Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64#define RAID5_MAX_REQ_STRIPES 256
65
66static bool devices_handle_discard_safely = false;
67module_param(devices_handle_discard_safely, bool, 0644);
68MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70static struct workqueue_struct *raid5_wq;
71
72static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75{
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
79
80static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81{
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83}
84
85static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
87{
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90}
91
92static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
94{
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97}
98
99static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
101{
102 int i;
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107}
108
109static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
111{
112 int i;
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
117}
118
119/* Find first data disk in a raid6 stripe */
120static inline int raid6_d0(struct stripe_head *sh)
121{
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130}
131static inline int raid6_next_disk(int disk, int raid_disks)
132{
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135}
136
137/* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
142static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
144{
145 int slot = *count;
146
147 if (sh->ddf_layout)
148 (*count)++;
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
153 if (!sh->ddf_layout)
154 (*count)++;
155 return slot;
156}
157
158static void print_raid5_conf (struct r5conf *conf);
159
160static int stripe_operations_active(struct stripe_head *sh)
161{
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165}
166
167static bool stripe_is_lowprio(struct stripe_head *sh)
168{
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172}
173
174static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
176{
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219}
220
221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
224{
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305}
306
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
310{
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
313}
314
315/*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
322static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325{
326 int size;
327 bool do_wakeup = false;
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
348 do_wakeup = true;
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
362}
363
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
367{
368 struct stripe_head *sh, *t;
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
375 int hash;
376
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
387 count++;
388 }
389
390 return count;
391}
392
393void raid5_release_stripe(struct stripe_head *sh)
394{
395 struct r5conf *conf = sh->raid_conf;
396 unsigned long flags;
397 struct list_head list;
398 int hash;
399 bool wakeup;
400
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413slow_path:
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422}
423
424static inline void remove_hash(struct stripe_head *sh)
425{
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430}
431
432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433{
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440}
441
442/* find an idle stripe, make sure it is unhashed, and return it. */
443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444{
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458out:
459 return sh;
460}
461
462#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463static void free_stripe_pages(struct stripe_head *sh)
464{
465 int i;
466 struct page *p;
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478}
479
480static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481{
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498}
499
500static int
501init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502{
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518}
519#endif
520
521static void shrink_buffers(struct stripe_head *sh)
522{
523 int i;
524 int num = sh->raid_conf->pool_size;
525
526#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
528 struct page *p;
529
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
535 put_page(p);
536 }
537#else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541#endif
542}
543
544static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545{
546 int i;
547 int num = sh->raid_conf->pool_size;
548
549#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
551 struct page *page;
552
553 if (!(page = alloc_page(gfp))) {
554 return 1;
555 }
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
559 }
560#else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
563
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569#endif
570 return 0;
571}
572
573static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
575
576static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577{
578 struct r5conf *conf = sh->raid_conf;
579 int i, seq;
580
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
585
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
588retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 sh->sector = sector;
593 stripe_set_idx(sector, conf, previous, sh);
594 sh->state = 0;
595
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
598
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
605 WARN_ON(1);
606 }
607 dev->flags = 0;
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 }
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
616}
617
618static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 short generation)
620{
621 struct stripe_head *sh;
622
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
626 return sh;
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 return NULL;
629}
630
631static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633{
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672}
673
674/*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
690 */
691int raid5_calc_degraded(struct r5conf *conf)
692{
693 int degraded, degraded2;
694 int i;
695
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743}
744
745static bool has_failed(struct r5conf *conf)
746{
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756}
757
758enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763};
764
765struct stripe_request_ctx {
766 /* a reference to the last stripe_head for batching */
767 struct stripe_head *batch_last;
768
769 /* first sector in the request */
770 sector_t first_sector;
771
772 /* last sector in the request */
773 sector_t last_sector;
774
775 /*
776 * bitmap to track stripe sectors that have been added to stripes
777 * add one to account for unaligned requests
778 */
779 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
780
781 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
782 bool do_flush;
783};
784
785/*
786 * Block until another thread clears R5_INACTIVE_BLOCKED or
787 * there are fewer than 3/4 the maximum number of active stripes
788 * and there is an inactive stripe available.
789 */
790static bool is_inactive_blocked(struct r5conf *conf, int hash)
791{
792 if (list_empty(conf->inactive_list + hash))
793 return false;
794
795 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
796 return true;
797
798 return (atomic_read(&conf->active_stripes) <
799 (conf->max_nr_stripes * 3 / 4));
800}
801
802struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
803 struct stripe_request_ctx *ctx, sector_t sector,
804 unsigned int flags)
805{
806 struct stripe_head *sh;
807 int hash = stripe_hash_locks_hash(conf, sector);
808 int previous = !!(flags & R5_GAS_PREVIOUS);
809
810 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
811
812 spin_lock_irq(conf->hash_locks + hash);
813
814 for (;;) {
815 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
816 /*
817 * Must release the reference to batch_last before
818 * waiting, on quiesce, otherwise the batch_last will
819 * hold a reference to a stripe and raid5_quiesce()
820 * will deadlock waiting for active_stripes to go to
821 * zero.
822 */
823 if (ctx && ctx->batch_last) {
824 raid5_release_stripe(ctx->batch_last);
825 ctx->batch_last = NULL;
826 }
827
828 wait_event_lock_irq(conf->wait_for_quiescent,
829 !conf->quiesce,
830 *(conf->hash_locks + hash));
831 }
832
833 sh = find_get_stripe(conf, sector, conf->generation - previous,
834 hash);
835 if (sh)
836 break;
837
838 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
839 sh = get_free_stripe(conf, hash);
840 if (sh) {
841 r5c_check_stripe_cache_usage(conf);
842 init_stripe(sh, sector, previous);
843 atomic_inc(&sh->count);
844 break;
845 }
846
847 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
848 set_bit(R5_ALLOC_MORE, &conf->cache_state);
849 }
850
851 if (flags & R5_GAS_NOBLOCK)
852 break;
853
854 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
855 r5l_wake_reclaim(conf->log, 0);
856
857 /* release batch_last before wait to avoid risk of deadlock */
858 if (ctx && ctx->batch_last) {
859 raid5_release_stripe(ctx->batch_last);
860 ctx->batch_last = NULL;
861 }
862
863 wait_event_lock_irq(conf->wait_for_stripe,
864 is_inactive_blocked(conf, hash),
865 *(conf->hash_locks + hash));
866 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
867 }
868
869 spin_unlock_irq(conf->hash_locks + hash);
870 return sh;
871}
872
873static bool is_full_stripe_write(struct stripe_head *sh)
874{
875 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
876 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
877}
878
879static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
880 __acquires(&sh1->stripe_lock)
881 __acquires(&sh2->stripe_lock)
882{
883 if (sh1 > sh2) {
884 spin_lock_irq(&sh2->stripe_lock);
885 spin_lock_nested(&sh1->stripe_lock, 1);
886 } else {
887 spin_lock_irq(&sh1->stripe_lock);
888 spin_lock_nested(&sh2->stripe_lock, 1);
889 }
890}
891
892static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
893 __releases(&sh1->stripe_lock)
894 __releases(&sh2->stripe_lock)
895{
896 spin_unlock(&sh1->stripe_lock);
897 spin_unlock_irq(&sh2->stripe_lock);
898}
899
900/* Only freshly new full stripe normal write stripe can be added to a batch list */
901static bool stripe_can_batch(struct stripe_head *sh)
902{
903 struct r5conf *conf = sh->raid_conf;
904
905 if (raid5_has_log(conf) || raid5_has_ppl(conf))
906 return false;
907 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
908 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
909 is_full_stripe_write(sh);
910}
911
912/* we only do back search */
913static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
915{
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
918 int hash;
919 int dd_idx;
920
921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
924 return;
925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926
927 if (last_sh && head_sector == last_sh->sector) {
928 head = last_sh;
929 atomic_inc(&head->count);
930 } else {
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
934 hash);
935 spin_unlock_irq(conf->hash_locks + hash);
936 if (!head)
937 return;
938 if (!stripe_can_batch(head))
939 goto out;
940 }
941
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 goto unlock_out;
946
947 if (sh->batch_head)
948 goto unlock_out;
949
950 dd_idx = 0;
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 dd_idx++;
953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 goto unlock_out;
956
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
962 goto unlock_out;
963 }
964 /*
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
970 */
971 sh->batch_head = head->batch_head;
972
973 /*
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
976 */
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
979 } else {
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
985 }
986
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
989 < IO_THRESHOLD)
990 md_wakeup_thread(conf->mddev->thread);
991
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
999 }
1000
1001 atomic_inc(&sh->count);
1002unlock_out:
1003 unlock_two_stripes(head, sh);
1004out:
1005 raid5_release_stripe(head);
1006}
1007
1008/* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1010 */
1011static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012{
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1017 */
1018 smp_rmb();
1019 if (progress == MaxSector)
1020 return 0;
1021 if (sh->generation == conf->generation - 1)
1022 return 0;
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1025 */
1026 return 1;
1027}
1028
1029static void dispatch_bio_list(struct bio_list *tmp)
1030{
1031 struct bio *bio;
1032
1033 while ((bio = bio_list_pop(tmp)))
1034 submit_bio_noacct(bio);
1035}
1036
1037static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
1039{
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1045 return 1;
1046 if (da->sector < db->sector)
1047 return -1;
1048 return 0;
1049}
1050
1051static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1053{
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1056 int cnt = 0;
1057
1058 if (conf->pending_data_cnt == 0)
1059 return;
1060
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1062
1063 first = conf->pending_list.next;
1064
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1069
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1076
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1079 cnt++;
1080 if (cnt >= target)
1081 break;
1082 }
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1089 else
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1094}
1095
1096static void flush_deferred_bios(struct r5conf *conf)
1097{
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1099
1100 if (conf->pending_data_cnt == 0)
1101 return;
1102
1103 spin_lock(&conf->pending_bios_lock);
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
1106 spin_unlock(&conf->pending_bios_lock);
1107
1108 dispatch_bio_list(&tmp);
1109}
1110
1111static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
1113{
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1116
1117 spin_lock(&conf->pending_bios_lock);
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 sibling);
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127
1128 spin_unlock(&conf->pending_bios_lock);
1129
1130 dispatch_bio_list(&tmp);
1131}
1132
1133static void
1134raid5_end_read_request(struct bio *bi);
1135static void
1136raid5_end_write_request(struct bio *bi);
1137
1138static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139{
1140 struct r5conf *conf = sh->raid_conf;
1141 int i, disks = sh->disks;
1142 struct stripe_head *head_sh = sh;
1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 struct r5dev *dev;
1145 bool should_defer;
1146
1147 might_sleep();
1148
1149 if (log_stripe(sh, s) == 0)
1150 return;
1151
1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153
1154 for (i = disks; i--; ) {
1155 enum req_op op;
1156 blk_opf_t op_flags = 0;
1157 int replace_only = 0;
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
1160
1161 sh = head_sh;
1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 op = REQ_OP_WRITE;
1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 op_flags = REQ_FUA;
1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 op = REQ_OP_DISCARD;
1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 op = REQ_OP_READ;
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
1172 op = REQ_OP_WRITE;
1173 replace_only = 1;
1174 } else
1175 continue;
1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 op_flags |= REQ_SYNC;
1178
1179again:
1180 dev = &sh->dev[i];
1181 bi = &dev->req;
1182 rbi = &dev->rreq; /* For writing to replacement */
1183
1184 rdev = conf->disks[i].rdev;
1185 rrdev = conf->disks[i].replacement;
1186 if (op_is_write(op)) {
1187 if (replace_only)
1188 rdev = NULL;
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
1192 } else {
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
1197
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
1206
1207 /* We have already checked bad blocks for reads. Now
1208 * need to check for writes. We never accept write errors
1209 * on the replacement, so we don't to check rrdev.
1210 */
1211 while (op_is_write(op) && rdev &&
1212 test_bit(WriteErrorSeen, &rdev->flags)) {
1213 sector_t first_bad;
1214 int bad_sectors;
1215 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1216 &first_bad, &bad_sectors);
1217 if (!bad)
1218 break;
1219
1220 if (bad < 0) {
1221 set_bit(BlockedBadBlocks, &rdev->flags);
1222 if (!conf->mddev->external &&
1223 conf->mddev->sb_flags) {
1224 /* It is very unlikely, but we might
1225 * still need to write out the
1226 * bad block log - better give it
1227 * a chance*/
1228 md_check_recovery(conf->mddev);
1229 }
1230 /*
1231 * Because md_wait_for_blocked_rdev
1232 * will dec nr_pending, we must
1233 * increment it first.
1234 */
1235 atomic_inc(&rdev->nr_pending);
1236 md_wait_for_blocked_rdev(rdev, conf->mddev);
1237 } else {
1238 /* Acknowledged bad block - skip the write */
1239 rdev_dec_pending(rdev, conf->mddev);
1240 rdev = NULL;
1241 }
1242 }
1243
1244 if (rdev) {
1245 if (s->syncing || s->expanding || s->expanded
1246 || s->replacing)
1247 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248
1249 set_bit(STRIPE_IO_STARTED, &sh->state);
1250
1251 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1252 bi->bi_end_io = op_is_write(op)
1253 ? raid5_end_write_request
1254 : raid5_end_read_request;
1255 bi->bi_private = sh;
1256
1257 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1258 __func__, (unsigned long long)sh->sector,
1259 bi->bi_opf, i);
1260 atomic_inc(&sh->count);
1261 if (sh != head_sh)
1262 atomic_inc(&head_sh->count);
1263 if (use_new_offset(conf, sh))
1264 bi->bi_iter.bi_sector = (sh->sector
1265 + rdev->new_data_offset);
1266 else
1267 bi->bi_iter.bi_sector = (sh->sector
1268 + rdev->data_offset);
1269 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1270 bi->bi_opf |= REQ_NOMERGE;
1271
1272 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1273 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1274
1275 if (!op_is_write(op) &&
1276 test_bit(R5_InJournal, &sh->dev[i].flags))
1277 /*
1278 * issuing read for a page in journal, this
1279 * must be preparing for prexor in rmw; read
1280 * the data into orig_page
1281 */
1282 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1283 else
1284 sh->dev[i].vec.bv_page = sh->dev[i].page;
1285 bi->bi_vcnt = 1;
1286 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1287 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1288 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1289 /*
1290 * If this is discard request, set bi_vcnt 0. We don't
1291 * want to confuse SCSI because SCSI will replace payload
1292 */
1293 if (op == REQ_OP_DISCARD)
1294 bi->bi_vcnt = 0;
1295 if (rrdev)
1296 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1297
1298 if (conf->mddev->gendisk)
1299 trace_block_bio_remap(bi,
1300 disk_devt(conf->mddev->gendisk),
1301 sh->dev[i].sector);
1302 if (should_defer && op_is_write(op))
1303 bio_list_add(&pending_bios, bi);
1304 else
1305 submit_bio_noacct(bi);
1306 }
1307 if (rrdev) {
1308 if (s->syncing || s->expanding || s->expanded
1309 || s->replacing)
1310 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1311
1312 set_bit(STRIPE_IO_STARTED, &sh->state);
1313
1314 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1315 BUG_ON(!op_is_write(op));
1316 rbi->bi_end_io = raid5_end_write_request;
1317 rbi->bi_private = sh;
1318
1319 pr_debug("%s: for %llu schedule op %d on "
1320 "replacement disc %d\n",
1321 __func__, (unsigned long long)sh->sector,
1322 rbi->bi_opf, i);
1323 atomic_inc(&sh->count);
1324 if (sh != head_sh)
1325 atomic_inc(&head_sh->count);
1326 if (use_new_offset(conf, sh))
1327 rbi->bi_iter.bi_sector = (sh->sector
1328 + rrdev->new_data_offset);
1329 else
1330 rbi->bi_iter.bi_sector = (sh->sector
1331 + rrdev->data_offset);
1332 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1333 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1334 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1335 rbi->bi_vcnt = 1;
1336 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1337 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1338 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1339 /*
1340 * If this is discard request, set bi_vcnt 0. We don't
1341 * want to confuse SCSI because SCSI will replace payload
1342 */
1343 if (op == REQ_OP_DISCARD)
1344 rbi->bi_vcnt = 0;
1345 if (conf->mddev->gendisk)
1346 trace_block_bio_remap(rbi,
1347 disk_devt(conf->mddev->gendisk),
1348 sh->dev[i].sector);
1349 if (should_defer && op_is_write(op))
1350 bio_list_add(&pending_bios, rbi);
1351 else
1352 submit_bio_noacct(rbi);
1353 }
1354 if (!rdev && !rrdev) {
1355 if (op_is_write(op))
1356 set_bit(STRIPE_DEGRADED, &sh->state);
1357 pr_debug("skip op %d on disc %d for sector %llu\n",
1358 bi->bi_opf, i, (unsigned long long)sh->sector);
1359 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1360 set_bit(STRIPE_HANDLE, &sh->state);
1361 }
1362
1363 if (!head_sh->batch_head)
1364 continue;
1365 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1366 batch_list);
1367 if (sh != head_sh)
1368 goto again;
1369 }
1370
1371 if (should_defer && !bio_list_empty(&pending_bios))
1372 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1373}
1374
1375static struct dma_async_tx_descriptor *
1376async_copy_data(int frombio, struct bio *bio, struct page **page,
1377 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1378 struct stripe_head *sh, int no_skipcopy)
1379{
1380 struct bio_vec bvl;
1381 struct bvec_iter iter;
1382 struct page *bio_page;
1383 int page_offset;
1384 struct async_submit_ctl submit;
1385 enum async_tx_flags flags = 0;
1386 struct r5conf *conf = sh->raid_conf;
1387
1388 if (bio->bi_iter.bi_sector >= sector)
1389 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1390 else
1391 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1392
1393 if (frombio)
1394 flags |= ASYNC_TX_FENCE;
1395 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1396
1397 bio_for_each_segment(bvl, bio, iter) {
1398 int len = bvl.bv_len;
1399 int clen;
1400 int b_offset = 0;
1401
1402 if (page_offset < 0) {
1403 b_offset = -page_offset;
1404 page_offset += b_offset;
1405 len -= b_offset;
1406 }
1407
1408 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1409 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1410 else
1411 clen = len;
1412
1413 if (clen > 0) {
1414 b_offset += bvl.bv_offset;
1415 bio_page = bvl.bv_page;
1416 if (frombio) {
1417 if (conf->skip_copy &&
1418 b_offset == 0 && page_offset == 0 &&
1419 clen == RAID5_STRIPE_SIZE(conf) &&
1420 !no_skipcopy)
1421 *page = bio_page;
1422 else
1423 tx = async_memcpy(*page, bio_page, page_offset + poff,
1424 b_offset, clen, &submit);
1425 } else
1426 tx = async_memcpy(bio_page, *page, b_offset,
1427 page_offset + poff, clen, &submit);
1428 }
1429 /* chain the operations */
1430 submit.depend_tx = tx;
1431
1432 if (clen < len) /* hit end of page */
1433 break;
1434 page_offset += len;
1435 }
1436
1437 return tx;
1438}
1439
1440static void ops_complete_biofill(void *stripe_head_ref)
1441{
1442 struct stripe_head *sh = stripe_head_ref;
1443 int i;
1444 struct r5conf *conf = sh->raid_conf;
1445
1446 pr_debug("%s: stripe %llu\n", __func__,
1447 (unsigned long long)sh->sector);
1448
1449 /* clear completed biofills */
1450 for (i = sh->disks; i--; ) {
1451 struct r5dev *dev = &sh->dev[i];
1452
1453 /* acknowledge completion of a biofill operation */
1454 /* and check if we need to reply to a read request,
1455 * new R5_Wantfill requests are held off until
1456 * !STRIPE_BIOFILL_RUN
1457 */
1458 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1459 struct bio *rbi, *rbi2;
1460
1461 BUG_ON(!dev->read);
1462 rbi = dev->read;
1463 dev->read = NULL;
1464 while (rbi && rbi->bi_iter.bi_sector <
1465 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1466 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1467 bio_endio(rbi);
1468 rbi = rbi2;
1469 }
1470 }
1471 }
1472 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1473
1474 set_bit(STRIPE_HANDLE, &sh->state);
1475 raid5_release_stripe(sh);
1476}
1477
1478static void ops_run_biofill(struct stripe_head *sh)
1479{
1480 struct dma_async_tx_descriptor *tx = NULL;
1481 struct async_submit_ctl submit;
1482 int i;
1483 struct r5conf *conf = sh->raid_conf;
1484
1485 BUG_ON(sh->batch_head);
1486 pr_debug("%s: stripe %llu\n", __func__,
1487 (unsigned long long)sh->sector);
1488
1489 for (i = sh->disks; i--; ) {
1490 struct r5dev *dev = &sh->dev[i];
1491 if (test_bit(R5_Wantfill, &dev->flags)) {
1492 struct bio *rbi;
1493 spin_lock_irq(&sh->stripe_lock);
1494 dev->read = rbi = dev->toread;
1495 dev->toread = NULL;
1496 spin_unlock_irq(&sh->stripe_lock);
1497 while (rbi && rbi->bi_iter.bi_sector <
1498 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1499 tx = async_copy_data(0, rbi, &dev->page,
1500 dev->offset,
1501 dev->sector, tx, sh, 0);
1502 rbi = r5_next_bio(conf, rbi, dev->sector);
1503 }
1504 }
1505 }
1506
1507 atomic_inc(&sh->count);
1508 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1509 async_trigger_callback(&submit);
1510}
1511
1512static void mark_target_uptodate(struct stripe_head *sh, int target)
1513{
1514 struct r5dev *tgt;
1515
1516 if (target < 0)
1517 return;
1518
1519 tgt = &sh->dev[target];
1520 set_bit(R5_UPTODATE, &tgt->flags);
1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 clear_bit(R5_Wantcompute, &tgt->flags);
1523}
1524
1525static void ops_complete_compute(void *stripe_head_ref)
1526{
1527 struct stripe_head *sh = stripe_head_ref;
1528
1529 pr_debug("%s: stripe %llu\n", __func__,
1530 (unsigned long long)sh->sector);
1531
1532 /* mark the computed target(s) as uptodate */
1533 mark_target_uptodate(sh, sh->ops.target);
1534 mark_target_uptodate(sh, sh->ops.target2);
1535
1536 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1537 if (sh->check_state == check_state_compute_run)
1538 sh->check_state = check_state_compute_result;
1539 set_bit(STRIPE_HANDLE, &sh->state);
1540 raid5_release_stripe(sh);
1541}
1542
1543/* return a pointer to the address conversion region of the scribble buffer */
1544static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1545{
1546 return percpu->scribble + i * percpu->scribble_obj_size;
1547}
1548
1549/* return a pointer to the address conversion region of the scribble buffer */
1550static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1551 struct raid5_percpu *percpu, int i)
1552{
1553 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1554}
1555
1556/*
1557 * Return a pointer to record offset address.
1558 */
1559static unsigned int *
1560to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1561{
1562 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1563}
1564
1565static struct dma_async_tx_descriptor *
1566ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1567{
1568 int disks = sh->disks;
1569 struct page **xor_srcs = to_addr_page(percpu, 0);
1570 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1571 int target = sh->ops.target;
1572 struct r5dev *tgt = &sh->dev[target];
1573 struct page *xor_dest = tgt->page;
1574 unsigned int off_dest = tgt->offset;
1575 int count = 0;
1576 struct dma_async_tx_descriptor *tx;
1577 struct async_submit_ctl submit;
1578 int i;
1579
1580 BUG_ON(sh->batch_head);
1581
1582 pr_debug("%s: stripe %llu block: %d\n",
1583 __func__, (unsigned long long)sh->sector, target);
1584 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1585
1586 for (i = disks; i--; ) {
1587 if (i != target) {
1588 off_srcs[count] = sh->dev[i].offset;
1589 xor_srcs[count++] = sh->dev[i].page;
1590 }
1591 }
1592
1593 atomic_inc(&sh->count);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1596 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1597 if (unlikely(count == 1))
1598 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1599 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1600 else
1601 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1602 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1603
1604 return tx;
1605}
1606
1607/* set_syndrome_sources - populate source buffers for gen_syndrome
1608 * @srcs - (struct page *) array of size sh->disks
1609 * @offs - (unsigned int) array of offset for each page
1610 * @sh - stripe_head to parse
1611 *
1612 * Populates srcs in proper layout order for the stripe and returns the
1613 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1614 * destination buffer is recorded in srcs[count] and the Q destination
1615 * is recorded in srcs[count+1]].
1616 */
1617static int set_syndrome_sources(struct page **srcs,
1618 unsigned int *offs,
1619 struct stripe_head *sh,
1620 int srctype)
1621{
1622 int disks = sh->disks;
1623 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1624 int d0_idx = raid6_d0(sh);
1625 int count;
1626 int i;
1627
1628 for (i = 0; i < disks; i++)
1629 srcs[i] = NULL;
1630
1631 count = 0;
1632 i = d0_idx;
1633 do {
1634 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1635 struct r5dev *dev = &sh->dev[i];
1636
1637 if (i == sh->qd_idx || i == sh->pd_idx ||
1638 (srctype == SYNDROME_SRC_ALL) ||
1639 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1640 (test_bit(R5_Wantdrain, &dev->flags) ||
1641 test_bit(R5_InJournal, &dev->flags))) ||
1642 (srctype == SYNDROME_SRC_WRITTEN &&
1643 (dev->written ||
1644 test_bit(R5_InJournal, &dev->flags)))) {
1645 if (test_bit(R5_InJournal, &dev->flags))
1646 srcs[slot] = sh->dev[i].orig_page;
1647 else
1648 srcs[slot] = sh->dev[i].page;
1649 /*
1650 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1651 * not shared page. In that case, dev[i].offset
1652 * is 0.
1653 */
1654 offs[slot] = sh->dev[i].offset;
1655 }
1656 i = raid6_next_disk(i, disks);
1657 } while (i != d0_idx);
1658
1659 return syndrome_disks;
1660}
1661
1662static struct dma_async_tx_descriptor *
1663ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1664{
1665 int disks = sh->disks;
1666 struct page **blocks = to_addr_page(percpu, 0);
1667 unsigned int *offs = to_addr_offs(sh, percpu);
1668 int target;
1669 int qd_idx = sh->qd_idx;
1670 struct dma_async_tx_descriptor *tx;
1671 struct async_submit_ctl submit;
1672 struct r5dev *tgt;
1673 struct page *dest;
1674 unsigned int dest_off;
1675 int i;
1676 int count;
1677
1678 BUG_ON(sh->batch_head);
1679 if (sh->ops.target < 0)
1680 target = sh->ops.target2;
1681 else if (sh->ops.target2 < 0)
1682 target = sh->ops.target;
1683 else
1684 /* we should only have one valid target */
1685 BUG();
1686 BUG_ON(target < 0);
1687 pr_debug("%s: stripe %llu block: %d\n",
1688 __func__, (unsigned long long)sh->sector, target);
1689
1690 tgt = &sh->dev[target];
1691 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1692 dest = tgt->page;
1693 dest_off = tgt->offset;
1694
1695 atomic_inc(&sh->count);
1696
1697 if (target == qd_idx) {
1698 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1699 blocks[count] = NULL; /* regenerating p is not necessary */
1700 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1701 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1702 ops_complete_compute, sh,
1703 to_addr_conv(sh, percpu, 0));
1704 tx = async_gen_syndrome(blocks, offs, count+2,
1705 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1706 } else {
1707 /* Compute any data- or p-drive using XOR */
1708 count = 0;
1709 for (i = disks; i-- ; ) {
1710 if (i == target || i == qd_idx)
1711 continue;
1712 offs[count] = sh->dev[i].offset;
1713 blocks[count++] = sh->dev[i].page;
1714 }
1715
1716 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1717 NULL, ops_complete_compute, sh,
1718 to_addr_conv(sh, percpu, 0));
1719 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1720 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1721 }
1722
1723 return tx;
1724}
1725
1726static struct dma_async_tx_descriptor *
1727ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1728{
1729 int i, count, disks = sh->disks;
1730 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1731 int d0_idx = raid6_d0(sh);
1732 int faila = -1, failb = -1;
1733 int target = sh->ops.target;
1734 int target2 = sh->ops.target2;
1735 struct r5dev *tgt = &sh->dev[target];
1736 struct r5dev *tgt2 = &sh->dev[target2];
1737 struct dma_async_tx_descriptor *tx;
1738 struct page **blocks = to_addr_page(percpu, 0);
1739 unsigned int *offs = to_addr_offs(sh, percpu);
1740 struct async_submit_ctl submit;
1741
1742 BUG_ON(sh->batch_head);
1743 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1744 __func__, (unsigned long long)sh->sector, target, target2);
1745 BUG_ON(target < 0 || target2 < 0);
1746 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1748
1749 /* we need to open-code set_syndrome_sources to handle the
1750 * slot number conversion for 'faila' and 'failb'
1751 */
1752 for (i = 0; i < disks ; i++) {
1753 offs[i] = 0;
1754 blocks[i] = NULL;
1755 }
1756 count = 0;
1757 i = d0_idx;
1758 do {
1759 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1760
1761 offs[slot] = sh->dev[i].offset;
1762 blocks[slot] = sh->dev[i].page;
1763
1764 if (i == target)
1765 faila = slot;
1766 if (i == target2)
1767 failb = slot;
1768 i = raid6_next_disk(i, disks);
1769 } while (i != d0_idx);
1770
1771 BUG_ON(faila == failb);
1772 if (failb < faila)
1773 swap(faila, failb);
1774 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1775 __func__, (unsigned long long)sh->sector, faila, failb);
1776
1777 atomic_inc(&sh->count);
1778
1779 if (failb == syndrome_disks+1) {
1780 /* Q disk is one of the missing disks */
1781 if (faila == syndrome_disks) {
1782 /* Missing P+Q, just recompute */
1783 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1784 ops_complete_compute, sh,
1785 to_addr_conv(sh, percpu, 0));
1786 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1787 RAID5_STRIPE_SIZE(sh->raid_conf),
1788 &submit);
1789 } else {
1790 struct page *dest;
1791 unsigned int dest_off;
1792 int data_target;
1793 int qd_idx = sh->qd_idx;
1794
1795 /* Missing D+Q: recompute D from P, then recompute Q */
1796 if (target == qd_idx)
1797 data_target = target2;
1798 else
1799 data_target = target;
1800
1801 count = 0;
1802 for (i = disks; i-- ; ) {
1803 if (i == data_target || i == qd_idx)
1804 continue;
1805 offs[count] = sh->dev[i].offset;
1806 blocks[count++] = sh->dev[i].page;
1807 }
1808 dest = sh->dev[data_target].page;
1809 dest_off = sh->dev[data_target].offset;
1810 init_async_submit(&submit,
1811 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1812 NULL, NULL, NULL,
1813 to_addr_conv(sh, percpu, 0));
1814 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1815 RAID5_STRIPE_SIZE(sh->raid_conf),
1816 &submit);
1817
1818 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1819 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1820 ops_complete_compute, sh,
1821 to_addr_conv(sh, percpu, 0));
1822 return async_gen_syndrome(blocks, offs, count+2,
1823 RAID5_STRIPE_SIZE(sh->raid_conf),
1824 &submit);
1825 }
1826 } else {
1827 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1828 ops_complete_compute, sh,
1829 to_addr_conv(sh, percpu, 0));
1830 if (failb == syndrome_disks) {
1831 /* We're missing D+P. */
1832 return async_raid6_datap_recov(syndrome_disks+2,
1833 RAID5_STRIPE_SIZE(sh->raid_conf),
1834 faila,
1835 blocks, offs, &submit);
1836 } else {
1837 /* We're missing D+D. */
1838 return async_raid6_2data_recov(syndrome_disks+2,
1839 RAID5_STRIPE_SIZE(sh->raid_conf),
1840 faila, failb,
1841 blocks, offs, &submit);
1842 }
1843 }
1844}
1845
1846static void ops_complete_prexor(void *stripe_head_ref)
1847{
1848 struct stripe_head *sh = stripe_head_ref;
1849
1850 pr_debug("%s: stripe %llu\n", __func__,
1851 (unsigned long long)sh->sector);
1852
1853 if (r5c_is_writeback(sh->raid_conf->log))
1854 /*
1855 * raid5-cache write back uses orig_page during prexor.
1856 * After prexor, it is time to free orig_page
1857 */
1858 r5c_release_extra_page(sh);
1859}
1860
1861static struct dma_async_tx_descriptor *
1862ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1863 struct dma_async_tx_descriptor *tx)
1864{
1865 int disks = sh->disks;
1866 struct page **xor_srcs = to_addr_page(percpu, 0);
1867 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1868 int count = 0, pd_idx = sh->pd_idx, i;
1869 struct async_submit_ctl submit;
1870
1871 /* existing parity data subtracted */
1872 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1873 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1874
1875 BUG_ON(sh->batch_head);
1876 pr_debug("%s: stripe %llu\n", __func__,
1877 (unsigned long long)sh->sector);
1878
1879 for (i = disks; i--; ) {
1880 struct r5dev *dev = &sh->dev[i];
1881 /* Only process blocks that are known to be uptodate */
1882 if (test_bit(R5_InJournal, &dev->flags)) {
1883 /*
1884 * For this case, PAGE_SIZE must be equal to 4KB and
1885 * page offset is zero.
1886 */
1887 off_srcs[count] = dev->offset;
1888 xor_srcs[count++] = dev->orig_page;
1889 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1890 off_srcs[count] = dev->offset;
1891 xor_srcs[count++] = dev->page;
1892 }
1893 }
1894
1895 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1896 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1897 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1898 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1899
1900 return tx;
1901}
1902
1903static struct dma_async_tx_descriptor *
1904ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1905 struct dma_async_tx_descriptor *tx)
1906{
1907 struct page **blocks = to_addr_page(percpu, 0);
1908 unsigned int *offs = to_addr_offs(sh, percpu);
1909 int count;
1910 struct async_submit_ctl submit;
1911
1912 pr_debug("%s: stripe %llu\n", __func__,
1913 (unsigned long long)sh->sector);
1914
1915 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1916
1917 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1918 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1919 tx = async_gen_syndrome(blocks, offs, count+2,
1920 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1921
1922 return tx;
1923}
1924
1925static struct dma_async_tx_descriptor *
1926ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1927{
1928 struct r5conf *conf = sh->raid_conf;
1929 int disks = sh->disks;
1930 int i;
1931 struct stripe_head *head_sh = sh;
1932
1933 pr_debug("%s: stripe %llu\n", __func__,
1934 (unsigned long long)sh->sector);
1935
1936 for (i = disks; i--; ) {
1937 struct r5dev *dev;
1938 struct bio *chosen;
1939
1940 sh = head_sh;
1941 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1942 struct bio *wbi;
1943
1944again:
1945 dev = &sh->dev[i];
1946 /*
1947 * clear R5_InJournal, so when rewriting a page in
1948 * journal, it is not skipped by r5l_log_stripe()
1949 */
1950 clear_bit(R5_InJournal, &dev->flags);
1951 spin_lock_irq(&sh->stripe_lock);
1952 chosen = dev->towrite;
1953 dev->towrite = NULL;
1954 sh->overwrite_disks = 0;
1955 BUG_ON(dev->written);
1956 wbi = dev->written = chosen;
1957 spin_unlock_irq(&sh->stripe_lock);
1958 WARN_ON(dev->page != dev->orig_page);
1959
1960 while (wbi && wbi->bi_iter.bi_sector <
1961 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1962 if (wbi->bi_opf & REQ_FUA)
1963 set_bit(R5_WantFUA, &dev->flags);
1964 if (wbi->bi_opf & REQ_SYNC)
1965 set_bit(R5_SyncIO, &dev->flags);
1966 if (bio_op(wbi) == REQ_OP_DISCARD)
1967 set_bit(R5_Discard, &dev->flags);
1968 else {
1969 tx = async_copy_data(1, wbi, &dev->page,
1970 dev->offset,
1971 dev->sector, tx, sh,
1972 r5c_is_writeback(conf->log));
1973 if (dev->page != dev->orig_page &&
1974 !r5c_is_writeback(conf->log)) {
1975 set_bit(R5_SkipCopy, &dev->flags);
1976 clear_bit(R5_UPTODATE, &dev->flags);
1977 clear_bit(R5_OVERWRITE, &dev->flags);
1978 }
1979 }
1980 wbi = r5_next_bio(conf, wbi, dev->sector);
1981 }
1982
1983 if (head_sh->batch_head) {
1984 sh = list_first_entry(&sh->batch_list,
1985 struct stripe_head,
1986 batch_list);
1987 if (sh == head_sh)
1988 continue;
1989 goto again;
1990 }
1991 }
1992 }
1993
1994 return tx;
1995}
1996
1997static void ops_complete_reconstruct(void *stripe_head_ref)
1998{
1999 struct stripe_head *sh = stripe_head_ref;
2000 int disks = sh->disks;
2001 int pd_idx = sh->pd_idx;
2002 int qd_idx = sh->qd_idx;
2003 int i;
2004 bool fua = false, sync = false, discard = false;
2005
2006 pr_debug("%s: stripe %llu\n", __func__,
2007 (unsigned long long)sh->sector);
2008
2009 for (i = disks; i--; ) {
2010 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2011 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2012 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2013 }
2014
2015 for (i = disks; i--; ) {
2016 struct r5dev *dev = &sh->dev[i];
2017
2018 if (dev->written || i == pd_idx || i == qd_idx) {
2019 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2020 set_bit(R5_UPTODATE, &dev->flags);
2021 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2022 set_bit(R5_Expanded, &dev->flags);
2023 }
2024 if (fua)
2025 set_bit(R5_WantFUA, &dev->flags);
2026 if (sync)
2027 set_bit(R5_SyncIO, &dev->flags);
2028 }
2029 }
2030
2031 if (sh->reconstruct_state == reconstruct_state_drain_run)
2032 sh->reconstruct_state = reconstruct_state_drain_result;
2033 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2034 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2035 else {
2036 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2037 sh->reconstruct_state = reconstruct_state_result;
2038 }
2039
2040 set_bit(STRIPE_HANDLE, &sh->state);
2041 raid5_release_stripe(sh);
2042}
2043
2044static void
2045ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2046 struct dma_async_tx_descriptor *tx)
2047{
2048 int disks = sh->disks;
2049 struct page **xor_srcs;
2050 unsigned int *off_srcs;
2051 struct async_submit_ctl submit;
2052 int count, pd_idx = sh->pd_idx, i;
2053 struct page *xor_dest;
2054 unsigned int off_dest;
2055 int prexor = 0;
2056 unsigned long flags;
2057 int j = 0;
2058 struct stripe_head *head_sh = sh;
2059 int last_stripe;
2060
2061 pr_debug("%s: stripe %llu\n", __func__,
2062 (unsigned long long)sh->sector);
2063
2064 for (i = 0; i < sh->disks; i++) {
2065 if (pd_idx == i)
2066 continue;
2067 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2068 break;
2069 }
2070 if (i >= sh->disks) {
2071 atomic_inc(&sh->count);
2072 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2073 ops_complete_reconstruct(sh);
2074 return;
2075 }
2076again:
2077 count = 0;
2078 xor_srcs = to_addr_page(percpu, j);
2079 off_srcs = to_addr_offs(sh, percpu);
2080 /* check if prexor is active which means only process blocks
2081 * that are part of a read-modify-write (written)
2082 */
2083 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2084 prexor = 1;
2085 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2086 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2087 for (i = disks; i--; ) {
2088 struct r5dev *dev = &sh->dev[i];
2089 if (head_sh->dev[i].written ||
2090 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2091 off_srcs[count] = dev->offset;
2092 xor_srcs[count++] = dev->page;
2093 }
2094 }
2095 } else {
2096 xor_dest = sh->dev[pd_idx].page;
2097 off_dest = sh->dev[pd_idx].offset;
2098 for (i = disks; i--; ) {
2099 struct r5dev *dev = &sh->dev[i];
2100 if (i != pd_idx) {
2101 off_srcs[count] = dev->offset;
2102 xor_srcs[count++] = dev->page;
2103 }
2104 }
2105 }
2106
2107 /* 1/ if we prexor'd then the dest is reused as a source
2108 * 2/ if we did not prexor then we are redoing the parity
2109 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2110 * for the synchronous xor case
2111 */
2112 last_stripe = !head_sh->batch_head ||
2113 list_first_entry(&sh->batch_list,
2114 struct stripe_head, batch_list) == head_sh;
2115 if (last_stripe) {
2116 flags = ASYNC_TX_ACK |
2117 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2118
2119 atomic_inc(&head_sh->count);
2120 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2121 to_addr_conv(sh, percpu, j));
2122 } else {
2123 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2124 init_async_submit(&submit, flags, tx, NULL, NULL,
2125 to_addr_conv(sh, percpu, j));
2126 }
2127
2128 if (unlikely(count == 1))
2129 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2130 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2131 else
2132 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2133 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2134 if (!last_stripe) {
2135 j++;
2136 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2137 batch_list);
2138 goto again;
2139 }
2140}
2141
2142static void
2143ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2144 struct dma_async_tx_descriptor *tx)
2145{
2146 struct async_submit_ctl submit;
2147 struct page **blocks;
2148 unsigned int *offs;
2149 int count, i, j = 0;
2150 struct stripe_head *head_sh = sh;
2151 int last_stripe;
2152 int synflags;
2153 unsigned long txflags;
2154
2155 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2156
2157 for (i = 0; i < sh->disks; i++) {
2158 if (sh->pd_idx == i || sh->qd_idx == i)
2159 continue;
2160 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2161 break;
2162 }
2163 if (i >= sh->disks) {
2164 atomic_inc(&sh->count);
2165 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2166 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2167 ops_complete_reconstruct(sh);
2168 return;
2169 }
2170
2171again:
2172 blocks = to_addr_page(percpu, j);
2173 offs = to_addr_offs(sh, percpu);
2174
2175 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2176 synflags = SYNDROME_SRC_WRITTEN;
2177 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2178 } else {
2179 synflags = SYNDROME_SRC_ALL;
2180 txflags = ASYNC_TX_ACK;
2181 }
2182
2183 count = set_syndrome_sources(blocks, offs, sh, synflags);
2184 last_stripe = !head_sh->batch_head ||
2185 list_first_entry(&sh->batch_list,
2186 struct stripe_head, batch_list) == head_sh;
2187
2188 if (last_stripe) {
2189 atomic_inc(&head_sh->count);
2190 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2191 head_sh, to_addr_conv(sh, percpu, j));
2192 } else
2193 init_async_submit(&submit, 0, tx, NULL, NULL,
2194 to_addr_conv(sh, percpu, j));
2195 tx = async_gen_syndrome(blocks, offs, count+2,
2196 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2197 if (!last_stripe) {
2198 j++;
2199 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2200 batch_list);
2201 goto again;
2202 }
2203}
2204
2205static void ops_complete_check(void *stripe_head_ref)
2206{
2207 struct stripe_head *sh = stripe_head_ref;
2208
2209 pr_debug("%s: stripe %llu\n", __func__,
2210 (unsigned long long)sh->sector);
2211
2212 sh->check_state = check_state_check_result;
2213 set_bit(STRIPE_HANDLE, &sh->state);
2214 raid5_release_stripe(sh);
2215}
2216
2217static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2218{
2219 int disks = sh->disks;
2220 int pd_idx = sh->pd_idx;
2221 int qd_idx = sh->qd_idx;
2222 struct page *xor_dest;
2223 unsigned int off_dest;
2224 struct page **xor_srcs = to_addr_page(percpu, 0);
2225 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2226 struct dma_async_tx_descriptor *tx;
2227 struct async_submit_ctl submit;
2228 int count;
2229 int i;
2230
2231 pr_debug("%s: stripe %llu\n", __func__,
2232 (unsigned long long)sh->sector);
2233
2234 BUG_ON(sh->batch_head);
2235 count = 0;
2236 xor_dest = sh->dev[pd_idx].page;
2237 off_dest = sh->dev[pd_idx].offset;
2238 off_srcs[count] = off_dest;
2239 xor_srcs[count++] = xor_dest;
2240 for (i = disks; i--; ) {
2241 if (i == pd_idx || i == qd_idx)
2242 continue;
2243 off_srcs[count] = sh->dev[i].offset;
2244 xor_srcs[count++] = sh->dev[i].page;
2245 }
2246
2247 init_async_submit(&submit, 0, NULL, NULL, NULL,
2248 to_addr_conv(sh, percpu, 0));
2249 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2250 RAID5_STRIPE_SIZE(sh->raid_conf),
2251 &sh->ops.zero_sum_result, &submit);
2252
2253 atomic_inc(&sh->count);
2254 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2255 tx = async_trigger_callback(&submit);
2256}
2257
2258static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2259{
2260 struct page **srcs = to_addr_page(percpu, 0);
2261 unsigned int *offs = to_addr_offs(sh, percpu);
2262 struct async_submit_ctl submit;
2263 int count;
2264
2265 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2266 (unsigned long long)sh->sector, checkp);
2267
2268 BUG_ON(sh->batch_head);
2269 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2270 if (!checkp)
2271 srcs[count] = NULL;
2272
2273 atomic_inc(&sh->count);
2274 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2275 sh, to_addr_conv(sh, percpu, 0));
2276 async_syndrome_val(srcs, offs, count+2,
2277 RAID5_STRIPE_SIZE(sh->raid_conf),
2278 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2279}
2280
2281static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2282{
2283 int overlap_clear = 0, i, disks = sh->disks;
2284 struct dma_async_tx_descriptor *tx = NULL;
2285 struct r5conf *conf = sh->raid_conf;
2286 int level = conf->level;
2287 struct raid5_percpu *percpu;
2288
2289 local_lock(&conf->percpu->lock);
2290 percpu = this_cpu_ptr(conf->percpu);
2291 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2292 ops_run_biofill(sh);
2293 overlap_clear++;
2294 }
2295
2296 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2297 if (level < 6)
2298 tx = ops_run_compute5(sh, percpu);
2299 else {
2300 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2301 tx = ops_run_compute6_1(sh, percpu);
2302 else
2303 tx = ops_run_compute6_2(sh, percpu);
2304 }
2305 /* terminate the chain if reconstruct is not set to be run */
2306 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2307 async_tx_ack(tx);
2308 }
2309
2310 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2311 if (level < 6)
2312 tx = ops_run_prexor5(sh, percpu, tx);
2313 else
2314 tx = ops_run_prexor6(sh, percpu, tx);
2315 }
2316
2317 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2318 tx = ops_run_partial_parity(sh, percpu, tx);
2319
2320 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2321 tx = ops_run_biodrain(sh, tx);
2322 overlap_clear++;
2323 }
2324
2325 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2326 if (level < 6)
2327 ops_run_reconstruct5(sh, percpu, tx);
2328 else
2329 ops_run_reconstruct6(sh, percpu, tx);
2330 }
2331
2332 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2333 if (sh->check_state == check_state_run)
2334 ops_run_check_p(sh, percpu);
2335 else if (sh->check_state == check_state_run_q)
2336 ops_run_check_pq(sh, percpu, 0);
2337 else if (sh->check_state == check_state_run_pq)
2338 ops_run_check_pq(sh, percpu, 1);
2339 else
2340 BUG();
2341 }
2342
2343 if (overlap_clear && !sh->batch_head) {
2344 for (i = disks; i--; ) {
2345 struct r5dev *dev = &sh->dev[i];
2346 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2347 wake_up(&sh->raid_conf->wait_for_overlap);
2348 }
2349 }
2350 local_unlock(&conf->percpu->lock);
2351}
2352
2353static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2354{
2355#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2356 kfree(sh->pages);
2357#endif
2358 if (sh->ppl_page)
2359 __free_page(sh->ppl_page);
2360 kmem_cache_free(sc, sh);
2361}
2362
2363static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2364 int disks, struct r5conf *conf)
2365{
2366 struct stripe_head *sh;
2367
2368 sh = kmem_cache_zalloc(sc, gfp);
2369 if (sh) {
2370 spin_lock_init(&sh->stripe_lock);
2371 spin_lock_init(&sh->batch_lock);
2372 INIT_LIST_HEAD(&sh->batch_list);
2373 INIT_LIST_HEAD(&sh->lru);
2374 INIT_LIST_HEAD(&sh->r5c);
2375 INIT_LIST_HEAD(&sh->log_list);
2376 atomic_set(&sh->count, 1);
2377 sh->raid_conf = conf;
2378 sh->log_start = MaxSector;
2379
2380 if (raid5_has_ppl(conf)) {
2381 sh->ppl_page = alloc_page(gfp);
2382 if (!sh->ppl_page) {
2383 free_stripe(sc, sh);
2384 return NULL;
2385 }
2386 }
2387#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2388 if (init_stripe_shared_pages(sh, conf, disks)) {
2389 free_stripe(sc, sh);
2390 return NULL;
2391 }
2392#endif
2393 }
2394 return sh;
2395}
2396static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2397{
2398 struct stripe_head *sh;
2399
2400 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2401 if (!sh)
2402 return 0;
2403
2404 if (grow_buffers(sh, gfp)) {
2405 shrink_buffers(sh);
2406 free_stripe(conf->slab_cache, sh);
2407 return 0;
2408 }
2409 sh->hash_lock_index =
2410 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2411 /* we just created an active stripe so... */
2412 atomic_inc(&conf->active_stripes);
2413
2414 raid5_release_stripe(sh);
2415 conf->max_nr_stripes++;
2416 return 1;
2417}
2418
2419static int grow_stripes(struct r5conf *conf, int num)
2420{
2421 struct kmem_cache *sc;
2422 size_t namelen = sizeof(conf->cache_name[0]);
2423 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2424
2425 if (conf->mddev->gendisk)
2426 snprintf(conf->cache_name[0], namelen,
2427 "raid%d-%s", conf->level, mdname(conf->mddev));
2428 else
2429 snprintf(conf->cache_name[0], namelen,
2430 "raid%d-%p", conf->level, conf->mddev);
2431 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2432
2433 conf->active_name = 0;
2434 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2435 struct_size_t(struct stripe_head, dev, devs),
2436 0, 0, NULL);
2437 if (!sc)
2438 return 1;
2439 conf->slab_cache = sc;
2440 conf->pool_size = devs;
2441 while (num--)
2442 if (!grow_one_stripe(conf, GFP_KERNEL))
2443 return 1;
2444
2445 return 0;
2446}
2447
2448/**
2449 * scribble_alloc - allocate percpu scribble buffer for required size
2450 * of the scribble region
2451 * @percpu: from for_each_present_cpu() of the caller
2452 * @num: total number of disks in the array
2453 * @cnt: scribble objs count for required size of the scribble region
2454 *
2455 * The scribble buffer size must be enough to contain:
2456 * 1/ a struct page pointer for each device in the array +2
2457 * 2/ room to convert each entry in (1) to its corresponding dma
2458 * (dma_map_page()) or page (page_address()) address.
2459 *
2460 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2461 * calculate over all devices (not just the data blocks), using zeros in place
2462 * of the P and Q blocks.
2463 */
2464static int scribble_alloc(struct raid5_percpu *percpu,
2465 int num, int cnt)
2466{
2467 size_t obj_size =
2468 sizeof(struct page *) * (num + 2) +
2469 sizeof(addr_conv_t) * (num + 2) +
2470 sizeof(unsigned int) * (num + 2);
2471 void *scribble;
2472
2473 /*
2474 * If here is in raid array suspend context, it is in memalloc noio
2475 * context as well, there is no potential recursive memory reclaim
2476 * I/Os with the GFP_KERNEL flag.
2477 */
2478 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2479 if (!scribble)
2480 return -ENOMEM;
2481
2482 kvfree(percpu->scribble);
2483
2484 percpu->scribble = scribble;
2485 percpu->scribble_obj_size = obj_size;
2486 return 0;
2487}
2488
2489static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2490{
2491 unsigned long cpu;
2492 int err = 0;
2493
2494 /* Never shrink. */
2495 if (conf->scribble_disks >= new_disks &&
2496 conf->scribble_sectors >= new_sectors)
2497 return 0;
2498
2499 raid5_quiesce(conf->mddev, true);
2500 cpus_read_lock();
2501
2502 for_each_present_cpu(cpu) {
2503 struct raid5_percpu *percpu;
2504
2505 percpu = per_cpu_ptr(conf->percpu, cpu);
2506 err = scribble_alloc(percpu, new_disks,
2507 new_sectors / RAID5_STRIPE_SECTORS(conf));
2508 if (err)
2509 break;
2510 }
2511
2512 cpus_read_unlock();
2513 raid5_quiesce(conf->mddev, false);
2514
2515 if (!err) {
2516 conf->scribble_disks = new_disks;
2517 conf->scribble_sectors = new_sectors;
2518 }
2519 return err;
2520}
2521
2522static int resize_stripes(struct r5conf *conf, int newsize)
2523{
2524 /* Make all the stripes able to hold 'newsize' devices.
2525 * New slots in each stripe get 'page' set to a new page.
2526 *
2527 * This happens in stages:
2528 * 1/ create a new kmem_cache and allocate the required number of
2529 * stripe_heads.
2530 * 2/ gather all the old stripe_heads and transfer the pages across
2531 * to the new stripe_heads. This will have the side effect of
2532 * freezing the array as once all stripe_heads have been collected,
2533 * no IO will be possible. Old stripe heads are freed once their
2534 * pages have been transferred over, and the old kmem_cache is
2535 * freed when all stripes are done.
2536 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2537 * we simple return a failure status - no need to clean anything up.
2538 * 4/ allocate new pages for the new slots in the new stripe_heads.
2539 * If this fails, we don't bother trying the shrink the
2540 * stripe_heads down again, we just leave them as they are.
2541 * As each stripe_head is processed the new one is released into
2542 * active service.
2543 *
2544 * Once step2 is started, we cannot afford to wait for a write,
2545 * so we use GFP_NOIO allocations.
2546 */
2547 struct stripe_head *osh, *nsh;
2548 LIST_HEAD(newstripes);
2549 struct disk_info *ndisks;
2550 int err = 0;
2551 struct kmem_cache *sc;
2552 int i;
2553 int hash, cnt;
2554
2555 md_allow_write(conf->mddev);
2556
2557 /* Step 1 */
2558 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2559 struct_size_t(struct stripe_head, dev, newsize),
2560 0, 0, NULL);
2561 if (!sc)
2562 return -ENOMEM;
2563
2564 /* Need to ensure auto-resizing doesn't interfere */
2565 mutex_lock(&conf->cache_size_mutex);
2566
2567 for (i = conf->max_nr_stripes; i; i--) {
2568 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2569 if (!nsh)
2570 break;
2571
2572 list_add(&nsh->lru, &newstripes);
2573 }
2574 if (i) {
2575 /* didn't get enough, give up */
2576 while (!list_empty(&newstripes)) {
2577 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2578 list_del(&nsh->lru);
2579 free_stripe(sc, nsh);
2580 }
2581 kmem_cache_destroy(sc);
2582 mutex_unlock(&conf->cache_size_mutex);
2583 return -ENOMEM;
2584 }
2585 /* Step 2 - Must use GFP_NOIO now.
2586 * OK, we have enough stripes, start collecting inactive
2587 * stripes and copying them over
2588 */
2589 hash = 0;
2590 cnt = 0;
2591 list_for_each_entry(nsh, &newstripes, lru) {
2592 lock_device_hash_lock(conf, hash);
2593 wait_event_cmd(conf->wait_for_stripe,
2594 !list_empty(conf->inactive_list + hash),
2595 unlock_device_hash_lock(conf, hash),
2596 lock_device_hash_lock(conf, hash));
2597 osh = get_free_stripe(conf, hash);
2598 unlock_device_hash_lock(conf, hash);
2599
2600#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2601 for (i = 0; i < osh->nr_pages; i++) {
2602 nsh->pages[i] = osh->pages[i];
2603 osh->pages[i] = NULL;
2604 }
2605#endif
2606 for(i=0; i<conf->pool_size; i++) {
2607 nsh->dev[i].page = osh->dev[i].page;
2608 nsh->dev[i].orig_page = osh->dev[i].page;
2609 nsh->dev[i].offset = osh->dev[i].offset;
2610 }
2611 nsh->hash_lock_index = hash;
2612 free_stripe(conf->slab_cache, osh);
2613 cnt++;
2614 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2615 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2616 hash++;
2617 cnt = 0;
2618 }
2619 }
2620 kmem_cache_destroy(conf->slab_cache);
2621
2622 /* Step 3.
