Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64#define RAID5_MAX_REQ_STRIPES 256
65
66static bool devices_handle_discard_safely = false;
67module_param(devices_handle_discard_safely, bool, 0644);
68MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70static struct workqueue_struct *raid5_wq;
71
72static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75{
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
79
80static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81{
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83}
84
85static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
87{
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90}
91
92static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
94{
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97}
98
99static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
101{
102 int i;
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107}
108
109static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
111{
112 int i;
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
117}
118
119/* Find first data disk in a raid6 stripe */
120static inline int raid6_d0(struct stripe_head *sh)
121{
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130}
131static inline int raid6_next_disk(int disk, int raid_disks)
132{
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135}
136
137/* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
142static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
144{
145 int slot = *count;
146
147 if (sh->ddf_layout)
148 (*count)++;
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
153 if (!sh->ddf_layout)
154 (*count)++;
155 return slot;
156}
157
158static void print_raid5_conf (struct r5conf *conf);
159
160static int stripe_operations_active(struct stripe_head *sh)
161{
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165}
166
167static bool stripe_is_lowprio(struct stripe_head *sh)
168{
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172}
173
174static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
176{
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219}
220
221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
224{
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305}
306
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
310{
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
313}
314
315/*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
322static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325{
326 int size;
327 bool do_wakeup = false;
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
348 do_wakeup = true;
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
362}
363
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
367{
368 struct stripe_head *sh, *t;
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
375 int hash;
376
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
387 count++;
388 }
389
390 return count;
391}
392
393void raid5_release_stripe(struct stripe_head *sh)
394{
395 struct r5conf *conf = sh->raid_conf;
396 unsigned long flags;
397 struct list_head list;
398 int hash;
399 bool wakeup;
400
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413slow_path:
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422}
423
424static inline void remove_hash(struct stripe_head *sh)
425{
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430}
431
432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433{
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440}
441
442/* find an idle stripe, make sure it is unhashed, and return it. */
443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444{
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458out:
459 return sh;
460}
461
462#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463static void free_stripe_pages(struct stripe_head *sh)
464{
465 int i;
466 struct page *p;
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478}
479
480static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481{
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498}
499
500static int
501init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502{
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518}
519#endif
520
521static void shrink_buffers(struct stripe_head *sh)
522{
523 int i;
524 int num = sh->raid_conf->pool_size;
525
526#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
528 struct page *p;
529
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
535 put_page(p);
536 }
537#else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541#endif
542}
543
544static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545{
546 int i;
547 int num = sh->raid_conf->pool_size;
548
549#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
551 struct page *page;
552
553 if (!(page = alloc_page(gfp))) {
554 return 1;
555 }
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
559 }
560#else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
563
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569#endif
570 return 0;
571}
572
573static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
575
576static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577{
578 struct r5conf *conf = sh->raid_conf;
579 int i, seq;
580
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
585
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
588retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 sh->sector = sector;
593 stripe_set_idx(sector, conf, previous, sh);
594 sh->state = 0;
595
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
598
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
605 WARN_ON(1);
606 }
607 dev->flags = 0;
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 }
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
616}
617
618static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 short generation)
620{
621 struct stripe_head *sh;
622
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
626 return sh;
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 return NULL;
629}
630
631static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633{
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672}
673
674/*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
690 */
691int raid5_calc_degraded(struct r5conf *conf)
692{
693 int degraded, degraded2;
694 int i;
695
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743}
744
745static bool has_failed(struct r5conf *conf)
746{
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756}
757
758enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763};
764
765struct stripe_request_ctx {
766 /* a reference to the last stripe_head for batching */
767 struct stripe_head *batch_last;
768
769 /* first sector in the request */
770 sector_t first_sector;
771
772 /* last sector in the request */
773 sector_t last_sector;
774
775 /*
776 * bitmap to track stripe sectors that have been added to stripes
777 * add one to account for unaligned requests
778 */
779 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
780
781 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
782 bool do_flush;
783};
784
785/*
786 * Block until another thread clears R5_INACTIVE_BLOCKED or
787 * there are fewer than 3/4 the maximum number of active stripes
788 * and there is an inactive stripe available.
789 */
790static bool is_inactive_blocked(struct r5conf *conf, int hash)
791{
792 if (list_empty(conf->inactive_list + hash))
793 return false;
794
795 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
796 return true;
797
798 return (atomic_read(&conf->active_stripes) <
799 (conf->max_nr_stripes * 3 / 4));
800}
801
802struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
803 struct stripe_request_ctx *ctx, sector_t sector,
804 unsigned int flags)
805{
806 struct stripe_head *sh;
807 int hash = stripe_hash_locks_hash(conf, sector);
808 int previous = !!(flags & R5_GAS_PREVIOUS);
809
810 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
811
812 spin_lock_irq(conf->hash_locks + hash);
813
814 for (;;) {
815 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
816 /*
817 * Must release the reference to batch_last before
818 * waiting, on quiesce, otherwise the batch_last will
819 * hold a reference to a stripe and raid5_quiesce()
820 * will deadlock waiting for active_stripes to go to
821 * zero.
822 */
823 if (ctx && ctx->batch_last) {
824 raid5_release_stripe(ctx->batch_last);
825 ctx->batch_last = NULL;
826 }
827
828 wait_event_lock_irq(conf->wait_for_quiescent,
829 !conf->quiesce,
830 *(conf->hash_locks + hash));
831 }
832
833 sh = find_get_stripe(conf, sector, conf->generation - previous,
834 hash);
835 if (sh)
836 break;
837
838 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
839 sh = get_free_stripe(conf, hash);
840 if (sh) {
841 r5c_check_stripe_cache_usage(conf);
842 init_stripe(sh, sector, previous);
843 atomic_inc(&sh->count);
844 break;
845 }
846
847 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
848 set_bit(R5_ALLOC_MORE, &conf->cache_state);
849 }
850
851 if (flags & R5_GAS_NOBLOCK)
852 break;
853
854 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
855 r5l_wake_reclaim(conf->log, 0);
856
857 /* release batch_last before wait to avoid risk of deadlock */
858 if (ctx && ctx->batch_last) {
859 raid5_release_stripe(ctx->batch_last);
860 ctx->batch_last = NULL;
861 }
862
863 wait_event_lock_irq(conf->wait_for_stripe,
864 is_inactive_blocked(conf, hash),
865 *(conf->hash_locks + hash));
866 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
867 }
868
869 spin_unlock_irq(conf->hash_locks + hash);
870 return sh;
871}
872
873static bool is_full_stripe_write(struct stripe_head *sh)
874{
875 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
876 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
877}
878
879static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
880 __acquires(&sh1->stripe_lock)
881 __acquires(&sh2->stripe_lock)
882{
883 if (sh1 > sh2) {
884 spin_lock_irq(&sh2->stripe_lock);
885 spin_lock_nested(&sh1->stripe_lock, 1);
886 } else {
887 spin_lock_irq(&sh1->stripe_lock);
888 spin_lock_nested(&sh2->stripe_lock, 1);
889 }
890}
891
892static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
893 __releases(&sh1->stripe_lock)
894 __releases(&sh2->stripe_lock)
895{
896 spin_unlock(&sh1->stripe_lock);
897 spin_unlock_irq(&sh2->stripe_lock);
898}
899
900/* Only freshly new full stripe normal write stripe can be added to a batch list */
901static bool stripe_can_batch(struct stripe_head *sh)
902{
903 struct r5conf *conf = sh->raid_conf;
904
905 if (raid5_has_log(conf) || raid5_has_ppl(conf))
906 return false;
907 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
908 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
909 is_full_stripe_write(sh);
910}
911
912/* we only do back search */
913static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
915{
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
918 int hash;
919 int dd_idx;
920
921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
924 return;
925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926
927 if (last_sh && head_sector == last_sh->sector) {
928 head = last_sh;
929 atomic_inc(&head->count);
930 } else {
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
934 hash);
935 spin_unlock_irq(conf->hash_locks + hash);
936 if (!head)
937 return;
938 if (!stripe_can_batch(head))
939 goto out;
940 }
941
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 goto unlock_out;
946
947 if (sh->batch_head)
948 goto unlock_out;
949
950 dd_idx = 0;
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 dd_idx++;
953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 goto unlock_out;
956
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
962 goto unlock_out;
963 }
964 /*
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
970 */
971 sh->batch_head = head->batch_head;
972
973 /*
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
976 */
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
979 } else {
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
985 }
986
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
989 < IO_THRESHOLD)
990 md_wakeup_thread(conf->mddev->thread);
991
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
999 }
1000
1001 atomic_inc(&sh->count);
1002unlock_out:
1003 unlock_two_stripes(head, sh);
1004out:
1005 raid5_release_stripe(head);
1006}
1007
1008/* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1010 */
1011static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012{
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1017 */
1018 smp_rmb();
1019 if (progress == MaxSector)
1020 return 0;
1021 if (sh->generation == conf->generation - 1)
1022 return 0;
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1025 */
1026 return 1;
1027}
1028
1029static void dispatch_bio_list(struct bio_list *tmp)
1030{
1031 struct bio *bio;
1032
1033 while ((bio = bio_list_pop(tmp)))
1034 submit_bio_noacct(bio);
1035}
1036
1037static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
1039{
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1045 return 1;
1046 if (da->sector < db->sector)
1047 return -1;
1048 return 0;
1049}
1050
1051static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1053{
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1056 int cnt = 0;
1057
1058 if (conf->pending_data_cnt == 0)
1059 return;
1060
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1062
1063 first = conf->pending_list.next;
1064
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1069
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1076
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1079 cnt++;
1080 if (cnt >= target)
1081 break;
1082 }
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1089 else
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1094}
1095
1096static void flush_deferred_bios(struct r5conf *conf)
1097{
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1099
1100 if (conf->pending_data_cnt == 0)
1101 return;
1102
1103 spin_lock(&conf->pending_bios_lock);
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
1106 spin_unlock(&conf->pending_bios_lock);
1107
1108 dispatch_bio_list(&tmp);
1109}
1110
1111static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
1113{
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1116
1117 spin_lock(&conf->pending_bios_lock);
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 sibling);
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127
1128 spin_unlock(&conf->pending_bios_lock);
1129
1130 dispatch_bio_list(&tmp);
1131}
1132
1133static void
1134raid5_end_read_request(struct bio *bi);
1135static void
1136raid5_end_write_request(struct bio *bi);
1137
1138static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139{
1140 struct r5conf *conf = sh->raid_conf;
1141 int i, disks = sh->disks;
1142 struct stripe_head *head_sh = sh;
1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 struct r5dev *dev;
1145 bool should_defer;
1146
1147 might_sleep();
1148
1149 if (log_stripe(sh, s) == 0)
1150 return;
1151
1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153
1154 for (i = disks; i--; ) {
1155 enum req_op op;
1156 blk_opf_t op_flags = 0;
1157 int replace_only = 0;
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
1160
1161 sh = head_sh;
1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 op = REQ_OP_WRITE;
1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 op_flags = REQ_FUA;
1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 op = REQ_OP_DISCARD;
1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 op = REQ_OP_READ;
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
1172 op = REQ_OP_WRITE;
1173 replace_only = 1;
1174 } else
1175 continue;
1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 op_flags |= REQ_SYNC;
1178
1179again:
1180 dev = &sh->dev[i];
1181 bi = &dev->req;
1182 rbi = &dev->rreq; /* For writing to replacement */
1183
1184 rdev = conf->disks[i].rdev;
1185 rrdev = conf->disks[i].replacement;
1186 if (op_is_write(op)) {
1187 if (replace_only)
1188 rdev = NULL;
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
1192 } else {
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
1197
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
1206
1207 /* We have already checked bad blocks for reads. Now
1208 * need to check for writes. We never accept write errors
1209 * on the replacement, so we don't to check rrdev.
1210 */
1211 while (op_is_write(op) && rdev &&
1212 test_bit(WriteErrorSeen, &rdev->flags)) {
1213 sector_t first_bad;
1214 int bad_sectors;
1215 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1216 &first_bad, &bad_sectors);
1217 if (!bad)
1218 break;
1219
1220 if (bad < 0) {
1221 set_bit(BlockedBadBlocks, &rdev->flags);
1222 if (!conf->mddev->external &&
1223 conf->mddev->sb_flags) {
1224 /* It is very unlikely, but we might
1225 * still need to write out the
1226 * bad block log - better give it
1227 * a chance*/
1228 md_check_recovery(conf->mddev);
1229 }
1230 /*
1231 * Because md_wait_for_blocked_rdev
1232 * will dec nr_pending, we must
1233 * increment it first.
1234 */
1235 atomic_inc(&rdev->nr_pending);
1236 md_wait_for_blocked_rdev(rdev, conf->mddev);
1237 } else {
1238 /* Acknowledged bad block - skip the write */
1239 rdev_dec_pending(rdev, conf->mddev);
1240 rdev = NULL;
1241 }
1242 }
1243
1244 if (rdev) {
1245 if (s->syncing || s->expanding || s->expanded
1246 || s->replacing)
1247 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248
1249 set_bit(STRIPE_IO_STARTED, &sh->state);
1250
1251 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1252 bi->bi_end_io = op_is_write(op)
1253 ? raid5_end_write_request
1254 : raid5_end_read_request;
1255 bi->bi_private = sh;
1256
1257 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1258 __func__, (unsigned long long)sh->sector,
1259 bi->bi_opf, i);
1260 atomic_inc(&sh->count);
1261 if (sh != head_sh)
1262 atomic_inc(&head_sh->count);
1263 if (use_new_offset(conf, sh))
1264 bi->bi_iter.bi_sector = (sh->sector
1265 + rdev->new_data_offset);
1266 else
1267 bi->bi_iter.bi_sector = (sh->sector
1268 + rdev->data_offset);
1269 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1270 bi->bi_opf |= REQ_NOMERGE;
1271
1272 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1273 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1274
1275 if (!op_is_write(op) &&
1276 test_bit(R5_InJournal, &sh->dev[i].flags))
1277 /*
1278 * issuing read for a page in journal, this
1279 * must be preparing for prexor in rmw; read
1280 * the data into orig_page
1281 */
1282 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1283 else
1284 sh->dev[i].vec.bv_page = sh->dev[i].page;
1285 bi->bi_vcnt = 1;
1286 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1287 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1288 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1289 /*
1290 * If this is discard request, set bi_vcnt 0. We don't
1291 * want to confuse SCSI because SCSI will replace payload
1292 */
1293 if (op == REQ_OP_DISCARD)
1294 bi->bi_vcnt = 0;
1295 if (rrdev)
1296 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1297
1298 if (conf->mddev->gendisk)
1299 trace_block_bio_remap(bi,
1300 disk_devt(conf->mddev->gendisk),
1301 sh->dev[i].sector);
1302 if (should_defer && op_is_write(op))
1303 bio_list_add(&pending_bios, bi);
1304 else
1305 submit_bio_noacct(bi);
1306 }
1307 if (rrdev) {
1308 if (s->syncing || s->expanding || s->expanded
1309 || s->replacing)
1310 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1311
1312 set_bit(STRIPE_IO_STARTED, &sh->state);
1313
1314 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1315 BUG_ON(!op_is_write(op));
1316 rbi->bi_end_io = raid5_end_write_request;
1317 rbi->bi_private = sh;
1318
1319 pr_debug("%s: for %llu schedule op %d on "
1320 "replacement disc %d\n",
1321 __func__, (unsigned long long)sh->sector,
1322 rbi->bi_opf, i);
1323 atomic_inc(&sh->count);
1324 if (sh != head_sh)
1325 atomic_inc(&head_sh->count);
1326 if (use_new_offset(conf, sh))
1327 rbi->bi_iter.bi_sector = (sh->sector
1328 + rrdev->new_data_offset);
1329 else
1330 rbi->bi_iter.bi_sector = (sh->sector
1331 + rrdev->data_offset);
1332 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1333 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1334 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1335 rbi->bi_vcnt = 1;
1336 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1337 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1338 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1339 /*
1340 * If this is discard request, set bi_vcnt 0. We don't
1341 * want to confuse SCSI because SCSI will replace payload
1342 */
1343 if (op == REQ_OP_DISCARD)
1344 rbi->bi_vcnt = 0;
1345 if (conf->mddev->gendisk)
1346 trace_block_bio_remap(rbi,
1347 disk_devt(conf->mddev->gendisk),
1348 sh->dev[i].sector);
1349 if (should_defer && op_is_write(op))
1350 bio_list_add(&pending_bios, rbi);
1351 else
1352 submit_bio_noacct(rbi);
1353 }
1354 if (!rdev && !rrdev) {
1355 if (op_is_write(op))
1356 set_bit(STRIPE_DEGRADED, &sh->state);
1357 pr_debug("skip op %d on disc %d for sector %llu\n",
1358 bi->bi_opf, i, (unsigned long long)sh->sector);
1359 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1360 set_bit(STRIPE_HANDLE, &sh->state);
1361 }
1362
1363 if (!head_sh->batch_head)
1364 continue;
1365 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1366 batch_list);
1367 if (sh != head_sh)
1368 goto again;
1369 }
1370
1371 if (should_defer && !bio_list_empty(&pending_bios))
1372 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1373}
1374
1375static struct dma_async_tx_descriptor *
1376async_copy_data(int frombio, struct bio *bio, struct page **page,
1377 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1378 struct stripe_head *sh, int no_skipcopy)
1379{
1380 struct bio_vec bvl;
1381 struct bvec_iter iter;
1382 struct page *bio_page;
1383 int page_offset;
1384 struct async_submit_ctl submit;
1385 enum async_tx_flags flags = 0;
1386 struct r5conf *conf = sh->raid_conf;
1387
1388 if (bio->bi_iter.bi_sector >= sector)
1389 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1390 else
1391 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1392
1393 if (frombio)
1394 flags |= ASYNC_TX_FENCE;
1395 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1396
1397 bio_for_each_segment(bvl, bio, iter) {
1398 int len = bvl.bv_len;
1399 int clen;
1400 int b_offset = 0;
1401
1402 if (page_offset < 0) {
1403 b_offset = -page_offset;
1404 page_offset += b_offset;
1405 len -= b_offset;
1406 }
1407
1408 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1409 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1410 else
1411 clen = len;
1412
1413 if (clen > 0) {
1414 b_offset += bvl.bv_offset;
1415 bio_page = bvl.bv_page;
1416 if (frombio) {
1417 if (conf->skip_copy &&
1418 b_offset == 0 && page_offset == 0 &&
1419 clen == RAID5_STRIPE_SIZE(conf) &&
1420 !no_skipcopy)
1421 *page = bio_page;
1422 else
1423 tx = async_memcpy(*page, bio_page, page_offset + poff,
1424 b_offset, clen, &submit);
1425 } else
1426 tx = async_memcpy(bio_page, *page, b_offset,
1427 page_offset + poff, clen, &submit);
1428 }
1429 /* chain the operations */
1430 submit.depend_tx = tx;
1431
1432 if (clen < len) /* hit end of page */
1433 break;
1434 page_offset += len;
1435 }
1436
1437 return tx;
1438}
1439
1440static void ops_complete_biofill(void *stripe_head_ref)
1441{
1442 struct stripe_head *sh = stripe_head_ref;
1443 int i;
1444 struct r5conf *conf = sh->raid_conf;
1445
1446 pr_debug("%s: stripe %llu\n", __func__,
1447 (unsigned long long)sh->sector);
1448
1449 /* clear completed biofills */
1450 for (i = sh->disks; i--; ) {
1451 struct r5dev *dev = &sh->dev[i];
1452
1453 /* acknowledge completion of a biofill operation */
1454 /* and check if we need to reply to a read request,
1455 * new R5_Wantfill requests are held off until
1456 * !STRIPE_BIOFILL_RUN
1457 */
1458 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1459 struct bio *rbi, *rbi2;
1460
1461 BUG_ON(!dev->read);
1462 rbi = dev->read;
1463 dev->read = NULL;
1464 while (rbi && rbi->bi_iter.bi_sector <
1465 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1466 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1467 bio_endio(rbi);
1468 rbi = rbi2;
1469 }
1470 }
1471 }
1472 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1473
1474 set_bit(STRIPE_HANDLE, &sh->state);
1475 raid5_release_stripe(sh);
1476}
1477
1478static void ops_run_biofill(struct stripe_head *sh)
1479{
1480 struct dma_async_tx_descriptor *tx = NULL;
1481 struct async_submit_ctl submit;
1482 int i;
1483 struct r5conf *conf = sh->raid_conf;
1484
1485 BUG_ON(sh->batch_head);
1486 pr_debug("%s: stripe %llu\n", __func__,
1487 (unsigned long long)sh->sector);
1488
1489 for (i = sh->disks; i--; ) {
1490 struct r5dev *dev = &sh->dev[i];
1491 if (test_bit(R5_Wantfill, &dev->flags)) {
1492 struct bio *rbi;
1493 spin_lock_irq(&sh->stripe_lock);
1494 dev->read = rbi = dev->toread;
1495 dev->toread = NULL;
1496 spin_unlock_irq(&sh->stripe_lock);
1497 while (rbi && rbi->bi_iter.bi_sector <
1498 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1499 tx = async_copy_data(0, rbi, &dev->page,
1500 dev->offset,
1501 dev->sector, tx, sh, 0);
1502 rbi = r5_next_bio(conf, rbi, dev->sector);
1503 }
1504 }
1505 }
1506
1507 atomic_inc(&sh->count);
1508 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1509 async_trigger_callback(&submit);
1510}
1511
1512static void mark_target_uptodate(struct stripe_head *sh, int target)
1513{
1514 struct r5dev *tgt;
1515
1516 if (target < 0)
1517 return;
1518
1519 tgt = &sh->dev[target];
1520 set_bit(R5_UPTODATE, &tgt->flags);
1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 clear_bit(R5_Wantcompute, &tgt->flags);
1523}
1524
1525static void ops_complete_compute(void *stripe_head_ref)
1526{
1527 struct stripe_head *sh = stripe_head_ref;
1528
1529 pr_debug("%s: stripe %llu\n", __func__,
1530 (unsigned long long)sh->sector);
1531
1532 /* mark the computed target(s) as uptodate */
1533 mark_target_uptodate(sh, sh->ops.target);
1534 mark_target_uptodate(sh, sh->ops.target2);
1535
1536 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1537 if (sh->check_state == check_state_compute_run)
1538 sh->check_state = check_state_compute_result;
1539 set_bit(STRIPE_HANDLE, &sh->state);
1540 raid5_release_stripe(sh);
1541}
1542
1543/* return a pointer to the address conversion region of the scribble buffer */
1544static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1545{
1546 return percpu->scribble + i * percpu->scribble_obj_size;
1547}
1548
1549/* return a pointer to the address conversion region of the scribble buffer */
1550static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1551 struct raid5_percpu *percpu, int i)
1552{
1553 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1554}
1555
1556/*
1557 * Return a pointer to record offset address.
1558 */
1559static unsigned int *
1560to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1561{
1562 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1563}
1564
1565static struct dma_async_tx_descriptor *
1566ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1567{
1568 int disks = sh->disks;
1569 struct page **xor_srcs = to_addr_page(percpu, 0);
1570 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1571 int target = sh->ops.target;
1572 struct r5dev *tgt = &sh->dev[target];
1573 struct page *xor_dest = tgt->page;
1574 unsigned int off_dest = tgt->offset;
1575 int count = 0;
1576 struct dma_async_tx_descriptor *tx;
1577 struct async_submit_ctl submit;
1578 int i;
1579
1580 BUG_ON(sh->batch_head);
1581
1582 pr_debug("%s: stripe %llu block: %d\n",
1583 __func__, (unsigned long long)sh->sector, target);
1584 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1585
1586 for (i = disks; i--; ) {
1587 if (i != target) {
1588 off_srcs[count] = sh->dev[i].offset;
1589 xor_srcs[count++] = sh->dev[i].page;
1590 }
1591 }
1592
1593 atomic_inc(&sh->count);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1596 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1597 if (unlikely(count == 1))
1598 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1599 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1600 else
1601 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1602 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1603
1604 return tx;
1605}
1606
1607/* set_syndrome_sources - populate source buffers for gen_syndrome
1608 * @srcs - (struct page *) array of size sh->disks
1609 * @offs - (unsigned int) array of offset for each page
1610 * @sh - stripe_head to parse
1611 *
1612 * Populates srcs in proper layout order for the stripe and returns the
1613 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1614 * destination buffer is recorded in srcs[count] and the Q destination
1615 * is recorded in srcs[count+1]].
1616 */
1617static int set_syndrome_sources(struct page **srcs,
1618 unsigned int *offs,
1619 struct stripe_head *sh,
1620 int srctype)
1621{
1622 int disks = sh->disks;
1623 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1624 int d0_idx = raid6_d0(sh);
1625 int count;
1626 int i;
1627
1628 for (i = 0; i < disks; i++)
1629 srcs[i] = NULL;
1630
1631 count = 0;
1632 i = d0_idx;
1633 do {
1634 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1635 struct r5dev *dev = &sh->dev[i];
1636
1637 if (i == sh->qd_idx || i == sh->pd_idx ||
1638 (srctype == SYNDROME_SRC_ALL) ||
1639 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1640 (test_bit(R5_Wantdrain, &dev->flags) ||
1641 test_bit(R5_InJournal, &dev->flags))) ||
1642 (srctype == SYNDROME_SRC_WRITTEN &&
1643 (dev->written ||
1644 test_bit(R5_InJournal, &dev->flags)))) {
1645 if (test_bit(R5_InJournal, &dev->flags))
1646 srcs[slot] = sh->dev[i].orig_page;
1647 else
1648 srcs[slot] = sh->dev[i].page;
1649 /*
1650 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1651 * not shared page. In that case, dev[i].offset
1652 * is 0.
1653 */
1654 offs[slot] = sh->dev[i].offset;
1655 }
1656 i = raid6_next_disk(i, disks);
1657 } while (i != d0_idx);
1658
1659 return syndrome_disks;
1660}
1661
1662static struct dma_async_tx_descriptor *
1663ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1664{
1665 int disks = sh->disks;
1666 struct page **blocks = to_addr_page(percpu, 0);
1667 unsigned int *offs = to_addr_offs(sh, percpu);
1668 int target;
1669 int qd_idx = sh->qd_idx;
1670 struct dma_async_tx_descriptor *tx;
1671 struct async_submit_ctl submit;
1672 struct r5dev *tgt;
1673 struct page *dest;
1674 unsigned int dest_off;
1675 int i;
1676 int count;
1677
1678 BUG_ON(sh->batch_head);
1679 if (sh->ops.target < 0)
1680 target = sh->ops.target2;
1681 else if (sh->ops.target2 < 0)
1682 target = sh->ops.target;
1683 else
1684 /* we should only have one valid target */
1685 BUG();
1686 BUG_ON(target < 0);
1687 pr_debug("%s: stripe %llu block: %d\n",
1688 __func__, (unsigned long long)sh->sector, target);
1689
1690 tgt = &sh->dev[target];
1691 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1692 dest = tgt->page;
1693 dest_off = tgt->offset;
1694
1695 atomic_inc(&sh->count);
1696
1697 if (target == qd_idx) {
1698 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1699 blocks[count] = NULL; /* regenerating p is not necessary */
1700 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1701 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1702 ops_complete_compute, sh,
1703 to_addr_conv(sh, percpu, 0));
1704 tx = async_gen_syndrome(blocks, offs, count+2,
1705 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1706 } else {
1707 /* Compute any data- or p-drive using XOR */
1708 count = 0;
1709 for (i = disks; i-- ; ) {
1710 if (i == target || i == qd_idx)
1711 continue;
1712 offs[count] = sh->dev[i].offset;
1713 blocks[count++] = sh->dev[i].page;
1714 }
1715
1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1717 NULL, ops_complete_compute, sh,
1718 to_addr_conv(sh, percpu, 0));
1719 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1720 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1721 }
1722
1723 return tx;
1724}
1725
1726static struct dma_async_tx_descriptor *
1727ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1728{
1729 int i, count, disks = sh->disks;
1730 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1731 int d0_idx = raid6_d0(sh);
1732 int faila = -1, failb = -1;
1733 int target = sh->ops.target;
1734 int target2 = sh->ops.target2;
1735 struct r5dev *tgt = &sh->dev[target];
1736 struct r5dev *tgt2 = &sh->dev[target2];
1737 struct dma_async_tx_descriptor *tx;
1738 struct page **blocks = to_addr_page(percpu, 0);
1739 unsigned int *offs = to_addr_offs(sh, percpu);
1740 struct async_submit_ctl submit;
1741
1742 BUG_ON(sh->batch_head);
1743 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1744 __func__, (unsigned long long)sh->sector, target, target2);
1745 BUG_ON(target < 0 || target2 < 0);
1746 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1748
1749 /* we need to open-code set_syndrome_sources to handle the
1750 * slot number conversion for 'faila' and 'failb'
1751 */
1752 for (i = 0; i < disks ; i++) {
1753 offs[i] = 0;
1754 blocks[i] = NULL;
1755 }
1756 count = 0;
1757 i = d0_idx;
1758 do {
1759 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1760
1761 offs[slot] = sh->dev[i].offset;
1762 blocks[slot] = sh->dev[i].page;
1763
1764 if (i == target)
1765 faila = slot;
1766 if (i == target2)
1767 failb = slot;
1768 i = raid6_next_disk(i, disks);
1769 } while (i != d0_idx);
1770
1771 BUG_ON(faila == failb);
1772 if (failb < faila)
1773 swap(faila, failb);
1774 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1775 __func__, (unsigned long long)sh->sector, faila, failb);
1776
1777 atomic_inc(&sh->count);
1778
1779 if (failb == syndrome_disks+1) {
1780 /* Q disk is one of the missing disks */
1781 if (faila == syndrome_disks) {
1782 /* Missing P+Q, just recompute */
1783 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1784 ops_complete_compute, sh,
1785 to_addr_conv(sh, percpu, 0));
1786 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1787 RAID5_STRIPE_SIZE(sh->raid_conf),
1788 &submit);
1789 } else {
1790 struct page *dest;
1791 unsigned int dest_off;
1792 int data_target;
1793 int qd_idx = sh->qd_idx;
1794
1795 /* Missing D+Q: recompute D from P, then recompute Q */
1796 if (target == qd_idx)
1797 data_target = target2;
1798 else
1799 data_target = target;
1800
1801 count = 0;
1802 for (i = disks; i-- ; ) {
1803 if (i == data_target || i == qd_idx)
1804 continue;
1805 offs[count] = sh->dev[i].offset;
1806 blocks[count++] = sh->dev[i].page;
1807 }
1808 dest = sh->dev[data_target].page;
1809 dest_off = sh->dev[data_target].offset;
1810 init_async_submit(&submit,
1811 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1812 NULL, NULL, NULL,
1813 to_addr_conv(sh, percpu, 0));
1814 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1815 RAID5_STRIPE_SIZE(sh->raid_conf),
1816 &submit);
1817
1818 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1819 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1820 ops_complete_compute, sh,
1821 to_addr_conv(sh, percpu, 0));
1822 return async_gen_syndrome(blocks, offs, count+2,
1823 RAID5_STRIPE_SIZE(sh->raid_conf),
1824 &submit);
1825 }
1826 } else {
1827 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1828 ops_complete_compute, sh,
1829 to_addr_conv(sh, percpu, 0));
1830 if (failb == syndrome_disks) {
1831 /* We're missing D+P. */
1832 return async_raid6_datap_recov(syndrome_disks+2,
1833 RAID5_STRIPE_SIZE(sh->raid_conf),
1834 faila,
1835 blocks, offs, &submit);
1836 } else {
1837 /* We're missing D+D. */
1838 return async_raid6_2data_recov(syndrome_disks+2,
1839 RAID5_STRIPE_SIZE(sh->raid_conf),
1840 faila, failb,
1841 blocks, offs, &submit);
1842 }
1843 }
1844}
1845
1846static void ops_complete_prexor(void *stripe_head_ref)
1847{
1848 struct stripe_head *sh = stripe_head_ref;
1849
1850 pr_debug("%s: stripe %llu\n", __func__,
1851 (unsigned long long)sh->sector);
1852
1853 if (r5c_is_writeback(sh->raid_conf->log))
1854 /*
1855 * raid5-cache write back uses orig_page during prexor.
1856 * After prexor, it is time to free orig_page
1857 */
1858 r5c_release_extra_page(sh);
1859}
1860
1861static struct dma_async_tx_descriptor *
1862ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1863 struct dma_async_tx_descriptor *tx)
1864{
1865 int disks = sh->disks;
1866 struct page **xor_srcs = to_addr_page(percpu, 0);
1867 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1868 int count = 0, pd_idx = sh->pd_idx, i;
1869 struct async_submit_ctl submit;
1870
1871 /* existing parity data subtracted */
1872 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1873 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1874
1875 BUG_ON(sh->batch_head);
1876 pr_debug("%s: stripe %llu\n", __func__,
1877 (unsigned long long)sh->sector);
1878
1879 for (i = disks; i--; ) {
1880 struct r5dev *dev = &sh->dev[i];
1881 /* Only process blocks that are known to be uptodate */
1882 if (test_bit(R5_InJournal, &dev->flags)) {
1883 /*
1884 * For this case, PAGE_SIZE must be equal to 4KB and
1885 * page offset is zero.
1886 */
1887 off_srcs[count] = dev->offset;
1888 xor_srcs[count++] = dev->orig_page;
1889 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1890 off_srcs[count] = dev->offset;
1891 xor_srcs[count++] = dev->page;
1892 }
1893 }
1894
1895 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1896 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1897 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1898 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1899
1900 return tx;
1901}
1902
1903static struct dma_async_tx_descriptor *
1904ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1905 struct dma_async_tx_descriptor *tx)
1906{
1907 struct page **blocks = to_addr_page(percpu, 0);
1908 unsigned int *offs = to_addr_offs(sh, percpu);
1909 int count;
1910 struct async_submit_ctl submit;
1911
1912 pr_debug("%s: stripe %llu\n", __func__,
1913 (unsigned long long)sh->sector);
1914
1915 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1916
1917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1918 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1919 tx = async_gen_syndrome(blocks, offs, count+2,
1920 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1921
1922 return tx;
1923}
1924
1925static struct dma_async_tx_descriptor *
1926ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1927{
1928 struct r5conf *conf = sh->raid_conf;
1929 int disks = sh->disks;
1930 int i;
1931 struct stripe_head *head_sh = sh;
1932
1933 pr_debug("%s: stripe %llu\n", __func__,
1934 (unsigned long long)sh->sector);
1935
1936 for (i = disks; i--; ) {
1937 struct r5dev *dev;
1938 struct bio *chosen;
1939
1940 sh = head_sh;
1941 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1942 struct bio *wbi;
1943
1944again:
1945 dev = &sh->dev[i];
1946 /*
1947 * clear R5_InJournal, so when rewriting a page in
1948 * journal, it is not skipped by r5l_log_stripe()
1949 */
1950 clear_bit(R5_InJournal, &dev->flags);
1951 spin_lock_irq(&sh->stripe_lock);
1952 chosen = dev->towrite;
1953 dev->towrite = NULL;
1954 sh->overwrite_disks = 0;
1955 BUG_ON(dev->written);
1956 wbi = dev->written = chosen;
1957 spin_unlock_irq(&sh->stripe_lock);
1958 WARN_ON(dev->page != dev->orig_page);
1959
1960 while (wbi && wbi->bi_iter.bi_sector <
1961 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1962 if (wbi->bi_opf & REQ_FUA)
1963 set_bit(R5_WantFUA, &dev->flags);
1964 if (wbi->bi_opf & REQ_SYNC)
1965 set_bit(R5_SyncIO, &dev->flags);
1966 if (bio_op(wbi) == REQ_OP_DISCARD)
1967 set_bit(R5_Discard, &dev->flags);
1968 else {
1969 tx = async_copy_data(1, wbi, &dev->page,
1970 dev->offset,
1971 dev->sector, tx, sh,
1972 r5c_is_writeback(conf->log));
1973 if (dev->page != dev->orig_page &&
1974 !r5c_is_writeback(conf->log)) {
1975 set_bit(R5_SkipCopy, &dev->flags);
1976 clear_bit(R5_UPTODATE, &dev->flags);
1977 clear_bit(R5_OVERWRITE, &dev->flags);
1978 }
1979 }
1980 wbi = r5_next_bio(conf, wbi, dev->sector);
1981 }
1982
1983 if (head_sh->batch_head) {
1984 sh = list_first_entry(&sh->batch_list,
1985 struct stripe_head,
1986 batch_list);
1987 if (sh == head_sh)
1988 continue;
1989 goto again;
1990 }
1991 }
1992 }
1993
1994 return tx;
1995}
1996
1997static void ops_complete_reconstruct(void *stripe_head_ref)
1998{
1999 struct stripe_head *sh = stripe_head_ref;
2000 int disks = sh->disks;
2001 int pd_idx = sh->pd_idx;
2002 int qd_idx = sh->qd_idx;
2003 int i;
2004 bool fua = false, sync = false, discard = false;
2005
2006 pr_debug("%s: stripe %llu\n", __func__,
2007 (unsigned long long)sh->sector);
2008
2009 for (i = disks; i--; ) {
2010 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2011 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2012 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2013 }
2014
2015 for (i = disks; i--; ) {
2016 struct r5dev *dev = &sh->dev[i];
2017
2018 if (dev->written || i == pd_idx || i == qd_idx) {
2019 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2020 set_bit(R5_UPTODATE, &dev->flags);
2021 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2022 set_bit(R5_Expanded, &dev->flags);
2023 }
2024 if (fua)
2025 set_bit(R5_WantFUA, &dev->flags);
2026 if (sync)
2027 set_bit(R5_SyncIO, &dev->flags);
2028 }
2029 }
2030
2031 if (sh->reconstruct_state == reconstruct_state_drain_run)
2032 sh->reconstruct_state = reconstruct_state_drain_result;
2033 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2034 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2035 else {
2036 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2037 sh->reconstruct_state = reconstruct_state_result;
2038 }
2039
2040 set_bit(STRIPE_HANDLE, &sh->state);
2041 raid5_release_stripe(sh);
2042}
2043
2044static void
2045ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2046 struct dma_async_tx_descriptor *tx)
2047{
2048 int disks = sh->disks;
2049 struct page **xor_srcs;
2050 unsigned int *off_srcs;
2051 struct async_submit_ctl submit;
2052 int count, pd_idx = sh->pd_idx, i;
2053 struct page *xor_dest;
2054 unsigned int off_dest;
2055 int prexor = 0;
2056 unsigned long flags;
2057 int j = 0;
2058 struct stripe_head *head_sh = sh;
2059 int last_stripe;
2060
2061 pr_debug("%s: stripe %llu\n", __func__,
2062 (unsigned long long)sh->sector);
2063
2064 for (i = 0; i < sh->disks; i++) {
2065 if (pd_idx == i)
2066 continue;
2067 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2068 break;
2069 }
2070 if (i >= sh->disks) {
2071 atomic_inc(&sh->count);
2072 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2073 ops_complete_reconstruct(sh);
2074 return;
2075 }
2076again:
2077 count = 0;
2078 xor_srcs = to_addr_page(percpu, j);
2079 off_srcs = to_addr_offs(sh, percpu);
2080 /* check if prexor is active which means only process blocks
2081 * that are part of a read-modify-write (written)
2082 */
2083 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2084 prexor = 1;
2085 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2086 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2087 for (i = disks; i--; ) {
2088 struct r5dev *dev = &sh->dev[i];
2089 if (head_sh->dev[i].written ||
2090 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2091 off_srcs[count] = dev->offset;
2092 xor_srcs[count++] = dev->page;
2093 }
2094 }
2095 } else {
2096 xor_dest = sh->dev[pd_idx].page;
2097 off_dest = sh->dev[pd_idx].offset;
2098 for (i = disks; i--; ) {
2099 struct r5dev *dev = &sh->dev[i];
2100 if (i != pd_idx) {
2101 off_srcs[count] = dev->offset;
2102 xor_srcs[count++] = dev->page;
2103 }
2104 }
2105 }
2106
2107 /* 1/ if we prexor'd then the dest is reused as a source
2108 * 2/ if we did not prexor then we are redoing the parity
2109 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2110 * for the synchronous xor case
2111 */
2112 last_stripe = !head_sh->batch_head ||
2113 list_first_entry(&sh->batch_list,
2114 struct stripe_head, batch_list) == head_sh;
2115 if (last_stripe) {
2116 flags = ASYNC_TX_ACK |
2117 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2118
2119 atomic_inc(&head_sh->count);
2120 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2121 to_addr_conv(sh, percpu, j));
2122 } else {
2123 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2124 init_async_submit(&submit, flags, tx, NULL, NULL,
2125 to_addr_conv(sh, percpu, j));
2126 }
2127
2128 if (unlikely(count == 1))
2129 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2130 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2131 else
2132 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2133 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2134 if (!last_stripe) {
2135 j++;
2136 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2137 batch_list);
2138 goto again;
2139 }
2140}
2141
2142static void
2143ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2144 struct dma_async_tx_descriptor *tx)
2145{
2146 struct async_submit_ctl submit;
2147 struct page **blocks;
2148 unsigned int *offs;
2149 int count, i, j = 0;
2150 struct stripe_head *head_sh = sh;
2151 int last_stripe;
2152 int synflags;
2153 unsigned long txflags;
2154
2155 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2156
2157 for (i = 0; i < sh->disks; i++) {
2158 if (sh->pd_idx == i || sh->qd_idx == i)
2159 continue;
2160 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2161 break;
2162 }
2163 if (i >= sh->disks) {
2164 atomic_inc(&sh->count);
2165 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2166 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2167 ops_complete_reconstruct(sh);
2168 return;
2169 }
2170
2171again:
2172 blocks = to_addr_page(percpu, j);
2173 offs = to_addr_offs(sh, percpu);
2174
2175 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2176 synflags = SYNDROME_SRC_WRITTEN;
2177 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2178 } else {
2179 synflags = SYNDROME_SRC_ALL;
2180 txflags = ASYNC_TX_ACK;
2181 }
2182
2183 count = set_syndrome_sources(blocks, offs, sh, synflags);
2184 last_stripe = !head_sh->batch_head ||
2185 list_first_entry(&sh->batch_list,
2186 struct stripe_head, batch_list) == head_sh;
2187
2188 if (last_stripe) {
2189 atomic_inc(&head_sh->count);
2190 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2191 head_sh, to_addr_conv(sh, percpu, j));
2192 } else
2193 init_async_submit(&submit, 0, tx, NULL, NULL,
2194 to_addr_conv(sh, percpu, j));
2195 tx = async_gen_syndrome(blocks, offs, count+2,
2196 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2197 if (!last_stripe) {
2198 j++;
2199 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2200 batch_list);
2201 goto again;
2202 }
2203}
2204
2205static void ops_complete_check(void *stripe_head_ref)
2206{
2207 struct stripe_head *sh = stripe_head_ref;
2208
2209 pr_debug("%s: stripe %llu\n", __func__,
2210 (unsigned long long)sh->sector);
2211
2212 sh->check_state = check_state_check_result;
2213 set_bit(STRIPE_HANDLE, &sh->state);
2214 raid5_release_stripe(sh);
2215}
2216
2217static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2218{
2219 int disks = sh->disks;
2220 int pd_idx = sh->pd_idx;
2221 int qd_idx = sh->qd_idx;
2222 struct page *xor_dest;
2223 unsigned int off_dest;
2224 struct page **xor_srcs = to_addr_page(percpu, 0);
2225 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2226 struct dma_async_tx_descriptor *tx;
2227 struct async_submit_ctl submit;
2228 int count;
2229 int i;
2230
2231 pr_debug("%s: stripe %llu\n", __func__,
2232 (unsigned long long)sh->sector);
2233
2234 BUG_ON(sh->batch_head);
2235 count = 0;
2236 xor_dest = sh->dev[pd_idx].page;
2237 off_dest = sh->dev[pd_idx].offset;
2238 off_srcs[count] = off_dest;
2239 xor_srcs[count++] = xor_dest;
2240 for (i = disks; i--; ) {
2241 if (i == pd_idx || i == qd_idx)
2242 continue;
2243 off_srcs[count] = sh->dev[i].offset;
2244 xor_srcs[count++] = sh->dev[i].page;
2245 }
2246
2247 init_async_submit(&submit, 0, NULL, NULL, NULL,
2248 to_addr_conv(sh, percpu, 0));
2249 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2250 RAID5_STRIPE_SIZE(sh->raid_conf),
2251 &sh->ops.zero_sum_result, &submit);
2252
2253 atomic_inc(&sh->count);
2254 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2255 tx = async_trigger_callback(&submit);
2256}
2257
2258static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2259{
2260 struct page **srcs = to_addr_page(percpu, 0);
2261 unsigned int *offs = to_addr_offs(sh, percpu);
2262 struct async_submit_ctl submit;
2263 int count;
2264
2265 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2266 (unsigned long long)sh->sector, checkp);
2267
2268 BUG_ON(sh->batch_head);
2269 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2270 if (!checkp)
2271 srcs[count] = NULL;
2272
2273 atomic_inc(&sh->count);
2274 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2275 sh, to_addr_conv(sh, percpu, 0));
2276 async_syndrome_val(srcs, offs, count+2,
2277 RAID5_STRIPE_SIZE(sh->raid_conf),
2278 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2279}
2280
2281static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2282{
2283 int overlap_clear = 0, i, disks = sh->disks;
2284 struct dma_async_tx_descriptor *tx = NULL;
2285 struct r5conf *conf = sh->raid_conf;
2286 int level = conf->level;
2287 struct raid5_percpu *percpu;
2288
2289 local_lock(&conf->percpu->lock);
2290 percpu = this_cpu_ptr(conf->percpu);
2291 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2292 ops_run_biofill(sh);
2293 overlap_clear++;
2294 }
2295
2296 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2297 if (level < 6)
2298 tx = ops_run_compute5(sh, percpu);
2299 else {
2300 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2301 tx = ops_run_compute6_1(sh, percpu);
2302 else
2303 tx = ops_run_compute6_2(sh, percpu);
2304 }
2305 /* terminate the chain if reconstruct is not set to be run */
2306 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2307 async_tx_ack(tx);
2308 }
2309
2310 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2311 if (level < 6)
2312 tx = ops_run_prexor5(sh, percpu, tx);
2313 else
2314 tx = ops_run_prexor6(sh, percpu, tx);
2315 }
2316
2317 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2318 tx = ops_run_partial_parity(sh, percpu, tx);
2319
2320 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2321 tx = ops_run_biodrain(sh, tx);
2322 overlap_clear++;
2323 }
2324
2325 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2326 if (level < 6)
2327 ops_run_reconstruct5(sh, percpu, tx);
2328 else
2329 ops_run_reconstruct6(sh, percpu, tx);
2330 }
2331
2332 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2333 if (sh->check_state == check_state_run)
2334 ops_run_check_p(sh, percpu);
2335 else if (sh->check_state == check_state_run_q)
2336 ops_run_check_pq(sh, percpu, 0);
2337 else if (sh->check_state == check_state_run_pq)
2338 ops_run_check_pq(sh, percpu, 1);
2339 else
2340 BUG();
2341 }
2342
2343 if (overlap_clear && !sh->batch_head) {
2344 for (i = disks; i--; ) {
2345 struct r5dev *dev = &sh->dev[i];
2346 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2347 wake_up(&sh->raid_conf->wait_for_overlap);
2348 }
2349 }
2350 local_unlock(&conf->percpu->lock);
2351}
2352
2353static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2354{
2355#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2356 kfree(sh->pages);
2357#endif
2358 if (sh->ppl_page)
2359 __free_page(sh->ppl_page);
2360 kmem_cache_free(sc, sh);
2361}
2362
2363static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2364 int disks, struct r5conf *conf)
2365{
2366 struct stripe_head *sh;
2367
2368 sh = kmem_cache_zalloc(sc, gfp);
2369 if (sh) {
2370 spin_lock_init(&sh->stripe_lock);
2371 spin_lock_init(&sh->batch_lock);
2372 INIT_LIST_HEAD(&sh->batch_list);
2373 INIT_LIST_HEAD(&sh->lru);
2374 INIT_LIST_HEAD(&sh->r5c);
2375 INIT_LIST_HEAD(&sh->log_list);
2376 atomic_set(&sh->count, 1);
2377 sh->raid_conf = conf;
2378 sh->log_start = MaxSector;
2379
2380 if (raid5_has_ppl(conf)) {
2381 sh->ppl_page = alloc_page(gfp);
2382 if (!sh->ppl_page) {
2383 free_stripe(sc, sh);
2384 return NULL;
2385 }
2386 }
2387#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2388 if (init_stripe_shared_pages(sh, conf, disks)) {
2389 free_stripe(sc, sh);
2390 return NULL;
2391 }
2392#endif
2393 }
2394 return sh;
2395}
2396static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2397{
2398 struct stripe_head *sh;
2399
2400 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2401 if (!sh)
2402 return 0;
2403
2404 if (grow_buffers(sh, gfp)) {
2405 shrink_buffers(sh);
2406 free_stripe(conf->slab_cache, sh);
2407 return 0;
2408 }
2409 sh->hash_lock_index =
2410 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2411 /* we just created an active stripe so... */
2412 atomic_inc(&conf->active_stripes);
2413
2414 raid5_release_stripe(sh);
2415 conf->max_nr_stripes++;
2416 return 1;
2417}
2418
2419static int grow_stripes(struct r5conf *conf, int num)
2420{
2421 struct kmem_cache *sc;
2422 size_t namelen = sizeof(conf->cache_name[0]);
2423 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2424
2425 if (conf->mddev->gendisk)
2426 snprintf(conf->cache_name[0], namelen,
2427 "raid%d-%s", conf->level, mdname(conf->mddev));
2428 else
2429 snprintf(conf->cache_name[0], namelen,
2430 "raid%d-%p", conf->level, conf->mddev);
2431 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2432
2433 conf->active_name = 0;
2434 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2435 struct_size_t(struct stripe_head, dev, devs),
2436 0, 0, NULL);
2437 if (!sc)
2438 return 1;
2439 conf->slab_cache = sc;
2440 conf->pool_size = devs;
2441 while (num--)
2442 if (!grow_one_stripe(conf, GFP_KERNEL))
2443 return 1;
2444
2445 return 0;
2446}
2447
2448/**
2449 * scribble_alloc - allocate percpu scribble buffer for required size
2450 * of the scribble region
2451 * @percpu: from for_each_present_cpu() of the caller
2452 * @num: total number of disks in the array
2453 * @cnt: scribble objs count for required size of the scribble region
2454 *
2455 * The scribble buffer size must be enough to contain:
2456 * 1/ a struct page pointer for each device in the array +2
2457 * 2/ room to convert each entry in (1) to its corresponding dma
2458 * (dma_map_page()) or page (page_address()) address.
