dev_err(priv->dev,
 741		        "fsl_elbc_init: page size %d is not supported\n",
 742		        mtd->writesize);
 743		return -1;
 744	}
 745
 746	return 0;
 747}
 748
 749static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 750			      uint8_t *buf, int oob_required, int page)
 751{
 752	struct fsl_elbc_mtd *priv = chip->priv;
 753	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 754	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 755
 756	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
 757	if (oob_required)
 758		fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 759
 760	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 761		mtd->ecc_stats.failed++;
 762
 763	return elbc_fcm_ctrl->max_bitflips;
 764}
 765
 766/* ECC will be calculated automatically, and errors will be detected in
 767 * waitfunc.
 768 */
 769static void fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 770				const uint8_t *buf, int oob_required)
 771{
 772	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 773	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 774}
 775
 776static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 777{
 778	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 779	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 780	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
 781	struct nand_chip *chip = &priv->chip;
 782
 783	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 784
 785	/* Fill in fsl_elbc_mtd structure */
 786	priv->mtd.priv = chip;
 787	priv->mtd.owner = THIS_MODULE;
 788
 789	/* set timeout to maximum */
 790	priv->fmr = 15 << FMR_CWTO_SHIFT;
 791	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
 792		priv->fmr |= FMR_ECCM;
 793
 794	/* fill in nand_chip structure */
 795	/* set up function call table */
 796	chip->read_byte = fsl_elbc_read_byte;
 797	chip->write_buf = fsl_elbc_write_buf;
 798	chip->read_buf = fsl_elbc_read_buf;
 799	chip->verify_buf = fsl_elbc_verify_buf;
 800	chip->select_chip = fsl_elbc_select_chip;
 801	chip->cmdfunc = fsl_elbc_cmdfunc;
 802	chip->waitfunc = fsl_elbc_wait;
 803
 804	chip->bbt_td = &bbt_main_descr;
 805	chip->bbt_md = &bbt_mirror_descr;
 806
 807	/* set up nand options */
 808	chip->options = NAND_NO_READRDY;
 809	chip->bbt_options = NAND_BBT_USE_FLASH;
 810
 811	chip->controller = &elbc_fcm_ctrl->controller;
 812	chip->priv = priv;
 813
 814	chip->ecc.read_page = fsl_elbc_read_page;
 815	chip->ecc.write_page = fsl_elbc_write_page;
 816
 817	/* If CS Base Register selects full hardware ECC then use it */
 818	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 819	    BR_DECC_CHK_GEN) {
 820		chip->ecc.mode = NAND_ECC_HW;
 821		/* put in small page settings and adjust later if needed */
 822		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 823				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
 824		chip->ecc.size = 512;
 825		chip->ecc.bytes = 3;
 826		chip->ecc.strength = 1;
 827	} else {
 828		/* otherwise fall back to default software ECC */
 829		chip->ecc.mode = NAND_ECC_SOFT;
 830	}
 831
 832	return 0;
 833}
 834
 835static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 836{
 837	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 838	nand_release(&priv->mtd);
 839
 840	kfree(priv->mtd.name);
 841
 842	if (priv->vbase)
 843		iounmap(priv->vbase);
 844
 845	elbc_fcm_ctrl->chips[priv->bank] = NULL;
 846	kfree(priv);
 847	return 0;
 848}
 849
 850static DEFINE_MUTEX(fsl_elbc_nand_mutex);
 851
 852static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
 853{
 854	struct fsl_lbc_regs __iomem *lbc;
 855	struct fsl_elbc_mtd *priv;
 856	struct resource res;
 857	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
 858	static const char *part_probe_types[]
 859		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
 860	int ret;
 861	int bank;
 862	struct device *dev;
 863	struct device_node *node = pdev->dev.of_node;
 864	struct mtd_part_parser_data ppdata;