2623 * At this point, we are holding all the stripes so the array
2624 * is completely stalled, so now is a good time to resize
2625 * conf->disks and the scribble region
2626 */
2627 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2628 if (ndisks) {
2629 for (i = 0; i < conf->pool_size; i++)
2630 ndisks[i] = conf->disks[i];
2631
2632 for (i = conf->pool_size; i < newsize; i++) {
2633 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2634 if (!ndisks[i].extra_page)
2635 err = -ENOMEM;
2636 }
2637
2638 if (err) {
2639 for (i = conf->pool_size; i < newsize; i++)
2640 if (ndisks[i].extra_page)
2641 put_page(ndisks[i].extra_page);
2642 kfree(ndisks);
2643 } else {
2644 kfree(conf->disks);
2645 conf->disks = ndisks;
2646 }
2647 } else
2648 err = -ENOMEM;
2649
2650 conf->slab_cache = sc;
2651 conf->active_name = 1-conf->active_name;
2652
2653 /* Step 4, return new stripes to service */
2654 while(!list_empty(&newstripes)) {
2655 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2656 list_del_init(&nsh->lru);
2657
2658#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2659 for (i = 0; i < nsh->nr_pages; i++) {
2660 if (nsh->pages[i])
2661 continue;
2662 nsh->pages[i] = alloc_page(GFP_NOIO);
2663 if (!nsh->pages[i])
2664 err = -ENOMEM;
2665 }
2666
2667 for (i = conf->raid_disks; i < newsize; i++) {
2668 if (nsh->dev[i].page)
2669 continue;
2670 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2671 nsh->dev[i].orig_page = nsh->dev[i].page;
2672 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2673 }
2674#else
2675 for (i=conf->raid_disks; i < newsize; i++)
2676 if (nsh->dev[i].page == NULL) {
2677 struct page *p = alloc_page(GFP_NOIO);
2678 nsh->dev[i].page = p;
2679 nsh->dev[i].orig_page = p;
2680 nsh->dev[i].offset = 0;
2681 if (!p)
2682 err = -ENOMEM;
2683 }
2684#endif
2685 raid5_release_stripe(nsh);
2686 }
2687 /* critical section pass, GFP_NOIO no longer needed */
2688
2689 if (!err)
2690 conf->pool_size = newsize;
2691 mutex_unlock(&conf->cache_size_mutex);
2692
2693 return err;
2694}
2695
2696static int drop_one_stripe(struct r5conf *conf)
2697{
2698 struct stripe_head *sh;
2699 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2700
2701 spin_lock_irq(conf->hash_locks + hash);
2702 sh = get_free_stripe(conf, hash);
2703 spin_unlock_irq(conf->hash_locks + hash);
2704 if (!sh)
2705 return 0;
2706 BUG_ON(atomic_read(&sh->count));
2707 shrink_buffers(sh);
2708 free_stripe(conf->slab_cache, sh);
2709 atomic_dec(&conf->active_stripes);
2710 conf->max_nr_stripes--;
2711 return 1;
2712}
2713
2714static void shrink_stripes(struct r5conf *conf)
2715{
2716 while (conf->max_nr_stripes &&
2717 drop_one_stripe(conf))
2718 ;
2719
2720 kmem_cache_destroy(conf->slab_cache);
2721 conf->slab_cache = NULL;
2722}
2723
2724static void raid5_end_read_request(struct bio * bi)
2725{
2726 struct stripe_head *sh = bi->bi_private;
2727 struct r5conf *conf = sh->raid_conf;
2728 int disks = sh->disks, i;
2729 struct md_rdev *rdev = NULL;
2730 sector_t s;
2731
2732 for (i=0 ; i<disks; i++)
2733 if (bi == &sh->dev[i].req)
2734 break;
2735
2736 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2737 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2738 bi->bi_status);
2739 if (i == disks) {
2740 BUG();
2741 return;
2742 }
2743 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2744 /* If replacement finished while this request was outstanding,
2745 * 'replacement' might be NULL already.
2746 * In that case it moved down to 'rdev'.
2747 * rdev is not removed until all requests are finished.
2748 */
2749 rdev = conf->disks[i].replacement;
2750 if (!rdev)
2751 rdev = conf->disks[i].rdev;
2752
2753 if (use_new_offset(conf, sh))
2754 s = sh->sector + rdev->new_data_offset;
2755 else
2756 s = sh->sector + rdev->data_offset;
2757 if (!bi->bi_status) {
2758 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2759 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2760 /* Note that this cannot happen on a
2761 * replacement device. We just fail those on
2762 * any error
2763 */
2764 pr_info_ratelimited(
2765 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2766 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2767 (unsigned long long)s,
2768 rdev->bdev);
2769 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2770 clear_bit(R5_ReadError, &sh->dev[i].flags);
2771 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2772 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2773 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2774
2775 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2776 /*
2777 * end read for a page in journal, this
2778 * must be preparing for prexor in rmw
2779 */
2780 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2781
2782 if (atomic_read(&rdev->read_errors))
2783 atomic_set(&rdev->read_errors, 0);
2784 } else {
2785 int retry = 0;
2786 int set_bad = 0;
2787
2788 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2789 if (!(bi->bi_status == BLK_STS_PROTECTION))
2790 atomic_inc(&rdev->read_errors);
2791 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2792 pr_warn_ratelimited(
2793 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2794 mdname(conf->mddev),
2795 (unsigned long long)s,
2796 rdev->bdev);
2797 else if (conf->mddev->degraded >= conf->max_degraded) {
2798 set_bad = 1;
2799 pr_warn_ratelimited(
2800 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2801 mdname(conf->mddev),
2802 (unsigned long long)s,
2803 rdev->bdev);
2804 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2805 /* Oh, no!!! */
2806 set_bad = 1;
2807 pr_warn_ratelimited(
2808 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2809 mdname(conf->mddev),
2810 (unsigned long long)s,
2811 rdev->bdev);
2812 } else if (atomic_read(&rdev->read_errors)
2813 > conf->max_nr_stripes) {
2814 if (!test_bit(Faulty, &rdev->flags)) {
2815 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2816 mdname(conf->mddev),
2817 atomic_read(&rdev->read_errors),
2818 conf->max_nr_stripes);
2819 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2820 mdname(conf->mddev), rdev->bdev);
2821 }
2822 } else
2823 retry = 1;
2824 if (set_bad && test_bit(In_sync, &rdev->flags)
2825 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2826 retry = 1;
2827 if (retry)
2828 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2829 set_bit(R5_ReadError, &sh->dev[i].flags);
2830 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2831 set_bit(R5_ReadError, &sh->dev[i].flags);
2832 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2833 } else
2834 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2835 else {
2836 clear_bit(R5_ReadError, &sh->dev[i].flags);
2837 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2838 if (!(set_bad
2839 && test_bit(In_sync, &rdev->flags)
2840 && rdev_set_badblocks(
2841 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2842 md_error(conf->mddev, rdev);
2843 }
2844 }
2845 rdev_dec_pending(rdev, conf->mddev);
2846 bio_uninit(bi);
2847 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2848 set_bit(STRIPE_HANDLE, &sh->state);
2849 raid5_release_stripe(sh);
2850}
2851
2852static void raid5_end_write_request(struct bio *bi)
2853{
2854 struct stripe_head *sh = bi->bi_private;
2855 struct r5conf *conf = sh->raid_conf;
2856 int disks = sh->disks, i;
2857 struct md_rdev *rdev;
2858 sector_t first_bad;
2859 int bad_sectors;
2860 int replacement = 0;
2861
2862 for (i = 0 ; i < disks; i++) {
2863 if (bi == &sh->dev[i].req) {
2864 rdev = conf->disks[i].rdev;
2865 break;
2866 }
2867 if (bi == &sh->dev[i].rreq) {
2868 rdev = conf->disks[i].replacement;
2869 if (rdev)
2870 replacement = 1;
2871 else
2872 /* rdev was removed and 'replacement'
2873 * replaced it. rdev is not removed
2874 * until all requests are finished.
2875 */
2876 rdev = conf->disks[i].rdev;
2877 break;
2878 }
2879 }
2880 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2881 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2882 bi->bi_status);
2883 if (i == disks) {
2884 BUG();
2885 return;
2886 }
2887
2888 if (replacement) {
2889 if (bi->bi_status)
2890 md_error(conf->mddev, rdev);
2891 else if (is_badblock(rdev, sh->sector,
2892 RAID5_STRIPE_SECTORS(conf),
2893 &first_bad, &bad_sectors))
2894 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2895 } else {
2896 if (bi->bi_status) {
2897 set_bit(STRIPE_DEGRADED, &sh->state);
2898 set_bit(WriteErrorSeen, &rdev->flags);
2899 set_bit(R5_WriteError, &sh->dev[i].flags);
2900 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2901 set_bit(MD_RECOVERY_NEEDED,
2902 &rdev->mddev->recovery);
2903 } else if (is_badblock(rdev, sh->sector,
2904 RAID5_STRIPE_SECTORS(conf),
2905 &first_bad, &bad_sectors)) {
2906 set_bit(R5_MadeGood, &sh->dev[i].flags);
2907 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2908 /* That was a successful write so make
2909 * sure it looks like we already did
2910 * a re-write.
2911 */
2912 set_bit(R5_ReWrite, &sh->dev[i].flags);
2913 }
2914 }
2915 rdev_dec_pending(rdev, conf->mddev);
2916
2917 if (sh->batch_head && bi->bi_status && !replacement)
2918 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2919
2920 bio_uninit(bi);
2921 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2922 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2923 set_bit(STRIPE_HANDLE, &sh->state);
2924
2925 if (sh->batch_head && sh != sh->batch_head)
2926 raid5_release_stripe(sh->batch_head);
2927 raid5_release_stripe(sh);
2928}
2929
2930static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2931{
2932 struct r5conf *conf = mddev->private;
2933 unsigned long flags;
2934 pr_debug("raid456: error called\n");
2935
2936 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2937 mdname(mddev), rdev->bdev);
2938
2939 spin_lock_irqsave(&conf->device_lock, flags);
2940 set_bit(Faulty, &rdev->flags);
2941 clear_bit(In_sync, &rdev->flags);
2942 mddev->degraded = raid5_calc_degraded(conf);
2943
2944 if (has_failed(conf)) {
2945 set_bit(MD_BROKEN, &conf->mddev->flags);
2946 conf->recovery_disabled = mddev->recovery_disabled;
2947
2948 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2949 mdname(mddev), mddev->degraded, conf->raid_disks);
2950 } else {
2951 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2952 mdname(mddev), conf->raid_disks - mddev->degraded);
2953 }
2954
2955 spin_unlock_irqrestore(&conf->device_lock, flags);
2956 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2957
2958 set_bit(Blocked, &rdev->flags);
2959 set_mask_bits(&mddev->sb_flags, 0,
2960 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2961 r5c_update_on_rdev_error(mddev, rdev);
2962}
2963
2964/*
2965 * Input: a 'big' sector number,
2966 * Output: index of the data and parity disk, and the sector # in them.
2967 */
2968sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2969 int previous, int *dd_idx,
2970 struct stripe_head *sh)
2971{
2972 sector_t stripe, stripe2;
2973 sector_t chunk_number;
2974 unsigned int chunk_offset;
2975 int pd_idx, qd_idx;
2976 int ddf_layout = 0;
2977 sector_t new_sector;
2978 int algorithm = previous ? conf->prev_algo
2979 : conf->algorithm;
2980 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2981 : conf->chunk_sectors;
2982 int raid_disks = previous ? conf->previous_raid_disks
2983 : conf->raid_disks;
2984 int data_disks = raid_disks - conf->max_degraded;
2985
2986 /* First compute the information on this sector */
2987
2988 /*
2989 * Compute the chunk number and the sector offset inside the chunk
2990 */
2991 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2992 chunk_number = r_sector;
2993
2994 /*
2995 * Compute the stripe number
2996 */
2997 stripe = chunk_number;
2998 *dd_idx = sector_div(stripe, data_disks);
2999 stripe2 = stripe;
3000 /*
3001 * Select the parity disk based on the user selected algorithm.
3002 */
3003 pd_idx = qd_idx = -1;
3004 switch(conf->level) {
3005 case 4:
3006 pd_idx = data_disks;
3007 break;
3008 case 5:
3009 switch (algorithm) {
3010 case ALGORITHM_LEFT_ASYMMETRIC:
3011 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3012 if (*dd_idx >= pd_idx)
3013 (*dd_idx)++;
3014 break;
3015 case ALGORITHM_RIGHT_ASYMMETRIC:
3016 pd_idx = sector_div(stripe2, raid_disks);
3017 if (*dd_idx >= pd_idx)
3018 (*dd_idx)++;
3019 break;
3020 case ALGORITHM_LEFT_SYMMETRIC:
3021 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3022 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3023 break;
3024 case ALGORITHM_RIGHT_SYMMETRIC:
3025 pd_idx = sector_div(stripe2, raid_disks);
3026 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3027 break;
3028 case ALGORITHM_PARITY_0:
3029 pd_idx = 0;
3030 (*dd_idx)++;
3031 break;
3032 case ALGORITHM_PARITY_N:
3033 pd_idx = data_disks;
3034 break;
3035 default:
3036 BUG();
3037 }
3038 break;
3039 case 6:
3040
3041 switch (algorithm) {
3042 case ALGORITHM_LEFT_ASYMMETRIC:
3043 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3044 qd_idx = pd_idx + 1;
3045 if (pd_idx == raid_disks-1) {
3046 (*dd_idx)++; /* Q D D D P */
3047 qd_idx = 0;
3048 } else if (*dd_idx >= pd_idx)
3049 (*dd_idx) += 2; /* D D P Q D */
3050 break;
3051 case ALGORITHM_RIGHT_ASYMMETRIC:
3052 pd_idx = sector_div(stripe2, raid_disks);
3053 qd_idx = pd_idx + 1;
3054 if (pd_idx == raid_disks-1) {
3055 (*dd_idx)++; /* Q D D D P */
3056 qd_idx = 0;
3057 } else if (*dd_idx >= pd_idx)
3058 (*dd_idx) += 2; /* D D P Q D */
3059 break;
3060 case ALGORITHM_LEFT_SYMMETRIC:
3061 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3062 qd_idx = (pd_idx + 1) % raid_disks;
3063 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3064 break;
3065 case ALGORITHM_RIGHT_SYMMETRIC:
3066 pd_idx = sector_div(stripe2, raid_disks);
3067 qd_idx = (pd_idx + 1) % raid_disks;
3068 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3069 break;
3070
3071 case ALGORITHM_PARITY_0:
3072 pd_idx = 0;
3073 qd_idx = 1;
3074 (*dd_idx) += 2;
3075 break;
3076 case ALGORITHM_PARITY_N:
3077 pd_idx = data_disks;
3078 qd_idx = data_disks + 1;
3079 break;
3080
3081 case ALGORITHM_ROTATING_ZERO_RESTART:
3082 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3083 * of blocks for computing Q is different.
3084 */
3085 pd_idx = sector_div(stripe2, raid_disks);
3086 qd_idx = pd_idx + 1;
3087 if (pd_idx == raid_disks-1) {
3088 (*dd_idx)++; /* Q D D D P */
3089 qd_idx = 0;
3090 } else if (*dd_idx >= pd_idx)
3091 (*dd_idx) += 2; /* D D P Q D */
3092 ddf_layout = 1;
3093 break;
3094
3095 case ALGORITHM_ROTATING_N_RESTART:
3096 /* Same a left_asymmetric, by first stripe is
3097 * D D D P Q rather than
3098 * Q D D D P
3099 */
3100 stripe2 += 1;
3101 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3102 qd_idx = pd_idx + 1;
3103 if (pd_idx == raid_disks-1) {
3104 (*dd_idx)++; /* Q D D D P */
3105 qd_idx = 0;
3106 } else if (*dd_idx >= pd_idx)
3107 (*dd_idx) += 2; /* D D P Q D */
3108 ddf_layout = 1;
3109 break;
3110
3111 case ALGORITHM_ROTATING_N_CONTINUE:
3112 /* Same as left_symmetric but Q is before P */
3113 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3114 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3115 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3116 ddf_layout = 1;
3117 break;
3118
3119 case ALGORITHM_LEFT_ASYMMETRIC_6:
3120 /* RAID5 left_asymmetric, with Q on last device */
3121 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3122 if (*dd_idx >= pd_idx)
3123 (*dd_idx)++;
3124 qd_idx = raid_disks - 1;
3125 break;
3126
3127 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3128 pd_idx = sector_div(stripe2, raid_disks-1);
3129 if (*dd_idx >= pd_idx)
3130 (*dd_idx)++;
3131 qd_idx = raid_disks - 1;
3132 break;
3133
3134 case ALGORITHM_LEFT_SYMMETRIC_6:
3135 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3136 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3137 qd_idx = raid_disks - 1;
3138 break;
3139
3140 case ALGORITHM_RIGHT_SYMMETRIC_6:
3141 pd_idx = sector_div(stripe2, raid_disks-1);
3142 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3143 qd_idx = raid_disks - 1;
3144 break;
3145
3146 case ALGORITHM_PARITY_0_6:
3147 pd_idx = 0;
3148 (*dd_idx)++;
3149 qd_idx = raid_disks - 1;
3150 break;
3151
3152 default:
3153 BUG();
3154 }
3155 break;
3156 }
3157
3158 if (sh) {
3159 sh->pd_idx = pd_idx;
3160 sh->qd_idx = qd_idx;
3161 sh->ddf_layout = ddf_layout;
3162 }
3163 /*
3164 * Finally, compute the new sector number
3165 */
3166 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3167 return new_sector;
3168}
3169
3170sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3171{
3172 struct r5conf *conf = sh->raid_conf;
3173 int raid_disks = sh->disks;
3174 int data_disks = raid_disks - conf->max_degraded;
3175 sector_t new_sector = sh->sector, check;
3176 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3177 : conf->chunk_sectors;
3178 int algorithm = previous ? conf->prev_algo
3179 : conf->algorithm;
3180 sector_t stripe;
3181 int chunk_offset;
3182 sector_t chunk_number;
3183 int dummy1, dd_idx = i;
3184 sector_t r_sector;
3185 struct stripe_head sh2;
3186
3187 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3188 stripe = new_sector;
3189
3190 if (i == sh->pd_idx)
3191 return 0;
3192 switch(conf->level) {
3193 case 4: break;
3194 case 5:
3195 switch (algorithm) {
3196 case ALGORITHM_LEFT_ASYMMETRIC:
3197 case ALGORITHM_RIGHT_ASYMMETRIC:
3198 if (i > sh->pd_idx)
3199 i--;
3200 break;
3201 case ALGORITHM_LEFT_SYMMETRIC:
3202 case ALGORITHM_RIGHT_SYMMETRIC:
3203 if (i < sh->pd_idx)
3204 i += raid_disks;
3205 i -= (sh->pd_idx + 1);
3206 break;
3207 case ALGORITHM_PARITY_0:
3208 i -= 1;
3209 break;
3210 case ALGORITHM_PARITY_N:
3211 break;
3212 default:
3213 BUG();
3214 }
3215 break;
3216 case 6:
3217 if (i == sh->qd_idx)
3218 return 0; /* It is the Q disk */
3219 switch (algorithm) {
3220 case ALGORITHM_LEFT_ASYMMETRIC:
3221 case ALGORITHM_RIGHT_ASYMMETRIC:
3222 case ALGORITHM_ROTATING_ZERO_RESTART:
3223 case ALGORITHM_ROTATING_N_RESTART:
3224 if (sh->pd_idx == raid_disks-1)
3225 i--; /* Q D D D P */
3226 else if (i > sh->pd_idx)
3227 i -= 2; /* D D P Q D */
3228 break;
3229 case ALGORITHM_LEFT_SYMMETRIC:
3230 case ALGORITHM_RIGHT_SYMMETRIC:
3231 if (sh->pd_idx == raid_disks-1)
3232 i--; /* Q D D D P */
3233 else {
3234 /* D D P Q D */
3235 if (i < sh->pd_idx)
3236 i += raid_disks;
3237 i -= (sh->pd_idx + 2);
3238 }
3239 break;
3240 case ALGORITHM_PARITY_0:
3241 i -= 2;
3242 break;
3243 case ALGORITHM_PARITY_N:
3244 break;
3245 case ALGORITHM_ROTATING_N_CONTINUE:
3246 /* Like left_symmetric, but P is before Q */
3247 if (sh->pd_idx == 0)
3248 i--; /* P D D D Q */
3249 else {
3250 /* D D Q P D */
3251 if (i < sh->pd_idx)
3252 i += raid_disks;
3253 i -= (sh->pd_idx + 1);
3254 }
3255 break;
3256 case ALGORITHM_LEFT_ASYMMETRIC_6:
3257 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3258 if (i > sh->pd_idx)
3259 i--;
3260 break;
3261 case ALGORITHM_LEFT_SYMMETRIC_6:
3262 case ALGORITHM_RIGHT_SYMMETRIC_6:
3263 if (i < sh->pd_idx)
3264 i += data_disks + 1;
3265 i -= (sh->pd_idx + 1);
3266 break;
3267 case ALGORITHM_PARITY_0_6:
3268 i -= 1;
3269 break;
3270 default:
3271 BUG();
3272 }
3273 break;
3274 }
3275
3276 chunk_number = stripe * data_disks + i;
3277 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3278
3279 check = raid5_compute_sector(conf, r_sector,
3280 previous, &dummy1, &sh2);
3281 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3282 || sh2.qd_idx != sh->qd_idx) {
3283 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3284 mdname(conf->mddev));
3285 return 0;
3286 }
3287 return r_sector;
3288}
3289
3290/*
3291 * There are cases where we want handle_stripe_dirtying() and
3292 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3293 *
3294 * This function checks whether we want to delay the towrite. Specifically,
3295 * we delay the towrite when:
3296 *
3297 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3298 * stripe has data in journal (for other devices).
3299 *
3300 * In this case, when reading data for the non-overwrite dev, it is
3301 * necessary to handle complex rmw of write back cache (prexor with
3302 * orig_page, and xor with page). To keep read path simple, we would
3303 * like to flush data in journal to RAID disks first, so complex rmw
3304 * is handled in the write patch (handle_stripe_dirtying).
3305 *
3306 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3307 *
3308 * It is important to be able to flush all stripes in raid5-cache.
3309 * Therefore, we need reserve some space on the journal device for
3310 * these flushes. If flush operation includes pending writes to the
3311 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3312 * for the flush out. If we exclude these pending writes from flush
3313 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3314 * Therefore, excluding pending writes in these cases enables more
3315 * efficient use of the journal device.
3316 *
3317 * Note: To make sure the stripe makes progress, we only delay
3318 * towrite for stripes with data already in journal (injournal > 0).
3319 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3320 * no_space_stripes list.
3321 *
3322 * 3. during journal failure
3323 * In journal failure, we try to flush all cached data to raid disks
3324 * based on data in stripe cache. The array is read-only to upper
3325 * layers, so we would skip all pending writes.
3326 *
3327 */
3328static inline bool delay_towrite(struct r5conf *conf,
3329 struct r5dev *dev,
3330 struct stripe_head_state *s)
3331{
3332 /* case 1 above */
3333 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3334 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3335 return true;
3336 /* case 2 above */
3337 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3338 s->injournal > 0)
3339 return true;
3340 /* case 3 above */
3341 if (s->log_failed && s->injournal)
3342 return true;
3343 return false;
3344}
3345
3346static void
3347schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3348 int rcw, int expand)
3349{
3350 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3351 struct r5conf *conf = sh->raid_conf;
3352 int level = conf->level;
3353
3354 if (rcw) {
3355 /*
3356 * In some cases, handle_stripe_dirtying initially decided to
3357 * run rmw and allocates extra page for prexor. However, rcw is
3358 * cheaper later on. We need to free the extra page now,
3359 * because we won't be able to do that in ops_complete_prexor().
3360 */
3361 r5c_release_extra_page(sh);
3362
3363 for (i = disks; i--; ) {
3364 struct r5dev *dev = &sh->dev[i];
3365
3366 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3367 set_bit(R5_LOCKED, &dev->flags);
3368 set_bit(R5_Wantdrain, &dev->flags);
3369 if (!expand)
3370 clear_bit(R5_UPTODATE, &dev->flags);
3371 s->locked++;
3372 } else if (test_bit(R5_InJournal, &dev->flags)) {
3373 set_bit(R5_LOCKED, &dev->flags);
3374 s->locked++;
3375 }
3376 }
3377 /* if we are not expanding this is a proper write request, and
3378 * there will be bios with new data to be drained into the
3379 * stripe cache
3380 */
3381 if (!expand) {
3382 if (!s->locked)
3383 /* False alarm, nothing to do */
3384 return;
3385 sh->reconstruct_state = reconstruct_state_drain_run;
3386 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3387 } else
3388 sh->reconstruct_state = reconstruct_state_run;
3389
3390 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3391
3392 if (s->locked + conf->max_degraded == disks)
3393 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3394 atomic_inc(&conf->pending_full_writes);
3395 } else {
3396 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3397 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3398 BUG_ON(level == 6 &&
3399 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3400 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3401
3402 for (i = disks; i--; ) {
3403 struct r5dev *dev = &sh->dev[i];
3404 if (i == pd_idx || i == qd_idx)
3405 continue;
3406
3407 if (dev->towrite &&
3408 (test_bit(R5_UPTODATE, &dev->flags) ||
3409 test_bit(R5_Wantcompute, &dev->flags))) {
3410 set_bit(R5_Wantdrain, &dev->flags);
3411 set_bit(R5_LOCKED, &dev->flags);
3412 clear_bit(R5_UPTODATE, &dev->flags);
3413 s->locked++;
3414 } else if (test_bit(R5_InJournal, &dev->flags)) {
3415 set_bit(R5_LOCKED, &dev->flags);
3416 s->locked++;
3417 }
3418 }
3419 if (!s->locked)
3420 /* False alarm - nothing to do */
3421 return;
3422 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3423 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3424 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3425 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3426 }
3427
3428 /* keep the parity disk(s) locked while asynchronous operations
3429 * are in flight
3430 */
3431 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3432 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3433 s->locked++;
3434
3435 if (level == 6) {
3436 int qd_idx = sh->qd_idx;
3437 struct r5dev *dev = &sh->dev[qd_idx];
3438
3439 set_bit(R5_LOCKED, &dev->flags);
3440 clear_bit(R5_UPTODATE, &dev->flags);
3441 s->locked++;
3442 }
3443
3444 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3445 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3446 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3447 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3448 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3449
3450 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3451 __func__, (unsigned long long)sh->sector,
3452 s->locked, s->ops_request);
3453}
3454
3455static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3456 int dd_idx, int forwrite)
3457{
3458 struct r5conf *conf = sh->raid_conf;
3459 struct bio **bip;
3460
3461 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3462 bi->bi_iter.bi_sector, sh->sector);
3463
3464 /* Don't allow new IO added to stripes in batch list */
3465 if (sh->batch_head)
3466 return true;
3467
3468 if (forwrite)
3469 bip = &sh->dev[dd_idx].towrite;
3470 else
3471 bip = &sh->dev[dd_idx].toread;
3472
3473 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3474 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3475 return true;
3476 bip = &(*bip)->bi_next;
3477 }
3478
3479 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3480 return true;
3481
3482 if (forwrite && raid5_has_ppl(conf)) {
3483 /*
3484 * With PPL only writes to consecutive data chunks within a
3485 * stripe are allowed because for a single stripe_head we can
3486 * only have one PPL entry at a time, which describes one data
3487 * range. Not really an overlap, but wait_for_overlap can be
3488 * used to handle this.
3489 */
3490 sector_t sector;
3491 sector_t first = 0;
3492 sector_t last = 0;
3493 int count = 0;
3494 int i;
3495
3496 for (i = 0; i < sh->disks; i++) {
3497 if (i != sh->pd_idx &&
3498 (i == dd_idx || sh->dev[i].towrite)) {
3499 sector = sh->dev[i].sector;
3500 if (count == 0 || sector < first)
3501 first = sector;
3502 if (sector > last)
3503 last = sector;
3504 count++;
3505 }
3506 }
3507
3508 if (first + conf->chunk_sectors * (count - 1) != last)
3509 return true;
3510 }
3511
3512 return false;
3513}
3514
3515static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3516 int dd_idx, int forwrite, int previous)
3517{
3518 struct r5conf *conf = sh->raid_conf;
3519 struct bio **bip;
3520 int firstwrite = 0;
3521
3522 if (forwrite) {
3523 bip = &sh->dev[dd_idx].towrite;
3524 if (!*bip)
3525 firstwrite = 1;
3526 } else {
3527 bip = &sh->dev[dd_idx].toread;
3528 }
3529
3530 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3531 bip = &(*bip)->bi_next;
3532
3533 if (!forwrite || previous)
3534 clear_bit(STRIPE_BATCH_READY, &sh->state);
3535
3536 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3537 if (*bip)
3538 bi->bi_next = *bip;
3539 *bip = bi;
3540 bio_inc_remaining(bi);
3541 md_write_inc(conf->mddev, bi);
3542
3543 if (forwrite) {
3544 /* check if page is covered */
3545 sector_t sector = sh->dev[dd_idx].sector;
3546 for (bi=sh->dev[dd_idx].towrite;
3547 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3548 bi && bi->bi_iter.bi_sector <= sector;
3549 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3550 if (bio_end_sector(bi) >= sector)
3551 sector = bio_end_sector(bi);
3552 }
3553 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3554 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3555 sh->overwrite_disks++;
3556 }
3557
3558 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3559 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3560 sh->dev[dd_idx].sector);
3561
3562 if (conf->mddev->bitmap && firstwrite) {
3563 /* Cannot hold spinlock over bitmap_startwrite,
3564 * but must ensure this isn't added to a batch until
3565 * we have added to the bitmap and set bm_seq.
3566 * So set STRIPE_BITMAP_PENDING to prevent
3567 * batching.
3568 * If multiple __add_stripe_bio() calls race here they
3569 * much all set STRIPE_BITMAP_PENDING. So only the first one
3570 * to complete "bitmap_startwrite" gets to set
3571 * STRIPE_BIT_DELAY. This is important as once a stripe
3572 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3573 * any more.
3574 */
3575 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3576 spin_unlock_irq(&sh->stripe_lock);
3577 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3578 RAID5_STRIPE_SECTORS(conf), 0);
3579 spin_lock_irq(&sh->stripe_lock);
3580 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3581 if (!sh->batch_head) {
3582 sh->bm_seq = conf->seq_flush+1;
3583 set_bit(STRIPE_BIT_DELAY, &sh->state);
3584 }
3585 }
3586}
3587
3588/*
3589 * Each stripe/dev can have one or more bios attached.
3590 * toread/towrite point to the first in a chain.
3591 * The bi_next chain must be in order.
3592 */
3593static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3594 int dd_idx, int forwrite, int previous)
3595{
3596 spin_lock_irq(&sh->stripe_lock);
3597
3598 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3599 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3600 spin_unlock_irq(&sh->stripe_lock);
3601 return false;
3602 }
3603
3604 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3605 spin_unlock_irq(&sh->stripe_lock);
3606 return true;
3607}
3608
3609static void end_reshape(struct r5conf *conf);
3610
3611static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3612 struct stripe_head *sh)
3613{
3614 int sectors_per_chunk =
3615 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3616 int dd_idx;
3617 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3618 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3619
3620 raid5_compute_sector(conf,
3621 stripe * (disks - conf->max_degraded)
3622 *sectors_per_chunk + chunk_offset,
3623 previous,
3624 &dd_idx, sh);
3625}
3626
3627static void
3628handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3629 struct stripe_head_state *s, int disks)
3630{
3631 int i;
3632 BUG_ON(sh->batch_head);
3633 for (i = disks; i--; ) {
3634 struct bio *bi;
3635 int bitmap_end = 0;
3636
3637 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3638 struct md_rdev *rdev = conf->disks[i].rdev;
3639
3640 if (rdev && test_bit(In_sync, &rdev->flags) &&
3641 !test_bit(Faulty, &rdev->flags))
3642 atomic_inc(&rdev->nr_pending);
3643 else
3644 rdev = NULL;
3645 if (rdev) {
3646 if (!rdev_set_badblocks(
3647 rdev,
3648 sh->sector,
3649 RAID5_STRIPE_SECTORS(conf), 0))
3650 md_error(conf->mddev, rdev);
3651 rdev_dec_pending(rdev, conf->mddev);
3652 }
3653 }
3654 spin_lock_irq(&sh->stripe_lock);
3655 /* fail all writes first */
3656 bi = sh->dev[i].towrite;
3657 sh->dev[i].towrite = NULL;
3658 sh->overwrite_disks = 0;
3659 spin_unlock_irq(&sh->stripe_lock);
3660 if (bi)
3661 bitmap_end = 1;
3662
3663 log_stripe_write_finished(sh);
3664
3665 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3666 wake_up(&conf->wait_for_overlap);
3667
3668 while (bi && bi->bi_iter.bi_sector <
3669 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3670 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3671
3672 md_write_end(conf->mddev);
3673 bio_io_error(bi);
3674 bi = nextbi;
3675 }
3676 if (bitmap_end)
3677 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3678 RAID5_STRIPE_SECTORS(conf), 0, 0);
3679 bitmap_end = 0;
3680 /* and fail all 'written' */
3681 bi = sh->dev[i].written;
3682 sh->dev[i].written = NULL;
3683 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3684 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3685 sh->dev[i].page = sh->dev[i].orig_page;
3686 }
3687
3688 if (bi) bitmap_end = 1;
3689 while (bi && bi->bi_iter.bi_sector <
3690 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3691 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3692
3693 md_write_end(conf->mddev);
3694 bio_io_error(bi);
3695 bi = bi2;
3696 }
3697
3698 /* fail any reads if this device is non-operational and
3699 * the data has not reached the cache yet.
3700 */
3701 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3702 s->failed > conf->max_degraded &&
3703 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3704 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3705 spin_lock_irq(&sh->stripe_lock);
3706 bi = sh->dev[i].toread;
3707 sh->dev[i].toread = NULL;
3708 spin_unlock_irq(&sh->stripe_lock);
3709 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3710 wake_up(&conf->wait_for_overlap);
3711 if (bi)
3712 s->to_read--;
3713 while (bi && bi->bi_iter.bi_sector <
3714 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3715 struct bio *nextbi =
3716 r5_next_bio(conf, bi, sh->dev[i].sector);
3717
3718 bio_io_error(bi);
3719 bi = nextbi;
3720 }
3721 }
3722 if (bitmap_end)
3723 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3724 RAID5_STRIPE_SECTORS(conf), 0, 0);
3725 /* If we were in the middle of a write the parity block might
3726 * still be locked - so just clear all R5_LOCKED flags
3727 */
3728 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3729 }
3730 s->to_write = 0;
3731 s->written = 0;
3732
3733 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3734 if (atomic_dec_and_test(&conf->pending_full_writes))
3735 md_wakeup_thread(conf->mddev->thread);
3736}
3737
3738static void
3739handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3740 struct stripe_head_state *s)
3741{
3742 int abort = 0;
3743 int i;
3744
3745 BUG_ON(sh->batch_head);
3746 clear_bit(STRIPE_SYNCING, &sh->state);
3747 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3748 wake_up(&conf->wait_for_overlap);
3749 s->syncing = 0;
3750 s->replacing = 0;
3751 /* There is nothing more to do for sync/check/repair.
3752 * Don't even need to abort as that is handled elsewhere
3753 * if needed, and not always wanted e.g. if there is a known
3754 * bad block here.
3755 * For recover/replace we need to record a bad block on all
3756 * non-sync devices, or abort the recovery
3757 */
3758 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3759 /* During recovery devices cannot be removed, so
3760 * locking and refcounting of rdevs is not needed
3761 */
3762 for (i = 0; i < conf->raid_disks; i++) {
3763 struct md_rdev *rdev = conf->disks[i].rdev;
3764
3765 if (rdev
3766 && !test_bit(Faulty, &rdev->flags)
3767 && !test_bit(In_sync, &rdev->flags)
3768 && !rdev_set_badblocks(rdev, sh->sector,
3769 RAID5_STRIPE_SECTORS(conf), 0))
3770 abort = 1;
3771 rdev = conf->disks[i].replacement;
3772
3773 if (rdev
3774 && !test_bit(Faulty, &rdev->flags)
3775 && !test_bit(In_sync, &rdev->flags)
3776 && !rdev_set_badblocks(rdev, sh->sector,
3777 RAID5_STRIPE_SECTORS(conf), 0))
3778 abort = 1;
3779 }
3780 if (abort)
3781 conf->recovery_disabled =
3782 conf->mddev->recovery_disabled;
3783 }
3784 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3785}
3786
3787static int want_replace(struct stripe_head *sh, int disk_idx)
3788{
3789 struct md_rdev *rdev;
3790 int rv = 0;
3791
3792 rdev = sh->raid_conf->disks[disk_idx].replacement;
3793 if (rdev
3794 && !test_bit(Faulty, &rdev->flags)
3795 && !test_bit(In_sync, &rdev->flags)
3796 && (rdev->recovery_offset <= sh->sector
3797 || rdev->mddev->recovery_cp <= sh->sector))
3798 rv = 1;
3799 return rv;
3800}
3801
3802static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3803 int disk_idx, int disks)
3804{
3805 struct r5dev *dev = &sh->dev[disk_idx];
3806 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3807 &sh->dev[s->failed_num[1]] };
3808 int i;
3809 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3810
3811
3812 if (test_bit(R5_LOCKED, &dev->flags) ||
3813 test_bit(R5_UPTODATE, &dev->flags))
3814 /* No point reading this as we already have it or have
3815 * decided to get it.
3816 */
3817 return 0;
3818
3819 if (dev->toread ||
3820 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3821 /* We need this block to directly satisfy a request */
3822 return 1;
3823
3824 if (s->syncing || s->expanding ||
3825 (s->replacing && want_replace(sh, disk_idx)))
3826 /* When syncing, or expanding we read everything.
3827 * When replacing, we need the replaced block.
3828 */
3829 return 1;
3830
3831 if ((s->failed >= 1 && fdev[0]->toread) ||
3832 (s->failed >= 2 && fdev[1]->toread))
3833 /* If we want to read from a failed device, then
3834 * we need to actually read every other device.
3835 */
3836 return 1;
3837
3838 /* Sometimes neither read-modify-write nor reconstruct-write
3839 * cycles can work. In those cases we read every block we
3840 * can. Then the parity-update is certain to have enough to
3841 * work with.
3842 * This can only be a problem when we need to write something,
3843 * and some device has failed. If either of those tests
3844 * fail we need look no further.
3845 */
3846 if (!s->failed || !s->to_write)
3847 return 0;
3848
3849 if (test_bit(R5_Insync, &dev->flags) &&
3850 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3851 /* Pre-reads at not permitted until after short delay
3852 * to gather multiple requests. However if this
3853 * device is no Insync, the block could only be computed
3854 * and there is no need to delay that.
3855 */
3856 return 0;
3857
3858 for (i = 0; i < s->failed && i < 2; i++) {
3859 if (fdev[i]->towrite &&
3860 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3861 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3862 /* If we have a partial write to a failed
3863 * device, then we will need to reconstruct
3864 * the content of that device, so all other
3865 * devices must be read.
3866 */
3867 return 1;
3868
3869 if (s->failed >= 2 &&
3870 (fdev[i]->towrite ||
3871 s->failed_num[i] == sh->pd_idx ||
3872 s->failed_num[i] == sh->qd_idx) &&
3873 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3874 /* In max degraded raid6, If the failed disk is P, Q,
3875 * or we want to read the failed disk, we need to do
3876 * reconstruct-write.
3877 */
3878 force_rcw = true;
3879 }
3880
3881 /* If we are forced to do a reconstruct-write, because parity
3882 * cannot be trusted and we are currently recovering it, there
3883 * is extra need to be careful.
3884 * If one of the devices that we would need to read, because
3885 * it is not being overwritten (and maybe not written at all)
3886 * is missing/faulty, then we need to read everything we can.
3887 */
3888 if (!force_rcw &&
3889 sh->sector < sh->raid_conf->mddev->recovery_cp)
3890 /* reconstruct-write isn't being forced */
3891 return 0;
3892 for (i = 0; i < s->failed && i < 2; i++) {
3893 if (s->failed_num[i] != sh->pd_idx &&
3894 s->failed_num[i] != sh->qd_idx &&
3895 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3896 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3897 return 1;
3898 }
3899
3900 return 0;
3901}
3902
3903/* fetch_block - checks the given member device to see if its data needs
3904 * to be read or computed to satisfy a request.
3905 *
3906 * Returns 1 when no more member devices need to be checked, otherwise returns
3907 * 0 to tell the loop in handle_stripe_fill to continue
3908 */
3909static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3910 int disk_idx, int disks)
3911{
3912 struct r5dev *dev = &sh->dev[disk_idx];
3913
3914 /* is the data in this block needed, and can we get it? */
3915 if (need_this_block(sh, s, disk_idx, disks)) {
3916 /* we would like to get this block, possibly by computing it,
3917 * otherwise read it if the backing disk is insync
3918 */
3919 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3920 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3921 BUG_ON(sh->batch_head);
3922
3923 /*
3924 * In the raid6 case if the only non-uptodate disk is P
3925 * then we already trusted P to compute the other failed
3926 * drives. It is safe to compute rather than re-read P.
3927 * In other cases we only compute blocks from failed
3928 * devices, otherwise check/repair might fail to detect
3929 * a real inconsistency.
3930 */
3931
3932 if ((s->uptodate == disks - 1) &&
3933 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3934 (s->failed && (disk_idx == s->failed_num[0] ||
3935 disk_idx == s->failed_num[1])))) {
3936 /* have disk failed, and we're requested to fetch it;
3937 * do compute it
3938 */
3939 pr_debug("Computing stripe %llu block %d\n",
3940 (unsigned long long)sh->sector, disk_idx);
3941 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3942 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3943 set_bit(R5_Wantcompute, &dev->flags);
3944 sh->ops.target = disk_idx;
3945 sh->ops.target2 = -1; /* no 2nd target */
3946 s->req_compute = 1;
3947 /* Careful: from this point on 'uptodate' is in the eye
3948 * of raid_run_ops which services 'compute' operations
3949 * before writes. R5_Wantcompute flags a block that will
3950 * be R5_UPTODATE by the time it is needed for a
3951 * subsequent operation.
3952 */
3953 s->uptodate++;
3954 return 1;
3955 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3956 /* Computing 2-failure is *very* expensive; only
3957 * do it if failed >= 2
3958 */
3959 int other;
3960 for (other = disks; other--; ) {
3961 if (other == disk_idx)
3962 continue;
3963 if (!test_bit(R5_UPTODATE,
3964 &sh->dev[other].flags))
3965 break;
3966 }
3967 BUG_ON(other < 0);
3968 pr_debug("Computing stripe %llu blocks %d,%d\n",
3969 (unsigned long long)sh->sector,
3970 disk_idx, other);
3971 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3972 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3973 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3974 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3975 sh->ops.target = disk_idx;
3976 sh->ops.target2 = other;
3977 s->uptodate += 2;
3978 s->req_compute = 1;
3979 return 1;
3980 } else if (test_bit(R5_Insync, &dev->flags)) {
3981 set_bit(R5_LOCKED, &dev->flags);
3982 set_bit(R5_Wantread, &dev->flags);
3983 s->locked++;
3984 pr_debug("Reading block %d (sync=%d)\n",
3985 disk_idx, s->syncing);
3986 }
3987 }
3988
3989 return 0;
3990}
3991
3992/*
3993 * handle_stripe_fill - read or compute data to satisfy pending requests.
3994 */
3995static void handle_stripe_fill(struct stripe_head *sh,
3996 struct stripe_head_state *s,
3997 int disks)
3998{
3999 int i;
4000
4001 /* look for blocks to read/compute, skip this if a compute
4002 * is already in flight, or if the stripe contents are in the
4003 * midst of changing due to a write
4004 */
4005 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4006 !sh->reconstruct_state) {
4007
4008 /*
4009 * For degraded stripe with data in journal, do not handle
4010 * read requests yet, instead, flush the stripe to raid
4011 * disks first, this avoids handling complex rmw of write
4012 * back cache (prexor with orig_page, and then xor with
4013 * page) in the read path
4014 */
4015 if (s->to_read && s->injournal && s->failed) {
4016 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4017 r5c_make_stripe_write_out(sh);
4018 goto out;
4019 }
4020
4021 for (i = disks; i--; )
4022 if (fetch_block(sh, s, i, disks))
4023 break;
4024 }
4025out:
4026 set_bit(STRIPE_HANDLE, &sh->state);
4027}
4028
4029static void break_stripe_batch_list(struct stripe_head *head_sh,
4030 unsigned long handle_flags);
4031/* handle_stripe_clean_event
4032 * any written block on an uptodate or failed drive can be returned.
4033 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4034 * never LOCKED, so we don't need to test 'failed' directly.
4035 */
4036static void handle_stripe_clean_event(struct r5conf *conf,
4037 struct stripe_head *sh, int disks)
4038{
4039 int i;
4040 struct r5dev *dev;
4041 int discard_pending = 0;
4042 struct stripe_head *head_sh = sh;
4043 bool do_endio = false;
4044
4045 for (i = disks; i--; )
4046 if (sh->dev[i].written) {
4047 dev = &sh->dev[i];
4048 if (!test_bit(R5_LOCKED, &dev->flags) &&
4049 (test_bit(R5_UPTODATE, &dev->flags) ||
4050 test_bit(R5_Discard, &dev->flags) ||
4051 test_bit(R5_SkipCopy, &dev->flags))) {
4052 /* We can return any write requests */
4053 struct bio *wbi, *wbi2;
4054 pr_debug("Return write for disc %d\n", i);
4055 if (test_and_clear_bit(R5_Discard, &dev->flags))
4056 clear_bit(R5_UPTODATE, &dev->flags);
4057 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4058 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4059 }
4060 do_endio = true;
4061
4062returnbi:
4063 dev->page = dev->orig_page;
4064 wbi = dev->written;
4065 dev->written = NULL;
4066 while (wbi && wbi->bi_iter.bi_sector <
4067 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4068 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4069 md_write_end(conf->mddev);
4070 bio_endio(wbi);
4071 wbi = wbi2;
4072 }
4073 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4074 RAID5_STRIPE_SECTORS(conf),
4075 !test_bit(STRIPE_DEGRADED, &sh->state),
4076 0);
4077 if (head_sh->batch_head) {
4078 sh = list_first_entry(&sh->batch_list,
4079 struct stripe_head,
4080 batch_list);
4081 if (sh != head_sh) {
4082 dev = &sh->dev[i];
4083 goto returnbi;
4084 }
4085 }
4086 sh = head_sh;
4087 dev = &sh->dev[i];
4088 } else if (test_bit(R5_Discard, &dev->flags))
4089 discard_pending = 1;
4090 }
4091
4092 log_stripe_write_finished(sh);
4093
4094 if (!discard_pending &&
4095 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4096 int hash;
4097 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4098 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4099 if (sh->qd_idx >= 0) {
4100 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4101 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4102 }
4103 /* now that discard is done we can proceed with any sync */
4104 clear_bit(STRIPE_DISCARD, &sh->state);
4105 /*
4106 * SCSI discard will change some bio fields and the stripe has
4107 * no updated data, so remove it from hash list and the stripe
4108 * will be reinitialized
4109 */
4110unhash:
4111 hash = sh->hash_lock_index;
4112 spin_lock_irq(conf->hash_locks + hash);
4113 remove_hash(sh);
4114 spin_unlock_irq(conf->hash_locks + hash);
4115 if (head_sh->batch_head) {
4116 sh = list_first_entry(&sh->batch_list,
4117 struct stripe_head, batch_list);
4118 if (sh != head_sh)
4119 goto unhash;
4120 }
4121 sh = head_sh;
4122
4123 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4124 set_bit(STRIPE_HANDLE, &sh->state);
4125
4126 }
4127
4128 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4129 if (atomic_dec_and_test(&conf->pending_full_writes))
4130 md_wakeup_thread(conf->mddev->thread);
4131
4132 if (head_sh->batch_head && do_endio)
4133 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4134}
4135
4136/*
4137 * For RMW in write back cache, we need extra page in prexor to store the
4138 * old data. This page is stored in dev->orig_page.
4139 *
4140 * This function checks whether we have data for prexor. The exact logic
4141 * is:
4142 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4143 */
4144static inline bool uptodate_for_rmw(struct r5dev *dev)
4145{
4146 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4147 (!test_bit(R5_InJournal, &dev->flags) ||
4148 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4149}
4150
4151static int handle_stripe_dirtying(struct r5conf *conf,
4152 struct stripe_head *sh,
4153 struct stripe_head_state *s,
4154 int disks)
4155{
4156 int rmw = 0, rcw = 0, i;
4157 sector_t recovery_cp = conf->mddev->recovery_cp;
4158
4159 /* Check whether resync is now happening or should start.
4160 * If yes, then the array is dirty (after unclean shutdown or
4161 * initial creation), so parity in some stripes might be inconsistent.
4162 * In this case, we need to always do reconstruct-write, to ensure
4163 * that in case of drive failure or read-error correction, we
4164 * generate correct data from the parity.
4165 */
4166 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4167 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4168 s->failed == 0)) {
4169 /* Calculate the real rcw later - for now make it
4170 * look like rcw is cheaper
4171 */
4172 rcw = 1; rmw = 2;
4173 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4174 conf->rmw_level, (unsigned long long)recovery_cp,
4175 (unsigned long long)sh->sector);
4176 } else for (i = disks; i--; ) {
4177 /* would I have to read this buffer for read_modify_write */
4178 struct r5dev *dev = &sh->dev[i];
4179 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4180 i == sh->pd_idx || i == sh->qd_idx ||
4181 test_bit(R5_InJournal, &dev->flags)) &&
4182 !test_bit(R5_LOCKED, &dev->flags) &&
4183 !(uptodate_for_rmw(dev) ||
4184 test_bit(R5_Wantcompute, &dev->flags))) {
4185 if (test_bit(R5_Insync, &dev->flags))
4186 rmw++;
4187 else
4188 rmw += 2*disks; /* cannot read it */
4189 }
4190 /* Would I have to read this buffer for reconstruct_write */
4191 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4192 i != sh->pd_idx && i != sh->qd_idx &&
4193 !test_bit(R5_LOCKED, &dev->flags) &&
4194 !(test_bit(R5_UPTODATE, &dev->flags) ||
4195 test_bit(R5_Wantcompute, &dev->flags))) {
4196 if (test_bit(R5_Insync, &dev->flags))
4197 rcw++;
4198 else
4199 rcw += 2*disks;
4200 }
4201 }
4202
4203 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4204 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4205 set_bit(STRIPE_HANDLE, &sh->state);
4206 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4207 /* prefer read-modify-write, but need to get some data */
4208 if (conf->mddev->queue)
4209 blk_add_trace_msg(conf->mddev->queue,
4210 "raid5 rmw %llu %d",
4211 (unsigned long long)sh->sector, rmw);
4212 for (i = disks; i--; ) {
4213 struct r5dev *dev = &sh->dev[i];
4214 if (test_bit(R5_InJournal, &dev->flags) &&
4215 dev->page == dev->orig_page &&
4216 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4217 /* alloc page for prexor */
4218 struct page *p = alloc_page(GFP_NOIO);
4219
4220 if (p) {
4221 dev->orig_page = p;
4222 continue;
4223 }
4224
4225 /*
4226 * alloc_page() failed, try use
4227 * disk_info->extra_page
4228 */
4229 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4230 &conf->cache_state)) {
4231 r5c_use_extra_page(sh);
4232 break;
4233 }
4234
4235 /* extra_page in use, add to delayed_list */
4236 set_bit(STRIPE_DELAYED, &sh->state);
4237 s->waiting_extra_page = 1;
4238 return -EAGAIN;
4239 }
4240 }
4241
4242 for (i = disks; i--; ) {
4243 struct r5dev *dev = &sh->dev[i];
4244 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4245 i == sh->pd_idx || i == sh->qd_idx ||
4246 test_bit(R5_InJournal, &dev->flags)) &&
4247 !test_bit(R5_LOCKED, &dev->flags) &&
4248 !(uptodate_for_rmw(dev) ||
4249 test_bit(R5_Wantcompute, &dev->flags)) &&
4250 test_bit(R5_Insync, &dev->flags)) {
4251 if (test_bit(STRIPE_PREREAD_ACTIVE,
4252 &sh->state)) {
4253 pr_debug("Read_old block %d for r-m-w\n",
4254 i);
4255 set_bit(R5_LOCKED, &dev->flags);
4256 set_bit(R5_Wantread, &dev->flags);
4257 s->locked++;
4258 } else
4259 set_bit(STRIPE_DELAYED, &sh->state);
4260 }
4261 }
4262 }
4263 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4264 /* want reconstruct write, but need to get some data */
4265 int qread =0;
4266 rcw = 0;
4267 for (i = disks; i--; ) {
4268 struct r5dev *dev = &sh->dev[i];
4269 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4270 i != sh->pd_idx && i != sh->qd_idx &&
4271 !test_bit(R5_LOCKED, &dev->flags) &&
4272 !(test_bit(R5_UPTODATE, &dev->flags) ||
4273 test_bit(R5_Wantcompute, &dev->flags))) {
4274 rcw++;
4275 if (test_bit(R5_Insync, &dev->flags) &&
4276 test_bit(STRIPE_PREREAD_ACTIVE,
4277 &sh->state)) {
4278 pr_debug("Read_old block "
4279 "%d for Reconstruct\n", i);
4280 set_bit(R5_LOCKED, &dev->flags);
4281 set_bit(R5_Wantread, &dev->flags);
4282 s->locked++;
4283 qread++;
4284 } else
4285 set_bit(STRIPE_DELAYED, &sh->state);
4286 }
4287 }
4288 if (rcw && conf->mddev->queue)
4289 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4290 (unsigned long long)sh->sector,
4291 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4292 }
4293
4294 if (rcw > disks && rmw > disks &&
4295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4296 set_bit(STRIPE_DELAYED, &sh->state);
4297
4298 /* now if nothing is locked, and if we have enough data,
4299 * we can start a write request
4300 */
4301 /* since handle_stripe can be called at any time we need to handle the
4302 * case where a compute block operation has been submitted and then a
4303 * subsequent call wants to start a write request. raid_run_ops only
4304 * handles the case where compute block and reconstruct are requested
4305 * simultaneously. If this is not the case then new writes need to be
4306 * held off until the compute completes.
4307 */
4308 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4309 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4310 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4311 schedule_reconstruction(sh, s, rcw == 0, 0);
4312 return 0;
4313}
4314
4315static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4316 struct stripe_head_state *s, int disks)
4317{
4318 struct r5dev *dev = NULL;
4319
4320 BUG_ON(sh->batch_head);
4321 set_bit(STRIPE_HANDLE, &sh->state);
4322
4323 switch (sh->check_state) {
4324 case check_state_idle:
4325 /* start a new check operation if there are no failures */
4326 if (s->failed == 0) {
4327 BUG_ON(s->uptodate != disks);
4328 sh->check_state = check_state_run;
4329 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4330 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4331 s->uptodate--;
4332 break;
4333 }
4334 dev = &sh->dev[s->failed_num[0]];
4335 fallthrough;
4336 case check_state_compute_result:
4337 sh->check_state = check_state_idle;
4338 if (!dev)
4339 dev = &sh->dev[sh->pd_idx];
4340
4341 /* check that a write has not made the stripe insync */
4342 if (test_bit(STRIPE_INSYNC, &sh->state))
4343 break;
4344
4345 /* either failed parity check, or recovery is happening */
4346 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4347 BUG_ON(s->uptodate != disks);
4348
4349 set_bit(R5_LOCKED, &dev->flags);
4350 s->locked++;
4351 set_bit(R5_Wantwrite, &dev->flags);
4352
4353 clear_bit(STRIPE_DEGRADED, &sh->state);
4354 set_bit(STRIPE_INSYNC, &sh->state);
4355 break;
4356 case check_state_run:
4357 break; /* we will be called again upon completion */
4358 case check_state_check_result:
4359 sh->check_state = check_state_idle;
4360
4361 /* if a failure occurred during the check operation, leave
4362 * STRIPE_INSYNC not set and let the stripe be handled again
4363 */
4364 if (s->failed)
4365 break;
4366
4367 /* handle a successful check operation, if parity is correct
4368 * we are done. Otherwise update the mismatch count and repair
4369 * parity if !MD_RECOVERY_CHECK
4370 */
4371 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4372 /* parity is correct (on disc,
4373 * not in buffer any more)
4374 */
4375 set_bit(STRIPE_INSYNC, &sh->state);
4376 else {
4377 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4378 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4379 /* don't try to repair!! */
4380 set_bit(STRIPE_INSYNC, &sh->state);
4381 pr_warn_ratelimited("%s: mismatch sector in range "
4382 "%llu-%llu\n", mdname(conf->mddev),
4383 (unsigned long long) sh->sector,
4384 (unsigned long long) sh->sector +
4385 RAID5_STRIPE_SECTORS(conf));
4386 } else {
4387 sh->check_state = check_state_compute_run;
4388 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4389 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4390 set_bit(R5_Wantcompute,
4391 &sh->dev[sh->pd_idx].flags);
4392 sh->ops.target = sh->pd_idx;
4393 sh->ops.target2 = -1;
4394 s->uptodate++;
4395 }
4396 }
4397 break;
4398 case check_state_compute_run:
4399 break;
4400 default:
4401 pr_err("%s: unknown check_state: %d sector: %llu\n",
4402 __func__, sh->check_state,
4403 (unsigned long long) sh->sector);
4404 BUG();
4405 }
4406}
4407
4408static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4409 struct stripe_head_state *s,
4410 int disks)
4411{
4412 int pd_idx = sh->pd_idx;
4413 int qd_idx = sh->qd_idx;
4414 struct r5dev *dev;
4415
4416 BUG_ON(sh->batch_head);
4417 set_bit(STRIPE_HANDLE, &sh->state);
4418
4419 BUG_ON(s->failed > 2);
4420
4421 /* Want to check and possibly repair P and Q.
4422 * However there could be one 'failed' device, in which
4423 * case we can only check one of them, possibly using the
4424 * other to generate missing data
4425 */
4426
4427 switch (sh->check_state) {
4428 case check_state_idle:
4429 /* start a new check operation if there are < 2 failures */
4430 if (s->failed == s->q_failed) {
4431 /* The only possible failed device holds Q, so it
4432 * makes sense to check P (If anything else were failed,
4433 * we would have used P to recreate it).
