Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#define RAID_1_10_NAME "raid1"
  53#include "raid1-10.c"
  54
  55#define START(node) ((node)->start)
  56#define LAST(node) ((node)->last)
  57INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  58		     START, LAST, static inline, raid1_rb);
  59
  60static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  61				struct serial_info *si, int idx)
  62{
  63	unsigned long flags;
  64	int ret = 0;
  65	sector_t lo = r1_bio->sector;
  66	sector_t hi = lo + r1_bio->sectors;
  67	struct serial_in_rdev *serial = &rdev->serial[idx];
  68
  69	spin_lock_irqsave(&serial->serial_lock, flags);
  70	/* collision happened */
  71	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  72		ret = -EBUSY;
  73	else {
  74		si->start = lo;
  75		si->last = hi;
  76		raid1_rb_insert(si, &serial->serial_rb);
  77	}
  78	spin_unlock_irqrestore(&serial->serial_lock, flags);
  79
  80	return ret;
  81}
  82
  83static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  84{
  85	struct mddev *mddev = rdev->mddev;
  86	struct serial_info *si;
  87	int idx = sector_to_idx(r1_bio->sector);
  88	struct serial_in_rdev *serial = &rdev->serial[idx];
  89
  90	if (WARN_ON(!mddev->serial_info_pool))
  91		return;
  92	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  93	wait_event(serial->serial_io_wait,
  94		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  95}
  96
  97static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  98{
  99	struct serial_info *si;
 100	unsigned long flags;
 101	int found = 0;
 102	struct mddev *mddev = rdev->mddev;
 103	int idx = sector_to_idx(lo);
 104	struct serial_in_rdev *serial = &rdev->serial[idx];
 105
 106	spin_lock_irqsave(&serial->serial_lock, flags);
 107	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 108	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 109		if (si->start == lo && si->last == hi) {
 110			raid1_rb_remove(si, &serial->serial_rb);
 111			mempool_free(si, mddev->serial_info_pool);
 112			found = 1;
 113			break;
 114		}
 115	}
 116	if (!found)
 117		WARN(1, "The write IO is not recorded for serialization\n");
 118	spin_unlock_irqrestore(&serial->serial_lock, flags);
 119	wake_up(&serial->serial_io_wait);
 120}
 121
 122/*
 123 * for resync bio, r1bio pointer can be retrieved from the per-bio
 124 * 'struct resync_pages'.
 125 */
 126static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 127{
 128	return get_resync_pages(bio)->raid_bio;
 129}
 
 130
 131static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 132{
 133	struct pool_info *pi = data;
 134	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 135
 136	/* allocate a r1bio with room for raid_disks entries in the bios array */
 137	return kzalloc(size, gfp_flags);
 138}
 139
 140#define RESYNC_DEPTH 32
 
 
 
 
 
 
 141#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 142#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 143#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 144#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 146
 147static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 148{
 149	struct pool_info *pi = data;
 150	struct r1bio *r1_bio;
 
 151	struct bio *bio;
 152	int need_pages;
 153	int j;
 154	struct resync_pages *rps;
 155
 156	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 157	if (!r1_bio)
 158		return NULL;
 159
 160	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 161			    gfp_flags);
 162	if (!rps)
 163		goto out_free_r1bio;
 164
 165	/*
 166	 * Allocate bios : 1 for reading, n-1 for writing
 167	 */
 168	for (j = pi->raid_disks ; j-- ; ) {
 169		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 170		if (!bio)
 171			goto out_free_bio;
 172		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 173		r1_bio->bios[j] = bio;
 174	}
 175	/*
 176	 * Allocate RESYNC_PAGES data pages and attach them to
 177	 * the first bio.
 178	 * If this is a user-requested check/repair, allocate
 179	 * RESYNC_PAGES for each bio.
 180	 */
 181	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 182		need_pages = pi->raid_disks;
 183	else
 184		need_pages = 1;
 185	for (j = 0; j < pi->raid_disks; j++) {
 186		struct resync_pages *rp = &rps[j];
 187
 188		bio = r1_bio->bios[j];
 189
 190		if (j < need_pages) {
 191			if (resync_alloc_pages(rp, gfp_flags))
 192				goto out_free_pages;
 193		} else {
 194			memcpy(rp, &rps[0], sizeof(*rp));
 195			resync_get_all_pages(rp);
 196		}
 197
 198		rp->raid_bio = r1_bio;
 199		bio->bi_private = rp;
 
 
 
 
 
 
 
 
 200	}
 201
 202	r1_bio->master_bio = NULL;
 203
 204	return r1_bio;
 205
 206out_free_pages:
 207	while (--j >= 0)
 208		resync_free_pages(&rps[j]);
 209
 
 210out_free_bio:
 211	while (++j < pi->raid_disks) {
 212		bio_uninit(r1_bio->bios[j]);
 213		kfree(r1_bio->bios[j]);
 214	}
 215	kfree(rps);
 216
 217out_free_r1bio:
 218	rbio_pool_free(r1_bio, data);
 219	return NULL;
 220}
 221
 222static void r1buf_pool_free(void *__r1_bio, void *data)
 223{
 224	struct pool_info *pi = data;
 225	int i;
 226	struct r1bio *r1bio = __r1_bio;
 227	struct resync_pages *rp = NULL;
 228
 229	for (i = pi->raid_disks; i--; ) {
 230		rp = get_resync_pages(r1bio->bios[i]);
 231		resync_free_pages(rp);
 232		bio_uninit(r1bio->bios[i]);
 233		kfree(r1bio->bios[i]);
 234	}
 235
 236	/* resync pages array stored in the 1st bio's .bi_private */
 237	kfree(rp);
 
 
 
 
 
 
 
 238
 239	rbio_pool_free(r1bio, data);
 240}
 241
 242static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 243{
 244	int i;
 245
 246	for (i = 0; i < conf->raid_disks * 2; i++) {
 247		struct bio **bio = r1_bio->bios + i;
 248		if (!BIO_SPECIAL(*bio))
 249			bio_put(*bio);
 250		*bio = NULL;
 251	}
 252}
 253
 254static void free_r1bio(struct r1bio *r1_bio)
 255{
 256	struct r1conf *conf = r1_bio->mddev->private;
 257
 258	put_all_bios(conf, r1_bio);
 259	mempool_free(r1_bio, &conf->r1bio_pool);
 260}
 261
 262static void put_buf(struct r1bio *r1_bio)
 263{
 264	struct r1conf *conf = r1_bio->mddev->private;
 265	sector_t sect = r1_bio->sector;
 266	int i;
 267
 268	for (i = 0; i < conf->raid_disks * 2; i++) {
 269		struct bio *bio = r1_bio->bios[i];
 270		if (bio->bi_end_io)
 271			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 272	}
 273
 274	mempool_free(r1_bio, &conf->r1buf_pool);
 275
 276	lower_barrier(conf, sect);
 277}
 278
 279static void reschedule_retry(struct r1bio *r1_bio)
 280{
 281	unsigned long flags;
 282	struct mddev *mddev = r1_bio->mddev;
 283	struct r1conf *conf = mddev->private;
 284	int idx;
 285
 286	idx = sector_to_idx(r1_bio->sector);
 287	spin_lock_irqsave(&conf->device_lock, flags);
 288	list_add(&r1_bio->retry_list, &conf->retry_list);
 289	atomic_inc(&conf->nr_queued[idx]);
 290	spin_unlock_irqrestore(&conf->device_lock, flags);
 291
 292	wake_up(&conf->wait_barrier);
 293	md_wakeup_thread(mddev->thread);
 294}
 295
 296/*
 297 * raid_end_bio_io() is called when we have finished servicing a mirrored
 298 * operation and are ready to return a success/failure code to the buffer
 299 * cache layer.
 300 */
 301static void call_bio_endio(struct r1bio *r1_bio)
 302{
 303	struct bio *bio = r1_bio->master_bio;
 
 
 304
 305	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 306		bio->bi_status = BLK_STS_IOERR;
 
 
 
 
 
 
 307
 308	bio_endio(bio);
 
 
 
 
 
 
 
 
 
 309}
 310
 311static void raid_end_bio_io(struct r1bio *r1_bio)
 312{
 313	struct bio *bio = r1_bio->master_bio;
 314	struct r1conf *conf = r1_bio->mddev->private;
 315	sector_t sector = r1_bio->sector;
 316
 317	/* if nobody has done the final endio yet, do it now */
 318	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321			 (unsigned long long) bio->bi_iter.bi_sector,
 322			 (unsigned long long) bio_end_sector(bio) - 1);
 
 323
 324		call_bio_endio(r1_bio);
 325	}
 326
 327	free_r1bio(r1_bio);
 328	/*
 329	 * Wake up any possible resync thread that waits for the device
 330	 * to go idle.  All I/Os, even write-behind writes, are done.
 331	 */
 332	allow_barrier(conf, sector);
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340	struct r1conf *conf = r1_bio->mddev->private;
 341
 342	conf->mirrors[disk].head_position =
 343		r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 
 