2459 *
2460 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2461 * calculate over all devices (not just the data blocks), using zeros in place
2462 * of the P and Q blocks.
2463 */
2464static int scribble_alloc(struct raid5_percpu *percpu,
2465 int num, int cnt)
2466{
2467 size_t obj_size =
2468 sizeof(struct page *) * (num + 2) +
2469 sizeof(addr_conv_t) * (num + 2) +
2470 sizeof(unsigned int) * (num + 2);
2471 void *scribble;
2472
2473 /*
2474 * If here is in raid array suspend context, it is in memalloc noio
2475 * context as well, there is no potential recursive memory reclaim
2476 * I/Os with the GFP_KERNEL flag.
2477 */
2478 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2479 if (!scribble)
2480 return -ENOMEM;
2481
2482 kvfree(percpu->scribble);
2483
2484 percpu->scribble = scribble;
2485 percpu->scribble_obj_size = obj_size;
2486 return 0;
2487}
2488
2489static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2490{
2491 unsigned long cpu;
2492 int err = 0;
2493
2494 /* Never shrink. */
2495 if (conf->scribble_disks >= new_disks &&
2496 conf->scribble_sectors >= new_sectors)
2497 return 0;
2498
2499 raid5_quiesce(conf->mddev, true);
2500 cpus_read_lock();
2501
2502 for_each_present_cpu(cpu) {
2503 struct raid5_percpu *percpu;
2504
2505 percpu = per_cpu_ptr(conf->percpu, cpu);
2506 err = scribble_alloc(percpu, new_disks,
2507 new_sectors / RAID5_STRIPE_SECTORS(conf));
2508 if (err)
2509 break;
2510 }
2511
2512 cpus_read_unlock();
2513 raid5_quiesce(conf->mddev, false);
2514
2515 if (!err) {
2516 conf->scribble_disks = new_disks;
2517 conf->scribble_sectors = new_sectors;
2518 }
2519 return err;
2520}
2521
2522static int resize_stripes(struct r5conf *conf, int newsize)
2523{
2524 /* Make all the stripes able to hold 'newsize' devices.
2525 * New slots in each stripe get 'page' set to a new page.
2526 *
2527 * This happens in stages:
2528 * 1/ create a new kmem_cache and allocate the required number of
2529 * stripe_heads.
2530 * 2/ gather all the old stripe_heads and transfer the pages across
2531 * to the new stripe_heads. This will have the side effect of
2532 * freezing the array as once all stripe_heads have been collected,
2533 * no IO will be possible. Old stripe heads are freed once their
2534 * pages have been transferred over, and the old kmem_cache is
2535 * freed when all stripes are done.
2536 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2537 * we simple return a failure status - no need to clean anything up.
2538 * 4/ allocate new pages for the new slots in the new stripe_heads.
2539 * If this fails, we don't bother trying the shrink the
2540 * stripe_heads down again, we just leave them as they are.
2541 * As each stripe_head is processed the new one is released into
2542 * active service.
2543 *
2544 * Once step2 is started, we cannot afford to wait for a write,
2545 * so we use GFP_NOIO allocations.
2546 */
2547 struct stripe_head *osh, *nsh;
2548 LIST_HEAD(newstripes);
2549 struct disk_info *ndisks;
2550 int err = 0;
2551 struct kmem_cache *sc;
2552 int i;
2553 int hash, cnt;
2554
2555 md_allow_write(conf->mddev);
2556
2557 /* Step 1 */
2558 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2559 struct_size_t(struct stripe_head, dev, newsize),
2560 0, 0, NULL);
2561 if (!sc)
2562 return -ENOMEM;
2563
2564 /* Need to ensure auto-resizing doesn't interfere */
2565 mutex_lock(&conf->cache_size_mutex);
2566
2567 for (i = conf->max_nr_stripes; i; i--) {
2568 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2569 if (!nsh)
2570 break;
2571
2572 list_add(&nsh->lru, &newstripes);
2573 }
2574 if (i) {
2575 /* didn't get enough, give up */
2576 while (!list_empty(&newstripes)) {
2577 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2578 list_del(&nsh->lru);
2579 free_stripe(sc, nsh);
2580 }
2581 kmem_cache_destroy(sc);
2582 mutex_unlock(&conf->cache_size_mutex);
2583 return -ENOMEM;
2584 }
2585 /* Step 2 - Must use GFP_NOIO now.
2586 * OK, we have enough stripes, start collecting inactive
2587 * stripes and copying them over
2588 */
2589 hash = 0;
2590 cnt = 0;
2591 list_for_each_entry(nsh, &newstripes, lru) {
2592 lock_device_hash_lock(conf, hash);
2593 wait_event_cmd(conf->wait_for_stripe,
2594 !list_empty(conf->inactive_list + hash),
2595 unlock_device_hash_lock(conf, hash),
2596 lock_device_hash_lock(conf, hash));
2597 osh = get_free_stripe(conf, hash);
2598 unlock_device_hash_lock(conf, hash);
2599
2600#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2601 for (i = 0; i < osh->nr_pages; i++) {
2602 nsh->pages[i] = osh->pages[i];
2603 osh->pages[i] = NULL;
2604 }
2605#endif
2606 for(i=0; i<conf->pool_size; i++) {
2607 nsh->dev[i].page = osh->dev[i].page;
2608 nsh->dev[i].orig_page = osh->dev[i].page;
2609 nsh->dev[i].offset = osh->dev[i].offset;
2610 }
2611 nsh->hash_lock_index = hash;
2612 free_stripe(conf->slab_cache, osh);
2613 cnt++;
2614 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2615 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2616 hash++;
2617 cnt = 0;
2618 }
2619 }
2620 kmem_cache_destroy(conf->slab_cache);
2621
2622 /* Step 3.
2623 * At this point, we are holding all the stripes so the array
2624 * is completely stalled, so now is a good time to resize
2625 * conf->disks and the scribble region
2626 */
2627 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2628 if (ndisks) {
2629 for (i = 0; i < conf->pool_size; i++)
2630 ndisks[i] = conf->disks[i];
2631
2632 for (i = conf->pool_size; i < newsize; i++) {
2633 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2634 if (!ndisks[i].extra_page)
2635 err = -ENOMEM;
2636 }
2637
2638 if (err) {
2639 for (i = conf->pool_size; i < newsize; i++)
2640 if (ndisks[i].extra_page)
2641 put_page(ndisks[i].extra_page);
2642 kfree(ndisks);
2643 } else {
2644 kfree(conf->disks);
2645 conf->disks = ndisks;
2646 }
2647 } else
2648 err = -ENOMEM;
2649
2650 conf->slab_cache = sc;
2651 conf->active_name = 1-conf->active_name;
2652
2653 /* Step 4, return new stripes to service */
2654 while(!list_empty(&newstripes)) {
2655 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2656 list_del_init(&nsh->lru);
2657
2658#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2659 for (i = 0; i < nsh->nr_pages; i++) {
2660 if (nsh->pages[i])
2661 continue;
2662 nsh->pages[i] = alloc_page(GFP_NOIO);
2663 if (!nsh->pages[i])
2664 err = -ENOMEM;
2665 }
2666
2667 for (i = conf->raid_disks; i < newsize; i++) {
2668 if (nsh->dev[i].page)
2669 continue;
2670 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2671 nsh->dev[i].orig_page = nsh->dev[i].page;
2672 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2673 }
2674#else
2675 for (i=conf->raid_disks; i < newsize; i++)
2676 if (nsh->dev[i].page == NULL) {
2677 struct page *p = alloc_page(GFP_NOIO);
2678 nsh->dev[i].page = p;
2679 nsh->dev[i].orig_page = p;
2680 nsh->dev[i].offset = 0;
2681 if (!p)
2682 err = -ENOMEM;
2683 }
2684#endif
2685 raid5_release_stripe(nsh);
2686 }
2687 /* critical section pass, GFP_NOIO no longer needed */
2688
2689 if (!err)
2690 conf->pool_size = newsize;
2691 mutex_unlock(&conf->cache_size_mutex);
2692
2693 return err;
2694}
2695
2696static int drop_one_stripe(struct r5conf *conf)
2697{
2698 struct stripe_head *sh;
2699 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2700
2701 spin_lock_irq(conf->hash_locks + hash);
2702 sh = get_free_stripe(conf, hash);
2703 spin_unlock_irq(conf->hash_locks + hash);
2704 if (!sh)
2705 return 0;
2706 BUG_ON(atomic_read(&sh->count));
2707 shrink_buffers(sh);
2708 free_stripe(conf->slab_cache, sh);
2709 atomic_dec(&conf->active_stripes);
2710 conf->max_nr_stripes--;
2711 return 1;
2712}
2713
2714static void shrink_stripes(struct r5conf *conf)
2715{
2716 while (conf->max_nr_stripes &&
2717 drop_one_stripe(conf))
2718 ;
2719
2720 kmem_cache_destroy(conf->slab_cache);
2721 conf->slab_cache = NULL;
2722}
2723
2724static void raid5_end_read_request(struct bio * bi)
2725{
2726 struct stripe_head *sh = bi->bi_private;
2727 struct r5conf *conf = sh->raid_conf;
2728 int disks = sh->disks, i;
2729 struct md_rdev *rdev = NULL;
2730 sector_t s;
2731
2732 for (i=0 ; i<disks; i++)
2733 if (bi == &sh->dev[i].req)
2734 break;
2735
2736 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2737 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2738 bi->bi_status);
2739 if (i == disks) {
2740 BUG();
2741 return;
2742 }
2743 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2744 /* If replacement finished while this request was outstanding,
2745 * 'replacement' might be NULL already.
2746 * In that case it moved down to 'rdev'.
2747 * rdev is not removed until all requests are finished.
2748 */
2749 rdev = conf->disks[i].replacement;
2750 if (!rdev)
2751 rdev = conf->disks[i].rdev;
2752
2753 if (use_new_offset(conf, sh))
2754 s = sh->sector + rdev->new_data_offset;
2755 else
2756 s = sh->sector + rdev->data_offset;
2757 if (!bi->bi_status) {
2758 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2759 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2760 /* Note that this cannot happen on a
2761 * replacement device. We just fail those on
2762 * any error
2763 */
2764 pr_info_ratelimited(
2765 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2766 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2767 (unsigned long long)s,
2768 rdev->bdev);
2769 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2770 clear_bit(R5_ReadError, &sh->dev[i].flags);
2771 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2772 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2773 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2774
2775 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2776 /*
2777 * end read for a page in journal, this
2778 * must be preparing for prexor in rmw
2779 */
2780 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2781
2782 if (atomic_read(&rdev->read_errors))
2783 atomic_set(&rdev->read_errors, 0);
2784 } else {
2785 int retry = 0;
2786 int set_bad = 0;
2787
2788 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2789 if (!(bi->bi_status == BLK_STS_PROTECTION))
2790 atomic_inc(&rdev->read_errors);
2791 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2792 pr_warn_ratelimited(
2793 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2794 mdname(conf->mddev),
2795 (unsigned long long)s,
2796 rdev->bdev);
2797 else if (conf->mddev->degraded >= conf->max_degraded) {
2798 set_bad = 1;
2799 pr_warn_ratelimited(
2800 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2801 mdname(conf->mddev),
2802 (unsigned long long)s,
2803 rdev->bdev);
2804 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2805 /* Oh, no!!! */
2806 set_bad = 1;
2807 pr_warn_ratelimited(
2808 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2809 mdname(conf->mddev),
2810 (unsigned long long)s,
2811 rdev->bdev);
2812 } else if (atomic_read(&rdev->read_errors)
2813 > conf->max_nr_stripes) {
2814 if (!test_bit(Faulty, &rdev->flags)) {
2815 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2816 mdname(conf->mddev),
2817 atomic_read(&rdev->read_errors),
2818 conf->max_nr_stripes);
2819 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2820 mdname(conf->mddev), rdev->bdev);
2821 }
2822 } else
2823 retry = 1;
2824 if (set_bad && test_bit(In_sync, &rdev->flags)
2825 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2826 retry = 1;
2827 if (retry)
2828 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2829 set_bit(R5_ReadError, &sh->dev[i].flags);
2830 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2831 set_bit(R5_ReadError, &sh->dev[i].flags);
2832 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2833 } else
2834 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2835 else {
2836 clear_bit(R5_ReadError, &sh->dev[i].flags);
2837 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2838 if (!(set_bad
2839 && test_bit(In_sync, &rdev->flags)
2840 && rdev_set_badblocks(
2841 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2842 md_error(conf->mddev, rdev);
2843 }
2844 }
2845 rdev_dec_pending(rdev, conf->mddev);
2846 bio_uninit(bi);
2847 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2848 set_bit(STRIPE_HANDLE, &sh->state);
2849 raid5_release_stripe(sh);
2850}
2851
2852static void raid5_end_write_request(struct bio *bi)
2853{
2854 struct stripe_head *sh = bi->bi_private;
2855 struct r5conf *conf = sh->raid_conf;
2856 int disks = sh->disks, i;
2857 struct md_rdev *rdev;
2858 sector_t first_bad;
2859 int bad_sectors;
2860 int replacement = 0;
2861
2862 for (i = 0 ; i < disks; i++) {
2863 if (bi == &sh->dev[i].req) {
2864 rdev = conf->disks[i].rdev;
2865 break;
2866 }
2867 if (bi == &sh->dev[i].rreq) {
2868 rdev = conf->disks[i].replacement;
2869 if (rdev)
2870 replacement = 1;
2871 else
2872 /* rdev was removed and 'replacement'
2873 * replaced it. rdev is not removed
2874 * until all requests are finished.
2875 */
2876 rdev = conf->disks[i].rdev;
2877 break;
2878 }
2879 }
2880 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2881 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2882 bi->bi_status);
2883 if (i == disks) {
2884 BUG();
2885 return;
2886 }
2887
2888 if (replacement) {
2889 if (bi->bi_status)
2890 md_error(conf->mddev, rdev);
2891 else if (is_badblock(rdev, sh->sector,
2892 RAID5_STRIPE_SECTORS(conf),
2893 &first_bad, &bad_sectors))
2894 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2895 } else {
2896 if (bi->bi_status) {
2897 set_bit(STRIPE_DEGRADED, &sh->state);
2898 set_bit(WriteErrorSeen, &rdev->flags);
2899 set_bit(R5_WriteError, &sh->dev[i].flags);
2900 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2901 set_bit(MD_RECOVERY_NEEDED,
2902 &rdev->mddev->recovery);
2903 } else if (is_badblock(rdev, sh->sector,
2904 RAID5_STRIPE_SECTORS(conf),
2905 &first_bad, &bad_sectors)) {
2906 set_bit(R5_MadeGood, &sh->dev[i].flags);
2907 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2908 /* That was a successful write so make
2909 * sure it looks like we already did
2910 * a re-write.
2911 */
2912 set_bit(R5_ReWrite, &sh->dev[i].flags);
2913 }
2914 }
2915 rdev_dec_pending(rdev, conf->mddev);
2916
2917 if (sh->batch_head && bi->bi_status && !replacement)
2918 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2919
2920 bio_uninit(bi);
2921 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2922 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2923 set_bit(STRIPE_HANDLE, &sh->state);
2924
2925 if (sh->batch_head && sh != sh->batch_head)
2926 raid5_release_stripe(sh->batch_head);
2927 raid5_release_stripe(sh);
2928}
2929
2930static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2931{
2932 struct r5conf *conf = mddev->private;
2933 unsigned long flags;
2934 pr_debug("raid456: error called\n");
2935
2936 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2937 mdname(mddev), rdev->bdev);
2938
2939 spin_lock_irqsave(&conf->device_lock, flags);
2940 set_bit(Faulty, &rdev->flags);
2941 clear_bit(In_sync, &rdev->flags);
2942 mddev->degraded = raid5_calc_degraded(conf);
2943
2944 if (has_failed(conf)) {
2945 set_bit(MD_BROKEN, &conf->mddev->flags);
2946 conf->recovery_disabled = mddev->recovery_disabled;
2947
2948 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2949 mdname(mddev), mddev->degraded, conf->raid_disks);
2950 } else {
2951 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2952 mdname(mddev), conf->raid_disks - mddev->degraded);
2953 }
2954
2955 spin_unlock_irqrestore(&conf->device_lock, flags);
2956 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2957
2958 set_bit(Blocked, &rdev->flags);
2959 set_mask_bits(&mddev->sb_flags, 0,
2960 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2961 r5c_update_on_rdev_error(mddev, rdev);
2962}
2963
2964/*
2965 * Input: a 'big' sector number,
2966 * Output: index of the data and parity disk, and the sector # in them.
2967 */
2968sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2969 int previous, int *dd_idx,
2970 struct stripe_head *sh)
2971{
2972 sector_t stripe, stripe2;
2973 sector_t chunk_number;
2974 unsigned int chunk_offset;
2975 int pd_idx, qd_idx;
2976 int ddf_layout = 0;
2977 sector_t new_sector;
2978 int algorithm = previous ? conf->prev_algo
2979 : conf->algorithm;
2980 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2981 : conf->chunk_sectors;
2982 int raid_disks = previous ? conf->previous_raid_disks
2983 : conf->raid_disks;
2984 int data_disks = raid_disks - conf->max_degraded;
2985
2986 /* First compute the information on this sector */
2987
2988 /*
2989 * Compute the chunk number and the sector offset inside the chunk
2990 */
2991 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2992 chunk_number = r_sector;
2993
2994 /*
2995 * Compute the stripe number
2996 */
2997 stripe = chunk_number;
2998 *dd_idx = sector_div(stripe, data_disks);
2999 stripe2 = stripe;
3000 /*
3001 * Select the parity disk based on the user selected algorithm.
3002 */
3003 pd_idx = qd_idx = -1;
3004 switch(conf->level) {
3005 case 4:
3006 pd_idx = data_disks;
3007 break;
3008 case 5:
3009 switch (algorithm) {
3010 case ALGORITHM_LEFT_ASYMMETRIC:
3011 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3012 if (*dd_idx >= pd_idx)
3013 (*dd_idx)++;
3014 break;
3015 case ALGORITHM_RIGHT_ASYMMETRIC:
3016 pd_idx = sector_div(stripe2, raid_disks);
3017 if (*dd_idx >= pd_idx)
3018 (*dd_idx)++;
3019 break;
3020 case ALGORITHM_LEFT_SYMMETRIC:
3021 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3022 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3023 break;
3024 case ALGORITHM_RIGHT_SYMMETRIC:
3025 pd_idx = sector_div(stripe2, raid_disks);
3026 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3027 break;
3028 case ALGORITHM_PARITY_0:
3029 pd_idx = 0;
3030 (*dd_idx)++;
3031 break;
3032 case ALGORITHM_PARITY_N:
3033 pd_idx = data_disks;
3034 break;
3035 default:
3036 BUG();
3037 }
3038 break;
3039 case 6:
3040
3041 switch (algorithm) {
3042 case ALGORITHM_LEFT_ASYMMETRIC:
3043 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3044 qd_idx = pd_idx + 1;
3045 if (pd_idx == raid_disks-1) {
3046 (*dd_idx)++; /* Q D D D P */
3047 qd_idx = 0;
3048 } else if (*dd_idx >= pd_idx)
3049 (*dd_idx) += 2; /* D D P Q D */
3050 break;
3051 case ALGORITHM_RIGHT_ASYMMETRIC:
3052 pd_idx = sector_div(stripe2, raid_disks);
3053 qd_idx = pd_idx + 1;
3054 if (pd_idx == raid_disks-1) {
3055 (*dd_idx)++; /* Q D D D P */
3056 qd_idx = 0;
3057 } else if (*dd_idx >= pd_idx)
3058 (*dd_idx) += 2; /* D D P Q D */
3059 break;
3060 case ALGORITHM_LEFT_SYMMETRIC:
3061 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3062 qd_idx = (pd_idx + 1) % raid_disks;
3063 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3064 break;
3065 case ALGORITHM_RIGHT_SYMMETRIC:
3066 pd_idx = sector_div(stripe2, raid_disks);
3067 qd_idx = (pd_idx + 1) % raid_disks;
3068 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3069 break;
3070
3071 case ALGORITHM_PARITY_0:
3072 pd_idx = 0;
3073 qd_idx = 1;
3074 (*dd_idx) += 2;
3075 break;
3076 case ALGORITHM_PARITY_N:
3077 pd_idx = data_disks;
3078 qd_idx = data_disks + 1;
3079 break;
3080
3081 case ALGORITHM_ROTATING_ZERO_RESTART:
3082 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3083 * of blocks for computing Q is different.
3084 */
3085 pd_idx = sector_div(stripe2, raid_disks);
3086 qd_idx = pd_idx + 1;
3087 if (pd_idx == raid_disks-1) {
3088 (*dd_idx)++; /* Q D D D P */
3089 qd_idx = 0;
3090 } else if (*dd_idx >= pd_idx)
3091 (*dd_idx) += 2; /* D D P Q D */
3092 ddf_layout = 1;
3093 break;
3094
3095 case ALGORITHM_ROTATING_N_RESTART:
3096 /* Same a left_asymmetric, by first stripe is
3097 * D D D P Q rather than
3098 * Q D D D P
3099 */
3100 stripe2 += 1;
3101 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3102 qd_idx = pd_idx + 1;
3103 if (pd_idx == raid_disks-1) {
3104 (*dd_idx)++; /* Q D D D P */
3105 qd_idx = 0;
3106 } else if (*dd_idx >= pd_idx)
3107 (*dd_idx) += 2; /* D D P Q D */
3108 ddf_layout = 1;
3109 break;
3110
3111 case ALGORITHM_ROTATING_N_CONTINUE:
3112 /* Same as left_symmetric but Q is before P */
3113 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3114 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3115 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3116 ddf_layout = 1;
3117 break;
3118
3119 case ALGORITHM_LEFT_ASYMMETRIC_6:
3120 /* RAID5 left_asymmetric, with Q on last device */
3121 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3122 if (*dd_idx >= pd_idx)
3123 (*dd_idx)++;
3124 qd_idx = raid_disks - 1;
3125 break;
3126
3127 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3128 pd_idx = sector_div(stripe2, raid_disks-1);
3129 if (*dd_idx >= pd_idx)
3130 (*dd_idx)++;
3131 qd_idx = raid_disks - 1;
3132 break;
3133
3134 case ALGORITHM_LEFT_SYMMETRIC_6:
3135 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3136 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3137 qd_idx = raid_disks - 1;
3138 break;
3139
3140 case ALGORITHM_RIGHT_SYMMETRIC_6:
3141 pd_idx = sector_div(stripe2, raid_disks-1);
3142 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3143 qd_idx = raid_disks - 1;
3144 break;
3145
3146 case ALGORITHM_PARITY_0_6:
3147 pd_idx = 0;
3148 (*dd_idx)++;
3149 qd_idx = raid_disks - 1;
3150 break;
3151
3152 default:
3153 BUG();
3154 }
3155 break;
3156 }
3157
3158 if (sh) {
3159 sh->pd_idx = pd_idx;
3160 sh->qd_idx = qd_idx;
3161 sh->ddf_layout = ddf_layout;
3162 }
3163 /*
3164 * Finally, compute the new sector number
3165 */
3166 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3167 return new_sector;
3168}
3169
3170sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3171{
3172 struct r5conf *conf = sh->raid_conf;
3173 int raid_disks = sh->disks;
3174 int data_disks = raid_disks - conf->max_degraded;
3175 sector_t new_sector = sh->sector, check;
3176 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3177 : conf->chunk_sectors;
3178 int algorithm = previous ? conf->prev_algo
3179 : conf->algorithm;
3180 sector_t stripe;
3181 int chunk_offset;
3182 sector_t chunk_number;
3183 int dummy1, dd_idx = i;
3184 sector_t r_sector;
3185 struct stripe_head sh2;
3186
3187 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3188 stripe = new_sector;
3189
3190 if (i == sh->pd_idx)
3191 return 0;
3192 switch(conf->level) {
3193 case 4: break;
3194 case 5:
3195 switch (algorithm) {
3196 case ALGORITHM_LEFT_ASYMMETRIC:
3197 case ALGORITHM_RIGHT_ASYMMETRIC:
3198 if (i > sh->pd_idx)
3199 i--;
3200 break;
3201 case ALGORITHM_LEFT_SYMMETRIC:
3202 case ALGORITHM_RIGHT_SYMMETRIC:
3203 if (i < sh->pd_idx)
3204 i += raid_disks;
3205 i -= (sh->pd_idx + 1);
3206 break;
3207 case ALGORITHM_PARITY_0:
3208 i -= 1;
3209 break;
3210 case ALGORITHM_PARITY_N:
3211 break;
3212 default:
3213 BUG();
3214 }
3215 break;
3216 case 6:
3217 if (i == sh->qd_idx)
3218 return 0; /* It is the Q disk */
3219 switch (algorithm) {
3220 case ALGORITHM_LEFT_ASYMMETRIC:
3221 case ALGORITHM_RIGHT_ASYMMETRIC:
3222 case ALGORITHM_ROTATING_ZERO_RESTART:
3223 case ALGORITHM_ROTATING_N_RESTART:
3224 if (sh->pd_idx == raid_disks-1)
3225 i--; /* Q D D D P */
3226 else if (i > sh->pd_idx)
3227 i -= 2; /* D D P Q D */
3228 break;
3229 case ALGORITHM_LEFT_SYMMETRIC:
3230 case ALGORITHM_RIGHT_SYMMETRIC:
3231 if (sh->pd_idx == raid_disks-1)
3232 i--; /* Q D D D P */
3233 else {
3234 /* D D P Q D */
3235 if (i < sh->pd_idx)
3236 i += raid_disks;
3237 i -= (sh->pd_idx + 2);
3238 }
3239 break;
3240 case ALGORITHM_PARITY_0:
3241 i -= 2;
3242 break;
3243 case ALGORITHM_PARITY_N:
3244 break;
3245 case ALGORITHM_ROTATING_N_CONTINUE:
3246 /* Like left_symmetric, but P is before Q */
3247 if (sh->pd_idx == 0)
3248 i--; /* P D D D Q */
3249 else {
3250 /* D D Q P D */
3251 if (i < sh->pd_idx)
3252 i += raid_disks;
3253 i -= (sh->pd_idx + 1);
3254 }
3255 break;
3256 case ALGORITHM_LEFT_ASYMMETRIC_6:
3257 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3258 if (i > sh->pd_idx)
3259 i--;
3260 break;
3261 case ALGORITHM_LEFT_SYMMETRIC_6:
3262 case ALGORITHM_RIGHT_SYMMETRIC_6:
3263 if (i < sh->pd_idx)
3264 i += data_disks + 1;
3265 i -= (sh->pd_idx + 1);
3266 break;
3267 case ALGORITHM_PARITY_0_6:
3268 i -= 1;
3269 break;
3270 default:
3271 BUG();
3272 }
3273 break;
3274 }
3275
3276 chunk_number = stripe * data_disks + i;
3277 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3278
3279 check = raid5_compute_sector(conf, r_sector,
3280 previous, &dummy1, &sh2);
3281 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3282 || sh2.qd_idx != sh->qd_idx) {
3283 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3284 mdname(conf->mddev));
3285 return 0;
3286 }
3287 return r_sector;
3288}
3289
3290/*
3291 * There are cases where we want handle_stripe_dirtying() and
3292 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3293 *
3294 * This function checks whether we want to delay the towrite. Specifically,
3295 * we delay the towrite when:
3296 *
3297 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3298 * stripe has data in journal (for other devices).
3299 *
3300 * In this case, when reading data for the non-overwrite dev, it is
3301 * necessary to handle complex rmw of write back cache (prexor with
3302 * orig_page, and xor with page). To keep read path simple, we would
3303 * like to flush data in journal to RAID disks first, so complex rmw
3304 * is handled in the write patch (handle_stripe_dirtying).
3305 *
3306 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3307 *
3308 * It is important to be able to flush all stripes in raid5-cache.
3309 * Therefore, we need reserve some space on the journal device for
3310 * these flushes. If flush operation includes pending writes to the
3311 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3312 * for the flush out. If we exclude these pending writes from flush
3313 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3314 * Therefore, excluding pending writes in these cases enables more
3315 * efficient use of the journal device.
3316 *
3317 * Note: To make sure the stripe makes progress, we only delay
3318 * towrite for stripes with data already in journal (injournal > 0).
3319 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3320 * no_space_stripes list.
3321 *
3322 * 3. during journal failure
3323 * In journal failure, we try to flush all cached data to raid disks
3324 * based on data in stripe cache. The array is read-only to upper
3325 * layers, so we would skip all pending writes.
3326 *
3327 */
3328static inline bool delay_towrite(struct r5conf *conf,
3329 struct r5dev *dev,
3330 struct stripe_head_state *s)
3331{
3332 /* case 1 above */
3333 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3334 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3335 return true;
3336 /* case 2 above */
3337 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3338 s->injournal > 0)
3339 return true;
3340 /* case 3 above */
3341 if (s->log_failed && s->injournal)
3342 return true;
3343 return false;
3344}
3345
3346static void
3347schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3348 int rcw, int expand)
3349{
3350 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3351 struct r5conf *conf = sh->raid_conf;
3352 int level = conf->level;
3353
3354 if (rcw) {
3355 /*
3356 * In some cases, handle_stripe_dirtying initially decided to
3357 * run rmw and allocates extra page for prexor. However, rcw is
3358 * cheaper later on. We need to free the extra page now,
3359 * because we won't be able to do that in ops_complete_prexor().
3360 */
3361 r5c_release_extra_page(sh);
3362
3363 for (i = disks; i--; ) {
3364 struct r5dev *dev = &sh->dev[i];
3365
3366 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3367 set_bit(R5_LOCKED, &dev->flags);
3368 set_bit(R5_Wantdrain, &dev->flags);
3369 if (!expand)
3370 clear_bit(R5_UPTODATE, &dev->flags);
3371 s->locked++;
3372 } else if (test_bit(R5_InJournal, &dev->flags)) {
3373 set_bit(R5_LOCKED, &dev->flags);
3374 s->locked++;
3375 }
3376 }
3377 /* if we are not expanding this is a proper write request, and
3378 * there will be bios with new data to be drained into the
3379 * stripe cache
3380 */
3381 if (!expand) {
3382 if (!s->locked)
3383 /* False alarm, nothing to do */
3384 return;
3385 sh->reconstruct_state = reconstruct_state_drain_run;
3386 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3387 } else
3388 sh->reconstruct_state = reconstruct_state_run;
3389
3390 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3391
3392 if (s->locked + conf->max_degraded == disks)
3393 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3394 atomic_inc(&conf->pending_full_writes);
3395 } else {
3396 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3397 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3398 BUG_ON(level == 6 &&
3399 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3400 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3401
3402 for (i = disks; i--; ) {
3403 struct r5dev *dev = &sh->dev[i];
3404 if (i == pd_idx || i == qd_idx)
3405 continue;
3406
3407 if (dev->towrite &&
3408 (test_bit(R5_UPTODATE, &dev->flags) ||
3409 test_bit(R5_Wantcompute, &dev->flags))) {
3410 set_bit(R5_Wantdrain, &dev->flags);
3411 set_bit(R5_LOCKED, &dev->flags);
3412 clear_bit(R5_UPTODATE, &dev->flags);
3413 s->locked++;
3414 } else if (test_bit(R5_InJournal, &dev->flags)) {
3415 set_bit(R5_LOCKED, &dev->flags);
3416 s->locked++;
3417 }
3418 }
3419 if (!s->locked)
3420 /* False alarm - nothing to do */
3421 return;
3422 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3423 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3424 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3425 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3426 }
3427
3428 /* keep the parity disk(s) locked while asynchronous operations
3429 * are in flight
3430 */
3431 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3432 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3433 s->locked++;
3434
3435 if (level == 6) {
3436 int qd_idx = sh->qd_idx;
3437 struct r5dev *dev = &sh->dev[qd_idx];
3438
3439 set_bit(R5_LOCKED, &dev->flags);
3440 clear_bit(R5_UPTODATE, &dev->flags);
3441 s->locked++;
3442 }
3443
3444 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3445 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3446 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3447 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3448 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3449
3450 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3451 __func__, (unsigned long long)sh->sector,
3452 s->locked, s->ops_request);
3453}
3454
3455static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3456 int dd_idx, int forwrite)
3457{
3458 struct r5conf *conf = sh->raid_conf;
3459 struct bio **bip;
3460
3461 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3462 bi->bi_iter.bi_sector, sh->sector);
3463
3464 /* Don't allow new IO added to stripes in batch list */
3465 if (sh->batch_head)
3466 return true;
3467
3468 if (forwrite)
3469 bip = &sh->dev[dd_idx].towrite;
3470 else
3471 bip = &sh->dev[dd_idx].toread;
3472
3473 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3474 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3475 return true;
3476 bip = &(*bip)->bi_next;
3477 }
3478
3479 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3480 return true;
3481
3482 if (forwrite && raid5_has_ppl(conf)) {
3483 /*
3484 * With PPL only writes to consecutive data chunks within a
3485 * stripe are allowed because for a single stripe_head we can
3486 * only have one PPL entry at a time, which describes one data
3487 * range. Not really an overlap, but wait_for_overlap can be
3488 * used to handle this.
3489 */
3490 sector_t sector;
3491 sector_t first = 0;
3492 sector_t last = 0;
3493 int count = 0;
3494 int i;
3495
3496 for (i = 0; i < sh->disks; i++) {
3497 if (i != sh->pd_idx &&
3498 (i == dd_idx || sh->dev[i].towrite)) {
3499 sector = sh->dev[i].sector;
3500 if (count == 0 || sector < first)
3501 first = sector;
3502 if (sector > last)
3503 last = sector;
3504 count++;
3505 }
3506 }
3507
3508 if (first + conf->chunk_sectors * (count - 1) != last)
3509 return true;
3510 }
3511
3512 return false;
3513}
3514
3515static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3516 int dd_idx, int forwrite, int previous)
3517{
3518 struct r5conf *conf = sh->raid_conf;
3519 struct bio **bip;
3520 int firstwrite = 0;
3521
3522 if (forwrite) {
3523 bip = &sh->dev[dd_idx].towrite;
3524 if (!*bip)
3525 firstwrite = 1;
3526 } else {
3527 bip = &sh->dev[dd_idx].toread;
3528 }
3529
3530 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3531 bip = &(*bip)->bi_next;
3532
3533 if (!forwrite || previous)
3534 clear_bit(STRIPE_BATCH_READY, &sh->state);
3535
3536 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3537 if (*bip)
3538 bi->bi_next = *bip;
3539 *bip = bi;
3540 bio_inc_remaining(bi);
3541 md_write_inc(conf->mddev, bi);
3542
3543 if (forwrite) {
3544 /* check if page is covered */
3545 sector_t sector = sh->dev[dd_idx].sector;
3546 for (bi=sh->dev[dd_idx].towrite;
3547 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3548 bi && bi->bi_iter.bi_sector <= sector;
3549 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3550 if (bio_end_sector(bi) >= sector)
3551 sector = bio_end_sector(bi);
3552 }
3553 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3554 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3555 sh->overwrite_disks++;
3556 }
3557
3558 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3559 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3560 sh->dev[dd_idx].sector);
3561
3562 if (conf->mddev->bitmap && firstwrite) {
3563 /* Cannot hold spinlock over bitmap_startwrite,
3564 * but must ensure this isn't added to a batch until
3565 * we have added to the bitmap and set bm_seq.
3566 * So set STRIPE_BITMAP_PENDING to prevent
3567 * batching.
3568 * If multiple __add_stripe_bio() calls race here they
3569 * much all set STRIPE_BITMAP_PENDING. So only the first one
3570 * to complete "bitmap_startwrite" gets to set
3571 * STRIPE_BIT_DELAY. This is important as once a stripe
3572 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3573 * any more.
3574 */
3575 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3576 spin_unlock_irq(&sh->stripe_lock);
3577 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3578 RAID5_STRIPE_SECTORS(conf), 0);
3579 spin_lock_irq(&sh->stripe_lock);
3580 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3581 if (!sh->batch_head) {
3582 sh->bm_seq = conf->seq_flush+1;
3583 set_bit(STRIPE_BIT_DELAY, &sh->state);
3584 }
3585 }
3586}
3587
3588/*
3589 * Each stripe/dev can have one or more bios attached.
3590 * toread/towrite point to the first in a chain.
3591 * The bi_next chain must be in order.
3592 */
3593static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3594 int dd_idx, int forwrite, int previous)
3595{
3596 spin_lock_irq(&sh->stripe_lock);
3597
3598 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3599 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3600 spin_unlock_irq(&sh->stripe_lock);
3601 return false;
3602 }
3603
3604 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3605 spin_unlock_irq(&sh->stripe_lock);
3606 return true;
3607}
3608
3609static void end_reshape(struct r5conf *conf);
3610
3611static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3612 struct stripe_head *sh)
3613{
3614 int sectors_per_chunk =
3615 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3616 int dd_idx;
3617 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3618 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3619
3620 raid5_compute_sector(conf,
3621 stripe * (disks - conf->max_degraded)
3622 *sectors_per_chunk + chunk_offset,
3623 previous,
3624 &dd_idx, sh);
3625}
3626
3627static void
3628handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3629 struct stripe_head_state *s, int disks)
3630{
3631 int i;
3632 BUG_ON(sh->batch_head);
3633 for (i = disks; i--; ) {
3634 struct bio *bi;
3635 int bitmap_end = 0;
3636
3637 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3638 struct md_rdev *rdev = conf->disks[i].rdev;
3639
3640 if (rdev && test_bit(In_sync, &rdev->flags) &&
3641 !test_bit(Faulty, &rdev->flags))
3642 atomic_inc(&rdev->nr_pending);
3643 else
3644 rdev = NULL;
3645 if (rdev) {
3646 if (!rdev_set_badblocks(
3647 rdev,
3648 sh->sector,
3649 RAID5_STRIPE_SECTORS(conf), 0))
3650 md_error(conf->mddev, rdev);
3651 rdev_dec_pending(rdev, conf->mddev);
3652 }
3653 }
3654 spin_lock_irq(&sh->stripe_lock);
3655 /* fail all writes first */
3656 bi = sh->dev[i].towrite;
3657 sh->dev[i].towrite = NULL;
3658 sh->overwrite_disks = 0;
3659 spin_unlock_irq(&sh->stripe_lock);
3660 if (bi)
3661 bitmap_end = 1;
3662
3663 log_stripe_write_finished(sh);
3664
3665 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3666 wake_up(&conf->wait_for_overlap);
3667
3668 while (bi && bi->bi_iter.bi_sector <
3669 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3670 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3671
3672 md_write_end(conf->mddev);
3673 bio_io_error(bi);
3674 bi = nextbi;
3675 }
3676 if (bitmap_end)
3677 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3678 RAID5_STRIPE_SECTORS(conf), 0, 0);
3679 bitmap_end = 0;
3680 /* and fail all 'written' */
3681 bi = sh->dev[i].written;
3682 sh->dev[i].written = NULL;
3683 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3684 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3685 sh->dev[i].page = sh->dev[i].orig_page;
3686 }
3687
3688 if (bi) bitmap_end = 1;
3689 while (bi && bi->bi_iter.bi_sector <
3690 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3691 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3692
3693 md_write_end(conf->mddev);
3694 bio_io_error(bi);
3695 bi = bi2;
3696 }
3697
3698 /* fail any reads if this device is non-operational and
3699 * the data has not reached the cache yet.
3700 */
3701 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3702 s->failed > conf->max_degraded &&
3703 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3704 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3705 spin_lock_irq(&sh->stripe_lock);
3706 bi = sh->dev[i].toread;
3707 sh->dev[i].toread = NULL;
3708 spin_unlock_irq(&sh->stripe_lock);
3709 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3710 wake_up(&conf->wait_for_overlap);
3711 if (bi)
3712 s->to_read--;
3713 while (bi && bi->bi_iter.bi_sector <
3714 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3715 struct bio *nextbi =
3716 r5_next_bio(conf, bi, sh->dev[i].sector);
3717
3718 bio_io_error(bi);
3719 bi = nextbi;
3720 }
3721 }
3722 if (bitmap_end)
3723 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3724 RAID5_STRIPE_SECTORS(conf), 0, 0);
3725 /* If we were in the middle of a write the parity block might
3726 * still be locked - so just clear all R5_LOCKED flags
3727 */
3728 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3729 }
3730 s->to_write = 0;
3731 s->written = 0;
3732
3733 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3734 if (atomic_dec_and_test(&conf->pending_full_writes))
3735 md_wakeup_thread(conf->mddev->thread);
3736}
3737
3738static void
3739handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3740 struct stripe_head_state *s)
3741{
3742 int abort = 0;
3743 int i;
3744
3745 BUG_ON(sh->batch_head);
3746 clear_bit(STRIPE_SYNCING, &sh->state);
3747 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3748 wake_up(&conf->wait_for_overlap);
3749 s->syncing = 0;
3750 s->replacing = 0;
3751 /* There is nothing more to do for sync/check/repair.
3752 * Don't even need to abort as that is handled elsewhere
3753 * if needed, and not always wanted e.g. if there is a known
3754 * bad block here.
3755 * For recover/replace we need to record a bad block on all
3756 * non-sync devices, or abort the recovery
3757 */
3758 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3759 /* During recovery devices cannot be removed, so
3760 * locking and refcounting of rdevs is not needed
3761 */
3762 for (i = 0; i < conf->raid_disks; i++) {
3763 struct md_rdev *rdev = conf->disks[i].rdev;
3764
3765 if (rdev
3766 && !test_bit(Faulty, &rdev->flags)
3767 && !test_bit(In_sync, &rdev->flags)
3768 && !rdev_set_badblocks(rdev, sh->sector,
3769 RAID5_STRIPE_SECTORS(conf), 0))
3770 abort = 1;
3771 rdev = conf->disks[i].replacement;
3772
3773 if (rdev
3774 && !test_bit(Faulty, &rdev->flags)
3775 && !test_bit(In_sync, &rdev->flags)
3776 && !rdev_set_badblocks(rdev, sh->sector,
3777 RAID5_STRIPE_SECTORS(conf), 0))
3778 abort = 1;
3779 }
3780 if (abort)
3781 conf->recovery_disabled =
3782 conf->mddev->recovery_disabled;
3783 }
3784 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3785}
3786
3787static int want_replace(struct stripe_head *sh, int disk_idx)
3788{
3789 struct md_rdev *rdev;
3790 int rv = 0;
3791
3792 rdev = sh->raid_conf->disks[disk_idx].replacement;
3793 if (rdev
3794 && !test_bit(Faulty, &rdev->flags)
3795 && !test_bit(In_sync, &rdev->flags)
3796 && (rdev->recovery_offset <= sh->sector
3797 || rdev->mddev->recovery_cp <= sh->sector))
3798 rv = 1;
3799 return rv;
3800}
3801
3802static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3803 int disk_idx, int disks)
3804{
3805 struct r5dev *dev = &sh->dev[disk_idx];
3806 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3807 &sh->dev[s->failed_num[1]] };
3808 int i;
3809 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3810
3811
3812 if (test_bit(R5_LOCKED, &dev->flags) ||
3813 test_bit(R5_UPTODATE, &dev->flags))
3814 /* No point reading this as we already have it or have
3815 * decided to get it.
3816 */
3817 return 0;
3818
3819 if (dev->toread ||
3820 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3821 /* We need this block to directly satisfy a request */
3822 return 1;
3823
3824 if (s->syncing || s->expanding ||
3825 (s->replacing && want_replace(sh, disk_idx)))
3826 /* When syncing, or expanding we read everything.
3827 * When replacing, we need the replaced block.
3828 */
3829 return 1;
3830
3831 if ((s->failed >= 1 && fdev[0]->toread) ||
3832 (s->failed >= 2 && fdev[1]->toread))
3833 /* If we want to read from a failed device, then
3834 * we need to actually read every other device.
3835 */
3836 return 1;
3837
3838 /* Sometimes neither read-modify-write nor reconstruct-write
3839 * cycles can work. In those cases we read every block we
3840 * can. Then the parity-update is certain to have enough to
3841 * work with.
3842 * This can only be a problem when we need to write something,
3843 * and some device has failed. If either of those tests
3844 * fail we need look no further.
3845 */
3846 if (!s->failed || !s->to_write)
3847 return 0;
3848
3849 if (test_bit(R5_Insync, &dev->flags) &&
3850 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3851 /* Pre-reads at not permitted until after short delay
3852 * to gather multiple requests. However if this
3853 * device is no Insync, the block could only be computed
3854 * and there is no need to delay that.
3855 */
3856 return 0;
3857
3858 for (i = 0; i < s->failed && i < 2; i++) {
3859 if (fdev[i]->towrite &&
3860 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3861 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3862 /* If we have a partial write to a failed
3863 * device, then we will need to reconstruct
3864 * the content of that device, so all other
3865 * devices must be read.
3866 */
3867 return 1;
3868
3869 if (s->failed >= 2 &&
3870 (fdev[i]->towrite ||
3871 s->failed_num[i] == sh->pd_idx ||
3872 s->failed_num[i] == sh->qd_idx) &&
3873 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3874 /* In max degraded raid6, If the failed disk is P, Q,
3875 * or we want to read the failed disk, we need to do
3876 * reconstruct-write.
3877 */
3878 force_rcw = true;
3879 }
3880
3881 /* If we are forced to do a reconstruct-write, because parity
3882 * cannot be trusted and we are currently recovering it, there
3883 * is extra need to be careful.
3884 * If one of the devices that we would need to read, because
3885 * it is not being overwritten (and maybe not written at all)
3886 * is missing/faulty, then we need to read everything we can.
3887 */
3888 if (!force_rcw &&
3889 sh->sector < sh->raid_conf->mddev->recovery_cp)
3890 /* reconstruct-write isn't being forced */
3891 return 0;
3892 for (i = 0; i < s->failed && i < 2; i++) {
3893 if (s->failed_num[i] != sh->pd_idx &&
3894 s->failed_num[i] != sh->qd_idx &&
3895 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3896 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3897 return 1;
3898 }
3899
3900 return 0;
3901}
3902
3903/* fetch_block - checks the given member device to see if its data needs
3904 * to be read or computed to satisfy a request.
3905 *
3906 * Returns 1 when no more member devices need to be checked, otherwise returns
3907 * 0 to tell the loop in handle_stripe_fill to continue
3908 */
3909static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3910 int disk_idx, int disks)
3911{
3912 struct r5dev *dev = &sh->dev[disk_idx];
3913
3914 /* is the data in this block needed, and can we get it? */
3915 if (need_this_block(sh, s, disk_idx, disks)) {
3916 /* we would like to get this block, possibly by computing it,
3917 * otherwise read it if the backing disk is insync
3918 */
3919 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3920 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3921 BUG_ON(sh->batch_head);
3922
3923 /*
3924 * In the raid6 case if the only non-uptodate disk is P
3925 * then we already trusted P to compute the other failed
3926 * drives. It is safe to compute rather than re-read P.
3927 * In other cases we only compute blocks from failed
3928 * devices, otherwise check/repair might fail to detect
3929 * a real inconsistency.
3930 */
3931
3932 if ((s->uptodate == disks - 1) &&
3933 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3934 (s->failed && (disk_idx == s->failed_num[0] ||
3935 disk_idx == s->failed_num[1])))) {
3936 /* have disk failed, and we're requested to fetch it;
3937 * do compute it
3938 */
3939 pr_debug("Computing stripe %llu block %d\n",
3940 (unsigned long long)sh->sector, disk_idx);
3941 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3942 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3943 set_bit(R5_Wantcompute, &dev->flags);
3944 sh->ops.target = disk_idx;
3945 sh->ops.target2 = -1; /* no 2nd target */
3946 s->req_compute = 1;
3947 /* Careful: from this point on 'uptodate' is in the eye
3948 * of raid_run_ops which services 'compute' operations
3949 * before writes. R5_Wantcompute flags a block that will
3950 * be R5_UPTODATE by the time it is needed for a
3951 * subsequent operation.
3952 */
3953 s->uptodate++;
3954 return 1;
3955 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3956 /* Computing 2-failure is *very* expensive; only
3957 * do it if failed >= 2
3958 */
3959 int other;
3960 for (other = disks; other--; ) {
3961 if (other == disk_idx)
3962 continue;
3963 if (!test_bit(R5_UPTODATE,
3964 &sh->dev[other].flags))
3965 break;
3966 }
3967 BUG_ON(other < 0);
3968 pr_debug("Computing stripe %llu blocks %d,%d\n",
3969 (unsigned long long)sh->sector,
3970 disk_idx, other);
3971 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3972 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3973 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3974 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3975 sh->ops.target = disk_idx;
3976 sh->ops.target2 = other;
3977 s->uptodate += 2;
3978 s->req_compute = 1;
3979 return 1;
3980 } else if (test_bit(R5_Insync, &dev->flags)) {
3981 set_bit(R5_LOCKED, &dev->flags);
3982 set_bit(R5_Wantread, &dev->flags);
3983 s->locked++;
3984 pr_debug("Reading block %d (sync=%d)\n",
3985 disk_idx, s->syncing);
3986 }
3987 }
3988
3989 return 0;
3990}
3991
3992/*
3993 * handle_stripe_fill - read or compute data to satisfy pending requests.