 865
 866	ppdata.of_node = pdev->dev.of_node;
 867	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
 868		return -ENODEV;
 869	lbc = fsl_lbc_ctrl_dev->regs;
 870	dev = fsl_lbc_ctrl_dev->dev;
 871
 872	/* get, allocate and map the memory resource */
 873	ret = of_address_to_resource(node, 0, &res);
 874	if (ret) {
 875		dev_err(dev, "failed to get resource\n");
 876		return ret;
 877	}
 878
 879	/* find which chip select it is connected to */
 880	for (bank = 0; bank < MAX_BANKS; bank++)
 881		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 882		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 883		    (in_be32(&lbc->bank[bank].br) &
 884		     in_be32(&lbc->bank[bank].or) & BR_BA)
 885		     == fsl_lbc_addr(res.start))
 886			break;
 887
 888	if (bank >= MAX_BANKS) {
 889		dev_err(dev, "address did not match any chip selects\n");
 890		return -ENODEV;
 891	}
 892
 893	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 894	if (!priv)
 895		return -ENOMEM;
 896
 897	mutex_lock(&fsl_elbc_nand_mutex);
 898	if (!fsl_lbc_ctrl_dev->nand) {
 899		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
 900		if (!elbc_fcm_ctrl) {
 901			dev_err(dev, "failed to allocate memory\n");
 902			mutex_unlock(&fsl_elbc_nand_mutex);
 903			ret = -ENOMEM;
 904			goto err;
 905		}
 906		elbc_fcm_ctrl->counter++;
 907
 908		spin_lock_init(&elbc_fcm_ctrl->controller.lock);
 909		init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
 910		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
 911	} else {
 912		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 913	}
 914	mutex_unlock(&fsl_elbc_nand_mutex);
 915
 916	elbc_fcm_ctrl->chips[bank] = priv;
 917	priv->bank = bank;
 918	priv->ctrl = fsl_lbc_ctrl_dev;
 919	priv->dev = dev;
 920
 921	priv->vbase = ioremap(res.start, resource_size(&res));
 922	if (!priv->vbase) {
 923		dev_err(dev, "failed to map chip region\n");
 924		ret = -ENOMEM;
 925		goto err;
 926	}
 927
 928	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
 929	if (!priv->mtd.name) {
 930		ret = -ENOMEM;
 931		goto err;
 932	}
 933
 934	ret = fsl_elbc_chip_init(priv);
 935	if (ret)
 936		goto err;
 937
 938	ret = nand_scan_ident(&priv->mtd, 1, NULL);
 939	if (ret)
 940		goto err;
 941
 942	ret = fsl_elbc_chip_init_tail(&priv->mtd);
 943	if (ret)
 944		goto err;
 945
 946	ret = nand_scan_tail(&priv->mtd);
 947	if (ret)
 948		goto err;
 949
 950	/* First look for RedBoot table or partitions on the command
 951	 * line, these take precedence over device tree information */
 952	mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
 953				  NULL, 0);
 954
 955	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
 956	       (unsigned long long)res.start, priv->bank);
 957	return 0;
 958
 959err:
 960	fsl_elbc_chip_remove(priv);
 961	return ret;
 962}
 963
 964static int fsl_elbc_nand_remove(struct platform_device *pdev)
 965{
 966	int i;
 967	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 968	for (i = 0; i < MAX_BANKS; i++)
 969		if (elbc_fcm_ctrl->chips[i])
 970			fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
 971
 972	mutex_lock(&fsl_elbc_nand_mutex);
 973	elbc_fcm_ctrl->counter--;
 974	if (!elbc_fcm_ctrl->counter) {
 975		fsl_lbc_ctrl_dev->nand = NULL;
 976		kfree(elbc_fcm_ctrl);
 977	}
 978	mutex_unlock(&fsl_elbc_nand_mutex);
 979
 980	return 0;
 981
 982}
 983
 984static const struct of_device_id fsl_elbc_nand_match[] = {
 985	{ .compatible = "fsl,elbc-fcm-nand", },
 986	{}
 987};
 988
 989static struct platform_driver fsl_elbc_nand_driver = {
 990	.driver = {
 991		.name = "fsl,elbc-fcm-nand",
 992		.owner = THIS_MODULE,
 993		.of_match_table = fsl_elbc_nand_match,
 994	},
 995	.probe = fsl_elbc_nand_probe,
 996	.remove = fsl_elbc_nand_remove,
 997};
 998
 999module_platform_driver(fsl_elbc_nand_driver);
1000
1001MODULE_LICENSE("GPL");
1002MODULE_AUTHOR("Freescale");
1003MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");