 351	int mirror;
 352	struct r1conf *conf = r1_bio->mddev->private;
 353	int raid_disks = conf->raid_disks;
 354
 355	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356		if (r1_bio->bios[mirror] == bio)
 357			break;
 358
 359	BUG_ON(mirror == raid_disks * 2);
 360	update_head_pos(mirror, r1_bio);
 361
 362	return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367	int uptodate = !bio->bi_status;
 368	struct r1bio *r1_bio = bio->bi_private;
 369	struct r1conf *conf = r1_bio->mddev->private;
 370	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 
 372	/*
 373	 * this branch is our 'one mirror IO has finished' event handler:
 374	 */
 375	update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377	if (uptodate)
 378		set_bit(R1BIO_Uptodate, &r1_bio->state);
 379	else if (test_bit(FailFast, &rdev->flags) &&
 380		 test_bit(R1BIO_FailFast, &r1_bio->state))
 381		/* This was a fail-fast read so we definitely
 382		 * want to retry */
 383		;
 384	else {
 385		/* If all other devices have failed, we want to return
 386		 * the error upwards rather than fail the last device.
 387		 * Here we redefine "uptodate" to mean "Don't want to retry"
 388		 */
 389		unsigned long flags;
 390		spin_lock_irqsave(&conf->device_lock, flags);
 391		if (r1_bio->mddev->degraded == conf->raid_disks ||
 392		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393		     test_bit(In_sync, &rdev->flags)))
 394			uptodate = 1;
 395		spin_unlock_irqrestore(&conf->device_lock, flags);
 396	}
 397
 398	if (uptodate) {
 399		raid_end_bio_io(r1_bio);
 400		rdev_dec_pending(rdev, conf->mddev);
 401	} else {
 402		/*
 403		 * oops, read error:
 404		 */
 405		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 406				   mdname(conf->mddev),
 407				   rdev->bdev,
 408				   (unsigned long long)r1_bio->sector);
 
 
 
 
 409		set_bit(R1BIO_ReadError, &r1_bio->state);
 410		reschedule_retry(r1_bio);
 411		/* don't drop the reference on read_disk yet */
 412	}
 
 
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417	/* it really is the end of this request */
 418	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419		bio_free_pages(r1_bio->behind_master_bio);
 420		bio_put(r1_bio->behind_master_bio);
 421		r1_bio->behind_master_bio = NULL;
 
 
 
 422	}
 423	/* clear the bitmap if all writes complete successfully */
 424	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425			   r1_bio->sectors,
 426			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 427			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 428	md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433	if (!atomic_dec_and_test(&r1_bio->remaining))
 434		return;
 435
 436	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437		reschedule_retry(r1_bio);
 438	else {
 439		close_write(r1_bio);
 440		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441			reschedule_retry(r1_bio);
 442		else
 443			raid_end_bio_io(r1_bio);
 444	}
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 449	struct r1bio *r1_bio = bio->bi_private;
 450	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451	struct r1conf *conf = r1_bio->mddev->private;
 
 452	struct bio *to_put = NULL;
 453	int mirror = find_bio_disk(r1_bio, bio);
 454	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455	bool discard_error;
 456	sector_t lo = r1_bio->sector;
 457	sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 
 
 
 460
 461	/*
 462	 * 'one mirror IO has finished' event handler:
 463	 */
 464	if (bio->bi_status && !discard_error) {
 465		set_bit(WriteErrorSeen,	&rdev->flags);
 466		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 467			set_bit(MD_RECOVERY_NEEDED, &
 468				conf->mddev->recovery);
 469
 470		if (test_bit(FailFast, &rdev->flags) &&
 471		    (bio->bi_opf & MD_FAILFAST) &&
 472		    /* We never try FailFast to WriteMostly devices */
 473		    !test_bit(WriteMostly, &rdev->flags)) {
 474			md_error(r1_bio->mddev, rdev);
 475		}
 476
 477		/*
 478		 * When the device is faulty, it is not necessary to
 479		 * handle write error.
 480		 */
 481		if (!test_bit(Faulty, &rdev->flags))
 482			set_bit(R1BIO_WriteError, &r1_bio->state);
 483		else {
 484			/* Fail the request */
 485			set_bit(R1BIO_Degraded, &r1_bio->state);
 486			/* Finished with this branch */
 487			r1_bio->bios[mirror] = NULL;
 488			to_put = bio;
 489		}
 490	} else {
 491		/*
 492		 * Set R1BIO_Uptodate in our master bio, so that we
 493		 * will return a good error code for to the higher
 494		 * levels even if IO on some other mirrored buffer
 495		 * fails.
 496		 *
 497		 * The 'master' represents the composite IO operation
 498		 * to user-side. So if something waits for IO, then it
 499		 * will wait for the 'master' bio.
 500		 */
 501		sector_t first_bad;
 502		int bad_sectors;
 503
 504		r1_bio->bios[mirror] = NULL;
 505		to_put = bio;
 506		/*
 507		 * Do not set R1BIO_Uptodate if the current device is
 508		 * rebuilding or Faulty. This is because we cannot use
 509		 * such device for properly reading the data back (we could
 510		 * potentially use it, if the current write would have felt
 511		 * before rdev->recovery_offset, but for simplicity we don't
 512		 * check this here.
 513		 */
 514		if (test_bit(In_sync, &rdev->flags) &&
 515		    !test_bit(Faulty, &rdev->flags))
 516			set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518		/* Maybe we can clear some bad blocks. */
 519		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520				&first_bad, &bad_sectors) && !discard_error) {
 
 521			r1_bio->bios[mirror] = IO_MADE_GOOD;
 522			set_bit(R1BIO_MadeGood, &r1_bio->state);
 523		}
 524	}
 525
 
 
 526	if (behind) {
 527		if (test_bit(CollisionCheck, &rdev->flags))
 528			remove_serial(rdev, lo, hi);
 529		if (test_bit(WriteMostly, &rdev->flags))
 530			atomic_dec(&r1_bio->behind_remaining);
 531
 532		/*
 533		 * In behind mode, we ACK the master bio once the I/O
 534		 * has safely reached all non-writemostly
 535		 * disks. Setting the Returned bit ensures that this
 536		 * gets done only once -- we don't ever want to return
 537		 * -EIO here, instead we'll wait
 538		 */
 539		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541			/* Maybe we can return now */
 542			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543				struct bio *mbio = r1_bio->master_bio;
 544				pr_debug("raid1: behind end write sectors"
 545					 " %llu-%llu\n",
 546					 (unsigned long long) mbio->bi_iter.bi_sector,
 547					 (unsigned long long) bio_end_sector(mbio) - 1);
 548				call_bio_endio(r1_bio);
 549			}
 550		}
 551	} else if (rdev->mddev->serialize_policy)
 552		remove_serial(rdev, lo, hi);
 553	if (r1_bio->bios[mirror] == NULL)
 554		rdev_dec_pending(rdev, conf->mddev);
 
 555
 556	/*
 557	 * Let's see if all mirrored write operations have finished
 558	 * already.
 559	 */
 560	r1_bio_write_done(r1_bio);
 561
 562	if (to_put)
 563		bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567					  sector_t sectors)
 568{
 569	sector_t len;
 570
 571	WARN_ON(sectors == 0);
 572	/*
 573	 * len is the number of sectors from start_sector to end of the
 574	 * barrier unit which start_sector belongs to.
 575	 */
 576	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577	      start_sector;
 578
 579	if (len > sectors)
 580		len = sectors;
 581
 582	return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601	const sector_t this_sector = r1_bio->sector;
 602	int sectors;
 603	int best_good_sectors;
 604	int best_disk, best_dist_disk, best_pending_disk;
 605	int has_nonrot_disk;
 606	int disk;
 607	sector_t best_dist;
 608	unsigned int min_pending;
 609	struct md_rdev *rdev;
 610	int choose_first;
 611	int choose_next_idle;
 612
 
 613	/*
 614	 * Check if we can balance. We can balance on the whole
 615	 * device if no resync is going on, or below the resync window.
 616	 * We take the first readable disk when above the resync window.
 617	 */
 618 retry:
 619	sectors = r1_bio->sectors;
 620	best_disk = -1;
 621	best_dist_disk = -1;
 622	best_dist = MaxSector;
 623	best_pending_disk = -1;
 624	min_pending = UINT_MAX;
 625	best_good_sectors = 0;
 626	has_nonrot_disk = 0;
 627	choose_next_idle = 0;
 628	clear_bit(R1BIO_FailFast, &r1_bio->state);
 629
 630	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 631	    (mddev_is_clustered(conf->mddev) &&
 632	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 633		    this_sector + sectors)))
 634		choose_first = 1;
 635	else
 
 636		choose_first = 0;
 
 
 637
 638	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 639		sector_t dist;
 640		sector_t first_bad;
 641		int bad_sectors;
 642		unsigned int pending;
 643		bool nonrot;
 644
 645		rdev = conf->mirrors[disk].rdev;
 
 
 
 
 646		if (r1_bio->bios[disk] == IO_BLOCKED
 647		    || rdev == NULL
 648		    || test_bit(Faulty, &rdev->flags))
 649			continue;
 650		if (!test_bit(In_sync, &rdev->flags) &&
 651		    rdev->recovery_offset < this_sector + sectors)
 652			continue;
 653		if (test_bit(WriteMostly, &rdev->flags)) {
 654			/* Don't balance among write-mostly, just
 655			 * use the first as a last resort */
 656			if (best_dist_disk < 0) {
 657				if (is_badblock(rdev, this_sector, sectors,
 658						&first_bad, &bad_sectors)) {
 659					if (first_bad <= this_sector)
 660						/* Cannot use this */
 661						continue;
 662					best_good_sectors = first_bad - this_sector;
 663				} else
 664					best_good_sectors = sectors;
 665				best_dist_disk = disk;
 666				best_pending_disk = disk;
 667			}
 668			continue;
 669		}
 670		/* This is a reasonable device to use.  It might
 671		 * even be best.
 672		 */
 673		if (is_badblock(rdev, this_sector, sectors,
 674				&first_bad, &bad_sectors)) {
 675			if (best_dist < MaxSector)
 676				/* already have a better device */
 677				continue;
 678			if (first_bad <= this_sector) {
 679				/* cannot read here. If this is the 'primary'
 680				 * device, then we must not read beyond
 681				 * bad_sectors from another device..
 682				 */
 683				bad_sectors -= (this_sector - first_bad);
 684				if (choose_first && sectors > bad_sectors)
 685					sectors = bad_sectors;
 686				if (best_good_sectors > sectors)
 687					best_good_sectors = sectors;
 688
 689			} else {
 690				sector_t good_sectors = first_bad - this_sector;
 691				if (good_sectors > best_good_sectors) {
 692					best_good_sectors = good_sectors;
 693					best_disk = disk;
 694				}
 695				if (choose_first)
 696					break;
 697			}
 698			continue;
 699		} else {
 700			if ((sectors > best_good_sectors) && (best_disk >= 0))
 701				best_disk = -1;
 702			best_good_sectors = sectors;
 703		}
 704
 705		if (best_disk >= 0)
 706			/* At least two disks to choose from so failfast is OK */
 707			set_bit(R1BIO_FailFast, &r1_bio->state);
 708
 709		nonrot = bdev_nonrot(rdev->bdev);
 710		has_nonrot_disk |= nonrot;
 711		pending = atomic_read(&rdev->nr_pending);
 712		dist = abs(this_sector - conf->mirrors[disk].head_position);
 713		if (choose_first) {
 