3994 */
3995static void handle_stripe_fill(struct stripe_head *sh,
3996 struct stripe_head_state *s,
3997 int disks)
3998{
3999 int i;
4000
4001 /* look for blocks to read/compute, skip this if a compute
4002 * is already in flight, or if the stripe contents are in the
4003 * midst of changing due to a write
4004 */
4005 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4006 !sh->reconstruct_state) {
4007
4008 /*
4009 * For degraded stripe with data in journal, do not handle
4010 * read requests yet, instead, flush the stripe to raid
4011 * disks first, this avoids handling complex rmw of write
4012 * back cache (prexor with orig_page, and then xor with
4013 * page) in the read path
4014 */
4015 if (s->to_read && s->injournal && s->failed) {
4016 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4017 r5c_make_stripe_write_out(sh);
4018 goto out;
4019 }
4020
4021 for (i = disks; i--; )
4022 if (fetch_block(sh, s, i, disks))
4023 break;
4024 }
4025out:
4026 set_bit(STRIPE_HANDLE, &sh->state);
4027}
4028
4029static void break_stripe_batch_list(struct stripe_head *head_sh,
4030 unsigned long handle_flags);
4031/* handle_stripe_clean_event
4032 * any written block on an uptodate or failed drive can be returned.
4033 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4034 * never LOCKED, so we don't need to test 'failed' directly.
4035 */
4036static void handle_stripe_clean_event(struct r5conf *conf,
4037 struct stripe_head *sh, int disks)
4038{
4039 int i;
4040 struct r5dev *dev;
4041 int discard_pending = 0;
4042 struct stripe_head *head_sh = sh;
4043 bool do_endio = false;
4044
4045 for (i = disks; i--; )
4046 if (sh->dev[i].written) {
4047 dev = &sh->dev[i];
4048 if (!test_bit(R5_LOCKED, &dev->flags) &&
4049 (test_bit(R5_UPTODATE, &dev->flags) ||
4050 test_bit(R5_Discard, &dev->flags) ||
4051 test_bit(R5_SkipCopy, &dev->flags))) {
4052 /* We can return any write requests */
4053 struct bio *wbi, *wbi2;
4054 pr_debug("Return write for disc %d\n", i);
4055 if (test_and_clear_bit(R5_Discard, &dev->flags))
4056 clear_bit(R5_UPTODATE, &dev->flags);
4057 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4058 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4059 }
4060 do_endio = true;
4061
4062returnbi:
4063 dev->page = dev->orig_page;
4064 wbi = dev->written;
4065 dev->written = NULL;
4066 while (wbi && wbi->bi_iter.bi_sector <
4067 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4068 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4069 md_write_end(conf->mddev);
4070 bio_endio(wbi);
4071 wbi = wbi2;
4072 }
4073 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4074 RAID5_STRIPE_SECTORS(conf),
4075 !test_bit(STRIPE_DEGRADED, &sh->state),
4076 0);
4077 if (head_sh->batch_head) {
4078 sh = list_first_entry(&sh->batch_list,
4079 struct stripe_head,
4080 batch_list);
4081 if (sh != head_sh) {
4082 dev = &sh->dev[i];
4083 goto returnbi;
4084 }
4085 }
4086 sh = head_sh;
4087 dev = &sh->dev[i];
4088 } else if (test_bit(R5_Discard, &dev->flags))
4089 discard_pending = 1;
4090 }
4091
4092 log_stripe_write_finished(sh);
4093
4094 if (!discard_pending &&
4095 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4096 int hash;
4097 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4098 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4099 if (sh->qd_idx >= 0) {
4100 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4101 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4102 }
4103 /* now that discard is done we can proceed with any sync */
4104 clear_bit(STRIPE_DISCARD, &sh->state);
4105 /*
4106 * SCSI discard will change some bio fields and the stripe has
4107 * no updated data, so remove it from hash list and the stripe
4108 * will be reinitialized
4109 */
4110unhash:
4111 hash = sh->hash_lock_index;
4112 spin_lock_irq(conf->hash_locks + hash);
4113 remove_hash(sh);
4114 spin_unlock_irq(conf->hash_locks + hash);
4115 if (head_sh->batch_head) {
4116 sh = list_first_entry(&sh->batch_list,
4117 struct stripe_head, batch_list);
4118 if (sh != head_sh)
4119 goto unhash;
4120 }
4121 sh = head_sh;
4122
4123 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4124 set_bit(STRIPE_HANDLE, &sh->state);
4125
4126 }
4127
4128 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4129 if (atomic_dec_and_test(&conf->pending_full_writes))
4130 md_wakeup_thread(conf->mddev->thread);
4131
4132 if (head_sh->batch_head && do_endio)
4133 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4134}
4135
4136/*
4137 * For RMW in write back cache, we need extra page in prexor to store the
4138 * old data. This page is stored in dev->orig_page.
4139 *
4140 * This function checks whether we have data for prexor. The exact logic
4141 * is:
4142 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4143 */
4144static inline bool uptodate_for_rmw(struct r5dev *dev)
4145{
4146 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4147 (!test_bit(R5_InJournal, &dev->flags) ||
4148 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4149}
4150
4151static int handle_stripe_dirtying(struct r5conf *conf,
4152 struct stripe_head *sh,
4153 struct stripe_head_state *s,
4154 int disks)
4155{
4156 int rmw = 0, rcw = 0, i;
4157 sector_t recovery_cp = conf->mddev->recovery_cp;
4158
4159 /* Check whether resync is now happening or should start.
4160 * If yes, then the array is dirty (after unclean shutdown or
4161 * initial creation), so parity in some stripes might be inconsistent.
4162 * In this case, we need to always do reconstruct-write, to ensure
4163 * that in case of drive failure or read-error correction, we
4164 * generate correct data from the parity.
4165 */
4166 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4167 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4168 s->failed == 0)) {
4169 /* Calculate the real rcw later - for now make it
4170 * look like rcw is cheaper
4171 */
4172 rcw = 1; rmw = 2;
4173 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4174 conf->rmw_level, (unsigned long long)recovery_cp,
4175 (unsigned long long)sh->sector);
4176 } else for (i = disks; i--; ) {
4177 /* would I have to read this buffer for read_modify_write */
4178 struct r5dev *dev = &sh->dev[i];
4179 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4180 i == sh->pd_idx || i == sh->qd_idx ||
4181 test_bit(R5_InJournal, &dev->flags)) &&
4182 !test_bit(R5_LOCKED, &dev->flags) &&
4183 !(uptodate_for_rmw(dev) ||
4184 test_bit(R5_Wantcompute, &dev->flags))) {
4185 if (test_bit(R5_Insync, &dev->flags))
4186 rmw++;
4187 else
4188 rmw += 2*disks; /* cannot read it */
4189 }
4190 /* Would I have to read this buffer for reconstruct_write */
4191 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4192 i != sh->pd_idx && i != sh->qd_idx &&
4193 !test_bit(R5_LOCKED, &dev->flags) &&
4194 !(test_bit(R5_UPTODATE, &dev->flags) ||
4195 test_bit(R5_Wantcompute, &dev->flags))) {
4196 if (test_bit(R5_Insync, &dev->flags))
4197 rcw++;
4198 else
4199 rcw += 2*disks;
4200 }
4201 }
4202
4203 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4204 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4205 set_bit(STRIPE_HANDLE, &sh->state);
4206 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4207 /* prefer read-modify-write, but need to get some data */
4208 if (conf->mddev->queue)
4209 blk_add_trace_msg(conf->mddev->queue,
4210 "raid5 rmw %llu %d",
4211 (unsigned long long)sh->sector, rmw);
4212 for (i = disks; i--; ) {
4213 struct r5dev *dev = &sh->dev[i];
4214 if (test_bit(R5_InJournal, &dev->flags) &&
4215 dev->page == dev->orig_page &&
4216 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4217 /* alloc page for prexor */
4218 struct page *p = alloc_page(GFP_NOIO);
4219
4220 if (p) {
4221 dev->orig_page = p;
4222 continue;
4223 }
4224
4225 /*
4226 * alloc_page() failed, try use
4227 * disk_info->extra_page
4228 */
4229 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4230 &conf->cache_state)) {
4231 r5c_use_extra_page(sh);
4232 break;
4233 }
4234
4235 /* extra_page in use, add to delayed_list */
4236 set_bit(STRIPE_DELAYED, &sh->state);
4237 s->waiting_extra_page = 1;
4238 return -EAGAIN;
4239 }
4240 }
4241
4242 for (i = disks; i--; ) {
4243 struct r5dev *dev = &sh->dev[i];
4244 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4245 i == sh->pd_idx || i == sh->qd_idx ||
4246 test_bit(R5_InJournal, &dev->flags)) &&
4247 !test_bit(R5_LOCKED, &dev->flags) &&
4248 !(uptodate_for_rmw(dev) ||
4249 test_bit(R5_Wantcompute, &dev->flags)) &&
4250 test_bit(R5_Insync, &dev->flags)) {
4251 if (test_bit(STRIPE_PREREAD_ACTIVE,
4252 &sh->state)) {
4253 pr_debug("Read_old block %d for r-m-w\n",
4254 i);
4255 set_bit(R5_LOCKED, &dev->flags);
4256 set_bit(R5_Wantread, &dev->flags);
4257 s->locked++;
4258 } else
4259 set_bit(STRIPE_DELAYED, &sh->state);
4260 }
4261 }
4262 }
4263 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4264 /* want reconstruct write, but need to get some data */
4265 int qread =0;
4266 rcw = 0;
4267 for (i = disks; i--; ) {
4268 struct r5dev *dev = &sh->dev[i];
4269 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4270 i != sh->pd_idx && i != sh->qd_idx &&
4271 !test_bit(R5_LOCKED, &dev->flags) &&
4272 !(test_bit(R5_UPTODATE, &dev->flags) ||
4273 test_bit(R5_Wantcompute, &dev->flags))) {
4274 rcw++;
4275 if (test_bit(R5_Insync, &dev->flags) &&
4276 test_bit(STRIPE_PREREAD_ACTIVE,
4277 &sh->state)) {
4278 pr_debug("Read_old block "
4279 "%d for Reconstruct\n", i);
4280 set_bit(R5_LOCKED, &dev->flags);
4281 set_bit(R5_Wantread, &dev->flags);
4282 s->locked++;
4283 qread++;
4284 } else
4285 set_bit(STRIPE_DELAYED, &sh->state);
4286 }
4287 }
4288 if (rcw && conf->mddev->queue)
4289 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4290 (unsigned long long)sh->sector,
4291 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4292 }
4293
4294 if (rcw > disks && rmw > disks &&
4295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4296 set_bit(STRIPE_DELAYED, &sh->state);
4297
4298 /* now if nothing is locked, and if we have enough data,
4299 * we can start a write request
4300 */
4301 /* since handle_stripe can be called at any time we need to handle the
4302 * case where a compute block operation has been submitted and then a
4303 * subsequent call wants to start a write request. raid_run_ops only
4304 * handles the case where compute block and reconstruct are requested
4305 * simultaneously. If this is not the case then new writes need to be
4306 * held off until the compute completes.
4307 */
4308 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4309 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4310 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4311 schedule_reconstruction(sh, s, rcw == 0, 0);
4312 return 0;
4313}
4314
4315static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4316 struct stripe_head_state *s, int disks)
4317{
4318 struct r5dev *dev = NULL;
4319
4320 BUG_ON(sh->batch_head);
4321 set_bit(STRIPE_HANDLE, &sh->state);
4322
4323 switch (sh->check_state) {
4324 case check_state_idle:
4325 /* start a new check operation if there are no failures */
4326 if (s->failed == 0) {
4327 BUG_ON(s->uptodate != disks);
4328 sh->check_state = check_state_run;
4329 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4330 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4331 s->uptodate--;
4332 break;
4333 }
4334 dev = &sh->dev[s->failed_num[0]];
4335 fallthrough;
4336 case check_state_compute_result:
4337 sh->check_state = check_state_idle;
4338 if (!dev)
4339 dev = &sh->dev[sh->pd_idx];
4340
4341 /* check that a write has not made the stripe insync */
4342 if (test_bit(STRIPE_INSYNC, &sh->state))
4343 break;
4344
4345 /* either failed parity check, or recovery is happening */
4346 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4347 BUG_ON(s->uptodate != disks);
4348
4349 set_bit(R5_LOCKED, &dev->flags);
4350 s->locked++;
4351 set_bit(R5_Wantwrite, &dev->flags);
4352
4353 clear_bit(STRIPE_DEGRADED, &sh->state);
4354 set_bit(STRIPE_INSYNC, &sh->state);
4355 break;
4356 case check_state_run:
4357 break; /* we will be called again upon completion */
4358 case check_state_check_result:
4359 sh->check_state = check_state_idle;
4360
4361 /* if a failure occurred during the check operation, leave
4362 * STRIPE_INSYNC not set and let the stripe be handled again
4363 */
4364 if (s->failed)
4365 break;
4366
4367 /* handle a successful check operation, if parity is correct
4368 * we are done. Otherwise update the mismatch count and repair
4369 * parity if !MD_RECOVERY_CHECK
4370 */
4371 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4372 /* parity is correct (on disc,
4373 * not in buffer any more)
4374 */
4375 set_bit(STRIPE_INSYNC, &sh->state);
4376 else {
4377 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4378 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4379 /* don't try to repair!! */
4380 set_bit(STRIPE_INSYNC, &sh->state);
4381 pr_warn_ratelimited("%s: mismatch sector in range "
4382 "%llu-%llu\n", mdname(conf->mddev),
4383 (unsigned long long) sh->sector,
4384 (unsigned long long) sh->sector +
4385 RAID5_STRIPE_SECTORS(conf));
4386 } else {
4387 sh->check_state = check_state_compute_run;
4388 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4389 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4390 set_bit(R5_Wantcompute,
4391 &sh->dev[sh->pd_idx].flags);
4392 sh->ops.target = sh->pd_idx;
4393 sh->ops.target2 = -1;
4394 s->uptodate++;
4395 }
4396 }
4397 break;
4398 case check_state_compute_run:
4399 break;
4400 default:
4401 pr_err("%s: unknown check_state: %d sector: %llu\n",
4402 __func__, sh->check_state,
4403 (unsigned long long) sh->sector);
4404 BUG();
4405 }
4406}
4407
4408static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4409 struct stripe_head_state *s,
4410 int disks)
4411{
4412 int pd_idx = sh->pd_idx;
4413 int qd_idx = sh->qd_idx;
4414 struct r5dev *dev;
4415
4416 BUG_ON(sh->batch_head);
4417 set_bit(STRIPE_HANDLE, &sh->state);
4418
4419 BUG_ON(s->failed > 2);
4420
4421 /* Want to check and possibly repair P and Q.
4422 * However there could be one 'failed' device, in which
4423 * case we can only check one of them, possibly using the
4424 * other to generate missing data
4425 */
4426
4427 switch (sh->check_state) {
4428 case check_state_idle:
4429 /* start a new check operation if there are < 2 failures */
4430 if (s->failed == s->q_failed) {
4431 /* The only possible failed device holds Q, so it
4432 * makes sense to check P (If anything else were failed,
4433 * we would have used P to recreate it).
4434 */
4435 sh->check_state = check_state_run;
4436 }
4437 if (!s->q_failed && s->failed < 2) {
4438 /* Q is not failed, and we didn't use it to generate
4439 * anything, so it makes sense to check it
4440 */
4441 if (sh->check_state == check_state_run)
4442 sh->check_state = check_state_run_pq;
4443 else
4444 sh->check_state = check_state_run_q;
4445 }
4446
4447 /* discard potentially stale zero_sum_result */
4448 sh->ops.zero_sum_result = 0;
4449
4450 if (sh->check_state == check_state_run) {
4451 /* async_xor_zero_sum destroys the contents of P */
4452 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4453 s->uptodate--;
4454 }
4455 if (sh->check_state >= check_state_run &&
4456 sh->check_state <= check_state_run_pq) {
4457 /* async_syndrome_zero_sum preserves P and Q, so
4458 * no need to mark them !uptodate here
4459 */
4460 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4461 break;
4462 }
4463
4464 /* we have 2-disk failure */
4465 BUG_ON(s->failed != 2);
4466 fallthrough;
4467 case check_state_compute_result:
4468 sh->check_state = check_state_idle;
4469
4470 /* check that a write has not made the stripe insync */
4471 if (test_bit(STRIPE_INSYNC, &sh->state))
4472 break;
4473
4474 /* now write out any block on a failed drive,
4475 * or P or Q if they were recomputed
4476 */
4477 dev = NULL;
4478 if (s->failed == 2) {
4479 dev = &sh->dev[s->failed_num[1]];
4480 s->locked++;
4481 set_bit(R5_LOCKED, &dev->flags);
4482 set_bit(R5_Wantwrite, &dev->flags);
4483 }
4484 if (s->failed >= 1) {
4485 dev = &sh->dev[s->failed_num[0]];
4486 s->locked++;
4487 set_bit(R5_LOCKED, &dev->flags);
4488 set_bit(R5_Wantwrite, &dev->flags);
4489 }
4490 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4491 dev = &sh->dev[pd_idx];
4492 s->locked++;
4493 set_bit(R5_LOCKED, &dev->flags);
4494 set_bit(R5_Wantwrite, &dev->flags);
4495 }
4496 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4497 dev = &sh->dev[qd_idx];
4498 s->locked++;
4499 set_bit(R5_LOCKED, &dev->flags);
4500 set_bit(R5_Wantwrite, &dev->flags);
4501 }
4502 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4503 "%s: disk%td not up to date\n",
4504 mdname(conf->mddev),
4505 dev - (struct r5dev *) &sh->dev)) {
4506 clear_bit(R5_LOCKED, &dev->flags);
4507 clear_bit(R5_Wantwrite, &dev->flags);
4508 s->locked--;
4509 }
4510 clear_bit(STRIPE_DEGRADED, &sh->state);
4511
4512 set_bit(STRIPE_INSYNC, &sh->state);
4513 break;
4514 case check_state_run:
4515 case check_state_run_q:
4516 case check_state_run_pq:
4517 break; /* we will be called again upon completion */
4518 case check_state_check_result:
4519 sh->check_state = check_state_idle;
4520
4521 /* handle a successful check operation, if parity is correct
4522 * we are done. Otherwise update the mismatch count and repair
4523 * parity if !MD_RECOVERY_CHECK
4524 */
4525 if (sh->ops.zero_sum_result == 0) {
4526 /* both parities are correct */
4527 if (!s->failed)
4528 set_bit(STRIPE_INSYNC, &sh->state);
4529 else {
4530 /* in contrast to the raid5 case we can validate
4531 * parity, but still have a failure to write
4532 * back
4533 */
4534 sh->check_state = check_state_compute_result;
4535 /* Returning at this point means that we may go
4536 * off and bring p and/or q uptodate again so
4537 * we make sure to check zero_sum_result again
4538 * to verify if p or q need writeback
4539 */
4540 }
4541 } else {
4542 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4543 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4544 /* don't try to repair!! */
4545 set_bit(STRIPE_INSYNC, &sh->state);
4546 pr_warn_ratelimited("%s: mismatch sector in range "
4547 "%llu-%llu\n", mdname(conf->mddev),
4548 (unsigned long long) sh->sector,
4549 (unsigned long long) sh->sector +
4550 RAID5_STRIPE_SECTORS(conf));
4551 } else {
4552 int *target = &sh->ops.target;
4553
4554 sh->ops.target = -1;
4555 sh->ops.target2 = -1;
4556 sh->check_state = check_state_compute_run;
4557 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4558 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4559 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4560 set_bit(R5_Wantcompute,
4561 &sh->dev[pd_idx].flags);
4562 *target = pd_idx;
4563 target = &sh->ops.target2;
4564 s->uptodate++;
4565 }
4566 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4567 set_bit(R5_Wantcompute,
4568 &sh->dev[qd_idx].flags);
4569 *target = qd_idx;
4570 s->uptodate++;
4571 }
4572 }
4573 }
4574 break;
4575 case check_state_compute_run:
4576 break;
4577 default:
4578 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4579 __func__, sh->check_state,
4580 (unsigned long long) sh->sector);
4581 BUG();
4582 }
4583}
4584
4585static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4586{
4587 int i;
4588
4589 /* We have read all the blocks in this stripe and now we need to
4590 * copy some of them into a target stripe for expand.
4591 */
4592 struct dma_async_tx_descriptor *tx = NULL;
4593 BUG_ON(sh->batch_head);
4594 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4595 for (i = 0; i < sh->disks; i++)
4596 if (i != sh->pd_idx && i != sh->qd_idx) {
4597 int dd_idx, j;
4598 struct stripe_head *sh2;
4599 struct async_submit_ctl submit;
4600
4601 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4602 sector_t s = raid5_compute_sector(conf, bn, 0,
4603 &dd_idx, NULL);
4604 sh2 = raid5_get_active_stripe(conf, NULL, s,
4605 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4606 if (sh2 == NULL)
4607 /* so far only the early blocks of this stripe
4608 * have been requested. When later blocks
4609 * get requested, we will try again
4610 */
4611 continue;
4612 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4613 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4614 /* must have already done this block */
4615 raid5_release_stripe(sh2);
4616 continue;
4617 }
4618
4619 /* place all the copies on one channel */
4620 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4621 tx = async_memcpy(sh2->dev[dd_idx].page,
4622 sh->dev[i].page, sh2->dev[dd_idx].offset,
4623 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4624 &submit);
4625
4626 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4627 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4628 for (j = 0; j < conf->raid_disks; j++)
4629 if (j != sh2->pd_idx &&
4630 j != sh2->qd_idx &&
4631 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4632 break;
4633 if (j == conf->raid_disks) {
4634 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4635 set_bit(STRIPE_HANDLE, &sh2->state);
4636 }
4637 raid5_release_stripe(sh2);
4638
4639 }
4640 /* done submitting copies, wait for them to complete */
4641 async_tx_quiesce(&tx);
4642}
4643
4644/*
4645 * handle_stripe - do things to a stripe.
4646 *
4647 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4648 * state of various bits to see what needs to be done.
4649 * Possible results:
4650 * return some read requests which now have data
4651 * return some write requests which are safely on storage
4652 * schedule a read on some buffers
4653 * schedule a write of some buffers
4654 * return confirmation of parity correctness
4655 *
4656 */
4657
4658static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4659{
4660 struct r5conf *conf = sh->raid_conf;
4661 int disks = sh->disks;
4662 struct r5dev *dev;
4663 int i;
4664 int do_recovery = 0;
4665
4666 memset(s, 0, sizeof(*s));
4667
4668 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4669 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4670 s->failed_num[0] = -1;
4671 s->failed_num[1] = -1;
4672 s->log_failed = r5l_log_disk_error(conf);
4673
4674 /* Now to look around and see what can be done */
4675 for (i=disks; i--; ) {
4676 struct md_rdev *rdev;
4677 sector_t first_bad;
4678 int bad_sectors;
4679 int is_bad = 0;
4680
4681 dev = &sh->dev[i];
4682
4683 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4684 i, dev->flags,
4685 dev->toread, dev->towrite, dev->written);
4686 /* maybe we can reply to a read
4687 *
4688 * new wantfill requests are only permitted while
4689 * ops_complete_biofill is guaranteed to be inactive
4690 */
4691 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4692 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4693 set_bit(R5_Wantfill, &dev->flags);
4694
4695 /* now count some things */
4696 if (test_bit(R5_LOCKED, &dev->flags))
4697 s->locked++;
4698 if (test_bit(R5_UPTODATE, &dev->flags))
4699 s->uptodate++;
4700 if (test_bit(R5_Wantcompute, &dev->flags)) {
4701 s->compute++;
4702 BUG_ON(s->compute > 2);
4703 }
4704
4705 if (test_bit(R5_Wantfill, &dev->flags))
4706 s->to_fill++;
4707 else if (dev->toread)
4708 s->to_read++;
4709 if (dev->towrite) {
4710 s->to_write++;
4711 if (!test_bit(R5_OVERWRITE, &dev->flags))
4712 s->non_overwrite++;
4713 }
4714 if (dev->written)
4715 s->written++;
4716 /* Prefer to use the replacement for reads, but only
4717 * if it is recovered enough and has no bad blocks.
4718 */
4719 rdev = conf->disks[i].replacement;
4720 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4721 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4722 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4723 &first_bad, &bad_sectors))
4724 set_bit(R5_ReadRepl, &dev->flags);
4725 else {
4726 if (rdev && !test_bit(Faulty, &rdev->flags))
4727 set_bit(R5_NeedReplace, &dev->flags);
4728 else
4729 clear_bit(R5_NeedReplace, &dev->flags);
4730 rdev = conf->disks[i].rdev;
4731 clear_bit(R5_ReadRepl, &dev->flags);
4732 }
4733 if (rdev && test_bit(Faulty, &rdev->flags))
4734 rdev = NULL;
4735 if (rdev) {
4736 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4737 &first_bad, &bad_sectors);
4738 if (s->blocked_rdev == NULL
4739 && (test_bit(Blocked, &rdev->flags)
4740 || is_bad < 0)) {
4741 if (is_bad < 0)
4742 set_bit(BlockedBadBlocks,
4743 &rdev->flags);
4744 s->blocked_rdev = rdev;
4745 atomic_inc(&rdev->nr_pending);
4746 }
4747 }
4748 clear_bit(R5_Insync, &dev->flags);
4749 if (!rdev)
4750 /* Not in-sync */;
4751 else if (is_bad) {
4752 /* also not in-sync */
4753 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4754 test_bit(R5_UPTODATE, &dev->flags)) {
4755 /* treat as in-sync, but with a read error
4756 * which we can now try to correct
4757 */
4758 set_bit(R5_Insync, &dev->flags);
4759 set_bit(R5_ReadError, &dev->flags);
4760 }
4761 } else if (test_bit(In_sync, &rdev->flags))
4762 set_bit(R5_Insync, &dev->flags);
4763 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4764 /* in sync if before recovery_offset */
4765 set_bit(R5_Insync, &dev->flags);
4766 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4767 test_bit(R5_Expanded, &dev->flags))
4768 /* If we've reshaped into here, we assume it is Insync.
4769 * We will shortly update recovery_offset to make
4770 * it official.
4771 */
4772 set_bit(R5_Insync, &dev->flags);
4773
4774 if (test_bit(R5_WriteError, &dev->flags)) {
4775 /* This flag does not apply to '.replacement'
4776 * only to .rdev, so make sure to check that*/
4777 struct md_rdev *rdev2 = conf->disks[i].rdev;
4778
4779 if (rdev2 == rdev)
4780 clear_bit(R5_Insync, &dev->flags);
4781 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4782 s->handle_bad_blocks = 1;
4783 atomic_inc(&rdev2->nr_pending);
4784 } else
4785 clear_bit(R5_WriteError, &dev->flags);
4786 }
4787 if (test_bit(R5_MadeGood, &dev->flags)) {
4788 /* This flag does not apply to '.replacement'
4789 * only to .rdev, so make sure to check that*/
4790 struct md_rdev *rdev2 = conf->disks[i].rdev;
4791
4792 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4793 s->handle_bad_blocks = 1;
4794 atomic_inc(&rdev2->nr_pending);
4795 } else
4796 clear_bit(R5_MadeGood, &dev->flags);
4797 }
4798 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4799 struct md_rdev *rdev2 = conf->disks[i].replacement;
4800
4801 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4802 s->handle_bad_blocks = 1;
4803 atomic_inc(&rdev2->nr_pending);
4804 } else
4805 clear_bit(R5_MadeGoodRepl, &dev->flags);
4806 }
4807 if (!test_bit(R5_Insync, &dev->flags)) {
4808 /* The ReadError flag will just be confusing now */
4809 clear_bit(R5_ReadError, &dev->flags);
4810 clear_bit(R5_ReWrite, &dev->flags);
4811 }
4812 if (test_bit(R5_ReadError, &dev->flags))
4813 clear_bit(R5_Insync, &dev->flags);
4814 if (!test_bit(R5_Insync, &dev->flags)) {
4815 if (s->failed < 2)
4816 s->failed_num[s->failed] = i;
4817 s->failed++;
4818 if (rdev && !test_bit(Faulty, &rdev->flags))
4819 do_recovery = 1;
4820 else if (!rdev) {
4821 rdev = conf->disks[i].replacement;
4822 if (rdev && !test_bit(Faulty, &rdev->flags))
4823 do_recovery = 1;
4824 }
4825 }
4826
4827 if (test_bit(R5_InJournal, &dev->flags))
4828 s->injournal++;
4829 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4830 s->just_cached++;
4831 }
4832 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4833 /* If there is a failed device being replaced,
4834 * we must be recovering.
4835 * else if we are after recovery_cp, we must be syncing
4836 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4837 * else we can only be replacing
4838 * sync and recovery both need to read all devices, and so
4839 * use the same flag.
4840 */
4841 if (do_recovery ||
4842 sh->sector >= conf->mddev->recovery_cp ||
4843 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4844 s->syncing = 1;
4845 else
4846 s->replacing = 1;
4847 }
4848}
4849
4850/*
4851 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4852 * a head which can now be handled.
4853 */
4854static int clear_batch_ready(struct stripe_head *sh)
4855{
4856 struct stripe_head *tmp;
4857 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4858 return (sh->batch_head && sh->batch_head != sh);
4859 spin_lock(&sh->stripe_lock);
4860 if (!sh->batch_head) {
4861 spin_unlock(&sh->stripe_lock);
4862 return 0;
4863 }
4864
4865 /*
4866 * this stripe could be added to a batch list before we check
4867 * BATCH_READY, skips it
4868 */
4869 if (sh->batch_head != sh) {
4870 spin_unlock(&sh->stripe_lock);
4871 return 1;
4872 }
4873 spin_lock(&sh->batch_lock);
4874 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4875 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4876 spin_unlock(&sh->batch_lock);
4877 spin_unlock(&sh->stripe_lock);
4878
4879 /*
4880 * BATCH_READY is cleared, no new stripes can be added.
4881 * batch_list can be accessed without lock
4882 */
4883 return 0;
4884}
4885
4886static void break_stripe_batch_list(struct stripe_head *head_sh,
4887 unsigned long handle_flags)
4888{
4889 struct stripe_head *sh, *next;
4890 int i;
4891 int do_wakeup = 0;
4892
4893 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4894
4895 list_del_init(&sh->batch_list);
4896
4897 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4898 (1 << STRIPE_SYNCING) |
4899 (1 << STRIPE_REPLACED) |
4900 (1 << STRIPE_DELAYED) |
4901 (1 << STRIPE_BIT_DELAY) |
4902 (1 << STRIPE_FULL_WRITE) |
4903 (1 << STRIPE_BIOFILL_RUN) |
4904 (1 << STRIPE_COMPUTE_RUN) |
4905 (1 << STRIPE_DISCARD) |
4906 (1 << STRIPE_BATCH_READY) |
4907 (1 << STRIPE_BATCH_ERR) |
4908 (1 << STRIPE_BITMAP_PENDING)),
4909 "stripe state: %lx\n", sh->state);
4910 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4911 (1 << STRIPE_REPLACED)),
4912 "head stripe state: %lx\n", head_sh->state);
4913
4914 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4915 (1 << STRIPE_PREREAD_ACTIVE) |
4916 (1 << STRIPE_DEGRADED) |
4917 (1 << STRIPE_ON_UNPLUG_LIST)),
4918 head_sh->state & (1 << STRIPE_INSYNC));
4919
4920 sh->check_state = head_sh->check_state;
4921 sh->reconstruct_state = head_sh->reconstruct_state;
4922 spin_lock_irq(&sh->stripe_lock);
4923 sh->batch_head = NULL;
4924 spin_unlock_irq(&sh->stripe_lock);
4925 for (i = 0; i < sh->disks; i++) {
4926 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4927 do_wakeup = 1;
4928 sh->dev[i].flags = head_sh->dev[i].flags &
4929 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4930 }
4931 if (handle_flags == 0 ||
4932 sh->state & handle_flags)
4933 set_bit(STRIPE_HANDLE, &sh->state);
4934 raid5_release_stripe(sh);
4935 }
4936 spin_lock_irq(&head_sh->stripe_lock);
4937 head_sh->batch_head = NULL;
4938 spin_unlock_irq(&head_sh->stripe_lock);
4939 for (i = 0; i < head_sh->disks; i++)
4940 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4941 do_wakeup = 1;
4942 if (head_sh->state & handle_flags)
4943 set_bit(STRIPE_HANDLE, &head_sh->state);
4944
4945 if (do_wakeup)
4946 wake_up(&head_sh->raid_conf->wait_for_overlap);
4947}
4948
4949static void handle_stripe(struct stripe_head *sh)
4950{
4951 struct stripe_head_state s;
4952 struct r5conf *conf = sh->raid_conf;
4953 int i;
4954 int prexor;
4955 int disks = sh->disks;
4956 struct r5dev *pdev, *qdev;
4957
4958 clear_bit(STRIPE_HANDLE, &sh->state);
4959
4960 /*
4961 * handle_stripe should not continue handle the batched stripe, only
4962 * the head of batch list or lone stripe can continue. Otherwise we
4963 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4964 * is set for the batched stripe.
4965 */
4966 if (clear_batch_ready(sh))
4967 return;
4968
4969 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4970 /* already being handled, ensure it gets handled
4971 * again when current action finishes */
4972 set_bit(STRIPE_HANDLE, &sh->state);
4973 return;
4974 }
4975
4976 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4977 break_stripe_batch_list(sh, 0);
4978
4979 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4980 spin_lock(&sh->stripe_lock);
4981 /*
4982 * Cannot process 'sync' concurrently with 'discard'.
4983 * Flush data in r5cache before 'sync'.
4984 */
4985 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4986 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4987 !test_bit(STRIPE_DISCARD, &sh->state) &&
4988 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4989 set_bit(STRIPE_SYNCING, &sh->state);
4990 clear_bit(STRIPE_INSYNC, &sh->state);
4991 clear_bit(STRIPE_REPLACED, &sh->state);
4992 }
4993 spin_unlock(&sh->stripe_lock);
4994 }
4995 clear_bit(STRIPE_DELAYED, &sh->state);
4996
4997 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4998 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4999 (unsigned long long)sh->sector, sh->state,
5000 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5001 sh->check_state, sh->reconstruct_state);
5002
5003 analyse_stripe(sh, &s);
5004
5005 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5006 goto finish;
5007
5008 if (s.handle_bad_blocks ||
5009 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5010 set_bit(STRIPE_HANDLE, &sh->state);
5011 goto finish;
5012 }
5013
5014 if (unlikely(s.blocked_rdev)) {
5015 if (s.syncing || s.expanding || s.expanded ||
5016 s.replacing || s.to_write || s.written) {
5017 set_bit(STRIPE_HANDLE, &sh->state);
5018 goto finish;
5019 }
5020 /* There is nothing for the blocked_rdev to block */
5021 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5022 s.blocked_rdev = NULL;
5023 }
5024
5025 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5026 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5027 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5028 }
5029
5030 pr_debug("locked=%d uptodate=%d to_read=%d"
5031 " to_write=%d failed=%d failed_num=%d,%d\n",
5032 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5033 s.failed_num[0], s.failed_num[1]);
5034 /*
5035 * check if the array has lost more than max_degraded devices and,
5036 * if so, some requests might need to be failed.
5037 *
5038 * When journal device failed (log_failed), we will only process
5039 * the stripe if there is data need write to raid disks
5040 */
5041 if (s.failed > conf->max_degraded ||
5042 (s.log_failed && s.injournal == 0)) {
5043 sh->check_state = 0;
5044 sh->reconstruct_state = 0;
5045 break_stripe_batch_list(sh, 0);
5046 if (s.to_read+s.to_write+s.written)
5047 handle_failed_stripe(conf, sh, &s, disks);
5048 if (s.syncing + s.replacing)
5049 handle_failed_sync(conf, sh, &s);
5050 }
5051
5052 /* Now we check to see if any write operations have recently
5053 * completed
5054 */
5055 prexor = 0;
5056 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5057 prexor = 1;
5058 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5059 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5060 sh->reconstruct_state = reconstruct_state_idle;
5061
5062 /* All the 'written' buffers and the parity block are ready to
5063 * be written back to disk
5064 */
5065 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5066 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5067 BUG_ON(sh->qd_idx >= 0 &&
5068 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5069 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5070 for (i = disks; i--; ) {
5071 struct r5dev *dev = &sh->dev[i];
5072 if (test_bit(R5_LOCKED, &dev->flags) &&
5073 (i == sh->pd_idx || i == sh->qd_idx ||
5074 dev->written || test_bit(R5_InJournal,
5075 &dev->flags))) {
5076 pr_debug("Writing block %d\n", i);
5077 set_bit(R5_Wantwrite, &dev->flags);
5078 if (prexor)
5079 continue;
5080 if (s.failed > 1)
5081 continue;
5082 if (!test_bit(R5_Insync, &dev->flags) ||
5083 ((i == sh->pd_idx || i == sh->qd_idx) &&
5084 s.failed == 0))
5085 set_bit(STRIPE_INSYNC, &sh->state);
5086 }
5087 }
5088 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5089 s.dec_preread_active = 1;
5090 }
5091
5092 /*
5093 * might be able to return some write requests if the parity blocks
5094 * are safe, or on a failed drive
5095 */
5096 pdev = &sh->dev[sh->pd_idx];
5097 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5098 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5099 qdev = &sh->dev[sh->qd_idx];
5100 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5101 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5102 || conf->level < 6;
5103
5104 if (s.written &&
5105 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5106 && !test_bit(R5_LOCKED, &pdev->flags)
5107 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5108 test_bit(R5_Discard, &pdev->flags))))) &&
5109 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5110 && !test_bit(R5_LOCKED, &qdev->flags)
5111 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5112 test_bit(R5_Discard, &qdev->flags))))))
5113 handle_stripe_clean_event(conf, sh, disks);
5114
5115 if (s.just_cached)
5116 r5c_handle_cached_data_endio(conf, sh, disks);
5117 log_stripe_write_finished(sh);
5118
5119 /* Now we might consider reading some blocks, either to check/generate
5120 * parity, or to satisfy requests
5121 * or to load a block that is being partially written.
5122 */
5123 if (s.to_read || s.non_overwrite
5124 || (s.to_write && s.failed)
5125 || (s.syncing && (s.uptodate + s.compute < disks))
5126 || s.replacing
5127 || s.expanding)
5128 handle_stripe_fill(sh, &s, disks);
5129
5130 /*
5131 * When the stripe finishes full journal write cycle (write to journal
5132 * and raid disk), this is the clean up procedure so it is ready for
5133 * next operation.
5134 */
5135 r5c_finish_stripe_write_out(conf, sh, &s);
5136
5137 /*
5138 * Now to consider new write requests, cache write back and what else,
5139 * if anything should be read. We do not handle new writes when:
5140 * 1/ A 'write' operation (copy+xor) is already in flight.
5141 * 2/ A 'check' operation is in flight, as it may clobber the parity
5142 * block.
5143 * 3/ A r5c cache log write is in flight.
5144 */
5145
5146 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5147 if (!r5c_is_writeback(conf->log)) {
5148 if (s.to_write)
5149 handle_stripe_dirtying(conf, sh, &s, disks);
5150 } else { /* write back cache */
5151 int ret = 0;
5152
5153 /* First, try handle writes in caching phase */
5154 if (s.to_write)
5155 ret = r5c_try_caching_write(conf, sh, &s,
5156 disks);
5157 /*
5158 * If caching phase failed: ret == -EAGAIN
5159 * OR
5160 * stripe under reclaim: !caching && injournal
5161 *
5162 * fall back to handle_stripe_dirtying()
5163 */
5164 if (ret == -EAGAIN ||
5165 /* stripe under reclaim: !caching && injournal */
5166 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5167 s.injournal > 0)) {
5168 ret = handle_stripe_dirtying(conf, sh, &s,
5169 disks);
5170 if (ret == -EAGAIN)
5171 goto finish;
5172 }
5173 }
5174 }
5175
5176 /* maybe we need to check and possibly fix the parity for this stripe
5177 * Any reads will already have been scheduled, so we just see if enough
5178 * data is available. The parity check is held off while parity
5179 * dependent operations are in flight.
5180 */
5181 if (sh->check_state ||
5182 (s.syncing && s.locked == 0 &&
5183 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5184 !test_bit(STRIPE_INSYNC, &sh->state))) {
5185 if (conf->level == 6)
5186 handle_parity_checks6(conf, sh, &s, disks);
5187 else
5188 handle_parity_checks5(conf, sh, &s, disks);
5189 }
5190
5191 if ((s.replacing || s.syncing) && s.locked == 0
5192 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5193 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5194 /* Write out to replacement devices where possible */
5195 for (i = 0; i < conf->raid_disks; i++)
5196 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5197 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5198 set_bit(R5_WantReplace, &sh->dev[i].flags);
5199 set_bit(R5_LOCKED, &sh->dev[i].flags);
5200 s.locked++;
5201 }
5202 if (s.replacing)
5203 set_bit(STRIPE_INSYNC, &sh->state);
5204 set_bit(STRIPE_REPLACED, &sh->state);
5205 }
5206 if ((s.syncing || s.replacing) && s.locked == 0 &&
5207 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5208 test_bit(STRIPE_INSYNC, &sh->state)) {
5209 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5210 clear_bit(STRIPE_SYNCING, &sh->state);
5211 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5212 wake_up(&conf->wait_for_overlap);
5213 }
5214
5215 /* If the failed drives are just a ReadError, then we might need
5216 * to progress the repair/check process
5217 */
5218 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5219 for (i = 0; i < s.failed; i++) {
5220 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5221 if (test_bit(R5_ReadError, &dev->flags)
5222 && !test_bit(R5_LOCKED, &dev->flags)
5223 && test_bit(R5_UPTODATE, &dev->flags)
5224 ) {
5225 if (!test_bit(R5_ReWrite, &dev->flags)) {
5226 set_bit(R5_Wantwrite, &dev->flags);
5227 set_bit(R5_ReWrite, &dev->flags);
5228 } else
5229 /* let's read it back */
5230 set_bit(R5_Wantread, &dev->flags);
5231 set_bit(R5_LOCKED, &dev->flags);
5232 s.locked++;
5233 }
5234 }
5235
5236 /* Finish reconstruct operations initiated by the expansion process */
5237 if (sh->reconstruct_state == reconstruct_state_result) {
5238 struct stripe_head *sh_src
5239 = raid5_get_active_stripe(conf, NULL, sh->sector,
5240 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5241 R5_GAS_NOQUIESCE);
5242 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5243 /* sh cannot be written until sh_src has been read.
5244 * so arrange for sh to be delayed a little
5245 */
5246 set_bit(STRIPE_DELAYED, &sh->state);
5247 set_bit(STRIPE_HANDLE, &sh->state);
5248 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5249 &sh_src->state))
5250 atomic_inc(&conf->preread_active_stripes);
5251 raid5_release_stripe(sh_src);
5252 goto finish;
5253 }
5254 if (sh_src)
5255 raid5_release_stripe(sh_src);
5256
5257 sh->reconstruct_state = reconstruct_state_idle;
5258 clear_bit(STRIPE_EXPANDING, &sh->state);
5259 for (i = conf->raid_disks; i--; ) {
5260 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5261 set_bit(R5_LOCKED, &sh->dev[i].flags);
5262 s.locked++;
5263 }
5264 }
5265
5266 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5267 !sh->reconstruct_state) {
5268 /* Need to write out all blocks after computing parity */
5269 sh->disks = conf->raid_disks;
5270 stripe_set_idx(sh->sector, conf, 0, sh);
5271 schedule_reconstruction(sh, &s, 1, 1);
5272 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5273 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5274 atomic_dec(&conf->reshape_stripes);
5275 wake_up(&conf->wait_for_overlap);
5276 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5277 }
5278
5279 if (s.expanding && s.locked == 0 &&
5280 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5281 handle_stripe_expansion(conf, sh);
5282
5283finish:
5284 /* wait for this device to become unblocked */
5285 if (unlikely(s.blocked_rdev)) {
5286 if (conf->mddev->external)
5287 md_wait_for_blocked_rdev(s.blocked_rdev,
5288 conf->mddev);
5289 else
5290 /* Internal metadata will immediately
5291 * be written by raid5d, so we don't
5292 * need to wait here.
5293 */
5294 rdev_dec_pending(s.blocked_rdev,
5295 conf->mddev);
5296 }
5297
5298 if (s.handle_bad_blocks)
5299 for (i = disks; i--; ) {
5300 struct md_rdev *rdev;
5301 struct r5dev *dev = &sh->dev[i];
5302 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5303 /* We own a safe reference to the rdev */
5304 rdev = conf->disks[i].rdev;
5305 if (!rdev_set_badblocks(rdev, sh->sector,
5306 RAID5_STRIPE_SECTORS(conf), 0))
5307 md_error(conf->mddev, rdev);
5308 rdev_dec_pending(rdev, conf->mddev);
5309 }
5310 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5311 rdev = conf->disks[i].rdev;
5312 rdev_clear_badblocks(rdev, sh->sector,
5313 RAID5_STRIPE_SECTORS(conf), 0);
5314 rdev_dec_pending(rdev, conf->mddev);
5315 }
5316 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5317 rdev = conf->disks[i].replacement;
5318 if (!rdev)
5319 /* rdev have been moved down */
5320 rdev = conf->disks[i].rdev;
5321 rdev_clear_badblocks(rdev, sh->sector,
5322 RAID5_STRIPE_SECTORS(conf), 0);
5323 rdev_dec_pending(rdev, conf->mddev);
5324 }
5325 }
5326
5327 if (s.ops_request)
5328 raid_run_ops(sh, s.ops_request);
5329
5330 ops_run_io(sh, &s);
5331
5332 if (s.dec_preread_active) {
5333 /* We delay this until after ops_run_io so that if make_request
5334 * is waiting on a flush, it won't continue until the writes
5335 * have actually been submitted.
5336 */
5337 atomic_dec(&conf->preread_active_stripes);
5338 if (atomic_read(&conf->preread_active_stripes) <
5339 IO_THRESHOLD)
5340 md_wakeup_thread(conf->mddev->thread);
5341 }
5342
5343 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5344}
5345
5346static void raid5_activate_delayed(struct r5conf *conf)
5347 __must_hold(&conf->device_lock)
5348{
5349 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5350 while (!list_empty(&conf->delayed_list)) {
5351 struct list_head *l = conf->delayed_list.next;
5352 struct stripe_head *sh;
5353 sh = list_entry(l, struct stripe_head, lru);
5354 list_del_init(l);
5355 clear_bit(STRIPE_DELAYED, &sh->state);
5356 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5357 atomic_inc(&conf->preread_active_stripes);
5358 list_add_tail(&sh->lru, &conf->hold_list);
5359 raid5_wakeup_stripe_thread(sh);
5360 }
5361 }
5362}
5363
5364static void activate_bit_delay(struct r5conf *conf,
5365 struct list_head *temp_inactive_list)
5366 __must_hold(&conf->device_lock)
5367{
5368 struct list_head head;
5369 list_add(&head, &conf->bitmap_list);
5370 list_del_init(&conf->bitmap_list);
5371 while (!list_empty(&head)) {
5372 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5373 int hash;
5374 list_del_init(&sh->lru);
5375 atomic_inc(&sh->count);
5376 hash = sh->hash_lock_index;
5377 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5378 }
5379}
5380
5381static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5382{
5383 struct r5conf *conf = mddev->private;
5384 sector_t sector = bio->bi_iter.bi_sector;
5385 unsigned int chunk_sectors;
5386 unsigned int bio_sectors = bio_sectors(bio);
5387
5388 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5389 return chunk_sectors >=
5390 ((sector & (chunk_sectors - 1)) + bio_sectors);
5391}
5392
5393/*
5394 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5395 * later sampled by raid5d.
5396 */
5397static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5398{
5399 unsigned long flags;
5400
5401 spin_lock_irqsave(&conf->device_lock, flags);
5402
5403 bi->bi_next = conf->retry_read_aligned_list;
5404 conf->retry_read_aligned_list = bi;
5405
5406 spin_unlock_irqrestore(&conf->device_lock, flags);
5407 md_wakeup_thread(conf->mddev->thread);
5408}
5409
5410static struct bio *remove_bio_from_retry(struct r5conf *conf,
5411 unsigned int *offset)
5412{
5413 struct bio *bi;
5414
5415 bi = conf->retry_read_aligned;
5416 if (bi) {
5417 *offset = conf->retry_read_offset;
5418 conf->retry_read_aligned = NULL;
5419 return bi;
5420 }
5421 bi = conf->retry_read_aligned_list;
5422 if(bi) {
5423 conf->retry_read_aligned_list = bi->bi_next;
5424 bi->bi_next = NULL;
5425 *offset = 0;
5426 }
5427
5428 return bi;
5429}
5430
5431/*
5432 * The "raid5_align_endio" should check if the read succeeded and if it
5433 * did, call bio_endio on the original bio (having bio_put the new bio
5434 * first).
5435 * If the read failed..