4434 */
4435 sh->check_state = check_state_run;
4436 }
4437 if (!s->q_failed && s->failed < 2) {
4438 /* Q is not failed, and we didn't use it to generate
4439 * anything, so it makes sense to check it
4440 */
4441 if (sh->check_state == check_state_run)
4442 sh->check_state = check_state_run_pq;
4443 else
4444 sh->check_state = check_state_run_q;
4445 }
4446
4447 /* discard potentially stale zero_sum_result */
4448 sh->ops.zero_sum_result = 0;
4449
4450 if (sh->check_state == check_state_run) {
4451 /* async_xor_zero_sum destroys the contents of P */
4452 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4453 s->uptodate--;
4454 }
4455 if (sh->check_state >= check_state_run &&
4456 sh->check_state <= check_state_run_pq) {
4457 /* async_syndrome_zero_sum preserves P and Q, so
4458 * no need to mark them !uptodate here
4459 */
4460 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4461 break;
4462 }
4463
4464 /* we have 2-disk failure */
4465 BUG_ON(s->failed != 2);
4466 fallthrough;
4467 case check_state_compute_result:
4468 sh->check_state = check_state_idle;
4469
4470 /* check that a write has not made the stripe insync */
4471 if (test_bit(STRIPE_INSYNC, &sh->state))
4472 break;
4473
4474 /* now write out any block on a failed drive,
4475 * or P or Q if they were recomputed
4476 */
4477 dev = NULL;
4478 if (s->failed == 2) {
4479 dev = &sh->dev[s->failed_num[1]];
4480 s->locked++;
4481 set_bit(R5_LOCKED, &dev->flags);
4482 set_bit(R5_Wantwrite, &dev->flags);
4483 }
4484 if (s->failed >= 1) {
4485 dev = &sh->dev[s->failed_num[0]];
4486 s->locked++;
4487 set_bit(R5_LOCKED, &dev->flags);
4488 set_bit(R5_Wantwrite, &dev->flags);
4489 }
4490 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4491 dev = &sh->dev[pd_idx];
4492 s->locked++;
4493 set_bit(R5_LOCKED, &dev->flags);
4494 set_bit(R5_Wantwrite, &dev->flags);
4495 }
4496 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4497 dev = &sh->dev[qd_idx];
4498 s->locked++;
4499 set_bit(R5_LOCKED, &dev->flags);
4500 set_bit(R5_Wantwrite, &dev->flags);
4501 }
4502 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4503 "%s: disk%td not up to date\n",
4504 mdname(conf->mddev),
4505 dev - (struct r5dev *) &sh->dev)) {
4506 clear_bit(R5_LOCKED, &dev->flags);
4507 clear_bit(R5_Wantwrite, &dev->flags);
4508 s->locked--;
4509 }
4510 clear_bit(STRIPE_DEGRADED, &sh->state);
4511
4512 set_bit(STRIPE_INSYNC, &sh->state);
4513 break;
4514 case check_state_run:
4515 case check_state_run_q:
4516 case check_state_run_pq:
4517 break; /* we will be called again upon completion */
4518 case check_state_check_result:
4519 sh->check_state = check_state_idle;
4520
4521 /* handle a successful check operation, if parity is correct
4522 * we are done. Otherwise update the mismatch count and repair
4523 * parity if !MD_RECOVERY_CHECK
4524 */
4525 if (sh->ops.zero_sum_result == 0) {
4526 /* both parities are correct */
4527 if (!s->failed)
4528 set_bit(STRIPE_INSYNC, &sh->state);
4529 else {
4530 /* in contrast to the raid5 case we can validate
4531 * parity, but still have a failure to write
4532 * back
4533 */
4534 sh->check_state = check_state_compute_result;
4535 /* Returning at this point means that we may go
4536 * off and bring p and/or q uptodate again so
4537 * we make sure to check zero_sum_result again
4538 * to verify if p or q need writeback
4539 */
4540 }
4541 } else {
4542 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4543 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4544 /* don't try to repair!! */
4545 set_bit(STRIPE_INSYNC, &sh->state);
4546 pr_warn_ratelimited("%s: mismatch sector in range "
4547 "%llu-%llu\n", mdname(conf->mddev),
4548 (unsigned long long) sh->sector,
4549 (unsigned long long) sh->sector +
4550 RAID5_STRIPE_SECTORS(conf));
4551 } else {
4552 int *target = &sh->ops.target;
4553
4554 sh->ops.target = -1;
4555 sh->ops.target2 = -1;
4556 sh->check_state = check_state_compute_run;
4557 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4558 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4559 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4560 set_bit(R5_Wantcompute,
4561 &sh->dev[pd_idx].flags);
4562 *target = pd_idx;
4563 target = &sh->ops.target2;
4564 s->uptodate++;
4565 }
4566 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4567 set_bit(R5_Wantcompute,
4568 &sh->dev[qd_idx].flags);
4569 *target = qd_idx;
4570 s->uptodate++;
4571 }
4572 }
4573 }
4574 break;
4575 case check_state_compute_run:
4576 break;
4577 default:
4578 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4579 __func__, sh->check_state,
4580 (unsigned long long) sh->sector);
4581 BUG();
4582 }
4583}
4584
4585static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4586{
4587 int i;
4588
4589 /* We have read all the blocks in this stripe and now we need to
4590 * copy some of them into a target stripe for expand.
4591 */
4592 struct dma_async_tx_descriptor *tx = NULL;
4593 BUG_ON(sh->batch_head);
4594 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4595 for (i = 0; i < sh->disks; i++)
4596 if (i != sh->pd_idx && i != sh->qd_idx) {
4597 int dd_idx, j;
4598 struct stripe_head *sh2;
4599 struct async_submit_ctl submit;
4600
4601 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4602 sector_t s = raid5_compute_sector(conf, bn, 0,
4603 &dd_idx, NULL);
4604 sh2 = raid5_get_active_stripe(conf, NULL, s,
4605 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4606 if (sh2 == NULL)
4607 /* so far only the early blocks of this stripe
4608 * have been requested. When later blocks
4609 * get requested, we will try again
4610 */
4611 continue;
4612 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4613 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4614 /* must have already done this block */
4615 raid5_release_stripe(sh2);
4616 continue;
4617 }
4618
4619 /* place all the copies on one channel */
4620 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4621 tx = async_memcpy(sh2->dev[dd_idx].page,
4622 sh->dev[i].page, sh2->dev[dd_idx].offset,
4623 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4624 &submit);
4625
4626 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4627 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4628 for (j = 0; j < conf->raid_disks; j++)
4629 if (j != sh2->pd_idx &&
4630 j != sh2->qd_idx &&
4631 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4632 break;
4633 if (j == conf->raid_disks) {
4634 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4635 set_bit(STRIPE_HANDLE, &sh2->state);
4636 }
4637 raid5_release_stripe(sh2);
4638
4639 }
4640 /* done submitting copies, wait for them to complete */
4641 async_tx_quiesce(&tx);
4642}
4643
4644/*
4645 * handle_stripe - do things to a stripe.
4646 *
4647 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4648 * state of various bits to see what needs to be done.
4649 * Possible results:
4650 * return some read requests which now have data
4651 * return some write requests which are safely on storage
4652 * schedule a read on some buffers
4653 * schedule a write of some buffers
4654 * return confirmation of parity correctness
4655 *
4656 */
4657
4658static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4659{
4660 struct r5conf *conf = sh->raid_conf;
4661 int disks = sh->disks;
4662 struct r5dev *dev;
4663 int i;
4664 int do_recovery = 0;
4665
4666 memset(s, 0, sizeof(*s));
4667
4668 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4669 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4670 s->failed_num[0] = -1;
4671 s->failed_num[1] = -1;
4672 s->log_failed = r5l_log_disk_error(conf);
4673
4674 /* Now to look around and see what can be done */
4675 for (i=disks; i--; ) {
4676 struct md_rdev *rdev;
4677 sector_t first_bad;
4678 int bad_sectors;
4679 int is_bad = 0;
4680
4681 dev = &sh->dev[i];
4682
4683 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4684 i, dev->flags,
4685 dev->toread, dev->towrite, dev->written);
4686 /* maybe we can reply to a read
4687 *
4688 * new wantfill requests are only permitted while
4689 * ops_complete_biofill is guaranteed to be inactive
4690 */
4691 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4692 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4693 set_bit(R5_Wantfill, &dev->flags);
4694
4695 /* now count some things */
4696 if (test_bit(R5_LOCKED, &dev->flags))
4697 s->locked++;
4698 if (test_bit(R5_UPTODATE, &dev->flags))
4699 s->uptodate++;
4700 if (test_bit(R5_Wantcompute, &dev->flags)) {
4701 s->compute++;
4702 BUG_ON(s->compute > 2);
4703 }
4704
4705 if (test_bit(R5_Wantfill, &dev->flags))
4706 s->to_fill++;
4707 else if (dev->toread)
4708 s->to_read++;
4709 if (dev->towrite) {
4710 s->to_write++;
4711 if (!test_bit(R5_OVERWRITE, &dev->flags))
4712 s->non_overwrite++;
4713 }
4714 if (dev->written)
4715 s->written++;
4716 /* Prefer to use the replacement for reads, but only
4717 * if it is recovered enough and has no bad blocks.
4718 */
4719 rdev = conf->disks[i].replacement;
4720 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4721 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4722 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4723 &first_bad, &bad_sectors))
4724 set_bit(R5_ReadRepl, &dev->flags);
4725 else {
4726 if (rdev && !test_bit(Faulty, &rdev->flags))
4727 set_bit(R5_NeedReplace, &dev->flags);
4728 else
4729 clear_bit(R5_NeedReplace, &dev->flags);
4730 rdev = conf->disks[i].rdev;
4731 clear_bit(R5_ReadRepl, &dev->flags);
4732 }
4733 if (rdev && test_bit(Faulty, &rdev->flags))
4734 rdev = NULL;
4735 if (rdev) {
4736 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4737 &first_bad, &bad_sectors);
4738 if (s->blocked_rdev == NULL
4739 && (test_bit(Blocked, &rdev->flags)
4740 || is_bad < 0)) {
4741 if (is_bad < 0)
4742 set_bit(BlockedBadBlocks,
4743 &rdev->flags);
4744 s->blocked_rdev = rdev;
4745 atomic_inc(&rdev->nr_pending);
4746 }
4747 }
4748 clear_bit(R5_Insync, &dev->flags);
4749 if (!rdev)
4750 /* Not in-sync */;
4751 else if (is_bad) {
4752 /* also not in-sync */
4753 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4754 test_bit(R5_UPTODATE, &dev->flags)) {
4755 /* treat as in-sync, but with a read error
4756 * which we can now try to correct
4757 */
4758 set_bit(R5_Insync, &dev->flags);
4759 set_bit(R5_ReadError, &dev->flags);
4760 }
4761 } else if (test_bit(In_sync, &rdev->flags))
4762 set_bit(R5_Insync, &dev->flags);
4763 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4764 /* in sync if before recovery_offset */
4765 set_bit(R5_Insync, &dev->flags);
4766 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4767 test_bit(R5_Expanded, &dev->flags))
4768 /* If we've reshaped into here, we assume it is Insync.
4769 * We will shortly update recovery_offset to make
4770 * it official.
4771 */
4772 set_bit(R5_Insync, &dev->flags);
4773
4774 if (test_bit(R5_WriteError, &dev->flags)) {
4775 /* This flag does not apply to '.replacement'
4776 * only to .rdev, so make sure to check that*/
4777 struct md_rdev *rdev2 = conf->disks[i].rdev;
4778
4779 if (rdev2 == rdev)
4780 clear_bit(R5_Insync, &dev->flags);
4781 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4782 s->handle_bad_blocks = 1;
4783 atomic_inc(&rdev2->nr_pending);
4784 } else
4785 clear_bit(R5_WriteError, &dev->flags);
4786 }
4787 if (test_bit(R5_MadeGood, &dev->flags)) {
4788 /* This flag does not apply to '.replacement'
4789 * only to .rdev, so make sure to check that*/
4790 struct md_rdev *rdev2 = conf->disks[i].rdev;
4791
4792 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4793 s->handle_bad_blocks = 1;
4794 atomic_inc(&rdev2->nr_pending);
4795 } else
4796 clear_bit(R5_MadeGood, &dev->flags);
4797 }
4798 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4799 struct md_rdev *rdev2 = conf->disks[i].replacement;
4800
4801 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4802 s->handle_bad_blocks = 1;
4803 atomic_inc(&rdev2->nr_pending);
4804 } else
4805 clear_bit(R5_MadeGoodRepl, &dev->flags);
4806 }
4807 if (!test_bit(R5_Insync, &dev->flags)) {
4808 /* The ReadError flag will just be confusing now */
4809 clear_bit(R5_ReadError, &dev->flags);
4810 clear_bit(R5_ReWrite, &dev->flags);
4811 }
4812 if (test_bit(R5_ReadError, &dev->flags))
4813 clear_bit(R5_Insync, &dev->flags);
4814 if (!test_bit(R5_Insync, &dev->flags)) {
4815 if (s->failed < 2)
4816 s->failed_num[s->failed] = i;
4817 s->failed++;
4818 if (rdev && !test_bit(Faulty, &rdev->flags))
4819 do_recovery = 1;
4820 else if (!rdev) {
4821 rdev = conf->disks[i].replacement;
4822 if (rdev && !test_bit(Faulty, &rdev->flags))
4823 do_recovery = 1;
4824 }
4825 }
4826
4827 if (test_bit(R5_InJournal, &dev->flags))
4828 s->injournal++;
4829 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4830 s->just_cached++;
4831 }
4832 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4833 /* If there is a failed device being replaced,
4834 * we must be recovering.
4835 * else if we are after recovery_cp, we must be syncing
4836 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4837 * else we can only be replacing
4838 * sync and recovery both need to read all devices, and so
4839 * use the same flag.
4840 */
4841 if (do_recovery ||
4842 sh->sector >= conf->mddev->recovery_cp ||
4843 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4844 s->syncing = 1;
4845 else
4846 s->replacing = 1;
4847 }
4848}
4849
4850/*
4851 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4852 * a head which can now be handled.
4853 */
4854static int clear_batch_ready(struct stripe_head *sh)
4855{
4856 struct stripe_head *tmp;
4857 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4858 return (sh->batch_head && sh->batch_head != sh);
4859 spin_lock(&sh->stripe_lock);
4860 if (!sh->batch_head) {
4861 spin_unlock(&sh->stripe_lock);
4862 return 0;
4863 }
4864
4865 /*
4866 * this stripe could be added to a batch list before we check
4867 * BATCH_READY, skips it
4868 */
4869 if (sh->batch_head != sh) {
4870 spin_unlock(&sh->stripe_lock);
4871 return 1;
4872 }
4873 spin_lock(&sh->batch_lock);
4874 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4875 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4876 spin_unlock(&sh->batch_lock);
4877 spin_unlock(&sh->stripe_lock);
4878
4879 /*
4880 * BATCH_READY is cleared, no new stripes can be added.
4881 * batch_list can be accessed without lock
4882 */
4883 return 0;
4884}
4885
4886static void break_stripe_batch_list(struct stripe_head *head_sh,
4887 unsigned long handle_flags)
4888{
4889 struct stripe_head *sh, *next;
4890 int i;
4891 int do_wakeup = 0;
4892
4893 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4894
4895 list_del_init(&sh->batch_list);
4896
4897 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4898 (1 << STRIPE_SYNCING) |
4899 (1 << STRIPE_REPLACED) |
4900 (1 << STRIPE_DELAYED) |
4901 (1 << STRIPE_BIT_DELAY) |
4902 (1 << STRIPE_FULL_WRITE) |
4903 (1 << STRIPE_BIOFILL_RUN) |
4904 (1 << STRIPE_COMPUTE_RUN) |
4905 (1 << STRIPE_DISCARD) |
4906 (1 << STRIPE_BATCH_READY) |
4907 (1 << STRIPE_BATCH_ERR) |
4908 (1 << STRIPE_BITMAP_PENDING)),
4909 "stripe state: %lx\n", sh->state);
4910 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4911 (1 << STRIPE_REPLACED)),
4912 "head stripe state: %lx\n", head_sh->state);
4913
4914 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4915 (1 << STRIPE_PREREAD_ACTIVE) |
4916 (1 << STRIPE_DEGRADED) |
4917 (1 << STRIPE_ON_UNPLUG_LIST)),
4918 head_sh->state & (1 << STRIPE_INSYNC));
4919
4920 sh->check_state = head_sh->check_state;
4921 sh->reconstruct_state = head_sh->reconstruct_state;
4922 spin_lock_irq(&sh->stripe_lock);
4923 sh->batch_head = NULL;
4924 spin_unlock_irq(&sh->stripe_lock);
4925 for (i = 0; i < sh->disks; i++) {
4926 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4927 do_wakeup = 1;
4928 sh->dev[i].flags = head_sh->dev[i].flags &
4929 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4930 }
4931 if (handle_flags == 0 ||
4932 sh->state & handle_flags)
4933 set_bit(STRIPE_HANDLE, &sh->state);
4934 raid5_release_stripe(sh);
4935 }
4936 spin_lock_irq(&head_sh->stripe_lock);
4937 head_sh->batch_head = NULL;
4938 spin_unlock_irq(&head_sh->stripe_lock);
4939 for (i = 0; i < head_sh->disks; i++)
4940 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4941 do_wakeup = 1;
4942 if (head_sh->state & handle_flags)
4943 set_bit(STRIPE_HANDLE, &head_sh->state);
4944
4945 if (do_wakeup)
4946 wake_up(&head_sh->raid_conf->wait_for_overlap);
4947}
4948
4949static void handle_stripe(struct stripe_head *sh)
4950{
4951 struct stripe_head_state s;
4952 struct r5conf *conf = sh->raid_conf;
4953 int i;
4954 int prexor;
4955 int disks = sh->disks;
4956 struct r5dev *pdev, *qdev;
4957
4958 clear_bit(STRIPE_HANDLE, &sh->state);
4959
4960 /*
4961 * handle_stripe should not continue handle the batched stripe, only
4962 * the head of batch list or lone stripe can continue. Otherwise we
4963 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4964 * is set for the batched stripe.
4965 */
4966 if (clear_batch_ready(sh))
4967 return;
4968
4969 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4970 /* already being handled, ensure it gets handled
4971 * again when current action finishes */
4972 set_bit(STRIPE_HANDLE, &sh->state);
4973 return;
4974 }
4975
4976 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4977 break_stripe_batch_list(sh, 0);
4978
4979 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4980 spin_lock(&sh->stripe_lock);
4981 /*
4982 * Cannot process 'sync' concurrently with 'discard'.
4983 * Flush data in r5cache before 'sync'.
4984 */
4985 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4986 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4987 !test_bit(STRIPE_DISCARD, &sh->state) &&
4988 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4989 set_bit(STRIPE_SYNCING, &sh->state);
4990 clear_bit(STRIPE_INSYNC, &sh->state);
4991 clear_bit(STRIPE_REPLACED, &sh->state);
4992 }
4993 spin_unlock(&sh->stripe_lock);
4994 }
4995 clear_bit(STRIPE_DELAYED, &sh->state);
4996
4997 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4998 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4999 (unsigned long long)sh->sector, sh->state,
5000 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5001 sh->check_state, sh->reconstruct_state);
5002
5003 analyse_stripe(sh, &s);
5004
5005 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5006 goto finish;
5007
5008 if (s.handle_bad_blocks ||
5009 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5010 set_bit(STRIPE_HANDLE, &sh->state);
5011 goto finish;
5012 }
5013
5014 if (unlikely(s.blocked_rdev)) {
5015 if (s.syncing || s.expanding || s.expanded ||
5016 s.replacing || s.to_write || s.written) {
5017 set_bit(STRIPE_HANDLE, &sh->state);
5018 goto finish;
5019 }
5020 /* There is nothing for the blocked_rdev to block */
5021 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5022 s.blocked_rdev = NULL;
5023 }
5024
5025 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5026 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5027 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5028 }
5029
5030 pr_debug("locked=%d uptodate=%d to_read=%d"
5031 " to_write=%d failed=%d failed_num=%d,%d\n",
5032 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5033 s.failed_num[0], s.failed_num[1]);
5034 /*
5035 * check if the array has lost more than max_degraded devices and,
5036 * if so, some requests might need to be failed.
5037 *
5038 * When journal device failed (log_failed), we will only process
5039 * the stripe if there is data need write to raid disks
5040 */
5041 if (s.failed > conf->max_degraded ||
5042 (s.log_failed && s.injournal == 0)) {
5043 sh->check_state = 0;
5044 sh->reconstruct_state = 0;
5045 break_stripe_batch_list(sh, 0);
5046 if (s.to_read+s.to_write+s.written)
5047 handle_failed_stripe(conf, sh, &s, disks);
5048 if (s.syncing + s.replacing)
5049 handle_failed_sync(conf, sh, &s);
5050 }
5051
5052 /* Now we check to see if any write operations have recently
5053 * completed
5054 */
5055 prexor = 0;
5056 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5057 prexor = 1;
5058 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5059 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5060 sh->reconstruct_state = reconstruct_state_idle;
5061
5062 /* All the 'written' buffers and the parity block are ready to
5063 * be written back to disk
5064 */
5065 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5066 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5067 BUG_ON(sh->qd_idx >= 0 &&
5068 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5069 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5070 for (i = disks; i--; ) {
5071 struct r5dev *dev = &sh->dev[i];
5072 if (test_bit(R5_LOCKED, &dev->flags) &&
5073 (i == sh->pd_idx || i == sh->qd_idx ||
5074 dev->written || test_bit(R5_InJournal,
5075 &dev->flags))) {
5076 pr_debug("Writing block %d\n", i);
5077 set_bit(R5_Wantwrite, &dev->flags);
5078 if (prexor)
5079 continue;
5080 if (s.failed > 1)
5081 continue;
5082 if (!test_bit(R5_Insync, &dev->flags) ||
5083 ((i == sh->pd_idx || i == sh->qd_idx) &&
5084 s.failed == 0))
5085 set_bit(STRIPE_INSYNC, &sh->state);
5086 }
5087 }
5088 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5089 s.dec_preread_active = 1;
5090 }
5091
5092 /*
5093 * might be able to return some write requests if the parity blocks
5094 * are safe, or on a failed drive
5095 */
5096 pdev = &sh->dev[sh->pd_idx];
5097 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5098 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5099 qdev = &sh->dev[sh->qd_idx];
5100 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5101 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5102 || conf->level < 6;
5103
5104 if (s.written &&
5105 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5106 && !test_bit(R5_LOCKED, &pdev->flags)
5107 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5108 test_bit(R5_Discard, &pdev->flags))))) &&
5109 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5110 && !test_bit(R5_LOCKED, &qdev->flags)
5111 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5112 test_bit(R5_Discard, &qdev->flags))))))
5113 handle_stripe_clean_event(conf, sh, disks);
5114
5115 if (s.just_cached)
5116 r5c_handle_cached_data_endio(conf, sh, disks);
5117 log_stripe_write_finished(sh);
5118
5119 /* Now we might consider reading some blocks, either to check/generate
5120 * parity, or to satisfy requests
5121 * or to load a block that is being partially written.
5122 */
5123 if (s.to_read || s.non_overwrite
5124 || (s.to_write && s.failed)
5125 || (s.syncing && (s.uptodate + s.compute < disks))
5126 || s.replacing
5127 || s.expanding)
5128 handle_stripe_fill(sh, &s, disks);
5129
5130 /*
5131 * When the stripe finishes full journal write cycle (write to journal
5132 * and raid disk), this is the clean up procedure so it is ready for
5133 * next operation.
5134 */
5135 r5c_finish_stripe_write_out(conf, sh, &s);
5136
5137 /*
5138 * Now to consider new write requests, cache write back and what else,
5139 * if anything should be read. We do not handle new writes when:
5140 * 1/ A 'write' operation (copy+xor) is already in flight.
5141 * 2/ A 'check' operation is in flight, as it may clobber the parity
5142 * block.
5143 * 3/ A r5c cache log write is in flight.
5144 */
5145
5146 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5147 if (!r5c_is_writeback(conf->log)) {
5148 if (s.to_write)
5149 handle_stripe_dirtying(conf, sh, &s, disks);
5150 } else { /* write back cache */
5151 int ret = 0;
5152
5153 /* First, try handle writes in caching phase */
5154 if (s.to_write)
5155 ret = r5c_try_caching_write(conf, sh, &s,
5156 disks);
5157 /*
5158 * If caching phase failed: ret == -EAGAIN
5159 * OR
5160 * stripe under reclaim: !caching && injournal
5161 *
5162 * fall back to handle_stripe_dirtying()
5163 */
5164 if (ret == -EAGAIN ||
5165 /* stripe under reclaim: !caching && injournal */
5166 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5167 s.injournal > 0)) {
5168 ret = handle_stripe_dirtying(conf, sh, &s,
5169 disks);
5170 if (ret == -EAGAIN)
5171 goto finish;
5172 }
5173 }
5174 }
5175
5176 /* maybe we need to check and possibly fix the parity for this stripe
5177 * Any reads will already have been scheduled, so we just see if enough
5178 * data is available. The parity check is held off while parity
5179 * dependent operations are in flight.
5180 */
5181 if (sh->check_state ||
5182 (s.syncing && s.locked == 0 &&
5183 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5184 !test_bit(STRIPE_INSYNC, &sh->state))) {
5185 if (conf->level == 6)
5186 handle_parity_checks6(conf, sh, &s, disks);
5187 else
5188 handle_parity_checks5(conf, sh, &s, disks);
5189 }
5190
5191 if ((s.replacing || s.syncing) && s.locked == 0
5192 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5193 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5194 /* Write out to replacement devices where possible */
5195 for (i = 0; i < conf->raid_disks; i++)
5196 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5197 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5198 set_bit(R5_WantReplace, &sh->dev[i].flags);
5199 set_bit(R5_LOCKED, &sh->dev[i].flags);
5200 s.locked++;
5201 }
5202 if (s.replacing)
5203 set_bit(STRIPE_INSYNC, &sh->state);
5204 set_bit(STRIPE_REPLACED, &sh->state);
5205 }
5206 if ((s.syncing || s.replacing) && s.locked == 0 &&
5207 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5208 test_bit(STRIPE_INSYNC, &sh->state)) {
5209 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5210 clear_bit(STRIPE_SYNCING, &sh->state);
5211 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5212 wake_up(&conf->wait_for_overlap);
5213 }
5214
5215 /* If the failed drives are just a ReadError, then we might need
5216 * to progress the repair/check process
5217 */
5218 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5219 for (i = 0; i < s.failed; i++) {
5220 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5221 if (test_bit(R5_ReadError, &dev->flags)
5222 && !test_bit(R5_LOCKED, &dev->flags)
5223 && test_bit(R5_UPTODATE, &dev->flags)
5224 ) {
5225 if (!test_bit(R5_ReWrite, &dev->flags)) {
5226 set_bit(R5_Wantwrite, &dev->flags);
5227 set_bit(R5_ReWrite, &dev->flags);
5228 } else
5229 /* let's read it back */
5230 set_bit(R5_Wantread, &dev->flags);
5231 set_bit(R5_LOCKED, &dev->flags);
5232 s.locked++;
5233 }
5234 }
5235
5236 /* Finish reconstruct operations initiated by the expansion process */
5237 if (sh->reconstruct_state == reconstruct_state_result) {
5238 struct stripe_head *sh_src
5239 = raid5_get_active_stripe(conf, NULL, sh->sector,
5240 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5241 R5_GAS_NOQUIESCE);
5242 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5243 /* sh cannot be written until sh_src has been read.
5244 * so arrange for sh to be delayed a little
5245 */
5246 set_bit(STRIPE_DELAYED, &sh->state);
5247 set_bit(STRIPE_HANDLE, &sh->state);
5248 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5249 &sh_src->state))
5250 atomic_inc(&conf->preread_active_stripes);
5251 raid5_release_stripe(sh_src);
5252 goto finish;
5253 }
5254 if (sh_src)
5255 raid5_release_stripe(sh_src);
5256
5257 sh->reconstruct_state = reconstruct_state_idle;
5258 clear_bit(STRIPE_EXPANDING, &sh->state);
5259 for (i = conf->raid_disks; i--; ) {
5260 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5261 set_bit(R5_LOCKED, &sh->dev[i].flags);
5262 s.locked++;
5263 }
5264 }
5265
5266 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5267 !sh->reconstruct_state) {
5268 /* Need to write out all blocks after computing parity */
5269 sh->disks = conf->raid_disks;
5270 stripe_set_idx(sh->sector, conf, 0, sh);
5271 schedule_reconstruction(sh, &s, 1, 1);
5272 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5273 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5274 atomic_dec(&conf->reshape_stripes);
5275 wake_up(&conf->wait_for_overlap);
5276 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5277 }
5278
5279 if (s.expanding && s.locked == 0 &&
5280 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5281 handle_stripe_expansion(conf, sh);
5282
5283finish:
5284 /* wait for this device to become unblocked */
5285 if (unlikely(s.blocked_rdev)) {
5286 if (conf->mddev->external)
5287 md_wait_for_blocked_rdev(s.blocked_rdev,
5288 conf->mddev);
5289 else
5290 /* Internal metadata will immediately
5291 * be written by raid5d, so we don't
5292 * need to wait here.
5293 */
5294 rdev_dec_pending(s.blocked_rdev,
5295 conf->mddev);
5296 }
5297
5298 if (s.handle_bad_blocks)
5299 for (i = disks; i--; ) {
5300 struct md_rdev *rdev;
5301 struct r5dev *dev = &sh->dev[i];
5302 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5303 /* We own a safe reference to the rdev */
5304 rdev = conf->disks[i].rdev;
5305 if (!rdev_set_badblocks(rdev, sh->sector,
5306 RAID5_STRIPE_SECTORS(conf), 0))
5307 md_error(conf->mddev, rdev);
5308 rdev_dec_pending(rdev, conf->mddev);
5309 }
5310 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5311 rdev = conf->disks[i].rdev;
5312 rdev_clear_badblocks(rdev, sh->sector,
5313 RAID5_STRIPE_SECTORS(conf), 0);
5314 rdev_dec_pending(rdev, conf->mddev);
5315 }
5316 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5317 rdev = conf->disks[i].replacement;
5318 if (!rdev)
5319 /* rdev have been moved down */
5320 rdev = conf->disks[i].rdev;
5321 rdev_clear_badblocks(rdev, sh->sector,
5322 RAID5_STRIPE_SECTORS(conf), 0);
5323 rdev_dec_pending(rdev, conf->mddev);
5324 }
5325 }
5326
5327 if (s.ops_request)
5328 raid_run_ops(sh, s.ops_request);
5329
5330 ops_run_io(sh, &s);
5331
5332 if (s.dec_preread_active) {
5333 /* We delay this until after ops_run_io so that if make_request
5334 * is waiting on a flush, it won't continue until the writes
5335 * have actually been submitted.
5336 */
5337 atomic_dec(&conf->preread_active_stripes);
5338 if (atomic_read(&conf->preread_active_stripes) <
5339 IO_THRESHOLD)
5340 md_wakeup_thread(conf->mddev->thread);
5341 }
5342
5343 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5344}
5345
5346static void raid5_activate_delayed(struct r5conf *conf)
5347 __must_hold(&conf->device_lock)
5348{
5349 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5350 while (!list_empty(&conf->delayed_list)) {
5351 struct list_head *l = conf->delayed_list.next;
5352 struct stripe_head *sh;
5353 sh = list_entry(l, struct stripe_head, lru);
5354 list_del_init(l);
5355 clear_bit(STRIPE_DELAYED, &sh->state);
5356 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5357 atomic_inc(&conf->preread_active_stripes);
5358 list_add_tail(&sh->lru, &conf->hold_list);
5359 raid5_wakeup_stripe_thread(sh);
5360 }
5361 }
5362}
5363
5364static void activate_bit_delay(struct r5conf *conf,
5365 struct list_head *temp_inactive_list)
5366 __must_hold(&conf->device_lock)
5367{
5368 struct list_head head;
5369 list_add(&head, &conf->bitmap_list);
5370 list_del_init(&conf->bitmap_list);
5371 while (!list_empty(&head)) {
5372 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5373 int hash;
5374 list_del_init(&sh->lru);
5375 atomic_inc(&sh->count);
5376 hash = sh->hash_lock_index;
5377 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5378 }
5379}
5380
5381static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5382{
5383 struct r5conf *conf = mddev->private;
5384 sector_t sector = bio->bi_iter.bi_sector;
5385 unsigned int chunk_sectors;
5386 unsigned int bio_sectors = bio_sectors(bio);
5387
5388 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5389 return chunk_sectors >=
5390 ((sector & (chunk_sectors - 1)) + bio_sectors);
5391}
5392
5393/*
5394 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5395 * later sampled by raid5d.
5396 */
5397static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5398{
5399 unsigned long flags;
5400
5401 spin_lock_irqsave(&conf->device_lock, flags);
5402
5403 bi->bi_next = conf->retry_read_aligned_list;
5404 conf->retry_read_aligned_list = bi;
5405
5406 spin_unlock_irqrestore(&conf->device_lock, flags);
5407 md_wakeup_thread(conf->mddev->thread);
5408}
5409
5410static struct bio *remove_bio_from_retry(struct r5conf *conf,
5411 unsigned int *offset)
5412{
5413 struct bio *bi;
5414
5415 bi = conf->retry_read_aligned;
5416 if (bi) {
5417 *offset = conf->retry_read_offset;
5418 conf->retry_read_aligned = NULL;
5419 return bi;
5420 }
5421 bi = conf->retry_read_aligned_list;
5422 if(bi) {
5423 conf->retry_read_aligned_list = bi->bi_next;
5424 bi->bi_next = NULL;
5425 *offset = 0;
5426 }
5427
5428 return bi;
5429}
5430
5431/*
5432 * The "raid5_align_endio" should check if the read succeeded and if it
5433 * did, call bio_endio on the original bio (having bio_put the new bio
5434 * first).
5435 * If the read failed..
5436 */
5437static void raid5_align_endio(struct bio *bi)
5438{
5439 struct bio *raid_bi = bi->bi_private;
5440 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5441 struct mddev *mddev = rdev->mddev;
5442 struct r5conf *conf = mddev->private;
5443 blk_status_t error = bi->bi_status;
5444
5445 bio_put(bi);
5446 raid_bi->bi_next = NULL;
5447 rdev_dec_pending(rdev, conf->mddev);
5448
5449 if (!error) {
5450 bio_endio(raid_bi);
5451 if (atomic_dec_and_test(&conf->active_aligned_reads))
5452 wake_up(&conf->wait_for_quiescent);
5453 return;
5454 }
5455
5456 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5457
5458 add_bio_to_retry(raid_bi, conf);
5459}
5460
5461static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5462{
5463 struct r5conf *conf = mddev->private;
5464 struct bio *align_bio;
5465 struct md_rdev *rdev;
5466 sector_t sector, end_sector, first_bad;
5467 int bad_sectors, dd_idx;
5468 bool did_inc;
5469
5470 if (!in_chunk_boundary(mddev, raid_bio)) {
5471 pr_debug("%s: non aligned\n", __func__);
5472 return 0;
5473 }
5474
5475 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5476 &dd_idx, NULL);
5477 end_sector = sector + bio_sectors(raid_bio);
5478
5479 if (r5c_big_stripe_cached(conf, sector))
5480 return 0;
5481
5482 rdev = conf->disks[dd_idx].replacement;
5483 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5484 rdev->recovery_offset < end_sector) {
5485 rdev = conf->disks[dd_idx].rdev;
5486 if (!rdev)
5487 return 0;
5488 if (test_bit(Faulty, &rdev->flags) ||
5489 !(test_bit(In_sync, &rdev->flags) ||
5490 rdev->recovery_offset >= end_sector))
5491 return 0;
5492 }
5493
5494 atomic_inc(&rdev->nr_pending);
5495
5496 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5497 &bad_sectors)) {
5498 rdev_dec_pending(rdev, mddev);
5499 return 0;
5500 }
5501
5502 md_account_bio(mddev, &raid_bio);
5503 raid_bio->bi_next = (void *)rdev;
5504
5505 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5506 &mddev->bio_set);
5507 align_bio->bi_end_io = raid5_align_endio;
5508 align_bio->bi_private = raid_bio;
5509 align_bio->bi_iter.bi_sector = sector;
5510
5511 /* No reshape active, so we can trust rdev->data_offset */
5512 align_bio->bi_iter.bi_sector += rdev->data_offset;
5513
5514 did_inc = false;
5515 if (conf->quiesce == 0) {
5516 atomic_inc(&conf->active_aligned_reads);
5517 did_inc = true;
5518 }
5519 /* need a memory barrier to detect the race with raid5_quiesce() */
5520 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5521 /* quiesce is in progress, so we need to undo io activation and wait
5522 * for it to finish
5523 */
5524 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5525 wake_up(&conf->wait_for_quiescent);
5526 spin_lock_irq(&conf->device_lock);
5527 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5528 conf->device_lock);
5529 atomic_inc(&conf->active_aligned_reads);
5530 spin_unlock_irq(&conf->device_lock);
5531 }
5532
5533 if (mddev->gendisk)
5534 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5535 raid_bio->bi_iter.bi_sector);
5536 submit_bio_noacct(align_bio);
5537 return 1;
5538}
5539
5540static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5541{
5542 struct bio *split;
5543 sector_t sector = raid_bio->bi_iter.bi_sector;
5544 unsigned chunk_sects = mddev->chunk_sectors;
5545 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5546
5547 if (sectors < bio_sectors(raid_bio)) {
5548 struct r5conf *conf = mddev->private;
5549 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5550 bio_chain(split, raid_bio);
5551 submit_bio_noacct(raid_bio);
5552 raid_bio = split;
5553 }
5554
5555 if (!raid5_read_one_chunk(mddev, raid_bio))
5556 return raid_bio;
5557
5558 return NULL;
5559}
5560
5561/* __get_priority_stripe - get the next stripe to process
5562 *
5563 * Full stripe writes are allowed to pass preread active stripes up until
5564 * the bypass_threshold is exceeded. In general the bypass_count
5565 * increments when the handle_list is handled before the hold_list; however, it
5566 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5567 * stripe with in flight i/o. The bypass_count will be reset when the
5568 * head of the hold_list has changed, i.e. the head was promoted to the
5569 * handle_list.
5570 */
5571static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5572 __must_hold(&conf->device_lock)
5573{
5574 struct stripe_head *sh, *tmp;
5575 struct list_head *handle_list = NULL;
5576 struct r5worker_group *wg;
5577 bool second_try = !r5c_is_writeback(conf->log) &&
5578 !r5l_log_disk_error(conf);
5579 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5580 r5l_log_disk_error(conf);
5581
5582again:
5583 wg = NULL;
5584 sh = NULL;
5585 if (conf->worker_cnt_per_group == 0) {
5586 handle_list = try_loprio ? &conf->loprio_list :
5587 &conf->handle_list;
5588 } else if (group != ANY_GROUP) {
5589 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5590 &conf->worker_groups[group].handle_list;
5591 wg = &conf->worker_groups[group];
5592 } else {
5593 int i;
5594 for (i = 0; i < conf->group_cnt; i++) {
5595 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5596 &conf->worker_groups[i].handle_list;
5597 wg = &conf->worker_groups[i];
5598 if (!list_empty(handle_list))
5599 break;
5600 }
5601 }
5602
5603 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5604 __func__,
5605 list_empty(handle_list) ? "empty" : "busy",
5606 list_empty(&conf->hold_list) ? "empty" : "busy",
5607 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5608
5609 if (!list_empty(handle_list)) {
5610 sh = list_entry(handle_list->next, typeof(*sh), lru);
5611
5612 if (list_empty(&conf->hold_list))
5613 conf->bypass_count = 0;
5614 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5615 if (conf->hold_list.next == conf->last_hold)
5616 conf->bypass_count++;
5617 else {
5618 conf->last_hold = conf->hold_list.next;
5619 conf->bypass_count -= conf->bypass_threshold;
5620 if (conf->bypass_count < 0)
5621 conf->bypass_count = 0;
5622 }
5623 }
5624 } else if (!list_empty(&conf->hold_list) &&
5625 ((conf->bypass_threshold &&
5626 conf->bypass_count > conf->bypass_threshold) ||
5627 atomic_read(&conf->pending_full_writes) == 0)) {
5628
5629 list_for_each_entry(tmp, &conf->hold_list, lru) {
5630 if (conf->worker_cnt_per_group == 0 ||
5631 group == ANY_GROUP ||
5632 !cpu_online(tmp->cpu) ||
5633 cpu_to_group(tmp->cpu) == group) {
5634 sh = tmp;
5635 break;
5636 }
5637 }
5638
5639 if (sh) {
5640 conf->bypass_count -= conf->bypass_threshold;
5641 if (conf->bypass_count < 0)
5642 conf->bypass_count = 0;
5643 }
5644 wg = NULL;
5645 }
5646
5647 if (!sh) {
5648 if (second_try)
5649 return NULL;
5650 second_try = true;
5651 try_loprio = !try_loprio;
5652 goto again;
5653 }
5654
5655 if (wg) {
5656 wg->stripes_cnt--;
5657 sh->group = NULL;
5658 }
5659 list_del_init(&sh->lru);
5660 BUG_ON(atomic_inc_return(&sh->count) != 1);
5661 return sh;
5662}
5663
5664struct raid5_plug_cb {
5665 struct blk_plug_cb cb;
5666 struct list_head list;
5667 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5668};
5669
5670static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5671{
5672 struct raid5_plug_cb *cb = container_of(
5673 blk_cb, struct raid5_plug_cb, cb);
5674 struct stripe_head *sh;
5675 struct mddev *mddev = cb->cb.data;
5676 struct r5conf *conf = mddev->private;
5677 int cnt = 0;
5678 int hash;
5679
5680 if (cb->list.next && !list_empty(&cb->list)) {
5681 spin_lock_irq(&conf->device_lock);
5682 while (!list_empty(&cb->list)) {
5683 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5684 list_del_init(&sh->lru);
5685 /*
5686 * avoid race release_stripe_plug() sees
5687 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5688 * is still in our list
5689 */
5690 smp_mb__before_atomic();
5691 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5692 /*
5693 * STRIPE_ON_RELEASE_LIST could be set here. In that
5694 * case, the count is always > 1 here
5695 */
5696 hash = sh->hash_lock_index;
5697 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5698 cnt++;
5699 }
5700 spin_unlock_irq(&conf->device_lock);
5701 }
5702 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5703 NR_STRIPE_HASH_LOCKS);
5704 if (mddev->queue)
5705 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5706 kfree(cb);
5707}
5708
5709static void release_stripe_plug(struct mddev *mddev,
5710 struct stripe_head *sh)
5711{
5712 struct blk_plug_cb *blk_cb = blk_check_plugged(
5713 raid5_unplug, mddev,
5714 sizeof(struct raid5_plug_cb));
5715 struct raid5_plug_cb *cb;
5716
5717 if (!blk_cb) {
5718 raid5_release_stripe(sh);
5719 return;
5720 }
5721
5722 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5723
5724 if (cb->list.next == NULL) {
5725 int i;
5726 INIT_LIST_HEAD(&cb->list);
5727 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5728 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5729 }
5730
5731 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5732 list_add_tail(&sh->lru, &cb->list);
5733 else
5734 raid5_release_stripe(sh);
5735}
5736
5737static void make_discard_request(struct mddev *mddev, struct bio *bi)
5738{
5739 struct r5conf *conf = mddev->private;
5740 sector_t logical_sector, last_sector;
5741 struct stripe_head *sh;
5742 int stripe_sectors;
5743
5744 /* We need to handle this when io_uring supports discard/trim */
5745 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5746 return;
5747
5748 if (mddev->reshape_position != MaxSector)
5749 /* Skip discard while reshape is happening */
5750 return;
5751
5752 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5753 last_sector = bio_end_sector(bi);
5754
5755 bi->bi_next = NULL;
5756
5757 stripe_sectors = conf->chunk_sectors *
5758 (conf->raid_disks - conf->max_degraded);
5759 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5760 stripe_sectors);
5761 sector_div(last_sector, stripe_sectors);
5762
5763 logical_sector *= conf->chunk_sectors;
5764 last_sector *= conf->chunk_sectors;
5765
5766 for (; logical_sector < last_sector;
5767 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5768 DEFINE_WAIT(w);
5769 int d;
5770 again:
5771 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5772 prepare_to_wait(&conf->wait_for_overlap, &w,
5773 TASK_UNINTERRUPTIBLE);
5774 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5775 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5776 raid5_release_stripe(sh);
5777 schedule();
5778 goto again;
5779 }
5780 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5781 spin_lock_irq(&sh->stripe_lock);
5782 for (d = 0; d < conf->raid_disks; d++) {
5783 if (d == sh->pd_idx || d == sh->qd_idx)
5784 continue;
5785 if (sh->dev[d].towrite || sh->dev[d].toread) {
5786 set_bit(R5_Overlap, &sh->dev[d].flags);
5787 spin_unlock_irq(&sh->stripe_lock);
5788 raid5_release_stripe(sh);
5789 schedule();
5790 goto again;
5791 }
5792 }
5793 set_bit(STRIPE_DISCARD, &sh->state);
5794 finish_wait(&conf->wait_for_overlap, &w);
5795 sh->overwrite_disks = 0;
5796 for (d = 0; d < conf->raid_disks; d++) {
5797 if (d == sh->pd_idx || d == sh->qd_idx)
5798 continue;
5799 sh->dev[d].towrite = bi;
5800 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5801 bio_inc_remaining(bi);
5802 md_write_inc(mddev, bi);
5803 sh->overwrite_disks++;
5804 }
5805 spin_unlock_irq(&sh->stripe_lock);
5806 if (conf->mddev->bitmap) {
5807 for (d = 0;
5808 d < conf->raid_disks - conf->max_degraded;
5809 d++)
5810 md_bitmap_startwrite(mddev->bitmap,
5811 sh->sector,
5812 RAID5_STRIPE_SECTORS(conf),
5813 0);
5814 sh->bm_seq = conf->seq_flush + 1;
5815 set_bit(STRIPE_BIT_DELAY, &sh->state);
5816 }
5817
5818 set_bit(STRIPE_HANDLE, &sh->state);
5819 clear_bit(STRIPE_DELAYED, &sh->state);
5820 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5821 atomic_inc(&conf->preread_active_stripes);
5822 release_stripe_plug(mddev, sh);
5823 }
5824
5825 bio_endio(bi);
5826}
5827
5828static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5829 sector_t reshape_sector)
5830{
5831 return mddev->reshape_backwards ? sector < reshape_sector :
5832 sector >= reshape_sector;
5833}
5834
5835static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5836 sector_t max, sector_t reshape_sector)
5837{
5838 return mddev->reshape_backwards ? max < reshape_sector :
5839 min >= reshape_sector;
5840}
5841
5842static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5843 struct stripe_head *sh)
5844{
5845 sector_t max_sector = 0, min_sector = MaxSector;
5846 bool ret = false;
5847 int dd_idx;
5848
5849 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5850 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5851 continue;
5852
5853 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5854 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5855 }
5856
5857 spin_lock_irq(&conf->device_lock);
5858
5859 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5860 conf->reshape_progress))
5861 /* mismatch, need to try again */
5862 ret = true;
5863
5864 spin_unlock_irq(&conf->device_lock);
5865
5866 return ret;
5867}
5868
5869static int add_all_stripe_bios(struct r5conf *conf,
5870 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5871 struct bio *bi, int forwrite, int previous)
5872{
5873 int dd_idx;
5874 int ret = 1;
5875
5876 spin_lock_irq(&sh->stripe_lock);
5877
5878 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5879 struct r5dev *dev = &sh->dev[dd_idx];
5880
5881 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5882 continue;
5883
5884 if (dev->sector < ctx->first_sector ||
5885 dev->sector >= ctx->last_sector)
5886 continue;
5887
5888 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5889 set_bit(R5_Overlap, &dev->flags);
5890 ret = 0;
5891 continue;
5892 }
5893 }
5894
5895 if (!ret)
5896 goto out;
5897
5898 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5899 struct r5dev *dev = &sh->dev[dd_idx];
5900
5901 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5902 continue;
5903
5904 if (dev->sector < ctx->first_sector ||
5905 dev->sector >= ctx->last_sector)
5906 continue;
5907
5908 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5909 clear_bit((dev->sector - ctx->first_sector) >>
5910 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5911 }
5912
5913out:
5914 spin_unlock_irq(&sh->stripe_lock);
5915 return ret;
5916}
5917
5918static enum stripe_result make_stripe_request(struct mddev *mddev,
5919 struct r5conf *conf, struct stripe_request_ctx *ctx,
5920 sector_t logical_sector, struct bio *bi)
5921{
5922 const int rw = bio_data_dir(bi);
5923 enum stripe_result ret;
5924 struct stripe_head *sh;
5925 sector_t new_sector;
5926 int previous = 0, flags = 0;
5927 int seq, dd_idx;
5928
5929 seq = read_seqcount_begin(&conf->gen_lock);
5930
5931 if (unlikely(conf->reshape_progress != MaxSector)) {
5932 /*
5933 * Spinlock is needed as reshape_progress may be
5934 * 64bit on a 32bit platform, and so it might be
5935 * possible to see a half-updated value
5936 * Of course reshape_progress could change after
5937 * the lock is dropped, so once we get a reference
5938 * to the stripe that we think it is, we will have
5939 * to check again.
5940 */
5941 spin_lock_irq(&conf->device_lock);
5942 if (ahead_of_reshape(mddev, logical_sector,
5943 conf->reshape_progress)) {
5944 previous = 1;
5945 } else {
5946 if (ahead_of_reshape(mddev, logical_sector,
5947 conf->reshape_safe)) {
5948 spin_unlock_irq(&conf->device_lock);
5949 return STRIPE_SCHEDULE_AND_RETRY;
5950 }
5951 }
5952 spin_unlock_irq(&conf->device_lock);
5953 }
5954
5955 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 &dd_idx, NULL);
5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 new_sector, logical_sector);
5959
5960 if (previous)
5961 flags |= R5_GAS_PREVIOUS;
5962 if (bi->bi_opf & REQ_RAHEAD)
5963 flags |= R5_GAS_NOBLOCK;
5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 if (unlikely(!sh)) {
5966 /* cannot get stripe, just give-up */
5967 bi->bi_status = BLK_STS_IOERR;
5968 return STRIPE_FAIL;
5969 }
5970
5971 if (unlikely(previous) &&
5972 stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 /*
5974 * Expansion moved on while waiting for a stripe.
5975 * Expansion could still move past after this
5976 * test, but as we are holding a reference to
5977 * 'sh', we know that if that happens,
5978 * STRIPE_EXPANDING will get set and the expansion
5979 * won't proceed until we finish with the stripe.
5980 */
5981 ret = STRIPE_SCHEDULE_AND_RETRY;
5982 goto out_release;
5983 }
5984
5985 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 /* Might have got the wrong stripe_head by accident */
5987 ret = STRIPE_RETRY;
5988 goto out_release;
5989 }
5990
5991 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5992 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5993 /*
5994 * Stripe is busy expanding or add failed due to
5995 * overlap. Flush everything and wait a while.
5996 */
5997 md_wakeup_thread(mddev->thread);
5998 ret = STRIPE_SCHEDULE_AND_RETRY;
5999 goto out_release;
6000 }
6001
6002 if (stripe_can_batch(sh)) {
6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 if (ctx->batch_last)
6005 raid5_release_stripe(ctx->batch_last);
6006 atomic_inc(&sh->count);
6007 ctx->batch_last = sh;
6008 }
6009
6010 if (ctx->do_flush) {
6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 /* we only need flush for one stripe */
6013 ctx->do_flush = false;
6014 }
6015
6016 set_bit(STRIPE_HANDLE, &sh->state);
6017 clear_bit(STRIPE_DELAYED, &sh->state);
6018 if ((!sh->batch_head || sh == sh->batch_head) &&
6019 (bi->bi_opf & REQ_SYNC) &&
6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 atomic_inc(&conf->preread_active_stripes);
6022
6023 release_stripe_plug(mddev, sh);
6024 return STRIPE_SUCCESS;
6025
6026out_release:
6027 raid5_release_stripe(sh);
6028 return ret;
6029}
6030
6031/*
6032 * If the bio covers multiple data disks, find sector within the bio that has
6033 * the lowest chunk offset in the first chunk.
6034 */
6035static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6036 struct bio *bi)
6037{
6038 int sectors_per_chunk = conf->chunk_sectors;
6039 int raid_disks = conf->raid_disks;
6040 int dd_idx;
6041 struct stripe_head sh;
6042 unsigned int chunk_offset;
6043 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6044 sector_t sector;
6045
6046 /* We pass in fake stripe_head to get back parity disk numbers */
6047 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6048 chunk_offset = sector_div(sector, sectors_per_chunk);
6049 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6050 return r_sector;
6051 /*
6052 * Bio crosses to the next data disk. Check whether it's in the same
6053 * chunk.
6054 */
6055 dd_idx++;
6056 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6057 dd_idx++;
6058 if (dd_idx >= raid_disks)
6059 return r_sector;
6060 return r_sector + sectors_per_chunk - chunk_offset;
6061}
6062
6063static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6064{
6065 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6066 struct r5conf *conf = mddev->private;
6067 sector_t logical_sector;
6068 struct stripe_request_ctx ctx = {};
6069 const int rw = bio_data_dir(bi);
6070 enum stripe_result res;
6071 int s, stripe_cnt;
6072
6073 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6074 int ret = log_handle_flush_request(conf, bi);
6075
6076 if (ret == 0)
6077 return true;
6078 if (ret == -ENODEV) {
6079 if (md_flush_request(mddev, bi))
6080 return true;
6081 }
6082 /* ret == -EAGAIN, fallback */
6083 /*
6084 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6085 * we need to flush journal device
6086 */
6087 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6088 }
6089
6090 if (!md_write_start(mddev, bi))
6091 return false;
6092 /*
6093 * If array is degraded, better not do chunk aligned read because
6094 * later we might have to read it again in order to reconstruct
6095 * data on failed drives.
6096 */
6097 if (rw == READ && mddev->degraded == 0 &&
6098 mddev->reshape_position == MaxSector) {
6099 bi = chunk_aligned_read(mddev, bi);
6100 if (!bi)
6101 return true;
6102 }
6103
6104 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6105 make_discard_request(mddev, bi);
6106 md_write_end(mddev);
6107 return true;
6108 }
6109
6110 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6111 ctx.first_sector = logical_sector;
6112 ctx.last_sector = bio_end_sector(bi);
6113 bi->bi_next = NULL;
6114
6115 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6116 RAID5_STRIPE_SECTORS(conf));
6117 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6118
6119 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6120 bi->bi_iter.bi_sector, ctx.last_sector);
6121
6122 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6123 if ((bi->bi_opf & REQ_NOWAIT) &&
6124 (conf->reshape_progress != MaxSector) &&
6125 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6126 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6127 bio_wouldblock_error(bi);
6128 if (rw == WRITE)
6129 md_write_end(mddev);
6130 return true;
6131 }
6132 md_account_bio(mddev, &bi);
6133
6134 /*
6135 * Lets start with the stripe with the lowest chunk offset in the first
6136 * chunk. That has the best chances of creating IOs adjacent to
6137 * previous IOs in case of sequential IO and thus creates the most
6138 * sequential IO pattern. We don't bother with the optimization when
6139 * reshaping as the performance benefit is not worth the complexity.
6140 */
6141 if (likely(conf->reshape_progress == MaxSector))
6142 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6143 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6144
6145 add_wait_queue(&conf->wait_for_overlap, &wait);
6146 while (1) {
6147 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6148 bi);
6149 if (res == STRIPE_FAIL)
6150 break;
6151
6152 if (res == STRIPE_RETRY)
6153 continue;
6154
6155 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6156 /*
6157 * Must release the reference to batch_last before
6158 * scheduling and waiting for work to be done,
6159 * otherwise the batch_last stripe head could prevent
6160 * raid5_activate_delayed() from making progress
6161 * and thus deadlocking.
6162 */
6163 if (ctx.batch_last) {
6164 raid5_release_stripe(ctx.batch_last);
6165 ctx.batch_last = NULL;
6166 }
6167
6168 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6169 MAX_SCHEDULE_TIMEOUT);
6170 continue;
6171 }
6172
6173 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6174 if (s == stripe_cnt)
6175 break;
6176
6177 logical_sector = ctx.first_sector +
6178 (s << RAID5_STRIPE_SHIFT(conf));
6179 }
6180 remove_wait_queue(&conf->wait_for_overlap, &wait);
6181
6182 if (ctx.batch_last)
6183 raid5_release_stripe(ctx.batch_last);
6184
6185 if (rw == WRITE)
6186 md_write_end(mddev);
6187 bio_endio(bi);
6188 return true;
6189}
6190
6191static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6192
6193static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6194{
6195 /* reshaping is quite different to recovery/resync so it is
6196 * handled quite separately ... here.
6197 *
6198 * On each call to sync_request, we gather one chunk worth of
6199 * destination stripes and flag them as expanding.
6200 * Then we find all the source stripes and request reads.