 
 
 
 
 714			best_disk = disk;
 715			break;
 716		}
 717		/* Don't change to another disk for sequential reads */
 718		if (conf->mirrors[disk].next_seq_sect == this_sector
 719		    || dist == 0) {
 720			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 721			struct raid1_info *mirror = &conf->mirrors[disk];
 722
 723			best_disk = disk;
 724			/*
 725			 * If buffered sequential IO size exceeds optimal
 726			 * iosize, check if there is idle disk. If yes, choose
 727			 * the idle disk. read_balance could already choose an
 728			 * idle disk before noticing it's a sequential IO in
 729			 * this disk. This doesn't matter because this disk
 730			 * will idle, next time it will be utilized after the
 731			 * first disk has IO size exceeds optimal iosize. In
 732			 * this way, iosize of the first disk will be optimal
 733			 * iosize at least. iosize of the second disk might be
 734			 * small, but not a big deal since when the second disk
 735			 * starts IO, the first disk is likely still busy.
 736			 */
 737			if (nonrot && opt_iosize > 0 &&
 738			    mirror->seq_start != MaxSector &&
 739			    mirror->next_seq_sect > opt_iosize &&
 740			    mirror->next_seq_sect - opt_iosize >=
 741			    mirror->seq_start) {
 742				choose_next_idle = 1;
 743				continue;
 744			}
 745			break;
 746		}
 747
 748		if (choose_next_idle)
 749			continue;
 750
 751		if (min_pending > pending) {
 752			min_pending = pending;
 753			best_pending_disk = disk;
 754		}
 755
 756		if (dist < best_dist) {
 757			best_dist = dist;
 758			best_dist_disk = disk;
 759		}
 760	}
 761
 762	/*
 763	 * If all disks are rotational, choose the closest disk. If any disk is
 764	 * non-rotational, choose the disk with less pending request even the
 765	 * disk is rotational, which might/might not be optimal for raids with
 766	 * mixed ratation/non-rotational disks depending on workload.
 767	 */
 768	if (best_disk == -1) {
 769		if (has_nonrot_disk || min_pending == 0)
 770			best_disk = best_pending_disk;
 771		else
 772			best_disk = best_dist_disk;
 773	}
 774
 775	if (best_disk >= 0) {
 776		rdev = conf->mirrors[best_disk].rdev;
 777		if (!rdev)
 778			goto retry;
 779		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 780		sectors = best_good_sectors;
 781
 782		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 783			conf->mirrors[best_disk].seq_start = this_sector;
 784
 785		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 786	}
 
 787	*max_sectors = sectors;
 788
 789	return best_disk;
 790}
 791
 792static void wake_up_barrier(struct r1conf *conf)
 793{
 794	if (wq_has_sleeper(&conf->wait_barrier))
 795		wake_up(&conf->wait_barrier);
 796}
 797
 798static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 799{
 800	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 801	raid1_prepare_flush_writes(conf->mddev->bitmap);
 802	wake_up_barrier(conf);
 803
 804	while (bio) { /* submit pending writes */
 805		struct bio *next = bio->bi_next;
 806
 807		raid1_submit_write(bio);
 808		bio = next;
 809		cond_resched();
 
 
 
 
 
 810	}
 
 
 811}
 
 812
 813static void flush_pending_writes(struct r1conf *conf)
 
 
 
 
 
 
 
 
 814{
 815	/* Any writes that have been queued but are awaiting
 816	 * bitmap updates get flushed here.
 817	 */
 818	spin_lock_irq(&conf->device_lock);
 819
 820	if (conf->pending_bio_list.head) {
 821		struct blk_plug plug;
 822		struct bio *bio;
 823
 824		bio = bio_list_get(&conf->pending_bio_list);
 825		spin_unlock_irq(&conf->device_lock);
 826
 827		/*
 828		 * As this is called in a wait_event() loop (see freeze_array),
 829		 * current->state might be TASK_UNINTERRUPTIBLE which will
 830		 * cause a warning when we prepare to wait again.  As it is
 831		 * rare that this path is taken, it is perfectly safe to force
 832		 * us to go around the wait_event() loop again, so the warning
 833		 * is a false-positive.  Silence the warning by resetting
 834		 * thread state
 835		 */
 836		__set_current_state(TASK_RUNNING);
 837		blk_start_plug(&plug);
 838		flush_bio_list(conf, bio);
 839		blk_finish_plug(&plug);
 840	} else
 841		spin_unlock_irq(&conf->device_lock);
 842}
 843
 844/* Barriers....
 845 * Sometimes we need to suspend IO while we do something else,
 846 * either some resync/recovery, or reconfigure the array.
 847 * To do this we raise a 'barrier'.
 848 * The 'barrier' is a counter that can be raised multiple times
 849 * to count how many activities are happening which preclude
 850 * normal IO.
 851 * We can only raise the barrier if there is no pending IO.
 852 * i.e. if nr_pending == 0.
 853 * We choose only to raise the barrier if no-one is waiting for the
 854 * barrier to go down.  This means that as soon as an IO request
 855 * is ready, no other operations which require a barrier will start
 856 * until the IO request has had a chance.
 857 *
 858 * So: regular IO calls 'wait_barrier'.  When that returns there
 859 *    is no backgroup IO happening,  It must arrange to call
 860 *    allow_barrier when it has finished its IO.
 861 * backgroup IO calls must call raise_barrier.  Once that returns
 862 *    there is no normal IO happeing.  It must arrange to call
 863 *    lower_barrier when the particular background IO completes.
 864 *
 865 * If resync/recovery is interrupted, returns -EINTR;
 866 * Otherwise, returns 0.
 867 */
 868static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 869{
 870	int idx = sector_to_idx(sector_nr);
 871
 