5436 */
5437static void raid5_align_endio(struct bio *bi)
5438{
5439 struct bio *raid_bi = bi->bi_private;
5440 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5441 struct mddev *mddev = rdev->mddev;
5442 struct r5conf *conf = mddev->private;
5443 blk_status_t error = bi->bi_status;
5444
5445 bio_put(bi);
5446 raid_bi->bi_next = NULL;
5447 rdev_dec_pending(rdev, conf->mddev);
5448
5449 if (!error) {
5450 bio_endio(raid_bi);
5451 if (atomic_dec_and_test(&conf->active_aligned_reads))
5452 wake_up(&conf->wait_for_quiescent);
5453 return;
5454 }
5455
5456 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5457
5458 add_bio_to_retry(raid_bi, conf);
5459}
5460
5461static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5462{
5463 struct r5conf *conf = mddev->private;
5464 struct bio *align_bio;
5465 struct md_rdev *rdev;
5466 sector_t sector, end_sector, first_bad;
5467 int bad_sectors, dd_idx;
5468 bool did_inc;
5469
5470 if (!in_chunk_boundary(mddev, raid_bio)) {
5471 pr_debug("%s: non aligned\n", __func__);
5472 return 0;
5473 }
5474
5475 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5476 &dd_idx, NULL);
5477 end_sector = sector + bio_sectors(raid_bio);
5478
5479 if (r5c_big_stripe_cached(conf, sector))
5480 return 0;
5481
5482 rdev = conf->disks[dd_idx].replacement;
5483 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5484 rdev->recovery_offset < end_sector) {
5485 rdev = conf->disks[dd_idx].rdev;
5486 if (!rdev)
5487 return 0;
5488 if (test_bit(Faulty, &rdev->flags) ||
5489 !(test_bit(In_sync, &rdev->flags) ||
5490 rdev->recovery_offset >= end_sector))
5491 return 0;
5492 }
5493
5494 atomic_inc(&rdev->nr_pending);
5495
5496 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5497 &bad_sectors)) {
5498 rdev_dec_pending(rdev, mddev);
5499 return 0;
5500 }
5501
5502 md_account_bio(mddev, &raid_bio);
5503 raid_bio->bi_next = (void *)rdev;
5504
5505 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5506 &mddev->bio_set);
5507 align_bio->bi_end_io = raid5_align_endio;
5508 align_bio->bi_private = raid_bio;
5509 align_bio->bi_iter.bi_sector = sector;
5510
5511 /* No reshape active, so we can trust rdev->data_offset */
5512 align_bio->bi_iter.bi_sector += rdev->data_offset;
5513
5514 did_inc = false;
5515 if (conf->quiesce == 0) {
5516 atomic_inc(&conf->active_aligned_reads);
5517 did_inc = true;
5518 }
5519 /* need a memory barrier to detect the race with raid5_quiesce() */
5520 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5521 /* quiesce is in progress, so we need to undo io activation and wait
5522 * for it to finish
5523 */
5524 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5525 wake_up(&conf->wait_for_quiescent);
5526 spin_lock_irq(&conf->device_lock);
5527 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5528 conf->device_lock);
5529 atomic_inc(&conf->active_aligned_reads);
5530 spin_unlock_irq(&conf->device_lock);
5531 }
5532
5533 if (mddev->gendisk)
5534 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5535 raid_bio->bi_iter.bi_sector);
5536 submit_bio_noacct(align_bio);
5537 return 1;
5538}
5539
5540static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5541{
5542 struct bio *split;
5543 sector_t sector = raid_bio->bi_iter.bi_sector;
5544 unsigned chunk_sects = mddev->chunk_sectors;
5545 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5546
5547 if (sectors < bio_sectors(raid_bio)) {
5548 struct r5conf *conf = mddev->private;
5549 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5550 bio_chain(split, raid_bio);
5551 submit_bio_noacct(raid_bio);
5552 raid_bio = split;
5553 }
5554
5555 if (!raid5_read_one_chunk(mddev, raid_bio))
5556 return raid_bio;
5557
5558 return NULL;
5559}
5560
5561/* __get_priority_stripe - get the next stripe to process
5562 *
5563 * Full stripe writes are allowed to pass preread active stripes up until
5564 * the bypass_threshold is exceeded. In general the bypass_count
5565 * increments when the handle_list is handled before the hold_list; however, it
5566 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5567 * stripe with in flight i/o. The bypass_count will be reset when the
5568 * head of the hold_list has changed, i.e. the head was promoted to the
5569 * handle_list.
5570 */
5571static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5572 __must_hold(&conf->device_lock)
5573{
5574 struct stripe_head *sh, *tmp;
5575 struct list_head *handle_list = NULL;
5576 struct r5worker_group *wg;
5577 bool second_try = !r5c_is_writeback(conf->log) &&
5578 !r5l_log_disk_error(conf);
5579 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5580 r5l_log_disk_error(conf);
5581
5582again:
5583 wg = NULL;
5584 sh = NULL;
5585 if (conf->worker_cnt_per_group == 0) {
5586 handle_list = try_loprio ? &conf->loprio_list :
5587 &conf->handle_list;
5588 } else if (group != ANY_GROUP) {
5589 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5590 &conf->worker_groups[group].handle_list;
5591 wg = &conf->worker_groups[group];
5592 } else {
5593 int i;
5594 for (i = 0; i < conf->group_cnt; i++) {
5595 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5596 &conf->worker_groups[i].handle_list;
5597 wg = &conf->worker_groups[i];
5598 if (!list_empty(handle_list))
5599 break;
5600 }
5601 }
5602
5603 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5604 __func__,
5605 list_empty(handle_list) ? "empty" : "busy",
5606 list_empty(&conf->hold_list) ? "empty" : "busy",
5607 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5608
5609 if (!list_empty(handle_list)) {
5610 sh = list_entry(handle_list->next, typeof(*sh), lru);
5611
5612 if (list_empty(&conf->hold_list))
5613 conf->bypass_count = 0;
5614 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5615 if (conf->hold_list.next == conf->last_hold)
5616 conf->bypass_count++;
5617 else {
5618 conf->last_hold = conf->hold_list.next;
5619 conf->bypass_count -= conf->bypass_threshold;
5620 if (conf->bypass_count < 0)
5621 conf->bypass_count = 0;
5622 }
5623 }
5624 } else if (!list_empty(&conf->hold_list) &&
5625 ((conf->bypass_threshold &&
5626 conf->bypass_count > conf->bypass_threshold) ||
5627 atomic_read(&conf->pending_full_writes) == 0)) {
5628
5629 list_for_each_entry(tmp, &conf->hold_list, lru) {
5630 if (conf->worker_cnt_per_group == 0 ||
5631 group == ANY_GROUP ||
5632 !cpu_online(tmp->cpu) ||
5633 cpu_to_group(tmp->cpu) == group) {
5634 sh = tmp;
5635 break;
5636 }
5637 }
5638
5639 if (sh) {
5640 conf->bypass_count -= conf->bypass_threshold;
5641 if (conf->bypass_count < 0)
5642 conf->bypass_count = 0;
5643 }
5644 wg = NULL;
5645 }
5646
5647 if (!sh) {
5648 if (second_try)
5649 return NULL;
5650 second_try = true;
5651 try_loprio = !try_loprio;
5652 goto again;
5653 }
5654
5655 if (wg) {
5656 wg->stripes_cnt--;
5657 sh->group = NULL;
5658 }
5659 list_del_init(&sh->lru);
5660 BUG_ON(atomic_inc_return(&sh->count) != 1);
5661 return sh;
5662}
5663
5664struct raid5_plug_cb {
5665 struct blk_plug_cb cb;
5666 struct list_head list;
5667 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5668};
5669
5670static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5671{
5672 struct raid5_plug_cb *cb = container_of(
5673 blk_cb, struct raid5_plug_cb, cb);
5674 struct stripe_head *sh;
5675 struct mddev *mddev = cb->cb.data;
5676 struct r5conf *conf = mddev->private;
5677 int cnt = 0;
5678 int hash;
5679
5680 if (cb->list.next && !list_empty(&cb->list)) {
5681 spin_lock_irq(&conf->device_lock);
5682 while (!list_empty(&cb->list)) {
5683 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5684 list_del_init(&sh->lru);
5685 /*
5686 * avoid race release_stripe_plug() sees
5687 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5688 * is still in our list
5689 */
5690 smp_mb__before_atomic();
5691 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5692 /*
5693 * STRIPE_ON_RELEASE_LIST could be set here. In that
5694 * case, the count is always > 1 here
5695 */
5696 hash = sh->hash_lock_index;
5697 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5698 cnt++;
5699 }
5700 spin_unlock_irq(&conf->device_lock);
5701 }
5702 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5703 NR_STRIPE_HASH_LOCKS);
5704 if (mddev->queue)
5705 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5706 kfree(cb);
5707}
5708
5709static void release_stripe_plug(struct mddev *mddev,
5710 struct stripe_head *sh)
5711{
5712 struct blk_plug_cb *blk_cb = blk_check_plugged(
5713 raid5_unplug, mddev,
5714 sizeof(struct raid5_plug_cb));
5715 struct raid5_plug_cb *cb;
5716
5717 if (!blk_cb) {
5718 raid5_release_stripe(sh);
5719 return;
5720 }
5721
5722 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5723
5724 if (cb->list.next == NULL) {
5725 int i;
5726 INIT_LIST_HEAD(&cb->list);
5727 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5728 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5729 }
5730
5731 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5732 list_add_tail(&sh->lru, &cb->list);
5733 else
5734 raid5_release_stripe(sh);
5735}
5736
5737static void make_discard_request(struct mddev *mddev, struct bio *bi)
5738{
5739 struct r5conf *conf = mddev->private;
5740 sector_t logical_sector, last_sector;
5741 struct stripe_head *sh;
5742 int stripe_sectors;
5743
5744 /* We need to handle this when io_uring supports discard/trim */
5745 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5746 return;
5747
5748 if (mddev->reshape_position != MaxSector)
5749 /* Skip discard while reshape is happening */
5750 return;
5751
5752 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5753 last_sector = bio_end_sector(bi);
5754
5755 bi->bi_next = NULL;
5756
5757 stripe_sectors = conf->chunk_sectors *
5758 (conf->raid_disks - conf->max_degraded);
5759 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5760 stripe_sectors);
5761 sector_div(last_sector, stripe_sectors);
5762
5763 logical_sector *= conf->chunk_sectors;
5764 last_sector *= conf->chunk_sectors;
5765
5766 for (; logical_sector < last_sector;
5767 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5768 DEFINE_WAIT(w);
5769 int d;
5770 again:
5771 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5772 prepare_to_wait(&conf->wait_for_overlap, &w,
5773 TASK_UNINTERRUPTIBLE);
5774 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5775 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5776 raid5_release_stripe(sh);
5777 schedule();
5778 goto again;
5779 }
5780 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5781 spin_lock_irq(&sh->stripe_lock);
5782 for (d = 0; d < conf->raid_disks; d++) {
5783 if (d == sh->pd_idx || d == sh->qd_idx)
5784 continue;
5785 if (sh->dev[d].towrite || sh->dev[d].toread) {
5786 set_bit(R5_Overlap, &sh->dev[d].flags);
5787 spin_unlock_irq(&sh->stripe_lock);
5788 raid5_release_stripe(sh);
5789 schedule();
5790 goto again;
5791 }
5792 }
5793 set_bit(STRIPE_DISCARD, &sh->state);
5794 finish_wait(&conf->wait_for_overlap, &w);
5795 sh->overwrite_disks = 0;
5796 for (d = 0; d < conf->raid_disks; d++) {
5797 if (d == sh->pd_idx || d == sh->qd_idx)
5798 continue;
5799 sh->dev[d].towrite = bi;
5800 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5801 bio_inc_remaining(bi);
5802 md_write_inc(mddev, bi);
5803 sh->overwrite_disks++;
5804 }
5805 spin_unlock_irq(&sh->stripe_lock);
5806 if (conf->mddev->bitmap) {
5807 for (d = 0;
5808 d < conf->raid_disks - conf->max_degraded;
5809 d++)
5810 md_bitmap_startwrite(mddev->bitmap,
5811 sh->sector,
5812 RAID5_STRIPE_SECTORS(conf),
5813 0);
5814 sh->bm_seq = conf->seq_flush + 1;
5815 set_bit(STRIPE_BIT_DELAY, &sh->state);
5816 }
5817
5818 set_bit(STRIPE_HANDLE, &sh->state);
5819 clear_bit(STRIPE_DELAYED, &sh->state);
5820 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5821 atomic_inc(&conf->preread_active_stripes);
5822 release_stripe_plug(mddev, sh);
5823 }
5824
5825 bio_endio(bi);
5826}
5827
5828static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5829 sector_t reshape_sector)
5830{
5831 return mddev->reshape_backwards ? sector < reshape_sector :
5832 sector >= reshape_sector;
5833}
5834
5835static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5836 sector_t max, sector_t reshape_sector)
5837{
5838 return mddev->reshape_backwards ? max < reshape_sector :
5839 min >= reshape_sector;
5840}
5841
5842static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5843 struct stripe_head *sh)
5844{
5845 sector_t max_sector = 0, min_sector = MaxSector;
5846 bool ret = false;
5847 int dd_idx;
5848
5849 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5850 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5851 continue;
5852
5853 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5854 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5855 }
5856
5857 spin_lock_irq(&conf->device_lock);
5858
5859 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5860 conf->reshape_progress))
5861 /* mismatch, need to try again */
5862 ret = true;
5863
5864 spin_unlock_irq(&conf->device_lock);
5865
5866 return ret;
5867}
5868
5869static int add_all_stripe_bios(struct r5conf *conf,
5870 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5871 struct bio *bi, int forwrite, int previous)
5872{
5873 int dd_idx;
5874 int ret = 1;
5875
5876 spin_lock_irq(&sh->stripe_lock);
5877
5878 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5879 struct r5dev *dev = &sh->dev[dd_idx];
5880
5881 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5882 continue;
5883
5884 if (dev->sector < ctx->first_sector ||
5885 dev->sector >= ctx->last_sector)
5886 continue;
5887
5888 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5889 set_bit(R5_Overlap, &dev->flags);
5890 ret = 0;
5891 continue;
5892 }
5893 }
5894
5895 if (!ret)
5896 goto out;
5897
5898 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5899 struct r5dev *dev = &sh->dev[dd_idx];
5900
5901 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5902 continue;
5903
5904 if (dev->sector < ctx->first_sector ||
5905 dev->sector >= ctx->last_sector)
5906 continue;
5907
5908 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5909 clear_bit((dev->sector - ctx->first_sector) >>
5910 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5911 }
5912
5913out:
5914 spin_unlock_irq(&sh->stripe_lock);
5915 return ret;
5916}
5917
5918static enum stripe_result make_stripe_request(struct mddev *mddev,
5919 struct r5conf *conf, struct stripe_request_ctx *ctx,
5920 sector_t logical_sector, struct bio *bi)
5921{
5922 const int rw = bio_data_dir(bi);
5923 enum stripe_result ret;
5924 struct stripe_head *sh;
5925 sector_t new_sector;
5926 int previous = 0, flags = 0;
5927 int seq, dd_idx;
5928
5929 seq = read_seqcount_begin(&conf->gen_lock);
5930
5931 if (unlikely(conf->reshape_progress != MaxSector)) {
5932 /*
5933 * Spinlock is needed as reshape_progress may be
5934 * 64bit on a 32bit platform, and so it might be
5935 * possible to see a half-updated value
5936 * Of course reshape_progress could change after
5937 * the lock is dropped, so once we get a reference
5938 * to the stripe that we think it is, we will have
5939 * to check again.
5940 */
5941 spin_lock_irq(&conf->device_lock);
5942 if (ahead_of_reshape(mddev, logical_sector,
5943 conf->reshape_progress)) {
5944 previous = 1;
5945 } else {
5946 if (ahead_of_reshape(mddev, logical_sector,
5947 conf->reshape_safe)) {
5948 spin_unlock_irq(&conf->device_lock);
5949 return STRIPE_SCHEDULE_AND_RETRY;
5950 }
5951 }
5952 spin_unlock_irq(&conf->device_lock);
5953 }
5954
5955 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 &dd_idx, NULL);
5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 new_sector, logical_sector);
5959
5960 if (previous)
5961 flags |= R5_GAS_PREVIOUS;
5962 if (bi->bi_opf & REQ_RAHEAD)
5963 flags |= R5_GAS_NOBLOCK;
5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 if (unlikely(!sh)) {
5966 /* cannot get stripe, just give-up */
5967 bi->bi_status = BLK_STS_IOERR;
5968 return STRIPE_FAIL;
5969 }
5970
5971 if (unlikely(previous) &&
5972 stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 /*
5974 * Expansion moved on while waiting for a stripe.
5975 * Expansion could still move past after this
5976 * test, but as we are holding a reference to
5977 * 'sh', we know that if that happens,
5978 * STRIPE_EXPANDING will get set and the expansion
5979 * won't proceed until we finish with the stripe.
5980 */
5981 ret = STRIPE_SCHEDULE_AND_RETRY;
5982 goto out_release;
5983 }
5984
5985 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 /* Might have got the wrong stripe_head by accident */
5987 ret = STRIPE_RETRY;
5988 goto out_release;
5989 }
5990
5991 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5992 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5993 /*
5994 * Stripe is busy expanding or add failed due to
5995 * overlap. Flush everything and wait a while.
5996 */
5997 md_wakeup_thread(mddev->thread);
5998 ret = STRIPE_SCHEDULE_AND_RETRY;
5999 goto out_release;
6000 }
6001
6002 if (stripe_can_batch(sh)) {
6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 if (ctx->batch_last)
6005 raid5_release_stripe(ctx->batch_last);
6006 atomic_inc(&sh->count);
6007 ctx->batch_last = sh;
6008 }
6009
6010 if (ctx->do_flush) {
6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 /* we only need flush for one stripe */
6013 ctx->do_flush = false;
6014 }
6015
6016 set_bit(STRIPE_HANDLE, &sh->state);
6017 clear_bit(STRIPE_DELAYED, &sh->state);
6018 if ((!sh->batch_head || sh == sh->batch_head) &&
6019 (bi->bi_opf & REQ_SYNC) &&
6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 atomic_inc(&conf->preread_active_stripes);
6022
6023 release_stripe_plug(mddev, sh);
6024 return STRIPE_SUCCESS;
6025
6026out_release:
6027 raid5_release_stripe(sh);
6028 return ret;
6029}
6030
6031/*
6032 * If the bio covers multiple data disks, find sector within the bio that has
6033 * the lowest chunk offset in the first chunk.
6034 */
6035static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6036 struct bio *bi)
6037{
6038 int sectors_per_chunk = conf->chunk_sectors;
6039 int raid_disks = conf->raid_disks;
6040 int dd_idx;
6041 struct stripe_head sh;
6042 unsigned int chunk_offset;
6043 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6044 sector_t sector;
6045
6046 /* We pass in fake stripe_head to get back parity disk numbers */
6047 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6048 chunk_offset = sector_div(sector, sectors_per_chunk);
6049 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6050 return r_sector;
6051 /*
6052 * Bio crosses to the next data disk. Check whether it's in the same
6053 * chunk.
6054 */
6055 dd_idx++;
6056 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6057 dd_idx++;
6058 if (dd_idx >= raid_disks)
6059 return r_sector;
6060 return r_sector + sectors_per_chunk - chunk_offset;
6061}
6062
6063static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6064{
6065 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6066 struct r5conf *conf = mddev->private;
6067 sector_t logical_sector;
6068 struct stripe_request_ctx ctx = {};
6069 const int rw = bio_data_dir(bi);
6070 enum stripe_result res;
6071 int s, stripe_cnt;
6072
6073 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6074 int ret = log_handle_flush_request(conf, bi);
6075
6076 if (ret == 0)
6077 return true;
6078 if (ret == -ENODEV) {
6079 if (md_flush_request(mddev, bi))
6080 return true;
6081 }
6082 /* ret == -EAGAIN, fallback */
6083 /*
6084 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6085 * we need to flush journal device
6086 */
6087 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6088 }
6089
6090 if (!md_write_start(mddev, bi))
6091 return false;
6092 /*
6093 * If array is degraded, better not do chunk aligned read because
6094 * later we might have to read it again in order to reconstruct
6095 * data on failed drives.
6096 */
6097 if (rw == READ && mddev->degraded == 0 &&
6098 mddev->reshape_position == MaxSector) {
6099 bi = chunk_aligned_read(mddev, bi);
6100 if (!bi)
6101 return true;
6102 }
6103
6104 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6105 make_discard_request(mddev, bi);
6106 md_write_end(mddev);
6107 return true;
6108 }
6109
6110 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6111 ctx.first_sector = logical_sector;
6112 ctx.last_sector = bio_end_sector(bi);
6113 bi->bi_next = NULL;
6114
6115 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6116 RAID5_STRIPE_SECTORS(conf));
6117 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6118
6119 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6120 bi->bi_iter.bi_sector, ctx.last_sector);
6121
6122 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6123 if ((bi->bi_opf & REQ_NOWAIT) &&
6124 (conf->reshape_progress != MaxSector) &&
6125 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6126 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6127 bio_wouldblock_error(bi);
6128 if (rw == WRITE)
6129 md_write_end(mddev);
6130 return true;
6131 }
6132 md_account_bio(mddev, &bi);
6133
6134 /*
6135 * Lets start with the stripe with the lowest chunk offset in the first
6136 * chunk. That has the best chances of creating IOs adjacent to
6137 * previous IOs in case of sequential IO and thus creates the most
6138 * sequential IO pattern. We don't bother with the optimization when
6139 * reshaping as the performance benefit is not worth the complexity.
6140 */
6141 if (likely(conf->reshape_progress == MaxSector))
6142 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6143 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6144
6145 add_wait_queue(&conf->wait_for_overlap, &wait);
6146 while (1) {
6147 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6148 bi);
6149 if (res == STRIPE_FAIL)
6150 break;
6151
6152 if (res == STRIPE_RETRY)
6153 continue;
6154
6155 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6156 /*
6157 * Must release the reference to batch_last before
6158 * scheduling and waiting for work to be done,
6159 * otherwise the batch_last stripe head could prevent
6160 * raid5_activate_delayed() from making progress
6161 * and thus deadlocking.
6162 */
6163 if (ctx.batch_last) {
6164 raid5_release_stripe(ctx.batch_last);
6165 ctx.batch_last = NULL;
6166 }
6167
6168 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6169 MAX_SCHEDULE_TIMEOUT);
6170 continue;
6171 }
6172
6173 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6174 if (s == stripe_cnt)
6175 break;
6176
6177 logical_sector = ctx.first_sector +
6178 (s << RAID5_STRIPE_SHIFT(conf));
6179 }
6180 remove_wait_queue(&conf->wait_for_overlap, &wait);
6181
6182 if (ctx.batch_last)
6183 raid5_release_stripe(ctx.batch_last);
6184
6185 if (rw == WRITE)
6186 md_write_end(mddev);
6187 bio_endio(bi);
6188 return true;
6189}
6190
6191static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6192
6193static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6194{
6195 /* reshaping is quite different to recovery/resync so it is
6196 * handled quite separately ... here.
6197 *
6198 * On each call to sync_request, we gather one chunk worth of
6199 * destination stripes and flag them as expanding.
6200 * Then we find all the source stripes and request reads.
6201 * As the reads complete, handle_stripe will copy the data
6202 * into the destination stripe and release that stripe.
6203 */
6204 struct r5conf *conf = mddev->private;
6205 struct stripe_head *sh;
6206 struct md_rdev *rdev;
6207 sector_t first_sector, last_sector;
6208 int raid_disks = conf->previous_raid_disks;
6209 int data_disks = raid_disks - conf->max_degraded;
6210 int new_data_disks = conf->raid_disks - conf->max_degraded;
6211 int i;
6212 int dd_idx;
6213 sector_t writepos, readpos, safepos;
6214 sector_t stripe_addr;
6215 int reshape_sectors;
6216 struct list_head stripes;
6217 sector_t retn;
6218
6219 if (sector_nr == 0) {
6220 /* If restarting in the middle, skip the initial sectors */
6221 if (mddev->reshape_backwards &&
6222 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6223 sector_nr = raid5_size(mddev, 0, 0)
6224 - conf->reshape_progress;
6225 } else if (mddev->reshape_backwards &&
6226 conf->reshape_progress == MaxSector) {
6227 /* shouldn't happen, but just in case, finish up.*/
6228 sector_nr = MaxSector;
6229 } else if (!mddev->reshape_backwards &&
6230 conf->reshape_progress > 0)
6231 sector_nr = conf->reshape_progress;
6232 sector_div(sector_nr, new_data_disks);
6233 if (sector_nr) {
6234 mddev->curr_resync_completed = sector_nr;
6235 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6236 *skipped = 1;
6237 retn = sector_nr;
6238 goto finish;
6239 }
6240 }
6241
6242 /* We need to process a full chunk at a time.
6243 * If old and new chunk sizes differ, we need to process the
6244 * largest of these
6245 */
6246
6247 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6248
6249 /* We update the metadata at least every 10 seconds, or when
6250 * the data about to be copied would over-write the source of
6251 * the data at the front of the range. i.e. one new_stripe
6252 * along from reshape_progress new_maps to after where
6253 * reshape_safe old_maps to
6254 */
6255 writepos = conf->reshape_progress;
6256 sector_div(writepos, new_data_disks);
6257 readpos = conf->reshape_progress;
6258 sector_div(readpos, data_disks);
6259 safepos = conf->reshape_safe;
6260 sector_div(safepos, data_disks);
6261 if (mddev->reshape_backwards) {
6262 BUG_ON(writepos < reshape_sectors);
6263 writepos -= reshape_sectors;
6264 readpos += reshape_sectors;
6265 safepos += reshape_sectors;
6266 } else {
6267 writepos += reshape_sectors;
6268 /* readpos and safepos are worst-case calculations.
6269 * A negative number is overly pessimistic, and causes
6270 * obvious problems for unsigned storage. So clip to 0.
6271 */
6272 readpos -= min_t(sector_t, reshape_sectors, readpos);
6273 safepos -= min_t(sector_t, reshape_sectors, safepos);
6274 }
6275
6276 /* Having calculated the 'writepos' possibly use it
6277 * to set 'stripe_addr' which is where we will write to.
6278 */
6279 if (mddev->reshape_backwards) {
6280 BUG_ON(conf->reshape_progress == 0);
6281 stripe_addr = writepos;
6282 BUG_ON((mddev->dev_sectors &
6283 ~((sector_t)reshape_sectors - 1))
6284 - reshape_sectors - stripe_addr
6285 != sector_nr);
6286 } else {
6287 BUG_ON(writepos != sector_nr + reshape_sectors);
6288 stripe_addr = sector_nr;
6289 }
6290
6291 /* 'writepos' is the most advanced device address we might write.
6292 * 'readpos' is the least advanced device address we might read.
6293 * 'safepos' is the least address recorded in the metadata as having
6294 * been reshaped.
6295 * If there is a min_offset_diff, these are adjusted either by
6296 * increasing the safepos/readpos if diff is negative, or
6297 * increasing writepos if diff is positive.
6298 * If 'readpos' is then behind 'writepos', there is no way that we can
6299 * ensure safety in the face of a crash - that must be done by userspace
6300 * making a backup of the data. So in that case there is no particular
6301 * rush to update metadata.
6302 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6303 * update the metadata to advance 'safepos' to match 'readpos' so that
6304 * we can be safe in the event of a crash.
6305 * So we insist on updating metadata if safepos is behind writepos and
6306 * readpos is beyond writepos.
6307 * In any case, update the metadata every 10 seconds.
6308 * Maybe that number should be configurable, but I'm not sure it is
6309 * worth it.... maybe it could be a multiple of safemode_delay???
6310 */
6311 if (conf->min_offset_diff < 0) {
6312 safepos += -conf->min_offset_diff;
6313 readpos += -conf->min_offset_diff;
6314 } else
6315 writepos += conf->min_offset_diff;
6316
6317 if ((mddev->reshape_backwards
6318 ? (safepos > writepos && readpos < writepos)
6319 : (safepos < writepos && readpos > writepos)) ||
6320 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6321 /* Cannot proceed until we've updated the superblock... */
6322 wait_event(conf->wait_for_overlap,
6323 atomic_read(&conf->reshape_stripes)==0
6324 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6325 if (atomic_read(&conf->reshape_stripes) != 0)
6326 return 0;
6327 mddev->reshape_position = conf->reshape_progress;
6328 mddev->curr_resync_completed = sector_nr;
6329 if (!mddev->reshape_backwards)
6330 /* Can update recovery_offset */
6331 rdev_for_each(rdev, mddev)
6332 if (rdev->raid_disk >= 0 &&
6333 !test_bit(Journal, &rdev->flags) &&
6334 !test_bit(In_sync, &rdev->flags) &&
6335 rdev->recovery_offset < sector_nr)
6336 rdev->recovery_offset = sector_nr;
6337
6338 conf->reshape_checkpoint = jiffies;
6339 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6340 md_wakeup_thread(mddev->thread);
6341 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6342 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6343 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6344 return 0;
6345 spin_lock_irq(&conf->device_lock);
6346 conf->reshape_safe = mddev->reshape_position;
6347 spin_unlock_irq(&conf->device_lock);
6348 wake_up(&conf->wait_for_overlap);
6349 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6350 }
6351
6352 INIT_LIST_HEAD(&stripes);
6353 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6354 int j;
6355 int skipped_disk = 0;
6356 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6357 R5_GAS_NOQUIESCE);
6358 set_bit(STRIPE_EXPANDING, &sh->state);
6359 atomic_inc(&conf->reshape_stripes);
6360 /* If any of this stripe is beyond the end of the old
6361 * array, then we need to zero those blocks
6362 */
6363 for (j=sh->disks; j--;) {
6364 sector_t s;
6365 if (j == sh->pd_idx)
6366 continue;
6367 if (conf->level == 6 &&
6368 j == sh->qd_idx)
6369 continue;
6370 s = raid5_compute_blocknr(sh, j, 0);
6371 if (s < raid5_size(mddev, 0, 0)) {
6372 skipped_disk = 1;
6373 continue;
6374 }
6375 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6376 set_bit(R5_Expanded, &sh->dev[j].flags);
6377 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6378 }
6379 if (!skipped_disk) {
6380 set_bit(STRIPE_EXPAND_READY, &sh->state);
6381 set_bit(STRIPE_HANDLE, &sh->state);
6382 }
6383 list_add(&sh->lru, &stripes);
6384 }
6385 spin_lock_irq(&conf->device_lock);
6386 if (mddev->reshape_backwards)
6387 conf->reshape_progress -= reshape_sectors * new_data_disks;
6388 else
6389 conf->reshape_progress += reshape_sectors * new_data_disks;
6390 spin_unlock_irq(&conf->device_lock);
6391 /* Ok, those stripe are ready. We can start scheduling
6392 * reads on the source stripes.
6393 * The source stripes are determined by mapping the first and last
6394 * block on the destination stripes.
6395 */
6396 first_sector =
6397 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6398 1, &dd_idx, NULL);
6399 last_sector =
6400 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6401 * new_data_disks - 1),
6402 1, &dd_idx, NULL);
6403 if (last_sector >= mddev->dev_sectors)
6404 last_sector = mddev->dev_sectors - 1;
6405 while (first_sector <= last_sector) {
6406 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6407 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6408 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6409 set_bit(STRIPE_HANDLE, &sh->state);
6410 raid5_release_stripe(sh);
6411 first_sector += RAID5_STRIPE_SECTORS(conf);
6412 }
6413 /* Now that the sources are clearly marked, we can release
6414 * the destination stripes
6415 */
6416 while (!list_empty(&stripes)) {
6417 sh = list_entry(stripes.next, struct stripe_head, lru);
6418 list_del_init(&sh->lru);
6419 raid5_release_stripe(sh);
6420 }
6421 /* If this takes us to the resync_max point where we have to pause,
6422 * then we need to write out the superblock.
6423 */
6424 sector_nr += reshape_sectors;
6425 retn = reshape_sectors;
6426finish:
6427 if (mddev->curr_resync_completed > mddev->resync_max ||
6428 (sector_nr - mddev->curr_resync_completed) * 2
6429 >= mddev->resync_max - mddev->curr_resync_completed) {
6430 /* Cannot proceed until we've updated the superblock... */
6431 wait_event(conf->wait_for_overlap,
6432 atomic_read(&conf->reshape_stripes) == 0
6433 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6434 if (atomic_read(&conf->reshape_stripes) != 0)
6435 goto ret;
6436 mddev->reshape_position = conf->reshape_progress;
6437 mddev->curr_resync_completed = sector_nr;
6438 if (!mddev->reshape_backwards)
6439 /* Can update recovery_offset */
6440 rdev_for_each(rdev, mddev)
6441 if (rdev->raid_disk >= 0 &&
6442 !test_bit(Journal, &rdev->flags) &&
6443 !test_bit(In_sync, &rdev->flags) &&
6444 rdev->recovery_offset < sector_nr)
6445 rdev->recovery_offset = sector_nr;
6446 conf->reshape_checkpoint = jiffies;
6447 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6448 md_wakeup_thread(mddev->thread);
6449 wait_event(mddev->sb_wait,
6450 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6451 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6452 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6453 goto ret;
6454 spin_lock_irq(&conf->device_lock);
6455 conf->reshape_safe = mddev->reshape_position;
6456 spin_unlock_irq(&conf->device_lock);
6457 wake_up(&conf->wait_for_overlap);
6458 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6459 }
6460ret:
6461 return retn;
6462}
6463
6464static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6465 int *skipped)
6466{
6467 struct r5conf *conf = mddev->private;
6468 struct stripe_head *sh;
6469 sector_t max_sector = mddev->dev_sectors;
6470 sector_t sync_blocks;
6471 int still_degraded = 0;
6472 int i;
6473
6474 if (sector_nr >= max_sector) {
6475 /* just being told to finish up .. nothing much to do */
6476
6477 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6478 end_reshape(conf);
6479 return 0;
6480 }
6481
6482 if (mddev->curr_resync < max_sector) /* aborted */
6483 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6484 &sync_blocks, 1);
6485 else /* completed sync */
6486 conf->fullsync = 0;
6487 md_bitmap_close_sync(mddev->bitmap);
6488
6489 return 0;
6490 }
6491
6492 /* Allow raid5_quiesce to complete */
6493 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6494
6495 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6496 return reshape_request(mddev, sector_nr, skipped);
6497
6498 /* No need to check resync_max as we never do more than one
6499 * stripe, and as resync_max will always be on a chunk boundary,
6500 * if the check in md_do_sync didn't fire, there is no chance
6501 * of overstepping resync_max here
6502 */
6503
6504 /* if there is too many failed drives and we are trying
6505 * to resync, then assert that we are finished, because there is
6506 * nothing we can do.
6507 */
6508 if (mddev->degraded >= conf->max_degraded &&
6509 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6510 sector_t rv = mddev->dev_sectors - sector_nr;
6511 *skipped = 1;
6512 return rv;
6513 }
6514 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6515 !conf->fullsync &&
6516 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6517 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6518 /* we can skip this block, and probably more */
6519 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6520 *skipped = 1;
6521 /* keep things rounded to whole stripes */
6522 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6523 }
6524
6525 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6526
6527 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6528 R5_GAS_NOBLOCK);
6529 if (sh == NULL) {
6530 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6531 /* make sure we don't swamp the stripe cache if someone else
6532 * is trying to get access
6533 */
6534 schedule_timeout_uninterruptible(1);
6535 }
6536 /* Need to check if array will still be degraded after recovery/resync
6537 * Note in case of > 1 drive failures it's possible we're rebuilding
6538 * one drive while leaving another faulty drive in array.
6539 */
6540 for (i = 0; i < conf->raid_disks; i++) {
6541 struct md_rdev *rdev = conf->disks[i].rdev;
6542
6543 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6544 still_degraded = 1;
6545 }
6546
6547 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6548
6549 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6550 set_bit(STRIPE_HANDLE, &sh->state);
6551
6552 raid5_release_stripe(sh);
6553
6554 return RAID5_STRIPE_SECTORS(conf);
6555}
6556
6557static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6558 unsigned int offset)
6559{
6560 /* We may not be able to submit a whole bio at once as there
6561 * may not be enough stripe_heads available.
6562 * We cannot pre-allocate enough stripe_heads as we may need
6563 * more than exist in the cache (if we allow ever large chunks).
6564 * So we do one stripe head at a time and record in
6565 * ->bi_hw_segments how many have been done.
6566 *
6567 * We *know* that this entire raid_bio is in one chunk, so
6568 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6569 */
6570 struct stripe_head *sh;
6571 int dd_idx;
6572 sector_t sector, logical_sector, last_sector;
6573 int scnt = 0;
6574 int handled = 0;
6575
6576 logical_sector = raid_bio->bi_iter.bi_sector &
6577 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6578 sector = raid5_compute_sector(conf, logical_sector,
6579 0, &dd_idx, NULL);
6580 last_sector = bio_end_sector(raid_bio);
6581
6582 for (; logical_sector < last_sector;
6583 logical_sector += RAID5_STRIPE_SECTORS(conf),
6584 sector += RAID5_STRIPE_SECTORS(conf),
6585 scnt++) {
6586
6587 if (scnt < offset)
6588 /* already done this stripe */
6589 continue;
6590
6591 sh = raid5_get_active_stripe(conf, NULL, sector,
6592 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6593 if (!sh) {
6594 /* failed to get a stripe - must wait */
6595 conf->retry_read_aligned = raid_bio;
6596 conf->retry_read_offset = scnt;
6597 return handled;
6598 }
6599
6600 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6601 raid5_release_stripe(sh);
6602 conf->retry_read_aligned = raid_bio;
6603 conf->retry_read_offset = scnt;
6604 return handled;
6605 }
6606
6607 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6608 handle_stripe(sh);
6609 raid5_release_stripe(sh);
6610 handled++;
6611 }
6612
6613 bio_endio(raid_bio);
6614
6615 if (atomic_dec_and_test(&conf->active_aligned_reads))
6616 wake_up(&conf->wait_for_quiescent);
6617 return handled;
6618}
6619
6620static int handle_active_stripes(struct r5conf *conf, int group,
6621 struct r5worker *worker,
6622 struct list_head *temp_inactive_list)
6623 __must_hold(&conf->device_lock)
6624{
6625 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6626 int i, batch_size = 0, hash;
6627 bool release_inactive = false;
6628
6629 while (batch_size < MAX_STRIPE_BATCH &&
6630 (sh = __get_priority_stripe(conf, group)) != NULL)
6631 batch[batch_size++] = sh;
6632
6633 if (batch_size == 0) {
6634 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6635 if (!list_empty(temp_inactive_list + i))
6636 break;
6637 if (i == NR_STRIPE_HASH_LOCKS) {
6638 spin_unlock_irq(&conf->device_lock);
6639 log_flush_stripe_to_raid(conf);
6640 spin_lock_irq(&conf->device_lock);
6641 return batch_size;
6642 }
6643 release_inactive = true;
6644 }
6645 spin_unlock_irq(&conf->device_lock);
6646
6647 release_inactive_stripe_list(conf, temp_inactive_list,
6648 NR_STRIPE_HASH_LOCKS);
6649
6650 r5l_flush_stripe_to_raid(conf->log);
6651 if (release_inactive) {
6652 spin_lock_irq(&conf->device_lock);
6653 return 0;
6654 }
6655
6656 for (i = 0; i < batch_size; i++)
6657 handle_stripe(batch[i]);
6658 log_write_stripe_run(conf);
6659
6660 cond_resched();
6661
6662 spin_lock_irq(&conf->device_lock);
6663 for (i = 0; i < batch_size; i++) {
6664 hash = batch[i]->hash_lock_index;
6665 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6666 }
6667 return batch_size;
6668}
6669
6670static void raid5_do_work(struct work_struct *work)
6671{
6672 struct r5worker *worker = container_of(work, struct r5worker, work);
6673 struct r5worker_group *group = worker->group;
6674 struct r5conf *conf = group->conf;
6675 struct mddev *mddev = conf->mddev;
6676 int group_id = group - conf->worker_groups;
6677 int handled;
6678 struct blk_plug plug;
6679
6680 pr_debug("+++ raid5worker active\n");
6681
6682 blk_start_plug(&plug);
6683 handled = 0;
6684 spin_lock_irq(&conf->device_lock);
6685 while (1) {
6686 int batch_size, released;
6687
6688 released = release_stripe_list(conf, worker->temp_inactive_list);
6689
6690 batch_size = handle_active_stripes(conf, group_id, worker,
6691 worker->temp_inactive_list);
6692 worker->working = false;
6693 if (!batch_size && !released)
6694 break;
6695 handled += batch_size;
6696 wait_event_lock_irq(mddev->sb_wait,
6697 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6698 conf->device_lock);
6699 }
6700 pr_debug("%d stripes handled\n", handled);
6701
6702 spin_unlock_irq(&conf->device_lock);
6703
6704 flush_deferred_bios(conf);
6705
6706 r5l_flush_stripe_to_raid(conf->log);
6707
6708 async_tx_issue_pending_all();
6709 blk_finish_plug(&plug);
6710
6711 pr_debug("--- raid5worker inactive\n");
6712}
6713
6714/*
6715 * This is our raid5 kernel thread.
6716 *
6717 * We scan the hash table for stripes which can be handled now.
6718 * During the scan, completed stripes are saved for us by the interrupt
6719 * handler, so that they will not have to wait for our next wakeup.
6720 */
6721static void raid5d(struct md_thread *thread)
6722{
6723 struct mddev *mddev = thread->mddev;
6724 struct r5conf *conf = mddev->private;
6725 int handled;
6726 struct blk_plug plug;
6727
6728 pr_debug("+++ raid5d active\n");
6729
6730 md_check_recovery(mddev);
6731
6732 blk_start_plug(&plug);
6733 handled = 0;
6734 spin_lock_irq(&conf->device_lock);
6735 while (1) {
6736 struct bio *bio;
6737 int batch_size, released;
6738 unsigned int offset;
6739
6740 released = release_stripe_list(conf, conf->temp_inactive_list);
6741 if (released)
6742 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6743
6744 if (
6745 !list_empty(&conf->bitmap_list)) {
6746 /* Now is a good time to flush some bitmap updates */
6747 conf->seq_flush++;
6748 spin_unlock_irq(&conf->device_lock);
6749 md_bitmap_unplug(mddev->bitmap);
6750 spin_lock_irq(&conf->device_lock);
6751 conf->seq_write = conf->seq_flush;
6752 activate_bit_delay(conf, conf->temp_inactive_list);
6753 }
6754 raid5_activate_delayed(conf);
6755
6756 while ((bio = remove_bio_from_retry(conf, &offset))) {
6757 int ok;
6758 spin_unlock_irq(&conf->device_lock);
6759 ok = retry_aligned_read(conf, bio, offset);
6760 spin_lock_irq(&conf->device_lock);
6761 if (!ok)
6762 break;
6763 handled++;
6764 }
6765
6766 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6767 conf->temp_inactive_list);
6768 if (!batch_size && !released)
6769 break;
6770 handled += batch_size;
6771
6772 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6773 spin_unlock_irq(&conf->device_lock);
6774 md_check_recovery(mddev);
6775 spin_lock_irq(&conf->device_lock);
6776 }
6777 }
6778 pr_debug("%d stripes handled\n", handled);
6779
6780 spin_unlock_irq(&conf->device_lock);
6781 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6782 mutex_trylock(&conf->cache_size_mutex)) {
6783 grow_one_stripe(conf, __GFP_NOWARN);
6784 /* Set flag even if allocation failed. This helps
6785 * slow down allocation requests when mem is short
6786 */
6787 set_bit(R5_DID_ALLOC, &conf->cache_state);
6788 mutex_unlock(&conf->cache_size_mutex);
6789 }
6790
6791 flush_deferred_bios(conf);
6792
6793 r5l_flush_stripe_to_raid(conf->log);
6794
6795 async_tx_issue_pending_all();
6796 blk_finish_plug(&plug);
6797
6798 pr_debug("--- raid5d inactive\n");
6799}
6800
6801static ssize_t
6802raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6803{
6804 struct r5conf *conf;
6805 int ret = 0;
6806 spin_lock(&mddev->lock);
6807 conf = mddev->private;
6808 if (conf)
6809 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6810 spin_unlock(&mddev->lock);
6811 return ret;
6812}
6813
6814int
6815raid5_set_cache_size(struct mddev *mddev, int size)
6816{
6817 int result = 0;
6818 struct r5conf *conf = mddev->private;
6819
6820 if (size <= 16 || size > 32768)
6821 return -EINVAL;
6822
6823 conf->min_nr_stripes = size;
6824 mutex_lock(&conf->cache_size_mutex);
6825 while (size < conf->max_nr_stripes &&
6826 drop_one_stripe(conf))
6827 ;
6828 mutex_unlock(&conf->cache_size_mutex);
6829
6830 md_allow_write(mddev);
6831
6832 mutex_lock(&conf->cache_size_mutex);
6833 while (size > conf->max_nr_stripes)
6834 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6835 conf->min_nr_stripes = conf->max_nr_stripes;
6836 result = -ENOMEM;
6837 break;
6838 }
6839 mutex_unlock(&conf->cache_size_mutex);
6840
6841 return result;
6842}
6843EXPORT_SYMBOL(raid5_set_cache_size);
6844
6845static ssize_t
6846raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6847{
6848 struct r5conf *conf;
6849 unsigned long new;
6850 int err;
6851
6852 if (len >= PAGE_SIZE)
6853 return -EINVAL;
6854 if (kstrtoul(page, 10, &new))
6855 return -EINVAL;
6856 err = mddev_lock(mddev);
6857 if (err)
6858 return err;
6859 conf = mddev->private;
6860 if (!conf)
6861 err = -ENODEV;
6862 else
6863 err = raid5_set_cache_size(mddev, new);
6864 mddev_unlock(mddev);
6865
6866 return err ?: len;
6867}
6868
6869static struct md_sysfs_entry
6870raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6871 raid5_show_stripe_cache_size,
6872 raid5_store_stripe_cache_size);
6873
6874static ssize_t
6875raid5_show_rmw_level(struct mddev *mddev, char *page)
6876{
6877 struct r5conf *conf = mddev->private;
6878 if (conf)
6879 return sprintf(page, "%d\n", conf->rmw_level);
6880 else
6881 return 0;
6882}
6883
6884static ssize_t
6885raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6886{
6887 struct r5conf *conf = mddev->private;
6888 unsigned long new;
6889
6890 if (!conf)
6891 return -ENODEV;
6892
6893 if (len >= PAGE_SIZE)
6894 return -EINVAL;
6895
6896 if (kstrtoul(page, 10, &new))
6897 return -EINVAL;
6898
6899 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6900 return -EINVAL;
6901
6902 if (new != PARITY_DISABLE_RMW &&
6903 new != PARITY_ENABLE_RMW &&
6904 new != PARITY_PREFER_RMW)
6905 return -EINVAL;
6906
6907 conf->rmw_level = new;
6908 return len;
6909}
6910
6911static struct md_sysfs_entry
6912raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6913 raid5_show_rmw_level,
6914 raid5_store_rmw_level);
6915
6916static ssize_t
6917raid5_show_stripe_size(struct mddev *mddev, char *page)
6918{
6919 struct r5conf *conf;
6920 int ret = 0;
6921
6922 spin_lock(&mddev->lock);
6923 conf = mddev->private;
6924 if (conf)
6925 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6926 spin_unlock(&mddev->lock);
6927 return ret;
6928}
6929
6930#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6931static ssize_t
6932raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6933{
6934 struct r5conf *conf;
6935 unsigned long new;
6936 int err;
6937 int size;
6938
6939 if (len >= PAGE_SIZE)
6940 return -EINVAL;
6941 if (kstrtoul(page, 10, &new))
6942 return -EINVAL;
6943
6944 /*
6945 * The value should not be bigger than PAGE_SIZE. It requires to
6946 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6947 * of two.