6201 * As the reads complete, handle_stripe will copy the data
6202 * into the destination stripe and release that stripe.
6203 */
6204 struct r5conf *conf = mddev->private;
6205 struct stripe_head *sh;
6206 struct md_rdev *rdev;
6207 sector_t first_sector, last_sector;
6208 int raid_disks = conf->previous_raid_disks;
6209 int data_disks = raid_disks - conf->max_degraded;
6210 int new_data_disks = conf->raid_disks - conf->max_degraded;
6211 int i;
6212 int dd_idx;
6213 sector_t writepos, readpos, safepos;
6214 sector_t stripe_addr;
6215 int reshape_sectors;
6216 struct list_head stripes;
6217 sector_t retn;
6218
6219 if (sector_nr == 0) {
6220 /* If restarting in the middle, skip the initial sectors */
6221 if (mddev->reshape_backwards &&
6222 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6223 sector_nr = raid5_size(mddev, 0, 0)
6224 - conf->reshape_progress;
6225 } else if (mddev->reshape_backwards &&
6226 conf->reshape_progress == MaxSector) {
6227 /* shouldn't happen, but just in case, finish up.*/
6228 sector_nr = MaxSector;
6229 } else if (!mddev->reshape_backwards &&
6230 conf->reshape_progress > 0)
6231 sector_nr = conf->reshape_progress;
6232 sector_div(sector_nr, new_data_disks);
6233 if (sector_nr) {
6234 mddev->curr_resync_completed = sector_nr;
6235 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6236 *skipped = 1;
6237 retn = sector_nr;
6238 goto finish;
6239 }
6240 }
6241
6242 /* We need to process a full chunk at a time.
6243 * If old and new chunk sizes differ, we need to process the
6244 * largest of these
6245 */
6246
6247 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6248
6249 /* We update the metadata at least every 10 seconds, or when
6250 * the data about to be copied would over-write the source of
6251 * the data at the front of the range. i.e. one new_stripe
6252 * along from reshape_progress new_maps to after where
6253 * reshape_safe old_maps to
6254 */
6255 writepos = conf->reshape_progress;
6256 sector_div(writepos, new_data_disks);
6257 readpos = conf->reshape_progress;
6258 sector_div(readpos, data_disks);
6259 safepos = conf->reshape_safe;
6260 sector_div(safepos, data_disks);
6261 if (mddev->reshape_backwards) {
6262 BUG_ON(writepos < reshape_sectors);
6263 writepos -= reshape_sectors;
6264 readpos += reshape_sectors;
6265 safepos += reshape_sectors;
6266 } else {
6267 writepos += reshape_sectors;
6268 /* readpos and safepos are worst-case calculations.
6269 * A negative number is overly pessimistic, and causes
6270 * obvious problems for unsigned storage. So clip to 0.
6271 */
6272 readpos -= min_t(sector_t, reshape_sectors, readpos);
6273 safepos -= min_t(sector_t, reshape_sectors, safepos);
6274 }
6275
6276 /* Having calculated the 'writepos' possibly use it
6277 * to set 'stripe_addr' which is where we will write to.
6278 */
6279 if (mddev->reshape_backwards) {
6280 BUG_ON(conf->reshape_progress == 0);
6281 stripe_addr = writepos;
6282 BUG_ON((mddev->dev_sectors &
6283 ~((sector_t)reshape_sectors - 1))
6284 - reshape_sectors - stripe_addr
6285 != sector_nr);
6286 } else {
6287 BUG_ON(writepos != sector_nr + reshape_sectors);
6288 stripe_addr = sector_nr;
6289 }
6290
6291 /* 'writepos' is the most advanced device address we might write.
6292 * 'readpos' is the least advanced device address we might read.
6293 * 'safepos' is the least address recorded in the metadata as having
6294 * been reshaped.
6295 * If there is a min_offset_diff, these are adjusted either by
6296 * increasing the safepos/readpos if diff is negative, or
6297 * increasing writepos if diff is positive.
6298 * If 'readpos' is then behind 'writepos', there is no way that we can
6299 * ensure safety in the face of a crash - that must be done by userspace
6300 * making a backup of the data. So in that case there is no particular
6301 * rush to update metadata.
6302 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6303 * update the metadata to advance 'safepos' to match 'readpos' so that
6304 * we can be safe in the event of a crash.
6305 * So we insist on updating metadata if safepos is behind writepos and
6306 * readpos is beyond writepos.
6307 * In any case, update the metadata every 10 seconds.
6308 * Maybe that number should be configurable, but I'm not sure it is
6309 * worth it.... maybe it could be a multiple of safemode_delay???
6310 */
6311 if (conf->min_offset_diff < 0) {
6312 safepos += -conf->min_offset_diff;
6313 readpos += -conf->min_offset_diff;
6314 } else
6315 writepos += conf->min_offset_diff;
6316
6317 if ((mddev->reshape_backwards
6318 ? (safepos > writepos && readpos < writepos)
6319 : (safepos < writepos && readpos > writepos)) ||
6320 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6321 /* Cannot proceed until we've updated the superblock... */
6322 wait_event(conf->wait_for_overlap,
6323 atomic_read(&conf->reshape_stripes)==0
6324 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6325 if (atomic_read(&conf->reshape_stripes) != 0)
6326 return 0;
6327 mddev->reshape_position = conf->reshape_progress;
6328 mddev->curr_resync_completed = sector_nr;
6329 if (!mddev->reshape_backwards)
6330 /* Can update recovery_offset */
6331 rdev_for_each(rdev, mddev)
6332 if (rdev->raid_disk >= 0 &&
6333 !test_bit(Journal, &rdev->flags) &&
6334 !test_bit(In_sync, &rdev->flags) &&
6335 rdev->recovery_offset < sector_nr)
6336 rdev->recovery_offset = sector_nr;
6337
6338 conf->reshape_checkpoint = jiffies;
6339 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6340 md_wakeup_thread(mddev->thread);
6341 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6342 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6343 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6344 return 0;
6345 spin_lock_irq(&conf->device_lock);
6346 conf->reshape_safe = mddev->reshape_position;
6347 spin_unlock_irq(&conf->device_lock);
6348 wake_up(&conf->wait_for_overlap);
6349 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6350 }
6351
6352 INIT_LIST_HEAD(&stripes);
6353 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6354 int j;
6355 int skipped_disk = 0;
6356 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6357 R5_GAS_NOQUIESCE);
6358 set_bit(STRIPE_EXPANDING, &sh->state);
6359 atomic_inc(&conf->reshape_stripes);
6360 /* If any of this stripe is beyond the end of the old
6361 * array, then we need to zero those blocks
6362 */
6363 for (j=sh->disks; j--;) {
6364 sector_t s;
6365 if (j == sh->pd_idx)
6366 continue;
6367 if (conf->level == 6 &&
6368 j == sh->qd_idx)
6369 continue;
6370 s = raid5_compute_blocknr(sh, j, 0);
6371 if (s < raid5_size(mddev, 0, 0)) {
6372 skipped_disk = 1;
6373 continue;
6374 }
6375 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6376 set_bit(R5_Expanded, &sh->dev[j].flags);
6377 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6378 }
6379 if (!skipped_disk) {
6380 set_bit(STRIPE_EXPAND_READY, &sh->state);
6381 set_bit(STRIPE_HANDLE, &sh->state);
6382 }
6383 list_add(&sh->lru, &stripes);
6384 }
6385 spin_lock_irq(&conf->device_lock);
6386 if (mddev->reshape_backwards)
6387 conf->reshape_progress -= reshape_sectors * new_data_disks;
6388 else
6389 conf->reshape_progress += reshape_sectors * new_data_disks;
6390 spin_unlock_irq(&conf->device_lock);
6391 /* Ok, those stripe are ready. We can start scheduling
6392 * reads on the source stripes.
6393 * The source stripes are determined by mapping the first and last
6394 * block on the destination stripes.
6395 */
6396 first_sector =
6397 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6398 1, &dd_idx, NULL);
6399 last_sector =
6400 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6401 * new_data_disks - 1),
6402 1, &dd_idx, NULL);
6403 if (last_sector >= mddev->dev_sectors)
6404 last_sector = mddev->dev_sectors - 1;
6405 while (first_sector <= last_sector) {
6406 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6407 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6408 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6409 set_bit(STRIPE_HANDLE, &sh->state);
6410 raid5_release_stripe(sh);
6411 first_sector += RAID5_STRIPE_SECTORS(conf);
6412 }
6413 /* Now that the sources are clearly marked, we can release
6414 * the destination stripes
6415 */
6416 while (!list_empty(&stripes)) {
6417 sh = list_entry(stripes.next, struct stripe_head, lru);
6418 list_del_init(&sh->lru);
6419 raid5_release_stripe(sh);
6420 }
6421 /* If this takes us to the resync_max point where we have to pause,
6422 * then we need to write out the superblock.
6423 */
6424 sector_nr += reshape_sectors;
6425 retn = reshape_sectors;
6426finish:
6427 if (mddev->curr_resync_completed > mddev->resync_max ||
6428 (sector_nr - mddev->curr_resync_completed) * 2
6429 >= mddev->resync_max - mddev->curr_resync_completed) {
6430 /* Cannot proceed until we've updated the superblock... */
6431 wait_event(conf->wait_for_overlap,
6432 atomic_read(&conf->reshape_stripes) == 0
6433 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6434 if (atomic_read(&conf->reshape_stripes) != 0)
6435 goto ret;
6436 mddev->reshape_position = conf->reshape_progress;
6437 mddev->curr_resync_completed = sector_nr;
6438 if (!mddev->reshape_backwards)
6439 /* Can update recovery_offset */
6440 rdev_for_each(rdev, mddev)
6441 if (rdev->raid_disk >= 0 &&
6442 !test_bit(Journal, &rdev->flags) &&
6443 !test_bit(In_sync, &rdev->flags) &&
6444 rdev->recovery_offset < sector_nr)
6445 rdev->recovery_offset = sector_nr;
6446 conf->reshape_checkpoint = jiffies;
6447 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6448 md_wakeup_thread(mddev->thread);
6449 wait_event(mddev->sb_wait,
6450 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6451 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6452 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6453 goto ret;
6454 spin_lock_irq(&conf->device_lock);
6455 conf->reshape_safe = mddev->reshape_position;
6456 spin_unlock_irq(&conf->device_lock);
6457 wake_up(&conf->wait_for_overlap);
6458 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6459 }
6460ret:
6461 return retn;
6462}
6463
6464static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6465 int *skipped)
6466{
6467 struct r5conf *conf = mddev->private;
6468 struct stripe_head *sh;
6469 sector_t max_sector = mddev->dev_sectors;
6470 sector_t sync_blocks;
6471 int still_degraded = 0;
6472 int i;
6473
6474 if (sector_nr >= max_sector) {
6475 /* just being told to finish up .. nothing much to do */
6476
6477 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6478 end_reshape(conf);
6479 return 0;
6480 }
6481
6482 if (mddev->curr_resync < max_sector) /* aborted */
6483 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6484 &sync_blocks, 1);
6485 else /* completed sync */
6486 conf->fullsync = 0;
6487 md_bitmap_close_sync(mddev->bitmap);
6488
6489 return 0;
6490 }
6491
6492 /* Allow raid5_quiesce to complete */
6493 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6494
6495 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6496 return reshape_request(mddev, sector_nr, skipped);
6497
6498 /* No need to check resync_max as we never do more than one
6499 * stripe, and as resync_max will always be on a chunk boundary,
6500 * if the check in md_do_sync didn't fire, there is no chance
6501 * of overstepping resync_max here
6502 */
6503
6504 /* if there is too many failed drives and we are trying
6505 * to resync, then assert that we are finished, because there is
6506 * nothing we can do.
6507 */
6508 if (mddev->degraded >= conf->max_degraded &&
6509 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6510 sector_t rv = mddev->dev_sectors - sector_nr;
6511 *skipped = 1;
6512 return rv;
6513 }
6514 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6515 !conf->fullsync &&
6516 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6517 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6518 /* we can skip this block, and probably more */
6519 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6520 *skipped = 1;
6521 /* keep things rounded to whole stripes */
6522 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6523 }
6524
6525 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6526
6527 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6528 R5_GAS_NOBLOCK);
6529 if (sh == NULL) {
6530 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6531 /* make sure we don't swamp the stripe cache if someone else
6532 * is trying to get access
6533 */
6534 schedule_timeout_uninterruptible(1);
6535 }
6536 /* Need to check if array will still be degraded after recovery/resync
6537 * Note in case of > 1 drive failures it's possible we're rebuilding
6538 * one drive while leaving another faulty drive in array.
6539 */
6540 for (i = 0; i < conf->raid_disks; i++) {
6541 struct md_rdev *rdev = conf->disks[i].rdev;
6542
6543 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6544 still_degraded = 1;
6545 }
6546
6547 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6548
6549 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6550 set_bit(STRIPE_HANDLE, &sh->state);
6551
6552 raid5_release_stripe(sh);
6553
6554 return RAID5_STRIPE_SECTORS(conf);
6555}
6556
6557static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6558 unsigned int offset)
6559{
6560 /* We may not be able to submit a whole bio at once as there
6561 * may not be enough stripe_heads available.
6562 * We cannot pre-allocate enough stripe_heads as we may need
6563 * more than exist in the cache (if we allow ever large chunks).
6564 * So we do one stripe head at a time and record in
6565 * ->bi_hw_segments how many have been done.
6566 *
6567 * We *know* that this entire raid_bio is in one chunk, so
6568 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6569 */
6570 struct stripe_head *sh;
6571 int dd_idx;
6572 sector_t sector, logical_sector, last_sector;
6573 int scnt = 0;
6574 int handled = 0;
6575
6576 logical_sector = raid_bio->bi_iter.bi_sector &
6577 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6578 sector = raid5_compute_sector(conf, logical_sector,
6579 0, &dd_idx, NULL);
6580 last_sector = bio_end_sector(raid_bio);
6581
6582 for (; logical_sector < last_sector;
6583 logical_sector += RAID5_STRIPE_SECTORS(conf),
6584 sector += RAID5_STRIPE_SECTORS(conf),
6585 scnt++) {
6586
6587 if (scnt < offset)
6588 /* already done this stripe */
6589 continue;
6590
6591 sh = raid5_get_active_stripe(conf, NULL, sector,
6592 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6593 if (!sh) {
6594 /* failed to get a stripe - must wait */
6595 conf->retry_read_aligned = raid_bio;
6596 conf->retry_read_offset = scnt;
6597 return handled;
6598 }
6599
6600 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6601 raid5_release_stripe(sh);
6602 conf->retry_read_aligned = raid_bio;
6603 conf->retry_read_offset = scnt;
6604 return handled;
6605 }
6606
6607 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6608 handle_stripe(sh);
6609 raid5_release_stripe(sh);
6610 handled++;
6611 }
6612
6613 bio_endio(raid_bio);
6614
6615 if (atomic_dec_and_test(&conf->active_aligned_reads))
6616 wake_up(&conf->wait_for_quiescent);
6617 return handled;
6618}
6619
6620static int handle_active_stripes(struct r5conf *conf, int group,
6621 struct r5worker *worker,
6622 struct list_head *temp_inactive_list)
6623 __must_hold(&conf->device_lock)
6624{
6625 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6626 int i, batch_size = 0, hash;
6627 bool release_inactive = false;
6628
6629 while (batch_size < MAX_STRIPE_BATCH &&
6630 (sh = __get_priority_stripe(conf, group)) != NULL)
6631 batch[batch_size++] = sh;
6632
6633 if (batch_size == 0) {
6634 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6635 if (!list_empty(temp_inactive_list + i))
6636 break;
6637 if (i == NR_STRIPE_HASH_LOCKS) {
6638 spin_unlock_irq(&conf->device_lock);
6639 log_flush_stripe_to_raid(conf);
6640 spin_lock_irq(&conf->device_lock);
6641 return batch_size;
6642 }
6643 release_inactive = true;
6644 }
6645 spin_unlock_irq(&conf->device_lock);
6646
6647 release_inactive_stripe_list(conf, temp_inactive_list,
6648 NR_STRIPE_HASH_LOCKS);
6649
6650 r5l_flush_stripe_to_raid(conf->log);
6651 if (release_inactive) {
6652 spin_lock_irq(&conf->device_lock);
6653 return 0;
6654 }
6655
6656 for (i = 0; i < batch_size; i++)
6657 handle_stripe(batch[i]);
6658 log_write_stripe_run(conf);
6659
6660 cond_resched();
6661
6662 spin_lock_irq(&conf->device_lock);
6663 for (i = 0; i < batch_size; i++) {
6664 hash = batch[i]->hash_lock_index;
6665 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6666 }
6667 return batch_size;
6668}
6669
6670static void raid5_do_work(struct work_struct *work)
6671{
6672 struct r5worker *worker = container_of(work, struct r5worker, work);
6673 struct r5worker_group *group = worker->group;
6674 struct r5conf *conf = group->conf;
6675 struct mddev *mddev = conf->mddev;
6676 int group_id = group - conf->worker_groups;
6677 int handled;
6678 struct blk_plug plug;
6679
6680 pr_debug("+++ raid5worker active\n");
6681
6682 blk_start_plug(&plug);
6683 handled = 0;
6684 spin_lock_irq(&conf->device_lock);
6685 while (1) {
6686 int batch_size, released;
6687
6688 released = release_stripe_list(conf, worker->temp_inactive_list);
6689
6690 batch_size = handle_active_stripes(conf, group_id, worker,
6691 worker->temp_inactive_list);
6692 worker->working = false;
6693 if (!batch_size && !released)
6694 break;
6695 handled += batch_size;
6696 wait_event_lock_irq(mddev->sb_wait,
6697 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6698 conf->device_lock);
6699 }
6700 pr_debug("%d stripes handled\n", handled);
6701
6702 spin_unlock_irq(&conf->device_lock);
6703
6704 flush_deferred_bios(conf);
6705
6706 r5l_flush_stripe_to_raid(conf->log);
6707
6708 async_tx_issue_pending_all();
6709 blk_finish_plug(&plug);
6710
6711 pr_debug("--- raid5worker inactive\n");
6712}
6713
6714/*
6715 * This is our raid5 kernel thread.
6716 *
6717 * We scan the hash table for stripes which can be handled now.
6718 * During the scan, completed stripes are saved for us by the interrupt
6719 * handler, so that they will not have to wait for our next wakeup.
6720 */
6721static void raid5d(struct md_thread *thread)
6722{
6723 struct mddev *mddev = thread->mddev;
6724 struct r5conf *conf = mddev->private;
6725 int handled;
6726 struct blk_plug plug;
6727
6728 pr_debug("+++ raid5d active\n");
6729
6730 md_check_recovery(mddev);
6731
6732 blk_start_plug(&plug);
6733 handled = 0;
6734 spin_lock_irq(&conf->device_lock);
6735 while (1) {
6736 struct bio *bio;
6737 int batch_size, released;
6738 unsigned int offset;
6739
6740 released = release_stripe_list(conf, conf->temp_inactive_list);
6741 if (released)
6742 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6743
6744 if (
6745 !list_empty(&conf->bitmap_list)) {
6746 /* Now is a good time to flush some bitmap updates */
6747 conf->seq_flush++;
6748 spin_unlock_irq(&conf->device_lock);
6749 md_bitmap_unplug(mddev->bitmap);
6750 spin_lock_irq(&conf->device_lock);
6751 conf->seq_write = conf->seq_flush;
6752 activate_bit_delay(conf, conf->temp_inactive_list);
6753 }
6754 raid5_activate_delayed(conf);
6755
6756 while ((bio = remove_bio_from_retry(conf, &offset))) {
6757 int ok;
6758 spin_unlock_irq(&conf->device_lock);
6759 ok = retry_aligned_read(conf, bio, offset);
6760 spin_lock_irq(&conf->device_lock);
6761 if (!ok)
6762 break;
6763 handled++;
6764 }
6765
6766 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6767 conf->temp_inactive_list);
6768 if (!batch_size && !released)
6769 break;
6770 handled += batch_size;
6771
6772 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6773 spin_unlock_irq(&conf->device_lock);
6774 md_check_recovery(mddev);
6775 spin_lock_irq(&conf->device_lock);
6776 }
6777 }
6778 pr_debug("%d stripes handled\n", handled);
6779
6780 spin_unlock_irq(&conf->device_lock);
6781 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6782 mutex_trylock(&conf->cache_size_mutex)) {
6783 grow_one_stripe(conf, __GFP_NOWARN);
6784 /* Set flag even if allocation failed. This helps
6785 * slow down allocation requests when mem is short
6786 */
6787 set_bit(R5_DID_ALLOC, &conf->cache_state);
6788 mutex_unlock(&conf->cache_size_mutex);
6789 }
6790
6791 flush_deferred_bios(conf);
6792
6793 r5l_flush_stripe_to_raid(conf->log);
6794
6795 async_tx_issue_pending_all();
6796 blk_finish_plug(&plug);
6797
6798 pr_debug("--- raid5d inactive\n");
6799}
6800
6801static ssize_t
6802raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6803{
6804 struct r5conf *conf;
6805 int ret = 0;
6806 spin_lock(&mddev->lock);
6807 conf = mddev->private;
6808 if (conf)
6809 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6810 spin_unlock(&mddev->lock);
6811 return ret;
6812}
6813
6814int
6815raid5_set_cache_size(struct mddev *mddev, int size)
6816{
6817 int result = 0;
6818 struct r5conf *conf = mddev->private;
6819
6820 if (size <= 16 || size > 32768)
6821 return -EINVAL;
6822
6823 conf->min_nr_stripes = size;
6824 mutex_lock(&conf->cache_size_mutex);
6825 while (size < conf->max_nr_stripes &&
6826 drop_one_stripe(conf))
6827 ;
6828 mutex_unlock(&conf->cache_size_mutex);
6829
6830 md_allow_write(mddev);
6831
6832 mutex_lock(&conf->cache_size_mutex);
6833 while (size > conf->max_nr_stripes)
6834 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6835 conf->min_nr_stripes = conf->max_nr_stripes;
6836 result = -ENOMEM;
6837 break;
6838 }
6839 mutex_unlock(&conf->cache_size_mutex);
6840
6841 return result;
6842}
6843EXPORT_SYMBOL(raid5_set_cache_size);
6844
6845static ssize_t
6846raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6847{
6848 struct r5conf *conf;
6849 unsigned long new;
6850 int err;
6851
6852 if (len >= PAGE_SIZE)
6853 return -EINVAL;
6854 if (kstrtoul(page, 10, &new))
6855 return -EINVAL;
6856 err = mddev_lock(mddev);
6857 if (err)
6858 return err;
6859 conf = mddev->private;
6860 if (!conf)
6861 err = -ENODEV;
6862 else
6863 err = raid5_set_cache_size(mddev, new);
6864 mddev_unlock(mddev);
6865
6866 return err ?: len;
6867}
6868
6869static struct md_sysfs_entry
6870raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6871 raid5_show_stripe_cache_size,
6872 raid5_store_stripe_cache_size);
6873
6874static ssize_t
6875raid5_show_rmw_level(struct mddev *mddev, char *page)
6876{
6877 struct r5conf *conf = mddev->private;
6878 if (conf)
6879 return sprintf(page, "%d\n", conf->rmw_level);
6880 else
6881 return 0;
6882}
6883
6884static ssize_t
6885raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6886{
6887 struct r5conf *conf = mddev->private;
6888 unsigned long new;
6889
6890 if (!conf)
6891 return -ENODEV;
6892
6893 if (len >= PAGE_SIZE)
6894 return -EINVAL;
6895
6896 if (kstrtoul(page, 10, &new))
6897 return -EINVAL;
6898
6899 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6900 return -EINVAL;
6901
6902 if (new != PARITY_DISABLE_RMW &&
6903 new != PARITY_ENABLE_RMW &&
6904 new != PARITY_PREFER_RMW)
6905 return -EINVAL;
6906
6907 conf->rmw_level = new;
6908 return len;
6909}
6910
6911static struct md_sysfs_entry
6912raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6913 raid5_show_rmw_level,
6914 raid5_store_rmw_level);
6915
6916static ssize_t
6917raid5_show_stripe_size(struct mddev *mddev, char *page)
6918{
6919 struct r5conf *conf;
6920 int ret = 0;
6921
6922 spin_lock(&mddev->lock);
6923 conf = mddev->private;
6924 if (conf)
6925 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6926 spin_unlock(&mddev->lock);
6927 return ret;
6928}
6929
6930#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6931static ssize_t
6932raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6933{
6934 struct r5conf *conf;
6935 unsigned long new;
6936 int err;
6937 int size;
6938
6939 if (len >= PAGE_SIZE)
6940 return -EINVAL;
6941 if (kstrtoul(page, 10, &new))
6942 return -EINVAL;
6943
6944 /*
6945 * The value should not be bigger than PAGE_SIZE. It requires to
6946 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6947 * of two.
6948 */
6949 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6950 new > PAGE_SIZE || new == 0 ||
6951 new != roundup_pow_of_two(new))
6952 return -EINVAL;
6953
6954 err = mddev_suspend_and_lock(mddev);
6955 if (err)
6956 return err;
6957
6958 conf = mddev->private;
6959 if (!conf) {
6960 err = -ENODEV;
6961 goto out_unlock;
6962 }
6963
6964 if (new == conf->stripe_size)
6965 goto out_unlock;
6966
6967 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6968 conf->stripe_size, new);
6969
6970 if (mddev->sync_thread ||
6971 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6972 mddev->reshape_position != MaxSector ||
6973 mddev->sysfs_active) {
6974 err = -EBUSY;
6975 goto out_unlock;
6976 }
6977
6978 mutex_lock(&conf->cache_size_mutex);
6979 size = conf->max_nr_stripes;
6980
6981 shrink_stripes(conf);
6982
6983 conf->stripe_size = new;
6984 conf->stripe_shift = ilog2(new) - 9;
6985 conf->stripe_sectors = new >> 9;
6986 if (grow_stripes(conf, size)) {
6987 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6988 mdname(mddev));
6989 err = -ENOMEM;
6990 }
6991 mutex_unlock(&conf->cache_size_mutex);
6992
6993out_unlock:
6994 mddev_unlock_and_resume(mddev);
6995 return err ?: len;
6996}
6997
6998static struct md_sysfs_entry
6999raid5_stripe_size = __ATTR(stripe_size, 0644,
7000 raid5_show_stripe_size,
7001 raid5_store_stripe_size);
7002#else
7003static struct md_sysfs_entry
7004raid5_stripe_size = __ATTR(stripe_size, 0444,
7005 raid5_show_stripe_size,
7006 NULL);
7007#endif
7008
7009static ssize_t
7010raid5_show_preread_threshold(struct mddev *mddev, char *page)
7011{
7012 struct r5conf *conf;
7013 int ret = 0;
7014 spin_lock(&mddev->lock);
7015 conf = mddev->private;
7016 if (conf)
7017 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7018 spin_unlock(&mddev->lock);
7019 return ret;
7020}
7021
7022static ssize_t
7023raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7024{
7025 struct r5conf *conf;
7026 unsigned long new;
7027 int err;
7028
7029 if (len >= PAGE_SIZE)
7030 return -EINVAL;
7031 if (kstrtoul(page, 10, &new))
7032 return -EINVAL;
7033
7034 err = mddev_lock(mddev);
7035 if (err)
7036 return err;
7037 conf = mddev->private;
7038 if (!conf)
7039 err = -ENODEV;
7040 else if (new > conf->min_nr_stripes)
7041 err = -EINVAL;
7042 else
7043 conf->bypass_threshold = new;
7044 mddev_unlock(mddev);
7045 return err ?: len;
7046}
7047
7048static struct md_sysfs_entry
7049raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7050 S_IRUGO | S_IWUSR,
7051 raid5_show_preread_threshold,
7052 raid5_store_preread_threshold);
7053
7054static ssize_t
7055raid5_show_skip_copy(struct mddev *mddev, char *page)
7056{
7057 struct r5conf *conf;
7058 int ret = 0;
7059 spin_lock(&mddev->lock);
7060 conf = mddev->private;
7061 if (conf)
7062 ret = sprintf(page, "%d\n", conf->skip_copy);
7063 spin_unlock(&mddev->lock);
7064 return ret;
7065}
7066
7067static ssize_t
7068raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7069{
7070 struct r5conf *conf;
7071 unsigned long new;
7072 int err;
7073
7074 if (len >= PAGE_SIZE)
7075 return -EINVAL;
7076 if (kstrtoul(page, 10, &new))
7077 return -EINVAL;
7078 new = !!new;
7079
7080 err = mddev_suspend_and_lock(mddev);
7081 if (err)
7082 return err;
7083 conf = mddev->private;
7084 if (!conf)
7085 err = -ENODEV;
7086 else if (new != conf->skip_copy) {
7087 struct request_queue *q = mddev->queue;
7088
7089 conf->skip_copy = new;
7090 if (new)
7091 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7092 else
7093 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7094 }
7095 mddev_unlock_and_resume(mddev);
7096 return err ?: len;
7097}
7098
7099static struct md_sysfs_entry
7100raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7101 raid5_show_skip_copy,
7102 raid5_store_skip_copy);
7103
7104static ssize_t
7105stripe_cache_active_show(struct mddev *mddev, char *page)
7106{
7107 struct r5conf *conf = mddev->private;
7108 if (conf)
7109 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7110 else
7111 return 0;
7112}
7113
7114static struct md_sysfs_entry
7115raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7116
7117static ssize_t
7118raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7119{
7120 struct r5conf *conf;
7121 int ret = 0;
7122 spin_lock(&mddev->lock);
7123 conf = mddev->private;
7124 if (conf)
7125 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7126 spin_unlock(&mddev->lock);
7127 return ret;
7128}
7129
7130static int alloc_thread_groups(struct r5conf *conf, int cnt,
7131 int *group_cnt,
7132 struct r5worker_group **worker_groups);
7133static ssize_t
7134raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7135{
7136 struct r5conf *conf;
7137 unsigned int new;
7138 int err;
7139 struct r5worker_group *new_groups, *old_groups;
7140 int group_cnt;
7141
7142 if (len >= PAGE_SIZE)
7143 return -EINVAL;
7144 if (kstrtouint(page, 10, &new))
7145 return -EINVAL;
7146 /* 8192 should be big enough */
7147 if (new > 8192)
7148 return -EINVAL;
7149
7150 err = mddev_suspend_and_lock(mddev);
7151 if (err)
7152 return err;
7153 conf = mddev->private;
7154 if (!conf)
7155 err = -ENODEV;
7156 else if (new != conf->worker_cnt_per_group) {
7157 old_groups = conf->worker_groups;
7158 if (old_groups)
7159 flush_workqueue(raid5_wq);
7160
7161 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7162 if (!err) {
7163 spin_lock_irq(&conf->device_lock);
7164 conf->group_cnt = group_cnt;
7165 conf->worker_cnt_per_group = new;
7166 conf->worker_groups = new_groups;
7167 spin_unlock_irq(&conf->device_lock);
7168
7169 if (old_groups)
7170 kfree(old_groups[0].workers);
7171 kfree(old_groups);
7172 }
7173 }
7174 mddev_unlock_and_resume(mddev);
7175
7176 return err ?: len;
7177}
7178
7179static struct md_sysfs_entry
7180raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7181 raid5_show_group_thread_cnt,
7182 raid5_store_group_thread_cnt);
7183
7184static struct attribute *raid5_attrs[] = {
7185 &raid5_stripecache_size.attr,
7186 &raid5_stripecache_active.attr,
7187 &raid5_preread_bypass_threshold.attr,
7188 &raid5_group_thread_cnt.attr,
7189 &raid5_skip_copy.attr,
7190 &raid5_rmw_level.attr,
7191 &raid5_stripe_size.attr,
7192 &r5c_journal_mode.attr,
7193 &ppl_write_hint.attr,
7194 NULL,
7195};
7196static const struct attribute_group raid5_attrs_group = {
7197 .name = NULL,
7198 .attrs = raid5_attrs,
7199};
7200
7201static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7202 struct r5worker_group **worker_groups)
7203{
7204 int i, j, k;
7205 ssize_t size;
7206 struct r5worker *workers;
7207
7208 if (cnt == 0) {
7209 *group_cnt = 0;
7210 *worker_groups = NULL;
7211 return 0;
7212 }
7213 *group_cnt = num_possible_nodes();
7214 size = sizeof(struct r5worker) * cnt;
7215 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7216 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7217 GFP_NOIO);
7218 if (!*worker_groups || !workers) {
7219 kfree(workers);
7220 kfree(*worker_groups);
7221 return -ENOMEM;
7222 }
7223
7224 for (i = 0; i < *group_cnt; i++) {
7225 struct r5worker_group *group;
7226
7227 group = &(*worker_groups)[i];
7228 INIT_LIST_HEAD(&group->handle_list);
7229 INIT_LIST_HEAD(&group->loprio_list);
7230 group->conf = conf;
7231 group->workers = workers + i * cnt;
7232
7233 for (j = 0; j < cnt; j++) {
7234 struct r5worker *worker = group->workers + j;
7235 worker->group = group;
7236 INIT_WORK(&worker->work, raid5_do_work);
7237
7238 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7239 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7240 }
7241 }
7242
7243 return 0;
7244}
7245
7246static void free_thread_groups(struct r5conf *conf)
7247{
7248 if (conf->worker_groups)
7249 kfree(conf->worker_groups[0].workers);
7250 kfree(conf->worker_groups);
7251 conf->worker_groups = NULL;
7252}
7253
7254static sector_t
7255raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7256{
7257 struct r5conf *conf = mddev->private;
7258
7259 if (!sectors)
7260 sectors = mddev->dev_sectors;
7261 if (!raid_disks)
7262 /* size is defined by the smallest of previous and new size */
7263 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7264
7265 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7266 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7267 return sectors * (raid_disks - conf->max_degraded);
7268}
7269
7270static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7271{
7272 safe_put_page(percpu->spare_page);
7273 percpu->spare_page = NULL;
7274 kvfree(percpu->scribble);
7275 percpu->scribble = NULL;
7276}
7277
7278static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7279{
7280 if (conf->level == 6 && !percpu->spare_page) {
7281 percpu->spare_page = alloc_page(GFP_KERNEL);
7282 if (!percpu->spare_page)
7283 return -ENOMEM;
7284 }
7285
7286 if (scribble_alloc(percpu,
7287 max(conf->raid_disks,
7288 conf->previous_raid_disks),
7289 max(conf->chunk_sectors,
7290 conf->prev_chunk_sectors)
7291 / RAID5_STRIPE_SECTORS(conf))) {
7292 free_scratch_buffer(conf, percpu);
7293 return -ENOMEM;
7294 }
7295
7296 local_lock_init(&percpu->lock);
7297 return 0;
7298}
7299
7300static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7301{
7302 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7303
7304 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7305 return 0;
7306}
7307
7308static void raid5_free_percpu(struct r5conf *conf)
7309{
7310 if (!conf->percpu)
7311 return;
7312
7313 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7314 free_percpu(conf->percpu);
7315}
7316
7317static void free_conf(struct r5conf *conf)
7318{
7319 int i;
7320
7321 log_exit(conf);
7322
7323 shrinker_free(conf->shrinker);
7324 free_thread_groups(conf);
7325 shrink_stripes(conf);
7326 raid5_free_percpu(conf);
7327 for (i = 0; i < conf->pool_size; i++)
7328 if (conf->disks[i].extra_page)
7329 put_page(conf->disks[i].extra_page);
7330 kfree(conf->disks);
7331 bioset_exit(&conf->bio_split);
7332 kfree(conf->stripe_hashtbl);
7333 kfree(conf->pending_data);
7334 kfree(conf);
7335}
7336
7337static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7338{
7339 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7340 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7341
7342 if (alloc_scratch_buffer(conf, percpu)) {
7343 pr_warn("%s: failed memory allocation for cpu%u\n",
7344 __func__, cpu);
7345 return -ENOMEM;
7346 }
7347 return 0;
7348}
7349
7350static int raid5_alloc_percpu(struct r5conf *conf)
7351{
7352 int err = 0;
7353
7354 conf->percpu = alloc_percpu(struct raid5_percpu);
7355 if (!conf->percpu)
7356 return -ENOMEM;
7357
7358 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7359 if (!err) {
7360 conf->scribble_disks = max(conf->raid_disks,
7361 conf->previous_raid_disks);
7362 conf->scribble_sectors = max(conf->chunk_sectors,
7363 conf->prev_chunk_sectors);
7364 }
7365 return err;
7366}
7367
7368static unsigned long raid5_cache_scan(struct shrinker *shrink,
7369 struct shrink_control *sc)
7370{
7371 struct r5conf *conf = shrink->private_data;
7372 unsigned long ret = SHRINK_STOP;
7373
7374 if (mutex_trylock(&conf->cache_size_mutex)) {
7375 ret= 0;
7376 while (ret < sc->nr_to_scan &&
7377 conf->max_nr_stripes > conf->min_nr_stripes) {
7378 if (drop_one_stripe(conf) == 0) {
7379 ret = SHRINK_STOP;
7380 break;
7381 }
7382 ret++;
7383 }
7384 mutex_unlock(&conf->cache_size_mutex);
7385 }
7386 return ret;
7387}
7388
7389static unsigned long raid5_cache_count(struct shrinker *shrink,
7390 struct shrink_control *sc)
7391{
7392 struct r5conf *conf = shrink->private_data;
7393
7394 if (conf->max_nr_stripes < conf->min_nr_stripes)
7395 /* unlikely, but not impossible */
7396 return 0;
7397 return conf->max_nr_stripes - conf->min_nr_stripes;
7398}
7399
7400static struct r5conf *setup_conf(struct mddev *mddev)
7401{
7402 struct r5conf *conf;
7403 int raid_disk, memory, max_disks;
7404 struct md_rdev *rdev;
7405 struct disk_info *disk;
7406 char pers_name[6];
7407 int i;
7408 int group_cnt;
7409 struct r5worker_group *new_group;
7410 int ret = -ENOMEM;
7411
7412 if (mddev->new_level != 5
7413 && mddev->new_level != 4
7414 && mddev->new_level != 6) {
7415 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7416 mdname(mddev), mddev->new_level);
7417 return ERR_PTR(-EIO);
7418 }
7419 if ((mddev->new_level == 5
7420 && !algorithm_valid_raid5(mddev->new_layout)) ||
7421 (mddev->new_level == 6
7422 && !algorithm_valid_raid6(mddev->new_layout))) {
7423 pr_warn("md/raid:%s: layout %d not supported\n",
7424 mdname(mddev), mddev->new_layout);
7425 return ERR_PTR(-EIO);
7426 }
7427 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7428 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7429 mdname(mddev), mddev->raid_disks);
7430 return ERR_PTR(-EINVAL);
7431 }
7432
7433 if (!mddev->new_chunk_sectors ||
7434 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7435 !is_power_of_2(mddev->new_chunk_sectors)) {
7436 pr_warn("md/raid:%s: invalid chunk size %d\n",
7437 mdname(mddev), mddev->new_chunk_sectors << 9);
7438 return ERR_PTR(-EINVAL);
7439 }
7440
7441 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7442 if (conf == NULL)
7443 goto abort;
7444
7445#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7446 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7447 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7448 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7449#endif
7450 INIT_LIST_HEAD(&conf->free_list);
7451 INIT_LIST_HEAD(&conf->pending_list);
7452 conf->pending_data = kcalloc(PENDING_IO_MAX,
7453 sizeof(struct r5pending_data),
7454 GFP_KERNEL);
7455 if (!conf->pending_data)
7456 goto abort;
7457 for (i = 0; i < PENDING_IO_MAX; i++)
7458 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7459 /* Don't enable multi-threading by default*/
7460 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7461 conf->group_cnt = group_cnt;
7462 conf->worker_cnt_per_group = 0;
7463 conf->worker_groups = new_group;
7464 } else
7465 goto abort;
7466 spin_lock_init(&conf->device_lock);
7467 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7468 mutex_init(&conf->cache_size_mutex);
7469
7470 init_waitqueue_head(&conf->wait_for_quiescent);
7471 init_waitqueue_head(&conf->wait_for_stripe);
7472 init_waitqueue_head(&conf->wait_for_overlap);
7473 INIT_LIST_HEAD(&conf->handle_list);
7474 INIT_LIST_HEAD(&conf->loprio_list);
7475 INIT_LIST_HEAD(&conf->hold_list);
7476 INIT_LIST_HEAD(&conf->delayed_list);
7477 INIT_LIST_HEAD(&conf->bitmap_list);
7478 init_llist_head(&conf->released_stripes);
7479 atomic_set(&conf->active_stripes, 0);
7480 atomic_set(&conf->preread_active_stripes, 0);
7481 atomic_set(&conf->active_aligned_reads, 0);
7482 spin_lock_init(&conf->pending_bios_lock);
7483 conf->batch_bio_dispatch = true;
7484 rdev_for_each(rdev, mddev) {
7485 if (test_bit(Journal, &rdev->flags))
7486 continue;
7487 if (bdev_nonrot(rdev->bdev)) {
7488 conf->batch_bio_dispatch = false;
7489 break;
7490 }
7491 }
7492
7493 conf->bypass_threshold = BYPASS_THRESHOLD;
7494 conf->recovery_disabled = mddev->recovery_disabled - 1;
7495
7496 conf->raid_disks = mddev->raid_disks;
7497 if (mddev->reshape_position == MaxSector)
7498 conf->previous_raid_disks = mddev->raid_disks;
7499 else
7500 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7501 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7502
7503 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7504 GFP_KERNEL);
7505
7506 if (!conf->disks)
7507 goto abort;
7508
7509 for (i = 0; i < max_disks; i++) {
7510 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7511 if (!conf->disks[i].extra_page)
7512 goto abort;
7513 }
7514
7515 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7516 if (ret)
7517 goto abort;
7518 conf->mddev = mddev;
7519
7520 ret = -ENOMEM;
7521 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7522 if (!conf->stripe_hashtbl)
7523 goto abort;
7524
7525 /* We init hash_locks[0] separately to that it can be used
7526 * as the reference lock in the spin_lock_nest_lock() call
7527 * in lock_all_device_hash_locks_irq in order to convince
7528 * lockdep that we know what we are doing.
7529 */
7530 spin_lock_init(conf->hash_locks);
7531 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7532 spin_lock_init(conf->hash_locks + i);
7533
7534 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7535 INIT_LIST_HEAD(conf->inactive_list + i);
7536
7537 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7538 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7539
7540 atomic_set(&conf->r5c_cached_full_stripes, 0);
7541 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7542 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7543 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7544 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7545 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7546
7547 conf->level = mddev->new_level;
7548 conf->chunk_sectors = mddev->new_chunk_sectors;
7549 ret = raid5_alloc_percpu(conf);
7550 if (ret)
7551 goto abort;
7552
7553 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7554
7555 ret = -EIO;
7556 rdev_for_each(rdev, mddev) {
7557 raid_disk = rdev->raid_disk;
7558 if (raid_disk >= max_disks
7559 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7560 continue;
7561 disk = conf->disks + raid_disk;
7562
7563 if (test_bit(Replacement, &rdev->flags)) {
7564 if (disk->replacement)
7565 goto abort;
7566 RCU_INIT_POINTER(disk->replacement, rdev);
7567 } else {
7568 if (disk->rdev)
7569 goto abort;
7570 RCU_INIT_POINTER(disk->rdev, rdev);
7571 }
7572
7573 if (test_bit(In_sync, &rdev->flags)) {
7574 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7575 mdname(mddev), rdev->bdev, raid_disk);
7576 } else if (rdev->saved_raid_disk != raid_disk)
7577 /* Cannot rely on bitmap to complete recovery */
7578 conf->fullsync = 1;
7579 }
7580
7581 conf->level = mddev->new_level;
7582 if (conf->level == 6) {
7583 conf->max_degraded = 2;
7584 if (raid6_call.xor_syndrome)
7585 conf->rmw_level = PARITY_ENABLE_RMW;
7586 else
7587 conf->rmw_level = PARITY_DISABLE_RMW;
7588 } else {
7589 conf->max_degraded = 1;
7590 conf->rmw_level = PARITY_ENABLE_RMW;
7591 }
7592 conf->algorithm = mddev->new_layout;
7593 conf->reshape_progress = mddev->reshape_position;
7594 if (conf->reshape_progress != MaxSector) {
7595 conf->prev_chunk_sectors = mddev->chunk_sectors;
7596 conf->prev_algo = mddev->layout;
7597 } else {
7598 conf->prev_chunk_sectors = conf->chunk_sectors;
7599 conf->prev_algo = conf->algorithm;
7600 }
7601
7602 conf->min_nr_stripes = NR_STRIPES;
7603 if (mddev->reshape_position != MaxSector) {
7604 int stripes = max_t(int,
7605 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7606 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7607 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7608 if (conf->min_nr_stripes != NR_STRIPES)
7609 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7610 mdname(mddev), conf->min_nr_stripes);
7611 }
7612 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7613 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7614 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7615 if (grow_stripes(conf, conf->min_nr_stripes)) {
7616 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7617 mdname(mddev), memory);
7618 ret = -ENOMEM;
7619 goto abort;
7620 } else
7621 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7622 /*
7623 * Losing a stripe head costs more than the time to refill it,
7624 * it reduces the queue depth and so can hurt throughput.
7625 * So set it rather large, scaled by number of devices.
7626 */
7627 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7628 if (!conf->shrinker) {
7629 ret = -ENOMEM;
7630 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7631 mdname(mddev));
7632 goto abort;
7633 }
7634
7635 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7636 conf->shrinker->scan_objects = raid5_cache_scan;
7637 conf->shrinker->count_objects = raid5_cache_count;
7638 conf->shrinker->batch = 128;
7639 conf->shrinker->private_data = conf;
7640
7641 shrinker_register(conf->shrinker);
7642
7643 sprintf(pers_name, "raid%d", mddev->new_level);
7644 rcu_assign_pointer(conf->thread,
7645 md_register_thread(raid5d, mddev, pers_name));
7646 if (!conf->thread) {
7647 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7648 mdname(mddev));
7649 ret = -ENOMEM;
7650 goto abort;
7651 }
7652
7653 return conf;
7654
7655 abort:
7656 if (conf)
7657 free_conf(conf);
7658 return ERR_PTR(ret);
7659}
7660
7661static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7662{
7663 switch (algo) {
7664 case ALGORITHM_PARITY_0:
7665 if (raid_disk < max_degraded)
7666 return 1;
7667 break;
7668 case ALGORITHM_PARITY_N:
7669 if (raid_disk >= raid_disks - max_degraded)
7670 return 1;
7671 break;
7672 case ALGORITHM_PARITY_0_6:
7673 if (raid_disk == 0 ||
7674 raid_disk == raid_disks - 1)
7675 return 1;
7676 break;
7677 case ALGORITHM_LEFT_ASYMMETRIC_6:
7678 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7679 case ALGORITHM_LEFT_SYMMETRIC_6:
7680 case ALGORITHM_RIGHT_SYMMETRIC_6:
7681 if (raid_disk == raid_disks - 1)
7682 return 1;
7683 }
7684 return 0;
7685}
7686
7687static void raid5_set_io_opt(struct r5conf *conf)
7688{
7689 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7690 (conf->raid_disks - conf->max_degraded));
7691}
7692
7693static int raid5_run(struct mddev *mddev)
7694{
7695 struct r5conf *conf;
7696 int dirty_parity_disks = 0;
7697 struct md_rdev *rdev;
7698 struct md_rdev *journal_dev = NULL;
7699 sector_t reshape_offset = 0;
7700 int i;
7701 long long min_offset_diff = 0;
7702 int first = 1;
7703
7704 if (mddev->recovery_cp != MaxSector)
7705 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7706 mdname(mddev));
7707
7708 rdev_for_each(rdev, mddev) {
7709 long long diff;
7710
7711 if (test_bit(Journal, &rdev->flags)) {
7712 journal_dev = rdev;
7713 continue;
7714 }
7715 if (rdev->raid_disk < 0)
7716 continue;
7717 diff = (rdev->new_data_offset - rdev->data_offset);
7718 if (first) {
7719 min_offset_diff = diff;
7720 first = 0;
7721 } else if (mddev->reshape_backwards &&
7722 diff < min_offset_diff)
7723 min_offset_diff = diff;
7724 else if (!mddev->reshape_backwards &&
7725 diff > min_offset_diff)
7726 min_offset_diff = diff;
7727 }
7728
7729 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7730 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7731 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7732 mdname(mddev));
7733 return -EINVAL;
7734 }
7735
7736 if (mddev->reshape_position != MaxSector) {
7737 /* Check that we can continue the reshape.
7738 * Difficulties arise if the stripe we would write to
7739 * next is at or after the stripe we would read from next.
7740 * For a reshape that changes the number of devices, this
7741 * is only possible for a very short time, and mdadm makes
7742 * sure that time appears to have past before assembling
7743 * the array. So we fail if that time hasn't passed.
7744 * For a reshape that keeps the number of devices the same
7745 * mdadm must be monitoring the reshape can keeping the
7746 * critical areas read-only and backed up. It will start
7747 * the array in read-only mode, so we check for that.
7748 */
7749 sector_t here_new, here_old;
7750 int old_disks;
7751 int max_degraded = (mddev->level == 6 ? 2 : 1);
7752 int chunk_sectors;
7753 int new_data_disks;
7754
7755 if (journal_dev) {
7756 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7757 mdname(mddev));
7758 return -EINVAL;
7759 }
7760
7761 if (mddev->new_level != mddev->level) {
7762 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7763 mdname(mddev));
7764 return -EINVAL;
7765 }
7766 old_disks = mddev->raid_disks - mddev->delta_disks;
7767 /* reshape_position must be on a new-stripe boundary, and one
7768 * further up in new geometry must map after here in old
7769 * geometry.
7770 * If the chunk sizes are different, then as we perform reshape
7771 * in units of the largest of the two, reshape_position needs
7772 * be a multiple of the largest chunk size times new data disks.
7773 */
7774 here_new = mddev->reshape_position;
7775 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7776 new_data_disks = mddev->raid_disks - max_degraded;
7777 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7778 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7779 mdname(mddev));
7780 return -EINVAL;
7781 }
7782 reshape_offset = here_new * chunk_sectors;
7783 /* here_new is the stripe we will write to */
7784 here_old = mddev->reshape_position;
7785 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7786 /* here_old is the first stripe that we might need to read
7787 * from */
7788 if (mddev->delta_disks == 0) {
7789 /* We cannot be sure it is safe to start an in-place
7790 * reshape. It is only safe if user-space is monitoring
7791 * and taking constant backups.
7792 * mdadm always starts a situation like this in
7793 * readonly mode so it can take control before
7794 * allowing any writes. So just check for that.
7795 */
7796 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7797 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7798 /* not really in-place - so OK */;
7799 else if (mddev->ro == 0) {
7800 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7801 mdname(mddev));
7802 return -EINVAL;
7803 }
7804 } else if (mddev->reshape_backwards
7805 ? (here_new * chunk_sectors + min_offset_diff <=
7806 here_old * chunk_sectors)
7807 : (here_new * chunk_sectors >=
7808 here_old * chunk_sectors + (-min_offset_diff))) {
7809 /* Reading from the same stripe as writing to - bad */
7810 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7811 mdname(mddev));
7812 return -EINVAL;
7813 }
7814 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7815 /* OK, we should be able to continue; */
7816 } else {
7817 BUG_ON(mddev->level != mddev->new_level);
7818 BUG_ON(mddev->layout != mddev->new_layout);
7819 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7820 BUG_ON(mddev->delta_disks != 0);
7821 }
7822
7823 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7824 test_bit(MD_HAS_PPL, &mddev->flags)) {
7825 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7826 mdname(mddev));
7827 clear_bit(MD_HAS_PPL, &mddev->flags);
7828 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7829 }
7830
7831 if (mddev->private == NULL)
7832 conf = setup_conf(mddev);
7833 else
7834 conf = mddev->private;
7835
7836 if (IS_ERR(conf))
7837 return PTR_ERR(conf);
7838
7839 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7840 if (!journal_dev) {
7841 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7842 mdname(mddev));
7843 mddev->ro = 1;
7844 set_disk_ro(mddev->gendisk, 1);
7845 } else if (mddev->recovery_cp == MaxSector)
7846 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7847 }
7848
7849 conf->min_offset_diff = min_offset_diff;
7850 rcu_assign_pointer(mddev->thread, conf->thread);
7851 rcu_assign_pointer(conf->thread, NULL);
7852 mddev->private = conf;
7853
7854 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7855 i++) {
7856 rdev = conf->disks[i].rdev;
7857 if (!rdev)
7858 continue;
7859 if (conf->disks[i].replacement &&
7860 conf->reshape_progress != MaxSector) {
7861 /* replacements and reshape simply do not mix. */
7862 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7863 goto abort;
7864 }
7865 if (test_bit(In_sync, &rdev->flags))
7866 continue;
7867 /* This disc is not fully in-sync. However if it
7868 * just stored parity (beyond the recovery_offset),
7869 * when we don't need to be concerned about the
7870 * array being dirty.
7871 * When reshape goes 'backwards', we never have
7872 * partially completed devices, so we only need
7873 * to worry about reshape going forwards.
7874 */
7875 /* Hack because v0.91 doesn't store recovery_offset properly. */
7876 if (mddev->major_version == 0 &&
7877 mddev->minor_version > 90)
7878 rdev->recovery_offset = reshape_offset;
7879
7880 if (rdev->recovery_offset < reshape_offset) {
7881 /* We need to check old and new layout */
7882 if (!only_parity(rdev->raid_disk,
7883 conf->algorithm,
7884 conf->raid_disks,
7885 conf->max_degraded))
7886 continue;
7887 }
7888 if (!only_parity(rdev->raid_disk,
7889 conf->prev_algo,
7890 conf->previous_raid_disks,
7891 conf->max_degraded))
7892 continue;
7893 dirty_parity_disks++;
7894 }
7895
7896 /*
7897 * 0 for a fully functional array, 1 or 2 for a degraded array.
7898 */
7899 mddev->degraded = raid5_calc_degraded(conf);
7900
7901 if (has_failed(conf)) {
7902 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7903 mdname(mddev), mddev->degraded, conf->raid_disks);
7904 goto abort;
7905 }
7906
7907 /* device size must be a multiple of chunk size */
7908 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7909 mddev->resync_max_sectors = mddev->dev_sectors;
7910
7911 if (mddev->degraded > dirty_parity_disks &&
7912 mddev->recovery_cp != MaxSector) {
7913 if (test_bit(MD_HAS_PPL, &mddev->flags))
7914 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7915 mdname(mddev));
7916 else if (mddev->ok_start_degraded)
7917 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7918 mdname(mddev));
7919 else {
7920 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7921 mdname(mddev));
7922 goto abort;
7923 }
7924 }
7925
7926 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7927 mdname(mddev), conf->level,
7928 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7929 mddev->new_layout);
7930
7931 print_raid5_conf(conf);
7932
7933 if (conf->reshape_progress != MaxSector) {
7934 conf->reshape_safe = conf->reshape_progress;
7935 atomic_set(&conf->reshape_stripes, 0);
7936 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7938 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7939 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7940 }
7941
7942 /* Ok, everything is just fine now */
7943 if (mddev->to_remove == &raid5_attrs_group)
7944 mddev->to_remove = NULL;
7945 else if (mddev->kobj.sd &&
7946 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7947 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7948 mdname(mddev));
7949 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7950
7951 if (mddev->queue) {
7952 int chunk_size;
7953 /* read-ahead size must cover two whole stripes, which
7954 * is 2 * (datadisks) * chunksize where 'n' is the
7955 * number of raid devices
7956 */
7957 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7958 int stripe = data_disks *
7959 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7960
7961 chunk_size = mddev->chunk_sectors << 9;
7962 blk_queue_io_min(mddev->queue, chunk_size);
7963 raid5_set_io_opt(conf);
7964 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7965 /*
7966 * We can only discard a whole stripe. It doesn't make sense to
7967 * discard data disk but write parity disk
7968 */
7969 stripe = stripe * PAGE_SIZE;
7970 stripe = roundup_pow_of_two(stripe);
7971 mddev->queue->limits.discard_granularity = stripe;
7972
7973 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7974
7975 rdev_for_each(rdev, mddev) {
7976 disk_stack_limits(mddev->gendisk, rdev->bdev,
7977 rdev->data_offset << 9);
7978 disk_stack_limits(mddev->gendisk, rdev->bdev,
7979 rdev->new_data_offset << 9);
7980 }
7981
7982 /*
7983 * zeroing is required, otherwise data
7984 * could be lost. Consider a scenario: discard a stripe
7985 * (the stripe could be inconsistent if
7986 * discard_zeroes_data is 0); write one disk of the
7987 * stripe (the stripe could be inconsistent again
7988 * depending on which disks are used to calculate
7989 * parity); the disk is broken; The stripe data of this
7990 * disk is lost.
7991 *
7992 * We only allow DISCARD if the sysadmin has confirmed that
7993 * only safe devices are in use by setting a module parameter.
7994 * A better idea might be to turn DISCARD into WRITE_ZEROES
7995 * requests, as that is required to be safe.
7996 */
7997 if (!devices_handle_discard_safely ||
7998 mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
7999 mddev->queue->limits.discard_granularity < stripe)
8000 blk_queue_max_discard_sectors(mddev->queue, 0);
8001
8002 /*
8003 * Requests require having a bitmap for each stripe.