 
 872	spin_lock_irq(&conf->resync_lock);
 873
 874	/* Wait until no block IO is waiting */
 875	wait_event_lock_irq(conf->wait_barrier,
 876			    !atomic_read(&conf->nr_waiting[idx]),
 877			    conf->resync_lock);
 878
 879	/* block any new IO from starting */
 880	atomic_inc(&conf->barrier[idx]);
 881	/*
 882	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 883	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 884	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 885	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 886	 * be fetched before conf->barrier[idx] is increased. Otherwise
 887	 * there will be a race between raise_barrier() and _wait_barrier().
 888	 */
 889	smp_mb__after_atomic();
 890
 891	/* For these conditions we must wait:
 892	 * A: while the array is in frozen state
 893	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 894	 *    existing in corresponding I/O barrier bucket.
 895	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 896	 *    max resync count which allowed on current I/O barrier bucket.
 897	 */
 898	wait_event_lock_irq(conf->wait_barrier,
 899			    (!conf->array_frozen &&
 900			     !atomic_read(&conf->nr_pending[idx]) &&
 901			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 902				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 903			    conf->resync_lock);
 904
 905	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 906		atomic_dec(&conf->barrier[idx]);
 907		spin_unlock_irq(&conf->resync_lock);
 908		wake_up(&conf->wait_barrier);
 909		return -EINTR;
 910	}
 911
 912	atomic_inc(&conf->nr_sync_pending);
 913	spin_unlock_irq(&conf->resync_lock);
 914
 915	return 0;
 916}
 917
 918static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 919{
 920	int idx = sector_to_idx(sector_nr);
 921
 922	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 923
 924	atomic_dec(&conf->barrier[idx]);
 925	atomic_dec(&conf->nr_sync_pending);
 926	wake_up(&conf->wait_barrier);
 927}
 928
 929static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 930{
 931	bool ret = true;
 932
 933	/*
 934	 * We need to increase conf->nr_pending[idx] very early here,
 935	 * then raise_barrier() can be blocked when it waits for
 936	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 937	 * conf->resync_lock when there is no barrier raised in same
 938	 * barrier unit bucket. Also if the array is frozen, I/O
 939	 * should be blocked until array is unfrozen.
 940	 */
 941	atomic_inc(&conf->nr_pending[idx]);
 942	/*
 943	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 944	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 945	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 946	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 947	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 948	 * will be a race between _wait_barrier() and raise_barrier().
 949	 */
 950	smp_mb__after_atomic();
 951
 952	/*
 953	 * Don't worry about checking two atomic_t variables at same time
 954	 * here. If during we check conf->barrier[idx], the array is
 955	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 956	 * 0, it is safe to return and make the I/O continue. Because the
 957	 * array is frozen, all I/O returned here will eventually complete
 958	 * or be queued, no race will happen. See code comment in
 959	 * frozen_array().
 960	 */
 961	if (!READ_ONCE(conf->array_frozen) &&
 962	    !atomic_read(&conf->barrier[idx]))
 963		return ret;
 964
 965	/*
 966	 * After holding conf->resync_lock, conf->nr_pending[idx]
 967	 * should be decreased before waiting for barrier to drop.
 968	 * Otherwise, we may encounter a race condition because
 969	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 970	 * to be 0 at same time.
 971	 */
 972	spin_lock_irq(&conf->resync_lock);
 973	atomic_inc(&conf->nr_waiting[idx]);
 974	atomic_dec(&conf->nr_pending[idx]);
 975	/*
 976	 * In case freeze_array() is waiting for
 977	 * get_unqueued_pending() == extra
 978	 */
 979	wake_up_barrier(conf);
 980	/* Wait for the barrier in same barrier unit bucket to drop. */
 981
 982	/* Return false when nowait flag is set */
 983	if (nowait) {
 984		ret = false;
 985	} else {
 986		wait_event_lock_irq(conf->wait_barrier,
 987				!conf->array_frozen &&
 988				!atomic_read(&conf->barrier[idx]),
 989				conf->resync_lock);
 990		atomic_inc(&conf->nr_pending[idx]);
 991	}
 992
 993	atomic_dec(&conf->nr_waiting[idx]);
 994	spin_unlock_irq(&conf->resync_lock);
 995	return ret;
 996}
 997
 998static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 999{
1000	int idx = sector_to_idx(sector_nr);
1001	bool ret = true;
1002
1003	/*
1004	 * Very similar to _wait_barrier(). The difference is, for read
1005	 * I/O we don't need wait for sync I/O, but if the whole array
1006	 * is frozen, the read I/O still has to wait until the array is
1007	 * unfrozen. Since there is no ordering requirement with
1008	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1009	 */
1010	atomic_inc(&conf->nr_pending[idx]);
1011
1012	if (!READ_ONCE(conf->array_frozen))
1013		return ret;
1014
1015	spin_lock_irq(&conf->resync_lock);
1016	atomic_inc(&conf->nr_waiting[idx]);
1017	atomic_dec(&conf->nr_pending[idx]);
1018	/*
1019	 * In case freeze_array() is waiting for
1020	 * get_unqueued_pending() == extra
1021	 */
1022	wake_up_barrier(conf);
1023	/* Wait for array to be unfrozen */
1024
1025	/* Return false when nowait flag is set */
1026	if (nowait) {
1027		/* Return false when nowait flag is set */
1028		ret = false;
1029	} else {
1030		wait_event_lock_irq(conf->wait_barrier,
1031				!conf->array_frozen,
1032				conf->resync_lock);
1033		atomic_inc(&conf->nr_pending[idx]);
1034	}
1035
1036	atomic_dec(&conf->nr_waiting[idx]);
1037	spin_unlock_irq(&conf->resync_lock);
1038	return ret;
1039}
1040
1041static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1042{
1043	int idx = sector_to_idx(sector_nr);
1044
1045	return _wait_barrier(conf, idx, nowait);
1046}
1047
1048static void _allow_barrier(struct r1conf *conf, int idx)
1049{
1050	atomic_dec(&conf->nr_pending[idx]);
1051	wake_up_barrier(conf);
1052}
1053
1054static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1055{
1056	int idx = sector_to_idx(sector_nr);
1057
1058	_allow_barrier(conf, idx);
1059}
1060
1061/* conf->resync_lock should be held */
1062static int get_unqueued_pending(struct r1conf *conf)
1063{
1064	int idx, ret;
1065
1066	ret = atomic_read(&conf->nr_sync_pending);
1067	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1068		ret += atomic_read(&conf->nr_pending[idx]) -
1069			atomic_read(&conf->nr_queued[idx]);
1070
1071	return ret;
1072}
1073
1074static void freeze_array(struct r1conf *conf, int extra)
1075{
1076	/* Stop sync I/O and normal I/O and wait for everything to
1077	 * go quiet.
1078	 * This is called in two situations:
1079	 * 1) management command handlers (reshape, remove disk, quiesce).
1080	 * 2) one normal I/O request failed.
1081
1082	 * After array_frozen is set to 1, new sync IO will be blocked at
1083	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1084	 * or wait_read_barrier(). The flying I/Os will either complete or be
1085	 * queued. When everything goes quite, there are only queued I/Os left.
1086
1087	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1088	 * barrier bucket index which this I/O request hits. When all sync and
1089	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1090	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1091	 * in handle_read_error(), we may call freeze_array() before trying to
1092	 * fix the read error. In this case, the error read I/O is not queued,
1093	 * so get_unqueued_pending() == 1.
1094	 *
1095	 * Therefore before this function returns, we need to wait until
1096	 * get_unqueued_pendings(conf) gets equal to extra. For
1097	 * normal I/O context, extra is 1, in rested situations extra is 0.
1098	 */
1099	spin_lock_irq(&conf->resync_lock);
1100	conf->array_frozen = 1;
1101	raid1_log(conf->mddev, "wait freeze");
1102	wait_event_lock_irq_cmd(
1103		conf->wait_barrier,
1104		get_unqueued_pending(conf) == extra,
1105		conf->resync_lock,
1106		flush_pending_writes(conf));
1107	spin_unlock_irq(&conf->resync_lock);
1108}
1109static void unfreeze_array(struct r1conf *conf)
1110{
1111	/* reverse the effect of the freeze */
1112	spin_lock_irq(&conf->resync_lock);
1113	conf->array_frozen = 0;
1114	spin_unlock_irq(&conf->resync_lock);
1115	wake_up(&conf->wait_barrier);
 
1116}
1117
1118static void alloc_behind_master_bio(struct r1bio *r1_bio,
1119					   struct bio *bio)
1120{
1121	int size = bio->bi_iter.bi_size;
1122	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123	int i = 0;
1124	struct bio *behind_bio = NULL;
1125
1126	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1127				      &r1_bio->mddev->bio_set);
1128
1129	/* discard op, we don't support writezero/writesame yet */
1130	if (!bio_has_data(bio)) {
1131		behind_bio->bi_iter.bi_size = size;
1132		goto skip_copy;
1133	}
1134
1135	while (i < vcnt && size) {
1136		struct page *page;
1137		int len = min_t(int, PAGE_SIZE, size);
1138
1139		page = alloc_page(GFP_NOIO);
1140		if (unlikely(!page))
1141			goto free_pages;
1142
1143		if (!bio_add_page(behind_bio, page, len, 0)) {
1144			put_page(page);
1145			goto free_pages;
1146		}
 
 
1147
1148		size -= len;
1149		i++;
 
 
 
 
 
 
 
1150	}
1151
1152	bio_copy_data(behind_bio, bio);
1153skip_copy:
1154	r1_bio->behind_master_bio = behind_bio;
1155	set_bit(R1BIO_BehindIO, &r1_bio->state);
1156
1157	return;
1158
1159free_pages:
1160	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1161		 bio->bi_iter.bi_size);
1162	bio_free_pages(behind_bio);
1163	bio_put(behind_bio);
1164}
1165
1166static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1167{
1168	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1169						  cb);
1170	struct mddev *mddev = plug->cb.data;
1171	struct r1conf *conf = mddev->private;
1172	struct bio *bio;
1173
1174	if (from_schedule) {
1175		spin_lock_irq(&conf->device_lock);
1176		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1177		spin_unlock_irq(&conf->device_lock);
1178		wake_up_barrier(conf);
1179		md_wakeup_thread(mddev->thread);
1180		kfree(plug);
1181		return;
1182	}
1183
1184	/* we aren't scheduling, so we can do the write-out directly. */
1185	bio = bio_list_get(&plug->pending);
1186	flush_bio_list(conf, bio);
1187	kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192	r1_bio->master_bio = bio;
1193	r1_bio->sectors = bio_sectors(bio);
1194	r1_bio->state = 0;
1195	r1_bio->mddev = mddev;
1196	r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202	struct r1conf *conf = mddev->private;
1203	struct r1bio *r1_bio;
1204
1205	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206	/* Ensure no bio records IO_BLOCKED */
1207	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208	init_r1bio(r1_bio, mddev, bio);
1209	return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213			       int max_read_sectors, struct r1bio *r1_bio)
1214{
1215	struct r1conf *conf = mddev->private;
1216	struct raid1_info *mirror;
1217	struct bio *read_bio;
1218	struct bitmap *bitmap = mddev->bitmap;
1219	const enum req_op op = bio_op(bio);
1220	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
 
 
 
 
 
 
 
1221	int max_sectors;
1222	int rdisk;
1223	bool r1bio_existed = !!r1_bio;
1224	char b[BDEVNAME_SIZE];
1225
1226	/*
1227	 * If r1_bio is set, we are blocking the raid1d thread
1228	 * so there is a tiny risk of deadlock.  So ask for
1229	 * emergency memory if needed.
1230	 */
1231	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233	if (r1bio_existed) {
1234		/* Need to get the block device name carefully */
1235		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1236
1237		if (rdev)
1238			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1239		else
1240			strcpy(b, "???");
1241	}
1242
1243	/*
1244	 * Still need barrier for READ in case that whole
1245	 * array is frozen.
1246	 */
1247	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248				bio->bi_opf & REQ_NOWAIT)) {
1249		bio_wouldblock_error(bio);
1250		return;
 
 
 
 
 
 
 
 
 
 
1251	}
1252
1253	if (!r1_bio)
1254		r1_bio = alloc_r1bio(mddev, bio);
1255	else
1256		init_r1bio(r1_bio, mddev, bio);
1257	r1_bio->sectors = max_read_sectors;
1258
1259	/*
1260	 * make_request() can abort the operation when read-ahead is being
1261	 * used and no empty request is available.
 