6948 */
6949 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6950 new > PAGE_SIZE || new == 0 ||
6951 new != roundup_pow_of_two(new))
6952 return -EINVAL;
6953
6954 err = mddev_suspend_and_lock(mddev);
6955 if (err)
6956 return err;
6957
6958 conf = mddev->private;
6959 if (!conf) {
6960 err = -ENODEV;
6961 goto out_unlock;
6962 }
6963
6964 if (new == conf->stripe_size)
6965 goto out_unlock;
6966
6967 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6968 conf->stripe_size, new);
6969
6970 if (mddev->sync_thread ||
6971 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6972 mddev->reshape_position != MaxSector ||
6973 mddev->sysfs_active) {
6974 err = -EBUSY;
6975 goto out_unlock;
6976 }
6977
6978 mutex_lock(&conf->cache_size_mutex);
6979 size = conf->max_nr_stripes;
6980
6981 shrink_stripes(conf);
6982
6983 conf->stripe_size = new;
6984 conf->stripe_shift = ilog2(new) - 9;
6985 conf->stripe_sectors = new >> 9;
6986 if (grow_stripes(conf, size)) {
6987 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6988 mdname(mddev));
6989 err = -ENOMEM;
6990 }
6991 mutex_unlock(&conf->cache_size_mutex);
6992
6993out_unlock:
6994 mddev_unlock_and_resume(mddev);
6995 return err ?: len;
6996}
6997
6998static struct md_sysfs_entry
6999raid5_stripe_size = __ATTR(stripe_size, 0644,
7000 raid5_show_stripe_size,
7001 raid5_store_stripe_size);
7002#else
7003static struct md_sysfs_entry
7004raid5_stripe_size = __ATTR(stripe_size, 0444,
7005 raid5_show_stripe_size,
7006 NULL);
7007#endif
7008
7009static ssize_t
7010raid5_show_preread_threshold(struct mddev *mddev, char *page)
7011{
7012 struct r5conf *conf;
7013 int ret = 0;
7014 spin_lock(&mddev->lock);
7015 conf = mddev->private;
7016 if (conf)
7017 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7018 spin_unlock(&mddev->lock);
7019 return ret;
7020}
7021
7022static ssize_t
7023raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7024{
7025 struct r5conf *conf;
7026 unsigned long new;
7027 int err;
7028
7029 if (len >= PAGE_SIZE)
7030 return -EINVAL;
7031 if (kstrtoul(page, 10, &new))
7032 return -EINVAL;
7033
7034 err = mddev_lock(mddev);
7035 if (err)
7036 return err;
7037 conf = mddev->private;
7038 if (!conf)
7039 err = -ENODEV;
7040 else if (new > conf->min_nr_stripes)
7041 err = -EINVAL;
7042 else
7043 conf->bypass_threshold = new;
7044 mddev_unlock(mddev);
7045 return err ?: len;
7046}
7047
7048static struct md_sysfs_entry
7049raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7050 S_IRUGO | S_IWUSR,
7051 raid5_show_preread_threshold,
7052 raid5_store_preread_threshold);
7053
7054static ssize_t
7055raid5_show_skip_copy(struct mddev *mddev, char *page)
7056{
7057 struct r5conf *conf;
7058 int ret = 0;
7059 spin_lock(&mddev->lock);
7060 conf = mddev->private;
7061 if (conf)
7062 ret = sprintf(page, "%d\n", conf->skip_copy);
7063 spin_unlock(&mddev->lock);
7064 return ret;
7065}
7066
7067static ssize_t
7068raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7069{
7070 struct r5conf *conf;
7071 unsigned long new;
7072 int err;
7073
7074 if (len >= PAGE_SIZE)
7075 return -EINVAL;
7076 if (kstrtoul(page, 10, &new))
7077 return -EINVAL;
7078 new = !!new;
7079
7080 err = mddev_suspend_and_lock(mddev);
7081 if (err)
7082 return err;
7083 conf = mddev->private;
7084 if (!conf)
7085 err = -ENODEV;
7086 else if (new != conf->skip_copy) {
7087 struct request_queue *q = mddev->queue;
7088
7089 conf->skip_copy = new;
7090 if (new)
7091 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7092 else
7093 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7094 }
7095 mddev_unlock_and_resume(mddev);
7096 return err ?: len;
7097}
7098
7099static struct md_sysfs_entry
7100raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7101 raid5_show_skip_copy,
7102 raid5_store_skip_copy);
7103
7104static ssize_t
7105stripe_cache_active_show(struct mddev *mddev, char *page)
7106{
7107 struct r5conf *conf = mddev->private;
7108 if (conf)
7109 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7110 else
7111 return 0;
7112}
7113
7114static struct md_sysfs_entry
7115raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7116
7117static ssize_t
7118raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7119{
7120 struct r5conf *conf;
7121 int ret = 0;
7122 spin_lock(&mddev->lock);
7123 conf = mddev->private;
7124 if (conf)
7125 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7126 spin_unlock(&mddev->lock);
7127 return ret;
7128}
7129
7130static int alloc_thread_groups(struct r5conf *conf, int cnt,
7131 int *group_cnt,
7132 struct r5worker_group **worker_groups);
7133static ssize_t
7134raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7135{
7136 struct r5conf *conf;
7137 unsigned int new;
7138 int err;
7139 struct r5worker_group *new_groups, *old_groups;
7140 int group_cnt;
7141
7142 if (len >= PAGE_SIZE)
7143 return -EINVAL;
7144 if (kstrtouint(page, 10, &new))
7145 return -EINVAL;
7146 /* 8192 should be big enough */
7147 if (new > 8192)
7148 return -EINVAL;
7149
7150 err = mddev_suspend_and_lock(mddev);
7151 if (err)
7152 return err;
7153 conf = mddev->private;
7154 if (!conf)
7155 err = -ENODEV;
7156 else if (new != conf->worker_cnt_per_group) {
7157 old_groups = conf->worker_groups;
7158 if (old_groups)
7159 flush_workqueue(raid5_wq);
7160
7161 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7162 if (!err) {
7163 spin_lock_irq(&conf->device_lock);
7164 conf->group_cnt = group_cnt;
7165 conf->worker_cnt_per_group = new;
7166 conf->worker_groups = new_groups;
7167 spin_unlock_irq(&conf->device_lock);
7168
7169 if (old_groups)
7170 kfree(old_groups[0].workers);
7171 kfree(old_groups);
7172 }
7173 }
7174 mddev_unlock_and_resume(mddev);
7175
7176 return err ?: len;
7177}
7178
7179static struct md_sysfs_entry
7180raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7181 raid5_show_group_thread_cnt,
7182 raid5_store_group_thread_cnt);
7183
7184static struct attribute *raid5_attrs[] = {
7185 &raid5_stripecache_size.attr,
7186 &raid5_stripecache_active.attr,
7187 &raid5_preread_bypass_threshold.attr,
7188 &raid5_group_thread_cnt.attr,
7189 &raid5_skip_copy.attr,
7190 &raid5_rmw_level.attr,
7191 &raid5_stripe_size.attr,
7192 &r5c_journal_mode.attr,
7193 &ppl_write_hint.attr,
7194 NULL,
7195};
7196static const struct attribute_group raid5_attrs_group = {
7197 .name = NULL,
7198 .attrs = raid5_attrs,
7199};
7200
7201static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7202 struct r5worker_group **worker_groups)
7203{
7204 int i, j, k;
7205 ssize_t size;
7206 struct r5worker *workers;
7207
7208 if (cnt == 0) {
7209 *group_cnt = 0;
7210 *worker_groups = NULL;
7211 return 0;
7212 }
7213 *group_cnt = num_possible_nodes();
7214 size = sizeof(struct r5worker) * cnt;
7215 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7216 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7217 GFP_NOIO);
7218 if (!*worker_groups || !workers) {
7219 kfree(workers);
7220 kfree(*worker_groups);
7221 return -ENOMEM;
7222 }
7223
7224 for (i = 0; i < *group_cnt; i++) {
7225 struct r5worker_group *group;
7226
7227 group = &(*worker_groups)[i];
7228 INIT_LIST_HEAD(&group->handle_list);
7229 INIT_LIST_HEAD(&group->loprio_list);
7230 group->conf = conf;
7231 group->workers = workers + i * cnt;
7232
7233 for (j = 0; j < cnt; j++) {
7234 struct r5worker *worker = group->workers + j;
7235 worker->group = group;
7236 INIT_WORK(&worker->work, raid5_do_work);
7237
7238 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7239 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7240 }
7241 }
7242
7243 return 0;
7244}
7245
7246static void free_thread_groups(struct r5conf *conf)
7247{
7248 if (conf->worker_groups)
7249 kfree(conf->worker_groups[0].workers);
7250 kfree(conf->worker_groups);
7251 conf->worker_groups = NULL;
7252}
7253
7254static sector_t
7255raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7256{
7257 struct r5conf *conf = mddev->private;
7258
7259 if (!sectors)
7260 sectors = mddev->dev_sectors;
7261 if (!raid_disks)
7262 /* size is defined by the smallest of previous and new size */
7263 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7264
7265 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7266 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7267 return sectors * (raid_disks - conf->max_degraded);
7268}
7269
7270static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7271{
7272 safe_put_page(percpu->spare_page);
7273 percpu->spare_page = NULL;
7274 kvfree(percpu->scribble);
7275 percpu->scribble = NULL;
7276}
7277
7278static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7279{
7280 if (conf->level == 6 && !percpu->spare_page) {
7281 percpu->spare_page = alloc_page(GFP_KERNEL);
7282 if (!percpu->spare_page)
7283 return -ENOMEM;
7284 }
7285
7286 if (scribble_alloc(percpu,
7287 max(conf->raid_disks,
7288 conf->previous_raid_disks),
7289 max(conf->chunk_sectors,
7290 conf->prev_chunk_sectors)
7291 / RAID5_STRIPE_SECTORS(conf))) {
7292 free_scratch_buffer(conf, percpu);
7293 return -ENOMEM;
7294 }
7295
7296 local_lock_init(&percpu->lock);
7297 return 0;
7298}
7299
7300static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7301{
7302 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7303
7304 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7305 return 0;
7306}
7307
7308static void raid5_free_percpu(struct r5conf *conf)
7309{
7310 if (!conf->percpu)
7311 return;
7312
7313 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7314 free_percpu(conf->percpu);
7315}
7316
7317static void free_conf(struct r5conf *conf)
7318{
7319 int i;
7320
7321 log_exit(conf);
7322
7323 shrinker_free(conf->shrinker);
7324 free_thread_groups(conf);
7325 shrink_stripes(conf);
7326 raid5_free_percpu(conf);
7327 for (i = 0; i < conf->pool_size; i++)
7328 if (conf->disks[i].extra_page)
7329 put_page(conf->disks[i].extra_page);
7330 kfree(conf->disks);
7331 bioset_exit(&conf->bio_split);
7332 kfree(conf->stripe_hashtbl);
7333 kfree(conf->pending_data);
7334 kfree(conf);
7335}
7336
7337static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7338{
7339 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7340 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7341
7342 if (alloc_scratch_buffer(conf, percpu)) {
7343 pr_warn("%s: failed memory allocation for cpu%u\n",
7344 __func__, cpu);
7345 return -ENOMEM;
7346 }
7347 return 0;
7348}
7349
7350static int raid5_alloc_percpu(struct r5conf *conf)
7351{
7352 int err = 0;
7353
7354 conf->percpu = alloc_percpu(struct raid5_percpu);
7355 if (!conf->percpu)
7356 return -ENOMEM;
7357
7358 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7359 if (!err) {
7360 conf->scribble_disks = max(conf->raid_disks,
7361 conf->previous_raid_disks);
7362 conf->scribble_sectors = max(conf->chunk_sectors,
7363 conf->prev_chunk_sectors);
7364 }
7365 return err;
7366}
7367
7368static unsigned long raid5_cache_scan(struct shrinker *shrink,
7369 struct shrink_control *sc)
7370{
7371 struct r5conf *conf = shrink->private_data;
7372 unsigned long ret = SHRINK_STOP;
7373
7374 if (mutex_trylock(&conf->cache_size_mutex)) {
7375 ret= 0;
7376 while (ret < sc->nr_to_scan &&
7377 conf->max_nr_stripes > conf->min_nr_stripes) {
7378 if (drop_one_stripe(conf) == 0) {
7379 ret = SHRINK_STOP;
7380 break;
7381 }
7382 ret++;
7383 }
7384 mutex_unlock(&conf->cache_size_mutex);
7385 }
7386 return ret;
7387}
7388
7389static unsigned long raid5_cache_count(struct shrinker *shrink,
7390 struct shrink_control *sc)
7391{
7392 struct r5conf *conf = shrink->private_data;
7393
7394 if (conf->max_nr_stripes < conf->min_nr_stripes)
7395 /* unlikely, but not impossible */
7396 return 0;
7397 return conf->max_nr_stripes - conf->min_nr_stripes;
7398}
7399
7400static struct r5conf *setup_conf(struct mddev *mddev)
7401{
7402 struct r5conf *conf;
7403 int raid_disk, memory, max_disks;
7404 struct md_rdev *rdev;
7405 struct disk_info *disk;
7406 char pers_name[6];
7407 int i;
7408 int group_cnt;
7409 struct r5worker_group *new_group;
7410 int ret = -ENOMEM;
7411
7412 if (mddev->new_level != 5
7413 && mddev->new_level != 4
7414 && mddev->new_level != 6) {
7415 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7416 mdname(mddev), mddev->new_level);
7417 return ERR_PTR(-EIO);
7418 }
7419 if ((mddev->new_level == 5
7420 && !algorithm_valid_raid5(mddev->new_layout)) ||
7421 (mddev->new_level == 6
7422 && !algorithm_valid_raid6(mddev->new_layout))) {
7423 pr_warn("md/raid:%s: layout %d not supported\n",
7424 mdname(mddev), mddev->new_layout);
7425 return ERR_PTR(-EIO);
7426 }
7427 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7428 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7429 mdname(mddev), mddev->raid_disks);
7430 return ERR_PTR(-EINVAL);
7431 }
7432
7433 if (!mddev->new_chunk_sectors ||
7434 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7435 !is_power_of_2(mddev->new_chunk_sectors)) {
7436 pr_warn("md/raid:%s: invalid chunk size %d\n",
7437 mdname(mddev), mddev->new_chunk_sectors << 9);
7438 return ERR_PTR(-EINVAL);
7439 }
7440
7441 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7442 if (conf == NULL)
7443 goto abort;
7444
7445#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7446 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7447 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7448 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7449#endif
7450 INIT_LIST_HEAD(&conf->free_list);
7451 INIT_LIST_HEAD(&conf->pending_list);
7452 conf->pending_data = kcalloc(PENDING_IO_MAX,
7453 sizeof(struct r5pending_data),
7454 GFP_KERNEL);
7455 if (!conf->pending_data)
7456 goto abort;
7457 for (i = 0; i < PENDING_IO_MAX; i++)
7458 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7459 /* Don't enable multi-threading by default*/
7460 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7461 conf->group_cnt = group_cnt;
7462 conf->worker_cnt_per_group = 0;
7463 conf->worker_groups = new_group;
7464 } else
7465 goto abort;
7466 spin_lock_init(&conf->device_lock);
7467 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7468 mutex_init(&conf->cache_size_mutex);
7469
7470 init_waitqueue_head(&conf->wait_for_quiescent);
7471 init_waitqueue_head(&conf->wait_for_stripe);
7472 init_waitqueue_head(&conf->wait_for_overlap);
7473 INIT_LIST_HEAD(&conf->handle_list);
7474 INIT_LIST_HEAD(&conf->loprio_list);
7475 INIT_LIST_HEAD(&conf->hold_list);
7476 INIT_LIST_HEAD(&conf->delayed_list);
7477 INIT_LIST_HEAD(&conf->bitmap_list);
7478 init_llist_head(&conf->released_stripes);
7479 atomic_set(&conf->active_stripes, 0);
7480 atomic_set(&conf->preread_active_stripes, 0);
7481 atomic_set(&conf->active_aligned_reads, 0);
7482 spin_lock_init(&conf->pending_bios_lock);
7483 conf->batch_bio_dispatch = true;
7484 rdev_for_each(rdev, mddev) {
7485 if (test_bit(Journal, &rdev->flags))
7486 continue;
7487 if (bdev_nonrot(rdev->bdev)) {
7488 conf->batch_bio_dispatch = false;
7489 break;
7490 }
7491 }
7492
7493 conf->bypass_threshold = BYPASS_THRESHOLD;
7494 conf->recovery_disabled = mddev->recovery_disabled - 1;
7495
7496 conf->raid_disks = mddev->raid_disks;
7497 if (mddev->reshape_position == MaxSector)
7498 conf->previous_raid_disks = mddev->raid_disks;
7499 else
7500 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7501 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7502
7503 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7504 GFP_KERNEL);
7505
7506 if (!conf->disks)
7507 goto abort;
7508
7509 for (i = 0; i < max_disks; i++) {
7510 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7511 if (!conf->disks[i].extra_page)
7512 goto abort;
7513 }
7514
7515 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7516 if (ret)
7517 goto abort;
7518 conf->mddev = mddev;
7519
7520 ret = -ENOMEM;
7521 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7522 if (!conf->stripe_hashtbl)
7523 goto abort;
7524
7525 /* We init hash_locks[0] separately to that it can be used
7526 * as the reference lock in the spin_lock_nest_lock() call
7527 * in lock_all_device_hash_locks_irq in order to convince
7528 * lockdep that we know what we are doing.
7529 */
7530 spin_lock_init(conf->hash_locks);
7531 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7532 spin_lock_init(conf->hash_locks + i);
7533
7534 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7535 INIT_LIST_HEAD(conf->inactive_list + i);
7536
7537 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7538 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7539
7540 atomic_set(&conf->r5c_cached_full_stripes, 0);
7541 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7542 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7543 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7544 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7545 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7546
7547 conf->level = mddev->new_level;
7548 conf->chunk_sectors = mddev->new_chunk_sectors;
7549 ret = raid5_alloc_percpu(conf);
7550 if (ret)
7551 goto abort;
7552
7553 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7554
7555 ret = -EIO;
7556 rdev_for_each(rdev, mddev) {
7557 raid_disk = rdev->raid_disk;
7558 if (raid_disk >= max_disks
7559 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7560 continue;
7561 disk = conf->disks + raid_disk;
7562
7563 if (test_bit(Replacement, &rdev->flags)) {
7564 if (disk->replacement)
7565 goto abort;
7566 RCU_INIT_POINTER(disk->replacement, rdev);
7567 } else {
7568 if (disk->rdev)
7569 goto abort;
7570 RCU_INIT_POINTER(disk->rdev, rdev);
7571 }
7572
7573 if (test_bit(In_sync, &rdev->flags)) {
7574 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7575 mdname(mddev), rdev->bdev, raid_disk);
7576 } else if (rdev->saved_raid_disk != raid_disk)
7577 /* Cannot rely on bitmap to complete recovery */
7578 conf->fullsync = 1;
7579 }
7580
7581 conf->level = mddev->new_level;
7582 if (conf->level == 6) {
7583 conf->max_degraded = 2;
7584 if (raid6_call.xor_syndrome)
7585 conf->rmw_level = PARITY_ENABLE_RMW;
7586 else
7587 conf->rmw_level = PARITY_DISABLE_RMW;
7588 } else {
7589 conf->max_degraded = 1;
7590 conf->rmw_level = PARITY_ENABLE_RMW;
7591 }
7592 conf->algorithm = mddev->new_layout;
7593 conf->reshape_progress = mddev->reshape_position;
7594 if (conf->reshape_progress != MaxSector) {
7595 conf->prev_chunk_sectors = mddev->chunk_sectors;
7596 conf->prev_algo = mddev->layout;
7597 } else {
7598 conf->prev_chunk_sectors = conf->chunk_sectors;
7599 conf->prev_algo = conf->algorithm;
7600 }
7601
7602 conf->min_nr_stripes = NR_STRIPES;
7603 if (mddev->reshape_position != MaxSector) {
7604 int stripes = max_t(int,
7605 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7606 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7607 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7608 if (conf->min_nr_stripes != NR_STRIPES)
7609 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7610 mdname(mddev), conf->min_nr_stripes);
7611 }
7612 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7613 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7614 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7615 if (grow_stripes(conf, conf->min_nr_stripes)) {
7616 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7617 mdname(mddev), memory);
7618 ret = -ENOMEM;
7619 goto abort;
7620 } else
7621 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7622 /*
7623 * Losing a stripe head costs more than the time to refill it,
7624 * it reduces the queue depth and so can hurt throughput.
7625 * So set it rather large, scaled by number of devices.
7626 */
7627 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7628 if (!conf->shrinker) {
7629 ret = -ENOMEM;
7630 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7631 mdname(mddev));
7632 goto abort;
7633 }
7634
7635 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7636 conf->shrinker->scan_objects = raid5_cache_scan;
7637 conf->shrinker->count_objects = raid5_cache_count;
7638 conf->shrinker->batch = 128;
7639 conf->shrinker->private_data = conf;
7640
7641 shrinker_register(conf->shrinker);
7642
7643 sprintf(pers_name, "raid%d", mddev->new_level);
7644 rcu_assign_pointer(conf->thread,
7645 md_register_thread(raid5d, mddev, pers_name));
7646 if (!conf->thread) {
7647 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7648 mdname(mddev));
7649 ret = -ENOMEM;
7650 goto abort;
7651 }
7652
7653 return conf;
7654
7655 abort:
7656 if (conf)
7657 free_conf(conf);
7658 return ERR_PTR(ret);
7659}
7660
7661static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7662{
7663 switch (algo) {
7664 case ALGORITHM_PARITY_0:
7665 if (raid_disk < max_degraded)
7666 return 1;
7667 break;
7668 case ALGORITHM_PARITY_N:
7669 if (raid_disk >= raid_disks - max_degraded)
7670 return 1;
7671 break;
7672 case ALGORITHM_PARITY_0_6:
7673 if (raid_disk == 0 ||
7674 raid_disk == raid_disks - 1)
7675 return 1;
7676 break;
7677 case ALGORITHM_LEFT_ASYMMETRIC_6:
7678 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7679 case ALGORITHM_LEFT_SYMMETRIC_6:
7680 case ALGORITHM_RIGHT_SYMMETRIC_6:
7681 if (raid_disk == raid_disks - 1)
7682 return 1;
7683 }
7684 return 0;
7685}
7686
7687static void raid5_set_io_opt(struct r5conf *conf)
7688{
7689 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7690 (conf->raid_disks - conf->max_degraded));
7691}
7692
7693static int raid5_run(struct mddev *mddev)
7694{
7695 struct r5conf *conf;
7696 int dirty_parity_disks = 0;
7697 struct md_rdev *rdev;
7698 struct md_rdev *journal_dev = NULL;
7699 sector_t reshape_offset = 0;
7700 int i;
7701 long long min_offset_diff = 0;
7702 int first = 1;
7703
7704 if (mddev->recovery_cp != MaxSector)
7705 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7706 mdname(mddev));
7707
7708 rdev_for_each(rdev, mddev) {
7709 long long diff;
7710
7711 if (test_bit(Journal, &rdev->flags)) {
7712 journal_dev = rdev;
7713 continue;
7714 }
7715 if (rdev->raid_disk < 0)
7716 continue;
7717 diff = (rdev->new_data_offset - rdev->data_offset);
7718 if (first) {
7719 min_offset_diff = diff;
7720 first = 0;
7721 } else if (mddev->reshape_backwards &&
7722 diff < min_offset_diff)
7723 min_offset_diff = diff;
7724 else if (!mddev->reshape_backwards &&
7725 diff > min_offset_diff)
7726 min_offset_diff = diff;
7727 }
7728
7729 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7730 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7731 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7732 mdname(mddev));
7733 return -EINVAL;
7734 }
7735
7736 if (mddev->reshape_position != MaxSector) {
7737 /* Check that we can continue the reshape.
7738 * Difficulties arise if the stripe we would write to
7739 * next is at or after the stripe we would read from next.
7740 * For a reshape that changes the number of devices, this
7741 * is only possible for a very short time, and mdadm makes
7742 * sure that time appears to have past before assembling
7743 * the array. So we fail if that time hasn't passed.
7744 * For a reshape that keeps the number of devices the same
7745 * mdadm must be monitoring the reshape can keeping the
7746 * critical areas read-only and backed up. It will start
7747 * the array in read-only mode, so we check for that.
7748 */
7749 sector_t here_new, here_old;
7750 int old_disks;
7751 int max_degraded = (mddev->level == 6 ? 2 : 1);
7752 int chunk_sectors;
7753 int new_data_disks;
7754
7755 if (journal_dev) {
7756 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7757 mdname(mddev));
7758 return -EINVAL;
7759 }
7760
7761 if (mddev->new_level != mddev->level) {
7762 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7763 mdname(mddev));
7764 return -EINVAL;
7765 }
7766 old_disks = mddev->raid_disks - mddev->delta_disks;
7767 /* reshape_position must be on a new-stripe boundary, and one
7768 * further up in new geometry must map after here in old
7769 * geometry.
7770 * If the chunk sizes are different, then as we perform reshape
7771 * in units of the largest of the two, reshape_position needs
7772 * be a multiple of the largest chunk size times new data disks.
7773 */
7774 here_new = mddev->reshape_position;
7775 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7776 new_data_disks = mddev->raid_disks - max_degraded;
7777 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7778 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7779 mdname(mddev));
7780 return -EINVAL;
7781 }
7782 reshape_offset = here_new * chunk_sectors;
7783 /* here_new is the stripe we will write to */
7784 here_old = mddev->reshape_position;
7785 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7786 /* here_old is the first stripe that we might need to read
7787 * from */
7788 if (mddev->delta_disks == 0) {
7789 /* We cannot be sure it is safe to start an in-place
7790 * reshape. It is only safe if user-space is monitoring
7791 * and taking constant backups.
7792 * mdadm always starts a situation like this in
7793 * readonly mode so it can take control before
7794 * allowing any writes. So just check for that.
7795 */
7796 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7797 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7798 /* not really in-place - so OK */;
7799 else if (mddev->ro == 0) {
7800 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7801 mdname(mddev));
7802 return -EINVAL;
7803 }
7804 } else if (mddev->reshape_backwards
7805 ? (here_new * chunk_sectors + min_offset_diff <=
7806 here_old * chunk_sectors)
7807 : (here_new * chunk_sectors >=
7808 here_old * chunk_sectors + (-min_offset_diff))) {
7809 /* Reading from the same stripe as writing to - bad */
7810 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7811 mdname(mddev));
7812 return -EINVAL;
7813 }
7814 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7815 /* OK, we should be able to continue; */
7816 } else {
7817 BUG_ON(mddev->level != mddev->new_level);
7818 BUG_ON(mddev->layout != mddev->new_layout);
7819 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7820 BUG_ON(mddev->delta_disks != 0);
7821 }
7822
7823 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7824 test_bit(MD_HAS_PPL, &mddev->flags)) {
7825 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7826 mdname(mddev));
7827 clear_bit(MD_HAS_PPL, &mddev->flags);
7828 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7829 }
7830
7831 if (mddev->private == NULL)
7832 conf = setup_conf(mddev);
7833 else
7834 conf = mddev->private;
7835
7836 if (IS_ERR(conf))
7837 return PTR_ERR(conf);
7838
7839 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7840 if (!journal_dev) {
7841 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7842 mdname(mddev));
7843 mddev->ro = 1;
7844 set_disk_ro(mddev->gendisk, 1);
7845 } else if (mddev->recovery_cp == MaxSector)
7846 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7847 }
7848
7849 conf->min_offset_diff = min_offset_diff;
7850 rcu_assign_pointer(mddev->thread, conf->thread);
7851 rcu_assign_pointer(conf->thread, NULL);
7852 mddev->private = conf;
7853
7854 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7855 i++) {
7856 rdev = conf->disks[i].rdev;
7857 if (!rdev)
7858 continue;
7859 if (conf->disks[i].replacement &&
7860 conf->reshape_progress != MaxSector) {
7861 /* replacements and reshape simply do not mix. */
7862 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7863 goto abort;
7864 }
7865 if (test_bit(In_sync, &rdev->flags))
7866 continue;
7867 /* This disc is not fully in-sync. However if it
7868 * just stored parity (beyond the recovery_offset),
7869 * when we don't need to be concerned about the
7870 * array being dirty.
7871 * When reshape goes 'backwards', we never have
7872 * partially completed devices, so we only need
7873 * to worry about reshape going forwards.
7874 */
7875 /* Hack because v0.91 doesn't store recovery_offset properly. */
7876 if (mddev->major_version == 0 &&
7877 mddev->minor_version > 90)
7878 rdev->recovery_offset = reshape_offset;
7879
7880 if (rdev->recovery_offset < reshape_offset) {
7881 /* We need to check old and new layout */
7882 if (!only_parity(rdev->raid_disk,
7883 conf->algorithm,
7884 conf->raid_disks,
7885 conf->max_degraded))
7886 continue;
7887 }
7888 if (!only_parity(rdev->raid_disk,
7889 conf->prev_algo,
7890 conf->previous_raid_disks,
7891 conf->max_degraded))
7892 continue;
7893 dirty_parity_disks++;
7894 }
7895
7896 /*
7897 * 0 for a fully functional array, 1 or 2 for a degraded array.
7898 */
7899 mddev->degraded = raid5_calc_degraded(conf);
7900
7901 if (has_failed(conf)) {
7902 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7903 mdname(mddev), mddev->degraded, conf->raid_disks);
7904 goto abort;
7905 }
7906
7907 /* device size must be a multiple of chunk size */
7908 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7909 mddev->resync_max_sectors = mddev->dev_sectors;
7910
7911 if (mddev->degraded > dirty_parity_disks &&
7912 mddev->recovery_cp != MaxSector) {
7913 if (test_bit(MD_HAS_PPL, &mddev->flags))
7914 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7915 mdname(mddev));
7916 else if (mddev->ok_start_degraded)
7917 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7918 mdname(mddev));
7919 else {
7920 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7921 mdname(mddev));
7922 goto abort;
7923 }
7924 }
7925
7926 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7927 mdname(mddev), conf->level,
7928 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7929 mddev->new_layout);
7930
7931 print_raid5_conf(conf);
7932
7933 if (conf->reshape_progress != MaxSector) {
7934 conf->reshape_safe = conf->reshape_progress;
7935 atomic_set(&conf->reshape_stripes, 0);
7936 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7938 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7939 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7940 }
7941
7942 /* Ok, everything is just fine now */
7943 if (mddev->to_remove == &raid5_attrs_group)
7944 mddev->to_remove = NULL;
7945 else if (mddev->kobj.sd &&
7946 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7947 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7948 mdname(mddev));
7949 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7950
7951 if (mddev->queue) {
7952 int chunk_size;
7953 /* read-ahead size must cover two whole stripes, which
7954 * is 2 * (datadisks) * chunksize where 'n' is the
7955 * number of raid devices
7956 */
7957 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7958 int stripe = data_disks *
7959 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7960
7961 chunk_size = mddev->chunk_sectors << 9;
7962 blk_queue_io_min(mddev->queue, chunk_size);
7963 raid5_set_io_opt(conf);
7964 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7965 /*
7966 * We can only discard a whole stripe. It doesn't make sense to
7967 * discard data disk but write parity disk
7968 */
7969 stripe = stripe * PAGE_SIZE;
7970 stripe = roundup_pow_of_two(stripe);
7971 mddev->queue->limits.discard_granularity = stripe;
7972
7973 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7974
7975 rdev_for_each(rdev, mddev) {
7976 disk_stack_limits(mddev->gendisk, rdev->bdev,
7977 rdev->data_offset << 9);
7978 disk_stack_limits(mddev->gendisk, rdev->bdev,
7979 rdev->new_data_offset << 9);
7980 }
7981
7982 /*
7983 * zeroing is required, otherwise data
7984 * could be lost. Consider a scenario: discard a stripe
7985 * (the stripe could be inconsistent if
7986 * discard_zeroes_data is 0); write one disk of the
7987 * stripe (the stripe could be inconsistent again
7988 * depending on which disks are used to calculate
7989 * parity); the disk is broken; The stripe data of this
7990 * disk is lost.
7991 *
7992 * We only allow DISCARD if the sysadmin has confirmed that
7993 * only safe devices are in use by setting a module parameter.
7994 * A better idea might be to turn DISCARD into WRITE_ZEROES
7995 * requests, as that is required to be safe.
7996 */
7997 if (!devices_handle_discard_safely ||
7998 mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
7999 mddev->queue->limits.discard_granularity < stripe)
8000 blk_queue_max_discard_sectors(mddev->queue, 0);
8001
8002 /*
8003 * Requests require having a bitmap for each stripe.
8004 * Limit the max sectors based on this.
8005 */
8006 blk_queue_max_hw_sectors(mddev->queue,
8007 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8008
8009 /* No restrictions on the number of segments in the request */
8010 blk_queue_max_segments(mddev->queue, USHRT_MAX);
8011 }
8012
8013 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8014 goto abort;
8015
8016 return 0;
8017abort:
8018 md_unregister_thread(mddev, &mddev->thread);
8019 print_raid5_conf(conf);
8020 free_conf(conf);
8021 mddev->private = NULL;
8022 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8023 return -EIO;
8024}
8025
8026static void raid5_free(struct mddev *mddev, void *priv)
8027{
8028 struct r5conf *conf = priv;
8029
8030 free_conf(conf);
8031 mddev->to_remove = &raid5_attrs_group;
8032}
8033
8034static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8035{
8036 struct r5conf *conf = mddev->private;
8037 int i;
8038
8039 lockdep_assert_held(&mddev->lock);
8040
8041 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8042 conf->chunk_sectors / 2, mddev->layout);
8043 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8044 for (i = 0; i < conf->raid_disks; i++) {
8045 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8046
8047 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8048 }
8049 seq_printf (seq, "]");
8050}
8051
8052static void print_raid5_conf (struct r5conf *conf)
8053{
8054 struct md_rdev *rdev;
8055 int i;
8056
8057 pr_debug("RAID conf printout:\n");
8058 if (!conf) {
8059 pr_debug("(conf==NULL)\n");
8060 return;
8061 }
8062 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8063 conf->raid_disks,
8064 conf->raid_disks - conf->mddev->degraded);
8065
8066 rcu_read_lock();
8067 for (i = 0; i < conf->raid_disks; i++) {
8068 rdev = rcu_dereference(conf->disks[i].rdev);
8069 if (rdev)
8070 pr_debug(" disk %d, o:%d, dev:%pg\n",
8071 i, !test_bit(Faulty, &rdev->flags),
8072 rdev->bdev);
8073 }
8074 rcu_read_unlock();
8075}
8076
8077static int raid5_spare_active(struct mddev *mddev)
8078{
8079 int i;
8080 struct r5conf *conf = mddev->private;
8081 struct md_rdev *rdev, *replacement;
8082 int count = 0;
8083 unsigned long flags;
8084
8085 for (i = 0; i < conf->raid_disks; i++) {
8086 rdev = conf->disks[i].rdev;
8087 replacement = conf->disks[i].replacement;
8088 if (replacement
8089 && replacement->recovery_offset == MaxSector
8090 && !test_bit(Faulty, &replacement->flags)
8091 && !test_and_set_bit(In_sync, &replacement->flags)) {
8092 /* Replacement has just become active. */
8093 if (!rdev
8094 || !test_and_clear_bit(In_sync, &rdev->flags))
8095 count++;
8096 if (rdev) {
8097 /* Replaced device not technically faulty,
8098 * but we need to be sure it gets removed
8099 * and never re-added.
8100 */
8101 set_bit(Faulty, &rdev->flags);
8102 sysfs_notify_dirent_safe(
8103 rdev->sysfs_state);
8104 }
8105 sysfs_notify_dirent_safe(replacement->sysfs_state);
8106 } else if (rdev
8107 && rdev->recovery_offset == MaxSector
8108 && !test_bit(Faulty, &rdev->flags)
8109 && !test_and_set_bit(In_sync, &rdev->flags)) {
8110 count++;
8111 sysfs_notify_dirent_safe(rdev->sysfs_state);
8112 }
8113 }
8114 spin_lock_irqsave(&conf->device_lock, flags);
8115 mddev->degraded = raid5_calc_degraded(conf);
8116 spin_unlock_irqrestore(&conf->device_lock, flags);
8117 print_raid5_conf(conf);
8118 return count;
8119}
8120
8121static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8122{
8123 struct r5conf *conf = mddev->private;
8124 int err = 0;
8125 int number = rdev->raid_disk;
8126 struct md_rdev **rdevp;
8127 struct disk_info *p;
8128 struct md_rdev *tmp;
8129
8130 print_raid5_conf(conf);
8131 if (test_bit(Journal, &rdev->flags) && conf->log) {
8132 /*
8133 * we can't wait pending write here, as this is called in
8134 * raid5d, wait will deadlock.
8135 * neilb: there is no locking about new writes here,
8136 * so this cannot be safe.
8137 */
8138 if (atomic_read(&conf->active_stripes) ||
8139 atomic_read(&conf->r5c_cached_full_stripes) ||
8140 atomic_read(&conf->r5c_cached_partial_stripes)) {
8141 return -EBUSY;
8142 }
8143 log_exit(conf);
8144 return 0;
8145 }
8146 if (unlikely(number >= conf->pool_size))
8147 return 0;
8148 p = conf->disks + number;
8149 if (rdev == p->rdev)
8150 rdevp = &p->rdev;
8151 else if (rdev == p->replacement)
8152 rdevp = &p->replacement;
8153 else
8154 return 0;
8155
8156 if (number >= conf->raid_disks &&
8157 conf->reshape_progress == MaxSector)
8158 clear_bit(In_sync, &rdev->flags);
8159
8160 if (test_bit(In_sync, &rdev->flags) ||
8161 atomic_read(&rdev->nr_pending)) {
8162 err = -EBUSY;
8163 goto abort;
8164 }
8165 /* Only remove non-faulty devices if recovery
8166 * isn't possible.
8167 */
8168 if (!test_bit(Faulty, &rdev->flags) &&
8169 mddev->recovery_disabled != conf->recovery_disabled &&
8170 !has_failed(conf) &&
8171 (!p->replacement || p->replacement == rdev) &&
8172 number < conf->raid_disks) {
8173 err = -EBUSY;
8174 goto abort;
8175 }
8176 WRITE_ONCE(*rdevp, NULL);
8177 if (!err) {
8178 err = log_modify(conf, rdev, false);
8179 if (err)
8180 goto abort;
8181 }
8182
8183 tmp = p->replacement;
8184 if (tmp) {
8185 /* We must have just cleared 'rdev' */
8186 WRITE_ONCE(p->rdev, tmp);
8187 clear_bit(Replacement, &tmp->flags);
8188 WRITE_ONCE(p->replacement, NULL);
8189
8190 if (!err)
8191 err = log_modify(conf, tmp, true);
8192 }
8193
8194 clear_bit(WantReplacement, &rdev->flags);
8195abort:
8196
8197 print_raid5_conf(conf);
8198 return err;
8199}
8200
8201static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8202{
8203 struct r5conf *conf = mddev->private;
8204 int ret, err = -EEXIST;
8205 int disk;
8206 struct disk_info *p;
8207 struct md_rdev *tmp;
8208 int first = 0;
8209 int last = conf->raid_disks - 1;
8210
8211 if (test_bit(Journal, &rdev->flags)) {
8212 if (conf->log)
8213 return -EBUSY;
8214
8215 rdev->raid_disk = 0;
8216 /*
8217 * The array is in readonly mode if journal is missing, so no
8218 * write requests running. We should be safe
8219 */
8220 ret = log_init(conf, rdev, false);
8221 if (ret)
8222 return ret;
8223
8224 ret = r5l_start(conf->log);
8225 if (ret)
8226 return ret;
8227
8228 return 0;
8229 }
8230 if (mddev->recovery_disabled == conf->recovery_disabled)
8231 return -EBUSY;
8232
8233 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8234 /* no point adding a device */
8235 return -EINVAL;
8236
8237 if (rdev->raid_disk >= 0)
8238 first = last = rdev->raid_disk;
8239
8240 /*
8241 * find the disk ... but prefer rdev->saved_raid_disk
8242 * if possible.
8243 */
8244 if (rdev->saved_raid_disk >= first &&
8245 rdev->saved_raid_disk <= last &&
8246 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8247 first = rdev->saved_raid_disk;
8248
8249 for (disk = first; disk <= last; disk++) {
8250 p = conf->disks + disk;
8251 if (p->rdev == NULL) {
8252 clear_bit(In_sync, &rdev->flags);
8253 rdev->raid_disk = disk;
8254 if (rdev->saved_raid_disk != disk)
8255 conf->fullsync = 1;
8256 WRITE_ONCE(p->rdev, rdev);
8257
8258 err = log_modify(conf, rdev, true);
8259
8260 goto out;
8261 }
8262 }
8263 for (disk = first; disk <= last; disk++) {
8264 p = conf->disks + disk;
8265 tmp = p->rdev;
8266 if (test_bit(WantReplacement, &tmp->flags) &&
8267 mddev->reshape_position == MaxSector &&
8268 p->replacement == NULL) {
8269 clear_bit(In_sync, &rdev->flags);
8270 set_bit(Replacement, &rdev->flags);
8271 rdev->raid_disk = disk;
8272 err = 0;
8273 conf->fullsync = 1;
8274 WRITE_ONCE(p->replacement, rdev);
8275 break;
8276 }
8277 }
8278out:
8279 print_raid5_conf(conf);
8280 return err;
8281}
8282
8283static int raid5_resize(struct mddev *mddev, sector_t sectors)
8284{
8285 /* no resync is happening, and there is enough space
8286 * on all devices, so we can resize.
8287 * We need to make sure resync covers any new space.
8288 * If the array is shrinking we should possibly wait until
8289 * any io in the removed space completes, but it hardly seems
8290 * worth it.
8291 */
8292 sector_t newsize;
8293 struct r5conf *conf = mddev->private;
8294
8295 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8296 return -EINVAL;
8297 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8298 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8299 if (mddev->external_size &&
8300 mddev->array_sectors > newsize)
8301 return -EINVAL;
8302 if (mddev->bitmap) {
8303 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8304 if (ret)
8305 return ret;
8306 }
8307 md_set_array_sectors(mddev, newsize);
8308 if (sectors > mddev->dev_sectors &&
8309 mddev->recovery_cp > mddev->dev_sectors) {
8310 mddev->recovery_cp = mddev->dev_sectors;
8311 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8312 }
8313 mddev->dev_sectors = sectors;
8314 mddev->resync_max_sectors = sectors;
8315 return 0;
8316}
8317
8318static int check_stripe_cache(struct mddev *mddev)
8319{
8320 /* Can only proceed if there are plenty of stripe_heads.
8321 * We need a minimum of one full stripe,, and for sensible progress
8322 * it is best to have about 4 times that.
8323 * If we require 4 times, then the default 256 4K stripe_heads will
8324 * allow for chunk sizes up to 256K, which is probably OK.
8325 * If the chunk size is greater, user-space should request more
8326 * stripe_heads first.
8327 */
8328 struct r5conf *conf = mddev->private;
8329 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8330 > conf->min_nr_stripes ||
8331 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8332 > conf->min_nr_stripes) {
8333 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8334 mdname(mddev),
8335 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8336 / RAID5_STRIPE_SIZE(conf))*4);
8337 return 0;
8338 }
8339 return 1;
8340}
8341
8342static int check_reshape(struct mddev *mddev)
8343{
8344 struct r5conf *conf = mddev->private;
8345
8346 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8347 return -EINVAL;
8348 if (mddev->delta_disks == 0 &&
8349 mddev->new_layout == mddev->layout &&
8350 mddev->new_chunk_sectors == mddev->chunk_sectors)
8351 return 0; /* nothing to do */
8352 if (has_failed(conf))
8353 return -EINVAL;
8354 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8355 /* We might be able to shrink, but the devices must
8356 * be made bigger first.
8357 * For raid6, 4 is the minimum size.
8358 * Otherwise 2 is the minimum
8359 */
8360 int min = 2;
8361 if (mddev->level == 6)
8362 min = 4;
8363 if (mddev->raid_disks + mddev->delta_disks < min)
8364 return -EINVAL;
8365 }
8366
8367 if (!check_stripe_cache(mddev))
8368 return -ENOSPC;
8369
8370 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8371 mddev->delta_disks > 0)
8372 if (resize_chunks(conf,
8373 conf->previous_raid_disks
8374 + max(0, mddev->delta_disks),
8375 max(mddev->new_chunk_sectors,
8376 mddev->chunk_sectors)
8377 ) < 0)
8378 return -ENOMEM;
8379
8380 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8381 return 0; /* never bother to shrink */
8382 return resize_stripes(conf, (conf->previous_raid_disks
8383 + mddev->delta_disks));
8384}
8385
8386static int raid5_start_reshape(struct mddev *mddev)
8387{
8388 struct r5conf *conf = mddev->private;
8389 struct md_rdev *rdev;
8390 int spares = 0;
8391 int i;
8392 unsigned long flags;
8393
8394 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8395 return -EBUSY;
8396
8397 if (!check_stripe_cache(mddev))
8398 return -ENOSPC;
8399
8400 if (has_failed(conf))
8401 return -EINVAL;
8402
8403 /* raid5 can't handle concurrent reshape and recovery */
8404 if (mddev->recovery_cp < MaxSector)
8405 return -EBUSY;
8406 for (i = 0; i < conf->raid_disks; i++)
8407 if (conf->disks[i].replacement)
8408 return -EBUSY;
8409
8410 rdev_for_each(rdev, mddev) {
8411 if (!test_bit(In_sync, &rdev->flags)
8412 && !test_bit(Faulty, &rdev->flags))
8413 spares++;
8414 }
8415
8416 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8417 /* Not enough devices even to make a degraded array
8418 * of that size
8419 */
8420 return -EINVAL;
8421
8422 /* Refuse to reduce size of the array. Any reductions in
8423 * array size must be through explicit setting of array_size
8424 * attribute.
8425 */
8426 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8427 < mddev->array_sectors) {
8428 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8429 mdname(mddev));
8430 return -EINVAL;
8431 }
8432
8433 atomic_set(&conf->reshape_stripes, 0);
8434 spin_lock_irq(&conf->device_lock);
8435 write_seqcount_begin(&conf->gen_lock);
8436 conf->previous_raid_disks = conf->raid_disks;
8437 conf->raid_disks += mddev->delta_disks;
8438 conf->prev_chunk_sectors = conf->chunk_sectors;
8439 conf->chunk_sectors = mddev->new_chunk_sectors;
8440 conf->prev_algo = conf->algorithm;
8441 conf->algorithm = mddev->new_layout;
8442 conf->generation++;
8443 /* Code that selects data_offset needs to see the generation update
8444 * if reshape_progress has been set - so a memory barrier needed.
8445 */
8446 smp_mb();
8447 if (mddev->reshape_backwards)
8448 conf->reshape_progress = raid5_size(mddev, 0, 0);
8449 else
8450 conf->reshape_progress = 0;
8451 conf->reshape_safe = conf->reshape_progress;
8452 write_seqcount_end(&conf->gen_lock);
8453 spin_unlock_irq(&conf->device_lock);
8454
8455 /* Now make sure any requests that proceeded on the assumption
8456 * the reshape wasn't running - like Discard or Read - have
8457 * completed.
8458 */
8459 raid5_quiesce(mddev, true);
8460 raid5_quiesce(mddev, false);
8461
8462 /* Add some new drives, as many as will fit.
8463 * We know there are enough to make the newly sized array work.
8464 * Don't add devices if we are reducing the number of
8465 * devices in the array. This is because it is not possible
8466 * to correctly record the "partially reconstructed" state of
8467 * such devices during the reshape and confusion could result.
8468 */
8469 if (mddev->delta_disks >= 0) {
8470 rdev_for_each(rdev, mddev)
8471 if (rdev->raid_disk < 0 &&
8472 !test_bit(Faulty, &rdev->flags)) {
8473 if (raid5_add_disk(mddev, rdev) == 0) {
8474 if (rdev->raid_disk
8475 >= conf->previous_raid_disks)
8476 set_bit(In_sync, &rdev->flags);
8477 else
8478 rdev->recovery_offset = 0;
8479
8480 /* Failure here is OK */
8481 sysfs_link_rdev(mddev, rdev);
8482 }
8483 } else if (rdev->raid_disk >= conf->previous_raid_disks
8484 && !test_bit(Faulty, &rdev->flags)) {
8485 /* This is a spare that was manually added */
8486 set_bit(In_sync, &rdev->flags);
8487 }
8488
8489 /* When a reshape changes the number of devices,
8490 * ->degraded is measured against the larger of the
8491 * pre and post number of devices.
8492 */
8493 spin_lock_irqsave(&conf->device_lock, flags);
8494 mddev->degraded = raid5_calc_degraded(conf);
8495 spin_unlock_irqrestore(&conf->device_lock, flags);
8496 }
8497 mddev->raid_disks = conf->raid_disks;
8498 mddev->reshape_position = conf->reshape_progress;
8499 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8500
8501 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8502 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8503 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8504 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8506 conf->reshape_checkpoint = jiffies;
8507 md_new_event();
8508 return 0;
8509}
8510
8511/* This is called from the reshape thread and should make any
8512 * changes needed in 'conf'
8513 */
8514static void end_reshape(struct r5conf *conf)
8515{
8516
8517 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8518 struct md_rdev *rdev;
8519
8520 spin_lock_irq(&conf->device_lock);
8521 conf->previous_raid_disks = conf->raid_disks;
8522 md_finish_reshape(conf->mddev);
8523 smp_wmb();
8524 conf->reshape_progress = MaxSector;
8525 conf->mddev->reshape_position = MaxSector;
8526 rdev_for_each(rdev, conf->mddev)
8527 if (rdev->raid_disk >= 0 &&
8528 !test_bit(Journal, &rdev->flags) &&
8529 !test_bit(In_sync, &rdev->flags))
8530 rdev->recovery_offset = MaxSector;
8531 spin_unlock_irq(&conf->device_lock);
8532 wake_up(&conf->wait_for_overlap);
8533
8534 if (conf->mddev->queue)
8535 raid5_set_io_opt(conf);
8536 }
8537}
8538
8539/* This is called from the raid5d thread with mddev_lock held.
8540 * It makes config changes to the device.
8541 */
8542static void raid5_finish_reshape(struct mddev *mddev)
8543{
8544 struct r5conf *conf = mddev->private;
8545 struct md_rdev *rdev;
8546
8547 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8548
8549 if (mddev->delta_disks <= 0) {
8550 int d;
8551 spin_lock_irq(&conf->device_lock);
8552 mddev->degraded = raid5_calc_degraded(conf);
8553 spin_unlock_irq(&conf->device_lock);
8554 for (d = conf->raid_disks ;
8555 d < conf->raid_disks - mddev->delta_disks;
8556 d++) {
8557 rdev = conf->disks[d].rdev;
8558 if (rdev)
8559 clear_bit(In_sync, &rdev->flags);
8560 rdev = conf->disks[d].replacement;
8561 if (rdev)
8562 clear_bit(In_sync, &rdev->flags);
8563 }
8564 }
8565 mddev->layout = conf->algorithm;
8566 mddev->chunk_sectors = conf->chunk_sectors;
8567 mddev->reshape_position = MaxSector;
8568 mddev->delta_disks = 0;
8569 mddev->reshape_backwards = 0;
8570 }
8571}
8572
8573static void raid5_quiesce(struct mddev *mddev, int quiesce)
8574{
8575 struct r5conf *conf = mddev->private;
8576
8577 if (quiesce) {
8578 /* stop all writes */
8579 lock_all_device_hash_locks_irq(conf);
8580 /* '2' tells resync/reshape to pause so that all
8581 * active stripes can drain
8582 */
8583 r5c_flush_cache(conf, INT_MAX);
8584 /* need a memory barrier to make sure read_one_chunk() sees
8585 * quiesce started and reverts to slow (locked) path.