8004 * Limit the max sectors based on this.
8005 */
8006 blk_queue_max_hw_sectors(mddev->queue,
8007 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8008
8009 /* No restrictions on the number of segments in the request */
8010 blk_queue_max_segments(mddev->queue, USHRT_MAX);
8011 }
8012
8013 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8014 goto abort;
8015
8016 return 0;
8017abort:
8018 md_unregister_thread(mddev, &mddev->thread);
8019 print_raid5_conf(conf);
8020 free_conf(conf);
8021 mddev->private = NULL;
8022 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8023 return -EIO;
8024}
8025
8026static void raid5_free(struct mddev *mddev, void *priv)
8027{
8028 struct r5conf *conf = priv;
8029
8030 free_conf(conf);
8031 mddev->to_remove = &raid5_attrs_group;
8032}
8033
8034static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8035{
8036 struct r5conf *conf = mddev->private;
8037 int i;
8038
8039 lockdep_assert_held(&mddev->lock);
8040
8041 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8042 conf->chunk_sectors / 2, mddev->layout);
8043 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8044 for (i = 0; i < conf->raid_disks; i++) {
8045 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8046
8047 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8048 }
8049 seq_printf (seq, "]");
8050}
8051
8052static void print_raid5_conf (struct r5conf *conf)
8053{
8054 struct md_rdev *rdev;
8055 int i;
8056
8057 pr_debug("RAID conf printout:\n");
8058 if (!conf) {
8059 pr_debug("(conf==NULL)\n");
8060 return;
8061 }
8062 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8063 conf->raid_disks,
8064 conf->raid_disks - conf->mddev->degraded);
8065
8066 rcu_read_lock();
8067 for (i = 0; i < conf->raid_disks; i++) {
8068 rdev = rcu_dereference(conf->disks[i].rdev);
8069 if (rdev)
8070 pr_debug(" disk %d, o:%d, dev:%pg\n",
8071 i, !test_bit(Faulty, &rdev->flags),
8072 rdev->bdev);
8073 }
8074 rcu_read_unlock();
8075}
8076
8077static int raid5_spare_active(struct mddev *mddev)
8078{
8079 int i;
8080 struct r5conf *conf = mddev->private;
8081 struct md_rdev *rdev, *replacement;
8082 int count = 0;
8083 unsigned long flags;
8084
8085 for (i = 0; i < conf->raid_disks; i++) {
8086 rdev = conf->disks[i].rdev;
8087 replacement = conf->disks[i].replacement;
8088 if (replacement
8089 && replacement->recovery_offset == MaxSector
8090 && !test_bit(Faulty, &replacement->flags)
8091 && !test_and_set_bit(In_sync, &replacement->flags)) {
8092 /* Replacement has just become active. */
8093 if (!rdev
8094 || !test_and_clear_bit(In_sync, &rdev->flags))
8095 count++;
8096 if (rdev) {
8097 /* Replaced device not technically faulty,
8098 * but we need to be sure it gets removed
8099 * and never re-added.
8100 */
8101 set_bit(Faulty, &rdev->flags);
8102 sysfs_notify_dirent_safe(
8103 rdev->sysfs_state);
8104 }
8105 sysfs_notify_dirent_safe(replacement->sysfs_state);
8106 } else if (rdev
8107 && rdev->recovery_offset == MaxSector
8108 && !test_bit(Faulty, &rdev->flags)
8109 && !test_and_set_bit(In_sync, &rdev->flags)) {
8110 count++;
8111 sysfs_notify_dirent_safe(rdev->sysfs_state);
8112 }
8113 }
8114 spin_lock_irqsave(&conf->device_lock, flags);
8115 mddev->degraded = raid5_calc_degraded(conf);
8116 spin_unlock_irqrestore(&conf->device_lock, flags);
8117 print_raid5_conf(conf);
8118 return count;
8119}
8120
8121static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8122{
8123 struct r5conf *conf = mddev->private;
8124 int err = 0;
8125 int number = rdev->raid_disk;
8126 struct md_rdev **rdevp;
8127 struct disk_info *p;
8128 struct md_rdev *tmp;
8129
8130 print_raid5_conf(conf);
8131 if (test_bit(Journal, &rdev->flags) && conf->log) {
8132 /*
8133 * we can't wait pending write here, as this is called in
8134 * raid5d, wait will deadlock.
8135 * neilb: there is no locking about new writes here,
8136 * so this cannot be safe.
8137 */
8138 if (atomic_read(&conf->active_stripes) ||
8139 atomic_read(&conf->r5c_cached_full_stripes) ||
8140 atomic_read(&conf->r5c_cached_partial_stripes)) {
8141 return -EBUSY;
8142 }
8143 log_exit(conf);
8144 return 0;
8145 }
8146 if (unlikely(number >= conf->pool_size))
8147 return 0;
8148 p = conf->disks + number;
8149 if (rdev == p->rdev)
8150 rdevp = &p->rdev;
8151 else if (rdev == p->replacement)
8152 rdevp = &p->replacement;
8153 else
8154 return 0;
8155
8156 if (number >= conf->raid_disks &&
8157 conf->reshape_progress == MaxSector)
8158 clear_bit(In_sync, &rdev->flags);
8159
8160 if (test_bit(In_sync, &rdev->flags) ||
8161 atomic_read(&rdev->nr_pending)) {
8162 err = -EBUSY;
8163 goto abort;
8164 }
8165 /* Only remove non-faulty devices if recovery
8166 * isn't possible.
8167 */
8168 if (!test_bit(Faulty, &rdev->flags) &&
8169 mddev->recovery_disabled != conf->recovery_disabled &&
8170 !has_failed(conf) &&
8171 (!p->replacement || p->replacement == rdev) &&
8172 number < conf->raid_disks) {
8173 err = -EBUSY;
8174 goto abort;
8175 }
8176 WRITE_ONCE(*rdevp, NULL);
8177 if (!err) {
8178 err = log_modify(conf, rdev, false);
8179 if (err)
8180 goto abort;
8181 }
8182
8183 tmp = p->replacement;
8184 if (tmp) {
8185 /* We must have just cleared 'rdev' */
8186 WRITE_ONCE(p->rdev, tmp);
8187 clear_bit(Replacement, &tmp->flags);
8188 WRITE_ONCE(p->replacement, NULL);
8189
8190 if (!err)
8191 err = log_modify(conf, tmp, true);
8192 }
8193
8194 clear_bit(WantReplacement, &rdev->flags);
8195abort:
8196
8197 print_raid5_conf(conf);
8198 return err;
8199}
8200
8201static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8202{
8203 struct r5conf *conf = mddev->private;
8204 int ret, err = -EEXIST;
8205 int disk;
8206 struct disk_info *p;
8207 struct md_rdev *tmp;
8208 int first = 0;
8209 int last = conf->raid_disks - 1;
8210
8211 if (test_bit(Journal, &rdev->flags)) {
8212 if (conf->log)
8213 return -EBUSY;
8214
8215 rdev->raid_disk = 0;
8216 /*
8217 * The array is in readonly mode if journal is missing, so no
8218 * write requests running. We should be safe
8219 */
8220 ret = log_init(conf, rdev, false);
8221 if (ret)
8222 return ret;
8223
8224 ret = r5l_start(conf->log);
8225 if (ret)
8226 return ret;
8227
8228 return 0;
8229 }
8230 if (mddev->recovery_disabled == conf->recovery_disabled)
8231 return -EBUSY;
8232
8233 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8234 /* no point adding a device */
8235 return -EINVAL;
8236
8237 if (rdev->raid_disk >= 0)
8238 first = last = rdev->raid_disk;
8239
8240 /*
8241 * find the disk ... but prefer rdev->saved_raid_disk
8242 * if possible.
8243 */
8244 if (rdev->saved_raid_disk >= first &&
8245 rdev->saved_raid_disk <= last &&
8246 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8247 first = rdev->saved_raid_disk;
8248
8249 for (disk = first; disk <= last; disk++) {
8250 p = conf->disks + disk;
8251 if (p->rdev == NULL) {
8252 clear_bit(In_sync, &rdev->flags);
8253 rdev->raid_disk = disk;
8254 if (rdev->saved_raid_disk != disk)
8255 conf->fullsync = 1;
8256 WRITE_ONCE(p->rdev, rdev);
8257
8258 err = log_modify(conf, rdev, true);
8259
8260 goto out;
8261 }
8262 }
8263 for (disk = first; disk <= last; disk++) {
8264 p = conf->disks + disk;
8265 tmp = p->rdev;
8266 if (test_bit(WantReplacement, &tmp->flags) &&
8267 mddev->reshape_position == MaxSector &&
8268 p->replacement == NULL) {
8269 clear_bit(In_sync, &rdev->flags);
8270 set_bit(Replacement, &rdev->flags);
8271 rdev->raid_disk = disk;
8272 err = 0;
8273 conf->fullsync = 1;
8274 WRITE_ONCE(p->replacement, rdev);
8275 break;
8276 }
8277 }
8278out:
8279 print_raid5_conf(conf);
8280 return err;
8281}
8282
8283static int raid5_resize(struct mddev *mddev, sector_t sectors)
8284{
8285 /* no resync is happening, and there is enough space
8286 * on all devices, so we can resize.
8287 * We need to make sure resync covers any new space.
8288 * If the array is shrinking we should possibly wait until
8289 * any io in the removed space completes, but it hardly seems
8290 * worth it.
8291 */
8292 sector_t newsize;
8293 struct r5conf *conf = mddev->private;
8294
8295 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8296 return -EINVAL;
8297 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8298 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8299 if (mddev->external_size &&
8300 mddev->array_sectors > newsize)
8301 return -EINVAL;
8302 if (mddev->bitmap) {
8303 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8304 if (ret)
8305 return ret;
8306 }
8307 md_set_array_sectors(mddev, newsize);
8308 if (sectors > mddev->dev_sectors &&
8309 mddev->recovery_cp > mddev->dev_sectors) {
8310 mddev->recovery_cp = mddev->dev_sectors;
8311 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8312 }
8313 mddev->dev_sectors = sectors;
8314 mddev->resync_max_sectors = sectors;
8315 return 0;
8316}
8317
8318static int check_stripe_cache(struct mddev *mddev)
8319{
8320 /* Can only proceed if there are plenty of stripe_heads.
8321 * We need a minimum of one full stripe,, and for sensible progress
8322 * it is best to have about 4 times that.
8323 * If we require 4 times, then the default 256 4K stripe_heads will
8324 * allow for chunk sizes up to 256K, which is probably OK.
8325 * If the chunk size is greater, user-space should request more
8326 * stripe_heads first.
8327 */
8328 struct r5conf *conf = mddev->private;
8329 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8330 > conf->min_nr_stripes ||
8331 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8332 > conf->min_nr_stripes) {
8333 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8334 mdname(mddev),
8335 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8336 / RAID5_STRIPE_SIZE(conf))*4);
8337 return 0;
8338 }
8339 return 1;
8340}
8341
8342static int check_reshape(struct mddev *mddev)
8343{
8344 struct r5conf *conf = mddev->private;
8345
8346 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8347 return -EINVAL;
8348 if (mddev->delta_disks == 0 &&
8349 mddev->new_layout == mddev->layout &&
8350 mddev->new_chunk_sectors == mddev->chunk_sectors)
8351 return 0; /* nothing to do */
8352 if (has_failed(conf))
8353 return -EINVAL;
8354 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8355 /* We might be able to shrink, but the devices must
8356 * be made bigger first.
8357 * For raid6, 4 is the minimum size.
8358 * Otherwise 2 is the minimum
8359 */
8360 int min = 2;
8361 if (mddev->level == 6)
8362 min = 4;
8363 if (mddev->raid_disks + mddev->delta_disks < min)
8364 return -EINVAL;
8365 }
8366
8367 if (!check_stripe_cache(mddev))
8368 return -ENOSPC;
8369
8370 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8371 mddev->delta_disks > 0)
8372 if (resize_chunks(conf,
8373 conf->previous_raid_disks
8374 + max(0, mddev->delta_disks),
8375 max(mddev->new_chunk_sectors,
8376 mddev->chunk_sectors)
8377 ) < 0)
8378 return -ENOMEM;
8379
8380 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8381 return 0; /* never bother to shrink */
8382 return resize_stripes(conf, (conf->previous_raid_disks
8383 + mddev->delta_disks));
8384}
8385
8386static int raid5_start_reshape(struct mddev *mddev)
8387{
8388 struct r5conf *conf = mddev->private;
8389 struct md_rdev *rdev;
8390 int spares = 0;
8391 int i;
8392 unsigned long flags;
8393
8394 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8395 return -EBUSY;
8396
8397 if (!check_stripe_cache(mddev))
8398 return -ENOSPC;
8399
8400 if (has_failed(conf))
8401 return -EINVAL;
8402
8403 /* raid5 can't handle concurrent reshape and recovery */
8404 if (mddev->recovery_cp < MaxSector)
8405 return -EBUSY;
8406 for (i = 0; i < conf->raid_disks; i++)
8407 if (conf->disks[i].replacement)
8408 return -EBUSY;
8409
8410 rdev_for_each(rdev, mddev) {
8411 if (!test_bit(In_sync, &rdev->flags)
8412 && !test_bit(Faulty, &rdev->flags))
8413 spares++;
8414 }
8415
8416 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8417 /* Not enough devices even to make a degraded array
8418 * of that size
8419 */
8420 return -EINVAL;
8421
8422 /* Refuse to reduce size of the array. Any reductions in
8423 * array size must be through explicit setting of array_size
8424 * attribute.
8425 */
8426 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8427 < mddev->array_sectors) {
8428 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8429 mdname(mddev));
8430 return -EINVAL;
8431 }
8432
8433 atomic_set(&conf->reshape_stripes, 0);
8434 spin_lock_irq(&conf->device_lock);
8435 write_seqcount_begin(&conf->gen_lock);
8436 conf->previous_raid_disks = conf->raid_disks;
8437 conf->raid_disks += mddev->delta_disks;
8438 conf->prev_chunk_sectors = conf->chunk_sectors;
8439 conf->chunk_sectors = mddev->new_chunk_sectors;
8440 conf->prev_algo = conf->algorithm;
8441 conf->algorithm = mddev->new_layout;
8442 conf->generation++;
8443 /* Code that selects data_offset needs to see the generation update
8444 * if reshape_progress has been set - so a memory barrier needed.
8445 */
8446 smp_mb();
8447 if (mddev->reshape_backwards)
8448 conf->reshape_progress = raid5_size(mddev, 0, 0);
8449 else
8450 conf->reshape_progress = 0;
8451 conf->reshape_safe = conf->reshape_progress;
8452 write_seqcount_end(&conf->gen_lock);
8453 spin_unlock_irq(&conf->device_lock);
8454
8455 /* Now make sure any requests that proceeded on the assumption
8456 * the reshape wasn't running - like Discard or Read - have
8457 * completed.
8458 */
8459 raid5_quiesce(mddev, true);
8460 raid5_quiesce(mddev, false);
8461
8462 /* Add some new drives, as many as will fit.
8463 * We know there are enough to make the newly sized array work.
8464 * Don't add devices if we are reducing the number of
8465 * devices in the array. This is because it is not possible
8466 * to correctly record the "partially reconstructed" state of
8467 * such devices during the reshape and confusion could result.
8468 */
8469 if (mddev->delta_disks >= 0) {
8470 rdev_for_each(rdev, mddev)
8471 if (rdev->raid_disk < 0 &&
8472 !test_bit(Faulty, &rdev->flags)) {
8473 if (raid5_add_disk(mddev, rdev) == 0) {
8474 if (rdev->raid_disk
8475 >= conf->previous_raid_disks)
8476 set_bit(In_sync, &rdev->flags);
8477 else
8478 rdev->recovery_offset = 0;
8479
8480 /* Failure here is OK */
8481 sysfs_link_rdev(mddev, rdev);
8482 }
8483 } else if (rdev->raid_disk >= conf->previous_raid_disks
8484 && !test_bit(Faulty, &rdev->flags)) {
8485 /* This is a spare that was manually added */
8486 set_bit(In_sync, &rdev->flags);
8487 }
8488
8489 /* When a reshape changes the number of devices,
8490 * ->degraded is measured against the larger of the
8491 * pre and post number of devices.
8492 */
8493 spin_lock_irqsave(&conf->device_lock, flags);
8494 mddev->degraded = raid5_calc_degraded(conf);
8495 spin_unlock_irqrestore(&conf->device_lock, flags);
8496 }
8497 mddev->raid_disks = conf->raid_disks;
8498 mddev->reshape_position = conf->reshape_progress;
8499 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8500
8501 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8502 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8503 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8504 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8506 conf->reshape_checkpoint = jiffies;
8507 md_new_event();
8508 return 0;
8509}
8510
8511/* This is called from the reshape thread and should make any
8512 * changes needed in 'conf'
8513 */
8514static void end_reshape(struct r5conf *conf)
8515{
8516
8517 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8518 struct md_rdev *rdev;
8519
8520 spin_lock_irq(&conf->device_lock);
8521 conf->previous_raid_disks = conf->raid_disks;
8522 md_finish_reshape(conf->mddev);
8523 smp_wmb();
8524 conf->reshape_progress = MaxSector;
8525 conf->mddev->reshape_position = MaxSector;
8526 rdev_for_each(rdev, conf->mddev)
8527 if (rdev->raid_disk >= 0 &&
8528 !test_bit(Journal, &rdev->flags) &&
8529 !test_bit(In_sync, &rdev->flags))
8530 rdev->recovery_offset = MaxSector;
8531 spin_unlock_irq(&conf->device_lock);
8532 wake_up(&conf->wait_for_overlap);
8533
8534 if (conf->mddev->queue)
8535 raid5_set_io_opt(conf);
8536 }
8537}
8538
8539/* This is called from the raid5d thread with mddev_lock held.
8540 * It makes config changes to the device.
8541 */
8542static void raid5_finish_reshape(struct mddev *mddev)
8543{
8544 struct r5conf *conf = mddev->private;
8545 struct md_rdev *rdev;
8546
8547 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8548
8549 if (mddev->delta_disks <= 0) {
8550 int d;
8551 spin_lock_irq(&conf->device_lock);
8552 mddev->degraded = raid5_calc_degraded(conf);
8553 spin_unlock_irq(&conf->device_lock);
8554 for (d = conf->raid_disks ;
8555 d < conf->raid_disks - mddev->delta_disks;
8556 d++) {
8557 rdev = conf->disks[d].rdev;
8558 if (rdev)
8559 clear_bit(In_sync, &rdev->flags);
8560 rdev = conf->disks[d].replacement;
8561 if (rdev)
8562 clear_bit(In_sync, &rdev->flags);
8563 }
8564 }
8565 mddev->layout = conf->algorithm;
8566 mddev->chunk_sectors = conf->chunk_sectors;
8567 mddev->reshape_position = MaxSector;
8568 mddev->delta_disks = 0;
8569 mddev->reshape_backwards = 0;
8570 }
8571}
8572
8573static void raid5_quiesce(struct mddev *mddev, int quiesce)
8574{
8575 struct r5conf *conf = mddev->private;
8576
8577 if (quiesce) {
8578 /* stop all writes */
8579 lock_all_device_hash_locks_irq(conf);
8580 /* '2' tells resync/reshape to pause so that all
8581 * active stripes can drain
8582 */
8583 r5c_flush_cache(conf, INT_MAX);
8584 /* need a memory barrier to make sure read_one_chunk() sees
8585 * quiesce started and reverts to slow (locked) path.
8586 */
8587 smp_store_release(&conf->quiesce, 2);
8588 wait_event_cmd(conf->wait_for_quiescent,
8589 atomic_read(&conf->active_stripes) == 0 &&
8590 atomic_read(&conf->active_aligned_reads) == 0,
8591 unlock_all_device_hash_locks_irq(conf),
8592 lock_all_device_hash_locks_irq(conf));
8593 conf->quiesce = 1;
8594 unlock_all_device_hash_locks_irq(conf);
8595 /* allow reshape to continue */
8596 wake_up(&conf->wait_for_overlap);
8597 } else {
8598 /* re-enable writes */
8599 lock_all_device_hash_locks_irq(conf);
8600 conf->quiesce = 0;
8601 wake_up(&conf->wait_for_quiescent);
8602 wake_up(&conf->wait_for_overlap);
8603 unlock_all_device_hash_locks_irq(conf);
8604 }
8605 log_quiesce(conf, quiesce);
8606}
8607
8608static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8609{
8610 struct r0conf *raid0_conf = mddev->private;
8611 sector_t sectors;
8612
8613 /* for raid0 takeover only one zone is supported */
8614 if (raid0_conf->nr_strip_zones > 1) {
8615 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8616 mdname(mddev));
8617 return ERR_PTR(-EINVAL);
8618 }
8619
8620 sectors = raid0_conf->strip_zone[0].zone_end;
8621 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8622 mddev->dev_sectors = sectors;
8623 mddev->new_level = level;
8624 mddev->new_layout = ALGORITHM_PARITY_N;
8625 mddev->new_chunk_sectors = mddev->chunk_sectors;
8626 mddev->raid_disks += 1;
8627 mddev->delta_disks = 1;
8628 /* make sure it will be not marked as dirty */
8629 mddev->recovery_cp = MaxSector;
8630
8631 return setup_conf(mddev);
8632}
8633
8634static void *raid5_takeover_raid1(struct mddev *mddev)
8635{
8636 int chunksect;
8637 void *ret;
8638
8639 if (mddev->raid_disks != 2 ||
8640 mddev->degraded > 1)
8641 return ERR_PTR(-EINVAL);
8642
8643 /* Should check if there are write-behind devices? */
8644
8645 chunksect = 64*2; /* 64K by default */
8646
8647 /* The array must be an exact multiple of chunksize */
8648 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8649 chunksect >>= 1;
8650
8651 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8652 /* array size does not allow a suitable chunk size */
8653 return ERR_PTR(-EINVAL);
8654
8655 mddev->new_level = 5;
8656 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8657 mddev->new_chunk_sectors = chunksect;
8658
8659 ret = setup_conf(mddev);
8660 if (!IS_ERR(ret))
8661 mddev_clear_unsupported_flags(mddev,
8662 UNSUPPORTED_MDDEV_FLAGS);
8663 return ret;
8664}
8665
8666static void *raid5_takeover_raid6(struct mddev *mddev)
8667{
8668 int new_layout;
8669
8670 switch (mddev->layout) {
8671 case ALGORITHM_LEFT_ASYMMETRIC_6:
8672 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8673 break;
8674 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8675 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8676 break;
8677 case ALGORITHM_LEFT_SYMMETRIC_6:
8678 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8679 break;
8680 case ALGORITHM_RIGHT_SYMMETRIC_6:
8681 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8682 break;
8683 case ALGORITHM_PARITY_0_6:
8684 new_layout = ALGORITHM_PARITY_0;
8685 break;
8686 case ALGORITHM_PARITY_N:
8687 new_layout = ALGORITHM_PARITY_N;
8688 break;
8689 default:
8690 return ERR_PTR(-EINVAL);
8691 }
8692 mddev->new_level = 5;
8693 mddev->new_layout = new_layout;
8694 mddev->delta_disks = -1;
8695 mddev->raid_disks -= 1;
8696 return setup_conf(mddev);
8697}
8698
8699static int raid5_check_reshape(struct mddev *mddev)
8700{
8701 /* For a 2-drive array, the layout and chunk size can be changed
8702 * immediately as not restriping is needed.
8703 * For larger arrays we record the new value - after validation
8704 * to be used by a reshape pass.
8705 */
8706 struct r5conf *conf = mddev->private;
8707 int new_chunk = mddev->new_chunk_sectors;
8708
8709 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8710 return -EINVAL;
8711 if (new_chunk > 0) {
8712 if (!is_power_of_2(new_chunk))
8713 return -EINVAL;
8714 if (new_chunk < (PAGE_SIZE>>9))
8715 return -EINVAL;
8716 if (mddev->array_sectors & (new_chunk-1))
8717 /* not factor of array size */
8718 return -EINVAL;
8719 }
8720
8721 /* They look valid */
8722
8723 if (mddev->raid_disks == 2) {
8724 /* can make the change immediately */
8725 if (mddev->new_layout >= 0) {
8726 conf->algorithm = mddev->new_layout;
8727 mddev->layout = mddev->new_layout;
8728 }
8729 if (new_chunk > 0) {
8730 conf->chunk_sectors = new_chunk ;
8731 mddev->chunk_sectors = new_chunk;
8732 }
8733 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8734 md_wakeup_thread(mddev->thread);
8735 }
8736 return check_reshape(mddev);
8737}
8738
8739static int raid6_check_reshape(struct mddev *mddev)
8740{
8741 int new_chunk = mddev->new_chunk_sectors;
8742
8743 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8744 return -EINVAL;
8745 if (new_chunk > 0) {
8746 if (!is_power_of_2(new_chunk))
8747 return -EINVAL;
8748 if (new_chunk < (PAGE_SIZE >> 9))
8749 return -EINVAL;
8750 if (mddev->array_sectors & (new_chunk-1))
8751 /* not factor of array size */
8752 return -EINVAL;
8753 }
8754
8755 /* They look valid */
8756 return check_reshape(mddev);
8757}
8758
8759static void *raid5_takeover(struct mddev *mddev)
8760{
8761 /* raid5 can take over:
8762 * raid0 - if there is only one strip zone - make it a raid4 layout
8763 * raid1 - if there are two drives. We need to know the chunk size
8764 * raid4 - trivial - just use a raid4 layout.
8765 * raid6 - Providing it is a *_6 layout
8766 */
8767 if (mddev->level == 0)
8768 return raid45_takeover_raid0(mddev, 5);
8769 if (mddev->level == 1)
8770 return raid5_takeover_raid1(mddev);
8771 if (mddev->level == 4) {
8772 mddev->new_layout = ALGORITHM_PARITY_N;
8773 mddev->new_level = 5;
8774 return setup_conf(mddev);
8775 }
8776 if (mddev->level == 6)
8777 return raid5_takeover_raid6(mddev);
8778
8779 return ERR_PTR(-EINVAL);
8780}
8781
8782static void *raid4_takeover(struct mddev *mddev)
8783{
8784 /* raid4 can take over:
8785 * raid0 - if there is only one strip zone
8786 * raid5 - if layout is right
8787 */
8788 if (mddev->level == 0)
8789 return raid45_takeover_raid0(mddev, 4);
8790 if (mddev->level == 5 &&
8791 mddev->layout == ALGORITHM_PARITY_N) {
8792 mddev->new_layout = 0;
8793 mddev->new_level = 4;
8794 return setup_conf(mddev);
8795 }
8796 return ERR_PTR(-EINVAL);
8797}
8798
8799static struct md_personality raid5_personality;
8800
8801static void *raid6_takeover(struct mddev *mddev)
8802{
8803 /* Currently can only take over a raid5. We map the
8804 * personality to an equivalent raid6 personality
8805 * with the Q block at the end.
8806 */
8807 int new_layout;
8808
8809 if (mddev->pers != &raid5_personality)
8810 return ERR_PTR(-EINVAL);
8811 if (mddev->degraded > 1)
8812 return ERR_PTR(-EINVAL);
8813 if (mddev->raid_disks > 253)
8814 return ERR_PTR(-EINVAL);
8815 if (mddev->raid_disks < 3)
8816 return ERR_PTR(-EINVAL);
8817
8818 switch (mddev->layout) {
8819 case ALGORITHM_LEFT_ASYMMETRIC:
8820 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8821 break;
8822 case ALGORITHM_RIGHT_ASYMMETRIC:
8823 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8824 break;
8825 case ALGORITHM_LEFT_SYMMETRIC:
8826 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8827 break;
8828 case ALGORITHM_RIGHT_SYMMETRIC:
8829 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8830 break;
8831 case ALGORITHM_PARITY_0:
8832 new_layout = ALGORITHM_PARITY_0_6;
8833 break;
8834 case ALGORITHM_PARITY_N:
8835 new_layout = ALGORITHM_PARITY_N;
8836 break;
8837 default:
8838 return ERR_PTR(-EINVAL);
8839 }
8840 mddev->new_level = 6;
8841 mddev->new_layout = new_layout;
8842 mddev->delta_disks = 1;
8843 mddev->raid_disks += 1;
8844 return setup_conf(mddev);
8845}
8846
8847static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8848{
8849 struct r5conf *conf;
8850 int err;
8851
8852 err = mddev_suspend_and_lock(mddev);
8853 if (err)
8854 return err;
8855 conf = mddev->private;
8856 if (!conf) {
8857 mddev_unlock_and_resume(mddev);
8858 return -ENODEV;
8859 }
8860
8861 if (strncmp(buf, "ppl", 3) == 0) {
8862 /* ppl only works with RAID 5 */
8863 if (!raid5_has_ppl(conf) && conf->level == 5) {
8864 err = log_init(conf, NULL, true);
8865 if (!err) {
8866 err = resize_stripes(conf, conf->pool_size);
8867 if (err)
8868 log_exit(conf);
8869 }
8870 } else
8871 err = -EINVAL;
8872 } else if (strncmp(buf, "resync", 6) == 0) {
8873 if (raid5_has_ppl(conf)) {
8874 log_exit(conf);
8875 err = resize_stripes(conf, conf->pool_size);
8876 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8877 r5l_log_disk_error(conf)) {
8878 bool journal_dev_exists = false;
8879 struct md_rdev *rdev;
8880
8881 rdev_for_each(rdev, mddev)
8882 if (test_bit(Journal, &rdev->flags)) {
8883 journal_dev_exists = true;
8884 break;
8885 }
8886
8887 if (!journal_dev_exists)
8888 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8889 else /* need remove journal device first */
8890 err = -EBUSY;
8891 } else
8892 err = -EINVAL;
8893 } else {
8894 err = -EINVAL;
8895 }
8896
8897 if (!err)
8898 md_update_sb(mddev, 1);
8899
8900 mddev_unlock_and_resume(mddev);
8901
8902 return err;
8903}
8904
8905static int raid5_start(struct mddev *mddev)
8906{
8907 struct r5conf *conf = mddev->private;
8908
8909 return r5l_start(conf->log);
8910}
8911
8912static struct md_personality raid6_personality =
8913{
8914 .name = "raid6",
8915 .level = 6,
8916 .owner = THIS_MODULE,
8917 .make_request = raid5_make_request,
8918 .run = raid5_run,
8919 .start = raid5_start,
8920 .free = raid5_free,
8921 .status = raid5_status,
8922 .error_handler = raid5_error,
8923 .hot_add_disk = raid5_add_disk,
8924 .hot_remove_disk= raid5_remove_disk,
8925 .spare_active = raid5_spare_active,
8926 .sync_request = raid5_sync_request,
8927 .resize = raid5_resize,
8928 .size = raid5_size,
8929 .check_reshape = raid6_check_reshape,
8930 .start_reshape = raid5_start_reshape,
8931 .finish_reshape = raid5_finish_reshape,
8932 .quiesce = raid5_quiesce,
8933 .takeover = raid6_takeover,
8934 .change_consistency_policy = raid5_change_consistency_policy,
8935};
8936static struct md_personality raid5_personality =
8937{
8938 .name = "raid5",
8939 .level = 5,
8940 .owner = THIS_MODULE,
8941 .make_request = raid5_make_request,
8942 .run = raid5_run,
8943 .start = raid5_start,
8944 .free = raid5_free,
8945 .status = raid5_status,
8946 .error_handler = raid5_error,
8947 .hot_add_disk = raid5_add_disk,
8948 .hot_remove_disk= raid5_remove_disk,
8949 .spare_active = raid5_spare_active,
8950 .sync_request = raid5_sync_request,
8951 .resize = raid5_resize,
8952 .size = raid5_size,
8953 .check_reshape = raid5_check_reshape,
8954 .start_reshape = raid5_start_reshape,
8955 .finish_reshape = raid5_finish_reshape,
8956 .quiesce = raid5_quiesce,
8957 .takeover = raid5_takeover,
8958 .change_consistency_policy = raid5_change_consistency_policy,
8959};
8960
8961static struct md_personality raid4_personality =
8962{
8963 .name = "raid4",
8964 .level = 4,
8965 .owner = THIS_MODULE,
8966 .make_request = raid5_make_request,
8967 .run = raid5_run,
8968 .start = raid5_start,
8969 .free = raid5_free,
8970 .status = raid5_status,
8971 .error_handler = raid5_error,
8972 .hot_add_disk = raid5_add_disk,
8973 .hot_remove_disk= raid5_remove_disk,
8974 .spare_active = raid5_spare_active,
8975 .sync_request = raid5_sync_request,
8976 .resize = raid5_resize,
8977 .size = raid5_size,
8978 .check_reshape = raid5_check_reshape,
8979 .start_reshape = raid5_start_reshape,
8980 .finish_reshape = raid5_finish_reshape,
8981 .quiesce = raid5_quiesce,
8982 .takeover = raid4_takeover,
8983 .change_consistency_policy = raid5_change_consistency_policy,
8984};
8985
8986static int __init raid5_init(void)
8987{
8988 int ret;
8989
8990 raid5_wq = alloc_workqueue("raid5wq",
8991 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8992 if (!raid5_wq)
8993 return -ENOMEM;
8994
8995 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8996 "md/raid5:prepare",
8997 raid456_cpu_up_prepare,
8998 raid456_cpu_dead);
8999 if (ret) {
9000 destroy_workqueue(raid5_wq);
9001 return ret;
9002 }
9003 register_md_personality(&raid6_personality);
9004 register_md_personality(&raid5_personality);
9005 register_md_personality(&raid4_personality);
9006 return 0;
9007}
9008
9009static void raid5_exit(void)
9010{
9011 unregister_md_personality(&raid6_personality);
9012 unregister_md_personality(&raid5_personality);
9013 unregister_md_personality(&raid4_personality);
9014 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9015 destroy_workqueue(raid5_wq);
9016}
9017
9018module_init(raid5_init);
9019module_exit(raid5_exit);
9020MODULE_LICENSE("GPL");
9021MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9022MODULE_ALIAS("md-personality-4"); /* RAID5 */
9023MODULE_ALIAS("md-raid5");
9024MODULE_ALIAS("md-raid4");
9025MODULE_ALIAS("md-level-5");
9026MODULE_ALIAS("md-level-4");
9027MODULE_ALIAS("md-personality-8"); /* RAID6 */
9028MODULE_ALIAS("md-raid6");
9029MODULE_ALIAS("md-level-6");
9030
9031/* This used to be two separate modules, they were: */
9032MODULE_ALIAS("raid5");
9033MODULE_ALIAS("raid6");
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/module.h>
51#include <linux/async.h>
52#include <linux/seq_file.h>
53#include <linux/cpu.h>
54#include <linux/slab.h>
55#include <linux/ratelimit.h>
56#include "md.h"
57#include "raid5.h"
58#include "raid0.h"
59#include "bitmap.h"
60
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
70#define BYPASS_THRESHOLD 1
71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72#define HASH_MASK (NR_HASH - 1)
73
74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
88 */
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
97
98/*
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
104 return bio->bi_phys_segments & 0xffff;
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
109 return (bio->bi_phys_segments >> 16) & 0xffff;
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130}
131
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
149
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
157{
158 int slot = *count;
159
160 if (sh->ddf_layout)
161 (*count)++;
162 if (idx == sh->pd_idx)
163 return syndrome_disks;
164 if (idx == sh->qd_idx)
165 return syndrome_disks + 1;
166 if (!sh->ddf_layout)
167 (*count)++;
168 return slot;
169}
170
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
179 bio_endio(bi, 0);
180 bi = return_bi;
181 }
182}
183
184static void print_raid5_conf (struct r5conf *conf);
185
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194{
195 if (atomic_dec_and_test(&sh->count)) {
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 if (test_bit(STRIPE_DELAYED, &sh->state) &&
200 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
201 list_add_tail(&sh->lru, &conf->delayed_list);
202 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
203 sh->bm_seq - conf->seq_write > 0)
204 list_add_tail(&sh->lru, &conf->bitmap_list);
205 else {
206 clear_bit(STRIPE_DELAYED, &sh->state);
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214 if (atomic_dec_return(&conf->preread_active_stripes)
215 < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 atomic_dec(&conf->active_stripes);
218 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
219 list_add_tail(&sh->lru, &conf->inactive_list);
220 wake_up(&conf->wait_for_stripe);
221 if (conf->retry_read_aligned)
222 md_wakeup_thread(conf->mddev->thread);
223 }
224 }
225 }
226}
227
228static void release_stripe(struct stripe_head *sh)
229{
230 struct r5conf *conf = sh->raid_conf;
231 unsigned long flags;
232
233 spin_lock_irqsave(&conf->device_lock, flags);
234 __release_stripe(conf, sh);
235 spin_unlock_irqrestore(&conf->device_lock, flags);
236}
237
238static inline void remove_hash(struct stripe_head *sh)
239{
240 pr_debug("remove_hash(), stripe %llu\n",
241 (unsigned long long)sh->sector);
242
243 hlist_del_init(&sh->hash);
244}
245
246static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
247{
248 struct hlist_head *hp = stripe_hash(conf, sh->sector);
249
250 pr_debug("insert_hash(), stripe %llu\n",
251 (unsigned long long)sh->sector);
252
253 hlist_add_head(&sh->hash, hp);
254}
255
256
257/* find an idle stripe, make sure it is unhashed, and return it. */
258static struct stripe_head *get_free_stripe(struct r5conf *conf)
259{
260 struct stripe_head *sh = NULL;
261 struct list_head *first;
262
263 if (list_empty(&conf->inactive_list))
264 goto out;
265 first = conf->inactive_list.next;
266 sh = list_entry(first, struct stripe_head, lru);
267 list_del_init(first);
268 remove_hash(sh);
269 atomic_inc(&conf->active_stripes);
270out:
271 return sh;
272}
273
274static void shrink_buffers(struct stripe_head *sh)
275{
276 struct page *p;
277 int i;
278 int num = sh->raid_conf->pool_size;
279
280 for (i = 0; i < num ; i++) {
281 p = sh->dev[i].page;
282 if (!p)
283 continue;
284 sh->dev[i].page = NULL;
285 put_page(p);
286 }
287}
288
289static int grow_buffers(struct stripe_head *sh)
290{
291 int i;
292 int num = sh->raid_conf->pool_size;
293
294 for (i = 0; i < num; i++) {
295 struct page *page;
296
297 if (!(page = alloc_page(GFP_KERNEL))) {
298 return 1;
299 }
300 sh->dev[i].page = page;
301 }
302 return 0;
303}
304
305static void raid5_build_block(struct stripe_head *sh, int i, int previous);
306static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
307 struct stripe_head *sh);
308
309static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
310{
311 struct r5conf *conf = sh->raid_conf;
312 int i;
313
314 BUG_ON(atomic_read(&sh->count) != 0);
315 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
316 BUG_ON(stripe_operations_active(sh));
317
318 pr_debug("init_stripe called, stripe %llu\n",
319 (unsigned long long)sh->sector);
320
321 remove_hash(sh);
322
323 sh->generation = conf->generation - previous;
324 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325 sh->sector = sector;
326 stripe_set_idx(sector, conf, previous, sh);
327 sh->state = 0;
328
329
330 for (i = sh->disks; i--; ) {
331 struct r5dev *dev = &sh->dev[i];
332
333 if (dev->toread || dev->read || dev->towrite || dev->written ||
334 test_bit(R5_LOCKED, &dev->flags)) {
335 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336 (unsigned long long)sh->sector, i, dev->toread,
337 dev->read, dev->towrite, dev->written,
338 test_bit(R5_LOCKED, &dev->flags));
339 WARN_ON(1);
340 }
341 dev->flags = 0;
342 raid5_build_block(sh, i, previous);
343 }
344 insert_hash(conf, sh);
345}
346
347static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
348 short generation)
349{
350 struct stripe_head *sh;
351 struct hlist_node *hn;
352
353 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355 if (sh->sector == sector && sh->generation == generation)
356 return sh;
357 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358 return NULL;
359}
360
361/*
362 * Need to check if array has failed when deciding whether to:
363 * - start an array
364 * - remove non-faulty devices
365 * - add a spare
366 * - allow a reshape
367 * This determination is simple when no reshape is happening.
368 * However if there is a reshape, we need to carefully check
369 * both the before and after sections.
370 * This is because some failed devices may only affect one
371 * of the two sections, and some non-in_sync devices may
372 * be insync in the section most affected by failed devices.
373 */
374static int calc_degraded(struct r5conf *conf)
375{
376 int degraded, degraded2;
377 int i;
378
379 rcu_read_lock();
380 degraded = 0;
381 for (i = 0; i < conf->previous_raid_disks; i++) {
382 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 if (rdev && test_bit(Faulty, &rdev->flags))
384 rdev = rcu_dereference(conf->disks[i].replacement);
385 if (!rdev || test_bit(Faulty, &rdev->flags))
386 degraded++;
387 else if (test_bit(In_sync, &rdev->flags))
388 ;
389 else
390 /* not in-sync or faulty.
391 * If the reshape increases the number of devices,
392 * this is being recovered by the reshape, so
393 * this 'previous' section is not in_sync.
394 * If the number of devices is being reduced however,
395 * the device can only be part of the array if
396 * we are reverting a reshape, so this section will
397 * be in-sync.
398 */
399 if (conf->raid_disks >= conf->previous_raid_disks)
400 degraded++;
401 }
402 rcu_read_unlock();
403 if (conf->raid_disks == conf->previous_raid_disks)
404 return degraded;
405 rcu_read_lock();
406 degraded2 = 0;
407 for (i = 0; i < conf->raid_disks; i++) {
408 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
409 if (rdev && test_bit(Faulty, &rdev->flags))
410 rdev = rcu_dereference(conf->disks[i].replacement);
411 if (!rdev || test_bit(Faulty, &rdev->flags))
412 degraded2++;
413 else if (test_bit(In_sync, &rdev->flags))
414 ;
415 else
416 /* not in-sync or faulty.
417 * If reshape increases the number of devices, this
418 * section has already been recovered, else it
419 * almost certainly hasn't.
420 */
421 if (conf->raid_disks <= conf->previous_raid_disks)
422 degraded2++;
423 }
424 rcu_read_unlock();
425 if (degraded2 > degraded)
426 return degraded2;
427 return degraded;
428}
429
430static int has_failed(struct r5conf *conf)
431{
432 int degraded;
433
434 if (conf->mddev->reshape_position == MaxSector)
435 return conf->mddev->degraded > conf->max_degraded;
436
437 degraded = calc_degraded(conf);
438 if (degraded > conf->max_degraded)
439 return 1;
440 return 0;
441}
442
443static struct stripe_head *
444get_active_stripe(struct r5conf *conf, sector_t sector,
445 int previous, int noblock, int noquiesce)
446{
447 struct stripe_head *sh;
448
449 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
450
451 spin_lock_irq(&conf->device_lock);
452
453 do {
454 wait_event_lock_irq(conf->wait_for_stripe,
455 conf->quiesce == 0 || noquiesce,
456 conf->device_lock, /* nothing */);
457 sh = __find_stripe(conf, sector, conf->generation - previous);
458 if (!sh) {
459 if (!conf->inactive_blocked)
460 sh = get_free_stripe(conf);
461 if (noblock && sh == NULL)
462 break;
463 if (!sh) {
464 conf->inactive_blocked = 1;
465 wait_event_lock_irq(conf->wait_for_stripe,
466 !list_empty(&conf->inactive_list) &&
467 (atomic_read(&conf->active_stripes)
468 < (conf->max_nr_stripes *3/4)
469 || !conf->inactive_blocked),
470 conf->device_lock,
471 );
472 conf->inactive_blocked = 0;
473 } else
474 init_stripe(sh, sector, previous);
475 } else {
476 if (atomic_read(&sh->count)) {
477 BUG_ON(!list_empty(&sh->lru)
478 && !test_bit(STRIPE_EXPANDING, &sh->state));
479 } else {
480 if (!test_bit(STRIPE_HANDLE, &sh->state))
481 atomic_inc(&conf->active_stripes);
482 if (list_empty(&sh->lru) &&
483 !test_bit(STRIPE_EXPANDING, &sh->state))
484 BUG();
485 list_del_init(&sh->lru);
486 }
487 }
488 } while (sh == NULL);
489
490 if (sh)
491 atomic_inc(&sh->count);
492
493 spin_unlock_irq(&conf->device_lock);
494 return sh;
495}
496
497/* Determine if 'data_offset' or 'new_data_offset' should be used
498 * in this stripe_head.
499 */
500static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
501{
502 sector_t progress = conf->reshape_progress;
503 /* Need a memory barrier to make sure we see the value
504 * of conf->generation, or ->data_offset that was set before
505 * reshape_progress was updated.
506 */
507 smp_rmb();
508 if (progress == MaxSector)
509 return 0;
510 if (sh->generation == conf->generation - 1)
511 return 0;
512 /* We are in a reshape, and this is a new-generation stripe,
513 * so use new_data_offset.
514 */
515 return 1;
516}
517
518static void
519raid5_end_read_request(struct bio *bi, int error);
520static void
521raid5_end_write_request(struct bio *bi, int error);
522
523static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
524{
525 struct r5conf *conf = sh->raid_conf;
526 int i, disks = sh->disks;
527
528 might_sleep();
529
530 for (i = disks; i--; ) {
531 int rw;
532 int replace_only = 0;
533 struct bio *bi, *rbi;
534 struct md_rdev *rdev, *rrdev = NULL;
535 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
536 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
537 rw = WRITE_FUA;
538 else
539 rw = WRITE;
540 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
541 rw = READ;
542 else if (test_and_clear_bit(R5_WantReplace,
543 &sh->dev[i].flags)) {
544 rw = WRITE;
545 replace_only = 1;
546 } else
547 continue;
548 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
549 rw |= REQ_SYNC;
550
551 bi = &sh->dev[i].req;
552 rbi = &sh->dev[i].rreq; /* For writing to replacement */
553
554 bi->bi_rw = rw;
555 rbi->bi_rw = rw;
556 if (rw & WRITE) {
557 bi->bi_end_io = raid5_end_write_request;
558 rbi->bi_end_io = raid5_end_write_request;
559 } else
560 bi->bi_end_io = raid5_end_read_request;
561
562 rcu_read_lock();
563 rrdev = rcu_dereference(conf->disks[i].replacement);
564 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
565 rdev = rcu_dereference(conf->disks[i].rdev);
566 if (!rdev) {
567 rdev = rrdev;
568 rrdev = NULL;
569 }
570 if (rw & WRITE) {
571 if (replace_only)
572 rdev = NULL;
573 if (rdev == rrdev)
574 /* We raced and saw duplicates */
575 rrdev = NULL;
576 } else {
577 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
578 rdev = rrdev;
579 rrdev = NULL;
580 }
581
582 if (rdev && test_bit(Faulty, &rdev->flags))
583 rdev = NULL;
584 if (rdev)
585 atomic_inc(&rdev->nr_pending);
586 if (rrdev && test_bit(Faulty, &rrdev->flags))
587 rrdev = NULL;
588 if (rrdev)
589 atomic_inc(&rrdev->nr_pending);
590 rcu_read_unlock();
591
592 /* We have already checked bad blocks for reads. Now
593 * need to check for writes. We never accept write errors
594 * on the replacement, so we don't to check rrdev.
595 */
596 while ((rw & WRITE) && rdev &&
597 test_bit(WriteErrorSeen, &rdev->flags)) {
598 sector_t first_bad;
599 int bad_sectors;
600 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
601 &first_bad, &bad_sectors);
602 if (!bad)
603 break;
604
605 if (bad < 0) {
606 set_bit(BlockedBadBlocks, &rdev->flags);
607 if (!conf->mddev->external &&
608 conf->mddev->flags) {
609 /* It is very unlikely, but we might
610 * still need to write out the
611 * bad block log - better give it
612 * a chance*/
613 md_check_recovery(conf->mddev);
614 }
615 /*
616 * Because md_wait_for_blocked_rdev
617 * will dec nr_pending, we must
618 * increment it first.
619 */
620 atomic_inc(&rdev->nr_pending);
621 md_wait_for_blocked_rdev(rdev, conf->mddev);
622 } else {
623 /* Acknowledged bad block - skip the write */
624 rdev_dec_pending(rdev, conf->mddev);
625 rdev = NULL;
626 }
627 }
628
629 if (rdev) {
630 if (s->syncing || s->expanding || s->expanded
631 || s->replacing)
632 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
633
634 set_bit(STRIPE_IO_STARTED, &sh->state);
635
636 bi->bi_bdev = rdev->bdev;
637 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
638 __func__, (unsigned long long)sh->sector,
639 bi->bi_rw, i);
640 atomic_inc(&sh->count);
641 if (use_new_offset(conf, sh))
642 bi->bi_sector = (sh->sector
643 + rdev->new_data_offset);
644 else
645 bi->bi_sector = (sh->sector
646 + rdev->data_offset);
647 bi->bi_flags = 1 << BIO_UPTODATE;
648 bi->bi_idx = 0;
649 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
650 bi->bi_io_vec[0].bv_offset = 0;
651 bi->bi_size = STRIPE_SIZE;
652 bi->bi_next = NULL;
653 if (rrdev)
654 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
655 generic_make_request(bi);
656 }
657 if (rrdev) {
658 if (s->syncing || s->expanding || s->expanded
659 || s->replacing)
660 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
661
662 set_bit(STRIPE_IO_STARTED, &sh->state);
663
664 rbi->bi_bdev = rrdev->bdev;
665 pr_debug("%s: for %llu schedule op %ld on "
666 "replacement disc %d\n",
667 __func__, (unsigned long long)sh->sector,
668 rbi->bi_rw, i);
669 atomic_inc(&sh->count);
670 if (use_new_offset(conf, sh))
671 rbi->bi_sector = (sh->sector
672 + rrdev->new_data_offset);
673 else
674 rbi->bi_sector = (sh->sector
675 + rrdev->data_offset);
676 rbi->bi_flags = 1 << BIO_UPTODATE;
677 rbi->bi_idx = 0;
678 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
679 rbi->bi_io_vec[0].bv_offset = 0;
680 rbi->bi_size = STRIPE_SIZE;
681 rbi->bi_next = NULL;
682 generic_make_request(rbi);
683 }
684 if (!rdev && !rrdev) {
685 if (rw & WRITE)
686 set_bit(STRIPE_DEGRADED, &sh->state);
687 pr_debug("skip op %ld on disc %d for sector %llu\n",
688 bi->bi_rw, i, (unsigned long long)sh->sector);
689 clear_bit(R5_LOCKED, &sh->dev[i].flags);
690 set_bit(STRIPE_HANDLE, &sh->state);
691 }
692 }
693}
694
695static struct dma_async_tx_descriptor *
696async_copy_data(int frombio, struct bio *bio, struct page *page,
697 sector_t sector, struct dma_async_tx_descriptor *tx)
698{
699 struct bio_vec *bvl;
700 struct page *bio_page;
701 int i;
702 int page_offset;
703 struct async_submit_ctl submit;
704 enum async_tx_flags flags = 0;
705
706 if (bio->bi_sector >= sector)
707 page_offset = (signed)(bio->bi_sector - sector) * 512;
708 else
709 page_offset = (signed)(sector - bio->bi_sector) * -512;
710
711 if (frombio)
712 flags |= ASYNC_TX_FENCE;
713 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
714
715 bio_for_each_segment(bvl, bio, i) {
716 int len = bvl->bv_len;
717 int clen;
718 int b_offset = 0;
719
720 if (page_offset < 0) {
721 b_offset = -page_offset;
722 page_offset += b_offset;
723 len -= b_offset;
724 }
725
726 if (len > 0 && page_offset + len > STRIPE_SIZE)
727 clen = STRIPE_SIZE - page_offset;
728 else
729 clen = len;
730
731 if (clen > 0) {
732 b_offset += bvl->bv_offset;
733 bio_page = bvl->bv_page;
734 if (frombio)
735 tx = async_memcpy(page, bio_page, page_offset,
736 b_offset, clen, &submit);
737 else
738 tx = async_memcpy(bio_page, page, b_offset,
739 page_offset, clen, &submit);
740 }
741 /* chain the operations */
742 submit.depend_tx = tx;
743
744 if (clen < len) /* hit end of page */
745 break;
746 page_offset += len;
747 }
748
749 return tx;
750}
751
752static void ops_complete_biofill(void *stripe_head_ref)
753{
754 struct stripe_head *sh = stripe_head_ref;
755 struct bio *return_bi = NULL;
756 struct r5conf *conf = sh->raid_conf;
757 int i;
758
759 pr_debug("%s: stripe %llu\n", __func__,
760 (unsigned long long)sh->sector);
761
762 /* clear completed biofills */
763 spin_lock_irq(&conf->device_lock);
764 for (i = sh->disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766
767 /* acknowledge completion of a biofill operation */
768 /* and check if we need to reply to a read request,
769 * new R5_Wantfill requests are held off until
770 * !STRIPE_BIOFILL_RUN
771 */
772 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
773 struct bio *rbi, *rbi2;
774
775 BUG_ON(!dev->read);
776 rbi = dev->read;
777 dev->read = NULL;
778 while (rbi && rbi->bi_sector <
779 dev->sector + STRIPE_SECTORS) {
780 rbi2 = r5_next_bio(rbi, dev->sector);
781 if (!raid5_dec_bi_phys_segments(rbi)) {
782 rbi->bi_next = return_bi;
783 return_bi = rbi;
784 }
785 rbi = rbi2;
786 }
787 }
788 }
789 spin_unlock_irq(&conf->device_lock);
790 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
791
792 return_io(return_bi);
793
794 set_bit(STRIPE_HANDLE, &sh->state);
795 release_stripe(sh);
796}
797
798static void ops_run_biofill(struct stripe_head *sh)
799{
800 struct dma_async_tx_descriptor *tx = NULL;
801 struct r5conf *conf = sh->raid_conf;
802 struct async_submit_ctl submit;
803 int i;
804
805 pr_debug("%s: stripe %llu\n", __func__,
806 (unsigned long long)sh->sector);
807
808 for (i = sh->disks; i--; ) {
809 struct r5dev *dev = &sh->dev[i];
810 if (test_bit(R5_Wantfill, &dev->flags)) {
811 struct bio *rbi;
812 spin_lock_irq(&conf->device_lock);
813 dev->read = rbi = dev->toread;
814 dev->toread = NULL;
815 spin_unlock_irq(&conf->device_lock);
816 while (rbi && rbi->bi_sector <
817 dev->sector + STRIPE_SECTORS) {
818 tx = async_copy_data(0, rbi, dev->page,
819 dev->sector, tx);
820 rbi = r5_next_bio(rbi, dev->sector);
821 }
822 }
823 }
824
825 atomic_inc(&sh->count);
826 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
827 async_trigger_callback(&submit);
828}
829
830static void mark_target_uptodate(struct stripe_head *sh, int target)
831{
832 struct r5dev *tgt;
833
834 if (target < 0)
835 return;
836
837 tgt = &sh->dev[target];
838 set_bit(R5_UPTODATE, &tgt->flags);
839 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
840 clear_bit(R5_Wantcompute, &tgt->flags);
841}
842
843static void ops_complete_compute(void *stripe_head_ref)
844{
845 struct stripe_head *sh = stripe_head_ref;
846
847 pr_debug("%s: stripe %llu\n", __func__,
848 (unsigned long long)sh->sector);
849
850 /* mark the computed target(s) as uptodate */
851 mark_target_uptodate(sh, sh->ops.target);
852 mark_target_uptodate(sh, sh->ops.target2);
853
854 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
855 if (sh->check_state == check_state_compute_run)
856 sh->check_state = check_state_compute_result;
857 set_bit(STRIPE_HANDLE, &sh->state);
858 release_stripe(sh);
859}
860
861/* return a pointer to the address conversion region of the scribble buffer */
862static addr_conv_t *to_addr_conv(struct stripe_head *sh,
863 struct raid5_percpu *percpu)
864{
865 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
866}
867
868static struct dma_async_tx_descriptor *
869ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
870{
871 int disks = sh->disks;
872 struct page **xor_srcs = percpu->scribble;
873 int target = sh->ops.target;
874 struct r5dev *tgt = &sh->dev[target];
875 struct page *xor_dest = tgt->page;
876 int count = 0;
877 struct dma_async_tx_descriptor *tx;
878 struct async_submit_ctl submit;
879 int i;
880
881 pr_debug("%s: stripe %llu block: %d\n",
882 __func__, (unsigned long long)sh->sector, target);
883 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884
885 for (i = disks; i--; )
886 if (i != target)
887 xor_srcs[count++] = sh->dev[i].page;
888
889 atomic_inc(&sh->count);
890
891 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
892 ops_complete_compute, sh, to_addr_conv(sh, percpu));
893 if (unlikely(count == 1))
894 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
895 else
896 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
897
898 return tx;
899}
900
901/* set_syndrome_sources - populate source buffers for gen_syndrome
902 * @srcs - (struct page *) array of size sh->disks
903 * @sh - stripe_head to parse
904 *
905 * Populates srcs in proper layout order for the stripe and returns the
906 * 'count' of sources to be used in a call to async_gen_syndrome. The P
907 * destination buffer is recorded in srcs[count] and the Q destination
908 * is recorded in srcs[count+1]].