1262	 */
1263	rdisk = read_balance(conf, r1_bio, &max_sectors);
1264
1265	if (rdisk < 0) {
1266		/* couldn't find anywhere to read from */
1267		if (r1bio_existed) {
1268			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269					    mdname(mddev),
1270					    b,
1271					    (unsigned long long)r1_bio->sector);
1272		}
1273		raid_end_bio_io(r1_bio);
1274		return;
1275	}
1276	mirror = conf->mirrors + rdisk;
1277
1278	if (r1bio_existed)
1279		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1280				    mdname(mddev),
1281				    (unsigned long long)r1_bio->sector,
1282				    mirror->rdev->bdev);
 
 
 
 
1283
1284	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1285	    bitmap) {
1286		/*
1287		 * Reading from a write-mostly device must take care not to
1288		 * over-take any writes that are 'behind'
1289		 */
1290		raid1_log(mddev, "wait behind writes");
1291		wait_event(bitmap->behind_wait,
1292			   atomic_read(&bitmap->behind_writes) == 0);
1293	}
1294
1295	if (max_sectors < bio_sectors(bio)) {
1296		struct bio *split = bio_split(bio, max_sectors,
1297					      gfp, &conf->bio_split);
1298		bio_chain(split, bio);
1299		submit_bio_noacct(bio);
1300		bio = split;
1301		r1_bio->master_bio = bio;
1302		r1_bio->sectors = max_sectors;
1303	}
1304
1305	r1_bio->read_disk = rdisk;
1306	if (!r1bio_existed) {
1307		md_account_bio(mddev, &bio);
1308		r1_bio->master_bio = bio;
1309	}
1310	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1311				   &mddev->bio_set);
1312
1313	r1_bio->bios[rdisk] = read_bio;
1314
1315	read_bio->bi_iter.bi_sector = r1_bio->sector +
1316		mirror->rdev->data_offset;
1317	read_bio->bi_end_io = raid1_end_read_request;
1318	read_bio->bi_opf = op | do_sync;
1319	if (test_bit(FailFast, &mirror->rdev->flags) &&
1320	    test_bit(R1BIO_FailFast, &r1_bio->state))
1321	        read_bio->bi_opf |= MD_FAILFAST;
1322	read_bio->bi_private = r1_bio;
1323
1324	if (mddev->gendisk)
1325	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1326				      r1_bio->sector);
 
 
 
 
 
 
 
1327
1328	submit_bio_noacct(read_bio);
1329}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330
1331static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332				int max_write_sectors)
1333{
1334	struct r1conf *conf = mddev->private;
1335	struct r1bio *r1_bio;
1336	int i, disks;
1337	struct bitmap *bitmap = mddev->bitmap;
1338	unsigned long flags;
1339	struct md_rdev *blocked_rdev;
1340	int first_clone;
1341	int max_sectors;
1342	bool write_behind = false;
1343	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
 
 
1344
1345	if (mddev_is_clustered(mddev) &&
1346	     md_cluster_ops->area_resyncing(mddev, WRITE,
1347		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1348
1349		DEFINE_WAIT(w);
1350		if (bio->bi_opf & REQ_NOWAIT) {
1351			bio_wouldblock_error(bio);
1352			return;
1353		}
1354		for (;;) {
1355			prepare_to_wait(&conf->wait_barrier,
1356					&w, TASK_IDLE);
1357			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1358							bio->bi_iter.bi_sector,
1359							bio_end_sector(bio)))
1360				break;
1361			schedule();
1362		}
1363		finish_wait(&conf->wait_barrier, &w);
1364	}
1365
1366	/*
1367	 * Register the new request and wait if the reconstruction
1368	 * thread has put up a bar for new requests.
1369	 * Continue immediately if no resync is active currently.
1370	 */
1371	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1372				bio->bi_opf & REQ_NOWAIT)) {
1373		bio_wouldblock_error(bio);
1374		return;
1375	}
1376
1377 retry_write:
1378	r1_bio = alloc_r1bio(mddev, bio);
1379	r1_bio->sectors = max_write_sectors;
1380
1381	/* first select target devices under rcu_lock and
1382	 * inc refcount on their rdev.  Record them by setting
1383	 * bios[x] to bio
1384	 * If there are known/acknowledged bad blocks on any device on
1385	 * which we have seen a write error, we want to avoid writing those
1386	 * blocks.
1387	 * This potentially requires several writes to write around
1388	 * the bad blocks.  Each set of writes gets it's own r1bio
1389	 * with a set of bios attached.
1390	 */
 
1391
1392	disks = conf->raid_disks * 2;
 
1393	blocked_rdev = NULL;
 
1394	max_sectors = r1_bio->sectors;
1395	for (i = 0;  i < disks; i++) {
1396		struct md_rdev *rdev = conf->mirrors[i].rdev;
1397
1398		/*
1399		 * The write-behind io is only attempted on drives marked as
1400		 * write-mostly, which means we could allocate write behind
1401		 * bio later.
1402		 */
1403		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1404			write_behind = true;
1405
1406		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407			atomic_inc(&rdev->nr_pending);
1408			blocked_rdev = rdev;
1409			break;
1410		}
1411		r1_bio->bios[i] = NULL;
1412		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1413			if (i < conf->raid_disks)
1414				set_bit(R1BIO_Degraded, &r1_bio->state);
1415			continue;
1416		}
1417
1418		atomic_inc(&rdev->nr_pending);
1419		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1420			sector_t first_bad;
1421			int bad_sectors;
1422			int is_bad;
1423
1424			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1425					     &first_bad, &bad_sectors);
1426			if (is_bad < 0) {
1427				/* mustn't write here until the bad block is
1428				 * acknowledged*/
1429				set_bit(BlockedBadBlocks, &rdev->flags);
1430				blocked_rdev = rdev;
1431				break;
1432			}
1433			if (is_bad && first_bad <= r1_bio->sector) {
1434				/* Cannot write here at all */
1435				bad_sectors -= (r1_bio->sector - first_bad);
1436				if (bad_sectors < max_sectors)
1437					/* mustn't write more than bad_sectors
1438					 * to other devices yet
1439					 */
1440					max_sectors = bad_sectors;
1441				rdev_dec_pending(rdev, mddev);
1442				/* We don't set R1BIO_Degraded as that
1443				 * only applies if the disk is
1444				 * missing, so it might be re-added,
1445				 * and we want to know to recover this
1446				 * chunk.
1447				 * In this case the device is here,
1448				 * and the fact that this chunk is not
1449				 * in-sync is recorded in the bad
1450				 * block log
1451				 */
1452				continue;
1453			}
1454			if (is_bad) {
1455				int good_sectors = first_bad - r1_bio->sector;
1456				if (good_sectors < max_sectors)
1457					max_sectors = good_sectors;
1458			}
1459		}
1460		r1_bio->bios[i] = bio;
1461	}
 
1462
1463	if (unlikely(blocked_rdev)) {
1464		/* Wait for this device to become unblocked */
1465		int j;
1466
1467		for (j = 0; j < i; j++)
1468			if (r1_bio->bios[j])
1469				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1470		free_r1bio(r1_bio);
1471		allow_barrier(conf, bio->bi_iter.bi_sector);
1472
1473		if (bio->bi_opf & REQ_NOWAIT) {
1474			bio_wouldblock_error(bio);
1475			return;
1476		}
1477		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1480		goto retry_write;
1481	}
1482
1483	/*
1484	 * When using a bitmap, we may call alloc_behind_master_bio below.
1485	 * alloc_behind_master_bio allocates a copy of the data payload a page
1486	 * at a time and thus needs a new bio that can fit the whole payload
1487	 * this bio in page sized chunks.
1488	 */
1489	if (write_behind && bitmap)
1490		max_sectors = min_t(int, max_sectors,
1491				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1492	if (max_sectors < bio_sectors(bio)) {
1493		struct bio *split = bio_split(bio, max_sectors,
1494					      GFP_NOIO, &conf->bio_split);
1495		bio_chain(split, bio);
1496		submit_bio_noacct(bio);
1497		bio = split;
1498		r1_bio->master_bio = bio;
1499		r1_bio->sectors = max_sectors;
 
 
 
 
 
 
1500	}
 
1501
1502	md_account_bio(mddev, &bio);
1503	r1_bio->master_bio = bio;
1504	atomic_set(&r1_bio->remaining, 1);
1505	atomic_set(&r1_bio->behind_remaining, 0);
1506
1507	first_clone = 1;
1508
1509	for (i = 0; i < disks; i++) {
1510		struct bio *mbio = NULL;
1511		struct md_rdev *rdev = conf->mirrors[i].rdev;
1512		if (!r1_bio->bios[i])
1513			continue;
1514
 
 
 
1515		if (first_clone) {
1516			/* do behind I/O ?
1517			 * Not if there are too many, or cannot
1518			 * allocate memory, or a reader on WriteMostly
1519			 * is waiting for behind writes to flush */
1520			if (bitmap && write_behind &&
1521			    (atomic_read(&bitmap->behind_writes)
1522			     < mddev->bitmap_info.max_write_behind) &&
1523			    !waitqueue_active(&bitmap->behind_wait)) {
1524				alloc_behind_master_bio(r1_bio, bio);
1525			}
1526
1527			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1528					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 
 
1529			first_clone = 0;
1530		}
1531
1532		if (r1_bio->behind_master_bio) {
1533			mbio = bio_alloc_clone(rdev->bdev,
1534					       r1_bio->behind_master_bio,
1535					       GFP_NOIO, &mddev->bio_set);
1536			if (test_bit(CollisionCheck, &rdev->flags))
1537				wait_for_serialization(rdev, r1_bio);
1538			if (test_bit(WriteMostly, &rdev->flags))
 
 
 
 
 
 
1539				atomic_inc(&r1_bio->behind_remaining);
1540		} else {
1541			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1542					       &mddev->bio_set);
1543
1544			if (mddev->serialize_policy)
1545				wait_for_serialization(rdev, r1_bio);
1546		}
1547
1548		r1_bio->bios[i] = mbio;
1549
1550		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 
 
1551		mbio->bi_end_io	= raid1_end_write_request;
1552		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1553		if (test_bit(FailFast, &rdev->flags) &&
1554		    !test_bit(WriteMostly, &rdev->flags) &&
1555		    conf->raid_disks - mddev->degraded > 1)
1556			mbio->bi_opf |= MD_FAILFAST;
1557		mbio->bi_private = r1_bio;
1558
1559		atomic_inc(&r1_bio->remaining);
1560
1561		if (mddev->gendisk)
1562			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1563					      r1_bio->sector);
1564		/* flush_pending_writes() needs access to the rdev so...*/
1565		mbio->bi_bdev = (void *)rdev;
1566		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1567			spin_lock_irqsave(&conf->device_lock, flags);
1568			bio_list_add(&conf->pending_bio_list, mbio);
1569			spin_unlock_irqrestore(&conf->device_lock, flags);
1570			md_wakeup_thread(mddev->thread);
1571		}
 