8586 */
8587 smp_store_release(&conf->quiesce, 2);
8588 wait_event_cmd(conf->wait_for_quiescent,
8589 atomic_read(&conf->active_stripes) == 0 &&
8590 atomic_read(&conf->active_aligned_reads) == 0,
8591 unlock_all_device_hash_locks_irq(conf),
8592 lock_all_device_hash_locks_irq(conf));
8593 conf->quiesce = 1;
8594 unlock_all_device_hash_locks_irq(conf);
8595 /* allow reshape to continue */
8596 wake_up(&conf->wait_for_overlap);
8597 } else {
8598 /* re-enable writes */
8599 lock_all_device_hash_locks_irq(conf);
8600 conf->quiesce = 0;
8601 wake_up(&conf->wait_for_quiescent);
8602 wake_up(&conf->wait_for_overlap);
8603 unlock_all_device_hash_locks_irq(conf);
8604 }
8605 log_quiesce(conf, quiesce);
8606}
8607
8608static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8609{
8610 struct r0conf *raid0_conf = mddev->private;
8611 sector_t sectors;
8612
8613 /* for raid0 takeover only one zone is supported */
8614 if (raid0_conf->nr_strip_zones > 1) {
8615 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8616 mdname(mddev));
8617 return ERR_PTR(-EINVAL);
8618 }
8619
8620 sectors = raid0_conf->strip_zone[0].zone_end;
8621 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8622 mddev->dev_sectors = sectors;
8623 mddev->new_level = level;
8624 mddev->new_layout = ALGORITHM_PARITY_N;
8625 mddev->new_chunk_sectors = mddev->chunk_sectors;
8626 mddev->raid_disks += 1;
8627 mddev->delta_disks = 1;
8628 /* make sure it will be not marked as dirty */
8629 mddev->recovery_cp = MaxSector;
8630
8631 return setup_conf(mddev);
8632}
8633
8634static void *raid5_takeover_raid1(struct mddev *mddev)
8635{
8636 int chunksect;
8637 void *ret;
8638
8639 if (mddev->raid_disks != 2 ||
8640 mddev->degraded > 1)
8641 return ERR_PTR(-EINVAL);
8642
8643 /* Should check if there are write-behind devices? */
8644
8645 chunksect = 64*2; /* 64K by default */
8646
8647 /* The array must be an exact multiple of chunksize */
8648 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8649 chunksect >>= 1;
8650
8651 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8652 /* array size does not allow a suitable chunk size */
8653 return ERR_PTR(-EINVAL);
8654
8655 mddev->new_level = 5;
8656 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8657 mddev->new_chunk_sectors = chunksect;
8658
8659 ret = setup_conf(mddev);
8660 if (!IS_ERR(ret))
8661 mddev_clear_unsupported_flags(mddev,
8662 UNSUPPORTED_MDDEV_FLAGS);
8663 return ret;
8664}
8665
8666static void *raid5_takeover_raid6(struct mddev *mddev)
8667{
8668 int new_layout;
8669
8670 switch (mddev->layout) {
8671 case ALGORITHM_LEFT_ASYMMETRIC_6:
8672 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8673 break;
8674 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8675 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8676 break;
8677 case ALGORITHM_LEFT_SYMMETRIC_6:
8678 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8679 break;
8680 case ALGORITHM_RIGHT_SYMMETRIC_6:
8681 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8682 break;
8683 case ALGORITHM_PARITY_0_6:
8684 new_layout = ALGORITHM_PARITY_0;
8685 break;
8686 case ALGORITHM_PARITY_N:
8687 new_layout = ALGORITHM_PARITY_N;
8688 break;
8689 default:
8690 return ERR_PTR(-EINVAL);
8691 }
8692 mddev->new_level = 5;
8693 mddev->new_layout = new_layout;
8694 mddev->delta_disks = -1;
8695 mddev->raid_disks -= 1;
8696 return setup_conf(mddev);
8697}
8698
8699static int raid5_check_reshape(struct mddev *mddev)
8700{
8701 /* For a 2-drive array, the layout and chunk size can be changed
8702 * immediately as not restriping is needed.
8703 * For larger arrays we record the new value - after validation
8704 * to be used by a reshape pass.
8705 */
8706 struct r5conf *conf = mddev->private;
8707 int new_chunk = mddev->new_chunk_sectors;
8708
8709 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8710 return -EINVAL;
8711 if (new_chunk > 0) {
8712 if (!is_power_of_2(new_chunk))
8713 return -EINVAL;
8714 if (new_chunk < (PAGE_SIZE>>9))
8715 return -EINVAL;
8716 if (mddev->array_sectors & (new_chunk-1))
8717 /* not factor of array size */
8718 return -EINVAL;
8719 }
8720
8721 /* They look valid */
8722
8723 if (mddev->raid_disks == 2) {
8724 /* can make the change immediately */
8725 if (mddev->new_layout >= 0) {
8726 conf->algorithm = mddev->new_layout;
8727 mddev->layout = mddev->new_layout;
8728 }
8729 if (new_chunk > 0) {
8730 conf->chunk_sectors = new_chunk ;
8731 mddev->chunk_sectors = new_chunk;
8732 }
8733 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8734 md_wakeup_thread(mddev->thread);
8735 }
8736 return check_reshape(mddev);
8737}
8738
8739static int raid6_check_reshape(struct mddev *mddev)
8740{
8741 int new_chunk = mddev->new_chunk_sectors;
8742
8743 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8744 return -EINVAL;
8745 if (new_chunk > 0) {
8746 if (!is_power_of_2(new_chunk))
8747 return -EINVAL;
8748 if (new_chunk < (PAGE_SIZE >> 9))
8749 return -EINVAL;
8750 if (mddev->array_sectors & (new_chunk-1))
8751 /* not factor of array size */
8752 return -EINVAL;
8753 }
8754
8755 /* They look valid */
8756 return check_reshape(mddev);
8757}
8758
8759static void *raid5_takeover(struct mddev *mddev)
8760{
8761 /* raid5 can take over:
8762 * raid0 - if there is only one strip zone - make it a raid4 layout
8763 * raid1 - if there are two drives. We need to know the chunk size
8764 * raid4 - trivial - just use a raid4 layout.
8765 * raid6 - Providing it is a *_6 layout
8766 */
8767 if (mddev->level == 0)
8768 return raid45_takeover_raid0(mddev, 5);
8769 if (mddev->level == 1)
8770 return raid5_takeover_raid1(mddev);
8771 if (mddev->level == 4) {
8772 mddev->new_layout = ALGORITHM_PARITY_N;
8773 mddev->new_level = 5;
8774 return setup_conf(mddev);
8775 }
8776 if (mddev->level == 6)
8777 return raid5_takeover_raid6(mddev);
8778
8779 return ERR_PTR(-EINVAL);
8780}
8781
8782static void *raid4_takeover(struct mddev *mddev)
8783{
8784 /* raid4 can take over:
8785 * raid0 - if there is only one strip zone
8786 * raid5 - if layout is right
8787 */
8788 if (mddev->level == 0)
8789 return raid45_takeover_raid0(mddev, 4);
8790 if (mddev->level == 5 &&
8791 mddev->layout == ALGORITHM_PARITY_N) {
8792 mddev->new_layout = 0;
8793 mddev->new_level = 4;
8794 return setup_conf(mddev);
8795 }
8796 return ERR_PTR(-EINVAL);
8797}
8798
8799static struct md_personality raid5_personality;
8800
8801static void *raid6_takeover(struct mddev *mddev)
8802{
8803 /* Currently can only take over a raid5. We map the
8804 * personality to an equivalent raid6 personality
8805 * with the Q block at the end.
8806 */
8807 int new_layout;
8808
8809 if (mddev->pers != &raid5_personality)
8810 return ERR_PTR(-EINVAL);
8811 if (mddev->degraded > 1)
8812 return ERR_PTR(-EINVAL);
8813 if (mddev->raid_disks > 253)
8814 return ERR_PTR(-EINVAL);
8815 if (mddev->raid_disks < 3)
8816 return ERR_PTR(-EINVAL);
8817
8818 switch (mddev->layout) {
8819 case ALGORITHM_LEFT_ASYMMETRIC:
8820 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8821 break;
8822 case ALGORITHM_RIGHT_ASYMMETRIC:
8823 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8824 break;
8825 case ALGORITHM_LEFT_SYMMETRIC:
8826 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8827 break;
8828 case ALGORITHM_RIGHT_SYMMETRIC:
8829 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8830 break;
8831 case ALGORITHM_PARITY_0:
8832 new_layout = ALGORITHM_PARITY_0_6;
8833 break;
8834 case ALGORITHM_PARITY_N:
8835 new_layout = ALGORITHM_PARITY_N;
8836 break;
8837 default:
8838 return ERR_PTR(-EINVAL);
8839 }
8840 mddev->new_level = 6;
8841 mddev->new_layout = new_layout;
8842 mddev->delta_disks = 1;
8843 mddev->raid_disks += 1;
8844 return setup_conf(mddev);
8845}
8846
8847static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8848{
8849 struct r5conf *conf;
8850 int err;
8851
8852 err = mddev_suspend_and_lock(mddev);
8853 if (err)
8854 return err;
8855 conf = mddev->private;
8856 if (!conf) {
8857 mddev_unlock_and_resume(mddev);
8858 return -ENODEV;
8859 }
8860
8861 if (strncmp(buf, "ppl", 3) == 0) {
8862 /* ppl only works with RAID 5 */
8863 if (!raid5_has_ppl(conf) && conf->level == 5) {
8864 err = log_init(conf, NULL, true);
8865 if (!err) {
8866 err = resize_stripes(conf, conf->pool_size);
8867 if (err)
8868 log_exit(conf);
8869 }
8870 } else
8871 err = -EINVAL;
8872 } else if (strncmp(buf, "resync", 6) == 0) {
8873 if (raid5_has_ppl(conf)) {
8874 log_exit(conf);
8875 err = resize_stripes(conf, conf->pool_size);
8876 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8877 r5l_log_disk_error(conf)) {
8878 bool journal_dev_exists = false;
8879 struct md_rdev *rdev;
8880
8881 rdev_for_each(rdev, mddev)
8882 if (test_bit(Journal, &rdev->flags)) {
8883 journal_dev_exists = true;
8884 break;
8885 }
8886
8887 if (!journal_dev_exists)
8888 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8889 else /* need remove journal device first */
8890 err = -EBUSY;
8891 } else
8892 err = -EINVAL;
8893 } else {
8894 err = -EINVAL;
8895 }
8896
8897 if (!err)
8898 md_update_sb(mddev, 1);
8899
8900 mddev_unlock_and_resume(mddev);
8901
8902 return err;
8903}
8904
8905static int raid5_start(struct mddev *mddev)
8906{
8907 struct r5conf *conf = mddev->private;
8908
8909 return r5l_start(conf->log);
8910}
8911
8912static struct md_personality raid6_personality =
8913{
8914 .name = "raid6",
8915 .level = 6,
8916 .owner = THIS_MODULE,
8917 .make_request = raid5_make_request,
8918 .run = raid5_run,
8919 .start = raid5_start,
8920 .free = raid5_free,
8921 .status = raid5_status,
8922 .error_handler = raid5_error,
8923 .hot_add_disk = raid5_add_disk,
8924 .hot_remove_disk= raid5_remove_disk,
8925 .spare_active = raid5_spare_active,
8926 .sync_request = raid5_sync_request,
8927 .resize = raid5_resize,
8928 .size = raid5_size,
8929 .check_reshape = raid6_check_reshape,
8930 .start_reshape = raid5_start_reshape,
8931 .finish_reshape = raid5_finish_reshape,
8932 .quiesce = raid5_quiesce,
8933 .takeover = raid6_takeover,
8934 .change_consistency_policy = raid5_change_consistency_policy,
8935};
8936static struct md_personality raid5_personality =
8937{
8938 .name = "raid5",
8939 .level = 5,
8940 .owner = THIS_MODULE,
8941 .make_request = raid5_make_request,
8942 .run = raid5_run,
8943 .start = raid5_start,
8944 .free = raid5_free,
8945 .status = raid5_status,
8946 .error_handler = raid5_error,
8947 .hot_add_disk = raid5_add_disk,
8948 .hot_remove_disk= raid5_remove_disk,
8949 .spare_active = raid5_spare_active,
8950 .sync_request = raid5_sync_request,
8951 .resize = raid5_resize,
8952 .size = raid5_size,
8953 .check_reshape = raid5_check_reshape,
8954 .start_reshape = raid5_start_reshape,
8955 .finish_reshape = raid5_finish_reshape,
8956 .quiesce = raid5_quiesce,
8957 .takeover = raid5_takeover,
8958 .change_consistency_policy = raid5_change_consistency_policy,
8959};
8960
8961static struct md_personality raid4_personality =
8962{
8963 .name = "raid4",
8964 .level = 4,
8965 .owner = THIS_MODULE,
8966 .make_request = raid5_make_request,
8967 .run = raid5_run,
8968 .start = raid5_start,
8969 .free = raid5_free,
8970 .status = raid5_status,
8971 .error_handler = raid5_error,
8972 .hot_add_disk = raid5_add_disk,
8973 .hot_remove_disk= raid5_remove_disk,
8974 .spare_active = raid5_spare_active,
8975 .sync_request = raid5_sync_request,
8976 .resize = raid5_resize,
8977 .size = raid5_size,
8978 .check_reshape = raid5_check_reshape,
8979 .start_reshape = raid5_start_reshape,
8980 .finish_reshape = raid5_finish_reshape,
8981 .quiesce = raid5_quiesce,
8982 .takeover = raid4_takeover,
8983 .change_consistency_policy = raid5_change_consistency_policy,
8984};
8985
8986static int __init raid5_init(void)
8987{
8988 int ret;
8989
8990 raid5_wq = alloc_workqueue("raid5wq",
8991 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8992 if (!raid5_wq)
8993 return -ENOMEM;
8994
8995 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8996 "md/raid5:prepare",
8997 raid456_cpu_up_prepare,
8998 raid456_cpu_dead);
8999 if (ret) {
9000 destroy_workqueue(raid5_wq);
9001 return ret;
9002 }
9003 register_md_personality(&raid6_personality);
9004 register_md_personality(&raid5_personality);
9005 register_md_personality(&raid4_personality);
9006 return 0;
9007}
9008
9009static void raid5_exit(void)
9010{
9011 unregister_md_personality(&raid6_personality);
9012 unregister_md_personality(&raid5_personality);
9013 unregister_md_personality(&raid4_personality);
9014 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9015 destroy_workqueue(raid5_wq);
9016}
9017
9018module_init(raid5_init);
9019module_exit(raid5_exit);
9020MODULE_LICENSE("GPL");
9021MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9022MODULE_ALIAS("md-personality-4"); /* RAID5 */
9023MODULE_ALIAS("md-raid5");
9024MODULE_ALIAS("md-raid4");
9025MODULE_ALIAS("md-level-5");
9026MODULE_ALIAS("md-level-4");
9027MODULE_ALIAS("md-personality-8"); /* RAID6 */
9028MODULE_ALIAS("md-raid6");
9029MODULE_ALIAS("md-level-6");
9030
9031/* This used to be two separate modules, they were: */
9032MODULE_ALIAS("raid5");
9033MODULE_ALIAS("raid6");
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/async.h>
51#include <linux/seq_file.h>
52#include <linux/cpu.h>
53#include <linux/slab.h>
54#include <linux/ratelimit.h>
55#include "md.h"
56#include "raid5.h"
57#include "raid0.h"
58#include "bitmap.h"
59
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
69#define BYPASS_THRESHOLD 1
70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71#define HASH_MASK (NR_HASH - 1)
72
73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
95#ifdef DEBUG
96#define inline
97#define __inline__
98#endif
99
100/*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
106 return bio->bi_phys_segments & 0xffff;
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
111 return (bio->bi_phys_segments >> 16) & 0xffff;
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132}
133
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
151
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
159{
160 int slot = *count;
161
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
171}
172
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
183 }
184}
185
186static void print_raid5_conf (raid5_conf_t *conf);
187
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196{
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
224 }
225 }
226 }
227}
228
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
233
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
239static inline void remove_hash(struct stripe_head *sh)
240{
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
243
244 hlist_del_init(&sh->hash);
245}
246
247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248{
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
253
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
277static void shrink_buffers(struct stripe_head *sh)
278{
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
282
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
289 }
290}
291
292static int grow_buffers(struct stripe_head *sh)
293{
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
311
312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313{
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
316
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
320
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
326
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
332
333
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
336
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
344 }
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
347 }
348 insert_hash(conf, sh);
349}
350
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
353{
354 struct stripe_head *sh;
355 struct hlist_node *hn;
356
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
364}
365
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
436{
437 struct stripe_head *sh;
438
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
461 );
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
491
492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
531 */
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
540
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
550 }
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
556 }
557 }
558
559 if (rdev) {
560 if (s->syncing || s->expanding || s->expanded)
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
563 set_bit(STRIPE_IO_STARTED, &sh->state);
564
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
567 __func__, (unsigned long long)sh->sector,
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
580 generic_make_request(bi);
581 } else {
582 if (rw & WRITE)
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
588 }
589 }
590}
591
592static struct dma_async_tx_descriptor *
593async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
595{
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
600 struct async_submit_ctl submit;
601 enum async_tx_flags flags = 0;
602
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
607
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
612 bio_for_each_segment(bvl, bio, i) {
613 int len = bvl->bv_len;
614 int clen;
615 int b_offset = 0;
616
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
621 }
622
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
627
628 if (clen > 0) {
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
633 b_offset, clen, &submit);
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
636 page_offset, clen, &submit);
637 }
638 /* chain the operations */
639 submit.depend_tx = tx;
640
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
644 }
645
646 return tx;
647}
648
649static void ops_complete_biofill(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
654 int i;
655
656 pr_debug("%s: stripe %llu\n", __func__,
657 (unsigned long long)sh->sector);
658
659 /* clear completed biofills */
660 spin_lock_irq(&conf->device_lock);
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
663
664 /* acknowledge completion of a biofill operation */
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
667 * !STRIPE_BIOFILL_RUN
668 */
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
670 struct bio *rbi, *rbi2;
671
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
678 if (!raid5_dec_bi_phys_segments(rbi)) {
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
681 }
682 rbi = rbi2;
683 }
684 }
685 }
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
688
689 return_io(return_bi);
690
691 set_bit(STRIPE_HANDLE, &sh->state);
692 release_stripe(sh);
693}
694
695static void ops_run_biofill(struct stripe_head *sh)
696{
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
699 struct async_submit_ctl submit;
700 int i;
701
702 pr_debug("%s: stripe %llu\n", __func__,
703 (unsigned long long)sh->sector);
704
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
718 }
719 }
720 }
721
722 atomic_inc(&sh->count);
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
725}
726
727static void mark_target_uptodate(struct stripe_head *sh, int target)
728{
729 struct r5dev *tgt;
730
731 if (target < 0)
732 return;
733
734 tgt = &sh->dev[target];
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
738}
739
740static void ops_complete_compute(void *stripe_head_ref)
741{
742 struct stripe_head *sh = stripe_head_ref;
743
744 pr_debug("%s: stripe %llu\n", __func__,
745 (unsigned long long)sh->sector);
746
747 /* mark the computed target(s) as uptodate */
748 mark_target_uptodate(sh, sh->ops.target);
749 mark_target_uptodate(sh, sh->ops.target2);
750
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
756}
757
758/* return a pointer to the address conversion region of the scribble buffer */
759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
761{
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763}
764
765static struct dma_async_tx_descriptor *
766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
767{
768 int disks = sh->disks;
769 struct page **xor_srcs = percpu->scribble;
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
775 struct async_submit_ctl submit;
776 int i;
777
778 pr_debug("%s: stripe %llu block: %d\n",
779 __func__, (unsigned long long)sh->sector, target);
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
785
786 atomic_inc(&sh->count);
787
788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
790 if (unlikely(count == 1))
791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
792 else
793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
794
795 return tx;
796}
797
798/* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
801 *
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
806 */
807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808{
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
814
815 for (i = 0; i < disks; i++)
816 srcs[i] = NULL;
817
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
826
827 return syndrome_disks;
828}
829
830static struct dma_async_tx_descriptor *
831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832{
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
843
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
848 else
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
854
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
858
859 atomic_inc(&sh->count);
860
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
876 }
877
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882 }
883
884 return tx;
885}
886
887static struct dma_async_tx_descriptor *
888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889{
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
901
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
908 /* we need to open-code set_syndrome_sources to handle the
909 * slot number conversion for 'faila' and 'failb'
910 */
911 for (i = 0; i < disks ; i++)
912 blocks[i] = NULL;
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918 blocks[slot] = sh->dev[i].page;
919
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
926
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
932
933 atomic_inc(&sh->count);
934
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
948
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
954
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
960 }
961 dest = sh->dev[data_target].page;
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
968
969 count = set_syndrome_sources(blocks, sh);
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
975 }
976 } else {
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
990 }
991 }
992}
993
994
995static void ops_complete_prexor(void *stripe_head_ref)
996{
997 struct stripe_head *sh = stripe_head_ref;
998
999 pr_debug("%s: stripe %llu\n", __func__,
1000 (unsigned long long)sh->sector);
1001}
1002
1003static struct dma_async_tx_descriptor *
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
1006{
1007 int disks = sh->disks;
1008 struct page **xor_srcs = percpu->scribble;
1009 int count = 0, pd_idx = sh->pd_idx, i;
1010 struct async_submit_ctl submit;
1011
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
1015 pr_debug("%s: stripe %llu\n", __func__,
1016 (unsigned long long)sh->sector);
1017
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
1021 if (test_bit(R5_Wantdrain, &dev->flags))
1022 xor_srcs[count++] = dev->page;
1023 }
1024
1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1028
1029 return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034{
1035 int disks = sh->disks;
1036 int i;
1037
1038 pr_debug("%s: stripe %llu\n", __func__,
1039 (unsigned long long)sh->sector);
1040
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
1044
1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1046 struct bio *wbi;
1047
1048 spin_lock_irq(&sh->raid_conf->device_lock);
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
1053 spin_unlock_irq(&sh->raid_conf->device_lock);
1054
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1062 }
1063 }
1064 }
1065
1066 return tx;
1067}
1068
1069static void ops_complete_reconstruct(void *stripe_head_ref)
1070{
1071 struct stripe_head *sh = stripe_head_ref;
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
1076 bool fua = false;
1077
1078 pr_debug("%s: stripe %llu\n", __func__,
1079 (unsigned long long)sh->sector);
1080
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
1086
1087 if (dev->written || i == pd_idx || i == qd_idx) {
1088 set_bit(R5_UPTODATE, &dev->flags);
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1091 }
1092 }
1093
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1101 }
1102
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1105}
1106
1107static void
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
1110{
1111 int disks = sh->disks;
1112 struct page **xor_srcs = percpu->scribble;
1113 struct async_submit_ctl submit;
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
1116 int prexor = 0;
1117 unsigned long flags;
1118
1119 pr_debug("%s: stripe %llu\n", __func__,
1120 (unsigned long long)sh->sector);
1121
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1124 */
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1132 }
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1139 }
1140 }
1141
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1146 */
1147 flags = ASYNC_TX_ACK |
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150 atomic_inc(&sh->count);
1151
1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153 to_addr_conv(sh, percpu));
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1158}
1159
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1163{
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1167
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170 count = set_syndrome_sources(blocks, sh);
1171
1172 atomic_inc(&sh->count);
1173
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181 struct stripe_head *sh = stripe_head_ref;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 sh->check_state = check_state_check_result;
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1189}
1190
1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192{
1193 int disks = sh->disks;
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
1197 struct page **xor_srcs = percpu->scribble;
1198 struct dma_async_tx_descriptor *tx;
1199 struct async_submit_ctl submit;
1200 int count;
1201 int i;
1202
1203 pr_debug("%s: stripe %llu\n", __func__,
1204 (unsigned long long)sh->sector);
1205
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
1209 for (i = disks; i--; ) {
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
1213 }
1214
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218 &sh->ops.zero_sum_result, &submit);
1219
1220 atomic_inc(&sh->count);
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
1223}
1224
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1230
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1233
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
1237
1238 atomic_inc(&sh->count);
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1243}
1244
1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246{
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
1249 raid5_conf_t *conf = sh->raid_conf;
1250 int level = conf->level;
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
1253
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1259 }
1260
1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1269 }
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272 async_tx_ack(tx);
1273 }
1274
1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276 tx = ops_run_prexor(sh, percpu, tx);
1277
1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279 tx = ops_run_biodrain(sh, tx);
1280 overlap_clear++;
1281 }
1282
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1288 }
1289
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1299 }
1300
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1306 }
1307 put_cpu();
1308}
1309
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1315
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1318
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324{
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1328 */
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1332
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
1339
1340static int grow_one_stripe(raid5_conf_t *conf)
1341{
1342 struct stripe_head *sh;
1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1344 if (!sh)
1345 return 0;
1346
1347 sh->raid_conf = conf;
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
1351
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1356 }
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
1367 struct kmem_cache *sc;
1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381 0, 0, NULL);
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
1385 conf->pool_size = devs;
1386 while (num--)
1387 if (!grow_one_stripe(conf))
1388 return 1;
1389 return 0;
1390}
1391
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
1407 size_t len;
1408
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411 return len;
1412}
1413
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1418 *
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1435 *
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1438 */
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
1442 unsigned long cpu;
1443 int err;
1444 struct kmem_cache *sc;
1445 int i;
1446
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1449
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
1453
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457 0, 0, NULL);
1458 if (!sc)
1459 return -ENOMEM;
1460
1461 for (i = conf->max_nr_stripes; i; i--) {
1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463 if (!nsh)
1464 break;
1465
1466 nsh->raid_conf = conf;
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
1470
1471 list_add(&nsh->lru, &newstripes);
1472 }
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1479 }
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1482 }
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1486 */
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
1492 );
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1501 }
1502 kmem_cache_destroy(conf->slab_cache);
1503
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
1507 * conf->disks and the scribble region
1508 */
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1517
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1523
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1533 }
1534 }
1535 put_online_cpus();
1536
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
1541
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1548 }
1549 release_stripe(nsh);
1550 }
1551 /* critical section pass, GFP_NOIO no longer needed */
1552
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1557}
1558
1559static int drop_one_stripe(raid5_conf_t *conf)
1560{
1561 struct stripe_head *sh;
1562
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
1568 BUG_ON(atomic_read(&sh->count));
1569 shrink_buffers(sh);
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577 while (drop_one_stripe(conf))
1578 ;
1579
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1582 conf->slab_cache = NULL;
1583}
1584
1585static void raid5_end_read_request(struct bio * bi, int error)
1586{
1587 struct stripe_head *sh = bi->bi_private;
1588 raid5_conf_t *conf = sh->raid_conf;
1589 int disks = sh->disks, i;
1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1593
1594
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1598
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
1604 return;
1605 }
1606
1607 if (uptodate) {
1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610 rdev = conf->disks[i].rdev;
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622 }
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1625 } else {
1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627 int retry = 0;
1628 rdev = conf->disks[i].rdev;
1629
1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631 atomic_inc(&rdev->read_errors);
1632 if (conf->mddev->degraded >= conf->max_degraded)
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642 /* Oh, no!!! */
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
1651 else if (atomic_read(&rdev->read_errors)
1652 > conf->max_nr_stripes)
1653 printk(KERN_WARNING
1654 "md/raid:%s: Too many read errors, failing device %s.\n",
1655 mdname(conf->mddev), bdn);
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663 md_error(conf->mddev, rdev);
1664 }
1665 }
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1670}
1671
1672static void raid5_end_write_request(struct bio *bi, int error)
1673{
1674 struct stripe_head *sh = bi->bi_private;
1675 raid5_conf_t *conf = sh->raid_conf;
1676 int disks = sh->disks, i;
1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678 sector_t first_bad;
1679 int bad_sectors;
1680
1681 for (i=0 ; i<disks; i++)
1682 if (bi == &sh->dev[i].req)
1683 break;
1684
1685 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1686 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687 uptodate);
1688 if (i == disks) {
1689 BUG();
1690 return;
1691 }
1692
1693 if (!uptodate) {
1694 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695 set_bit(R5_WriteError, &sh->dev[i].flags);
1696 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697 &first_bad, &bad_sectors))
1698 set_bit(R5_MadeGood, &sh->dev[i].flags);
1699
1700 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701
1702 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703 set_bit(STRIPE_HANDLE, &sh->state);
1704 release_stripe(sh);
1705}
1706
1707
1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1709
1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1711{
1712 struct r5dev *dev = &sh->dev[i];
1713
1714 bio_init(&dev->req);
1715 dev->req.bi_io_vec = &dev->vec;
1716 dev->req.bi_vcnt++;
1717 dev->req.bi_max_vecs++;
1718 dev->vec.bv_page = dev->page;
1719 dev->vec.bv_len = STRIPE_SIZE;
1720 dev->vec.bv_offset = 0;
1721
1722 dev->req.bi_sector = sh->sector;
1723 dev->req.bi_private = sh;
1724
1725 dev->flags = 0;
1726 dev->sector = compute_blocknr(sh, i, previous);
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 char b[BDEVNAME_SIZE];
1732 raid5_conf_t *conf = mddev->private;
1733 pr_debug("raid456: error called\n");
1734
1735 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736 unsigned long flags;
1737 spin_lock_irqsave(&conf->device_lock, flags);
1738 mddev->degraded++;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1740 /*
1741 * if recovery was running, make sure it aborts.
1742 */
1743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1744 }
1745 set_bit(Blocked, &rdev->flags);
1746 set_bit(Faulty, &rdev->flags);
1747 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748 printk(KERN_ALERT
1749 "md/raid:%s: Disk failure on %s, disabling device.\n"
1750 "md/raid:%s: Operation continuing on %d devices.\n",
1751 mdname(mddev),
1752 bdevname(rdev->bdev, b),
1753 mdname(mddev),
1754 conf->raid_disks - mddev->degraded);
1755}
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762 int previous, int *dd_idx,
1763 struct stripe_head *sh)
1764{
1765 sector_t stripe, stripe2;
1766 sector_t chunk_number;
1767 unsigned int chunk_offset;
1768 int pd_idx, qd_idx;
1769 int ddf_layout = 0;
1770 sector_t new_sector;
1771 int algorithm = previous ? conf->prev_algo
1772 : conf->algorithm;
1773 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774 : conf->chunk_sectors;
1775 int raid_disks = previous ? conf->previous_raid_disks
1776 : conf->raid_disks;
1777 int data_disks = raid_disks - conf->max_degraded;
1778
1779 /* First compute the information on this sector */
1780
1781 /*
1782 * Compute the chunk number and the sector offset inside the chunk
1783 */
1784 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785 chunk_number = r_sector;
1786
1787 /*
1788 * Compute the stripe number
1789 */
1790 stripe = chunk_number;
1791 *dd_idx = sector_div(stripe, data_disks);
1792 stripe2 = stripe;
1793 /*
1794 * Select the parity disk based on the user selected algorithm.
1795 */
1796 pd_idx = qd_idx = -1;
1797 switch(conf->level) {
1798 case 4:
1799 pd_idx = data_disks;
1800 break;
1801 case 5:
1802 switch (algorithm) {
1803 case ALGORITHM_LEFT_ASYMMETRIC:
1804 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805 if (*dd_idx >= pd_idx)
1806 (*dd_idx)++;
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
1809 pd_idx = sector_div(stripe2, raid_disks);
1810 if (*dd_idx >= pd_idx)
1811 (*dd_idx)++;
1812 break;
1813 case ALGORITHM_LEFT_SYMMETRIC:
1814 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816 break;
1817 case ALGORITHM_RIGHT_SYMMETRIC:
1818 pd_idx = sector_div(stripe2, raid_disks);
1819 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_PARITY_0:
1822 pd_idx = 0;
1823 (*dd_idx)++;
1824 break;
1825 case ALGORITHM_PARITY_N:
1826 pd_idx = data_disks;
1827 break;
1828 default:
1829 BUG();
1830 }
1831 break;
1832 case 6:
1833
1834 switch (algorithm) {
1835 case ALGORITHM_LEFT_ASYMMETRIC:
1836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837 qd_idx = pd_idx + 1;
1838 if (pd_idx == raid_disks-1) {
1839 (*dd_idx)++; /* Q D D D P */
1840 qd_idx = 0;
1841 } else if (*dd_idx >= pd_idx)
1842 (*dd_idx) += 2; /* D D P Q D */
1843 break;
1844 case ALGORITHM_RIGHT_ASYMMETRIC:
1845 pd_idx = sector_div(stripe2, raid_disks);
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
1852 break;
1853 case ALGORITHM_LEFT_SYMMETRIC:
1854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855 qd_idx = (pd_idx + 1) % raid_disks;
1856 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857 break;
1858 case ALGORITHM_RIGHT_SYMMETRIC:
1859 pd_idx = sector_div(stripe2, raid_disks);
1860 qd_idx = (pd_idx + 1) % raid_disks;
1861 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862 break;
1863
1864 case ALGORITHM_PARITY_0:
1865 pd_idx = 0;
1866 qd_idx = 1;
1867 (*dd_idx) += 2;
1868 break;
1869 case ALGORITHM_PARITY_N:
1870 pd_idx = data_disks;
1871 qd_idx = data_disks + 1;
1872 break;
1873
1874 case ALGORITHM_ROTATING_ZERO_RESTART:
1875 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1876 * of blocks for computing Q is different.
1877 */
1878 pd_idx = sector_div(stripe2, raid_disks);
1879 qd_idx = pd_idx + 1;
1880 if (pd_idx == raid_disks-1) {
1881 (*dd_idx)++; /* Q D D D P */
1882 qd_idx = 0;
1883 } else if (*dd_idx >= pd_idx)
1884 (*dd_idx) += 2; /* D D P Q D */
1885 ddf_layout = 1;
1886 break;
1887
1888 case ALGORITHM_ROTATING_N_RESTART:
1889 /* Same a left_asymmetric, by first stripe is
1890 * D D D P Q rather than
1891 * Q D D D P
1892 */
1893 stripe2 += 1;
1894 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895 qd_idx = pd_idx + 1;
1896 if (pd_idx == raid_disks-1) {
1897 (*dd_idx)++; /* Q D D D P */
1898 qd_idx = 0;
1899 } else if (*dd_idx >= pd_idx)
1900 (*dd_idx) += 2; /* D D P Q D */
1901 ddf_layout = 1;
1902 break;
1903
1904 case ALGORITHM_ROTATING_N_CONTINUE:
1905 /* Same as left_symmetric but Q is before P */
1906 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909 ddf_layout = 1;
1910 break;
1911
1912 case ALGORITHM_LEFT_ASYMMETRIC_6:
1913 /* RAID5 left_asymmetric, with Q on last device */
1914 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1919
1920 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921 pd_idx = sector_div(stripe2, raid_disks-1);
1922 if (*dd_idx >= pd_idx)
1923 (*dd_idx)++;
1924 qd_idx = raid_disks - 1;
1925 break;
1926
1927 case ALGORITHM_LEFT_SYMMETRIC_6:
1928 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1932
1933 case ALGORITHM_RIGHT_SYMMETRIC_6:
1934 pd_idx = sector_div(stripe2, raid_disks-1);
1935 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936 qd_idx = raid_disks - 1;
1937 break;
1938
1939 case ALGORITHM_PARITY_0_6:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 qd_idx = raid_disks - 1;
1943 break;
1944
1945 default:
1946 BUG();
1947 }
1948 break;
1949 }
1950
1951 if (sh) {
1952 sh->pd_idx = pd_idx;
1953 sh->qd_idx = qd_idx;
1954 sh->ddf_layout = ddf_layout;
1955 }
1956 /*
1957 * Finally, compute the new sector number
1958 */
1959 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960 return new_sector;
1961}
1962
1963
1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1965{
1966 raid5_conf_t *conf = sh->raid_conf;
1967 int raid_disks = sh->disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1969 sector_t new_sector = sh->sector, check;
1970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971 : conf->chunk_sectors;
1972 int algorithm = previous ? conf->prev_algo
1973 : conf->algorithm;
1974 sector_t stripe;
1975 int chunk_offset;
1976 sector_t chunk_number;
1977 int dummy1, dd_idx = i;
1978 sector_t r_sector;
1979 struct stripe_head sh2;
1980
1981
1982 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983 stripe = new_sector;
1984
1985 if (i == sh->pd_idx)
1986 return 0;
1987 switch(conf->level) {
1988 case 4: break;
1989 case 5:
1990 switch (algorithm) {
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 if (i > sh->pd_idx)
1994 i--;
1995 break;
1996 case ALGORITHM_LEFT_SYMMETRIC:
1997 case ALGORITHM_RIGHT_SYMMETRIC:
1998 if (i < sh->pd_idx)
1999 i += raid_disks;
2000 i -= (sh->pd_idx + 1);
2001 break;
2002 case ALGORITHM_PARITY_0:
2003 i -= 1;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 default:
2008 BUG();
2009 }
2010 break;
2011 case 6:
2012 if (i == sh->qd_idx)
2013 return 0; /* It is the Q disk */
2014 switch (algorithm) {
2015 case ALGORITHM_LEFT_ASYMMETRIC:
2016 case ALGORITHM_RIGHT_ASYMMETRIC:
2017 case ALGORITHM_ROTATING_ZERO_RESTART:
2018 case ALGORITHM_ROTATING_N_RESTART:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
2021 else if (i > sh->pd_idx)
2022 i -= 2; /* D D P Q D */
2023 break;
2024 case ALGORITHM_LEFT_SYMMETRIC:
2025 case ALGORITHM_RIGHT_SYMMETRIC:
2026 if (sh->pd_idx == raid_disks-1)
2027 i--; /* Q D D D P */
2028 else {
2029 /* D D P Q D */
2030 if (i < sh->pd_idx)
2031 i += raid_disks;
2032 i -= (sh->pd_idx + 2);
2033 }
2034 break;
2035 case ALGORITHM_PARITY_0:
2036 i -= 2;
2037 break;
2038 case ALGORITHM_PARITY_N:
2039 break;
2040 case ALGORITHM_ROTATING_N_CONTINUE:
2041 /* Like left_symmetric, but P is before Q */
2042 if (sh->pd_idx == 0)
2043 i--; /* P D D D Q */
2044 else {
2045 /* D D Q P D */
2046 if (i < sh->pd_idx)
2047 i += raid_disks;
2048 i -= (sh->pd_idx + 1);
2049 }
2050 break;
2051 case ALGORITHM_LEFT_ASYMMETRIC_6:
2052 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053 if (i > sh->pd_idx)
2054 i--;
2055 break;
2056 case ALGORITHM_LEFT_SYMMETRIC_6:
2057 case ALGORITHM_RIGHT_SYMMETRIC_6:
2058 if (i < sh->pd_idx)
2059 i += data_disks + 1;
2060 i -= (sh->pd_idx + 1);
2061 break;
2062 case ALGORITHM_PARITY_0_6:
2063 i -= 1;
2064 break;
2065 default:
2066 BUG();
2067 }
2068 break;
2069 }
2070
2071 chunk_number = stripe * data_disks + i;
2072 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2073
2074 check = raid5_compute_sector(conf, r_sector,
2075 previous, &dummy1, &sh2);
2076 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077 || sh2.qd_idx != sh->qd_idx) {
2078 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079 mdname(conf->mddev));
2080 return 0;
2081 }
2082 return r_sector;
2083}
2084
2085
2086static void
2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088 int rcw, int expand)
2089{
2090 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091 raid5_conf_t *conf = sh->raid_conf;
2092 int level = conf->level;
2093
2094 if (rcw) {
2095 /* if we are not expanding this is a proper write request, and
2096 * there will be bios with new data to be drained into the
2097 * stripe cache
2098 */
2099 if (!expand) {
2100 sh->reconstruct_state = reconstruct_state_drain_run;
2101 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102 } else
2103 sh->reconstruct_state = reconstruct_state_run;
2104
2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109
2110 if (dev->towrite) {
2111 set_bit(R5_LOCKED, &dev->flags);
2112 set_bit(R5_Wantdrain, &dev->flags);
2113 if (!expand)
2114 clear_bit(R5_UPTODATE, &dev->flags);
2115 s->locked++;
2116 }
2117 }
2118 if (s->locked + conf->max_degraded == disks)
2119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120 atomic_inc(&conf->pending_full_writes);
2121 } else {
2122 BUG_ON(level == 6);
2123 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
2126 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2130
2131 for (i = disks; i--; ) {
2132 struct r5dev *dev = &sh->dev[i];
2133 if (i == pd_idx)
2134 continue;
2135
2136 if (dev->towrite &&
2137 (test_bit(R5_UPTODATE, &dev->flags) ||
2138 test_bit(R5_Wantcompute, &dev->flags))) {
2139 set_bit(R5_Wantdrain, &dev->flags);
2140 set_bit(R5_LOCKED, &dev->flags);
2141 clear_bit(R5_UPTODATE, &dev->flags);
2142 s->locked++;
2143 }
2144 }
2145 }
2146
2147 /* keep the parity disk(s) locked while asynchronous operations
2148 * are in flight
2149 */
2150 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152 s->locked++;
2153
2154 if (level == 6) {
2155 int qd_idx = sh->qd_idx;
2156 struct r5dev *dev = &sh->dev[qd_idx];
2157
2158 set_bit(R5_LOCKED, &dev->flags);
2159 clear_bit(R5_UPTODATE, &dev->flags);
2160 s->locked++;
2161 }
2162
2163 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164 __func__, (unsigned long long)sh->sector,
2165 s->locked, s->ops_request);
2166}
2167
2168/*
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2174{
2175 struct bio **bip;
2176 raid5_conf_t *conf = sh->raid_conf;
2177 int firstwrite=0;
2178
2179 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector);
2182
2183
2184 spin_lock_irq(&conf->device_lock);
2185 if (forwrite) {
2186 bip = &sh->dev[dd_idx].towrite;
2187 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188 firstwrite = 1;
2189 } else
2190 bip = &sh->dev[dd_idx].toread;
2191 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193 goto overlap;
2194 bip = & (*bip)->bi_next;
2195 }
2196 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197 goto overlap;
2198
2199 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200 if (*bip)
2201 bi->bi_next = *bip;
2202 *bip = bi;
2203 bi->bi_phys_segments++;
2204
2205 if (forwrite) {
2206 /* check if page is covered */
2207 sector_t sector = sh->dev[dd_idx].sector;
2208 for (bi=sh->dev[dd_idx].towrite;
2209 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210 bi && bi->bi_sector <= sector;
2211 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213 sector = bi->bi_sector + (bi->bi_size>>9);
2214 }
2215 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2217 }
2218 spin_unlock_irq(&conf->device_lock);
2219
2220 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221 (unsigned long long)(*bip)->bi_sector,
2222 (unsigned long long)sh->sector, dd_idx);
2223
2224 if (conf->mddev->bitmap && firstwrite) {
2225 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226 STRIPE_SECTORS, 0);
2227 sh->bm_seq = conf->seq_flush+1;
2228 set_bit(STRIPE_BIT_DELAY, &sh->state);
2229 }
2230 return 1;
2231
2232 overlap:
2233 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234 spin_unlock_irq(&conf->device_lock);
2235 return 0;
2236}
2237
2238static void end_reshape(raid5_conf_t *conf);
2239
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241 struct stripe_head *sh)
2242{
2243 int sectors_per_chunk =
2244 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245 int dd_idx;
2246 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2248
2249 raid5_compute_sector(conf,
2250 stripe * (disks - conf->max_degraded)
2251 *sectors_per_chunk + chunk_offset,
2252 previous,
2253 &dd_idx, sh);
2254}
2255
2256static void
2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258 struct stripe_head_state *s, int disks,
2259 struct bio **return_bi)
2260{
2261 int i;
2262 for (i = disks; i--; ) {
2263 struct bio *bi;
2264 int bitmap_end = 0;
2265
2266 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267 mdk_rdev_t *rdev;
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->disks[i].rdev);
2270 if (rdev && test_bit(In_sync, &rdev->flags))
2271 atomic_inc(&rdev->nr_pending);
2272 else
2273 rdev = NULL;
2274 rcu_read_unlock();
2275 if (rdev) {
2276 if (!rdev_set_badblocks(
2277 rdev,
2278 sh->sector,
2279 STRIPE_SECTORS, 0))
2280 md_error(conf->mddev, rdev);
2281 rdev_dec_pending(rdev, conf->mddev);
2282 }
2283 }
2284 spin_lock_irq(&conf->device_lock);
2285 /* fail all writes first */
2286 bi = sh->dev[i].towrite;
2287 sh->dev[i].towrite = NULL;
2288 if (bi) {
2289 s->to_write--;
2290 bitmap_end = 1;
2291 }
2292
2293 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294 wake_up(&conf->wait_for_overlap);
2295
2296 while (bi && bi->bi_sector <
2297 sh->dev[i].sector + STRIPE_SECTORS) {
2298 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 if (!raid5_dec_bi_phys_segments(bi)) {
2301 md_write_end(conf->mddev);
2302 bi->bi_next = *return_bi;
2303 *return_bi = bi;
2304 }
2305 bi = nextbi;
2306 }
2307 /* and fail all 'written' */
2308 bi = sh->dev[i].written;
2309 sh->dev[i].written = NULL;
2310 if (bi) bitmap_end = 1;
2311 while (bi && bi->bi_sector <
2312 sh->dev[i].sector + STRIPE_SECTORS) {
2313 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315 if (!raid5_dec_bi_phys_segments(bi)) {
2316 md_write_end(conf->mddev);
2317 bi->bi_next = *return_bi;
2318 *return_bi = bi;
2319 }
2320 bi = bi2;
2321 }
2322
2323 /* fail any reads if this device is non-operational and
2324 * the data has not reached the cache yet.
2325 */
2326 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2327 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2329 bi = sh->dev[i].toread;
2330 sh->dev[i].toread = NULL;
2331 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332 wake_up(&conf->wait_for_overlap);
2333 if (bi) s->to_read--;
2334 while (bi && bi->bi_sector <
2335 sh->dev[i].sector + STRIPE_SECTORS) {
2336 struct bio *nextbi =
2337 r5_next_bio(bi, sh->dev[i].sector);
2338 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339 if (!raid5_dec_bi_phys_segments(bi)) {
2340 bi->bi_next = *return_bi;
2341 *return_bi = bi;
2342 }
2343 bi = nextbi;
2344 }
2345 }
2346 spin_unlock_irq(&conf->device_lock);
2347 if (bitmap_end)
2348 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349 STRIPE_SECTORS, 0, 0);
2350 /* If we were in the middle of a write the parity block might
2351 * still be locked - so just clear all R5_LOCKED flags
2352 */
2353 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2354 }
2355
2356 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357 if (atomic_dec_and_test(&conf->pending_full_writes))
2358 md_wakeup_thread(conf->mddev->thread);
2359}
2360
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363 struct stripe_head_state *s)
2364{
2365 int abort = 0;
2366 int i;
2367
2368 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369 clear_bit(STRIPE_SYNCING, &sh->state);
2370 s->syncing = 0;
2371 /* There is nothing more to do for sync/check/repair.
2372 * For recover we need to record a bad block on all
2373 * non-sync devices, or abort the recovery
2374 */
2375 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376 return;
2377 /* During recovery devices cannot be removed, so locking and
2378 * refcounting of rdevs is not needed
2379 */
2380 for (i = 0; i < conf->raid_disks; i++) {
2381 mdk_rdev_t *rdev = conf->disks[i].rdev;
2382 if (!rdev
2383 || test_bit(Faulty, &rdev->flags)
2384 || test_bit(In_sync, &rdev->flags))
2385 continue;
2386 if (!rdev_set_badblocks(rdev, sh->sector,
2387 STRIPE_SECTORS, 0))
2388 abort = 1;
2389 }
2390 if (abort) {
2391 conf->recovery_disabled = conf->mddev->recovery_disabled;
2392 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2393 }
2394}
2395
2396/* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2401 */
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403 int disk_idx, int disks)
2404{
2405 struct r5dev *dev = &sh->dev[disk_idx];
2406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407 &sh->dev[s->failed_num[1]] };
2408
2409 /* is the data in this block needed, and can we get it? */
2410 if (!test_bit(R5_LOCKED, &dev->flags) &&
2411 !test_bit(R5_UPTODATE, &dev->flags) &&
2412 (dev->toread ||
2413 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414 s->syncing || s->expanding ||
2415 (s->failed >= 1 && fdev[0]->toread) ||
2416 (s->failed >= 2 && fdev[1]->toread) ||
2417 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420 /* we would like to get this block, possibly by computing it,
2421 * otherwise read it if the backing disk is insync
2422 */
2423 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2425 if ((s->uptodate == disks - 1) &&
2426 (s->failed && (disk_idx == s->failed_num[0] ||
2427 disk_idx == s->failed_num[1]))) {
2428 /* have disk failed, and we're requested to fetch it;
2429 * do compute it
2430 */
2431 pr_debug("Computing stripe %llu block %d\n",
2432 (unsigned long long)sh->sector, disk_idx);
2433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435 set_bit(R5_Wantcompute, &dev->flags);
2436 sh->ops.target = disk_idx;
2437 sh->ops.target2 = -1; /* no 2nd target */
2438 s->req_compute = 1;
2439 /* Careful: from this point on 'uptodate' is in the eye
2440 * of raid_run_ops which services 'compute' operations
2441 * before writes. R5_Wantcompute flags a block that will
2442 * be R5_UPTODATE by the time it is needed for a
2443 * subsequent operation.