909 */
910static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
911{
912 int disks = sh->disks;
913 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
914 int d0_idx = raid6_d0(sh);
915 int count;
916 int i;
917
918 for (i = 0; i < disks; i++)
919 srcs[i] = NULL;
920
921 count = 0;
922 i = d0_idx;
923 do {
924 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
925
926 srcs[slot] = sh->dev[i].page;
927 i = raid6_next_disk(i, disks);
928 } while (i != d0_idx);
929
930 return syndrome_disks;
931}
932
933static struct dma_async_tx_descriptor *
934ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
935{
936 int disks = sh->disks;
937 struct page **blocks = percpu->scribble;
938 int target;
939 int qd_idx = sh->qd_idx;
940 struct dma_async_tx_descriptor *tx;
941 struct async_submit_ctl submit;
942 struct r5dev *tgt;
943 struct page *dest;
944 int i;
945 int count;
946
947 if (sh->ops.target < 0)
948 target = sh->ops.target2;
949 else if (sh->ops.target2 < 0)
950 target = sh->ops.target;
951 else
952 /* we should only have one valid target */
953 BUG();
954 BUG_ON(target < 0);
955 pr_debug("%s: stripe %llu block: %d\n",
956 __func__, (unsigned long long)sh->sector, target);
957
958 tgt = &sh->dev[target];
959 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
960 dest = tgt->page;
961
962 atomic_inc(&sh->count);
963
964 if (target == qd_idx) {
965 count = set_syndrome_sources(blocks, sh);
966 blocks[count] = NULL; /* regenerating p is not necessary */
967 BUG_ON(blocks[count+1] != dest); /* q should already be set */
968 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
969 ops_complete_compute, sh,
970 to_addr_conv(sh, percpu));
971 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
972 } else {
973 /* Compute any data- or p-drive using XOR */
974 count = 0;
975 for (i = disks; i-- ; ) {
976 if (i == target || i == qd_idx)
977 continue;
978 blocks[count++] = sh->dev[i].page;
979 }
980
981 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
982 NULL, ops_complete_compute, sh,
983 to_addr_conv(sh, percpu));
984 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
985 }
986
987 return tx;
988}
989
990static struct dma_async_tx_descriptor *
991ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
992{
993 int i, count, disks = sh->disks;
994 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
995 int d0_idx = raid6_d0(sh);
996 int faila = -1, failb = -1;
997 int target = sh->ops.target;
998 int target2 = sh->ops.target2;
999 struct r5dev *tgt = &sh->dev[target];
1000 struct r5dev *tgt2 = &sh->dev[target2];
1001 struct dma_async_tx_descriptor *tx;
1002 struct page **blocks = percpu->scribble;
1003 struct async_submit_ctl submit;
1004
1005 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1006 __func__, (unsigned long long)sh->sector, target, target2);
1007 BUG_ON(target < 0 || target2 < 0);
1008 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1009 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1010
1011 /* we need to open-code set_syndrome_sources to handle the
1012 * slot number conversion for 'faila' and 'failb'
1013 */
1014 for (i = 0; i < disks ; i++)
1015 blocks[i] = NULL;
1016 count = 0;
1017 i = d0_idx;
1018 do {
1019 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1020
1021 blocks[slot] = sh->dev[i].page;
1022
1023 if (i == target)
1024 faila = slot;
1025 if (i == target2)
1026 failb = slot;
1027 i = raid6_next_disk(i, disks);
1028 } while (i != d0_idx);
1029
1030 BUG_ON(faila == failb);
1031 if (failb < faila)
1032 swap(faila, failb);
1033 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1034 __func__, (unsigned long long)sh->sector, faila, failb);
1035
1036 atomic_inc(&sh->count);
1037
1038 if (failb == syndrome_disks+1) {
1039 /* Q disk is one of the missing disks */
1040 if (faila == syndrome_disks) {
1041 /* Missing P+Q, just recompute */
1042 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1043 ops_complete_compute, sh,
1044 to_addr_conv(sh, percpu));
1045 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1046 STRIPE_SIZE, &submit);
1047 } else {
1048 struct page *dest;
1049 int data_target;
1050 int qd_idx = sh->qd_idx;
1051
1052 /* Missing D+Q: recompute D from P, then recompute Q */
1053 if (target == qd_idx)
1054 data_target = target2;
1055 else
1056 data_target = target;
1057
1058 count = 0;
1059 for (i = disks; i-- ; ) {
1060 if (i == data_target || i == qd_idx)
1061 continue;
1062 blocks[count++] = sh->dev[i].page;
1063 }
1064 dest = sh->dev[data_target].page;
1065 init_async_submit(&submit,
1066 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1067 NULL, NULL, NULL,
1068 to_addr_conv(sh, percpu));
1069 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1070 &submit);
1071
1072 count = set_syndrome_sources(blocks, sh);
1073 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1074 ops_complete_compute, sh,
1075 to_addr_conv(sh, percpu));
1076 return async_gen_syndrome(blocks, 0, count+2,
1077 STRIPE_SIZE, &submit);
1078 }
1079 } else {
1080 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1081 ops_complete_compute, sh,
1082 to_addr_conv(sh, percpu));
1083 if (failb == syndrome_disks) {
1084 /* We're missing D+P. */
1085 return async_raid6_datap_recov(syndrome_disks+2,
1086 STRIPE_SIZE, faila,
1087 blocks, &submit);
1088 } else {
1089 /* We're missing D+D. */
1090 return async_raid6_2data_recov(syndrome_disks+2,
1091 STRIPE_SIZE, faila, failb,
1092 blocks, &submit);
1093 }
1094 }
1095}
1096
1097
1098static void ops_complete_prexor(void *stripe_head_ref)
1099{
1100 struct stripe_head *sh = stripe_head_ref;
1101
1102 pr_debug("%s: stripe %llu\n", __func__,
1103 (unsigned long long)sh->sector);
1104}
1105
1106static struct dma_async_tx_descriptor *
1107ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1108 struct dma_async_tx_descriptor *tx)
1109{
1110 int disks = sh->disks;
1111 struct page **xor_srcs = percpu->scribble;
1112 int count = 0, pd_idx = sh->pd_idx, i;
1113 struct async_submit_ctl submit;
1114
1115 /* existing parity data subtracted */
1116 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1117
1118 pr_debug("%s: stripe %llu\n", __func__,
1119 (unsigned long long)sh->sector);
1120
1121 for (i = disks; i--; ) {
1122 struct r5dev *dev = &sh->dev[i];
1123 /* Only process blocks that are known to be uptodate */
1124 if (test_bit(R5_Wantdrain, &dev->flags))
1125 xor_srcs[count++] = dev->page;
1126 }
1127
1128 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1129 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1130 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1131
1132 return tx;
1133}
1134
1135static struct dma_async_tx_descriptor *
1136ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1137{
1138 int disks = sh->disks;
1139 int i;
1140
1141 pr_debug("%s: stripe %llu\n", __func__,
1142 (unsigned long long)sh->sector);
1143
1144 for (i = disks; i--; ) {
1145 struct r5dev *dev = &sh->dev[i];
1146 struct bio *chosen;
1147
1148 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1149 struct bio *wbi;
1150
1151 spin_lock_irq(&sh->raid_conf->device_lock);
1152 chosen = dev->towrite;
1153 dev->towrite = NULL;
1154 BUG_ON(dev->written);
1155 wbi = dev->written = chosen;
1156 spin_unlock_irq(&sh->raid_conf->device_lock);
1157
1158 while (wbi && wbi->bi_sector <
1159 dev->sector + STRIPE_SECTORS) {
1160 if (wbi->bi_rw & REQ_FUA)
1161 set_bit(R5_WantFUA, &dev->flags);
1162 if (wbi->bi_rw & REQ_SYNC)
1163 set_bit(R5_SyncIO, &dev->flags);
1164 tx = async_copy_data(1, wbi, dev->page,
1165 dev->sector, tx);
1166 wbi = r5_next_bio(wbi, dev->sector);
1167 }
1168 }
1169 }
1170
1171 return tx;
1172}
1173
1174static void ops_complete_reconstruct(void *stripe_head_ref)
1175{
1176 struct stripe_head *sh = stripe_head_ref;
1177 int disks = sh->disks;
1178 int pd_idx = sh->pd_idx;
1179 int qd_idx = sh->qd_idx;
1180 int i;
1181 bool fua = false, sync = false;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 for (i = disks; i--; ) {
1187 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1188 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1189 }
1190
1191 for (i = disks; i--; ) {
1192 struct r5dev *dev = &sh->dev[i];
1193
1194 if (dev->written || i == pd_idx || i == qd_idx) {
1195 set_bit(R5_UPTODATE, &dev->flags);
1196 if (fua)
1197 set_bit(R5_WantFUA, &dev->flags);
1198 if (sync)
1199 set_bit(R5_SyncIO, &dev->flags);
1200 }
1201 }
1202
1203 if (sh->reconstruct_state == reconstruct_state_drain_run)
1204 sh->reconstruct_state = reconstruct_state_drain_result;
1205 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1206 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1207 else {
1208 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1209 sh->reconstruct_state = reconstruct_state_result;
1210 }
1211
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 release_stripe(sh);
1214}
1215
1216static void
1217ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1218 struct dma_async_tx_descriptor *tx)
1219{
1220 int disks = sh->disks;
1221 struct page **xor_srcs = percpu->scribble;
1222 struct async_submit_ctl submit;
1223 int count = 0, pd_idx = sh->pd_idx, i;
1224 struct page *xor_dest;
1225 int prexor = 0;
1226 unsigned long flags;
1227
1228 pr_debug("%s: stripe %llu\n", __func__,
1229 (unsigned long long)sh->sector);
1230
1231 /* check if prexor is active which means only process blocks
1232 * that are part of a read-modify-write (written)
1233 */
1234 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1235 prexor = 1;
1236 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1237 for (i = disks; i--; ) {
1238 struct r5dev *dev = &sh->dev[i];
1239 if (dev->written)
1240 xor_srcs[count++] = dev->page;
1241 }
1242 } else {
1243 xor_dest = sh->dev[pd_idx].page;
1244 for (i = disks; i--; ) {
1245 struct r5dev *dev = &sh->dev[i];
1246 if (i != pd_idx)
1247 xor_srcs[count++] = dev->page;
1248 }
1249 }
1250
1251 /* 1/ if we prexor'd then the dest is reused as a source
1252 * 2/ if we did not prexor then we are redoing the parity
1253 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1254 * for the synchronous xor case
1255 */
1256 flags = ASYNC_TX_ACK |
1257 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1258
1259 atomic_inc(&sh->count);
1260
1261 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1262 to_addr_conv(sh, percpu));
1263 if (unlikely(count == 1))
1264 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1265 else
1266 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1267}
1268
1269static void
1270ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1271 struct dma_async_tx_descriptor *tx)
1272{
1273 struct async_submit_ctl submit;
1274 struct page **blocks = percpu->scribble;
1275 int count;
1276
1277 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1278
1279 count = set_syndrome_sources(blocks, sh);
1280
1281 atomic_inc(&sh->count);
1282
1283 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1284 sh, to_addr_conv(sh, percpu));
1285 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1286}
1287
1288static void ops_complete_check(void *stripe_head_ref)
1289{
1290 struct stripe_head *sh = stripe_head_ref;
1291
1292 pr_debug("%s: stripe %llu\n", __func__,
1293 (unsigned long long)sh->sector);
1294
1295 sh->check_state = check_state_check_result;
1296 set_bit(STRIPE_HANDLE, &sh->state);
1297 release_stripe(sh);
1298}
1299
1300static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1301{
1302 int disks = sh->disks;
1303 int pd_idx = sh->pd_idx;
1304 int qd_idx = sh->qd_idx;
1305 struct page *xor_dest;
1306 struct page **xor_srcs = percpu->scribble;
1307 struct dma_async_tx_descriptor *tx;
1308 struct async_submit_ctl submit;
1309 int count;
1310 int i;
1311
1312 pr_debug("%s: stripe %llu\n", __func__,
1313 (unsigned long long)sh->sector);
1314
1315 count = 0;
1316 xor_dest = sh->dev[pd_idx].page;
1317 xor_srcs[count++] = xor_dest;
1318 for (i = disks; i--; ) {
1319 if (i == pd_idx || i == qd_idx)
1320 continue;
1321 xor_srcs[count++] = sh->dev[i].page;
1322 }
1323
1324 init_async_submit(&submit, 0, NULL, NULL, NULL,
1325 to_addr_conv(sh, percpu));
1326 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1327 &sh->ops.zero_sum_result, &submit);
1328
1329 atomic_inc(&sh->count);
1330 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1331 tx = async_trigger_callback(&submit);
1332}
1333
1334static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1335{
1336 struct page **srcs = percpu->scribble;
1337 struct async_submit_ctl submit;
1338 int count;
1339
1340 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1341 (unsigned long long)sh->sector, checkp);
1342
1343 count = set_syndrome_sources(srcs, sh);
1344 if (!checkp)
1345 srcs[count] = NULL;
1346
1347 atomic_inc(&sh->count);
1348 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1349 sh, to_addr_conv(sh, percpu));
1350 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1351 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1352}
1353
1354static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1355{
1356 int overlap_clear = 0, i, disks = sh->disks;
1357 struct dma_async_tx_descriptor *tx = NULL;
1358 struct r5conf *conf = sh->raid_conf;
1359 int level = conf->level;
1360 struct raid5_percpu *percpu;
1361 unsigned long cpu;
1362
1363 cpu = get_cpu();
1364 percpu = per_cpu_ptr(conf->percpu, cpu);
1365 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1366 ops_run_biofill(sh);
1367 overlap_clear++;
1368 }
1369
1370 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1371 if (level < 6)
1372 tx = ops_run_compute5(sh, percpu);
1373 else {
1374 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1375 tx = ops_run_compute6_1(sh, percpu);
1376 else
1377 tx = ops_run_compute6_2(sh, percpu);
1378 }
1379 /* terminate the chain if reconstruct is not set to be run */
1380 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1381 async_tx_ack(tx);
1382 }
1383
1384 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1385 tx = ops_run_prexor(sh, percpu, tx);
1386
1387 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1388 tx = ops_run_biodrain(sh, tx);
1389 overlap_clear++;
1390 }
1391
1392 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1393 if (level < 6)
1394 ops_run_reconstruct5(sh, percpu, tx);
1395 else
1396 ops_run_reconstruct6(sh, percpu, tx);
1397 }
1398
1399 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1400 if (sh->check_state == check_state_run)
1401 ops_run_check_p(sh, percpu);
1402 else if (sh->check_state == check_state_run_q)
1403 ops_run_check_pq(sh, percpu, 0);
1404 else if (sh->check_state == check_state_run_pq)
1405 ops_run_check_pq(sh, percpu, 1);
1406 else
1407 BUG();
1408 }
1409
1410 if (overlap_clear)
1411 for (i = disks; i--; ) {
1412 struct r5dev *dev = &sh->dev[i];
1413 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1414 wake_up(&sh->raid_conf->wait_for_overlap);
1415 }
1416 put_cpu();
1417}
1418
1419#ifdef CONFIG_MULTICORE_RAID456
1420static void async_run_ops(void *param, async_cookie_t cookie)
1421{
1422 struct stripe_head *sh = param;
1423 unsigned long ops_request = sh->ops.request;
1424
1425 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1426 wake_up(&sh->ops.wait_for_ops);
1427
1428 __raid_run_ops(sh, ops_request);
1429 release_stripe(sh);
1430}
1431
1432static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1433{
1434 /* since handle_stripe can be called outside of raid5d context
1435 * we need to ensure sh->ops.request is de-staged before another
1436 * request arrives
1437 */
1438 wait_event(sh->ops.wait_for_ops,
1439 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1440 sh->ops.request = ops_request;
1441
1442 atomic_inc(&sh->count);
1443 async_schedule(async_run_ops, sh);
1444}
1445#else
1446#define raid_run_ops __raid_run_ops
1447#endif
1448
1449static int grow_one_stripe(struct r5conf *conf)
1450{
1451 struct stripe_head *sh;
1452 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1453 if (!sh)
1454 return 0;
1455
1456 sh->raid_conf = conf;
1457 #ifdef CONFIG_MULTICORE_RAID456
1458 init_waitqueue_head(&sh->ops.wait_for_ops);
1459 #endif
1460
1461 if (grow_buffers(sh)) {
1462 shrink_buffers(sh);
1463 kmem_cache_free(conf->slab_cache, sh);
1464 return 0;
1465 }
1466 /* we just created an active stripe so... */
1467 atomic_set(&sh->count, 1);
1468 atomic_inc(&conf->active_stripes);
1469 INIT_LIST_HEAD(&sh->lru);
1470 release_stripe(sh);
1471 return 1;
1472}
1473
1474static int grow_stripes(struct r5conf *conf, int num)
1475{
1476 struct kmem_cache *sc;
1477 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1478
1479 if (conf->mddev->gendisk)
1480 sprintf(conf->cache_name[0],
1481 "raid%d-%s", conf->level, mdname(conf->mddev));
1482 else
1483 sprintf(conf->cache_name[0],
1484 "raid%d-%p", conf->level, conf->mddev);
1485 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1486
1487 conf->active_name = 0;
1488 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1489 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1490 0, 0, NULL);
1491 if (!sc)
1492 return 1;
1493 conf->slab_cache = sc;
1494 conf->pool_size = devs;
1495 while (num--)
1496 if (!grow_one_stripe(conf))
1497 return 1;
1498 return 0;
1499}
1500
1501/**
1502 * scribble_len - return the required size of the scribble region
1503 * @num - total number of disks in the array
1504 *
1505 * The size must be enough to contain:
1506 * 1/ a struct page pointer for each device in the array +2
1507 * 2/ room to convert each entry in (1) to its corresponding dma
1508 * (dma_map_page()) or page (page_address()) address.
1509 *
1510 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1511 * calculate over all devices (not just the data blocks), using zeros in place
1512 * of the P and Q blocks.
1513 */
1514static size_t scribble_len(int num)
1515{
1516 size_t len;
1517
1518 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1519
1520 return len;
1521}
1522
1523static int resize_stripes(struct r5conf *conf, int newsize)
1524{
1525 /* Make all the stripes able to hold 'newsize' devices.
1526 * New slots in each stripe get 'page' set to a new page.
1527 *
1528 * This happens in stages:
1529 * 1/ create a new kmem_cache and allocate the required number of
1530 * stripe_heads.
1531 * 2/ gather all the old stripe_heads and tranfer the pages across
1532 * to the new stripe_heads. This will have the side effect of
1533 * freezing the array as once all stripe_heads have been collected,
1534 * no IO will be possible. Old stripe heads are freed once their
1535 * pages have been transferred over, and the old kmem_cache is
1536 * freed when all stripes are done.
1537 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1538 * we simple return a failre status - no need to clean anything up.
1539 * 4/ allocate new pages for the new slots in the new stripe_heads.
1540 * If this fails, we don't bother trying the shrink the
1541 * stripe_heads down again, we just leave them as they are.
1542 * As each stripe_head is processed the new one is released into
1543 * active service.
1544 *
1545 * Once step2 is started, we cannot afford to wait for a write,
1546 * so we use GFP_NOIO allocations.
1547 */
1548 struct stripe_head *osh, *nsh;
1549 LIST_HEAD(newstripes);
1550 struct disk_info *ndisks;
1551 unsigned long cpu;
1552 int err;
1553 struct kmem_cache *sc;
1554 int i;
1555
1556 if (newsize <= conf->pool_size)
1557 return 0; /* never bother to shrink */
1558
1559 err = md_allow_write(conf->mddev);
1560 if (err)
1561 return err;
1562
1563 /* Step 1 */
1564 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1565 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1566 0, 0, NULL);
1567 if (!sc)
1568 return -ENOMEM;
1569
1570 for (i = conf->max_nr_stripes; i; i--) {
1571 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1572 if (!nsh)
1573 break;
1574
1575 nsh->raid_conf = conf;
1576 #ifdef CONFIG_MULTICORE_RAID456
1577 init_waitqueue_head(&nsh->ops.wait_for_ops);
1578 #endif
1579
1580 list_add(&nsh->lru, &newstripes);
1581 }
1582 if (i) {
1583 /* didn't get enough, give up */
1584 while (!list_empty(&newstripes)) {
1585 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1586 list_del(&nsh->lru);
1587 kmem_cache_free(sc, nsh);
1588 }
1589 kmem_cache_destroy(sc);
1590 return -ENOMEM;
1591 }
1592 /* Step 2 - Must use GFP_NOIO now.
1593 * OK, we have enough stripes, start collecting inactive
1594 * stripes and copying them over
1595 */
1596 list_for_each_entry(nsh, &newstripes, lru) {
1597 spin_lock_irq(&conf->device_lock);
1598 wait_event_lock_irq(conf->wait_for_stripe,
1599 !list_empty(&conf->inactive_list),
1600 conf->device_lock,
1601 );
1602 osh = get_free_stripe(conf);
1603 spin_unlock_irq(&conf->device_lock);
1604 atomic_set(&nsh->count, 1);
1605 for(i=0; i<conf->pool_size; i++)
1606 nsh->dev[i].page = osh->dev[i].page;
1607 for( ; i<newsize; i++)
1608 nsh->dev[i].page = NULL;
1609 kmem_cache_free(conf->slab_cache, osh);
1610 }
1611 kmem_cache_destroy(conf->slab_cache);
1612
1613 /* Step 3.
1614 * At this point, we are holding all the stripes so the array
1615 * is completely stalled, so now is a good time to resize
1616 * conf->disks and the scribble region
1617 */
1618 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1619 if (ndisks) {
1620 for (i=0; i<conf->raid_disks; i++)
1621 ndisks[i] = conf->disks[i];
1622 kfree(conf->disks);
1623 conf->disks = ndisks;
1624 } else
1625 err = -ENOMEM;
1626
1627 get_online_cpus();
1628 conf->scribble_len = scribble_len(newsize);
1629 for_each_present_cpu(cpu) {
1630 struct raid5_percpu *percpu;
1631 void *scribble;
1632
1633 percpu = per_cpu_ptr(conf->percpu, cpu);
1634 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1635
1636 if (scribble) {
1637 kfree(percpu->scribble);
1638 percpu->scribble = scribble;
1639 } else {
1640 err = -ENOMEM;
1641 break;
1642 }
1643 }
1644 put_online_cpus();
1645
1646 /* Step 4, return new stripes to service */
1647 while(!list_empty(&newstripes)) {
1648 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1649 list_del_init(&nsh->lru);
1650
1651 for (i=conf->raid_disks; i < newsize; i++)
1652 if (nsh->dev[i].page == NULL) {
1653 struct page *p = alloc_page(GFP_NOIO);
1654 nsh->dev[i].page = p;
1655 if (!p)
1656 err = -ENOMEM;
1657 }
1658 release_stripe(nsh);
1659 }
1660 /* critical section pass, GFP_NOIO no longer needed */
1661
1662 conf->slab_cache = sc;
1663 conf->active_name = 1-conf->active_name;
1664 conf->pool_size = newsize;
1665 return err;
1666}
1667
1668static int drop_one_stripe(struct r5conf *conf)
1669{
1670 struct stripe_head *sh;
1671
1672 spin_lock_irq(&conf->device_lock);
1673 sh = get_free_stripe(conf);
1674 spin_unlock_irq(&conf->device_lock);
1675 if (!sh)
1676 return 0;
1677 BUG_ON(atomic_read(&sh->count));
1678 shrink_buffers(sh);
1679 kmem_cache_free(conf->slab_cache, sh);
1680 atomic_dec(&conf->active_stripes);
1681 return 1;
1682}
1683
1684static void shrink_stripes(struct r5conf *conf)
1685{
1686 while (drop_one_stripe(conf))
1687 ;
1688
1689 if (conf->slab_cache)
1690 kmem_cache_destroy(conf->slab_cache);
1691 conf->slab_cache = NULL;
1692}
1693
1694static void raid5_end_read_request(struct bio * bi, int error)
1695{
1696 struct stripe_head *sh = bi->bi_private;
1697 struct r5conf *conf = sh->raid_conf;
1698 int disks = sh->disks, i;
1699 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1700 char b[BDEVNAME_SIZE];
1701 struct md_rdev *rdev = NULL;
1702 sector_t s;
1703
1704 for (i=0 ; i<disks; i++)
1705 if (bi == &sh->dev[i].req)
1706 break;
1707
1708 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1709 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1710 uptodate);
1711 if (i == disks) {
1712 BUG();
1713 return;
1714 }
1715 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1716 /* If replacement finished while this request was outstanding,
1717 * 'replacement' might be NULL already.
1718 * In that case it moved down to 'rdev'.
1719 * rdev is not removed until all requests are finished.
1720 */
1721 rdev = conf->disks[i].replacement;
1722 if (!rdev)
1723 rdev = conf->disks[i].rdev;
1724
1725 if (use_new_offset(conf, sh))
1726 s = sh->sector + rdev->new_data_offset;
1727 else
1728 s = sh->sector + rdev->data_offset;
1729 if (uptodate) {
1730 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1731 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1732 /* Note that this cannot happen on a
1733 * replacement device. We just fail those on
1734 * any error
1735 */
1736 printk_ratelimited(
1737 KERN_INFO
1738 "md/raid:%s: read error corrected"
1739 " (%lu sectors at %llu on %s)\n",
1740 mdname(conf->mddev), STRIPE_SECTORS,
1741 (unsigned long long)s,
1742 bdevname(rdev->bdev, b));
1743 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1744 clear_bit(R5_ReadError, &sh->dev[i].flags);
1745 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1746 }
1747 if (atomic_read(&rdev->read_errors))
1748 atomic_set(&rdev->read_errors, 0);
1749 } else {
1750 const char *bdn = bdevname(rdev->bdev, b);
1751 int retry = 0;
1752 int set_bad = 0;
1753
1754 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1755 atomic_inc(&rdev->read_errors);
1756 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1757 printk_ratelimited(
1758 KERN_WARNING
1759 "md/raid:%s: read error on replacement device "
1760 "(sector %llu on %s).\n",
1761 mdname(conf->mddev),
1762 (unsigned long long)s,
1763 bdn);
1764 else if (conf->mddev->degraded >= conf->max_degraded) {
1765 set_bad = 1;
1766 printk_ratelimited(
1767 KERN_WARNING
1768 "md/raid:%s: read error not correctable "
1769 "(sector %llu on %s).\n",
1770 mdname(conf->mddev),
1771 (unsigned long long)s,
1772 bdn);
1773 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1774 /* Oh, no!!! */
1775 set_bad = 1;
1776 printk_ratelimited(
1777 KERN_WARNING
1778 "md/raid:%s: read error NOT corrected!! "
1779 "(sector %llu on %s).\n",
1780 mdname(conf->mddev),
1781 (unsigned long long)s,
1782 bdn);
1783 } else if (atomic_read(&rdev->read_errors)
1784 > conf->max_nr_stripes)
1785 printk(KERN_WARNING
1786 "md/raid:%s: Too many read errors, failing device %s.\n",
1787 mdname(conf->mddev), bdn);
1788 else
1789 retry = 1;
1790 if (retry)
1791 set_bit(R5_ReadError, &sh->dev[i].flags);
1792 else {
1793 clear_bit(R5_ReadError, &sh->dev[i].flags);
1794 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795 if (!(set_bad
1796 && test_bit(In_sync, &rdev->flags)
1797 && rdev_set_badblocks(
1798 rdev, sh->sector, STRIPE_SECTORS, 0)))
1799 md_error(conf->mddev, rdev);
1800 }
1801 }
1802 rdev_dec_pending(rdev, conf->mddev);
1803 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1804 set_bit(STRIPE_HANDLE, &sh->state);
1805 release_stripe(sh);
1806}
1807
1808static void raid5_end_write_request(struct bio *bi, int error)
1809{
1810 struct stripe_head *sh = bi->bi_private;
1811 struct r5conf *conf = sh->raid_conf;
1812 int disks = sh->disks, i;
1813 struct md_rdev *uninitialized_var(rdev);
1814 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1815 sector_t first_bad;
1816 int bad_sectors;
1817 int replacement = 0;
1818
1819 for (i = 0 ; i < disks; i++) {
1820 if (bi == &sh->dev[i].req) {
1821 rdev = conf->disks[i].rdev;
1822 break;
1823 }
1824 if (bi == &sh->dev[i].rreq) {
1825 rdev = conf->disks[i].replacement;
1826 if (rdev)
1827 replacement = 1;
1828 else
1829 /* rdev was removed and 'replacement'
1830 * replaced it. rdev is not removed
1831 * until all requests are finished.
1832 */
1833 rdev = conf->disks[i].rdev;
1834 break;
1835 }
1836 }
1837 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1838 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1839 uptodate);
1840 if (i == disks) {
1841 BUG();
1842 return;
1843 }
1844
1845 if (replacement) {
1846 if (!uptodate)
1847 md_error(conf->mddev, rdev);
1848 else if (is_badblock(rdev, sh->sector,
1849 STRIPE_SECTORS,
1850 &first_bad, &bad_sectors))
1851 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1852 } else {
1853 if (!uptodate) {
1854 set_bit(WriteErrorSeen, &rdev->flags);
1855 set_bit(R5_WriteError, &sh->dev[i].flags);
1856 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1857 set_bit(MD_RECOVERY_NEEDED,
1858 &rdev->mddev->recovery);
1859 } else if (is_badblock(rdev, sh->sector,
1860 STRIPE_SECTORS,
1861 &first_bad, &bad_sectors))
1862 set_bit(R5_MadeGood, &sh->dev[i].flags);
1863 }
1864 rdev_dec_pending(rdev, conf->mddev);
1865
1866 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1867 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1868 set_bit(STRIPE_HANDLE, &sh->state);
1869 release_stripe(sh);
1870}
1871
1872static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1873
1874static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1875{
1876 struct r5dev *dev = &sh->dev[i];
1877
1878 bio_init(&dev->req);
1879 dev->req.bi_io_vec = &dev->vec;
1880 dev->req.bi_vcnt++;
1881 dev->req.bi_max_vecs++;
1882 dev->req.bi_private = sh;
1883 dev->vec.bv_page = dev->page;
1884
1885 bio_init(&dev->rreq);
1886 dev->rreq.bi_io_vec = &dev->rvec;
1887 dev->rreq.bi_vcnt++;
1888 dev->rreq.bi_max_vecs++;
1889 dev->rreq.bi_private = sh;
1890 dev->rvec.bv_page = dev->page;
1891
1892 dev->flags = 0;
1893 dev->sector = compute_blocknr(sh, i, previous);
1894}
1895
1896static void error(struct mddev *mddev, struct md_rdev *rdev)
1897{
1898 char b[BDEVNAME_SIZE];
1899 struct r5conf *conf = mddev->private;
1900 unsigned long flags;
1901 pr_debug("raid456: error called\n");
1902
1903 spin_lock_irqsave(&conf->device_lock, flags);
1904 clear_bit(In_sync, &rdev->flags);
1905 mddev->degraded = calc_degraded(conf);
1906 spin_unlock_irqrestore(&conf->device_lock, flags);
1907 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1908
1909 set_bit(Blocked, &rdev->flags);
1910 set_bit(Faulty, &rdev->flags);
1911 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1912 printk(KERN_ALERT
1913 "md/raid:%s: Disk failure on %s, disabling device.\n"
1914 "md/raid:%s: Operation continuing on %d devices.\n",
1915 mdname(mddev),
1916 bdevname(rdev->bdev, b),
1917 mdname(mddev),
1918 conf->raid_disks - mddev->degraded);
1919}
1920
1921/*
1922 * Input: a 'big' sector number,
1923 * Output: index of the data and parity disk, and the sector # in them.
1924 */
1925static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1926 int previous, int *dd_idx,
1927 struct stripe_head *sh)
1928{
1929 sector_t stripe, stripe2;
1930 sector_t chunk_number;
1931 unsigned int chunk_offset;
1932 int pd_idx, qd_idx;
1933 int ddf_layout = 0;
1934 sector_t new_sector;
1935 int algorithm = previous ? conf->prev_algo
1936 : conf->algorithm;
1937 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938 : conf->chunk_sectors;
1939 int raid_disks = previous ? conf->previous_raid_disks
1940 : conf->raid_disks;
1941 int data_disks = raid_disks - conf->max_degraded;
1942
1943 /* First compute the information on this sector */
1944
1945 /*
1946 * Compute the chunk number and the sector offset inside the chunk
1947 */
1948 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1949 chunk_number = r_sector;
1950
1951 /*
1952 * Compute the stripe number
1953 */
1954 stripe = chunk_number;
1955 *dd_idx = sector_div(stripe, data_disks);
1956 stripe2 = stripe;
1957 /*
1958 * Select the parity disk based on the user selected algorithm.
1959 */
1960 pd_idx = qd_idx = -1;
1961 switch(conf->level) {
1962 case 4:
1963 pd_idx = data_disks;
1964 break;
1965 case 5:
1966 switch (algorithm) {
1967 case ALGORITHM_LEFT_ASYMMETRIC:
1968 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1969 if (*dd_idx >= pd_idx)
1970 (*dd_idx)++;
1971 break;
1972 case ALGORITHM_RIGHT_ASYMMETRIC:
1973 pd_idx = sector_div(stripe2, raid_disks);
1974 if (*dd_idx >= pd_idx)
1975 (*dd_idx)++;
1976 break;
1977 case ALGORITHM_LEFT_SYMMETRIC:
1978 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1979 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1980 break;
1981 case ALGORITHM_RIGHT_SYMMETRIC:
1982 pd_idx = sector_div(stripe2, raid_disks);
1983 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1984 break;
1985 case ALGORITHM_PARITY_0:
1986 pd_idx = 0;
1987 (*dd_idx)++;
1988 break;
1989 case ALGORITHM_PARITY_N:
1990 pd_idx = data_disks;
1991 break;
1992 default:
1993 BUG();
1994 }
1995 break;
1996 case 6:
1997
1998 switch (algorithm) {
1999 case ALGORITHM_LEFT_ASYMMETRIC:
2000 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2001 qd_idx = pd_idx + 1;
2002 if (pd_idx == raid_disks-1) {
2003 (*dd_idx)++; /* Q D D D P */
2004 qd_idx = 0;
2005 } else if (*dd_idx >= pd_idx)
2006 (*dd_idx) += 2; /* D D P Q D */
2007 break;
2008 case ALGORITHM_RIGHT_ASYMMETRIC:
2009 pd_idx = sector_div(stripe2, raid_disks);
2010 qd_idx = pd_idx + 1;
2011 if (pd_idx == raid_disks-1) {
2012 (*dd_idx)++; /* Q D D D P */
2013 qd_idx = 0;
2014 } else if (*dd_idx >= pd_idx)
2015 (*dd_idx) += 2; /* D D P Q D */
2016 break;
2017 case ALGORITHM_LEFT_SYMMETRIC:
2018 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2019 qd_idx = (pd_idx + 1) % raid_disks;
2020 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2021 break;
2022 case ALGORITHM_RIGHT_SYMMETRIC:
2023 pd_idx = sector_div(stripe2, raid_disks);
2024 qd_idx = (pd_idx + 1) % raid_disks;
2025 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2026 break;
2027
2028 case ALGORITHM_PARITY_0:
2029 pd_idx = 0;
2030 qd_idx = 1;
2031 (*dd_idx) += 2;
2032 break;
2033 case ALGORITHM_PARITY_N:
2034 pd_idx = data_disks;
2035 qd_idx = data_disks + 1;
2036 break;
2037
2038 case ALGORITHM_ROTATING_ZERO_RESTART:
2039 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2040 * of blocks for computing Q is different.
2041 */
2042 pd_idx = sector_div(stripe2, raid_disks);
2043 qd_idx = pd_idx + 1;
2044 if (pd_idx == raid_disks-1) {
2045 (*dd_idx)++; /* Q D D D P */
2046 qd_idx = 0;
2047 } else if (*dd_idx >= pd_idx)
2048 (*dd_idx) += 2; /* D D P Q D */
2049 ddf_layout = 1;
2050 break;
2051
2052 case ALGORITHM_ROTATING_N_RESTART:
2053 /* Same a left_asymmetric, by first stripe is
2054 * D D D P Q rather than
2055 * Q D D D P
2056 */
2057 stripe2 += 1;
2058 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2059 qd_idx = pd_idx + 1;
2060 if (pd_idx == raid_disks-1) {
2061 (*dd_idx)++; /* Q D D D P */
2062 qd_idx = 0;
2063 } else if (*dd_idx >= pd_idx)
2064 (*dd_idx) += 2; /* D D P Q D */
2065 ddf_layout = 1;
2066 break;
2067
2068 case ALGORITHM_ROTATING_N_CONTINUE:
2069 /* Same as left_symmetric but Q is before P */
2070 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2071 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2072 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2073 ddf_layout = 1;
2074 break;
2075
2076 case ALGORITHM_LEFT_ASYMMETRIC_6:
2077 /* RAID5 left_asymmetric, with Q on last device */
2078 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2079 if (*dd_idx >= pd_idx)
2080 (*dd_idx)++;
2081 qd_idx = raid_disks - 1;
2082 break;
2083
2084 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2085 pd_idx = sector_div(stripe2, raid_disks-1);
2086 if (*dd_idx >= pd_idx)
2087 (*dd_idx)++;
2088 qd_idx = raid_disks - 1;
2089 break;
2090
2091 case ALGORITHM_LEFT_SYMMETRIC_6:
2092 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2093 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2094 qd_idx = raid_disks - 1;
2095 break;
2096
2097 case ALGORITHM_RIGHT_SYMMETRIC_6:
2098 pd_idx = sector_div(stripe2, raid_disks-1);
2099 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2100 qd_idx = raid_disks - 1;
2101 break;
2102
2103 case ALGORITHM_PARITY_0_6:
2104 pd_idx = 0;
2105 (*dd_idx)++;
2106 qd_idx = raid_disks - 1;
2107 break;
2108
2109 default:
2110 BUG();
2111 }
2112 break;
2113 }
2114
2115 if (sh) {
2116 sh->pd_idx = pd_idx;
2117 sh->qd_idx = qd_idx;
2118 sh->ddf_layout = ddf_layout;
2119 }
2120 /*
2121 * Finally, compute the new sector number
2122 */
2123 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2124 return new_sector;
2125}
2126
2127
2128static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2129{
2130 struct r5conf *conf = sh->raid_conf;
2131 int raid_disks = sh->disks;
2132 int data_disks = raid_disks - conf->max_degraded;
2133 sector_t new_sector = sh->sector, check;
2134 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2135 : conf->chunk_sectors;
2136 int algorithm = previous ? conf->prev_algo
2137 : conf->algorithm;
2138 sector_t stripe;
2139 int chunk_offset;
2140 sector_t chunk_number;
2141 int dummy1, dd_idx = i;
2142 sector_t r_sector;
2143 struct stripe_head sh2;
2144
2145
2146 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2147 stripe = new_sector;
2148
2149 if (i == sh->pd_idx)
2150 return 0;
2151 switch(conf->level) {
2152 case 4: break;
2153 case 5:
2154 switch (algorithm) {
2155 case ALGORITHM_LEFT_ASYMMETRIC:
2156 case ALGORITHM_RIGHT_ASYMMETRIC:
2157 if (i > sh->pd_idx)
2158 i--;
2159 break;
2160 case ALGORITHM_LEFT_SYMMETRIC:
2161 case ALGORITHM_RIGHT_SYMMETRIC:
2162 if (i < sh->pd_idx)
2163 i += raid_disks;
2164 i -= (sh->pd_idx + 1);
2165 break;
2166 case ALGORITHM_PARITY_0:
2167 i -= 1;
2168 break;
2169 case ALGORITHM_PARITY_N:
2170 break;
2171 default:
2172 BUG();
2173 }
2174 break;
2175 case 6:
2176 if (i == sh->qd_idx)
2177 return 0; /* It is the Q disk */
2178 switch (algorithm) {
2179 case ALGORITHM_LEFT_ASYMMETRIC:
2180 case ALGORITHM_RIGHT_ASYMMETRIC:
2181 case ALGORITHM_ROTATING_ZERO_RESTART:
2182 case ALGORITHM_ROTATING_N_RESTART:
2183 if (sh->pd_idx == raid_disks-1)
2184 i--; /* Q D D D P */
2185 else if (i > sh->pd_idx)
2186 i -= 2; /* D D P Q D */
2187 break;
2188 case ALGORITHM_LEFT_SYMMETRIC:
2189 case ALGORITHM_RIGHT_SYMMETRIC:
2190 if (sh->pd_idx == raid_disks-1)
2191 i--; /* Q D D D P */
2192 else {
2193 /* D D P Q D */
2194 if (i < sh->pd_idx)
2195 i += raid_disks;
2196 i -= (sh->pd_idx + 2);
2197 }
2198 break;
2199 case ALGORITHM_PARITY_0:
2200 i -= 2;
2201 break;
2202 case ALGORITHM_PARITY_N:
2203 break;
2204 case ALGORITHM_ROTATING_N_CONTINUE:
2205 /* Like left_symmetric, but P is before Q */
2206 if (sh->pd_idx == 0)
2207 i--; /* P D D D Q */
2208 else {
2209 /* D D Q P D */
2210 if (i < sh->pd_idx)
2211 i += raid_disks;
2212 i -= (sh->pd_idx + 1);
2213 }
2214 break;
2215 case ALGORITHM_LEFT_ASYMMETRIC_6:
2216 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2217 if (i > sh->pd_idx)
2218 i--;
2219 break;
2220 case ALGORITHM_LEFT_SYMMETRIC_6:
2221 case ALGORITHM_RIGHT_SYMMETRIC_6:
2222 if (i < sh->pd_idx)
2223 i += data_disks + 1;
2224 i -= (sh->pd_idx + 1);
2225 break;
2226 case ALGORITHM_PARITY_0_6:
2227 i -= 1;
2228 break;
2229 default:
2230 BUG();
2231 }
2232 break;
2233 }
2234
2235 chunk_number = stripe * data_disks + i;
2236 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2237
2238 check = raid5_compute_sector(conf, r_sector,
2239 previous, &dummy1, &sh2);
2240 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2241 || sh2.qd_idx != sh->qd_idx) {
2242 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2243 mdname(conf->mddev));
2244 return 0;
2245 }
2246 return r_sector;
2247}
2248
2249
2250static void
2251schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2252 int rcw, int expand)
2253{
2254 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2255 struct r5conf *conf = sh->raid_conf;
2256 int level = conf->level;
2257
2258 if (rcw) {
2259 /* if we are not expanding this is a proper write request, and
2260 * there will be bios with new data to be drained into the
2261 * stripe cache
2262 */
2263 if (!expand) {
2264 sh->reconstruct_state = reconstruct_state_drain_run;
2265 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2266 } else
2267 sh->reconstruct_state = reconstruct_state_run;
2268
2269 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2270
2271 for (i = disks; i--; ) {
2272 struct r5dev *dev = &sh->dev[i];
2273
2274 if (dev->towrite) {
2275 set_bit(R5_LOCKED, &dev->flags);
2276 set_bit(R5_Wantdrain, &dev->flags);
2277 if (!expand)
2278 clear_bit(R5_UPTODATE, &dev->flags);
2279 s->locked++;
2280 }
2281 }
2282 if (s->locked + conf->max_degraded == disks)
2283 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2284 atomic_inc(&conf->pending_full_writes);
2285 } else {
2286 BUG_ON(level == 6);
2287 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2288 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2289
2290 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2291 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2292 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2293 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2294
2295 for (i = disks; i--; ) {
2296 struct r5dev *dev = &sh->dev[i];
2297 if (i == pd_idx)
2298 continue;
2299
2300 if (dev->towrite &&
2301 (test_bit(R5_UPTODATE, &dev->flags) ||
2302 test_bit(R5_Wantcompute, &dev->flags))) {
2303 set_bit(R5_Wantdrain, &dev->flags);
2304 set_bit(R5_LOCKED, &dev->flags);
2305 clear_bit(R5_UPTODATE, &dev->flags);
2306 s->locked++;
2307 }
2308 }
2309 }
2310
2311 /* keep the parity disk(s) locked while asynchronous operations
2312 * are in flight
2313 */
2314 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2315 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2316 s->locked++;
2317
2318 if (level == 6) {
2319 int qd_idx = sh->qd_idx;
2320 struct r5dev *dev = &sh->dev[qd_idx];
2321
2322 set_bit(R5_LOCKED, &dev->flags);
2323 clear_bit(R5_UPTODATE, &dev->flags);
2324 s->locked++;
2325 }
2326
2327 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2328 __func__, (unsigned long long)sh->sector,
2329 s->locked, s->ops_request);
2330}
2331
2332/*
2333 * Each stripe/dev can have one or more bion attached.
2334 * toread/towrite point to the first in a chain.
2335 * The bi_next chain must be in order.
2336 */
2337static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2338{
2339 struct bio **bip;
2340 struct r5conf *conf = sh->raid_conf;
2341 int firstwrite=0;
2342
2343 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2344 (unsigned long long)bi->bi_sector,
2345 (unsigned long long)sh->sector);
2346
2347
2348 spin_lock_irq(&conf->device_lock);
2349 if (forwrite) {
2350 bip = &sh->dev[dd_idx].towrite;
2351 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2352 firstwrite = 1;
2353 } else
2354 bip = &sh->dev[dd_idx].toread;
2355 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2356 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2357 goto overlap;
2358 bip = & (*bip)->bi_next;
2359 }
2360 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2361 goto overlap;
2362
2363 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2364 if (*bip)
2365 bi->bi_next = *bip;
2366 *bip = bi;
2367 bi->bi_phys_segments++;
2368
2369 if (forwrite) {
2370 /* check if page is covered */
2371 sector_t sector = sh->dev[dd_idx].sector;
2372 for (bi=sh->dev[dd_idx].towrite;
2373 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2374 bi && bi->bi_sector <= sector;
2375 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2376 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2377 sector = bi->bi_sector + (bi->bi_size>>9);
2378 }
2379 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2380 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2381 }
2382 spin_unlock_irq(&conf->device_lock);
2383
2384 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2385 (unsigned long long)(*bip)->bi_sector,
2386 (unsigned long long)sh->sector, dd_idx);
2387
2388 if (conf->mddev->bitmap && firstwrite) {
2389 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2390 STRIPE_SECTORS, 0);
2391 sh->bm_seq = conf->seq_flush+1;
2392 set_bit(STRIPE_BIT_DELAY, &sh->state);
2393 }
2394 return 1;
2395
2396 overlap:
2397 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2398 spin_unlock_irq(&conf->device_lock);
2399 return 0;
2400}
2401
2402static void end_reshape(struct r5conf *conf);
2403
2404static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2405 struct stripe_head *sh)
2406{
2407 int sectors_per_chunk =
2408 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2409 int dd_idx;
2410 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2411 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2412
2413 raid5_compute_sector(conf,
2414 stripe * (disks - conf->max_degraded)
2415 *sectors_per_chunk + chunk_offset,
2416 previous,
2417 &dd_idx, sh);
2418}
2419
2420static void
2421handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2422 struct stripe_head_state *s, int disks,
2423 struct bio **return_bi)
2424{
2425 int i;
2426 for (i = disks; i--; ) {
2427 struct bio *bi;
2428 int bitmap_end = 0;
2429
2430 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2431 struct md_rdev *rdev;
2432 rcu_read_lock();
2433 rdev = rcu_dereference(conf->disks[i].rdev);
2434 if (rdev && test_bit(In_sync, &rdev->flags))
2435 atomic_inc(&rdev->nr_pending);
2436 else
2437 rdev = NULL;
2438 rcu_read_unlock();
2439 if (rdev) {
2440 if (!rdev_set_badblocks(
2441 rdev,
2442 sh->sector,
2443 STRIPE_SECTORS, 0))
2444 md_error(conf->mddev, rdev);
2445 rdev_dec_pending(rdev, conf->mddev);
2446 }
2447 }
2448 spin_lock_irq(&conf->device_lock);
2449 /* fail all writes first */
2450 bi = sh->dev[i].towrite;
2451 sh->dev[i].towrite = NULL;
2452 if (bi) {
2453 s->to_write--;
2454 bitmap_end = 1;
2455 }
2456
2457 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2458 wake_up(&conf->wait_for_overlap);
2459
2460 while (bi && bi->bi_sector <
2461 sh->dev[i].sector + STRIPE_SECTORS) {
2462 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2463 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2464 if (!raid5_dec_bi_phys_segments(bi)) {
2465 md_write_end(conf->mddev);
2466 bi->bi_next = *return_bi;
2467 *return_bi = bi;
2468 }
2469 bi = nextbi;
2470 }
2471 /* and fail all 'written' */
2472 bi = sh->dev[i].written;
2473 sh->dev[i].written = NULL;
2474 if (bi) bitmap_end = 1;
2475 while (bi && bi->bi_sector <
2476 sh->dev[i].sector + STRIPE_SECTORS) {
2477 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2478 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2479 if (!raid5_dec_bi_phys_segments(bi)) {
2480 md_write_end(conf->mddev);
2481 bi->bi_next = *return_bi;
2482 *return_bi = bi;
2483 }
2484 bi = bi2;
2485 }
2486
2487 /* fail any reads if this device is non-operational and
2488 * the data has not reached the cache yet.
2489 */
2490 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2491 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2492 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2493 bi = sh->dev[i].toread;
2494 sh->dev[i].toread = NULL;
2495 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2496 wake_up(&conf->wait_for_overlap);
2497 if (bi) s->to_read--;
2498 while (bi && bi->bi_sector <
2499 sh->dev[i].sector + STRIPE_SECTORS) {
2500 struct bio *nextbi =
2501 r5_next_bio(bi, sh->dev[i].sector);
2502 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2503 if (!raid5_dec_bi_phys_segments(bi)) {
2504 bi->bi_next = *return_bi;
2505 *return_bi = bi;
2506 }
2507 bi = nextbi;
2508 }
2509 }
2510 spin_unlock_irq(&conf->device_lock);
2511 if (bitmap_end)
2512 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2513 STRIPE_SECTORS, 0, 0);
2514 /* If we were in the middle of a write the parity block might
2515 * still be locked - so just clear all R5_LOCKED flags
2516 */
2517 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2518 }
2519
2520 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2521 if (atomic_dec_and_test(&conf->pending_full_writes))
2522 md_wakeup_thread(conf->mddev->thread);
2523}
2524
2525static void
2526handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2527 struct stripe_head_state *s)
2528{
2529 int abort = 0;
2530 int i;
2531
2532 clear_bit(STRIPE_SYNCING, &sh->state);
2533 s->syncing = 0;
2534 s->replacing = 0;
2535 /* There is nothing more to do for sync/check/repair.
2536 * Don't even need to abort as that is handled elsewhere
2537 * if needed, and not always wanted e.g. if there is a known
2538 * bad block here.
2539 * For recover/replace we need to record a bad block on all
2540 * non-sync devices, or abort the recovery
2541 */
2542 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2543 /* During recovery devices cannot be removed, so
2544 * locking and refcounting of rdevs is not needed
2545 */
2546 for (i = 0; i < conf->raid_disks; i++) {
2547 struct md_rdev *rdev = conf->disks[i].rdev;
2548 if (rdev
2549 && !test_bit(Faulty, &rdev->flags)
2550 && !test_bit(In_sync, &rdev->flags)
2551 && !rdev_set_badblocks(rdev, sh->sector,
2552 STRIPE_SECTORS, 0))
2553 abort = 1;
2554 rdev = conf->disks[i].replacement;
2555 if (rdev
2556 && !test_bit(Faulty, &rdev->flags)
2557 && !test_bit(In_sync, &rdev->flags)
2558 && !rdev_set_badblocks(rdev, sh->sector,
2559 STRIPE_SECTORS, 0))
2560 abort = 1;
2561 }
2562 if (abort)
2563 conf->recovery_disabled =
2564 conf->mddev->recovery_disabled;
2565 }
2566 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2567}
2568
2569static int want_replace(struct stripe_head *sh, int disk_idx)
2570{
2571 struct md_rdev *rdev;
2572 int rv = 0;
2573 /* Doing recovery so rcu locking not required */
2574 rdev = sh->raid_conf->disks[disk_idx].replacement;
2575 if (rdev
2576 && !test_bit(Faulty, &rdev->flags)
2577 && !test_bit(In_sync, &rdev->flags)
2578 && (rdev->recovery_offset <= sh->sector
2579 || rdev->mddev->recovery_cp <= sh->sector))
2580 rv = 1;
2581
2582 return rv;
2583}
2584
2585/* fetch_block - checks the given member device to see if its data needs
2586 * to be read or computed to satisfy a request.
2587 *
2588 * Returns 1 when no more member devices need to be checked, otherwise returns
2589 * 0 to tell the loop in handle_stripe_fill to continue
2590 */
2591static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2592 int disk_idx, int disks)
2593{
2594 struct r5dev *dev = &sh->dev[disk_idx];
2595 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2596 &sh->dev[s->failed_num[1]] };
2597
2598 /* is the data in this block needed, and can we get it? */
2599 if (!test_bit(R5_LOCKED, &dev->flags) &&
2600 !test_bit(R5_UPTODATE, &dev->flags) &&
2601 (dev->toread ||
2602 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2603 s->syncing || s->expanding ||
2604 (s->replacing && want_replace(sh, disk_idx)) ||
2605 (s->failed >= 1 && fdev[0]->toread) ||
2606 (s->failed >= 2 && fdev[1]->toread) ||
2607 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2608 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2609 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2610 /* we would like to get this block, possibly by computing it,
2611 * otherwise read it if the backing disk is insync
2612 */
2613 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2614 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2615 if ((s->uptodate == disks - 1) &&
2616 (s->failed && (disk_idx == s->failed_num[0] ||
2617 disk_idx == s->failed_num[1]))) {
2618 /* have disk failed, and we're requested to fetch it;
2619 * do compute it
2620 */
2621 pr_debug("Computing stripe %llu block %d\n",
2622 (unsigned long long)sh->sector, disk_idx);
2623 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2624 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2625 set_bit(R5_Wantcompute, &dev->flags);
2626 sh->ops.target = disk_idx;
2627 sh->ops.target2 = -1; /* no 2nd target */
2628 s->req_compute = 1;
2629 /* Careful: from this point on 'uptodate' is in the eye
2630 * of raid_run_ops which services 'compute' operations
2631 * before writes. R5_Wantcompute flags a block that will
2632 * be R5_UPTODATE by the time it is needed for a
2633 * subsequent operation.
2634 */
2635 s->uptodate++;
2636 return 1;
2637 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2638 /* Computing 2-failure is *very* expensive; only
2639 * do it if failed >= 2
2640 */
2641 int other;
2642 for (other = disks; other--; ) {
2643 if (other == disk_idx)
2644 continue;
2645 if (!test_bit(R5_UPTODATE,
2646 &sh->dev[other].flags))
2647 break;
2648 }
2649 BUG_ON(other < 0);
2650 pr_debug("Computing stripe %llu blocks %d,%d\n",
2651 (unsigned long long)sh->sector,
2652 disk_idx, other);
2653 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2654 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2655 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2656 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2657 sh->ops.target = disk_idx;
2658 sh->ops.target2 = other;
2659 s->uptodate += 2;
2660 s->req_compute = 1;
2661 return 1;
2662 } else if (test_bit(R5_Insync, &dev->flags)) {
2663 set_bit(R5_LOCKED, &dev->flags);
2664 set_bit(R5_Wantread, &dev->flags);
2665 s->locked++;
2666 pr_debug("Reading block %d (sync=%d)\n",
2667 disk_idx, s->syncing);
2668 }
2669 }
2670
2671 return 0;
2672}
2673
2674/**
2675 * handle_stripe_fill - read or compute data to satisfy pending requests.
2676 */
2677static void handle_stripe_fill(struct stripe_head *sh,
2678 struct stripe_head_state *s,
2679 int disks)
2680{
2681 int i;
2682
2683 /* look for blocks to read/compute, skip this if a compute
2684 * is already in flight, or if the stripe contents are in the
2685 * midst of changing due to a write
2686 */
2687 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2688 !sh->reconstruct_state)
2689 for (i = disks; i--; )
2690 if (fetch_block(sh, s, i, disks))
2691 break;
2692 set_bit(STRIPE_HANDLE, &sh->state);
2693}
2694
2695
2696/* handle_stripe_clean_event
2697 * any written block on an uptodate or failed drive can be returned.
2698 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2699 * never LOCKED, so we don't need to test 'failed' directly.