 
 
 
 
 
 
1572	}
1573
1574	r1_bio_write_done(r1_bio);
1575
1576	/* In case raid1d snuck in to freeze_array */
1577	wake_up_barrier(conf);
1578}
1579
1580static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1581{
1582	sector_t sectors;
1583
1584	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1585	    && md_flush_request(mddev, bio))
1586		return true;
1587
1588	/*
1589	 * There is a limit to the maximum size, but
1590	 * the read/write handler might find a lower limit
1591	 * due to bad blocks.  To avoid multiple splits,
1592	 * we pass the maximum number of sectors down
1593	 * and let the lower level perform the split.
1594	 */
1595	sectors = align_to_barrier_unit_end(
1596		bio->bi_iter.bi_sector, bio_sectors(bio));
1597
1598	if (bio_data_dir(bio) == READ)
1599		raid1_read_request(mddev, bio, sectors, NULL);
1600	else {
1601		if (!md_write_start(mddev,bio))
1602			return false;
1603		raid1_write_request(mddev, bio, sectors);
1604	}
1605	return true;
1606}
1607
1608static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609{
1610	struct r1conf *conf = mddev->private;
1611	int i;
1612
1613	lockdep_assert_held(&mddev->lock);
1614
1615	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616		   conf->raid_disks - mddev->degraded);
 
1617	for (i = 0; i < conf->raid_disks; i++) {
1618		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1619
1620		seq_printf(seq, "%s",
1621			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1622	}
 
1623	seq_printf(seq, "]");
1624}
1625
1626/**
1627 * raid1_error() - RAID1 error handler.
1628 * @mddev: affected md device.
1629 * @rdev: member device to fail.
1630 *
1631 * The routine acknowledges &rdev failure and determines new @mddev state.
1632 * If it failed, then:
1633 *	- &MD_BROKEN flag is set in &mddev->flags.
1634 *	- recovery is disabled.
1635 * Otherwise, it must be degraded:
1636 *	- recovery is interrupted.
1637 *	- &mddev->degraded is bumped.
1638 *
1639 * @rdev is marked as &Faulty excluding case when array is failed and
1640 * &mddev->fail_last_dev is off.
1641 */
1642static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1643{
1644	struct r1conf *conf = mddev->private;
1645	unsigned long flags;
1646
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648
1649	if (test_bit(In_sync, &rdev->flags) &&
1650	    (conf->raid_disks - mddev->degraded) == 1) {
1651		set_bit(MD_BROKEN, &mddev->flags);
 
1652
1653		if (!mddev->fail_last_dev) {
1654			conf->recovery_disabled = mddev->recovery_disabled;
1655			spin_unlock_irqrestore(&conf->device_lock, flags);
1656			return;
1657		}
 
 
 
 
 
 
 
 
 
 
 
1658	}
1659	set_bit(Blocked, &rdev->flags);
1660	if (test_and_clear_bit(In_sync, &rdev->flags))
 
 
1661		mddev->degraded++;
1662	set_bit(Faulty, &rdev->flags);
1663	spin_unlock_irqrestore(&conf->device_lock, flags);
1664	/*
1665	 * if recovery is running, make sure it aborts.
1666	 */
1667	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1668	set_mask_bits(&mddev->sb_flags, 0,
1669		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1671		"md/raid1:%s: Operation continuing on %d devices.\n",
1672		mdname(mddev), rdev->bdev,
1673		mdname(mddev), conf->raid_disks - mddev->degraded);
 
 
1674}
1675
1676static void print_conf(struct r1conf *conf)
1677{
1678	int i;
1679
1680	pr_debug("RAID1 conf printout:\n");
1681	if (!conf) {
1682		pr_debug("(!conf)\n");
1683		return;
1684	}
1685	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1686		 conf->raid_disks);
1687
1688	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1689	for (i = 0; i < conf->raid_disks; i++) {
1690		struct md_rdev *rdev = conf->mirrors[i].rdev;
 
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 rdev->bdev);
1696	}
 
1697}
1698
1699static void close_sync(struct r1conf *conf)
1700{
1701	int idx;
 
1702
1703	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1704		_wait_barrier(conf, idx, false);
1705		_allow_barrier(conf, idx);
1706	}
1707
1708	mempool_exit(&conf->r1buf_pool);
1709}
1710
1711static int raid1_spare_active(struct mddev *mddev)
1712{
1713	int i;
1714	struct r1conf *conf = mddev->private;
1715	int count = 0;
1716	unsigned long flags;
1717
1718	/*
1719	 * Find all failed disks within the RAID1 configuration
1720	 * and mark them readable.
1721	 * Called under mddev lock, so rcu protection not needed.
1722	 * device_lock used to avoid races with raid1_end_read_request
1723	 * which expects 'In_sync' flags and ->degraded to be consistent.
1724	 */
1725	spin_lock_irqsave(&conf->device_lock, flags);
1726	for (i = 0; i < conf->raid_disks; i++) {
1727		struct md_rdev *rdev = conf->mirrors[i].rdev;
1728		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1729		if (repl
1730		    && !test_bit(Candidate, &repl->flags)
1731		    && repl->recovery_offset == MaxSector
1732		    && !test_bit(Faulty, &repl->flags)
1733		    && !test_and_set_bit(In_sync, &repl->flags)) {
1734			/* replacement has just become active */
1735			if (!rdev ||
1736			    !test_and_clear_bit(In_sync, &rdev->flags))
1737				count++;
1738			if (rdev) {
1739				/* Replaced device not technically
1740				 * faulty, but we need to be sure
1741				 * it gets removed and never re-added
1742				 */
1743				set_bit(Faulty, &rdev->flags);
1744				sysfs_notify_dirent_safe(
1745					rdev->sysfs_state);
1746			}
1747		}
1748		if (rdev
1749		    && rdev->recovery_offset == MaxSector
1750		    && !test_bit(Faulty, &rdev->flags)
1751		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1752			count++;
1753			sysfs_notify_dirent_safe(rdev->sysfs_state);
1754		}
1755	}
 
1756	mddev->degraded -= count;
1757	spin_unlock_irqrestore(&conf->device_lock, flags);
1758
1759	print_conf(conf);
1760	return count;
1761}
1762
1763static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 
1764{
1765	struct r1conf *conf = mddev->private;
1766	int err = -EEXIST;
1767	int mirror = 0, repl_slot = -1;
1768	struct raid1_info *p;
1769	int first = 0;
1770	int last = conf->raid_disks - 1;
1771
1772	if (mddev->recovery_disabled == conf->recovery_disabled)
1773		return -EBUSY;
1774
1775	if (md_integrity_add_rdev(rdev, mddev))
1776		return -ENXIO;
1777
1778	if (rdev->raid_disk >= 0)
1779		first = last = rdev->raid_disk;
1780
1781	/*
1782	 * find the disk ... but prefer rdev->saved_raid_disk
1783	 * if possible.
1784	 */
1785	if (rdev->saved_raid_disk >= 0 &&
1786	    rdev->saved_raid_disk >= first &&
1787	    rdev->saved_raid_disk < conf->raid_disks &&
1788	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1789		first = last = rdev->saved_raid_disk;
1790
1791	for (mirror = first; mirror <= last; mirror++) {
1792		p = conf->mirrors + mirror;
1793		if (!p->rdev) {
1794			if (mddev->gendisk)
1795				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796						  rdev->data_offset << 9);
1797
1798			p->head_position = 0;
1799			rdev->raid_disk = mirror;
1800			err = 0;
1801			/* As all devices are equivalent, we don't need a full recovery
1802			 * if this was recently any drive of the array
1803			 */
1804			if (rdev->saved_raid_disk < 0)
1805				conf->fullsync = 1;
1806			WRITE_ONCE(p->rdev, rdev);
1807			break;
1808		}
1809		if (test_bit(WantReplacement, &p->rdev->flags) &&
1810		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1811			repl_slot = mirror;
1812	}
1813
1814	if (err && repl_slot >= 0) {
1815		/* Add this device as a replacement */
1816		p = conf->mirrors + repl_slot;
1817		clear_bit(In_sync, &rdev->flags);
1818		set_bit(Replacement, &rdev->flags);
1819		rdev->raid_disk = repl_slot;
1820		err = 0;
1821		conf->fullsync = 1;
1822		WRITE_ONCE(p[conf->raid_disks].rdev, rdev);
1823	}
1824
1825	print_conf(conf);
1826	return err;
1827}
1828
1829static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830{
1831	struct r1conf *conf = mddev->private;
1832	int err = 0;
1833	int number = rdev->raid_disk;
1834	struct raid1_info *p = conf->mirrors + number;
1835
1836	if (unlikely(number >= conf->raid_disks))
1837		goto abort;
1838
1839	if (rdev != p->rdev)
1840		p = conf->mirrors + conf->raid_disks + number;
1841
1842	print_conf(conf);
1843	if (rdev == p->rdev) {
 