2444 */
2445 s->uptodate++;
2446 return 1;
2447 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2448 /* Computing 2-failure is *very* expensive; only
2449 * do it if failed >= 2
2450 */
2451 int other;
2452 for (other = disks; other--; ) {
2453 if (other == disk_idx)
2454 continue;
2455 if (!test_bit(R5_UPTODATE,
2456 &sh->dev[other].flags))
2457 break;
2458 }
2459 BUG_ON(other < 0);
2460 pr_debug("Computing stripe %llu blocks %d,%d\n",
2461 (unsigned long long)sh->sector,
2462 disk_idx, other);
2463 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467 sh->ops.target = disk_idx;
2468 sh->ops.target2 = other;
2469 s->uptodate += 2;
2470 s->req_compute = 1;
2471 return 1;
2472 } else if (test_bit(R5_Insync, &dev->flags)) {
2473 set_bit(R5_LOCKED, &dev->flags);
2474 set_bit(R5_Wantread, &dev->flags);
2475 s->locked++;
2476 pr_debug("Reading block %d (sync=%d)\n",
2477 disk_idx, s->syncing);
2478 }
2479 }
2480
2481 return 0;
2482}
2483
2484/**
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2486 */
2487static void handle_stripe_fill(struct stripe_head *sh,
2488 struct stripe_head_state *s,
2489 int disks)
2490{
2491 int i;
2492
2493 /* look for blocks to read/compute, skip this if a compute
2494 * is already in flight, or if the stripe contents are in the
2495 * midst of changing due to a write
2496 */
2497 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498 !sh->reconstruct_state)
2499 for (i = disks; i--; )
2500 if (fetch_block(sh, s, i, disks))
2501 break;
2502 set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
2506/* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
2511static void handle_stripe_clean_event(raid5_conf_t *conf,
2512 struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514 int i;
2515 struct r5dev *dev;
2516
2517 for (i = disks; i--; )
2518 if (sh->dev[i].written) {
2519 dev = &sh->dev[i];
2520 if (!test_bit(R5_LOCKED, &dev->flags) &&
2521 test_bit(R5_UPTODATE, &dev->flags)) {
2522 /* We can return any write requests */
2523 struct bio *wbi, *wbi2;
2524 int bitmap_end = 0;
2525 pr_debug("Return write for disc %d\n", i);
2526 spin_lock_irq(&conf->device_lock);
2527 wbi = dev->written;
2528 dev->written = NULL;
2529 while (wbi && wbi->bi_sector <
2530 dev->sector + STRIPE_SECTORS) {
2531 wbi2 = r5_next_bio(wbi, dev->sector);
2532 if (!raid5_dec_bi_phys_segments(wbi)) {
2533 md_write_end(conf->mddev);
2534 wbi->bi_next = *return_bi;
2535 *return_bi = wbi;
2536 }
2537 wbi = wbi2;
2538 }
2539 if (dev->towrite == NULL)
2540 bitmap_end = 1;
2541 spin_unlock_irq(&conf->device_lock);
2542 if (bitmap_end)
2543 bitmap_endwrite(conf->mddev->bitmap,
2544 sh->sector,
2545 STRIPE_SECTORS,
2546 !test_bit(STRIPE_DEGRADED, &sh->state),
2547 0);
2548 }
2549 }
2550
2551 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552 if (atomic_dec_and_test(&conf->pending_full_writes))
2553 md_wakeup_thread(conf->mddev->thread);
2554}
2555
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557 struct stripe_head *sh,
2558 struct stripe_head_state *s,
2559 int disks)
2560{
2561 int rmw = 0, rcw = 0, i;
2562 if (conf->max_degraded == 2) {
2563 /* RAID6 requires 'rcw' in current implementation
2564 * Calculate the real rcw later - for now fake it
2565 * look like rcw is cheaper
2566 */
2567 rcw = 1; rmw = 2;
2568 } else for (i = disks; i--; ) {
2569 /* would I have to read this buffer for read_modify_write */
2570 struct r5dev *dev = &sh->dev[i];
2571 if ((dev->towrite || i == sh->pd_idx) &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
2575 if (test_bit(R5_Insync, &dev->flags))
2576 rmw++;
2577 else
2578 rmw += 2*disks; /* cannot read it */
2579 }
2580 /* Would I have to read this buffer for reconstruct_write */
2581 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2582 !test_bit(R5_LOCKED, &dev->flags) &&
2583 !(test_bit(R5_UPTODATE, &dev->flags) ||
2584 test_bit(R5_Wantcompute, &dev->flags))) {
2585 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2586 else
2587 rcw += 2*disks;
2588 }
2589 }
2590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591 (unsigned long long)sh->sector, rmw, rcw);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 if (rmw < rcw && rmw > 0)
2594 /* prefer read-modify-write, but need to get some data */
2595 for (i = disks; i--; ) {
2596 struct r5dev *dev = &sh->dev[i];
2597 if ((dev->towrite || i == sh->pd_idx) &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604 pr_debug("Read_old block "
2605 "%d for r-m-w\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612 }
2613 }
2614 }
2615 if (rcw <= rmw && rcw > 0) {
2616 /* want reconstruct write, but need to get some data */
2617 rcw = 0;
2618 for (i = disks; i--; ) {
2619 struct r5dev *dev = &sh->dev[i];
2620 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621 i != sh->pd_idx && i != sh->qd_idx &&
2622 !test_bit(R5_LOCKED, &dev->flags) &&
2623 !(test_bit(R5_UPTODATE, &dev->flags) ||
2624 test_bit(R5_Wantcompute, &dev->flags))) {
2625 rcw++;
2626 if (!test_bit(R5_Insync, &dev->flags))
2627 continue; /* it's a failed drive */
2628 if (
2629 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630 pr_debug("Read_old block "
2631 "%d for Reconstruct\n", i);
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantread, &dev->flags);
2634 s->locked++;
2635 } else {
2636 set_bit(STRIPE_DELAYED, &sh->state);
2637 set_bit(STRIPE_HANDLE, &sh->state);
2638 }
2639 }
2640 }
2641 }
2642 /* now if nothing is locked, and if we have enough data,
2643 * we can start a write request
2644 */
2645 /* since handle_stripe can be called at any time we need to handle the
2646 * case where a compute block operation has been submitted and then a
2647 * subsequent call wants to start a write request. raid_run_ops only
2648 * handles the case where compute block and reconstruct are requested
2649 * simultaneously. If this is not the case then new writes need to be
2650 * held off until the compute completes.
2651 */
2652 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655 schedule_reconstruction(sh, s, rcw == 0, 0);
2656}
2657
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s, int disks)
2660{
2661 struct r5dev *dev = NULL;
2662
2663 set_bit(STRIPE_HANDLE, &sh->state);
2664
2665 switch (sh->check_state) {
2666 case check_state_idle:
2667 /* start a new check operation if there are no failures */
2668 if (s->failed == 0) {
2669 BUG_ON(s->uptodate != disks);
2670 sh->check_state = check_state_run;
2671 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673 s->uptodate--;
2674 break;
2675 }
2676 dev = &sh->dev[s->failed_num[0]];
2677 /* fall through */
2678 case check_state_compute_result:
2679 sh->check_state = check_state_idle;
2680 if (!dev)
2681 dev = &sh->dev[sh->pd_idx];
2682
2683 /* check that a write has not made the stripe insync */
2684 if (test_bit(STRIPE_INSYNC, &sh->state))
2685 break;
2686
2687 /* either failed parity check, or recovery is happening */
2688 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689 BUG_ON(s->uptodate != disks);
2690
2691 set_bit(R5_LOCKED, &dev->flags);
2692 s->locked++;
2693 set_bit(R5_Wantwrite, &dev->flags);
2694
2695 clear_bit(STRIPE_DEGRADED, &sh->state);
2696 set_bit(STRIPE_INSYNC, &sh->state);
2697 break;
2698 case check_state_run:
2699 break; /* we will be called again upon completion */
2700 case check_state_check_result:
2701 sh->check_state = check_state_idle;
2702
2703 /* if a failure occurred during the check operation, leave
2704 * STRIPE_INSYNC not set and let the stripe be handled again
2705 */
2706 if (s->failed)
2707 break;
2708
2709 /* handle a successful check operation, if parity is correct
2710 * we are done. Otherwise update the mismatch count and repair
2711 * parity if !MD_RECOVERY_CHECK
2712 */
2713 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714 /* parity is correct (on disc,
2715 * not in buffer any more)
2716 */
2717 set_bit(STRIPE_INSYNC, &sh->state);
2718 else {
2719 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721 /* don't try to repair!! */
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 else {
2724 sh->check_state = check_state_compute_run;
2725 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727 set_bit(R5_Wantcompute,
2728 &sh->dev[sh->pd_idx].flags);
2729 sh->ops.target = sh->pd_idx;
2730 sh->ops.target2 = -1;
2731 s->uptodate++;
2732 }
2733 }
2734 break;
2735 case check_state_compute_run:
2736 break;
2737 default:
2738 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739 __func__, sh->check_state,
2740 (unsigned long long) sh->sector);
2741 BUG();
2742 }
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747 struct stripe_head_state *s,
2748 int disks)
2749{
2750 int pd_idx = sh->pd_idx;
2751 int qd_idx = sh->qd_idx;
2752 struct r5dev *dev;
2753
2754 set_bit(STRIPE_HANDLE, &sh->state);
2755
2756 BUG_ON(s->failed > 2);
2757
2758 /* Want to check and possibly repair P and Q.
2759 * However there could be one 'failed' device, in which
2760 * case we can only check one of them, possibly using the
2761 * other to generate missing data
2762 */
2763
2764 switch (sh->check_state) {
2765 case check_state_idle:
2766 /* start a new check operation if there are < 2 failures */
2767 if (s->failed == s->q_failed) {
2768 /* The only possible failed device holds Q, so it
2769 * makes sense to check P (If anything else were failed,
2770 * we would have used P to recreate it).
2771 */
2772 sh->check_state = check_state_run;
2773 }
2774 if (!s->q_failed && s->failed < 2) {
2775 /* Q is not failed, and we didn't use it to generate
2776 * anything, so it makes sense to check it
2777 */
2778 if (sh->check_state == check_state_run)
2779 sh->check_state = check_state_run_pq;
2780 else
2781 sh->check_state = check_state_run_q;
2782 }
2783
2784 /* discard potentially stale zero_sum_result */
2785 sh->ops.zero_sum_result = 0;
2786
2787 if (sh->check_state == check_state_run) {
2788 /* async_xor_zero_sum destroys the contents of P */
2789 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790 s->uptodate--;
2791 }
2792 if (sh->check_state >= check_state_run &&
2793 sh->check_state <= check_state_run_pq) {
2794 /* async_syndrome_zero_sum preserves P and Q, so
2795 * no need to mark them !uptodate here
2796 */
2797 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798 break;
2799 }
2800
2801 /* we have 2-disk failure */
2802 BUG_ON(s->failed != 2);
2803 /* fall through */
2804 case check_state_compute_result:
2805 sh->check_state = check_state_idle;
2806
2807 /* check that a write has not made the stripe insync */
2808 if (test_bit(STRIPE_INSYNC, &sh->state))
2809 break;
2810
2811 /* now write out any block on a failed drive,
2812 * or P or Q if they were recomputed
2813 */
2814 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815 if (s->failed == 2) {
2816 dev = &sh->dev[s->failed_num[1]];
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2820 }
2821 if (s->failed >= 1) {
2822 dev = &sh->dev[s->failed_num[0]];
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2826 }
2827 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828 dev = &sh->dev[pd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2832 }
2833 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834 dev = &sh->dev[qd_idx];
2835 s->locked++;
2836 set_bit(R5_LOCKED, &dev->flags);
2837 set_bit(R5_Wantwrite, &dev->flags);
2838 }
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841 set_bit(STRIPE_INSYNC, &sh->state);
2842 break;
2843 case check_state_run:
2844 case check_state_run_q:
2845 case check_state_run_pq:
2846 break; /* we will be called again upon completion */
2847 case check_state_check_result:
2848 sh->check_state = check_state_idle;
2849
2850 /* handle a successful check operation, if parity is correct
2851 * we are done. Otherwise update the mismatch count and repair
2852 * parity if !MD_RECOVERY_CHECK
2853 */
2854 if (sh->ops.zero_sum_result == 0) {
2855 /* both parities are correct */
2856 if (!s->failed)
2857 set_bit(STRIPE_INSYNC, &sh->state);
2858 else {
2859 /* in contrast to the raid5 case we can validate
2860 * parity, but still have a failure to write
2861 * back
2862 */
2863 sh->check_state = check_state_compute_result;
2864 /* Returning at this point means that we may go
2865 * off and bring p and/or q uptodate again so
2866 * we make sure to check zero_sum_result again
2867 * to verify if p or q need writeback
2868 */
2869 }
2870 } else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 int *target = &sh->ops.target;
2877
2878 sh->ops.target = -1;
2879 sh->ops.target2 = -1;
2880 sh->check_state = check_state_compute_run;
2881 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[pd_idx].flags);
2886 *target = pd_idx;
2887 target = &sh->ops.target2;
2888 s->uptodate++;
2889 }
2890 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891 set_bit(R5_Wantcompute,
2892 &sh->dev[qd_idx].flags);
2893 *target = qd_idx;
2894 s->uptodate++;
2895 }
2896 }
2897 }
2898 break;
2899 case check_state_compute_run:
2900 break;
2901 default:
2902 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903 __func__, sh->check_state,
2904 (unsigned long long) sh->sector);
2905 BUG();
2906 }
2907}
2908
2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2910{
2911 int i;
2912
2913 /* We have read all the blocks in this stripe and now we need to
2914 * copy some of them into a target stripe for expand.
2915 */
2916 struct dma_async_tx_descriptor *tx = NULL;
2917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918 for (i = 0; i < sh->disks; i++)
2919 if (i != sh->pd_idx && i != sh->qd_idx) {
2920 int dd_idx, j;
2921 struct stripe_head *sh2;
2922 struct async_submit_ctl submit;
2923
2924 sector_t bn = compute_blocknr(sh, i, 1);
2925 sector_t s = raid5_compute_sector(conf, bn, 0,
2926 &dd_idx, NULL);
2927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928 if (sh2 == NULL)
2929 /* so far only the early blocks of this stripe
2930 * have been requested. When later blocks
2931 * get requested, we will try again
2932 */
2933 continue;
2934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936 /* must have already done this block */
2937 release_stripe(sh2);
2938 continue;
2939 }
2940
2941 /* place all the copies on one channel */
2942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943 tx = async_memcpy(sh2->dev[dd_idx].page,
2944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2945 &submit);
2946
2947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949 for (j = 0; j < conf->raid_disks; j++)
2950 if (j != sh2->pd_idx &&
2951 j != sh2->qd_idx &&
2952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953 break;
2954 if (j == conf->raid_disks) {
2955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956 set_bit(STRIPE_HANDLE, &sh2->state);
2957 }
2958 release_stripe(sh2);
2959
2960 }
2961 /* done submitting copies, wait for them to complete */
2962 if (tx) {
2963 async_tx_ack(tx);
2964 dma_wait_for_async_tx(tx);
2965 }
2966}
2967
2968
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 * return some read request which now have data
2976 * return some write requests which are safely on disc
2977 * schedule a read on some buffers
2978 * schedule a write of some buffers
2979 * return confirmation of parity correctness
2980 *
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
2985
2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2987{
2988 raid5_conf_t *conf = sh->raid_conf;
2989 int disks = sh->disks;
2990 struct r5dev *dev;
2991 int i;
2992
2993 memset(s, 0, sizeof(*s));
2994
2995 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998 s->failed_num[0] = -1;
2999 s->failed_num[1] = -1;
3000
3001 /* Now to look around and see what can be done */
3002 rcu_read_lock();
3003 spin_lock_irq(&conf->device_lock);
3004 for (i=disks; i--; ) {
3005 mdk_rdev_t *rdev;
3006 sector_t first_bad;
3007 int bad_sectors;
3008 int is_bad = 0;
3009
3010 dev = &sh->dev[i];
3011
3012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013 i, dev->flags, dev->toread, dev->towrite, dev->written);
3014 /* maybe we can reply to a read
3015 *
3016 * new wantfill requests are only permitted while
3017 * ops_complete_biofill is guaranteed to be inactive
3018 */
3019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021 set_bit(R5_Wantfill, &dev->flags);
3022
3023 /* now count some things */
3024 if (test_bit(R5_LOCKED, &dev->flags))
3025 s->locked++;
3026 if (test_bit(R5_UPTODATE, &dev->flags))
3027 s->uptodate++;
3028 if (test_bit(R5_Wantcompute, &dev->flags)) {
3029 s->compute++;
3030 BUG_ON(s->compute > 2);
3031 }
3032
3033 if (test_bit(R5_Wantfill, &dev->flags))
3034 s->to_fill++;
3035 else if (dev->toread)
3036 s->to_read++;
3037 if (dev->towrite) {
3038 s->to_write++;
3039 if (!test_bit(R5_OVERWRITE, &dev->flags))
3040 s->non_overwrite++;
3041 }
3042 if (dev->written)
3043 s->written++;
3044 rdev = rcu_dereference(conf->disks[i].rdev);
3045 if (rdev) {
3046 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047 &first_bad, &bad_sectors);
3048 if (s->blocked_rdev == NULL
3049 && (test_bit(Blocked, &rdev->flags)
3050 || is_bad < 0)) {
3051 if (is_bad < 0)
3052 set_bit(BlockedBadBlocks,
3053 &rdev->flags);
3054 s->blocked_rdev = rdev;
3055 atomic_inc(&rdev->nr_pending);
3056 }
3057 }
3058 clear_bit(R5_Insync, &dev->flags);
3059 if (!rdev)
3060 /* Not in-sync */;
3061 else if (is_bad) {
3062 /* also not in-sync */
3063 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3064 /* treat as in-sync, but with a read error
3065 * which we can now try to correct
3066 */
3067 set_bit(R5_Insync, &dev->flags);
3068 set_bit(R5_ReadError, &dev->flags);
3069 }
3070 } else if (test_bit(In_sync, &rdev->flags))
3071 set_bit(R5_Insync, &dev->flags);
3072 else {
3073 /* in sync if before recovery_offset */
3074 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075 set_bit(R5_Insync, &dev->flags);
3076 }
3077 if (test_bit(R5_WriteError, &dev->flags)) {
3078 clear_bit(R5_Insync, &dev->flags);
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_WriteError, &dev->flags);
3084 }
3085 if (test_bit(R5_MadeGood, &dev->flags)) {
3086 if (!test_bit(Faulty, &rdev->flags)) {
3087 s->handle_bad_blocks = 1;
3088 atomic_inc(&rdev->nr_pending);
3089 } else
3090 clear_bit(R5_MadeGood, &dev->flags);
3091 }
3092 if (!test_bit(R5_Insync, &dev->flags)) {
3093 /* The ReadError flag will just be confusing now */
3094 clear_bit(R5_ReadError, &dev->flags);
3095 clear_bit(R5_ReWrite, &dev->flags);
3096 }
3097 if (test_bit(R5_ReadError, &dev->flags))
3098 clear_bit(R5_Insync, &dev->flags);
3099 if (!test_bit(R5_Insync, &dev->flags)) {
3100 if (s->failed < 2)
3101 s->failed_num[s->failed] = i;
3102 s->failed++;
3103 }
3104 }
3105 spin_unlock_irq(&conf->device_lock);
3106 rcu_read_unlock();
3107}
3108
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111 struct stripe_head_state s;
3112 raid5_conf_t *conf = sh->raid_conf;
3113 int i;
3114 int prexor;
3115 int disks = sh->disks;
3116 struct r5dev *pdev, *qdev;
3117
3118 clear_bit(STRIPE_HANDLE, &sh->state);
3119 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3120 /* already being handled, ensure it gets handled
3121 * again when current action finishes */
3122 set_bit(STRIPE_HANDLE, &sh->state);
3123 return;
3124 }
3125
3126 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127 set_bit(STRIPE_SYNCING, &sh->state);
3128 clear_bit(STRIPE_INSYNC, &sh->state);
3129 }
3130 clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134 (unsigned long long)sh->sector, sh->state,
3135 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136 sh->check_state, sh->reconstruct_state);
3137
3138 analyse_stripe(sh, &s);
3139
3140 if (s.handle_bad_blocks) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3143 }
3144
3145 if (unlikely(s.blocked_rdev)) {
3146 if (s.syncing || s.expanding || s.expanded ||
3147 s.to_write || s.written) {
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 goto finish;
3150 }
3151 /* There is nothing for the blocked_rdev to block */
3152 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153 s.blocked_rdev = NULL;
3154 }
3155
3156 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159 }
3160
3161 pr_debug("locked=%d uptodate=%d to_read=%d"
3162 " to_write=%d failed=%d failed_num=%d,%d\n",
3163 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164 s.failed_num[0], s.failed_num[1]);
3165 /* check if the array has lost more than max_degraded devices and,
3166 * if so, some requests might need to be failed.
3167 */
3168 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3170 if (s.failed > conf->max_degraded && s.syncing)
3171 handle_failed_sync(conf, sh, &s);
3172
3173 /*
3174 * might be able to return some write requests if the parity blocks
3175 * are safe, or on a failed drive
3176 */
3177 pdev = &sh->dev[sh->pd_idx];
3178 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180 qdev = &sh->dev[sh->qd_idx];
3181 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183 || conf->level < 6;
3184
3185 if (s.written &&
3186 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187 && !test_bit(R5_LOCKED, &pdev->flags)
3188 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190 && !test_bit(R5_LOCKED, &qdev->flags)
3191 && test_bit(R5_UPTODATE, &qdev->flags)))))
3192 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194 /* Now we might consider reading some blocks, either to check/generate
3195 * parity, or to satisfy requests
3196 * or to load a block that is being partially written.
3197 */
3198 if (s.to_read || s.non_overwrite
3199 || (conf->level == 6 && s.to_write && s.failed)
3200 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201 handle_stripe_fill(sh, &s, disks);
3202
3203 /* Now we check to see if any write operations have recently
3204 * completed
3205 */
3206 prexor = 0;
3207 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208 prexor = 1;
3209 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211 sh->reconstruct_state = reconstruct_state_idle;
3212
3213 /* All the 'written' buffers and the parity block are ready to
3214 * be written back to disk
3215 */
3216 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3217 BUG_ON(sh->qd_idx >= 0 &&
3218 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3219 for (i = disks; i--; ) {
3220 struct r5dev *dev = &sh->dev[i];
3221 if (test_bit(R5_LOCKED, &dev->flags) &&
3222 (i == sh->pd_idx || i == sh->qd_idx ||
3223 dev->written)) {
3224 pr_debug("Writing block %d\n", i);
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 if (prexor)
3227 continue;
3228 if (!test_bit(R5_Insync, &dev->flags) ||
3229 ((i == sh->pd_idx || i == sh->qd_idx) &&
3230 s.failed == 0))
3231 set_bit(STRIPE_INSYNC, &sh->state);
3232 }
3233 }
3234 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235 s.dec_preread_active = 1;
3236 }
3237
3238 /* Now to consider new write requests and what else, if anything
3239 * should be read. We do not handle new writes when:
3240 * 1/ A 'write' operation (copy+xor) is already in flight.
3241 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242 * block.
3243 */
3244 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245 handle_stripe_dirtying(conf, sh, &s, disks);
3246
3247 /* maybe we need to check and possibly fix the parity for this stripe
3248 * Any reads will already have been scheduled, so we just see if enough
3249 * data is available. The parity check is held off while parity
3250 * dependent operations are in flight.
3251 */
3252 if (sh->check_state ||
3253 (s.syncing && s.locked == 0 &&
3254 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255 !test_bit(STRIPE_INSYNC, &sh->state))) {
3256 if (conf->level == 6)
3257 handle_parity_checks6(conf, sh, &s, disks);
3258 else
3259 handle_parity_checks5(conf, sh, &s, disks);
3260 }
3261
3262 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264 clear_bit(STRIPE_SYNCING, &sh->state);
3265 }
3266
3267 /* If the failed drives are just a ReadError, then we might need
3268 * to progress the repair/check process
3269 */
3270 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271 for (i = 0; i < s.failed; i++) {
3272 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273 if (test_bit(R5_ReadError, &dev->flags)
3274 && !test_bit(R5_LOCKED, &dev->flags)
3275 && test_bit(R5_UPTODATE, &dev->flags)
3276 ) {
3277 if (!test_bit(R5_ReWrite, &dev->flags)) {
3278 set_bit(R5_Wantwrite, &dev->flags);
3279 set_bit(R5_ReWrite, &dev->flags);
3280 set_bit(R5_LOCKED, &dev->flags);
3281 s.locked++;
3282 } else {
3283 /* let's read it back */
3284 set_bit(R5_Wantread, &dev->flags);
3285 set_bit(R5_LOCKED, &dev->flags);
3286 s.locked++;
3287 }
3288 }
3289 }
3290
3291
3292 /* Finish reconstruct operations initiated by the expansion process */
3293 if (sh->reconstruct_state == reconstruct_state_result) {
3294 struct stripe_head *sh_src
3295 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3296 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297 /* sh cannot be written until sh_src has been read.
3298 * so arrange for sh to be delayed a little
3299 */
3300 set_bit(STRIPE_DELAYED, &sh->state);
3301 set_bit(STRIPE_HANDLE, &sh->state);
3302 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303 &sh_src->state))
3304 atomic_inc(&conf->preread_active_stripes);
3305 release_stripe(sh_src);
3306 goto finish;
3307 }
3308 if (sh_src)
3309 release_stripe(sh_src);
3310
3311 sh->reconstruct_state = reconstruct_state_idle;
3312 clear_bit(STRIPE_EXPANDING, &sh->state);
3313 for (i = conf->raid_disks; i--; ) {
3314 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315 set_bit(R5_LOCKED, &sh->dev[i].flags);
3316 s.locked++;
3317 }
3318 }
3319
3320 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321 !sh->reconstruct_state) {
3322 /* Need to write out all blocks after computing parity */
3323 sh->disks = conf->raid_disks;
3324 stripe_set_idx(sh->sector, conf, 0, sh);
3325 schedule_reconstruction(sh, &s, 1, 1);
3326 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328 atomic_dec(&conf->reshape_stripes);
3329 wake_up(&conf->wait_for_overlap);
3330 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331 }
3332
3333 if (s.expanding && s.locked == 0 &&
3334 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335 handle_stripe_expansion(conf, sh);
3336
3337finish:
3338 /* wait for this device to become unblocked */
3339 if (conf->mddev->external && unlikely(s.blocked_rdev))
3340 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3341
3342 if (s.handle_bad_blocks)
3343 for (i = disks; i--; ) {
3344 mdk_rdev_t *rdev;
3345 struct r5dev *dev = &sh->dev[i];
3346 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347 /* We own a safe reference to the rdev */
3348 rdev = conf->disks[i].rdev;
3349 if (!rdev_set_badblocks(rdev, sh->sector,
3350 STRIPE_SECTORS, 0))
3351 md_error(conf->mddev, rdev);
3352 rdev_dec_pending(rdev, conf->mddev);
3353 }
3354 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355 rdev = conf->disks[i].rdev;
3356 rdev_clear_badblocks(rdev, sh->sector,
3357 STRIPE_SECTORS);
3358 rdev_dec_pending(rdev, conf->mddev);
3359 }
3360 }
3361
3362 if (s.ops_request)
3363 raid_run_ops(sh, s.ops_request);
3364
3365 ops_run_io(sh, &s);
3366
3367 if (s.dec_preread_active) {
3368 /* We delay this until after ops_run_io so that if make_request
3369 * is waiting on a flush, it won't continue until the writes
3370 * have actually been submitted.
3371 */
3372 atomic_dec(&conf->preread_active_stripes);
3373 if (atomic_read(&conf->preread_active_stripes) <
3374 IO_THRESHOLD)
3375 md_wakeup_thread(conf->mddev->thread);
3376 }
3377
3378 return_io(s.return_bi);
3379
3380 clear_bit(STRIPE_ACTIVE, &sh->state);
3381}
3382
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386 while (!list_empty(&conf->delayed_list)) {
3387 struct list_head *l = conf->delayed_list.next;
3388 struct stripe_head *sh;
3389 sh = list_entry(l, struct stripe_head, lru);
3390 list_del_init(l);
3391 clear_bit(STRIPE_DELAYED, &sh->state);
3392 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393 atomic_inc(&conf->preread_active_stripes);
3394 list_add_tail(&sh->lru, &conf->hold_list);
3395 }
3396 }
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
3400{
3401 /* device_lock is held */
3402 struct list_head head;
3403 list_add(&head, &conf->bitmap_list);
3404 list_del_init(&conf->bitmap_list);
3405 while (!list_empty(&head)) {
3406 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3407 list_del_init(&sh->lru);
3408 atomic_inc(&sh->count);
3409 __release_stripe(conf, sh);
3410 }
3411}
3412
3413int md_raid5_congested(mddev_t *mddev, int bits)
3414{
3415 raid5_conf_t *conf = mddev->private;
3416
3417 /* No difference between reads and writes. Just check
3418 * how busy the stripe_cache is
3419 */
3420
3421 if (conf->inactive_blocked)
3422 return 1;
3423 if (conf->quiesce)
3424 return 1;
3425 if (list_empty_careful(&conf->inactive_list))
3426 return 1;
3427
3428 return 0;
3429}
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434 mddev_t *mddev = data;
3435
3436 return mddev_congested(mddev, bits) ||
3437 md_raid5_congested(mddev, bits);
3438}
3439
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444 struct bvec_merge_data *bvm,
3445 struct bio_vec *biovec)
3446{
3447 mddev_t *mddev = q->queuedata;
3448 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449 int max;
3450 unsigned int chunk_sectors = mddev->chunk_sectors;
3451 unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453 if ((bvm->bi_rw & 1) == WRITE)
3454 return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457 chunk_sectors = mddev->new_chunk_sectors;
3458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459 if (max < 0) max = 0;
3460 if (max <= biovec->bv_len && bio_sectors == 0)
3461 return biovec->bv_len;
3462 else
3463 return max;
3464}
3465
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470 unsigned int chunk_sectors = mddev->chunk_sectors;
3471 unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474 chunk_sectors = mddev->new_chunk_sectors;
3475 return chunk_sectors >=
3476 ((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
3479/*
3480 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3481 * later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485 unsigned long flags;
3486
3487 spin_lock_irqsave(&conf->device_lock, flags);
3488
3489 bi->bi_next = conf->retry_read_aligned_list;
3490 conf->retry_read_aligned_list = bi;
3491
3492 spin_unlock_irqrestore(&conf->device_lock, flags);
3493 md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499 struct bio *bi;
3500
3501 bi = conf->retry_read_aligned;
3502 if (bi) {
3503 conf->retry_read_aligned = NULL;
3504 return bi;
3505 }
3506 bi = conf->retry_read_aligned_list;
3507 if(bi) {
3508 conf->retry_read_aligned_list = bi->bi_next;
3509 bi->bi_next = NULL;
3510 /*
3511 * this sets the active strip count to 1 and the processed
3512 * strip count to zero (upper 8 bits)
3513 */
3514 bi->bi_phys_segments = 1; /* biased count of active stripes */
3515 }
3516
3517 return bi;
3518}
3519
3520
3521/*
3522 * The "raid5_align_endio" should check if the read succeeded and if it
3523 * did, call bio_endio on the original bio (having bio_put the new bio
3524 * first).
3525 * If the read failed..
3526 */
3527static void raid5_align_endio(struct bio *bi, int error)
3528{
3529 struct bio* raid_bi = bi->bi_private;
3530 mddev_t *mddev;
3531 raid5_conf_t *conf;
3532 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533 mdk_rdev_t *rdev;
3534
3535 bio_put(bi);
3536
3537 rdev = (void*)raid_bi->bi_next;
3538 raid_bi->bi_next = NULL;
3539 mddev = rdev->mddev;
3540 conf = mddev->private;
3541
3542 rdev_dec_pending(rdev, conf->mddev);
3543
3544 if (!error && uptodate) {
3545 bio_endio(raid_bi, 0);
3546 if (atomic_dec_and_test(&conf->active_aligned_reads))
3547 wake_up(&conf->wait_for_stripe);
3548 return;
3549 }
3550
3551
3552 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554 add_bio_to_retry(raid_bi, conf);
3555}
3556
3557static int bio_fits_rdev(struct bio *bi)
3558{
3559 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3560
3561 if ((bi->bi_size>>9) > queue_max_sectors(q))
3562 return 0;
3563 blk_recount_segments(q, bi);
3564 if (bi->bi_phys_segments > queue_max_segments(q))
3565 return 0;
3566
3567 if (q->merge_bvec_fn)
3568 /* it's too hard to apply the merge_bvec_fn at this stage,
3569 * just just give up
3570 */
3571 return 0;
3572
3573 return 1;
3574}
3575
3576
3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3578{
3579 raid5_conf_t *conf = mddev->private;
3580 int dd_idx;
3581 struct bio* align_bi;
3582 mdk_rdev_t *rdev;
3583
3584 if (!in_chunk_boundary(mddev, raid_bio)) {
3585 pr_debug("chunk_aligned_read : non aligned\n");
3586 return 0;
3587 }
3588 /*
3589 * use bio_clone_mddev to make a copy of the bio
3590 */
3591 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592 if (!align_bi)
3593 return 0;
3594 /*
3595 * set bi_end_io to a new function, and set bi_private to the
3596 * original bio.
3597 */
3598 align_bi->bi_end_io = raid5_align_endio;
3599 align_bi->bi_private = raid_bio;
3600 /*
3601 * compute position
3602 */
3603 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3604 0,
3605 &dd_idx, NULL);
3606
3607 rcu_read_lock();
3608 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609 if (rdev && test_bit(In_sync, &rdev->flags)) {
3610 sector_t first_bad;
3611 int bad_sectors;
3612
3613 atomic_inc(&rdev->nr_pending);
3614 rcu_read_unlock();
3615 raid_bio->bi_next = (void*)rdev;
3616 align_bi->bi_bdev = rdev->bdev;
3617 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618 align_bi->bi_sector += rdev->data_offset;
3619
3620 if (!bio_fits_rdev(align_bi) ||
3621 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622 &first_bad, &bad_sectors)) {
3623 /* too big in some way, or has a known bad block */
3624 bio_put(align_bi);
3625 rdev_dec_pending(rdev, mddev);
3626 return 0;
3627 }
3628
3629 spin_lock_irq(&conf->device_lock);
3630 wait_event_lock_irq(conf->wait_for_stripe,
3631 conf->quiesce == 0,
3632 conf->device_lock, /* nothing */);
3633 atomic_inc(&conf->active_aligned_reads);
3634 spin_unlock_irq(&conf->device_lock);
3635
3636 generic_make_request(align_bi);
3637 return 1;
3638 } else {
3639 rcu_read_unlock();
3640 bio_put(align_bi);
3641 return 0;
3642 }
3643}
3644
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded. In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o. The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657 struct stripe_head *sh;
3658
3659 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660 __func__,
3661 list_empty(&conf->handle_list) ? "empty" : "busy",
3662 list_empty(&conf->hold_list) ? "empty" : "busy",
3663 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665 if (!list_empty(&conf->handle_list)) {
3666 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668 if (list_empty(&conf->hold_list))
3669 conf->bypass_count = 0;
3670 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671 if (conf->hold_list.next == conf->last_hold)
3672 conf->bypass_count++;
3673 else {
3674 conf->last_hold = conf->hold_list.next;
3675 conf->bypass_count -= conf->bypass_threshold;
3676 if (conf->bypass_count < 0)
3677 conf->bypass_count = 0;
3678 }
3679 }
3680 } else if (!list_empty(&conf->hold_list) &&
3681 ((conf->bypass_threshold &&
3682 conf->bypass_count > conf->bypass_threshold) ||
3683 atomic_read(&conf->pending_full_writes) == 0)) {
3684 sh = list_entry(conf->hold_list.next,
3685 typeof(*sh), lru);
3686 conf->bypass_count -= conf->bypass_threshold;
3687 if (conf->bypass_count < 0)
3688 conf->bypass_count = 0;
3689 } else
3690 return NULL;
3691
3692 list_del_init(&sh->lru);
3693 atomic_inc(&sh->count);
3694 BUG_ON(atomic_read(&sh->count) != 1);
3695 return sh;
3696}
3697
3698static int make_request(mddev_t *mddev, struct bio * bi)
3699{
3700 raid5_conf_t *conf = mddev->private;
3701 int dd_idx;
3702 sector_t new_sector;
3703 sector_t logical_sector, last_sector;
3704 struct stripe_head *sh;
3705 const int rw = bio_data_dir(bi);
3706 int remaining;
3707 int plugged;
3708
3709 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710 md_flush_request(mddev, bi);
3711 return 0;
3712 }
3713
3714 md_write_start(mddev, bi);
3715
3716 if (rw == READ &&
3717 mddev->reshape_position == MaxSector &&
3718 chunk_aligned_read(mddev,bi))
3719 return 0;
3720
3721 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722 last_sector = bi->bi_sector + (bi->bi_size>>9);
3723 bi->bi_next = NULL;
3724 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3725
3726 plugged = mddev_check_plugged(mddev);
3727 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728 DEFINE_WAIT(w);
3729 int disks, data_disks;
3730 int previous;
3731
3732 retry:
3733 previous = 0;
3734 disks = conf->raid_disks;
3735 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3736 if (unlikely(conf->reshape_progress != MaxSector)) {
3737 /* spinlock is needed as reshape_progress may be
3738 * 64bit on a 32bit platform, and so it might be
3739 * possible to see a half-updated value
3740 * Of course reshape_progress could change after
3741 * the lock is dropped, so once we get a reference
3742 * to the stripe that we think it is, we will have
3743 * to check again.
3744 */
3745 spin_lock_irq(&conf->device_lock);
3746 if (mddev->delta_disks < 0
3747 ? logical_sector < conf->reshape_progress
3748 : logical_sector >= conf->reshape_progress) {
3749 disks = conf->previous_raid_disks;
3750 previous = 1;
3751 } else {
3752 if (mddev->delta_disks < 0
3753 ? logical_sector < conf->reshape_safe
3754 : logical_sector >= conf->reshape_safe) {
3755 spin_unlock_irq(&conf->device_lock);
3756 schedule();
3757 goto retry;
3758 }
3759 }
3760 spin_unlock_irq(&conf->device_lock);
3761 }
3762 data_disks = disks - conf->max_degraded;
3763
3764 new_sector = raid5_compute_sector(conf, logical_sector,
3765 previous,
3766 &dd_idx, NULL);
3767 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768 (unsigned long long)new_sector,
3769 (unsigned long long)logical_sector);
3770
3771 sh = get_active_stripe(conf, new_sector, previous,
3772 (bi->bi_rw&RWA_MASK), 0);
3773 if (sh) {
3774 if (unlikely(previous)) {
3775 /* expansion might have moved on while waiting for a
3776 * stripe, so we must do the range check again.
3777 * Expansion could still move past after this
3778 * test, but as we are holding a reference to
3779 * 'sh', we know that if that happens,
3780 * STRIPE_EXPANDING will get set and the expansion
3781 * won't proceed until we finish with the stripe.
3782 */
3783 int must_retry = 0;
3784 spin_lock_irq(&conf->device_lock);
3785 if (mddev->delta_disks < 0
3786 ? logical_sector >= conf->reshape_progress
3787 : logical_sector < conf->reshape_progress)
3788 /* mismatch, need to try again */
3789 must_retry = 1;
3790 spin_unlock_irq(&conf->device_lock);
3791 if (must_retry) {
3792 release_stripe(sh);
3793 schedule();
3794 goto retry;
3795 }
3796 }
3797
3798 if (rw == WRITE &&
3799 logical_sector >= mddev->suspend_lo &&
3800 logical_sector < mddev->suspend_hi) {
3801 release_stripe(sh);
3802 /* As the suspend_* range is controlled by
3803 * userspace, we want an interruptible
3804 * wait.
3805 */
3806 flush_signals(current);
3807 prepare_to_wait(&conf->wait_for_overlap,
3808 &w, TASK_INTERRUPTIBLE);
3809 if (logical_sector >= mddev->suspend_lo &&
3810 logical_sector < mddev->suspend_hi)
3811 schedule();
3812 goto retry;
3813 }
3814
3815 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817 /* Stripe is busy expanding or
3818 * add failed due to overlap. Flush everything
3819 * and wait a while
3820 */
3821 md_wakeup_thread(mddev->thread);
3822 release_stripe(sh);
3823 schedule();
3824 goto retry;
3825 }
3826 finish_wait(&conf->wait_for_overlap, &w);
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828 clear_bit(STRIPE_DELAYED, &sh->state);
3829 if ((bi->bi_rw & REQ_SYNC) &&
3830 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831 atomic_inc(&conf->preread_active_stripes);
3832 release_stripe(sh);
3833 } else {
3834 /* cannot get stripe for read-ahead, just give-up */
3835 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836 finish_wait(&conf->wait_for_overlap, &w);
3837 break;
3838 }
3839
3840 }
3841 if (!plugged)
3842 md_wakeup_thread(mddev->thread);
3843
3844 spin_lock_irq(&conf->device_lock);
3845 remaining = raid5_dec_bi_phys_segments(bi);
3846 spin_unlock_irq(&conf->device_lock);
3847 if (remaining == 0) {
3848
3849 if ( rw == WRITE )
3850 md_write_end(mddev);
3851
3852 bio_endio(bi, 0);
3853 }
3854
3855 return 0;
3856}
3857
3858static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3859
3860static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3861{
3862 /* reshaping is quite different to recovery/resync so it is
3863 * handled quite separately ... here.
3864 *
3865 * On each call to sync_request, we gather one chunk worth of
3866 * destination stripes and flag them as expanding.
3867 * Then we find all the source stripes and request reads.
3868 * As the reads complete, handle_stripe will copy the data
3869 * into the destination stripe and release that stripe.
3870 */
3871 raid5_conf_t *conf = mddev->private;
3872 struct stripe_head *sh;
3873 sector_t first_sector, last_sector;
3874 int raid_disks = conf->previous_raid_disks;
3875 int data_disks = raid_disks - conf->max_degraded;
3876 int new_data_disks = conf->raid_disks - conf->max_degraded;
3877 int i;
3878 int dd_idx;
3879 sector_t writepos, readpos, safepos;
3880 sector_t stripe_addr;
3881 int reshape_sectors;
3882 struct list_head stripes;
3883
3884 if (sector_nr == 0) {
3885 /* If restarting in the middle, skip the initial sectors */
3886 if (mddev->delta_disks < 0 &&
3887 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3888 sector_nr = raid5_size(mddev, 0, 0)
3889 - conf->reshape_progress;
3890 } else if (mddev->delta_disks >= 0 &&
3891 conf->reshape_progress > 0)
3892 sector_nr = conf->reshape_progress;
3893 sector_div(sector_nr, new_data_disks);
3894 if (sector_nr) {
3895 mddev->curr_resync_completed = sector_nr;
3896 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3897 *skipped = 1;
3898 return sector_nr;
3899 }
3900 }
3901
3902 /* We need to process a full chunk at a time.
3903 * If old and new chunk sizes differ, we need to process the
3904 * largest of these
3905 */
3906 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3907 reshape_sectors = mddev->new_chunk_sectors;
3908 else
3909 reshape_sectors = mddev->chunk_sectors;
3910
3911 /* we update the metadata when there is more than 3Meg
3912 * in the block range (that is rather arbitrary, should
3913 * probably be time based) or when the data about to be
3914 * copied would over-write the source of the data at
3915 * the front of the range.
3916 * i.e. one new_stripe along from reshape_progress new_maps
3917 * to after where reshape_safe old_maps to
3918 */
3919 writepos = conf->reshape_progress;
3920 sector_div(writepos, new_data_disks);
3921 readpos = conf->reshape_progress;
3922 sector_div(readpos, data_disks);
3923 safepos = conf->reshape_safe;
3924 sector_div(safepos, data_disks);
3925 if (mddev->delta_disks < 0) {
3926 writepos -= min_t(sector_t, reshape_sectors, writepos);
3927 readpos += reshape_sectors;
3928 safepos += reshape_sectors;
3929 } else {
3930 writepos += reshape_sectors;
3931 readpos -= min_t(sector_t, reshape_sectors, readpos);
3932 safepos -= min_t(sector_t, reshape_sectors, safepos);
3933 }
3934
3935 /* 'writepos' is the most advanced device address we might write.
3936 * 'readpos' is the least advanced device address we might read.
3937 * 'safepos' is the least address recorded in the metadata as having
3938 * been reshaped.
3939 * If 'readpos' is behind 'writepos', then there is no way that we can
3940 * ensure safety in the face of a crash - that must be done by userspace
3941 * making a backup of the data. So in that case there is no particular
3942 * rush to update metadata.
3943 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3944 * update the metadata to advance 'safepos' to match 'readpos' so that
3945 * we can be safe in the event of a crash.
3946 * So we insist on updating metadata if safepos is behind writepos and
3947 * readpos is beyond writepos.
3948 * In any case, update the metadata every 10 seconds.
3949 * Maybe that number should be configurable, but I'm not sure it is
3950 * worth it.... maybe it could be a multiple of safemode_delay???
3951 */
3952 if ((mddev->delta_disks < 0
3953 ? (safepos > writepos && readpos < writepos)
3954 : (safepos < writepos && readpos > writepos)) ||
3955 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3956 /* Cannot proceed until we've updated the superblock... */
3957 wait_event(conf->wait_for_overlap,
3958 atomic_read(&conf->reshape_stripes)==0);
3959 mddev->reshape_position = conf->reshape_progress;
3960 mddev->curr_resync_completed = sector_nr;
3961 conf->reshape_checkpoint = jiffies;
3962 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3963 md_wakeup_thread(mddev->thread);
3964 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3965 kthread_should_stop());
3966 spin_lock_irq(&conf->device_lock);
3967 conf->reshape_safe = mddev->reshape_position;
3968 spin_unlock_irq(&conf->device_lock);
3969 wake_up(&conf->wait_for_overlap);
3970 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3971 }
3972
3973 if (mddev->delta_disks < 0) {
3974 BUG_ON(conf->reshape_progress == 0);
3975 stripe_addr = writepos;
3976 BUG_ON((mddev->dev_sectors &
3977 ~((sector_t)reshape_sectors - 1))
3978 - reshape_sectors - stripe_addr
3979 != sector_nr);
3980 } else {
3981 BUG_ON(writepos != sector_nr + reshape_sectors);
3982 stripe_addr = sector_nr;
3983 }
3984 INIT_LIST_HEAD(&stripes);
3985 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3986 int j;
3987 int skipped_disk = 0;
3988 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3989 set_bit(STRIPE_EXPANDING, &sh->state);
3990 atomic_inc(&conf->reshape_stripes);
3991 /* If any of this stripe is beyond the end of the old
3992 * array, then we need to zero those blocks
3993 */
3994 for (j=sh->disks; j--;) {
3995 sector_t s;
3996 if (j == sh->pd_idx)
3997 continue;
3998 if (conf->level == 6 &&
3999 j == sh->qd_idx)
4000 continue;
4001 s = compute_blocknr(sh, j, 0);
4002 if (s < raid5_size(mddev, 0, 0)) {
4003 skipped_disk = 1;
4004 continue;
4005 }
4006 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4007 set_bit(R5_Expanded, &sh->dev[j].flags);
4008 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4009 }
4010 if (!skipped_disk) {
4011 set_bit(STRIPE_EXPAND_READY, &sh->state);
4012 set_bit(STRIPE_HANDLE, &sh->state);
4013 }
4014 list_add(&sh->lru, &stripes);
4015 }
4016 spin_lock_irq(&conf->device_lock);
4017 if (mddev->delta_disks < 0)
4018 conf->reshape_progress -= reshape_sectors * new_data_disks;
4019 else
4020 conf->reshape_progress += reshape_sectors * new_data_disks;
4021 spin_unlock_irq(&conf->device_lock);
4022 /* Ok, those stripe are ready. We can start scheduling
4023 * reads on the source stripes.
4024 * The source stripes are determined by mapping the first and last
4025 * block on the destination stripes.
4026 */
4027 first_sector =
4028 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4029 1, &dd_idx, NULL);
4030 last_sector =
4031 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4032 * new_data_disks - 1),
4033 1, &dd_idx, NULL);
4034 if (last_sector >= mddev->dev_sectors)
4035 last_sector = mddev->dev_sectors - 1;
4036 while (first_sector <= last_sector) {
4037 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4038 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4039 set_bit(STRIPE_HANDLE, &sh->state);
4040 release_stripe(sh);
4041 first_sector += STRIPE_SECTORS;
4042 }
4043 /* Now that the sources are clearly marked, we can release
4044 * the destination stripes
4045 */
4046 while (!list_empty(&stripes)) {
4047 sh = list_entry(stripes.next, struct stripe_head, lru);
4048 list_del_init(&sh->lru);
4049 release_stripe(sh);
4050 }
4051 /* If this takes us to the resync_max point where we have to pause,
4052 * then we need to write out the superblock.
4053 */
4054 sector_nr += reshape_sectors;
4055 if ((sector_nr - mddev->curr_resync_completed) * 2
4056 >= mddev->resync_max - mddev->curr_resync_completed) {
4057 /* Cannot proceed until we've updated the superblock... */
4058 wait_event(conf->wait_for_overlap,
4059 atomic_read(&conf->reshape_stripes) == 0);
4060 mddev->reshape_position = conf->reshape_progress;
4061 mddev->curr_resync_completed = sector_nr;
4062 conf->reshape_checkpoint = jiffies;
4063 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4064 md_wakeup_thread(mddev->thread);
4065 wait_event(mddev->sb_wait,
4066 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4067 || kthread_should_stop());
4068 spin_lock_irq(&conf->device_lock);
4069 conf->reshape_safe = mddev->reshape_position;
4070 spin_unlock_irq(&conf->device_lock);
4071 wake_up(&conf->wait_for_overlap);
4072 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4073 }
4074 return reshape_sectors;
4075}
4076
4077/* FIXME go_faster isn't used */
4078static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4079{
4080 raid5_conf_t *conf = mddev->private;
4081 struct stripe_head *sh;
4082 sector_t max_sector = mddev->dev_sectors;
4083 sector_t sync_blocks;
4084 int still_degraded = 0;
4085 int i;
4086
4087 if (sector_nr >= max_sector) {
4088 /* just being told to finish up .. nothing much to do */
4089
4090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4091 end_reshape(conf);
4092 return 0;
4093 }
4094
4095 if (mddev->curr_resync < max_sector) /* aborted */
4096 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4097 &sync_blocks, 1);
4098 else /* completed sync */
4099 conf->fullsync = 0;
4100 bitmap_close_sync(mddev->bitmap);
4101
4102 return 0;
4103 }
4104
4105 /* Allow raid5_quiesce to complete */
4106 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4107
4108 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4109 return reshape_request(mddev, sector_nr, skipped);
4110
4111 /* No need to check resync_max as we never do more than one
4112 * stripe, and as resync_max will always be on a chunk boundary,
4113 * if the check in md_do_sync didn't fire, there is no chance
4114 * of overstepping resync_max here
4115 */
4116
4117 /* if there is too many failed drives and we are trying
4118 * to resync, then assert that we are finished, because there is
4119 * nothing we can do.
4120 */
4121 if (mddev->degraded >= conf->max_degraded &&
4122 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4123 sector_t rv = mddev->dev_sectors - sector_nr;
4124 *skipped = 1;
4125 return rv;
4126 }
4127 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4128 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4129 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4130 /* we can skip this block, and probably more */
4131 sync_blocks /= STRIPE_SECTORS;
4132 *skipped = 1;
4133 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4134 }
4135
4136
4137 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4138
4139 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4140 if (sh == NULL) {
4141 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4142 /* make sure we don't swamp the stripe cache if someone else
4143 * is trying to get access
4144 */
4145 schedule_timeout_uninterruptible(1);
4146 }
4147 /* Need to check if array will still be degraded after recovery/resync
4148 * We don't need to check the 'failed' flag as when that gets set,
4149 * recovery aborts.
4150 */
4151 for (i = 0; i < conf->raid_disks; i++)
4152 if (conf->disks[i].rdev == NULL)
4153 still_degraded = 1;
4154
4155 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4156
4157 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4158
4159 handle_stripe(sh);
4160 release_stripe(sh);
4161
4162 return STRIPE_SECTORS;
4163}
4164
4165static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4166{
4167 /* We may not be able to submit a whole bio at once as there
4168 * may not be enough stripe_heads available.
4169 * We cannot pre-allocate enough stripe_heads as we may need
4170 * more than exist in the cache (if we allow ever large chunks).
4171 * So we do one stripe head at a time and record in
4172 * ->bi_hw_segments how many have been done.