2700 */
2701static void handle_stripe_clean_event(struct r5conf *conf,
2702 struct stripe_head *sh, int disks, struct bio **return_bi)
2703{
2704 int i;
2705 struct r5dev *dev;
2706
2707 for (i = disks; i--; )
2708 if (sh->dev[i].written) {
2709 dev = &sh->dev[i];
2710 if (!test_bit(R5_LOCKED, &dev->flags) &&
2711 test_bit(R5_UPTODATE, &dev->flags)) {
2712 /* We can return any write requests */
2713 struct bio *wbi, *wbi2;
2714 int bitmap_end = 0;
2715 pr_debug("Return write for disc %d\n", i);
2716 spin_lock_irq(&conf->device_lock);
2717 wbi = dev->written;
2718 dev->written = NULL;
2719 while (wbi && wbi->bi_sector <
2720 dev->sector + STRIPE_SECTORS) {
2721 wbi2 = r5_next_bio(wbi, dev->sector);
2722 if (!raid5_dec_bi_phys_segments(wbi)) {
2723 md_write_end(conf->mddev);
2724 wbi->bi_next = *return_bi;
2725 *return_bi = wbi;
2726 }
2727 wbi = wbi2;
2728 }
2729 if (dev->towrite == NULL)
2730 bitmap_end = 1;
2731 spin_unlock_irq(&conf->device_lock);
2732 if (bitmap_end)
2733 bitmap_endwrite(conf->mddev->bitmap,
2734 sh->sector,
2735 STRIPE_SECTORS,
2736 !test_bit(STRIPE_DEGRADED, &sh->state),
2737 0);
2738 }
2739 }
2740
2741 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2742 if (atomic_dec_and_test(&conf->pending_full_writes))
2743 md_wakeup_thread(conf->mddev->thread);
2744}
2745
2746static void handle_stripe_dirtying(struct r5conf *conf,
2747 struct stripe_head *sh,
2748 struct stripe_head_state *s,
2749 int disks)
2750{
2751 int rmw = 0, rcw = 0, i;
2752 if (conf->max_degraded == 2) {
2753 /* RAID6 requires 'rcw' in current implementation
2754 * Calculate the real rcw later - for now fake it
2755 * look like rcw is cheaper
2756 */
2757 rcw = 1; rmw = 2;
2758 } else for (i = disks; i--; ) {
2759 /* would I have to read this buffer for read_modify_write */
2760 struct r5dev *dev = &sh->dev[i];
2761 if ((dev->towrite || i == sh->pd_idx) &&
2762 !test_bit(R5_LOCKED, &dev->flags) &&
2763 !(test_bit(R5_UPTODATE, &dev->flags) ||
2764 test_bit(R5_Wantcompute, &dev->flags))) {
2765 if (test_bit(R5_Insync, &dev->flags))
2766 rmw++;
2767 else
2768 rmw += 2*disks; /* cannot read it */
2769 }
2770 /* Would I have to read this buffer for reconstruct_write */
2771 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2772 !test_bit(R5_LOCKED, &dev->flags) &&
2773 !(test_bit(R5_UPTODATE, &dev->flags) ||
2774 test_bit(R5_Wantcompute, &dev->flags))) {
2775 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2776 else
2777 rcw += 2*disks;
2778 }
2779 }
2780 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2781 (unsigned long long)sh->sector, rmw, rcw);
2782 set_bit(STRIPE_HANDLE, &sh->state);
2783 if (rmw < rcw && rmw > 0)
2784 /* prefer read-modify-write, but need to get some data */
2785 for (i = disks; i--; ) {
2786 struct r5dev *dev = &sh->dev[i];
2787 if ((dev->towrite || i == sh->pd_idx) &&
2788 !test_bit(R5_LOCKED, &dev->flags) &&
2789 !(test_bit(R5_UPTODATE, &dev->flags) ||
2790 test_bit(R5_Wantcompute, &dev->flags)) &&
2791 test_bit(R5_Insync, &dev->flags)) {
2792 if (
2793 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2794 pr_debug("Read_old block "
2795 "%d for r-m-w\n", i);
2796 set_bit(R5_LOCKED, &dev->flags);
2797 set_bit(R5_Wantread, &dev->flags);
2798 s->locked++;
2799 } else {
2800 set_bit(STRIPE_DELAYED, &sh->state);
2801 set_bit(STRIPE_HANDLE, &sh->state);
2802 }
2803 }
2804 }
2805 if (rcw <= rmw && rcw > 0) {
2806 /* want reconstruct write, but need to get some data */
2807 rcw = 0;
2808 for (i = disks; i--; ) {
2809 struct r5dev *dev = &sh->dev[i];
2810 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2811 i != sh->pd_idx && i != sh->qd_idx &&
2812 !test_bit(R5_LOCKED, &dev->flags) &&
2813 !(test_bit(R5_UPTODATE, &dev->flags) ||
2814 test_bit(R5_Wantcompute, &dev->flags))) {
2815 rcw++;
2816 if (!test_bit(R5_Insync, &dev->flags))
2817 continue; /* it's a failed drive */
2818 if (
2819 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2820 pr_debug("Read_old block "
2821 "%d for Reconstruct\n", i);
2822 set_bit(R5_LOCKED, &dev->flags);
2823 set_bit(R5_Wantread, &dev->flags);
2824 s->locked++;
2825 } else {
2826 set_bit(STRIPE_DELAYED, &sh->state);
2827 set_bit(STRIPE_HANDLE, &sh->state);
2828 }
2829 }
2830 }
2831 }
2832 /* now if nothing is locked, and if we have enough data,
2833 * we can start a write request
2834 */
2835 /* since handle_stripe can be called at any time we need to handle the
2836 * case where a compute block operation has been submitted and then a
2837 * subsequent call wants to start a write request. raid_run_ops only
2838 * handles the case where compute block and reconstruct are requested
2839 * simultaneously. If this is not the case then new writes need to be
2840 * held off until the compute completes.
2841 */
2842 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2843 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2844 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2845 schedule_reconstruction(sh, s, rcw == 0, 0);
2846}
2847
2848static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2849 struct stripe_head_state *s, int disks)
2850{
2851 struct r5dev *dev = NULL;
2852
2853 set_bit(STRIPE_HANDLE, &sh->state);
2854
2855 switch (sh->check_state) {
2856 case check_state_idle:
2857 /* start a new check operation if there are no failures */
2858 if (s->failed == 0) {
2859 BUG_ON(s->uptodate != disks);
2860 sh->check_state = check_state_run;
2861 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2862 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2863 s->uptodate--;
2864 break;
2865 }
2866 dev = &sh->dev[s->failed_num[0]];
2867 /* fall through */
2868 case check_state_compute_result:
2869 sh->check_state = check_state_idle;
2870 if (!dev)
2871 dev = &sh->dev[sh->pd_idx];
2872
2873 /* check that a write has not made the stripe insync */
2874 if (test_bit(STRIPE_INSYNC, &sh->state))
2875 break;
2876
2877 /* either failed parity check, or recovery is happening */
2878 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2879 BUG_ON(s->uptodate != disks);
2880
2881 set_bit(R5_LOCKED, &dev->flags);
2882 s->locked++;
2883 set_bit(R5_Wantwrite, &dev->flags);
2884
2885 clear_bit(STRIPE_DEGRADED, &sh->state);
2886 set_bit(STRIPE_INSYNC, &sh->state);
2887 break;
2888 case check_state_run:
2889 break; /* we will be called again upon completion */
2890 case check_state_check_result:
2891 sh->check_state = check_state_idle;
2892
2893 /* if a failure occurred during the check operation, leave
2894 * STRIPE_INSYNC not set and let the stripe be handled again
2895 */
2896 if (s->failed)
2897 break;
2898
2899 /* handle a successful check operation, if parity is correct
2900 * we are done. Otherwise update the mismatch count and repair
2901 * parity if !MD_RECOVERY_CHECK
2902 */
2903 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2904 /* parity is correct (on disc,
2905 * not in buffer any more)
2906 */
2907 set_bit(STRIPE_INSYNC, &sh->state);
2908 else {
2909 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2910 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2911 /* don't try to repair!! */
2912 set_bit(STRIPE_INSYNC, &sh->state);
2913 else {
2914 sh->check_state = check_state_compute_run;
2915 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2916 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2917 set_bit(R5_Wantcompute,
2918 &sh->dev[sh->pd_idx].flags);
2919 sh->ops.target = sh->pd_idx;
2920 sh->ops.target2 = -1;
2921 s->uptodate++;
2922 }
2923 }
2924 break;
2925 case check_state_compute_run:
2926 break;
2927 default:
2928 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2929 __func__, sh->check_state,
2930 (unsigned long long) sh->sector);
2931 BUG();
2932 }
2933}
2934
2935
2936static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2937 struct stripe_head_state *s,
2938 int disks)
2939{
2940 int pd_idx = sh->pd_idx;
2941 int qd_idx = sh->qd_idx;
2942 struct r5dev *dev;
2943
2944 set_bit(STRIPE_HANDLE, &sh->state);
2945
2946 BUG_ON(s->failed > 2);
2947
2948 /* Want to check and possibly repair P and Q.
2949 * However there could be one 'failed' device, in which
2950 * case we can only check one of them, possibly using the
2951 * other to generate missing data
2952 */
2953
2954 switch (sh->check_state) {
2955 case check_state_idle:
2956 /* start a new check operation if there are < 2 failures */
2957 if (s->failed == s->q_failed) {
2958 /* The only possible failed device holds Q, so it
2959 * makes sense to check P (If anything else were failed,
2960 * we would have used P to recreate it).
2961 */
2962 sh->check_state = check_state_run;
2963 }
2964 if (!s->q_failed && s->failed < 2) {
2965 /* Q is not failed, and we didn't use it to generate
2966 * anything, so it makes sense to check it
2967 */
2968 if (sh->check_state == check_state_run)
2969 sh->check_state = check_state_run_pq;
2970 else
2971 sh->check_state = check_state_run_q;
2972 }
2973
2974 /* discard potentially stale zero_sum_result */
2975 sh->ops.zero_sum_result = 0;
2976
2977 if (sh->check_state == check_state_run) {
2978 /* async_xor_zero_sum destroys the contents of P */
2979 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2980 s->uptodate--;
2981 }
2982 if (sh->check_state >= check_state_run &&
2983 sh->check_state <= check_state_run_pq) {
2984 /* async_syndrome_zero_sum preserves P and Q, so
2985 * no need to mark them !uptodate here
2986 */
2987 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2988 break;
2989 }
2990
2991 /* we have 2-disk failure */
2992 BUG_ON(s->failed != 2);
2993 /* fall through */
2994 case check_state_compute_result:
2995 sh->check_state = check_state_idle;
2996
2997 /* check that a write has not made the stripe insync */
2998 if (test_bit(STRIPE_INSYNC, &sh->state))
2999 break;
3000
3001 /* now write out any block on a failed drive,
3002 * or P or Q if they were recomputed
3003 */
3004 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3005 if (s->failed == 2) {
3006 dev = &sh->dev[s->failed_num[1]];
3007 s->locked++;
3008 set_bit(R5_LOCKED, &dev->flags);
3009 set_bit(R5_Wantwrite, &dev->flags);
3010 }
3011 if (s->failed >= 1) {
3012 dev = &sh->dev[s->failed_num[0]];
3013 s->locked++;
3014 set_bit(R5_LOCKED, &dev->flags);
3015 set_bit(R5_Wantwrite, &dev->flags);
3016 }
3017 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3018 dev = &sh->dev[pd_idx];
3019 s->locked++;
3020 set_bit(R5_LOCKED, &dev->flags);
3021 set_bit(R5_Wantwrite, &dev->flags);
3022 }
3023 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3024 dev = &sh->dev[qd_idx];
3025 s->locked++;
3026 set_bit(R5_LOCKED, &dev->flags);
3027 set_bit(R5_Wantwrite, &dev->flags);
3028 }
3029 clear_bit(STRIPE_DEGRADED, &sh->state);
3030
3031 set_bit(STRIPE_INSYNC, &sh->state);
3032 break;
3033 case check_state_run:
3034 case check_state_run_q:
3035 case check_state_run_pq:
3036 break; /* we will be called again upon completion */
3037 case check_state_check_result:
3038 sh->check_state = check_state_idle;
3039
3040 /* handle a successful check operation, if parity is correct
3041 * we are done. Otherwise update the mismatch count and repair
3042 * parity if !MD_RECOVERY_CHECK
3043 */
3044 if (sh->ops.zero_sum_result == 0) {
3045 /* both parities are correct */
3046 if (!s->failed)
3047 set_bit(STRIPE_INSYNC, &sh->state);
3048 else {
3049 /* in contrast to the raid5 case we can validate
3050 * parity, but still have a failure to write
3051 * back
3052 */
3053 sh->check_state = check_state_compute_result;
3054 /* Returning at this point means that we may go
3055 * off and bring p and/or q uptodate again so
3056 * we make sure to check zero_sum_result again
3057 * to verify if p or q need writeback
3058 */
3059 }
3060 } else {
3061 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3062 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3063 /* don't try to repair!! */
3064 set_bit(STRIPE_INSYNC, &sh->state);
3065 else {
3066 int *target = &sh->ops.target;
3067
3068 sh->ops.target = -1;
3069 sh->ops.target2 = -1;
3070 sh->check_state = check_state_compute_run;
3071 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3072 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3073 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3074 set_bit(R5_Wantcompute,
3075 &sh->dev[pd_idx].flags);
3076 *target = pd_idx;
3077 target = &sh->ops.target2;
3078 s->uptodate++;
3079 }
3080 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3081 set_bit(R5_Wantcompute,
3082 &sh->dev[qd_idx].flags);
3083 *target = qd_idx;
3084 s->uptodate++;
3085 }
3086 }
3087 }
3088 break;
3089 case check_state_compute_run:
3090 break;
3091 default:
3092 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3093 __func__, sh->check_state,
3094 (unsigned long long) sh->sector);
3095 BUG();
3096 }
3097}
3098
3099static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3100{
3101 int i;
3102
3103 /* We have read all the blocks in this stripe and now we need to
3104 * copy some of them into a target stripe for expand.
3105 */
3106 struct dma_async_tx_descriptor *tx = NULL;
3107 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3108 for (i = 0; i < sh->disks; i++)
3109 if (i != sh->pd_idx && i != sh->qd_idx) {
3110 int dd_idx, j;
3111 struct stripe_head *sh2;
3112 struct async_submit_ctl submit;
3113
3114 sector_t bn = compute_blocknr(sh, i, 1);
3115 sector_t s = raid5_compute_sector(conf, bn, 0,
3116 &dd_idx, NULL);
3117 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3118 if (sh2 == NULL)
3119 /* so far only the early blocks of this stripe
3120 * have been requested. When later blocks
3121 * get requested, we will try again
3122 */
3123 continue;
3124 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3125 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3126 /* must have already done this block */
3127 release_stripe(sh2);
3128 continue;
3129 }
3130
3131 /* place all the copies on one channel */
3132 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3133 tx = async_memcpy(sh2->dev[dd_idx].page,
3134 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3135 &submit);
3136
3137 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3138 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3139 for (j = 0; j < conf->raid_disks; j++)
3140 if (j != sh2->pd_idx &&
3141 j != sh2->qd_idx &&
3142 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3143 break;
3144 if (j == conf->raid_disks) {
3145 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3146 set_bit(STRIPE_HANDLE, &sh2->state);
3147 }
3148 release_stripe(sh2);
3149
3150 }
3151 /* done submitting copies, wait for them to complete */
3152 if (tx) {
3153 async_tx_ack(tx);
3154 dma_wait_for_async_tx(tx);
3155 }
3156}
3157
3158/*
3159 * handle_stripe - do things to a stripe.
3160 *
3161 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3162 * state of various bits to see what needs to be done.
3163 * Possible results:
3164 * return some read requests which now have data
3165 * return some write requests which are safely on storage
3166 * schedule a read on some buffers
3167 * schedule a write of some buffers
3168 * return confirmation of parity correctness
3169 *
3170 */
3171
3172static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3173{
3174 struct r5conf *conf = sh->raid_conf;
3175 int disks = sh->disks;
3176 struct r5dev *dev;
3177 int i;
3178 int do_recovery = 0;
3179
3180 memset(s, 0, sizeof(*s));
3181
3182 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3183 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3184 s->failed_num[0] = -1;
3185 s->failed_num[1] = -1;
3186
3187 /* Now to look around and see what can be done */
3188 rcu_read_lock();
3189 spin_lock_irq(&conf->device_lock);
3190 for (i=disks; i--; ) {
3191 struct md_rdev *rdev;
3192 sector_t first_bad;
3193 int bad_sectors;
3194 int is_bad = 0;
3195
3196 dev = &sh->dev[i];
3197
3198 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3199 i, dev->flags,
3200 dev->toread, dev->towrite, dev->written);
3201 /* maybe we can reply to a read
3202 *
3203 * new wantfill requests are only permitted while
3204 * ops_complete_biofill is guaranteed to be inactive
3205 */
3206 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3207 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3208 set_bit(R5_Wantfill, &dev->flags);
3209
3210 /* now count some things */
3211 if (test_bit(R5_LOCKED, &dev->flags))
3212 s->locked++;
3213 if (test_bit(R5_UPTODATE, &dev->flags))
3214 s->uptodate++;
3215 if (test_bit(R5_Wantcompute, &dev->flags)) {
3216 s->compute++;
3217 BUG_ON(s->compute > 2);
3218 }
3219
3220 if (test_bit(R5_Wantfill, &dev->flags))
3221 s->to_fill++;
3222 else if (dev->toread)
3223 s->to_read++;
3224 if (dev->towrite) {
3225 s->to_write++;
3226 if (!test_bit(R5_OVERWRITE, &dev->flags))
3227 s->non_overwrite++;
3228 }
3229 if (dev->written)
3230 s->written++;
3231 /* Prefer to use the replacement for reads, but only
3232 * if it is recovered enough and has no bad blocks.
3233 */
3234 rdev = rcu_dereference(conf->disks[i].replacement);
3235 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3236 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3237 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3238 &first_bad, &bad_sectors))
3239 set_bit(R5_ReadRepl, &dev->flags);
3240 else {
3241 if (rdev)
3242 set_bit(R5_NeedReplace, &dev->flags);
3243 rdev = rcu_dereference(conf->disks[i].rdev);
3244 clear_bit(R5_ReadRepl, &dev->flags);
3245 }
3246 if (rdev && test_bit(Faulty, &rdev->flags))
3247 rdev = NULL;
3248 if (rdev) {
3249 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3250 &first_bad, &bad_sectors);
3251 if (s->blocked_rdev == NULL
3252 && (test_bit(Blocked, &rdev->flags)
3253 || is_bad < 0)) {
3254 if (is_bad < 0)
3255 set_bit(BlockedBadBlocks,
3256 &rdev->flags);
3257 s->blocked_rdev = rdev;
3258 atomic_inc(&rdev->nr_pending);
3259 }
3260 }
3261 clear_bit(R5_Insync, &dev->flags);
3262 if (!rdev)
3263 /* Not in-sync */;
3264 else if (is_bad) {
3265 /* also not in-sync */
3266 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3267 test_bit(R5_UPTODATE, &dev->flags)) {
3268 /* treat as in-sync, but with a read error
3269 * which we can now try to correct
3270 */
3271 set_bit(R5_Insync, &dev->flags);
3272 set_bit(R5_ReadError, &dev->flags);
3273 }
3274 } else if (test_bit(In_sync, &rdev->flags))
3275 set_bit(R5_Insync, &dev->flags);
3276 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3277 /* in sync if before recovery_offset */
3278 set_bit(R5_Insync, &dev->flags);
3279 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3280 test_bit(R5_Expanded, &dev->flags))
3281 /* If we've reshaped into here, we assume it is Insync.
3282 * We will shortly update recovery_offset to make
3283 * it official.
3284 */
3285 set_bit(R5_Insync, &dev->flags);
3286
3287 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3288 /* This flag does not apply to '.replacement'
3289 * only to .rdev, so make sure to check that*/
3290 struct md_rdev *rdev2 = rcu_dereference(
3291 conf->disks[i].rdev);
3292 if (rdev2 == rdev)
3293 clear_bit(R5_Insync, &dev->flags);
3294 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3295 s->handle_bad_blocks = 1;
3296 atomic_inc(&rdev2->nr_pending);
3297 } else
3298 clear_bit(R5_WriteError, &dev->flags);
3299 }
3300 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3301 /* This flag does not apply to '.replacement'
3302 * only to .rdev, so make sure to check that*/
3303 struct md_rdev *rdev2 = rcu_dereference(
3304 conf->disks[i].rdev);
3305 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3306 s->handle_bad_blocks = 1;
3307 atomic_inc(&rdev2->nr_pending);
3308 } else
3309 clear_bit(R5_MadeGood, &dev->flags);
3310 }
3311 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3312 struct md_rdev *rdev2 = rcu_dereference(
3313 conf->disks[i].replacement);
3314 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3315 s->handle_bad_blocks = 1;
3316 atomic_inc(&rdev2->nr_pending);
3317 } else
3318 clear_bit(R5_MadeGoodRepl, &dev->flags);
3319 }
3320 if (!test_bit(R5_Insync, &dev->flags)) {
3321 /* The ReadError flag will just be confusing now */
3322 clear_bit(R5_ReadError, &dev->flags);
3323 clear_bit(R5_ReWrite, &dev->flags);
3324 }
3325 if (test_bit(R5_ReadError, &dev->flags))
3326 clear_bit(R5_Insync, &dev->flags);
3327 if (!test_bit(R5_Insync, &dev->flags)) {
3328 if (s->failed < 2)
3329 s->failed_num[s->failed] = i;
3330 s->failed++;
3331 if (rdev && !test_bit(Faulty, &rdev->flags))
3332 do_recovery = 1;
3333 }
3334 }
3335 spin_unlock_irq(&conf->device_lock);
3336 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3337 /* If there is a failed device being replaced,
3338 * we must be recovering.
3339 * else if we are after recovery_cp, we must be syncing
3340 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3341 * else we can only be replacing
3342 * sync and recovery both need to read all devices, and so
3343 * use the same flag.
3344 */
3345 if (do_recovery ||
3346 sh->sector >= conf->mddev->recovery_cp ||
3347 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3348 s->syncing = 1;
3349 else
3350 s->replacing = 1;
3351 }
3352 rcu_read_unlock();
3353}
3354
3355static void handle_stripe(struct stripe_head *sh)
3356{
3357 struct stripe_head_state s;
3358 struct r5conf *conf = sh->raid_conf;
3359 int i;
3360 int prexor;
3361 int disks = sh->disks;
3362 struct r5dev *pdev, *qdev;
3363
3364 clear_bit(STRIPE_HANDLE, &sh->state);
3365 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3366 /* already being handled, ensure it gets handled
3367 * again when current action finishes */
3368 set_bit(STRIPE_HANDLE, &sh->state);
3369 return;
3370 }
3371
3372 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3373 set_bit(STRIPE_SYNCING, &sh->state);
3374 clear_bit(STRIPE_INSYNC, &sh->state);
3375 }
3376 clear_bit(STRIPE_DELAYED, &sh->state);
3377
3378 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3379 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3380 (unsigned long long)sh->sector, sh->state,
3381 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3382 sh->check_state, sh->reconstruct_state);
3383
3384 analyse_stripe(sh, &s);
3385
3386 if (s.handle_bad_blocks) {
3387 set_bit(STRIPE_HANDLE, &sh->state);
3388 goto finish;
3389 }
3390
3391 if (unlikely(s.blocked_rdev)) {
3392 if (s.syncing || s.expanding || s.expanded ||
3393 s.replacing || s.to_write || s.written) {
3394 set_bit(STRIPE_HANDLE, &sh->state);
3395 goto finish;
3396 }
3397 /* There is nothing for the blocked_rdev to block */
3398 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3399 s.blocked_rdev = NULL;
3400 }
3401
3402 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3403 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3404 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3405 }
3406
3407 pr_debug("locked=%d uptodate=%d to_read=%d"
3408 " to_write=%d failed=%d failed_num=%d,%d\n",
3409 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3410 s.failed_num[0], s.failed_num[1]);
3411 /* check if the array has lost more than max_degraded devices and,
3412 * if so, some requests might need to be failed.
3413 */
3414 if (s.failed > conf->max_degraded) {
3415 sh->check_state = 0;
3416 sh->reconstruct_state = 0;
3417 if (s.to_read+s.to_write+s.written)
3418 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3419 if (s.syncing + s.replacing)
3420 handle_failed_sync(conf, sh, &s);
3421 }
3422
3423 /*
3424 * might be able to return some write requests if the parity blocks
3425 * are safe, or on a failed drive
3426 */
3427 pdev = &sh->dev[sh->pd_idx];
3428 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3429 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3430 qdev = &sh->dev[sh->qd_idx];
3431 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3432 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3433 || conf->level < 6;
3434
3435 if (s.written &&
3436 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3437 && !test_bit(R5_LOCKED, &pdev->flags)
3438 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3439 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3440 && !test_bit(R5_LOCKED, &qdev->flags)
3441 && test_bit(R5_UPTODATE, &qdev->flags)))))
3442 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3443
3444 /* Now we might consider reading some blocks, either to check/generate
3445 * parity, or to satisfy requests
3446 * or to load a block that is being partially written.
3447 */
3448 if (s.to_read || s.non_overwrite
3449 || (conf->level == 6 && s.to_write && s.failed)
3450 || (s.syncing && (s.uptodate + s.compute < disks))
3451 || s.replacing
3452 || s.expanding)
3453 handle_stripe_fill(sh, &s, disks);
3454
3455 /* Now we check to see if any write operations have recently
3456 * completed
3457 */
3458 prexor = 0;
3459 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3460 prexor = 1;
3461 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3462 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3463 sh->reconstruct_state = reconstruct_state_idle;
3464
3465 /* All the 'written' buffers and the parity block are ready to
3466 * be written back to disk
3467 */
3468 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469 BUG_ON(sh->qd_idx >= 0 &&
3470 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3471 for (i = disks; i--; ) {
3472 struct r5dev *dev = &sh->dev[i];
3473 if (test_bit(R5_LOCKED, &dev->flags) &&
3474 (i == sh->pd_idx || i == sh->qd_idx ||
3475 dev->written)) {
3476 pr_debug("Writing block %d\n", i);
3477 set_bit(R5_Wantwrite, &dev->flags);
3478 if (prexor)
3479 continue;
3480 if (!test_bit(R5_Insync, &dev->flags) ||
3481 ((i == sh->pd_idx || i == sh->qd_idx) &&
3482 s.failed == 0))
3483 set_bit(STRIPE_INSYNC, &sh->state);
3484 }
3485 }
3486 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3487 s.dec_preread_active = 1;
3488 }
3489
3490 /* Now to consider new write requests and what else, if anything
3491 * should be read. We do not handle new writes when:
3492 * 1/ A 'write' operation (copy+xor) is already in flight.
3493 * 2/ A 'check' operation is in flight, as it may clobber the parity
3494 * block.
3495 */
3496 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3497 handle_stripe_dirtying(conf, sh, &s, disks);
3498
3499 /* maybe we need to check and possibly fix the parity for this stripe
3500 * Any reads will already have been scheduled, so we just see if enough
3501 * data is available. The parity check is held off while parity
3502 * dependent operations are in flight.
3503 */
3504 if (sh->check_state ||
3505 (s.syncing && s.locked == 0 &&
3506 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3507 !test_bit(STRIPE_INSYNC, &sh->state))) {
3508 if (conf->level == 6)
3509 handle_parity_checks6(conf, sh, &s, disks);
3510 else
3511 handle_parity_checks5(conf, sh, &s, disks);
3512 }
3513
3514 if (s.replacing && s.locked == 0
3515 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3516 /* Write out to replacement devices where possible */
3517 for (i = 0; i < conf->raid_disks; i++)
3518 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3519 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3520 set_bit(R5_WantReplace, &sh->dev[i].flags);
3521 set_bit(R5_LOCKED, &sh->dev[i].flags);
3522 s.locked++;
3523 }
3524 set_bit(STRIPE_INSYNC, &sh->state);
3525 }
3526 if ((s.syncing || s.replacing) && s.locked == 0 &&
3527 test_bit(STRIPE_INSYNC, &sh->state)) {
3528 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3529 clear_bit(STRIPE_SYNCING, &sh->state);
3530 }
3531
3532 /* If the failed drives are just a ReadError, then we might need
3533 * to progress the repair/check process
3534 */
3535 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3536 for (i = 0; i < s.failed; i++) {
3537 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3538 if (test_bit(R5_ReadError, &dev->flags)
3539 && !test_bit(R5_LOCKED, &dev->flags)
3540 && test_bit(R5_UPTODATE, &dev->flags)
3541 ) {
3542 if (!test_bit(R5_ReWrite, &dev->flags)) {
3543 set_bit(R5_Wantwrite, &dev->flags);
3544 set_bit(R5_ReWrite, &dev->flags);
3545 set_bit(R5_LOCKED, &dev->flags);
3546 s.locked++;
3547 } else {
3548 /* let's read it back */
3549 set_bit(R5_Wantread, &dev->flags);
3550 set_bit(R5_LOCKED, &dev->flags);
3551 s.locked++;
3552 }
3553 }
3554 }
3555
3556
3557 /* Finish reconstruct operations initiated by the expansion process */
3558 if (sh->reconstruct_state == reconstruct_state_result) {
3559 struct stripe_head *sh_src
3560 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3561 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3562 /* sh cannot be written until sh_src has been read.
3563 * so arrange for sh to be delayed a little
3564 */
3565 set_bit(STRIPE_DELAYED, &sh->state);
3566 set_bit(STRIPE_HANDLE, &sh->state);
3567 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3568 &sh_src->state))
3569 atomic_inc(&conf->preread_active_stripes);
3570 release_stripe(sh_src);
3571 goto finish;
3572 }
3573 if (sh_src)
3574 release_stripe(sh_src);
3575
3576 sh->reconstruct_state = reconstruct_state_idle;
3577 clear_bit(STRIPE_EXPANDING, &sh->state);
3578 for (i = conf->raid_disks; i--; ) {
3579 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3580 set_bit(R5_LOCKED, &sh->dev[i].flags);
3581 s.locked++;
3582 }
3583 }
3584
3585 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3586 !sh->reconstruct_state) {
3587 /* Need to write out all blocks after computing parity */
3588 sh->disks = conf->raid_disks;
3589 stripe_set_idx(sh->sector, conf, 0, sh);
3590 schedule_reconstruction(sh, &s, 1, 1);
3591 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3592 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3593 atomic_dec(&conf->reshape_stripes);
3594 wake_up(&conf->wait_for_overlap);
3595 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3596 }
3597
3598 if (s.expanding && s.locked == 0 &&
3599 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3600 handle_stripe_expansion(conf, sh);
3601
3602finish:
3603 /* wait for this device to become unblocked */
3604 if (unlikely(s.blocked_rdev)) {
3605 if (conf->mddev->external)
3606 md_wait_for_blocked_rdev(s.blocked_rdev,
3607 conf->mddev);
3608 else
3609 /* Internal metadata will immediately
3610 * be written by raid5d, so we don't
3611 * need to wait here.
3612 */
3613 rdev_dec_pending(s.blocked_rdev,
3614 conf->mddev);
3615 }
3616
3617 if (s.handle_bad_blocks)
3618 for (i = disks; i--; ) {
3619 struct md_rdev *rdev;
3620 struct r5dev *dev = &sh->dev[i];
3621 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3622 /* We own a safe reference to the rdev */
3623 rdev = conf->disks[i].rdev;
3624 if (!rdev_set_badblocks(rdev, sh->sector,
3625 STRIPE_SECTORS, 0))
3626 md_error(conf->mddev, rdev);
3627 rdev_dec_pending(rdev, conf->mddev);
3628 }
3629 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3630 rdev = conf->disks[i].rdev;
3631 rdev_clear_badblocks(rdev, sh->sector,
3632 STRIPE_SECTORS, 0);
3633 rdev_dec_pending(rdev, conf->mddev);
3634 }
3635 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3636 rdev = conf->disks[i].replacement;
3637 if (!rdev)
3638 /* rdev have been moved down */
3639 rdev = conf->disks[i].rdev;
3640 rdev_clear_badblocks(rdev, sh->sector,
3641 STRIPE_SECTORS, 0);
3642 rdev_dec_pending(rdev, conf->mddev);
3643 }
3644 }
3645
3646 if (s.ops_request)
3647 raid_run_ops(sh, s.ops_request);
3648
3649 ops_run_io(sh, &s);
3650
3651 if (s.dec_preread_active) {
3652 /* We delay this until after ops_run_io so that if make_request
3653 * is waiting on a flush, it won't continue until the writes
3654 * have actually been submitted.
3655 */
3656 atomic_dec(&conf->preread_active_stripes);
3657 if (atomic_read(&conf->preread_active_stripes) <
3658 IO_THRESHOLD)
3659 md_wakeup_thread(conf->mddev->thread);
3660 }
3661
3662 return_io(s.return_bi);
3663
3664 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3665}
3666
3667static void raid5_activate_delayed(struct r5conf *conf)
3668{
3669 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3670 while (!list_empty(&conf->delayed_list)) {
3671 struct list_head *l = conf->delayed_list.next;
3672 struct stripe_head *sh;
3673 sh = list_entry(l, struct stripe_head, lru);
3674 list_del_init(l);
3675 clear_bit(STRIPE_DELAYED, &sh->state);
3676 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3677 atomic_inc(&conf->preread_active_stripes);
3678 list_add_tail(&sh->lru, &conf->hold_list);
3679 }
3680 }
3681}
3682
3683static void activate_bit_delay(struct r5conf *conf)
3684{
3685 /* device_lock is held */
3686 struct list_head head;
3687 list_add(&head, &conf->bitmap_list);
3688 list_del_init(&conf->bitmap_list);
3689 while (!list_empty(&head)) {
3690 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3691 list_del_init(&sh->lru);
3692 atomic_inc(&sh->count);
3693 __release_stripe(conf, sh);
3694 }
3695}
3696
3697int md_raid5_congested(struct mddev *mddev, int bits)
3698{
3699 struct r5conf *conf = mddev->private;
3700
3701 /* No difference between reads and writes. Just check
3702 * how busy the stripe_cache is
3703 */
3704
3705 if (conf->inactive_blocked)
3706 return 1;
3707 if (conf->quiesce)
3708 return 1;
3709 if (list_empty_careful(&conf->inactive_list))
3710 return 1;
3711
3712 return 0;
3713}
3714EXPORT_SYMBOL_GPL(md_raid5_congested);
3715
3716static int raid5_congested(void *data, int bits)
3717{
3718 struct mddev *mddev = data;
3719
3720 return mddev_congested(mddev, bits) ||
3721 md_raid5_congested(mddev, bits);
3722}
3723
3724/* We want read requests to align with chunks where possible,
3725 * but write requests don't need to.
3726 */
3727static int raid5_mergeable_bvec(struct request_queue *q,
3728 struct bvec_merge_data *bvm,
3729 struct bio_vec *biovec)
3730{
3731 struct mddev *mddev = q->queuedata;
3732 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3733 int max;
3734 unsigned int chunk_sectors = mddev->chunk_sectors;
3735 unsigned int bio_sectors = bvm->bi_size >> 9;
3736
3737 if ((bvm->bi_rw & 1) == WRITE)
3738 return biovec->bv_len; /* always allow writes to be mergeable */
3739
3740 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3741 chunk_sectors = mddev->new_chunk_sectors;
3742 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3743 if (max < 0) max = 0;
3744 if (max <= biovec->bv_len && bio_sectors == 0)
3745 return biovec->bv_len;
3746 else
3747 return max;
3748}
3749
3750
3751static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3752{
3753 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3754 unsigned int chunk_sectors = mddev->chunk_sectors;
3755 unsigned int bio_sectors = bio->bi_size >> 9;
3756
3757 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3758 chunk_sectors = mddev->new_chunk_sectors;
3759 return chunk_sectors >=
3760 ((sector & (chunk_sectors - 1)) + bio_sectors);
3761}
3762
3763/*
3764 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3765 * later sampled by raid5d.
3766 */
3767static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3768{
3769 unsigned long flags;
3770
3771 spin_lock_irqsave(&conf->device_lock, flags);
3772
3773 bi->bi_next = conf->retry_read_aligned_list;
3774 conf->retry_read_aligned_list = bi;
3775
3776 spin_unlock_irqrestore(&conf->device_lock, flags);
3777 md_wakeup_thread(conf->mddev->thread);
3778}
3779
3780
3781static struct bio *remove_bio_from_retry(struct r5conf *conf)
3782{
3783 struct bio *bi;
3784
3785 bi = conf->retry_read_aligned;
3786 if (bi) {
3787 conf->retry_read_aligned = NULL;
3788 return bi;
3789 }
3790 bi = conf->retry_read_aligned_list;
3791 if(bi) {
3792 conf->retry_read_aligned_list = bi->bi_next;
3793 bi->bi_next = NULL;
3794 /*
3795 * this sets the active strip count to 1 and the processed
3796 * strip count to zero (upper 8 bits)
3797 */
3798 bi->bi_phys_segments = 1; /* biased count of active stripes */
3799 }
3800
3801 return bi;
3802}
3803
3804
3805/*
3806 * The "raid5_align_endio" should check if the read succeeded and if it
3807 * did, call bio_endio on the original bio (having bio_put the new bio
3808 * first).
3809 * If the read failed..
3810 */
3811static void raid5_align_endio(struct bio *bi, int error)
3812{
3813 struct bio* raid_bi = bi->bi_private;
3814 struct mddev *mddev;
3815 struct r5conf *conf;
3816 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3817 struct md_rdev *rdev;
3818
3819 bio_put(bi);
3820
3821 rdev = (void*)raid_bi->bi_next;
3822 raid_bi->bi_next = NULL;
3823 mddev = rdev->mddev;
3824 conf = mddev->private;
3825
3826 rdev_dec_pending(rdev, conf->mddev);
3827
3828 if (!error && uptodate) {
3829 bio_endio(raid_bi, 0);
3830 if (atomic_dec_and_test(&conf->active_aligned_reads))
3831 wake_up(&conf->wait_for_stripe);
3832 return;
3833 }
3834
3835
3836 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3837
3838 add_bio_to_retry(raid_bi, conf);
3839}
3840
3841static int bio_fits_rdev(struct bio *bi)
3842{
3843 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3844
3845 if ((bi->bi_size>>9) > queue_max_sectors(q))
3846 return 0;
3847 blk_recount_segments(q, bi);
3848 if (bi->bi_phys_segments > queue_max_segments(q))
3849 return 0;
3850
3851 if (q->merge_bvec_fn)
3852 /* it's too hard to apply the merge_bvec_fn at this stage,
3853 * just just give up
3854 */
3855 return 0;
3856
3857 return 1;
3858}
3859
3860
3861static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3862{
3863 struct r5conf *conf = mddev->private;
3864 int dd_idx;
3865 struct bio* align_bi;
3866 struct md_rdev *rdev;
3867 sector_t end_sector;
3868
3869 if (!in_chunk_boundary(mddev, raid_bio)) {
3870 pr_debug("chunk_aligned_read : non aligned\n");
3871 return 0;
3872 }
3873 /*
3874 * use bio_clone_mddev to make a copy of the bio
3875 */
3876 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3877 if (!align_bi)
3878 return 0;
3879 /*
3880 * set bi_end_io to a new function, and set bi_private to the
3881 * original bio.
3882 */
3883 align_bi->bi_end_io = raid5_align_endio;
3884 align_bi->bi_private = raid_bio;
3885 /*
3886 * compute position
3887 */
3888 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3889 0,
3890 &dd_idx, NULL);
3891
3892 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3893 rcu_read_lock();
3894 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3895 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3896 rdev->recovery_offset < end_sector) {
3897 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3898 if (rdev &&
3899 (test_bit(Faulty, &rdev->flags) ||
3900 !(test_bit(In_sync, &rdev->flags) ||
3901 rdev->recovery_offset >= end_sector)))
3902 rdev = NULL;
3903 }
3904 if (rdev) {
3905 sector_t first_bad;
3906 int bad_sectors;
3907
3908 atomic_inc(&rdev->nr_pending);
3909 rcu_read_unlock();
3910 raid_bio->bi_next = (void*)rdev;
3911 align_bi->bi_bdev = rdev->bdev;
3912 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3913
3914 if (!bio_fits_rdev(align_bi) ||
3915 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3916 &first_bad, &bad_sectors)) {
3917 /* too big in some way, or has a known bad block */
3918 bio_put(align_bi);
3919 rdev_dec_pending(rdev, mddev);
3920 return 0;
3921 }
3922
3923 /* No reshape active, so we can trust rdev->data_offset */
3924 align_bi->bi_sector += rdev->data_offset;
3925
3926 spin_lock_irq(&conf->device_lock);
3927 wait_event_lock_irq(conf->wait_for_stripe,
3928 conf->quiesce == 0,
3929 conf->device_lock, /* nothing */);
3930 atomic_inc(&conf->active_aligned_reads);
3931 spin_unlock_irq(&conf->device_lock);
3932
3933 generic_make_request(align_bi);
3934 return 1;
3935 } else {
3936 rcu_read_unlock();
3937 bio_put(align_bi);
3938 return 0;
3939 }
3940}
3941
3942/* __get_priority_stripe - get the next stripe to process
3943 *
3944 * Full stripe writes are allowed to pass preread active stripes up until
3945 * the bypass_threshold is exceeded. In general the bypass_count
3946 * increments when the handle_list is handled before the hold_list; however, it
3947 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3948 * stripe with in flight i/o. The bypass_count will be reset when the
3949 * head of the hold_list has changed, i.e. the head was promoted to the
3950 * handle_list.
3951 */
3952static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3953{
3954 struct stripe_head *sh;
3955
3956 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3957 __func__,
3958 list_empty(&conf->handle_list) ? "empty" : "busy",
3959 list_empty(&conf->hold_list) ? "empty" : "busy",
3960 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3961
3962 if (!list_empty(&conf->handle_list)) {
3963 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3964
3965 if (list_empty(&conf->hold_list))
3966 conf->bypass_count = 0;
3967 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3968 if (conf->hold_list.next == conf->last_hold)
3969 conf->bypass_count++;
3970 else {
3971 conf->last_hold = conf->hold_list.next;
3972 conf->bypass_count -= conf->bypass_threshold;
3973 if (conf->bypass_count < 0)
3974 conf->bypass_count = 0;
3975 }
3976 }
3977 } else if (!list_empty(&conf->hold_list) &&
3978 ((conf->bypass_threshold &&
3979 conf->bypass_count > conf->bypass_threshold) ||
3980 atomic_read(&conf->pending_full_writes) == 0)) {
3981 sh = list_entry(conf->hold_list.next,
3982 typeof(*sh), lru);
3983 conf->bypass_count -= conf->bypass_threshold;
3984 if (conf->bypass_count < 0)
3985 conf->bypass_count = 0;
3986 } else
3987 return NULL;
3988
3989 list_del_init(&sh->lru);
3990 atomic_inc(&sh->count);
3991 BUG_ON(atomic_read(&sh->count) != 1);
3992 return sh;
3993}
3994
3995static void make_request(struct mddev *mddev, struct bio * bi)
3996{
3997 struct r5conf *conf = mddev->private;
3998 int dd_idx;
3999 sector_t new_sector;
4000 sector_t logical_sector, last_sector;
4001 struct stripe_head *sh;
4002 const int rw = bio_data_dir(bi);
4003 int remaining;
4004
4005 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4006 md_flush_request(mddev, bi);
4007 return;
4008 }
4009
4010 md_write_start(mddev, bi);
4011
4012 if (rw == READ &&
4013 mddev->reshape_position == MaxSector &&
4014 chunk_aligned_read(mddev,bi))
4015 return;
4016
4017 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4018 last_sector = bi->bi_sector + (bi->bi_size>>9);
4019 bi->bi_next = NULL;
4020 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4021
4022 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4023 DEFINE_WAIT(w);
4024 int previous;
4025
4026 retry:
4027 previous = 0;
4028 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4029 if (unlikely(conf->reshape_progress != MaxSector)) {
4030 /* spinlock is needed as reshape_progress may be
4031 * 64bit on a 32bit platform, and so it might be
4032 * possible to see a half-updated value
4033 * Of course reshape_progress could change after
4034 * the lock is dropped, so once we get a reference
4035 * to the stripe that we think it is, we will have
4036 * to check again.
4037 */
4038 spin_lock_irq(&conf->device_lock);
4039 if (mddev->reshape_backwards
4040 ? logical_sector < conf->reshape_progress
4041 : logical_sector >= conf->reshape_progress) {
4042 previous = 1;
4043 } else {
4044 if (mddev->reshape_backwards
4045 ? logical_sector < conf->reshape_safe
4046 : logical_sector >= conf->reshape_safe) {
4047 spin_unlock_irq(&conf->device_lock);
4048 schedule();
4049 goto retry;
4050 }
4051 }
4052 spin_unlock_irq(&conf->device_lock);
4053 }
4054
4055 new_sector = raid5_compute_sector(conf, logical_sector,
4056 previous,
4057 &dd_idx, NULL);
4058 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4059 (unsigned long long)new_sector,
4060 (unsigned long long)logical_sector);
4061
4062 sh = get_active_stripe(conf, new_sector, previous,
4063 (bi->bi_rw&RWA_MASK), 0);
4064 if (sh) {
4065 if (unlikely(previous)) {
4066 /* expansion might have moved on while waiting for a
4067 * stripe, so we must do the range check again.
4068 * Expansion could still move past after this
4069 * test, but as we are holding a reference to
4070 * 'sh', we know that if that happens,
4071 * STRIPE_EXPANDING will get set and the expansion
4072 * won't proceed until we finish with the stripe.
4073 */
4074 int must_retry = 0;
4075 spin_lock_irq(&conf->device_lock);
4076 if (mddev->reshape_backwards
4077 ? logical_sector >= conf->reshape_progress
4078 : logical_sector < conf->reshape_progress)
4079 /* mismatch, need to try again */
4080 must_retry = 1;
4081 spin_unlock_irq(&conf->device_lock);
4082 if (must_retry) {
4083 release_stripe(sh);
4084 schedule();
4085 goto retry;
4086 }
4087 }
4088
4089 if (rw == WRITE &&
4090 logical_sector >= mddev->suspend_lo &&
4091 logical_sector < mddev->suspend_hi) {
4092 release_stripe(sh);
4093 /* As the suspend_* range is controlled by
4094 * userspace, we want an interruptible
4095 * wait.
4096 */
4097 flush_signals(current);
4098 prepare_to_wait(&conf->wait_for_overlap,
4099 &w, TASK_INTERRUPTIBLE);
4100 if (logical_sector >= mddev->suspend_lo &&
4101 logical_sector < mddev->suspend_hi)
4102 schedule();
4103 goto retry;
4104 }
4105
4106 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4107 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4108 /* Stripe is busy expanding or
4109 * add failed due to overlap. Flush everything
4110 * and wait a while
4111 */
4112 md_wakeup_thread(mddev->thread);
4113 release_stripe(sh);
4114 schedule();
4115 goto retry;
4116 }
4117 finish_wait(&conf->wait_for_overlap, &w);
4118 set_bit(STRIPE_HANDLE, &sh->state);
4119 clear_bit(STRIPE_DELAYED, &sh->state);
4120 if ((bi->bi_rw & REQ_SYNC) &&
4121 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4122 atomic_inc(&conf->preread_active_stripes);
4123 mddev_check_plugged(mddev);
4124 release_stripe(sh);
4125 } else {
4126 /* cannot get stripe for read-ahead, just give-up */
4127 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4128 finish_wait(&conf->wait_for_overlap, &w);
4129 break;
4130 }
4131 }
4132
4133 spin_lock_irq(&conf->device_lock);
4134 remaining = raid5_dec_bi_phys_segments(bi);
4135 spin_unlock_irq(&conf->device_lock);
4136 if (remaining == 0) {
4137
4138 if ( rw == WRITE )
4139 md_write_end(mddev);
4140
4141 bio_endio(bi, 0);
4142 }
4143}
4144
4145static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4146
4147static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4148{
4149 /* reshaping is quite different to recovery/resync so it is
4150 * handled quite separately ... here.
4151 *
4152 * On each call to sync_request, we gather one chunk worth of
4153 * destination stripes and flag them as expanding.
4154 * Then we find all the source stripes and request reads.
4155 * As the reads complete, handle_stripe will copy the data
4156 * into the destination stripe and release that stripe.
4157 */
4158 struct r5conf *conf = mddev->private;
4159 struct stripe_head *sh;
4160 sector_t first_sector, last_sector;
4161 int raid_disks = conf->previous_raid_disks;
4162 int data_disks = raid_disks - conf->max_degraded;
4163 int new_data_disks = conf->raid_disks - conf->max_degraded;
4164 int i;
4165 int dd_idx;
4166 sector_t writepos, readpos, safepos;
4167 sector_t stripe_addr;
4168 int reshape_sectors;
4169 struct list_head stripes;
4170
4171 if (sector_nr == 0) {
4172 /* If restarting in the middle, skip the initial sectors */
4173 if (mddev->reshape_backwards &&
4174 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4175 sector_nr = raid5_size(mddev, 0, 0)
4176 - conf->reshape_progress;
4177 } else if (!mddev->reshape_backwards &&
4178 conf->reshape_progress > 0)
4179 sector_nr = conf->reshape_progress;
4180 sector_div(sector_nr, new_data_disks);
4181 if (sector_nr) {
4182 mddev->curr_resync_completed = sector_nr;
4183 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4184 *skipped = 1;
4185 return sector_nr;
4186 }
4187 }
4188
4189 /* We need to process a full chunk at a time.
4190 * If old and new chunk sizes differ, we need to process the
4191 * largest of these
4192 */
4193 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4194 reshape_sectors = mddev->new_chunk_sectors;
4195 else
4196 reshape_sectors = mddev->chunk_sectors;
4197
4198 /* We update the metadata at least every 10 seconds, or when
4199 * the data about to be copied would over-write the source of
4200 * the data at the front of the range. i.e. one new_stripe
4201 * along from reshape_progress new_maps to after where
4202 * reshape_safe old_maps to
4203 */
4204 writepos = conf->reshape_progress;
4205 sector_div(writepos, new_data_disks);
4206 readpos = conf->reshape_progress;
4207 sector_div(readpos, data_disks);
4208 safepos = conf->reshape_safe;
4209 sector_div(safepos, data_disks);
4210 if (mddev->reshape_backwards) {
4211 writepos -= min_t(sector_t, reshape_sectors, writepos);
4212 readpos += reshape_sectors;
4213 safepos += reshape_sectors;
4214 } else {
4215 writepos += reshape_sectors;
4216 readpos -= min_t(sector_t, reshape_sectors, readpos);
4217 safepos -= min_t(sector_t, reshape_sectors, safepos);
4218 }
4219
4220 /* Having calculated the 'writepos' possibly use it
4221 * to set 'stripe_addr' which is where we will write to.
4222 */
4223 if (mddev->reshape_backwards) {
4224 BUG_ON(conf->reshape_progress == 0);
4225 stripe_addr = writepos;
4226 BUG_ON((mddev->dev_sectors &
4227 ~((sector_t)reshape_sectors - 1))
4228 - reshape_sectors - stripe_addr
4229 != sector_nr);
4230 } else {
4231 BUG_ON(writepos != sector_nr + reshape_sectors);
4232 stripe_addr = sector_nr;
4233 }
4234
4235 /* 'writepos' is the most advanced device address we might write.
4236 * 'readpos' is the least advanced device address we might read.
4237 * 'safepos' is the least address recorded in the metadata as having
4238 * been reshaped.
4239 * If there is a min_offset_diff, these are adjusted either by
4240 * increasing the safepos/readpos if diff is negative, or
4241 * increasing writepos if diff is positive.
4242 * If 'readpos' is then behind 'writepos', there is no way that we can
4243 * ensure safety in the face of a crash - that must be done by userspace
4244 * making a backup of the data. So in that case there is no particular
4245 * rush to update metadata.
4246 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4247 * update the metadata to advance 'safepos' to match 'readpos' so that
4248 * we can be safe in the event of a crash.
4249 * So we insist on updating metadata if safepos is behind writepos and
4250 * readpos is beyond writepos.
4251 * In any case, update the metadata every 10 seconds.
4252 * Maybe that number should be configurable, but I'm not sure it is
4253 * worth it.... maybe it could be a multiple of safemode_delay???
4254 */
4255 if (conf->min_offset_diff < 0) {
4256 safepos += -conf->min_offset_diff;
4257 readpos += -conf->min_offset_diff;
4258 } else
4259 writepos += conf->min_offset_diff;
4260
4261 if ((mddev->reshape_backwards
4262 ? (safepos > writepos && readpos < writepos)
4263 : (safepos < writepos && readpos > writepos)) ||
4264 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4265 /* Cannot proceed until we've updated the superblock... */
4266 wait_event(conf->wait_for_overlap,
4267 atomic_read(&conf->reshape_stripes)==0);
4268 mddev->reshape_position = conf->reshape_progress;
4269 mddev->curr_resync_completed = sector_nr;
4270 conf->reshape_checkpoint = jiffies;
4271 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4272 md_wakeup_thread(mddev->thread);
4273 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4274 kthread_should_stop());
4275 spin_lock_irq(&conf->device_lock);
4276 conf->reshape_safe = mddev->reshape_position;
4277 spin_unlock_irq(&conf->device_lock);
4278 wake_up(&conf->wait_for_overlap);
4279 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4280 }
4281
4282 INIT_LIST_HEAD(&stripes);
4283 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4284 int j;
4285 int skipped_disk = 0;
4286 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4287 set_bit(STRIPE_EXPANDING, &sh->state);
4288 atomic_inc(&conf->reshape_stripes);
4289 /* If any of this stripe is beyond the end of the old
4290 * array, then we need to zero those blocks
4291 */
4292 for (j=sh->disks; j--;) {
4293 sector_t s;
4294 if (j == sh->pd_idx)
4295 continue;
4296 if (conf->level == 6 &&
4297 j == sh->qd_idx)
4298 continue;
4299 s = compute_blocknr(sh, j, 0);
4300 if (s < raid5_size(mddev, 0, 0)) {
4301 skipped_disk = 1;
4302 continue;
4303 }
4304 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4305 set_bit(R5_Expanded, &sh->dev[j].flags);
4306 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4307 }
4308 if (!skipped_disk) {
4309 set_bit(STRIPE_EXPAND_READY, &sh->state);
4310 set_bit(STRIPE_HANDLE, &sh->state);
4311 }
4312 list_add(&sh->lru, &stripes);
4313 }
4314 spin_lock_irq(&conf->device_lock);
4315 if (mddev->reshape_backwards)
4316 conf->reshape_progress -= reshape_sectors * new_data_disks;
4317 else
4318 conf->reshape_progress += reshape_sectors * new_data_disks;
4319 spin_unlock_irq(&conf->device_lock);
4320 /* Ok, those stripe are ready. We can start scheduling
4321 * reads on the source stripes.
4322 * The source stripes are determined by mapping the first and last
4323 * block on the destination stripes.
4324 */
4325 first_sector =
4326 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4327 1, &dd_idx, NULL);
4328 last_sector =
4329 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4330 * new_data_disks - 1),
4331 1, &dd_idx, NULL);
4332 if (last_sector >= mddev->dev_sectors)
4333 last_sector = mddev->dev_sectors - 1;
4334 while (first_sector <= last_sector) {
4335 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4336 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4337 set_bit(STRIPE_HANDLE, &sh->state);
4338 release_stripe(sh);
4339 first_sector += STRIPE_SECTORS;
4340 }
4341 /* Now that the sources are clearly marked, we can release
4342 * the destination stripes
4343 */
4344 while (!list_empty(&stripes)) {
4345 sh = list_entry(stripes.next, struct stripe_head, lru);
4346 list_del_init(&sh->lru);
4347 release_stripe(sh);
4348 }
4349 /* If this takes us to the resync_max point where we have to pause,
4350 * then we need to write out the superblock.
4351 */
4352 sector_nr += reshape_sectors;
4353 if ((sector_nr - mddev->curr_resync_completed) * 2
4354 >= mddev->resync_max - mddev->curr_resync_completed) {
4355 /* Cannot proceed until we've updated the superblock... */
4356 wait_event(conf->wait_for_overlap,
4357 atomic_read(&conf->reshape_stripes) == 0);
4358 mddev->reshape_position = conf->reshape_progress;
4359 mddev->curr_resync_completed = sector_nr;
4360 conf->reshape_checkpoint = jiffies;
4361 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4362 md_wakeup_thread(mddev->thread);
4363 wait_event(mddev->sb_wait,
4364 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4365 || kthread_should_stop());
4366 spin_lock_irq(&conf->device_lock);
4367 conf->reshape_safe = mddev->reshape_position;
4368 spin_unlock_irq(&conf->device_lock);
4369 wake_up(&conf->wait_for_overlap);
4370 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4371 }
4372 return reshape_sectors;
4373}
4374
4375/* FIXME go_faster isn't used */
4376static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4377{
4378 struct r5conf *conf = mddev->private;
4379 struct stripe_head *sh;
4380 sector_t max_sector = mddev->dev_sectors;
4381 sector_t sync_blocks;
4382 int still_degraded = 0;
4383 int i;
4384
4385 if (sector_nr >= max_sector) {
4386 /* just being told to finish up .. nothing much to do */
4387
4388 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4389 end_reshape(conf);
4390 return 0;
4391 }
4392
4393 if (mddev->curr_resync < max_sector) /* aborted */
4394 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4395 &sync_blocks, 1);
4396 else /* completed sync */
4397 conf->fullsync = 0;
4398 bitmap_close_sync(mddev->bitmap);
4399
4400 return 0;
4401 }
4402
4403 /* Allow raid5_quiesce to complete */
4404 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4405
4406 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4407 return reshape_request(mddev, sector_nr, skipped);
4408
4409 /* No need to check resync_max as we never do more than one
4410 * stripe, and as resync_max will always be on a chunk boundary,
4411 * if the check in md_do_sync didn't fire, there is no chance
4412 * of overstepping resync_max here
4413 */
4414
4415 /* if there is too many failed drives and we are trying
4416 * to resync, then assert that we are finished, because there is
4417 * nothing we can do.