1844		if (test_bit(In_sync, &rdev->flags) ||
1845		    atomic_read(&rdev->nr_pending)) {
1846			err = -EBUSY;
1847			goto abort;
1848		}
1849		/* Only remove non-faulty devices if recovery
1850		 * is not possible.
1851		 */
1852		if (!test_bit(Faulty, &rdev->flags) &&
1853		    mddev->recovery_disabled != conf->recovery_disabled &&
1854		    mddev->degraded < conf->raid_disks) {
1855			err = -EBUSY;
1856			goto abort;
1857		}
1858		WRITE_ONCE(p->rdev, NULL);
1859		if (conf->mirrors[conf->raid_disks + number].rdev) {
1860			/* We just removed a device that is being replaced.
1861			 * Move down the replacement.  We drain all IO before
1862			 * doing this to avoid confusion.
1863			 */
1864			struct md_rdev *repl =
1865				conf->mirrors[conf->raid_disks + number].rdev;
1866			freeze_array(conf, 0);
1867			if (atomic_read(&repl->nr_pending)) {
1868				/* It means that some queued IO of retry_list
1869				 * hold repl. Thus, we cannot set replacement
1870				 * as NULL, avoiding rdev NULL pointer
1871				 * dereference in sync_request_write and
1872				 * handle_write_finished.
1873				 */
1874				err = -EBUSY;
1875				unfreeze_array(conf);
1876				goto abort;
1877			}
1878			clear_bit(Replacement, &repl->flags);
1879			WRITE_ONCE(p->rdev, repl);
1880			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1881			unfreeze_array(conf);
1882		}
1883
1884		clear_bit(WantReplacement, &rdev->flags);
1885		err = md_integrity_register(mddev);
1886	}
1887abort:
1888
1889	print_conf(conf);
1890	return err;
1891}
1892
1893static void end_sync_read(struct bio *bio)
1894{
1895	struct r1bio *r1_bio = get_resync_r1bio(bio);
1896
1897	update_head_pos(r1_bio->read_disk, r1_bio);
 
 
 
1898
 
 
 
 
 
1899	/*
1900	 * we have read a block, now it needs to be re-written,
1901	 * or re-read if the read failed.
1902	 * We don't do much here, just schedule handling by raid1d
1903	 */
1904	if (!bio->bi_status)
1905		set_bit(R1BIO_Uptodate, &r1_bio->state);
1906
1907	if (atomic_dec_and_test(&r1_bio->remaining))
1908		reschedule_retry(r1_bio);
1909}
1910
1911static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1912{
1913	sector_t sync_blocks = 0;
1914	sector_t s = r1_bio->sector;
1915	long sectors_to_go = r1_bio->sectors;
1916
1917	/* make sure these bits don't get cleared. */
1918	do {
1919		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1920		s += sync_blocks;
1921		sectors_to_go -= sync_blocks;
1922	} while (sectors_to_go > 0);
1923}
1924
1925static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1926{
1927	if (atomic_dec_and_test(&r1_bio->remaining)) {
1928		struct mddev *mddev = r1_bio->mddev;
1929		int s = r1_bio->sectors;
1930
1931		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1932		    test_bit(R1BIO_WriteError, &r1_bio->state))
1933			reschedule_retry(r1_bio);
1934		else {
1935			put_buf(r1_bio);
1936			md_done_sync(mddev, s, uptodate);
1937		}
1938	}
1939}
1940
1941static void end_sync_write(struct bio *bio)
1942{
1943	int uptodate = !bio->bi_status;
1944	struct r1bio *r1_bio = get_resync_r1bio(bio);
1945	struct mddev *mddev = r1_bio->mddev;
1946	struct r1conf *conf = mddev->private;
1947	sector_t first_bad;
1948	int bad_sectors;
1949	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1950
 
 
 
 
 
1951	if (!uptodate) {
1952		abort_sync_write(mddev, r1_bio);
1953		set_bit(WriteErrorSeen, &rdev->flags);
1954		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1955			set_bit(MD_RECOVERY_NEEDED, &
1956				mddev->recovery);
 
 
 
 
 
 
 
1957		set_bit(R1BIO_WriteError, &r1_bio->state);
1958	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 
 
1959			       &first_bad, &bad_sectors) &&
1960		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1961				r1_bio->sector,
1962				r1_bio->sectors,
1963				&first_bad, &bad_sectors)
1964		)
1965		set_bit(R1BIO_MadeGood, &r1_bio->state);
1966
1967	put_sync_write_buf(r1_bio, uptodate);
 
 
 
 
 
 
 
 
 
 
 
1968}
1969
1970static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1971			   int sectors, struct page *page, blk_opf_t rw)
1972{
1973	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1974		/* success */
1975		return 1;
1976	if (rw == REQ_OP_WRITE) {
1977		set_bit(WriteErrorSeen, &rdev->flags);
1978		if (!test_and_set_bit(WantReplacement,
1979				      &rdev->flags))
1980			set_bit(MD_RECOVERY_NEEDED, &
1981				rdev->mddev->recovery);
1982	}
1983	/* need to record an error - either for the block or the device */
1984	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1985		md_error(rdev->mddev, rdev);
1986	return 0;
1987}
1988
1989static int fix_sync_read_error(struct r1bio *r1_bio)
1990{
1991	/* Try some synchronous reads of other devices to get
1992	 * good data, much like with normal read errors.  Only
1993	 * read into the pages we already have so we don't
1994	 * need to re-issue the read request.
1995	 * We don't need to freeze the array, because being in an
1996	 * active sync request, there is no normal IO, and
1997	 * no overlapping syncs.
1998	 * We don't need to check is_badblock() again as we
1999	 * made sure that anything with a bad block in range
2000	 * will have bi_end_io clear.
2001	 */
2002	struct mddev *mddev = r1_bio->mddev;
2003	struct r1conf *conf = mddev->private;
2004	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2005	struct page **pages = get_resync_pages(bio)->pages;
2006	sector_t sect = r1_bio->sector;
2007	int sectors = r1_bio->sectors;
2008	int idx = 0;
2009	struct md_rdev *rdev;
2010
2011	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2012	if (test_bit(FailFast, &rdev->flags)) {
2013		/* Don't try recovering from here - just fail it
2014		 * ... unless it is the last working device of course */
2015		md_error(mddev, rdev);
2016		if (test_bit(Faulty, &rdev->flags))
2017			/* Don't try to read from here, but make sure
2018			 * put_buf does it's thing
2019			 */
2020			bio->bi_end_io = end_sync_write;
2021	}
2022
2023	while(sectors) {
2024		int s = sectors;
2025		int d = r1_bio->read_disk;
2026		int success = 0;
 
2027		int start;
2028
2029		if (s > (PAGE_SIZE>>9))
2030			s = PAGE_SIZE >> 9;
2031		do {
2032			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2033				/* No rcu protection needed here devices
2034				 * can only be removed when no resync is
2035				 * active, and resync is currently active
2036				 */
2037				rdev = conf->mirrors[d].rdev;
2038				if (sync_page_io(rdev, sect, s<<9,
2039						 pages[idx],
2040						 REQ_OP_READ, false)) {
2041					success = 1;
2042					break;
2043				}
2044			}
2045			d++;
2046			if (d == conf->raid_disks * 2)
2047				d = 0;
2048		} while (!success && d != r1_bio->read_disk);
2049
2050		if (!success) {
 
2051			int abort = 0;
2052			/* Cannot read from anywhere, this block is lost.
2053			 * Record a bad block on each device.  If that doesn't
2054			 * work just disable and interrupt the recovery.
2055			 * Don't fail devices as that won't really help.
2056			 */
2057			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2058					    mdname(mddev), bio->bi_bdev,
2059					    (unsigned long long)r1_bio->sector);
2060			for (d = 0; d < conf->raid_disks * 2; d++) {
 
 
2061				rdev = conf->mirrors[d].rdev;
2062				if (!rdev || test_bit(Faulty, &rdev->flags))
2063					continue;
2064				if (!rdev_set_badblocks(rdev, sect, s, 0))
2065					abort = 1;
2066			}
2067			if (abort) {
2068				conf->recovery_disabled =
2069					mddev->recovery_disabled;
2070				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2071				md_done_sync(mddev, r1_bio->sectors, 0);
2072				put_buf(r1_bio);
2073				return 0;
2074			}
2075			/* Try next page */
2076			sectors -= s;
2077			sect += s;
2078			idx++;
2079			continue;
2080		}
2081
2082		start = d;
2083		/* write it back and re-read */
2084		while (d != r1_bio->read_disk) {
2085			if (d == 0)
2086				d = conf->raid_disks * 2;
2087			d--;
2088			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089				continue;
2090			rdev = conf->mirrors[d].rdev;
2091			if (r1_sync_page_io(rdev, sect, s,
2092					    pages[idx],
2093					    REQ_OP_WRITE) == 0) {
2094				r1_bio->bios[d]->bi_end_io = NULL;
2095				rdev_dec_pending(rdev, mddev);
2096			}
2097		}
2098		d = start;
2099		while (d != r1_bio->read_disk) {
2100			if (d == 0)
2101				d = conf->raid_disks * 2;
2102			d--;
2103			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104				continue;
2105			rdev = conf->mirrors[d].rdev;
2106			if (r1_sync_page_io(rdev, sect, s,
2107					    pages[idx],
2108					    REQ_OP_READ) != 0)
2109				atomic_add(s, &rdev->corrected_errors);
2110		}
2111		sectors -= s;
2112		sect += s;
2113		idx ++;
2114	}
2115	set_bit(R1BIO_Uptodate, &r1_bio->state);
2116	bio->bi_status = 0;
2117	return 1;
2118}
2119
2120static void process_checks(struct r1bio *r1_bio)
2121{
2122	/* We have read all readable devices.  If we haven't
2123	 * got the block, then there is no hope left.
2124	 * If we have, then we want to do a comparison
2125	 * and skip the write if everything is the same.
2126	 * If any blocks failed to read, then we need to
2127	 * attempt an over-write
2128	 */
2129	struct mddev *mddev = r1_bio->mddev;
2130	struct r1conf *conf = mddev->private;
2131	int primary;
2132	int i;
2133	int vcnt;
2134
2135	/* Fix variable parts of all bios */
2136	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2137	for (i = 0; i < conf->raid_disks * 2; i++) {
2138		blk_status_t status;
2139		struct bio *b = r1_bio->bios[i];
2140		struct resync_pages *rp = get_resync_pages(b);
2141		if (b->bi_end_io != end_sync_read)
2142			continue;
2143		/* fixup the bio for reuse, but preserve errno */
2144		status = b->bi_status;
2145		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2146		b->bi_status = status;
2147		b->bi_iter.bi_sector = r1_bio->sector +
2148			conf->mirrors[i].rdev->data_offset;
2149		b->bi_end_io = end_sync_read;
2150		rp->raid_bio = r1_bio;
2151		b->bi_private = rp;
2152
2153		/* initialize bvec table again */
2154		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2155	}
2156	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2157		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2158		    !r1_bio->bios[primary]->bi_status) {
2159			r1_bio->bios[primary]->bi_end_io = NULL;
2160			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2161			break;
2162		}
2163	r1_bio->read_disk = primary;
2164	for (i = 0; i < conf->raid_disks * 2; i++) {
2165		int j = 0;
 