4173 *
4174 * We *know* that this entire raid_bio is in one chunk, so
4175 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4176 */
4177 struct stripe_head *sh;
4178 int dd_idx;
4179 sector_t sector, logical_sector, last_sector;
4180 int scnt = 0;
4181 int remaining;
4182 int handled = 0;
4183
4184 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4185 sector = raid5_compute_sector(conf, logical_sector,
4186 0, &dd_idx, NULL);
4187 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4188
4189 for (; logical_sector < last_sector;
4190 logical_sector += STRIPE_SECTORS,
4191 sector += STRIPE_SECTORS,
4192 scnt++) {
4193
4194 if (scnt < raid5_bi_hw_segments(raid_bio))
4195 /* already done this stripe */
4196 continue;
4197
4198 sh = get_active_stripe(conf, sector, 0, 1, 0);
4199
4200 if (!sh) {
4201 /* failed to get a stripe - must wait */
4202 raid5_set_bi_hw_segments(raid_bio, scnt);
4203 conf->retry_read_aligned = raid_bio;
4204 return handled;
4205 }
4206
4207 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4208 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4209 release_stripe(sh);
4210 raid5_set_bi_hw_segments(raid_bio, scnt);
4211 conf->retry_read_aligned = raid_bio;
4212 return handled;
4213 }
4214
4215 handle_stripe(sh);
4216 release_stripe(sh);
4217 handled++;
4218 }
4219 spin_lock_irq(&conf->device_lock);
4220 remaining = raid5_dec_bi_phys_segments(raid_bio);
4221 spin_unlock_irq(&conf->device_lock);
4222 if (remaining == 0)
4223 bio_endio(raid_bio, 0);
4224 if (atomic_dec_and_test(&conf->active_aligned_reads))
4225 wake_up(&conf->wait_for_stripe);
4226 return handled;
4227}
4228
4229
4230/*
4231 * This is our raid5 kernel thread.
4232 *
4233 * We scan the hash table for stripes which can be handled now.
4234 * During the scan, completed stripes are saved for us by the interrupt
4235 * handler, so that they will not have to wait for our next wakeup.
4236 */
4237static void raid5d(mddev_t *mddev)
4238{
4239 struct stripe_head *sh;
4240 raid5_conf_t *conf = mddev->private;
4241 int handled;
4242 struct blk_plug plug;
4243
4244 pr_debug("+++ raid5d active\n");
4245
4246 md_check_recovery(mddev);
4247
4248 blk_start_plug(&plug);
4249 handled = 0;
4250 spin_lock_irq(&conf->device_lock);
4251 while (1) {
4252 struct bio *bio;
4253
4254 if (atomic_read(&mddev->plug_cnt) == 0 &&
4255 !list_empty(&conf->bitmap_list)) {
4256 /* Now is a good time to flush some bitmap updates */
4257 conf->seq_flush++;
4258 spin_unlock_irq(&conf->device_lock);
4259 bitmap_unplug(mddev->bitmap);
4260 spin_lock_irq(&conf->device_lock);
4261 conf->seq_write = conf->seq_flush;
4262 activate_bit_delay(conf);
4263 }
4264 if (atomic_read(&mddev->plug_cnt) == 0)
4265 raid5_activate_delayed(conf);
4266
4267 while ((bio = remove_bio_from_retry(conf))) {
4268 int ok;
4269 spin_unlock_irq(&conf->device_lock);
4270 ok = retry_aligned_read(conf, bio);
4271 spin_lock_irq(&conf->device_lock);
4272 if (!ok)
4273 break;
4274 handled++;
4275 }
4276
4277 sh = __get_priority_stripe(conf);
4278
4279 if (!sh)
4280 break;
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 handled++;
4284 handle_stripe(sh);
4285 release_stripe(sh);
4286 cond_resched();
4287
4288 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4289 md_check_recovery(mddev);
4290
4291 spin_lock_irq(&conf->device_lock);
4292 }
4293 pr_debug("%d stripes handled\n", handled);
4294
4295 spin_unlock_irq(&conf->device_lock);
4296
4297 async_tx_issue_pending_all();
4298 blk_finish_plug(&plug);
4299
4300 pr_debug("--- raid5d inactive\n");
4301}
4302
4303static ssize_t
4304raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4305{
4306 raid5_conf_t *conf = mddev->private;
4307 if (conf)
4308 return sprintf(page, "%d\n", conf->max_nr_stripes);
4309 else
4310 return 0;
4311}
4312
4313int
4314raid5_set_cache_size(mddev_t *mddev, int size)
4315{
4316 raid5_conf_t *conf = mddev->private;
4317 int err;
4318
4319 if (size <= 16 || size > 32768)
4320 return -EINVAL;
4321 while (size < conf->max_nr_stripes) {
4322 if (drop_one_stripe(conf))
4323 conf->max_nr_stripes--;
4324 else
4325 break;
4326 }
4327 err = md_allow_write(mddev);
4328 if (err)
4329 return err;
4330 while (size > conf->max_nr_stripes) {
4331 if (grow_one_stripe(conf))
4332 conf->max_nr_stripes++;
4333 else break;
4334 }
4335 return 0;
4336}
4337EXPORT_SYMBOL(raid5_set_cache_size);
4338
4339static ssize_t
4340raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4341{
4342 raid5_conf_t *conf = mddev->private;
4343 unsigned long new;
4344 int err;
4345
4346 if (len >= PAGE_SIZE)
4347 return -EINVAL;
4348 if (!conf)
4349 return -ENODEV;
4350
4351 if (strict_strtoul(page, 10, &new))
4352 return -EINVAL;
4353 err = raid5_set_cache_size(mddev, new);
4354 if (err)
4355 return err;
4356 return len;
4357}
4358
4359static struct md_sysfs_entry
4360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4361 raid5_show_stripe_cache_size,
4362 raid5_store_stripe_cache_size);
4363
4364static ssize_t
4365raid5_show_preread_threshold(mddev_t *mddev, char *page)
4366{
4367 raid5_conf_t *conf = mddev->private;
4368 if (conf)
4369 return sprintf(page, "%d\n", conf->bypass_threshold);
4370 else
4371 return 0;
4372}
4373
4374static ssize_t
4375raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4376{
4377 raid5_conf_t *conf = mddev->private;
4378 unsigned long new;
4379 if (len >= PAGE_SIZE)
4380 return -EINVAL;
4381 if (!conf)
4382 return -ENODEV;
4383
4384 if (strict_strtoul(page, 10, &new))
4385 return -EINVAL;
4386 if (new > conf->max_nr_stripes)
4387 return -EINVAL;
4388 conf->bypass_threshold = new;
4389 return len;
4390}
4391
4392static struct md_sysfs_entry
4393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4394 S_IRUGO | S_IWUSR,
4395 raid5_show_preread_threshold,
4396 raid5_store_preread_threshold);
4397
4398static ssize_t
4399stripe_cache_active_show(mddev_t *mddev, char *page)
4400{
4401 raid5_conf_t *conf = mddev->private;
4402 if (conf)
4403 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4404 else
4405 return 0;
4406}
4407
4408static struct md_sysfs_entry
4409raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4410
4411static struct attribute *raid5_attrs[] = {
4412 &raid5_stripecache_size.attr,
4413 &raid5_stripecache_active.attr,
4414 &raid5_preread_bypass_threshold.attr,
4415 NULL,
4416};
4417static struct attribute_group raid5_attrs_group = {
4418 .name = NULL,
4419 .attrs = raid5_attrs,
4420};
4421
4422static sector_t
4423raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4424{
4425 raid5_conf_t *conf = mddev->private;
4426
4427 if (!sectors)
4428 sectors = mddev->dev_sectors;
4429 if (!raid_disks)
4430 /* size is defined by the smallest of previous and new size */
4431 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4432
4433 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4434 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4435 return sectors * (raid_disks - conf->max_degraded);
4436}
4437
4438static void raid5_free_percpu(raid5_conf_t *conf)
4439{
4440 struct raid5_percpu *percpu;
4441 unsigned long cpu;
4442
4443 if (!conf->percpu)
4444 return;
4445
4446 get_online_cpus();
4447 for_each_possible_cpu(cpu) {
4448 percpu = per_cpu_ptr(conf->percpu, cpu);
4449 safe_put_page(percpu->spare_page);
4450 kfree(percpu->scribble);
4451 }
4452#ifdef CONFIG_HOTPLUG_CPU
4453 unregister_cpu_notifier(&conf->cpu_notify);
4454#endif
4455 put_online_cpus();
4456
4457 free_percpu(conf->percpu);
4458}
4459
4460static void free_conf(raid5_conf_t *conf)
4461{
4462 shrink_stripes(conf);
4463 raid5_free_percpu(conf);
4464 kfree(conf->disks);
4465 kfree(conf->stripe_hashtbl);
4466 kfree(conf);
4467}
4468
4469#ifdef CONFIG_HOTPLUG_CPU
4470static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4471 void *hcpu)
4472{
4473 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4474 long cpu = (long)hcpu;
4475 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4476
4477 switch (action) {
4478 case CPU_UP_PREPARE:
4479 case CPU_UP_PREPARE_FROZEN:
4480 if (conf->level == 6 && !percpu->spare_page)
4481 percpu->spare_page = alloc_page(GFP_KERNEL);
4482 if (!percpu->scribble)
4483 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4484
4485 if (!percpu->scribble ||
4486 (conf->level == 6 && !percpu->spare_page)) {
4487 safe_put_page(percpu->spare_page);
4488 kfree(percpu->scribble);
4489 pr_err("%s: failed memory allocation for cpu%ld\n",
4490 __func__, cpu);
4491 return notifier_from_errno(-ENOMEM);
4492 }
4493 break;
4494 case CPU_DEAD:
4495 case CPU_DEAD_FROZEN:
4496 safe_put_page(percpu->spare_page);
4497 kfree(percpu->scribble);
4498 percpu->spare_page = NULL;
4499 percpu->scribble = NULL;
4500 break;
4501 default:
4502 break;
4503 }
4504 return NOTIFY_OK;
4505}
4506#endif
4507
4508static int raid5_alloc_percpu(raid5_conf_t *conf)
4509{
4510 unsigned long cpu;
4511 struct page *spare_page;
4512 struct raid5_percpu __percpu *allcpus;
4513 void *scribble;
4514 int err;
4515
4516 allcpus = alloc_percpu(struct raid5_percpu);
4517 if (!allcpus)
4518 return -ENOMEM;
4519 conf->percpu = allcpus;
4520
4521 get_online_cpus();
4522 err = 0;
4523 for_each_present_cpu(cpu) {
4524 if (conf->level == 6) {
4525 spare_page = alloc_page(GFP_KERNEL);
4526 if (!spare_page) {
4527 err = -ENOMEM;
4528 break;
4529 }
4530 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4531 }
4532 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4533 if (!scribble) {
4534 err = -ENOMEM;
4535 break;
4536 }
4537 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4538 }
4539#ifdef CONFIG_HOTPLUG_CPU
4540 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4541 conf->cpu_notify.priority = 0;
4542 if (err == 0)
4543 err = register_cpu_notifier(&conf->cpu_notify);
4544#endif
4545 put_online_cpus();
4546
4547 return err;
4548}
4549
4550static raid5_conf_t *setup_conf(mddev_t *mddev)
4551{
4552 raid5_conf_t *conf;
4553 int raid_disk, memory, max_disks;
4554 mdk_rdev_t *rdev;
4555 struct disk_info *disk;
4556
4557 if (mddev->new_level != 5
4558 && mddev->new_level != 4
4559 && mddev->new_level != 6) {
4560 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4561 mdname(mddev), mddev->new_level);
4562 return ERR_PTR(-EIO);
4563 }
4564 if ((mddev->new_level == 5
4565 && !algorithm_valid_raid5(mddev->new_layout)) ||
4566 (mddev->new_level == 6
4567 && !algorithm_valid_raid6(mddev->new_layout))) {
4568 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4569 mdname(mddev), mddev->new_layout);
4570 return ERR_PTR(-EIO);
4571 }
4572 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4573 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4574 mdname(mddev), mddev->raid_disks);
4575 return ERR_PTR(-EINVAL);
4576 }
4577
4578 if (!mddev->new_chunk_sectors ||
4579 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4580 !is_power_of_2(mddev->new_chunk_sectors)) {
4581 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4582 mdname(mddev), mddev->new_chunk_sectors << 9);
4583 return ERR_PTR(-EINVAL);
4584 }
4585
4586 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4587 if (conf == NULL)
4588 goto abort;
4589 spin_lock_init(&conf->device_lock);
4590 init_waitqueue_head(&conf->wait_for_stripe);
4591 init_waitqueue_head(&conf->wait_for_overlap);
4592 INIT_LIST_HEAD(&conf->handle_list);
4593 INIT_LIST_HEAD(&conf->hold_list);
4594 INIT_LIST_HEAD(&conf->delayed_list);
4595 INIT_LIST_HEAD(&conf->bitmap_list);
4596 INIT_LIST_HEAD(&conf->inactive_list);
4597 atomic_set(&conf->active_stripes, 0);
4598 atomic_set(&conf->preread_active_stripes, 0);
4599 atomic_set(&conf->active_aligned_reads, 0);
4600 conf->bypass_threshold = BYPASS_THRESHOLD;
4601
4602 conf->raid_disks = mddev->raid_disks;
4603 if (mddev->reshape_position == MaxSector)
4604 conf->previous_raid_disks = mddev->raid_disks;
4605 else
4606 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4607 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4608 conf->scribble_len = scribble_len(max_disks);
4609
4610 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4611 GFP_KERNEL);
4612 if (!conf->disks)
4613 goto abort;
4614
4615 conf->mddev = mddev;
4616
4617 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4618 goto abort;
4619
4620 conf->level = mddev->new_level;
4621 if (raid5_alloc_percpu(conf) != 0)
4622 goto abort;
4623
4624 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4625
4626 list_for_each_entry(rdev, &mddev->disks, same_set) {
4627 raid_disk = rdev->raid_disk;
4628 if (raid_disk >= max_disks
4629 || raid_disk < 0)
4630 continue;
4631 disk = conf->disks + raid_disk;
4632
4633 disk->rdev = rdev;
4634
4635 if (test_bit(In_sync, &rdev->flags)) {
4636 char b[BDEVNAME_SIZE];
4637 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4638 " disk %d\n",
4639 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4640 } else if (rdev->saved_raid_disk != raid_disk)
4641 /* Cannot rely on bitmap to complete recovery */
4642 conf->fullsync = 1;
4643 }
4644
4645 conf->chunk_sectors = mddev->new_chunk_sectors;
4646 conf->level = mddev->new_level;
4647 if (conf->level == 6)
4648 conf->max_degraded = 2;
4649 else
4650 conf->max_degraded = 1;
4651 conf->algorithm = mddev->new_layout;
4652 conf->max_nr_stripes = NR_STRIPES;
4653 conf->reshape_progress = mddev->reshape_position;
4654 if (conf->reshape_progress != MaxSector) {
4655 conf->prev_chunk_sectors = mddev->chunk_sectors;
4656 conf->prev_algo = mddev->layout;
4657 }
4658
4659 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4660 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4661 if (grow_stripes(conf, conf->max_nr_stripes)) {
4662 printk(KERN_ERR
4663 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4664 mdname(mddev), memory);
4665 goto abort;
4666 } else
4667 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4668 mdname(mddev), memory);
4669
4670 conf->thread = md_register_thread(raid5d, mddev, NULL);
4671 if (!conf->thread) {
4672 printk(KERN_ERR
4673 "md/raid:%s: couldn't allocate thread.\n",
4674 mdname(mddev));
4675 goto abort;
4676 }
4677
4678 return conf;
4679
4680 abort:
4681 if (conf) {
4682 free_conf(conf);
4683 return ERR_PTR(-EIO);
4684 } else
4685 return ERR_PTR(-ENOMEM);
4686}
4687
4688
4689static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4690{
4691 switch (algo) {
4692 case ALGORITHM_PARITY_0:
4693 if (raid_disk < max_degraded)
4694 return 1;
4695 break;
4696 case ALGORITHM_PARITY_N:
4697 if (raid_disk >= raid_disks - max_degraded)
4698 return 1;
4699 break;
4700 case ALGORITHM_PARITY_0_6:
4701 if (raid_disk == 0 ||
4702 raid_disk == raid_disks - 1)
4703 return 1;
4704 break;
4705 case ALGORITHM_LEFT_ASYMMETRIC_6:
4706 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4707 case ALGORITHM_LEFT_SYMMETRIC_6:
4708 case ALGORITHM_RIGHT_SYMMETRIC_6:
4709 if (raid_disk == raid_disks - 1)
4710 return 1;
4711 }
4712 return 0;
4713}
4714
4715static int run(mddev_t *mddev)
4716{
4717 raid5_conf_t *conf;
4718 int working_disks = 0;
4719 int dirty_parity_disks = 0;
4720 mdk_rdev_t *rdev;
4721 sector_t reshape_offset = 0;
4722
4723 if (mddev->recovery_cp != MaxSector)
4724 printk(KERN_NOTICE "md/raid:%s: not clean"
4725 " -- starting background reconstruction\n",
4726 mdname(mddev));
4727 if (mddev->reshape_position != MaxSector) {
4728 /* Check that we can continue the reshape.
4729 * Currently only disks can change, it must
4730 * increase, and we must be past the point where
4731 * a stripe over-writes itself
4732 */
4733 sector_t here_new, here_old;
4734 int old_disks;
4735 int max_degraded = (mddev->level == 6 ? 2 : 1);
4736
4737 if (mddev->new_level != mddev->level) {
4738 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4739 "required - aborting.\n",
4740 mdname(mddev));
4741 return -EINVAL;
4742 }
4743 old_disks = mddev->raid_disks - mddev->delta_disks;
4744 /* reshape_position must be on a new-stripe boundary, and one
4745 * further up in new geometry must map after here in old
4746 * geometry.
4747 */
4748 here_new = mddev->reshape_position;
4749 if (sector_div(here_new, mddev->new_chunk_sectors *
4750 (mddev->raid_disks - max_degraded))) {
4751 printk(KERN_ERR "md/raid:%s: reshape_position not "
4752 "on a stripe boundary\n", mdname(mddev));
4753 return -EINVAL;
4754 }
4755 reshape_offset = here_new * mddev->new_chunk_sectors;
4756 /* here_new is the stripe we will write to */
4757 here_old = mddev->reshape_position;
4758 sector_div(here_old, mddev->chunk_sectors *
4759 (old_disks-max_degraded));
4760 /* here_old is the first stripe that we might need to read
4761 * from */
4762 if (mddev->delta_disks == 0) {
4763 /* We cannot be sure it is safe to start an in-place
4764 * reshape. It is only safe if user-space if monitoring
4765 * and taking constant backups.
4766 * mdadm always starts a situation like this in
4767 * readonly mode so it can take control before
4768 * allowing any writes. So just check for that.
4769 */
4770 if ((here_new * mddev->new_chunk_sectors !=
4771 here_old * mddev->chunk_sectors) ||
4772 mddev->ro == 0) {
4773 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4774 " in read-only mode - aborting\n",
4775 mdname(mddev));
4776 return -EINVAL;
4777 }
4778 } else if (mddev->delta_disks < 0
4779 ? (here_new * mddev->new_chunk_sectors <=
4780 here_old * mddev->chunk_sectors)
4781 : (here_new * mddev->new_chunk_sectors >=
4782 here_old * mddev->chunk_sectors)) {
4783 /* Reading from the same stripe as writing to - bad */
4784 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4785 "auto-recovery - aborting.\n",
4786 mdname(mddev));
4787 return -EINVAL;
4788 }
4789 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4790 mdname(mddev));
4791 /* OK, we should be able to continue; */
4792 } else {
4793 BUG_ON(mddev->level != mddev->new_level);
4794 BUG_ON(mddev->layout != mddev->new_layout);
4795 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4796 BUG_ON(mddev->delta_disks != 0);
4797 }
4798
4799 if (mddev->private == NULL)
4800 conf = setup_conf(mddev);
4801 else
4802 conf = mddev->private;
4803
4804 if (IS_ERR(conf))
4805 return PTR_ERR(conf);
4806
4807 mddev->thread = conf->thread;
4808 conf->thread = NULL;
4809 mddev->private = conf;
4810
4811 /*
4812 * 0 for a fully functional array, 1 or 2 for a degraded array.
4813 */
4814 list_for_each_entry(rdev, &mddev->disks, same_set) {
4815 if (rdev->raid_disk < 0)
4816 continue;
4817 if (test_bit(In_sync, &rdev->flags)) {
4818 working_disks++;
4819 continue;
4820 }
4821 /* This disc is not fully in-sync. However if it
4822 * just stored parity (beyond the recovery_offset),
4823 * when we don't need to be concerned about the
4824 * array being dirty.
4825 * When reshape goes 'backwards', we never have
4826 * partially completed devices, so we only need
4827 * to worry about reshape going forwards.
4828 */
4829 /* Hack because v0.91 doesn't store recovery_offset properly. */
4830 if (mddev->major_version == 0 &&
4831 mddev->minor_version > 90)
4832 rdev->recovery_offset = reshape_offset;
4833
4834 if (rdev->recovery_offset < reshape_offset) {
4835 /* We need to check old and new layout */
4836 if (!only_parity(rdev->raid_disk,
4837 conf->algorithm,
4838 conf->raid_disks,
4839 conf->max_degraded))
4840 continue;
4841 }
4842 if (!only_parity(rdev->raid_disk,
4843 conf->prev_algo,
4844 conf->previous_raid_disks,
4845 conf->max_degraded))
4846 continue;
4847 dirty_parity_disks++;
4848 }
4849
4850 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4851 - working_disks);
4852
4853 if (has_failed(conf)) {
4854 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4855 " (%d/%d failed)\n",
4856 mdname(mddev), mddev->degraded, conf->raid_disks);
4857 goto abort;
4858 }
4859
4860 /* device size must be a multiple of chunk size */
4861 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4862 mddev->resync_max_sectors = mddev->dev_sectors;
4863
4864 if (mddev->degraded > dirty_parity_disks &&
4865 mddev->recovery_cp != MaxSector) {
4866 if (mddev->ok_start_degraded)
4867 printk(KERN_WARNING
4868 "md/raid:%s: starting dirty degraded array"
4869 " - data corruption possible.\n",
4870 mdname(mddev));
4871 else {
4872 printk(KERN_ERR
4873 "md/raid:%s: cannot start dirty degraded array.\n",
4874 mdname(mddev));
4875 goto abort;
4876 }
4877 }
4878
4879 if (mddev->degraded == 0)
4880 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4881 " devices, algorithm %d\n", mdname(mddev), conf->level,
4882 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4883 mddev->new_layout);
4884 else
4885 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4886 " out of %d devices, algorithm %d\n",
4887 mdname(mddev), conf->level,
4888 mddev->raid_disks - mddev->degraded,
4889 mddev->raid_disks, mddev->new_layout);
4890
4891 print_raid5_conf(conf);
4892
4893 if (conf->reshape_progress != MaxSector) {
4894 conf->reshape_safe = conf->reshape_progress;
4895 atomic_set(&conf->reshape_stripes, 0);
4896 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4898 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4899 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4900 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4901 "reshape");
4902 }
4903
4904
4905 /* Ok, everything is just fine now */
4906 if (mddev->to_remove == &raid5_attrs_group)
4907 mddev->to_remove = NULL;
4908 else if (mddev->kobj.sd &&
4909 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4910 printk(KERN_WARNING
4911 "raid5: failed to create sysfs attributes for %s\n",
4912 mdname(mddev));
4913 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4914
4915 if (mddev->queue) {
4916 int chunk_size;
4917 /* read-ahead size must cover two whole stripes, which
4918 * is 2 * (datadisks) * chunksize where 'n' is the
4919 * number of raid devices
4920 */
4921 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4922 int stripe = data_disks *
4923 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4924 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4925 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4926
4927 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4928
4929 mddev->queue->backing_dev_info.congested_data = mddev;
4930 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4931
4932 chunk_size = mddev->chunk_sectors << 9;
4933 blk_queue_io_min(mddev->queue, chunk_size);
4934 blk_queue_io_opt(mddev->queue, chunk_size *
4935 (conf->raid_disks - conf->max_degraded));
4936
4937 list_for_each_entry(rdev, &mddev->disks, same_set)
4938 disk_stack_limits(mddev->gendisk, rdev->bdev,
4939 rdev->data_offset << 9);
4940 }
4941
4942 return 0;
4943abort:
4944 md_unregister_thread(&mddev->thread);
4945 if (conf) {
4946 print_raid5_conf(conf);
4947 free_conf(conf);
4948 }
4949 mddev->private = NULL;
4950 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4951 return -EIO;
4952}
4953
4954static int stop(mddev_t *mddev)
4955{
4956 raid5_conf_t *conf = mddev->private;
4957
4958 md_unregister_thread(&mddev->thread);
4959 if (mddev->queue)
4960 mddev->queue->backing_dev_info.congested_fn = NULL;
4961 free_conf(conf);
4962 mddev->private = NULL;
4963 mddev->to_remove = &raid5_attrs_group;
4964 return 0;
4965}
4966
4967#ifdef DEBUG
4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4969{
4970 int i;
4971
4972 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974 seq_printf(seq, "sh %llu, count %d.\n",
4975 (unsigned long long)sh->sector, atomic_read(&sh->count));
4976 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4977 for (i = 0; i < sh->disks; i++) {
4978 seq_printf(seq, "(cache%d: %p %ld) ",
4979 i, sh->dev[i].page, sh->dev[i].flags);
4980 }
4981 seq_printf(seq, "\n");
4982}
4983
4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
4985{
4986 struct stripe_head *sh;
4987 struct hlist_node *hn;
4988 int i;
4989
4990 spin_lock_irq(&conf->device_lock);
4991 for (i = 0; i < NR_HASH; i++) {
4992 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4993 if (sh->raid_conf != conf)
4994 continue;
4995 print_sh(seq, sh);
4996 }
4997 }
4998 spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
5002static void status(struct seq_file *seq, mddev_t *mddev)
5003{
5004 raid5_conf_t *conf = mddev->private;
5005 int i;
5006
5007 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008 mddev->chunk_sectors / 2, mddev->layout);
5009 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5010 for (i = 0; i < conf->raid_disks; i++)
5011 seq_printf (seq, "%s",
5012 conf->disks[i].rdev &&
5013 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5014 seq_printf (seq, "]");
5015#ifdef DEBUG
5016 seq_printf (seq, "\n");
5017 printall(seq, conf);
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023 int i;
5024 struct disk_info *tmp;
5025
5026 printk(KERN_DEBUG "RAID conf printout:\n");
5027 if (!conf) {
5028 printk("(conf==NULL)\n");
5029 return;
5030 }
5031 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032 conf->raid_disks,
5033 conf->raid_disks - conf->mddev->degraded);
5034
5035 for (i = 0; i < conf->raid_disks; i++) {
5036 char b[BDEVNAME_SIZE];
5037 tmp = conf->disks + i;
5038 if (tmp->rdev)
5039 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040 i, !test_bit(Faulty, &tmp->rdev->flags),
5041 bdevname(tmp->rdev->bdev, b));
5042 }
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047 int i;
5048 raid5_conf_t *conf = mddev->private;
5049 struct disk_info *tmp;
5050 int count = 0;
5051 unsigned long flags;
5052
5053 for (i = 0; i < conf->raid_disks; i++) {
5054 tmp = conf->disks + i;
5055 if (tmp->rdev
5056 && tmp->rdev->recovery_offset == MaxSector
5057 && !test_bit(Faulty, &tmp->rdev->flags)
5058 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5059 count++;
5060 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5061 }
5062 }
5063 spin_lock_irqsave(&conf->device_lock, flags);
5064 mddev->degraded -= count;
5065 spin_unlock_irqrestore(&conf->device_lock, flags);
5066 print_raid5_conf(conf);
5067 return count;
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072 raid5_conf_t *conf = mddev->private;
5073 int err = 0;
5074 mdk_rdev_t *rdev;
5075 struct disk_info *p = conf->disks + number;
5076
5077 print_raid5_conf(conf);
5078 rdev = p->rdev;
5079 if (rdev) {
5080 if (number >= conf->raid_disks &&
5081 conf->reshape_progress == MaxSector)
5082 clear_bit(In_sync, &rdev->flags);
5083
5084 if (test_bit(In_sync, &rdev->flags) ||
5085 atomic_read(&rdev->nr_pending)) {
5086 err = -EBUSY;
5087 goto abort;
5088 }
5089 /* Only remove non-faulty devices if recovery
5090 * isn't possible.
5091 */
5092 if (!test_bit(Faulty, &rdev->flags) &&
5093 mddev->recovery_disabled != conf->recovery_disabled &&
5094 !has_failed(conf) &&
5095 number < conf->raid_disks) {
5096 err = -EBUSY;
5097 goto abort;
5098 }
5099 p->rdev = NULL;
5100 synchronize_rcu();
5101 if (atomic_read(&rdev->nr_pending)) {
5102 /* lost the race, try later */
5103 err = -EBUSY;
5104 p->rdev = rdev;
5105 }
5106 }
5107abort:
5108
5109 print_raid5_conf(conf);
5110 return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115 raid5_conf_t *conf = mddev->private;
5116 int err = -EEXIST;
5117 int disk;
5118 struct disk_info *p;
5119 int first = 0;
5120 int last = conf->raid_disks - 1;
5121
5122 if (mddev->recovery_disabled == conf->recovery_disabled)
5123 return -EBUSY;
5124
5125 if (has_failed(conf))
5126 /* no point adding a device */
5127 return -EINVAL;
5128
5129 if (rdev->raid_disk >= 0)
5130 first = last = rdev->raid_disk;
5131
5132 /*
5133 * find the disk ... but prefer rdev->saved_raid_disk
5134 * if possible.
5135 */
5136 if (rdev->saved_raid_disk >= 0 &&
5137 rdev->saved_raid_disk >= first &&
5138 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139 disk = rdev->saved_raid_disk;
5140 else
5141 disk = first;
5142 for ( ; disk <= last ; disk++)
5143 if ((p=conf->disks + disk)->rdev == NULL) {
5144 clear_bit(In_sync, &rdev->flags);
5145 rdev->raid_disk = disk;
5146 err = 0;
5147 if (rdev->saved_raid_disk != disk)
5148 conf->fullsync = 1;
5149 rcu_assign_pointer(p->rdev, rdev);
5150 break;
5151 }
5152 print_raid5_conf(conf);
5153 return err;
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158 /* no resync is happening, and there is enough space
5159 * on all devices, so we can resize.
5160 * We need to make sure resync covers any new space.
5161 * If the array is shrinking we should possibly wait until
5162 * any io in the removed space completes, but it hardly seems
5163 * worth it.
5164 */
5165 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5166 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167 mddev->raid_disks));
5168 if (mddev->array_sectors >
5169 raid5_size(mddev, sectors, mddev->raid_disks))
5170 return -EINVAL;
5171 set_capacity(mddev->gendisk, mddev->array_sectors);
5172 revalidate_disk(mddev->gendisk);
5173 if (sectors > mddev->dev_sectors &&
5174 mddev->recovery_cp > mddev->dev_sectors) {
5175 mddev->recovery_cp = mddev->dev_sectors;
5176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177 }
5178 mddev->dev_sectors = sectors;
5179 mddev->resync_max_sectors = sectors;
5180 return 0;
5181}
5182
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185 /* Can only proceed if there are plenty of stripe_heads.
5186 * We need a minimum of one full stripe,, and for sensible progress
5187 * it is best to have about 4 times that.
5188 * If we require 4 times, then the default 256 4K stripe_heads will
5189 * allow for chunk sizes up to 256K, which is probably OK.
5190 * If the chunk size is greater, user-space should request more
5191 * stripe_heads first.
5192 */
5193 raid5_conf_t *conf = mddev->private;
5194 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195 > conf->max_nr_stripes ||
5196 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197 > conf->max_nr_stripes) {
5198 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5199 mdname(mddev),
5200 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201 / STRIPE_SIZE)*4);
5202 return 0;
5203 }
5204 return 1;
5205}
5206
5207static int check_reshape(mddev_t *mddev)
5208{
5209 raid5_conf_t *conf = mddev->private;
5210
5211 if (mddev->delta_disks == 0 &&
5212 mddev->new_layout == mddev->layout &&
5213 mddev->new_chunk_sectors == mddev->chunk_sectors)
5214 return 0; /* nothing to do */
5215 if (mddev->bitmap)
5216 /* Cannot grow a bitmap yet */
5217 return -EBUSY;
5218 if (has_failed(conf))
5219 return -EINVAL;
5220 if (mddev->delta_disks < 0) {
5221 /* We might be able to shrink, but the devices must
5222 * be made bigger first.
5223 * For raid6, 4 is the minimum size.
5224 * Otherwise 2 is the minimum
5225 */
5226 int min = 2;
5227 if (mddev->level == 6)
5228 min = 4;
5229 if (mddev->raid_disks + mddev->delta_disks < min)
5230 return -EINVAL;
5231 }
5232
5233 if (!check_stripe_cache(mddev))
5234 return -ENOSPC;
5235
5236 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
5241 raid5_conf_t *conf = mddev->private;
5242 mdk_rdev_t *rdev;
5243 int spares = 0;
5244 unsigned long flags;
5245
5246 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5247 return -EBUSY;
5248
5249 if (!check_stripe_cache(mddev))
5250 return -ENOSPC;
5251
5252 list_for_each_entry(rdev, &mddev->disks, same_set)
5253 if (!test_bit(In_sync, &rdev->flags)
5254 && !test_bit(Faulty, &rdev->flags))
5255 spares++;
5256
5257 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5258 /* Not enough devices even to make a degraded array
5259 * of that size
5260 */
5261 return -EINVAL;
5262
5263 /* Refuse to reduce size of the array. Any reductions in
5264 * array size must be through explicit setting of array_size
5265 * attribute.
5266 */
5267 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268 < mddev->array_sectors) {
5269 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5270 "before number of disks\n", mdname(mddev));
5271 return -EINVAL;
5272 }
5273
5274 atomic_set(&conf->reshape_stripes, 0);
5275 spin_lock_irq(&conf->device_lock);
5276 conf->previous_raid_disks = conf->raid_disks;
5277 conf->raid_disks += mddev->delta_disks;
5278 conf->prev_chunk_sectors = conf->chunk_sectors;
5279 conf->chunk_sectors = mddev->new_chunk_sectors;
5280 conf->prev_algo = conf->algorithm;
5281 conf->algorithm = mddev->new_layout;
5282 if (mddev->delta_disks < 0)
5283 conf->reshape_progress = raid5_size(mddev, 0, 0);
5284 else
5285 conf->reshape_progress = 0;
5286 conf->reshape_safe = conf->reshape_progress;
5287 conf->generation++;
5288 spin_unlock_irq(&conf->device_lock);
5289
5290 /* Add some new drives, as many as will fit.
5291 * We know there are enough to make the newly sized array work.
5292 * Don't add devices if we are reducing the number of
5293 * devices in the array. This is because it is not possible
5294 * to correctly record the "partially reconstructed" state of
5295 * such devices during the reshape and confusion could result.
5296 */
5297 if (mddev->delta_disks >= 0) {
5298 int added_devices = 0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set)
5300 if (rdev->raid_disk < 0 &&
5301 !test_bit(Faulty, &rdev->flags)) {
5302 if (raid5_add_disk(mddev, rdev) == 0) {
5303 if (rdev->raid_disk
5304 >= conf->previous_raid_disks) {
5305 set_bit(In_sync, &rdev->flags);
5306 added_devices++;
5307 } else
5308 rdev->recovery_offset = 0;
5309
5310 if (sysfs_link_rdev(mddev, rdev))
5311 /* Failure here is OK */;
5312 }
5313 } else if (rdev->raid_disk >= conf->previous_raid_disks
5314 && !test_bit(Faulty, &rdev->flags)) {
5315 /* This is a spare that was manually added */
5316 set_bit(In_sync, &rdev->flags);
5317 added_devices++;
5318 }
5319
5320 /* When a reshape changes the number of devices,
5321 * ->degraded is measured against the larger of the
5322 * pre and post number of devices.
5323 */
5324 spin_lock_irqsave(&conf->device_lock, flags);
5325 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5326 - added_devices;
5327 spin_unlock_irqrestore(&conf->device_lock, flags);
5328 }
5329 mddev->raid_disks = conf->raid_disks;
5330 mddev->reshape_position = conf->reshape_progress;
5331 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5332
5333 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5335 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5338 "reshape");
5339 if (!mddev->sync_thread) {
5340 mddev->recovery = 0;
5341 spin_lock_irq(&conf->device_lock);
5342 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5343 conf->reshape_progress = MaxSector;
5344 spin_unlock_irq(&conf->device_lock);
5345 return -EAGAIN;
5346 }
5347 conf->reshape_checkpoint = jiffies;
5348 md_wakeup_thread(mddev->sync_thread);
5349 md_new_event(mddev);
5350 return 0;
5351}
5352
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
5356static void end_reshape(raid5_conf_t *conf)
5357{
5358
5359 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5360
5361 spin_lock_irq(&conf->device_lock);
5362 conf->previous_raid_disks = conf->raid_disks;
5363 conf->reshape_progress = MaxSector;
5364 spin_unlock_irq(&conf->device_lock);
5365 wake_up(&conf->wait_for_overlap);
5366
5367 /* read-ahead size must cover two whole stripes, which is
5368 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369 */
5370 if (conf->mddev->queue) {
5371 int data_disks = conf->raid_disks - conf->max_degraded;
5372 int stripe = data_disks * ((conf->chunk_sectors << 9)
5373 / PAGE_SIZE);
5374 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376 }
5377 }
5378}
5379
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
5385 raid5_conf_t *conf = mddev->private;
5386
5387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
5389 if (mddev->delta_disks > 0) {
5390 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391 set_capacity(mddev->gendisk, mddev->array_sectors);
5392 revalidate_disk(mddev->gendisk);
5393 } else {
5394 int d;
5395 mddev->degraded = conf->raid_disks;
5396 for (d = 0; d < conf->raid_disks ; d++)
5397 if (conf->disks[d].rdev &&
5398 test_bit(In_sync,
5399 &conf->disks[d].rdev->flags))
5400 mddev->degraded--;
5401 for (d = conf->raid_disks ;
5402 d < conf->raid_disks - mddev->delta_disks;
5403 d++) {
5404 mdk_rdev_t *rdev = conf->disks[d].rdev;
5405 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5406 sysfs_unlink_rdev(mddev, rdev);
5407 rdev->raid_disk = -1;
5408 }
5409 }
5410 }
5411 mddev->layout = conf->algorithm;
5412 mddev->chunk_sectors = conf->chunk_sectors;
5413 mddev->reshape_position = MaxSector;
5414 mddev->delta_disks = 0;
5415 }
5416}
5417
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
5420 raid5_conf_t *conf = mddev->private;
5421
5422 switch(state) {
5423 case 2: /* resume for a suspend */
5424 wake_up(&conf->wait_for_overlap);
5425 break;
5426
5427 case 1: /* stop all writes */
5428 spin_lock_irq(&conf->device_lock);
5429 /* '2' tells resync/reshape to pause so that all
5430 * active stripes can drain
5431 */
5432 conf->quiesce = 2;
5433 wait_event_lock_irq(conf->wait_for_stripe,
5434 atomic_read(&conf->active_stripes) == 0 &&
5435 atomic_read(&conf->active_aligned_reads) == 0,
5436 conf->device_lock, /* nothing */);
5437 conf->quiesce = 1;
5438 spin_unlock_irq(&conf->device_lock);
5439 /* allow reshape to continue */
5440 wake_up(&conf->wait_for_overlap);
5441 break;
5442
5443 case 0: /* re-enable writes */
5444 spin_lock_irq(&conf->device_lock);
5445 conf->quiesce = 0;
5446 wake_up(&conf->wait_for_stripe);
5447 wake_up(&conf->wait_for_overlap);
5448 spin_unlock_irq(&conf->device_lock);
5449 break;
5450 }
5451}
5452
5453
5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5455{
5456 struct raid0_private_data *raid0_priv = mddev->private;
5457 sector_t sectors;
5458
5459 /* for raid0 takeover only one zone is supported */
5460 if (raid0_priv->nr_strip_zones > 1) {
5461 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462 mdname(mddev));
5463 return ERR_PTR(-EINVAL);
5464 }
5465
5466 sectors = raid0_priv->strip_zone[0].zone_end;
5467 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468 mddev->dev_sectors = sectors;
5469 mddev->new_level = level;
5470 mddev->new_layout = ALGORITHM_PARITY_N;
5471 mddev->new_chunk_sectors = mddev->chunk_sectors;
5472 mddev->raid_disks += 1;
5473 mddev->delta_disks = 1;
5474 /* make sure it will be not marked as dirty */
5475 mddev->recovery_cp = MaxSector;
5476
5477 return setup_conf(mddev);
5478}
5479
5480
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483 int chunksect;
5484
5485 if (mddev->raid_disks != 2 ||
5486 mddev->degraded > 1)
5487 return ERR_PTR(-EINVAL);
5488
5489 /* Should check if there are write-behind devices? */
5490
5491 chunksect = 64*2; /* 64K by default */
5492
5493 /* The array must be an exact multiple of chunksize */
5494 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495 chunksect >>= 1;
5496
5497 if ((chunksect<<9) < STRIPE_SIZE)
5498 /* array size does not allow a suitable chunk size */
5499 return ERR_PTR(-EINVAL);
5500
5501 mddev->new_level = 5;
5502 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5503 mddev->new_chunk_sectors = chunksect;
5504
5505 return setup_conf(mddev);
5506}
5507
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510 int new_layout;
5511
5512 switch (mddev->layout) {
5513 case ALGORITHM_LEFT_ASYMMETRIC_6:
5514 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515 break;
5516 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518 break;
5519 case ALGORITHM_LEFT_SYMMETRIC_6:
5520 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521 break;
5522 case ALGORITHM_RIGHT_SYMMETRIC_6:
5523 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524 break;
5525 case ALGORITHM_PARITY_0_6:
5526 new_layout = ALGORITHM_PARITY_0;
5527 break;
5528 case ALGORITHM_PARITY_N:
5529 new_layout = ALGORITHM_PARITY_N;
5530 break;
5531 default:
5532 return ERR_PTR(-EINVAL);
5533 }
5534 mddev->new_level = 5;
5535 mddev->new_layout = new_layout;
5536 mddev->delta_disks = -1;
5537 mddev->raid_disks -= 1;
5538 return setup_conf(mddev);
5539}
5540
5541
5542static int raid5_check_reshape(mddev_t *mddev)
5543{
5544 /* For a 2-drive array, the layout and chunk size can be changed
5545 * immediately as not restriping is needed.
5546 * For larger arrays we record the new value - after validation
5547 * to be used by a reshape pass.
5548 */
5549 raid5_conf_t *conf = mddev->private;
5550 int new_chunk = mddev->new_chunk_sectors;
5551
5552 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5553 return -EINVAL;
5554 if (new_chunk > 0) {
5555 if (!is_power_of_2(new_chunk))
5556 return -EINVAL;
5557 if (new_chunk < (PAGE_SIZE>>9))
5558 return -EINVAL;
5559 if (mddev->array_sectors & (new_chunk-1))
5560 /* not factor of array size */
5561 return -EINVAL;
5562 }
5563
5564 /* They look valid */
5565
5566 if (mddev->raid_disks == 2) {
5567 /* can make the change immediately */
5568 if (mddev->new_layout >= 0) {
5569 conf->algorithm = mddev->new_layout;
5570 mddev->layout = mddev->new_layout;
5571 }
5572 if (new_chunk > 0) {
5573 conf->chunk_sectors = new_chunk ;
5574 mddev->chunk_sectors = new_chunk;
5575 }
5576 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577 md_wakeup_thread(mddev->thread);
5578 }
5579 return check_reshape(mddev);
5580}
5581
5582static int raid6_check_reshape(mddev_t *mddev)
5583{
5584 int new_chunk = mddev->new_chunk_sectors;
5585
5586 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5587 return -EINVAL;
5588 if (new_chunk > 0) {
5589 if (!is_power_of_2(new_chunk))
5590 return -EINVAL;
5591 if (new_chunk < (PAGE_SIZE >> 9))
5592 return -EINVAL;
5593 if (mddev->array_sectors & (new_chunk-1))
5594 /* not factor of array size */
5595 return -EINVAL;
5596 }
5597
5598 /* They look valid */
5599 return check_reshape(mddev);
5600}
5601
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604 /* raid5 can take over:
5605 * raid0 - if there is only one strip zone - make it a raid4 layout
5606 * raid1 - if there are two drives. We need to know the chunk size
5607 * raid4 - trivial - just use a raid4 layout.
5608 * raid6 - Providing it is a *_6 layout
5609 */
5610 if (mddev->level == 0)
5611 return raid45_takeover_raid0(mddev, 5);
5612 if (mddev->level == 1)
5613 return raid5_takeover_raid1(mddev);
5614 if (mddev->level == 4) {
5615 mddev->new_layout = ALGORITHM_PARITY_N;
5616 mddev->new_level = 5;
5617 return setup_conf(mddev);
5618 }
5619 if (mddev->level == 6)
5620 return raid5_takeover_raid6(mddev);
5621
5622 return ERR_PTR(-EINVAL);
5623}
5624
5625static void *raid4_takeover(mddev_t *mddev)
5626{
5627 /* raid4 can take over:
5628 * raid0 - if there is only one strip zone
5629 * raid5 - if layout is right
5630 */
5631 if (mddev->level == 0)
5632 return raid45_takeover_raid0(mddev, 4);
5633 if (mddev->level == 5 &&
5634 mddev->layout == ALGORITHM_PARITY_N) {
5635 mddev->new_layout = 0;
5636 mddev->new_level = 4;
5637 return setup_conf(mddev);
5638 }
5639 return ERR_PTR(-EINVAL);
5640}
5641
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646 /* Currently can only take over a raid5. We map the
5647 * personality to an equivalent raid6 personality
5648 * with the Q block at the end.
5649 */
5650 int new_layout;
5651
5652 if (mddev->pers != &raid5_personality)
5653 return ERR_PTR(-EINVAL);
5654 if (mddev->degraded > 1)
5655 return ERR_PTR(-EINVAL);
5656 if (mddev->raid_disks > 253)
5657 return ERR_PTR(-EINVAL);
5658 if (mddev->raid_disks < 3)
5659 return ERR_PTR(-EINVAL);
5660
5661 switch (mddev->layout) {
5662 case ALGORITHM_LEFT_ASYMMETRIC:
5663 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664 break;
5665 case ALGORITHM_RIGHT_ASYMMETRIC:
5666 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667 break;
5668 case ALGORITHM_LEFT_SYMMETRIC:
5669 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670 break;
5671 case ALGORITHM_RIGHT_SYMMETRIC:
5672 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673 break;
5674 case ALGORITHM_PARITY_0:
5675 new_layout = ALGORITHM_PARITY_0_6;
5676 break;
5677 case ALGORITHM_PARITY_N:
5678 new_layout = ALGORITHM_PARITY_N;
5679 break;
5680 default:
5681 return ERR_PTR(-EINVAL);
5682 }
5683 mddev->new_level = 6;
5684 mddev->new_layout = new_layout;
5685 mddev->delta_disks = 1;
5686 mddev->raid_disks += 1;
5687 return setup_conf(mddev);
5688}
5689
5690
5691static struct mdk_personality raid6_personality =
5692{
5693 .name = "raid6",
5694 .level = 6,
5695 .owner = THIS_MODULE,
5696 .make_request = make_request,
5697 .run = run,
5698 .stop = stop,
5699 .status = status,
5700 .error_handler = error,
5701 .hot_add_disk = raid5_add_disk,
5702 .hot_remove_disk= raid5_remove_disk,
5703 .spare_active = raid5_spare_active,
5704 .sync_request = sync_request,
5705 .resize = raid5_resize,
5706 .size = raid5_size,
5707 .check_reshape = raid6_check_reshape,
5708 .start_reshape = raid5_start_reshape,
5709 .finish_reshape = raid5_finish_reshape,
5710 .quiesce = raid5_quiesce,
5711 .takeover = raid6_takeover,
5712};
5713static struct mdk_personality raid5_personality =
5714{
5715 .name = "raid5",
5716 .level = 5,
5717 .owner = THIS_MODULE,
5718 .make_request = make_request,
5719 .run = run,
5720 .stop = stop,
5721 .status = status,
5722 .error_handler = error,
5723 .hot_add_disk = raid5_add_disk,
5724 .hot_remove_disk= raid5_remove_disk,
5725 .spare_active = raid5_spare_active,
5726 .sync_request = sync_request,
5727 .resize = raid5_resize,
5728 .size = raid5_size,
5729 .check_reshape = raid5_check_reshape,
5730 .start_reshape = raid5_start_reshape,
5731 .finish_reshape = raid5_finish_reshape,
5732 .quiesce = raid5_quiesce,
5733 .takeover = raid5_takeover,
5734};
5735
5736static struct mdk_personality raid4_personality =
5737{
5738 .name = "raid4",
5739 .level = 4,
5740 .owner = THIS_MODULE,
5741 .make_request = make_request,
5742 .run = run,
5743 .stop = stop,
5744 .status = status,
5745 .error_handler = error,
5746 .hot_add_disk = raid5_add_disk,
5747 .hot_remove_disk= raid5_remove_disk,
5748 .spare_active = raid5_spare_active,
5749 .sync_request = sync_request,
5750 .resize = raid5_resize,
5751 .size = raid5_size,
5752 .check_reshape = raid5_check_reshape,
5753 .start_reshape = raid5_start_reshape,
5754 .finish_reshape = raid5_finish_reshape,
5755 .quiesce = raid5_quiesce,
5756 .takeover = raid4_takeover,
5757};
5758
5759static int __init raid5_init(void)
5760{
5761 register_md_personality(&raid6_personality);
5762 register_md_personality(&raid5_personality);
5763 register_md_personality(&raid4_personality);
5764 return 0;
5765}
5766
5767static void raid5_exit(void)
5768{
5769 unregister_md_personality(&raid6_personality);
5770 unregister_md_personality(&raid5_personality);
5771 unregister_md_personality(&raid4_personality);
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");