4418 */
4419 if (mddev->degraded >= conf->max_degraded &&
4420 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4421 sector_t rv = mddev->dev_sectors - sector_nr;
4422 *skipped = 1;
4423 return rv;
4424 }
4425 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4426 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4427 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4428 /* we can skip this block, and probably more */
4429 sync_blocks /= STRIPE_SECTORS;
4430 *skipped = 1;
4431 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4432 }
4433
4434 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4435
4436 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4437 if (sh == NULL) {
4438 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4439 /* make sure we don't swamp the stripe cache if someone else
4440 * is trying to get access
4441 */
4442 schedule_timeout_uninterruptible(1);
4443 }
4444 /* Need to check if array will still be degraded after recovery/resync
4445 * We don't need to check the 'failed' flag as when that gets set,
4446 * recovery aborts.
4447 */
4448 for (i = 0; i < conf->raid_disks; i++)
4449 if (conf->disks[i].rdev == NULL)
4450 still_degraded = 1;
4451
4452 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4453
4454 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4455
4456 handle_stripe(sh);
4457 release_stripe(sh);
4458
4459 return STRIPE_SECTORS;
4460}
4461
4462static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4463{
4464 /* We may not be able to submit a whole bio at once as there
4465 * may not be enough stripe_heads available.
4466 * We cannot pre-allocate enough stripe_heads as we may need
4467 * more than exist in the cache (if we allow ever large chunks).
4468 * So we do one stripe head at a time and record in
4469 * ->bi_hw_segments how many have been done.
4470 *
4471 * We *know* that this entire raid_bio is in one chunk, so
4472 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4473 */
4474 struct stripe_head *sh;
4475 int dd_idx;
4476 sector_t sector, logical_sector, last_sector;
4477 int scnt = 0;
4478 int remaining;
4479 int handled = 0;
4480
4481 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4482 sector = raid5_compute_sector(conf, logical_sector,
4483 0, &dd_idx, NULL);
4484 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4485
4486 for (; logical_sector < last_sector;
4487 logical_sector += STRIPE_SECTORS,
4488 sector += STRIPE_SECTORS,
4489 scnt++) {
4490
4491 if (scnt < raid5_bi_hw_segments(raid_bio))
4492 /* already done this stripe */
4493 continue;
4494
4495 sh = get_active_stripe(conf, sector, 0, 1, 0);
4496
4497 if (!sh) {
4498 /* failed to get a stripe - must wait */
4499 raid5_set_bi_hw_segments(raid_bio, scnt);
4500 conf->retry_read_aligned = raid_bio;
4501 return handled;
4502 }
4503
4504 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4505 release_stripe(sh);
4506 raid5_set_bi_hw_segments(raid_bio, scnt);
4507 conf->retry_read_aligned = raid_bio;
4508 return handled;
4509 }
4510
4511 handle_stripe(sh);
4512 release_stripe(sh);
4513 handled++;
4514 }
4515 spin_lock_irq(&conf->device_lock);
4516 remaining = raid5_dec_bi_phys_segments(raid_bio);
4517 spin_unlock_irq(&conf->device_lock);
4518 if (remaining == 0)
4519 bio_endio(raid_bio, 0);
4520 if (atomic_dec_and_test(&conf->active_aligned_reads))
4521 wake_up(&conf->wait_for_stripe);
4522 return handled;
4523}
4524
4525
4526/*
4527 * This is our raid5 kernel thread.
4528 *
4529 * We scan the hash table for stripes which can be handled now.
4530 * During the scan, completed stripes are saved for us by the interrupt
4531 * handler, so that they will not have to wait for our next wakeup.
4532 */
4533static void raid5d(struct mddev *mddev)
4534{
4535 struct stripe_head *sh;
4536 struct r5conf *conf = mddev->private;
4537 int handled;
4538 struct blk_plug plug;
4539
4540 pr_debug("+++ raid5d active\n");
4541
4542 md_check_recovery(mddev);
4543
4544 blk_start_plug(&plug);
4545 handled = 0;
4546 spin_lock_irq(&conf->device_lock);
4547 while (1) {
4548 struct bio *bio;
4549
4550 if (atomic_read(&mddev->plug_cnt) == 0 &&
4551 !list_empty(&conf->bitmap_list)) {
4552 /* Now is a good time to flush some bitmap updates */
4553 conf->seq_flush++;
4554 spin_unlock_irq(&conf->device_lock);
4555 bitmap_unplug(mddev->bitmap);
4556 spin_lock_irq(&conf->device_lock);
4557 conf->seq_write = conf->seq_flush;
4558 activate_bit_delay(conf);
4559 }
4560 if (atomic_read(&mddev->plug_cnt) == 0)
4561 raid5_activate_delayed(conf);
4562
4563 while ((bio = remove_bio_from_retry(conf))) {
4564 int ok;
4565 spin_unlock_irq(&conf->device_lock);
4566 ok = retry_aligned_read(conf, bio);
4567 spin_lock_irq(&conf->device_lock);
4568 if (!ok)
4569 break;
4570 handled++;
4571 }
4572
4573 sh = __get_priority_stripe(conf);
4574
4575 if (!sh)
4576 break;
4577 spin_unlock_irq(&conf->device_lock);
4578
4579 handled++;
4580 handle_stripe(sh);
4581 release_stripe(sh);
4582 cond_resched();
4583
4584 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4585 md_check_recovery(mddev);
4586
4587 spin_lock_irq(&conf->device_lock);
4588 }
4589 pr_debug("%d stripes handled\n", handled);
4590
4591 spin_unlock_irq(&conf->device_lock);
4592
4593 async_tx_issue_pending_all();
4594 blk_finish_plug(&plug);
4595
4596 pr_debug("--- raid5d inactive\n");
4597}
4598
4599static ssize_t
4600raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4601{
4602 struct r5conf *conf = mddev->private;
4603 if (conf)
4604 return sprintf(page, "%d\n", conf->max_nr_stripes);
4605 else
4606 return 0;
4607}
4608
4609int
4610raid5_set_cache_size(struct mddev *mddev, int size)
4611{
4612 struct r5conf *conf = mddev->private;
4613 int err;
4614
4615 if (size <= 16 || size > 32768)
4616 return -EINVAL;
4617 while (size < conf->max_nr_stripes) {
4618 if (drop_one_stripe(conf))
4619 conf->max_nr_stripes--;
4620 else
4621 break;
4622 }
4623 err = md_allow_write(mddev);
4624 if (err)
4625 return err;
4626 while (size > conf->max_nr_stripes) {
4627 if (grow_one_stripe(conf))
4628 conf->max_nr_stripes++;
4629 else break;
4630 }
4631 return 0;
4632}
4633EXPORT_SYMBOL(raid5_set_cache_size);
4634
4635static ssize_t
4636raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4637{
4638 struct r5conf *conf = mddev->private;
4639 unsigned long new;
4640 int err;
4641
4642 if (len >= PAGE_SIZE)
4643 return -EINVAL;
4644 if (!conf)
4645 return -ENODEV;
4646
4647 if (strict_strtoul(page, 10, &new))
4648 return -EINVAL;
4649 err = raid5_set_cache_size(mddev, new);
4650 if (err)
4651 return err;
4652 return len;
4653}
4654
4655static struct md_sysfs_entry
4656raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4657 raid5_show_stripe_cache_size,
4658 raid5_store_stripe_cache_size);
4659
4660static ssize_t
4661raid5_show_preread_threshold(struct mddev *mddev, char *page)
4662{
4663 struct r5conf *conf = mddev->private;
4664 if (conf)
4665 return sprintf(page, "%d\n", conf->bypass_threshold);
4666 else
4667 return 0;
4668}
4669
4670static ssize_t
4671raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4672{
4673 struct r5conf *conf = mddev->private;
4674 unsigned long new;
4675 if (len >= PAGE_SIZE)
4676 return -EINVAL;
4677 if (!conf)
4678 return -ENODEV;
4679
4680 if (strict_strtoul(page, 10, &new))
4681 return -EINVAL;
4682 if (new > conf->max_nr_stripes)
4683 return -EINVAL;
4684 conf->bypass_threshold = new;
4685 return len;
4686}
4687
4688static struct md_sysfs_entry
4689raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4690 S_IRUGO | S_IWUSR,
4691 raid5_show_preread_threshold,
4692 raid5_store_preread_threshold);
4693
4694static ssize_t
4695stripe_cache_active_show(struct mddev *mddev, char *page)
4696{
4697 struct r5conf *conf = mddev->private;
4698 if (conf)
4699 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4700 else
4701 return 0;
4702}
4703
4704static struct md_sysfs_entry
4705raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4706
4707static struct attribute *raid5_attrs[] = {
4708 &raid5_stripecache_size.attr,
4709 &raid5_stripecache_active.attr,
4710 &raid5_preread_bypass_threshold.attr,
4711 NULL,
4712};
4713static struct attribute_group raid5_attrs_group = {
4714 .name = NULL,
4715 .attrs = raid5_attrs,
4716};
4717
4718static sector_t
4719raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4720{
4721 struct r5conf *conf = mddev->private;
4722
4723 if (!sectors)
4724 sectors = mddev->dev_sectors;
4725 if (!raid_disks)
4726 /* size is defined by the smallest of previous and new size */
4727 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4728
4729 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4730 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4731 return sectors * (raid_disks - conf->max_degraded);
4732}
4733
4734static void raid5_free_percpu(struct r5conf *conf)
4735{
4736 struct raid5_percpu *percpu;
4737 unsigned long cpu;
4738
4739 if (!conf->percpu)
4740 return;
4741
4742 get_online_cpus();
4743 for_each_possible_cpu(cpu) {
4744 percpu = per_cpu_ptr(conf->percpu, cpu);
4745 safe_put_page(percpu->spare_page);
4746 kfree(percpu->scribble);
4747 }
4748#ifdef CONFIG_HOTPLUG_CPU
4749 unregister_cpu_notifier(&conf->cpu_notify);
4750#endif
4751 put_online_cpus();
4752
4753 free_percpu(conf->percpu);
4754}
4755
4756static void free_conf(struct r5conf *conf)
4757{
4758 shrink_stripes(conf);
4759 raid5_free_percpu(conf);
4760 kfree(conf->disks);
4761 kfree(conf->stripe_hashtbl);
4762 kfree(conf);
4763}
4764
4765#ifdef CONFIG_HOTPLUG_CPU
4766static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4767 void *hcpu)
4768{
4769 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4770 long cpu = (long)hcpu;
4771 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4772
4773 switch (action) {
4774 case CPU_UP_PREPARE:
4775 case CPU_UP_PREPARE_FROZEN:
4776 if (conf->level == 6 && !percpu->spare_page)
4777 percpu->spare_page = alloc_page(GFP_KERNEL);
4778 if (!percpu->scribble)
4779 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4780
4781 if (!percpu->scribble ||
4782 (conf->level == 6 && !percpu->spare_page)) {
4783 safe_put_page(percpu->spare_page);
4784 kfree(percpu->scribble);
4785 pr_err("%s: failed memory allocation for cpu%ld\n",
4786 __func__, cpu);
4787 return notifier_from_errno(-ENOMEM);
4788 }
4789 break;
4790 case CPU_DEAD:
4791 case CPU_DEAD_FROZEN:
4792 safe_put_page(percpu->spare_page);
4793 kfree(percpu->scribble);
4794 percpu->spare_page = NULL;
4795 percpu->scribble = NULL;
4796 break;
4797 default:
4798 break;
4799 }
4800 return NOTIFY_OK;
4801}
4802#endif
4803
4804static int raid5_alloc_percpu(struct r5conf *conf)
4805{
4806 unsigned long cpu;
4807 struct page *spare_page;
4808 struct raid5_percpu __percpu *allcpus;
4809 void *scribble;
4810 int err;
4811
4812 allcpus = alloc_percpu(struct raid5_percpu);
4813 if (!allcpus)
4814 return -ENOMEM;
4815 conf->percpu = allcpus;
4816
4817 get_online_cpus();
4818 err = 0;
4819 for_each_present_cpu(cpu) {
4820 if (conf->level == 6) {
4821 spare_page = alloc_page(GFP_KERNEL);
4822 if (!spare_page) {
4823 err = -ENOMEM;
4824 break;
4825 }
4826 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4827 }
4828 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4829 if (!scribble) {
4830 err = -ENOMEM;
4831 break;
4832 }
4833 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4834 }
4835#ifdef CONFIG_HOTPLUG_CPU
4836 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4837 conf->cpu_notify.priority = 0;
4838 if (err == 0)
4839 err = register_cpu_notifier(&conf->cpu_notify);
4840#endif
4841 put_online_cpus();
4842
4843 return err;
4844}
4845
4846static struct r5conf *setup_conf(struct mddev *mddev)
4847{
4848 struct r5conf *conf;
4849 int raid_disk, memory, max_disks;
4850 struct md_rdev *rdev;
4851 struct disk_info *disk;
4852 char pers_name[6];
4853
4854 if (mddev->new_level != 5
4855 && mddev->new_level != 4
4856 && mddev->new_level != 6) {
4857 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4858 mdname(mddev), mddev->new_level);
4859 return ERR_PTR(-EIO);
4860 }
4861 if ((mddev->new_level == 5
4862 && !algorithm_valid_raid5(mddev->new_layout)) ||
4863 (mddev->new_level == 6
4864 && !algorithm_valid_raid6(mddev->new_layout))) {
4865 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4866 mdname(mddev), mddev->new_layout);
4867 return ERR_PTR(-EIO);
4868 }
4869 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4870 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4871 mdname(mddev), mddev->raid_disks);
4872 return ERR_PTR(-EINVAL);
4873 }
4874
4875 if (!mddev->new_chunk_sectors ||
4876 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4877 !is_power_of_2(mddev->new_chunk_sectors)) {
4878 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4879 mdname(mddev), mddev->new_chunk_sectors << 9);
4880 return ERR_PTR(-EINVAL);
4881 }
4882
4883 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4884 if (conf == NULL)
4885 goto abort;
4886 spin_lock_init(&conf->device_lock);
4887 init_waitqueue_head(&conf->wait_for_stripe);
4888 init_waitqueue_head(&conf->wait_for_overlap);
4889 INIT_LIST_HEAD(&conf->handle_list);
4890 INIT_LIST_HEAD(&conf->hold_list);
4891 INIT_LIST_HEAD(&conf->delayed_list);
4892 INIT_LIST_HEAD(&conf->bitmap_list);
4893 INIT_LIST_HEAD(&conf->inactive_list);
4894 atomic_set(&conf->active_stripes, 0);
4895 atomic_set(&conf->preread_active_stripes, 0);
4896 atomic_set(&conf->active_aligned_reads, 0);
4897 conf->bypass_threshold = BYPASS_THRESHOLD;
4898 conf->recovery_disabled = mddev->recovery_disabled - 1;
4899
4900 conf->raid_disks = mddev->raid_disks;
4901 if (mddev->reshape_position == MaxSector)
4902 conf->previous_raid_disks = mddev->raid_disks;
4903 else
4904 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4905 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4906 conf->scribble_len = scribble_len(max_disks);
4907
4908 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4909 GFP_KERNEL);
4910 if (!conf->disks)
4911 goto abort;
4912
4913 conf->mddev = mddev;
4914
4915 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4916 goto abort;
4917
4918 conf->level = mddev->new_level;
4919 if (raid5_alloc_percpu(conf) != 0)
4920 goto abort;
4921
4922 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4923
4924 rdev_for_each(rdev, mddev) {
4925 raid_disk = rdev->raid_disk;
4926 if (raid_disk >= max_disks
4927 || raid_disk < 0)
4928 continue;
4929 disk = conf->disks + raid_disk;
4930
4931 if (test_bit(Replacement, &rdev->flags)) {
4932 if (disk->replacement)
4933 goto abort;
4934 disk->replacement = rdev;
4935 } else {
4936 if (disk->rdev)
4937 goto abort;
4938 disk->rdev = rdev;
4939 }
4940
4941 if (test_bit(In_sync, &rdev->flags)) {
4942 char b[BDEVNAME_SIZE];
4943 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4944 " disk %d\n",
4945 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4946 } else if (rdev->saved_raid_disk != raid_disk)
4947 /* Cannot rely on bitmap to complete recovery */
4948 conf->fullsync = 1;
4949 }
4950
4951 conf->chunk_sectors = mddev->new_chunk_sectors;
4952 conf->level = mddev->new_level;
4953 if (conf->level == 6)
4954 conf->max_degraded = 2;
4955 else
4956 conf->max_degraded = 1;
4957 conf->algorithm = mddev->new_layout;
4958 conf->max_nr_stripes = NR_STRIPES;
4959 conf->reshape_progress = mddev->reshape_position;
4960 if (conf->reshape_progress != MaxSector) {
4961 conf->prev_chunk_sectors = mddev->chunk_sectors;
4962 conf->prev_algo = mddev->layout;
4963 }
4964
4965 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4966 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4967 if (grow_stripes(conf, conf->max_nr_stripes)) {
4968 printk(KERN_ERR
4969 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4970 mdname(mddev), memory);
4971 goto abort;
4972 } else
4973 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4974 mdname(mddev), memory);
4975
4976 sprintf(pers_name, "raid%d", mddev->new_level);
4977 conf->thread = md_register_thread(raid5d, mddev, pers_name);
4978 if (!conf->thread) {
4979 printk(KERN_ERR
4980 "md/raid:%s: couldn't allocate thread.\n",
4981 mdname(mddev));
4982 goto abort;
4983 }
4984
4985 return conf;
4986
4987 abort:
4988 if (conf) {
4989 free_conf(conf);
4990 return ERR_PTR(-EIO);
4991 } else
4992 return ERR_PTR(-ENOMEM);
4993}
4994
4995
4996static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4997{
4998 switch (algo) {
4999 case ALGORITHM_PARITY_0:
5000 if (raid_disk < max_degraded)
5001 return 1;
5002 break;
5003 case ALGORITHM_PARITY_N:
5004 if (raid_disk >= raid_disks - max_degraded)
5005 return 1;
5006 break;
5007 case ALGORITHM_PARITY_0_6:
5008 if (raid_disk == 0 ||
5009 raid_disk == raid_disks - 1)
5010 return 1;
5011 break;
5012 case ALGORITHM_LEFT_ASYMMETRIC_6:
5013 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5014 case ALGORITHM_LEFT_SYMMETRIC_6:
5015 case ALGORITHM_RIGHT_SYMMETRIC_6:
5016 if (raid_disk == raid_disks - 1)
5017 return 1;
5018 }
5019 return 0;
5020}
5021
5022static int run(struct mddev *mddev)
5023{
5024 struct r5conf *conf;
5025 int working_disks = 0;
5026 int dirty_parity_disks = 0;
5027 struct md_rdev *rdev;
5028 sector_t reshape_offset = 0;
5029 int i;
5030 long long min_offset_diff = 0;
5031 int first = 1;
5032
5033 if (mddev->recovery_cp != MaxSector)
5034 printk(KERN_NOTICE "md/raid:%s: not clean"
5035 " -- starting background reconstruction\n",
5036 mdname(mddev));
5037
5038 rdev_for_each(rdev, mddev) {
5039 long long diff;
5040 if (rdev->raid_disk < 0)
5041 continue;
5042 diff = (rdev->new_data_offset - rdev->data_offset);
5043 if (first) {
5044 min_offset_diff = diff;
5045 first = 0;
5046 } else if (mddev->reshape_backwards &&
5047 diff < min_offset_diff)
5048 min_offset_diff = diff;
5049 else if (!mddev->reshape_backwards &&
5050 diff > min_offset_diff)
5051 min_offset_diff = diff;
5052 }
5053
5054 if (mddev->reshape_position != MaxSector) {
5055 /* Check that we can continue the reshape.
5056 * Difficulties arise if the stripe we would write to
5057 * next is at or after the stripe we would read from next.
5058 * For a reshape that changes the number of devices, this
5059 * is only possible for a very short time, and mdadm makes
5060 * sure that time appears to have past before assembling
5061 * the array. So we fail if that time hasn't passed.
5062 * For a reshape that keeps the number of devices the same
5063 * mdadm must be monitoring the reshape can keeping the
5064 * critical areas read-only and backed up. It will start
5065 * the array in read-only mode, so we check for that.
5066 */
5067 sector_t here_new, here_old;
5068 int old_disks;
5069 int max_degraded = (mddev->level == 6 ? 2 : 1);
5070
5071 if (mddev->new_level != mddev->level) {
5072 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5073 "required - aborting.\n",
5074 mdname(mddev));
5075 return -EINVAL;
5076 }
5077 old_disks = mddev->raid_disks - mddev->delta_disks;
5078 /* reshape_position must be on a new-stripe boundary, and one
5079 * further up in new geometry must map after here in old
5080 * geometry.
5081 */
5082 here_new = mddev->reshape_position;
5083 if (sector_div(here_new, mddev->new_chunk_sectors *
5084 (mddev->raid_disks - max_degraded))) {
5085 printk(KERN_ERR "md/raid:%s: reshape_position not "
5086 "on a stripe boundary\n", mdname(mddev));
5087 return -EINVAL;
5088 }
5089 reshape_offset = here_new * mddev->new_chunk_sectors;
5090 /* here_new is the stripe we will write to */
5091 here_old = mddev->reshape_position;
5092 sector_div(here_old, mddev->chunk_sectors *
5093 (old_disks-max_degraded));
5094 /* here_old is the first stripe that we might need to read
5095 * from */
5096 if (mddev->delta_disks == 0) {
5097 if ((here_new * mddev->new_chunk_sectors !=
5098 here_old * mddev->chunk_sectors)) {
5099 printk(KERN_ERR "md/raid:%s: reshape position is"
5100 " confused - aborting\n", mdname(mddev));
5101 return -EINVAL;
5102 }
5103 /* We cannot be sure it is safe to start an in-place
5104 * reshape. It is only safe if user-space is monitoring
5105 * and taking constant backups.
5106 * mdadm always starts a situation like this in
5107 * readonly mode so it can take control before
5108 * allowing any writes. So just check for that.
5109 */
5110 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5111 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5112 /* not really in-place - so OK */;
5113 else if (mddev->ro == 0) {
5114 printk(KERN_ERR "md/raid:%s: in-place reshape "
5115 "must be started in read-only mode "
5116 "- aborting\n",
5117 mdname(mddev));
5118 return -EINVAL;
5119 }
5120 } else if (mddev->reshape_backwards
5121 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5122 here_old * mddev->chunk_sectors)
5123 : (here_new * mddev->new_chunk_sectors >=
5124 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5125 /* Reading from the same stripe as writing to - bad */
5126 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5127 "auto-recovery - aborting.\n",
5128 mdname(mddev));
5129 return -EINVAL;
5130 }
5131 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5132 mdname(mddev));
5133 /* OK, we should be able to continue; */
5134 } else {
5135 BUG_ON(mddev->level != mddev->new_level);
5136 BUG_ON(mddev->layout != mddev->new_layout);
5137 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5138 BUG_ON(mddev->delta_disks != 0);
5139 }
5140
5141 if (mddev->private == NULL)
5142 conf = setup_conf(mddev);
5143 else
5144 conf = mddev->private;
5145
5146 if (IS_ERR(conf))
5147 return PTR_ERR(conf);
5148
5149 conf->min_offset_diff = min_offset_diff;
5150 mddev->thread = conf->thread;
5151 conf->thread = NULL;
5152 mddev->private = conf;
5153
5154 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5155 i++) {
5156 rdev = conf->disks[i].rdev;
5157 if (!rdev && conf->disks[i].replacement) {
5158 /* The replacement is all we have yet */
5159 rdev = conf->disks[i].replacement;
5160 conf->disks[i].replacement = NULL;
5161 clear_bit(Replacement, &rdev->flags);
5162 conf->disks[i].rdev = rdev;
5163 }
5164 if (!rdev)
5165 continue;
5166 if (conf->disks[i].replacement &&
5167 conf->reshape_progress != MaxSector) {
5168 /* replacements and reshape simply do not mix. */
5169 printk(KERN_ERR "md: cannot handle concurrent "
5170 "replacement and reshape.\n");
5171 goto abort;
5172 }
5173 if (test_bit(In_sync, &rdev->flags)) {
5174 working_disks++;
5175 continue;
5176 }
5177 /* This disc is not fully in-sync. However if it
5178 * just stored parity (beyond the recovery_offset),
5179 * when we don't need to be concerned about the
5180 * array being dirty.
5181 * When reshape goes 'backwards', we never have
5182 * partially completed devices, so we only need
5183 * to worry about reshape going forwards.
5184 */
5185 /* Hack because v0.91 doesn't store recovery_offset properly. */
5186 if (mddev->major_version == 0 &&
5187 mddev->minor_version > 90)
5188 rdev->recovery_offset = reshape_offset;
5189
5190 if (rdev->recovery_offset < reshape_offset) {
5191 /* We need to check old and new layout */
5192 if (!only_parity(rdev->raid_disk,
5193 conf->algorithm,
5194 conf->raid_disks,
5195 conf->max_degraded))
5196 continue;
5197 }
5198 if (!only_parity(rdev->raid_disk,
5199 conf->prev_algo,
5200 conf->previous_raid_disks,
5201 conf->max_degraded))
5202 continue;
5203 dirty_parity_disks++;
5204 }
5205
5206 /*
5207 * 0 for a fully functional array, 1 or 2 for a degraded array.
5208 */
5209 mddev->degraded = calc_degraded(conf);
5210
5211 if (has_failed(conf)) {
5212 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5213 " (%d/%d failed)\n",
5214 mdname(mddev), mddev->degraded, conf->raid_disks);
5215 goto abort;
5216 }
5217
5218 /* device size must be a multiple of chunk size */
5219 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5220 mddev->resync_max_sectors = mddev->dev_sectors;
5221
5222 if (mddev->degraded > dirty_parity_disks &&
5223 mddev->recovery_cp != MaxSector) {
5224 if (mddev->ok_start_degraded)
5225 printk(KERN_WARNING
5226 "md/raid:%s: starting dirty degraded array"
5227 " - data corruption possible.\n",
5228 mdname(mddev));
5229 else {
5230 printk(KERN_ERR
5231 "md/raid:%s: cannot start dirty degraded array.\n",
5232 mdname(mddev));
5233 goto abort;
5234 }
5235 }
5236
5237 if (mddev->degraded == 0)
5238 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5239 " devices, algorithm %d\n", mdname(mddev), conf->level,
5240 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5241 mddev->new_layout);
5242 else
5243 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5244 " out of %d devices, algorithm %d\n",
5245 mdname(mddev), conf->level,
5246 mddev->raid_disks - mddev->degraded,
5247 mddev->raid_disks, mddev->new_layout);
5248
5249 print_raid5_conf(conf);
5250
5251 if (conf->reshape_progress != MaxSector) {
5252 conf->reshape_safe = conf->reshape_progress;
5253 atomic_set(&conf->reshape_stripes, 0);
5254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5258 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5259 "reshape");
5260 }
5261
5262
5263 /* Ok, everything is just fine now */
5264 if (mddev->to_remove == &raid5_attrs_group)
5265 mddev->to_remove = NULL;
5266 else if (mddev->kobj.sd &&
5267 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5268 printk(KERN_WARNING
5269 "raid5: failed to create sysfs attributes for %s\n",
5270 mdname(mddev));
5271 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5272
5273 if (mddev->queue) {
5274 int chunk_size;
5275 /* read-ahead size must cover two whole stripes, which
5276 * is 2 * (datadisks) * chunksize where 'n' is the
5277 * number of raid devices
5278 */
5279 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5280 int stripe = data_disks *
5281 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5282 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5283 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5284
5285 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5286
5287 mddev->queue->backing_dev_info.congested_data = mddev;
5288 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5289
5290 chunk_size = mddev->chunk_sectors << 9;
5291 blk_queue_io_min(mddev->queue, chunk_size);
5292 blk_queue_io_opt(mddev->queue, chunk_size *
5293 (conf->raid_disks - conf->max_degraded));
5294
5295 rdev_for_each(rdev, mddev) {
5296 disk_stack_limits(mddev->gendisk, rdev->bdev,
5297 rdev->data_offset << 9);
5298 disk_stack_limits(mddev->gendisk, rdev->bdev,
5299 rdev->new_data_offset << 9);
5300 }
5301 }
5302
5303 return 0;
5304abort:
5305 md_unregister_thread(&mddev->thread);
5306 print_raid5_conf(conf);
5307 free_conf(conf);
5308 mddev->private = NULL;
5309 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5310 return -EIO;
5311}
5312
5313static int stop(struct mddev *mddev)
5314{
5315 struct r5conf *conf = mddev->private;
5316
5317 md_unregister_thread(&mddev->thread);
5318 if (mddev->queue)
5319 mddev->queue->backing_dev_info.congested_fn = NULL;
5320 free_conf(conf);
5321 mddev->private = NULL;
5322 mddev->to_remove = &raid5_attrs_group;
5323 return 0;
5324}
5325
5326static void status(struct seq_file *seq, struct mddev *mddev)
5327{
5328 struct r5conf *conf = mddev->private;
5329 int i;
5330
5331 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5332 mddev->chunk_sectors / 2, mddev->layout);
5333 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5334 for (i = 0; i < conf->raid_disks; i++)
5335 seq_printf (seq, "%s",
5336 conf->disks[i].rdev &&
5337 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5338 seq_printf (seq, "]");
5339}
5340
5341static void print_raid5_conf (struct r5conf *conf)
5342{
5343 int i;
5344 struct disk_info *tmp;
5345
5346 printk(KERN_DEBUG "RAID conf printout:\n");
5347 if (!conf) {
5348 printk("(conf==NULL)\n");
5349 return;
5350 }
5351 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5352 conf->raid_disks,
5353 conf->raid_disks - conf->mddev->degraded);
5354
5355 for (i = 0; i < conf->raid_disks; i++) {
5356 char b[BDEVNAME_SIZE];
5357 tmp = conf->disks + i;
5358 if (tmp->rdev)
5359 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5360 i, !test_bit(Faulty, &tmp->rdev->flags),
5361 bdevname(tmp->rdev->bdev, b));
5362 }
5363}
5364
5365static int raid5_spare_active(struct mddev *mddev)
5366{
5367 int i;
5368 struct r5conf *conf = mddev->private;
5369 struct disk_info *tmp;
5370 int count = 0;
5371 unsigned long flags;
5372
5373 for (i = 0; i < conf->raid_disks; i++) {
5374 tmp = conf->disks + i;
5375 if (tmp->replacement
5376 && tmp->replacement->recovery_offset == MaxSector
5377 && !test_bit(Faulty, &tmp->replacement->flags)
5378 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5379 /* Replacement has just become active. */
5380 if (!tmp->rdev
5381 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5382 count++;
5383 if (tmp->rdev) {
5384 /* Replaced device not technically faulty,
5385 * but we need to be sure it gets removed
5386 * and never re-added.
5387 */
5388 set_bit(Faulty, &tmp->rdev->flags);
5389 sysfs_notify_dirent_safe(
5390 tmp->rdev->sysfs_state);
5391 }
5392 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5393 } else if (tmp->rdev
5394 && tmp->rdev->recovery_offset == MaxSector
5395 && !test_bit(Faulty, &tmp->rdev->flags)
5396 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5397 count++;
5398 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5399 }
5400 }
5401 spin_lock_irqsave(&conf->device_lock, flags);
5402 mddev->degraded = calc_degraded(conf);
5403 spin_unlock_irqrestore(&conf->device_lock, flags);
5404 print_raid5_conf(conf);
5405 return count;
5406}
5407
5408static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5409{
5410 struct r5conf *conf = mddev->private;
5411 int err = 0;
5412 int number = rdev->raid_disk;
5413 struct md_rdev **rdevp;
5414 struct disk_info *p = conf->disks + number;
5415
5416 print_raid5_conf(conf);
5417 if (rdev == p->rdev)
5418 rdevp = &p->rdev;
5419 else if (rdev == p->replacement)
5420 rdevp = &p->replacement;
5421 else
5422 return 0;
5423
5424 if (number >= conf->raid_disks &&
5425 conf->reshape_progress == MaxSector)
5426 clear_bit(In_sync, &rdev->flags);
5427
5428 if (test_bit(In_sync, &rdev->flags) ||
5429 atomic_read(&rdev->nr_pending)) {
5430 err = -EBUSY;
5431 goto abort;
5432 }
5433 /* Only remove non-faulty devices if recovery
5434 * isn't possible.
5435 */
5436 if (!test_bit(Faulty, &rdev->flags) &&
5437 mddev->recovery_disabled != conf->recovery_disabled &&
5438 !has_failed(conf) &&
5439 (!p->replacement || p->replacement == rdev) &&
5440 number < conf->raid_disks) {
5441 err = -EBUSY;
5442 goto abort;
5443 }
5444 *rdevp = NULL;
5445 synchronize_rcu();
5446 if (atomic_read(&rdev->nr_pending)) {
5447 /* lost the race, try later */
5448 err = -EBUSY;
5449 *rdevp = rdev;
5450 } else if (p->replacement) {
5451 /* We must have just cleared 'rdev' */
5452 p->rdev = p->replacement;
5453 clear_bit(Replacement, &p->replacement->flags);
5454 smp_mb(); /* Make sure other CPUs may see both as identical
5455 * but will never see neither - if they are careful
5456 */
5457 p->replacement = NULL;
5458 clear_bit(WantReplacement, &rdev->flags);
5459 } else
5460 /* We might have just removed the Replacement as faulty-
5461 * clear the bit just in case
5462 */
5463 clear_bit(WantReplacement, &rdev->flags);
5464abort:
5465
5466 print_raid5_conf(conf);
5467 return err;
5468}
5469
5470static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5471{
5472 struct r5conf *conf = mddev->private;
5473 int err = -EEXIST;
5474 int disk;
5475 struct disk_info *p;
5476 int first = 0;
5477 int last = conf->raid_disks - 1;
5478
5479 if (mddev->recovery_disabled == conf->recovery_disabled)
5480 return -EBUSY;
5481
5482 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5483 /* no point adding a device */
5484 return -EINVAL;
5485
5486 if (rdev->raid_disk >= 0)
5487 first = last = rdev->raid_disk;
5488
5489 /*
5490 * find the disk ... but prefer rdev->saved_raid_disk
5491 * if possible.
5492 */
5493 if (rdev->saved_raid_disk >= 0 &&
5494 rdev->saved_raid_disk >= first &&
5495 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5496 first = rdev->saved_raid_disk;
5497
5498 for (disk = first; disk <= last; disk++) {
5499 p = conf->disks + disk;
5500 if (p->rdev == NULL) {
5501 clear_bit(In_sync, &rdev->flags);
5502 rdev->raid_disk = disk;
5503 err = 0;
5504 if (rdev->saved_raid_disk != disk)
5505 conf->fullsync = 1;
5506 rcu_assign_pointer(p->rdev, rdev);
5507 goto out;
5508 }
5509 }
5510 for (disk = first; disk <= last; disk++) {
5511 p = conf->disks + disk;
5512 if (test_bit(WantReplacement, &p->rdev->flags) &&
5513 p->replacement == NULL) {
5514 clear_bit(In_sync, &rdev->flags);
5515 set_bit(Replacement, &rdev->flags);
5516 rdev->raid_disk = disk;
5517 err = 0;
5518 conf->fullsync = 1;
5519 rcu_assign_pointer(p->replacement, rdev);
5520 break;
5521 }
5522 }
5523out:
5524 print_raid5_conf(conf);
5525 return err;
5526}
5527
5528static int raid5_resize(struct mddev *mddev, sector_t sectors)
5529{
5530 /* no resync is happening, and there is enough space
5531 * on all devices, so we can resize.
5532 * We need to make sure resync covers any new space.
5533 * If the array is shrinking we should possibly wait until
5534 * any io in the removed space completes, but it hardly seems
5535 * worth it.
5536 */
5537 sector_t newsize;
5538 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5539 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5540 if (mddev->external_size &&
5541 mddev->array_sectors > newsize)
5542 return -EINVAL;
5543 if (mddev->bitmap) {
5544 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5545 if (ret)
5546 return ret;
5547 }
5548 md_set_array_sectors(mddev, newsize);
5549 set_capacity(mddev->gendisk, mddev->array_sectors);
5550 revalidate_disk(mddev->gendisk);
5551 if (sectors > mddev->dev_sectors &&
5552 mddev->recovery_cp > mddev->dev_sectors) {
5553 mddev->recovery_cp = mddev->dev_sectors;
5554 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5555 }
5556 mddev->dev_sectors = sectors;
5557 mddev->resync_max_sectors = sectors;
5558 return 0;
5559}
5560
5561static int check_stripe_cache(struct mddev *mddev)
5562{
5563 /* Can only proceed if there are plenty of stripe_heads.
5564 * We need a minimum of one full stripe,, and for sensible progress
5565 * it is best to have about 4 times that.
5566 * If we require 4 times, then the default 256 4K stripe_heads will
5567 * allow for chunk sizes up to 256K, which is probably OK.
5568 * If the chunk size is greater, user-space should request more
5569 * stripe_heads first.
5570 */
5571 struct r5conf *conf = mddev->private;
5572 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5573 > conf->max_nr_stripes ||
5574 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5575 > conf->max_nr_stripes) {
5576 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5577 mdname(mddev),
5578 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5579 / STRIPE_SIZE)*4);
5580 return 0;
5581 }
5582 return 1;
5583}
5584
5585static int check_reshape(struct mddev *mddev)
5586{
5587 struct r5conf *conf = mddev->private;
5588
5589 if (mddev->delta_disks == 0 &&
5590 mddev->new_layout == mddev->layout &&
5591 mddev->new_chunk_sectors == mddev->chunk_sectors)
5592 return 0; /* nothing to do */
5593 if (has_failed(conf))
5594 return -EINVAL;
5595 if (mddev->delta_disks < 0) {
5596 /* We might be able to shrink, but the devices must
5597 * be made bigger first.
5598 * For raid6, 4 is the minimum size.
5599 * Otherwise 2 is the minimum
5600 */
5601 int min = 2;
5602 if (mddev->level == 6)
5603 min = 4;
5604 if (mddev->raid_disks + mddev->delta_disks < min)
5605 return -EINVAL;
5606 }
5607
5608 if (!check_stripe_cache(mddev))
5609 return -ENOSPC;
5610
5611 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5612}
5613
5614static int raid5_start_reshape(struct mddev *mddev)
5615{
5616 struct r5conf *conf = mddev->private;
5617 struct md_rdev *rdev;
5618 int spares = 0;
5619 unsigned long flags;
5620
5621 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5622 return -EBUSY;
5623
5624 if (!check_stripe_cache(mddev))
5625 return -ENOSPC;
5626
5627 if (has_failed(conf))
5628 return -EINVAL;
5629
5630 rdev_for_each(rdev, mddev) {
5631 if (!test_bit(In_sync, &rdev->flags)
5632 && !test_bit(Faulty, &rdev->flags))
5633 spares++;
5634 }
5635
5636 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5637 /* Not enough devices even to make a degraded array
5638 * of that size
5639 */
5640 return -EINVAL;
5641
5642 /* Refuse to reduce size of the array. Any reductions in
5643 * array size must be through explicit setting of array_size
5644 * attribute.
5645 */
5646 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5647 < mddev->array_sectors) {
5648 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5649 "before number of disks\n", mdname(mddev));
5650 return -EINVAL;
5651 }
5652
5653 atomic_set(&conf->reshape_stripes, 0);
5654 spin_lock_irq(&conf->device_lock);
5655 conf->previous_raid_disks = conf->raid_disks;
5656 conf->raid_disks += mddev->delta_disks;
5657 conf->prev_chunk_sectors = conf->chunk_sectors;
5658 conf->chunk_sectors = mddev->new_chunk_sectors;
5659 conf->prev_algo = conf->algorithm;
5660 conf->algorithm = mddev->new_layout;
5661 conf->generation++;
5662 /* Code that selects data_offset needs to see the generation update
5663 * if reshape_progress has been set - so a memory barrier needed.
5664 */
5665 smp_mb();
5666 if (mddev->reshape_backwards)
5667 conf->reshape_progress = raid5_size(mddev, 0, 0);
5668 else
5669 conf->reshape_progress = 0;
5670 conf->reshape_safe = conf->reshape_progress;
5671 spin_unlock_irq(&conf->device_lock);
5672
5673 /* Add some new drives, as many as will fit.
5674 * We know there are enough to make the newly sized array work.
5675 * Don't add devices if we are reducing the number of
5676 * devices in the array. This is because it is not possible
5677 * to correctly record the "partially reconstructed" state of
5678 * such devices during the reshape and confusion could result.
5679 */
5680 if (mddev->delta_disks >= 0) {
5681 rdev_for_each(rdev, mddev)
5682 if (rdev->raid_disk < 0 &&
5683 !test_bit(Faulty, &rdev->flags)) {
5684 if (raid5_add_disk(mddev, rdev) == 0) {
5685 if (rdev->raid_disk
5686 >= conf->previous_raid_disks)
5687 set_bit(In_sync, &rdev->flags);
5688 else
5689 rdev->recovery_offset = 0;
5690
5691 if (sysfs_link_rdev(mddev, rdev))
5692 /* Failure here is OK */;
5693 }
5694 } else if (rdev->raid_disk >= conf->previous_raid_disks
5695 && !test_bit(Faulty, &rdev->flags)) {
5696 /* This is a spare that was manually added */
5697 set_bit(In_sync, &rdev->flags);
5698 }
5699
5700 /* When a reshape changes the number of devices,
5701 * ->degraded is measured against the larger of the
5702 * pre and post number of devices.
5703 */
5704 spin_lock_irqsave(&conf->device_lock, flags);
5705 mddev->degraded = calc_degraded(conf);
5706 spin_unlock_irqrestore(&conf->device_lock, flags);
5707 }
5708 mddev->raid_disks = conf->raid_disks;
5709 mddev->reshape_position = conf->reshape_progress;
5710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5711
5712 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5713 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5714 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5715 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5716 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5717 "reshape");
5718 if (!mddev->sync_thread) {
5719 mddev->recovery = 0;
5720 spin_lock_irq(&conf->device_lock);
5721 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5722 rdev_for_each(rdev, mddev)
5723 rdev->new_data_offset = rdev->data_offset;
5724 smp_wmb();
5725 conf->reshape_progress = MaxSector;
5726 mddev->reshape_position = MaxSector;
5727 spin_unlock_irq(&conf->device_lock);
5728 return -EAGAIN;
5729 }
5730 conf->reshape_checkpoint = jiffies;
5731 md_wakeup_thread(mddev->sync_thread);
5732 md_new_event(mddev);
5733 return 0;
5734}
5735
5736/* This is called from the reshape thread and should make any
5737 * changes needed in 'conf'
5738 */
5739static void end_reshape(struct r5conf *conf)
5740{
5741
5742 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5743 struct md_rdev *rdev;
5744
5745 spin_lock_irq(&conf->device_lock);
5746 conf->previous_raid_disks = conf->raid_disks;
5747 rdev_for_each(rdev, conf->mddev)
5748 rdev->data_offset = rdev->new_data_offset;
5749 smp_wmb();
5750 conf->reshape_progress = MaxSector;
5751 spin_unlock_irq(&conf->device_lock);
5752 wake_up(&conf->wait_for_overlap);
5753
5754 /* read-ahead size must cover two whole stripes, which is
5755 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5756 */
5757 if (conf->mddev->queue) {
5758 int data_disks = conf->raid_disks - conf->max_degraded;
5759 int stripe = data_disks * ((conf->chunk_sectors << 9)
5760 / PAGE_SIZE);
5761 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5762 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5763 }
5764 }
5765}
5766
5767/* This is called from the raid5d thread with mddev_lock held.
5768 * It makes config changes to the device.
5769 */
5770static void raid5_finish_reshape(struct mddev *mddev)
5771{
5772 struct r5conf *conf = mddev->private;
5773
5774 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5775
5776 if (mddev->delta_disks > 0) {
5777 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5778 set_capacity(mddev->gendisk, mddev->array_sectors);
5779 revalidate_disk(mddev->gendisk);
5780 } else {
5781 int d;
5782 spin_lock_irq(&conf->device_lock);
5783 mddev->degraded = calc_degraded(conf);
5784 spin_unlock_irq(&conf->device_lock);
5785 for (d = conf->raid_disks ;
5786 d < conf->raid_disks - mddev->delta_disks;
5787 d++) {
5788 struct md_rdev *rdev = conf->disks[d].rdev;
5789 if (rdev)
5790 clear_bit(In_sync, &rdev->flags);
5791 rdev = conf->disks[d].replacement;
5792 if (rdev)
5793 clear_bit(In_sync, &rdev->flags);
5794 }
5795 }
5796 mddev->layout = conf->algorithm;
5797 mddev->chunk_sectors = conf->chunk_sectors;
5798 mddev->reshape_position = MaxSector;
5799 mddev->delta_disks = 0;
5800 mddev->reshape_backwards = 0;
5801 }
5802}
5803
5804static void raid5_quiesce(struct mddev *mddev, int state)
5805{
5806 struct r5conf *conf = mddev->private;
5807
5808 switch(state) {
5809 case 2: /* resume for a suspend */
5810 wake_up(&conf->wait_for_overlap);
5811 break;
5812
5813 case 1: /* stop all writes */
5814 spin_lock_irq(&conf->device_lock);
5815 /* '2' tells resync/reshape to pause so that all
5816 * active stripes can drain
5817 */
5818 conf->quiesce = 2;
5819 wait_event_lock_irq(conf->wait_for_stripe,
5820 atomic_read(&conf->active_stripes) == 0 &&
5821 atomic_read(&conf->active_aligned_reads) == 0,
5822 conf->device_lock, /* nothing */);
5823 conf->quiesce = 1;
5824 spin_unlock_irq(&conf->device_lock);
5825 /* allow reshape to continue */
5826 wake_up(&conf->wait_for_overlap);
5827 break;
5828
5829 case 0: /* re-enable writes */
5830 spin_lock_irq(&conf->device_lock);
5831 conf->quiesce = 0;
5832 wake_up(&conf->wait_for_stripe);
5833 wake_up(&conf->wait_for_overlap);
5834 spin_unlock_irq(&conf->device_lock);
5835 break;
5836 }
5837}
5838
5839
5840static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5841{
5842 struct r0conf *raid0_conf = mddev->private;
5843 sector_t sectors;
5844
5845 /* for raid0 takeover only one zone is supported */
5846 if (raid0_conf->nr_strip_zones > 1) {
5847 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5848 mdname(mddev));
5849 return ERR_PTR(-EINVAL);
5850 }
5851
5852 sectors = raid0_conf->strip_zone[0].zone_end;
5853 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5854 mddev->dev_sectors = sectors;
5855 mddev->new_level = level;
5856 mddev->new_layout = ALGORITHM_PARITY_N;
5857 mddev->new_chunk_sectors = mddev->chunk_sectors;
5858 mddev->raid_disks += 1;
5859 mddev->delta_disks = 1;
5860 /* make sure it will be not marked as dirty */
5861 mddev->recovery_cp = MaxSector;
5862
5863 return setup_conf(mddev);
5864}
5865
5866
5867static void *raid5_takeover_raid1(struct mddev *mddev)
5868{
5869 int chunksect;
5870
5871 if (mddev->raid_disks != 2 ||
5872 mddev->degraded > 1)
5873 return ERR_PTR(-EINVAL);
5874
5875 /* Should check if there are write-behind devices? */
5876
5877 chunksect = 64*2; /* 64K by default */
5878
5879 /* The array must be an exact multiple of chunksize */
5880 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5881 chunksect >>= 1;
5882
5883 if ((chunksect<<9) < STRIPE_SIZE)
5884 /* array size does not allow a suitable chunk size */
5885 return ERR_PTR(-EINVAL);
5886
5887 mddev->new_level = 5;
5888 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5889 mddev->new_chunk_sectors = chunksect;
5890
5891 return setup_conf(mddev);
5892}
5893
5894static void *raid5_takeover_raid6(struct mddev *mddev)
5895{
5896 int new_layout;
5897
5898 switch (mddev->layout) {
5899 case ALGORITHM_LEFT_ASYMMETRIC_6:
5900 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5901 break;
5902 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5903 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5904 break;
5905 case ALGORITHM_LEFT_SYMMETRIC_6:
5906 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5907 break;
5908 case ALGORITHM_RIGHT_SYMMETRIC_6:
5909 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5910 break;
5911 case ALGORITHM_PARITY_0_6:
5912 new_layout = ALGORITHM_PARITY_0;
5913 break;
5914 case ALGORITHM_PARITY_N:
5915 new_layout = ALGORITHM_PARITY_N;
5916 break;
5917 default:
5918 return ERR_PTR(-EINVAL);
5919 }
5920 mddev->new_level = 5;
5921 mddev->new_layout = new_layout;
5922 mddev->delta_disks = -1;
5923 mddev->raid_disks -= 1;
5924 return setup_conf(mddev);
5925}
5926
5927
5928static int raid5_check_reshape(struct mddev *mddev)
5929{
5930 /* For a 2-drive array, the layout and chunk size can be changed
5931 * immediately as not restriping is needed.
5932 * For larger arrays we record the new value - after validation
5933 * to be used by a reshape pass.
5934 */
5935 struct r5conf *conf = mddev->private;
5936 int new_chunk = mddev->new_chunk_sectors;
5937
5938 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5939 return -EINVAL;
5940 if (new_chunk > 0) {
5941 if (!is_power_of_2(new_chunk))
5942 return -EINVAL;
5943 if (new_chunk < (PAGE_SIZE>>9))
5944 return -EINVAL;
5945 if (mddev->array_sectors & (new_chunk-1))
5946 /* not factor of array size */
5947 return -EINVAL;
5948 }
5949
5950 /* They look valid */
5951
5952 if (mddev->raid_disks == 2) {
5953 /* can make the change immediately */
5954 if (mddev->new_layout >= 0) {
5955 conf->algorithm = mddev->new_layout;
5956 mddev->layout = mddev->new_layout;
5957 }
5958 if (new_chunk > 0) {
5959 conf->chunk_sectors = new_chunk ;
5960 mddev->chunk_sectors = new_chunk;
5961 }
5962 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5963 md_wakeup_thread(mddev->thread);
5964 }
5965 return check_reshape(mddev);
5966}
5967
5968static int raid6_check_reshape(struct mddev *mddev)
5969{
5970 int new_chunk = mddev->new_chunk_sectors;
5971
5972 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5973 return -EINVAL;
5974 if (new_chunk > 0) {
5975 if (!is_power_of_2(new_chunk))
5976 return -EINVAL;
5977 if (new_chunk < (PAGE_SIZE >> 9))
5978 return -EINVAL;
5979 if (mddev->array_sectors & (new_chunk-1))
5980 /* not factor of array size */
5981 return -EINVAL;
5982 }
5983
5984 /* They look valid */
5985 return check_reshape(mddev);
5986}
5987
5988static void *raid5_takeover(struct mddev *mddev)
5989{
5990 /* raid5 can take over:
5991 * raid0 - if there is only one strip zone - make it a raid4 layout
5992 * raid1 - if there are two drives. We need to know the chunk size
5993 * raid4 - trivial - just use a raid4 layout.
5994 * raid6 - Providing it is a *_6 layout
5995 */
5996 if (mddev->level == 0)
5997 return raid45_takeover_raid0(mddev, 5);
5998 if (mddev->level == 1)
5999 return raid5_takeover_raid1(mddev);
6000 if (mddev->level == 4) {
6001 mddev->new_layout = ALGORITHM_PARITY_N;
6002 mddev->new_level = 5;
6003 return setup_conf(mddev);
6004 }
6005 if (mddev->level == 6)
6006 return raid5_takeover_raid6(mddev);
6007
6008 return ERR_PTR(-EINVAL);
6009}
6010
6011static void *raid4_takeover(struct mddev *mddev)
6012{
6013 /* raid4 can take over:
6014 * raid0 - if there is only one strip zone
6015 * raid5 - if layout is right
6016 */
6017 if (mddev->level == 0)
6018 return raid45_takeover_raid0(mddev, 4);
6019 if (mddev->level == 5 &&
6020 mddev->layout == ALGORITHM_PARITY_N) {
6021 mddev->new_layout = 0;
6022 mddev->new_level = 4;
6023 return setup_conf(mddev);
6024 }
6025 return ERR_PTR(-EINVAL);
6026}
6027
6028static struct md_personality raid5_personality;
6029
6030static void *raid6_takeover(struct mddev *mddev)
6031{
6032 /* Currently can only take over a raid5. We map the
6033 * personality to an equivalent raid6 personality
6034 * with the Q block at the end.
6035 */
6036 int new_layout;
6037
6038 if (mddev->pers != &raid5_personality)
6039 return ERR_PTR(-EINVAL);
6040 if (mddev->degraded > 1)
6041 return ERR_PTR(-EINVAL);
6042 if (mddev->raid_disks > 253)
6043 return ERR_PTR(-EINVAL);
6044 if (mddev->raid_disks < 3)
6045 return ERR_PTR(-EINVAL);
6046
6047 switch (mddev->layout) {
6048 case ALGORITHM_LEFT_ASYMMETRIC:
6049 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6050 break;
6051 case ALGORITHM_RIGHT_ASYMMETRIC:
6052 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6053 break;
6054 case ALGORITHM_LEFT_SYMMETRIC:
6055 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6056 break;
6057 case ALGORITHM_RIGHT_SYMMETRIC:
6058 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6059 break;
6060 case ALGORITHM_PARITY_0:
6061 new_layout = ALGORITHM_PARITY_0_6;
6062 break;
6063 case ALGORITHM_PARITY_N:
6064 new_layout = ALGORITHM_PARITY_N;
6065 break;
6066 default:
6067 return ERR_PTR(-EINVAL);
6068 }
6069 mddev->new_level = 6;
6070 mddev->new_layout = new_layout;
6071 mddev->delta_disks = 1;
6072 mddev->raid_disks += 1;
6073 return setup_conf(mddev);
6074}
6075
6076
6077static struct md_personality raid6_personality =
6078{
6079 .name = "raid6",
6080 .level = 6,
6081 .owner = THIS_MODULE,
6082 .make_request = make_request,
6083 .run = run,
6084 .stop = stop,
6085 .status = status,
6086 .error_handler = error,
6087 .hot_add_disk = raid5_add_disk,
6088 .hot_remove_disk= raid5_remove_disk,
6089 .spare_active = raid5_spare_active,
6090 .sync_request = sync_request,
6091 .resize = raid5_resize,
6092 .size = raid5_size,
6093 .check_reshape = raid6_check_reshape,
6094 .start_reshape = raid5_start_reshape,
6095 .finish_reshape = raid5_finish_reshape,
6096 .quiesce = raid5_quiesce,
6097 .takeover = raid6_takeover,
6098};
6099static struct md_personality raid5_personality =
6100{
6101 .name = "raid5",
6102 .level = 5,
6103 .owner = THIS_MODULE,
6104 .make_request = make_request,
6105 .run = run,
6106 .stop = stop,
6107 .status = status,
6108 .error_handler = error,
6109 .hot_add_disk = raid5_add_disk,
6110 .hot_remove_disk= raid5_remove_disk,
6111 .spare_active = raid5_spare_active,
6112 .sync_request = sync_request,
6113 .resize = raid5_resize,
6114 .size = raid5_size,
6115 .check_reshape = raid5_check_reshape,
6116 .start_reshape = raid5_start_reshape,
6117 .finish_reshape = raid5_finish_reshape,
6118 .quiesce = raid5_quiesce,
6119 .takeover = raid5_takeover,
6120};
6121
6122static struct md_personality raid4_personality =
6123{
6124 .name = "raid4",
6125 .level = 4,
6126 .owner = THIS_MODULE,
6127 .make_request = make_request,
6128 .run = run,
6129 .stop = stop,
6130 .status = status,
6131 .error_handler = error,
6132 .hot_add_disk = raid5_add_disk,
6133 .hot_remove_disk= raid5_remove_disk,
6134 .spare_active = raid5_spare_active,
6135 .sync_request = sync_request,
6136 .resize = raid5_resize,
6137 .size = raid5_size,
6138 .check_reshape = raid5_check_reshape,
6139 .start_reshape = raid5_start_reshape,
6140 .finish_reshape = raid5_finish_reshape,
6141 .quiesce = raid5_quiesce,
6142 .takeover = raid4_takeover,
6143};
6144
6145static int __init raid5_init(void)
6146{
6147 register_md_personality(&raid6_personality);
6148 register_md_personality(&raid5_personality);
6149 register_md_personality(&raid4_personality);
6150 return 0;
6151}
6152
6153static void raid5_exit(void)
6154{
6155 unregister_md_personality(&raid6_personality);
6156 unregister_md_personality(&raid5_personality);
6157 unregister_md_personality(&raid4_personality);
6158}
6159
6160module_init(raid5_init);
6161module_exit(raid5_exit);
6162MODULE_LICENSE("GPL");
6163MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6164MODULE_ALIAS("md-personality-4"); /* RAID5 */
6165MODULE_ALIAS("md-raid5");
6166MODULE_ALIAS("md-raid4");
6167MODULE_ALIAS("md-level-5");
6168MODULE_ALIAS("md-level-4");
6169MODULE_ALIAS("md-personality-8"); /* RAID6 */
6170MODULE_ALIAS("md-raid6");
6171MODULE_ALIAS("md-level-6");
6172
6173/* This used to be two separate modules, they were: */
6174MODULE_ALIAS("raid5");
6175MODULE_ALIAS("raid6");