2166		struct bio *pbio = r1_bio->bios[primary];
2167		struct bio *sbio = r1_bio->bios[i];
2168		blk_status_t status = sbio->bi_status;
2169		struct page **ppages = get_resync_pages(pbio)->pages;
2170		struct page **spages = get_resync_pages(sbio)->pages;
2171		struct bio_vec *bi;
2172		int page_len[RESYNC_PAGES] = { 0 };
2173		struct bvec_iter_all iter_all;
2174
2175		if (sbio->bi_end_io != end_sync_read)
2176			continue;
2177		/* Now we can 'fixup' the error value */
2178		sbio->bi_status = 0;
2179
2180		bio_for_each_segment_all(bi, sbio, iter_all)
2181			page_len[j++] = bi->bv_len;
2182
2183		if (!status) {
2184			for (j = vcnt; j-- ; ) {
2185				if (memcmp(page_address(ppages[j]),
2186					   page_address(spages[j]),
2187					   page_len[j]))
 
 
 
2188					break;
2189			}
2190		} else
2191			j = 0;
2192		if (j >= 0)
2193			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2194		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2195			      && !status)) {
2196			/* No need to write to this device. */
2197			sbio->bi_end_io = NULL;
2198			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2199			continue;
2200		}
2201
2202		bio_copy_data(sbio, pbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
 
2204}
2205
2206static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2207{
2208	struct r1conf *conf = mddev->private;
2209	int i;
2210	int disks = conf->raid_disks * 2;
2211	struct bio *wbio;
 
 
2212
2213	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2214		/* ouch - failed to read all of that. */
2215		if (!fix_sync_read_error(r1_bio))
2216			return;
2217
2218	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2219		process_checks(r1_bio);
2220
2221	/*
2222	 * schedule writes
2223	 */
2224	atomic_set(&r1_bio->remaining, 1);
2225	for (i = 0; i < disks ; i++) {
2226		wbio = r1_bio->bios[i];
2227		if (wbio->bi_end_io == NULL ||
2228		    (wbio->bi_end_io == end_sync_read &&
2229		     (i == r1_bio->read_disk ||
2230		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2231			continue;
2232		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2233			abort_sync_write(mddev, r1_bio);
2234			continue;
2235		}
2236
2237		wbio->bi_opf = REQ_OP_WRITE;
2238		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2239			wbio->bi_opf |= MD_FAILFAST;
2240
 
2241		wbio->bi_end_io = end_sync_write;
2242		atomic_inc(&r1_bio->remaining);
2243		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2244
2245		submit_bio_noacct(wbio);
2246	}
2247
2248	put_sync_write_buf(r1_bio, 1);
 
 
 
 
2249}
2250
2251/*
2252 * This is a kernel thread which:
2253 *
2254 *	1.	Retries failed read operations on working mirrors.
2255 *	2.	Updates the raid superblock when problems encounter.
2256 *	3.	Performs writes following reads for array synchronising.
2257 */
2258
2259static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 
2260{
2261	sector_t sect = r1_bio->sector;
2262	int sectors = r1_bio->sectors;
2263	int read_disk = r1_bio->read_disk;
2264	struct mddev *mddev = conf->mddev;
2265	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2266
2267	if (exceed_read_errors(mddev, rdev)) {
2268		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2269		return;
2270	}
2271
2272	while(sectors) {
2273		int s = sectors;
2274		int d = read_disk;
2275		int success = 0;
2276		int start;
 
2277
2278		if (s > (PAGE_SIZE>>9))
2279			s = PAGE_SIZE >> 9;
2280
2281		do {
 
 
 
 
 
2282			sector_t first_bad;
2283			int bad_sectors;
2284
2285			rdev = conf->mirrors[d].rdev;
2286			if (rdev &&
2287			    (test_bit(In_sync, &rdev->flags) ||
2288			     (!test_bit(Faulty, &rdev->flags) &&
2289			      rdev->recovery_offset >= sect + s)) &&
2290			    is_badblock(rdev, sect, s,
2291					&first_bad, &bad_sectors) == 0) {
2292				atomic_inc(&rdev->nr_pending);
2293				if (sync_page_io(rdev, sect, s<<9,
2294					 conf->tmppage, REQ_OP_READ, false))
2295					success = 1;
2296				rdev_dec_pending(rdev, mddev);
2297				if (success)
2298					break;
2299			}
2300
2301			d++;
2302			if (d == conf->raid_disks * 2)
2303				d = 0;
2304		} while (d != read_disk);
2305
2306		if (!success) {
2307			/* Cannot read from anywhere - mark it bad */
2308			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2309			if (!rdev_set_badblocks(rdev, sect, s, 0))
2310				md_error(mddev, rdev);
2311			break;
2312		}
2313		/* write it back and re-read */
2314		start = d;
2315		while (d != read_disk) {
2316			if (d==0)
2317				d = conf->raid_disks * 2;
2318			d--;
2319			rdev = conf->mirrors[d].rdev;
2320			if (rdev &&
2321			    !test_bit(Faulty, &rdev->flags)) {
2322				atomic_inc(&rdev->nr_pending);
2323				r1_sync_page_io(rdev, sect, s,
2324						conf->tmppage, REQ_OP_WRITE);
2325				rdev_dec_pending(rdev, mddev);
2326			}
2327		}
2328		d = start;
2329		while (d != read_disk) {
 
2330			if (d==0)
2331				d = conf->raid_disks * 2;
2332			d--;
2333			rdev = conf->mirrors[d].rdev;
2334			if (rdev &&
2335			    !test_bit(Faulty, &rdev->flags)) {
2336				atomic_inc(&rdev->nr_pending);
2337				if (r1_sync_page_io(rdev, sect, s,
2338						conf->tmppage, REQ_OP_READ)) {
2339					atomic_add(s, &rdev->corrected_errors);
2340					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2341						mdname(mddev), s,
2342						(unsigned long long)(sect +
2343								     rdev->data_offset),
2344						rdev->bdev);
 
 
2345				}
2346				rdev_dec_pending(rdev, mddev);
2347			}
2348		}
2349		sectors -= s;
2350		sect += s;
2351	}
2352}
2353
2354static int narrow_write_error(struct r1bio *r1_bio, int i)
2355{
2356	struct mddev *mddev = r1_bio->mddev;
2357	struct r1conf *conf = mddev->private;
2358	struct md_rdev *rdev = conf->mirrors[i].rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359
2360	/* bio has the data to be written to device 'i' where
2361	 * we just recently had a write error.
2362	 * We repeatedly clone the bio and trim down to one block,
2363	 * then try the write.  Where the write fails we record
2364	 * a bad block.
2365	 * It is conceivable that the bio doesn't exactly align with
2366	 * blocks.  We must handle this somehow.
2367	 *
2368	 * We currently own a reference on the rdev.
2369	 */
2370
2371	int block_sectors;
2372	sector_t sector;
2373	int sectors;
2374	int sect_to_write = r1_bio->sectors;
2375	int ok = 1;
2376
2377	if (rdev->badblocks.shift < 0)
2378		return 0;
2379
2380	block_sectors = roundup(1 << rdev->badblocks.shift,
2381				bdev_logical_block_size(rdev->bdev) >> 9);
2382	sector = r1_bio->sector;
2383	sectors = ((sector + block_sectors)
2384		   & ~(sector_t)(block_sectors - 1))
2385		- sector;
2386
 
 
 
 
 
 
 
 
 
 
 
2387	while (sect_to_write) {
2388		struct bio *wbio;
2389		if (sectors > sect_to_write)
2390			sectors = sect_to_write;
2391		/* Write at 'sector' for 'sectors'*/
2392
2393		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394			wbio = bio_alloc_clone(rdev->bdev,
2395					       r1_bio->behind_master_bio,
2396					       GFP_NOIO, &mddev->bio_set);
2397		} else {
2398			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2399					       GFP_NOIO, &mddev->bio_set);
2400		}
2401
2402		wbio->bi_opf = REQ_OP_WRITE;
2403		wbio->bi_iter.bi_sector = r1_bio->sector;
2404		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2405
2406		bio_trim(wbio, sector - r1_bio->sector, sectors);
2407		wbio->bi_iter.bi_sector += rdev->data_offset;
2408
2409		if (submit_bio_wait(wbio) < 0)
2410			/* failure! */
2411			ok = rdev_set_badblocks(rdev, sector,
2412						sectors, 0)
2413				&& ok;
2414
2415		bio_put(wbio);
2416		sect_to_write -= sectors;
2417		sector += sectors;
2418		sectors = block_sectors;
2419	}
2420	return ok;
2421}
2422
2423static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2424{
2425	int m;
2426	int s = r1_bio->sectors;
2427	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2428		struct md_rdev *rdev = conf->mirrors[m].rdev;
2429		struct bio *bio = r1_bio->bios[m];
2430		if (bio->bi_end_io == NULL)
2431			continue;
2432		if (!bio->bi_status &&
2433		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2434			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2435		}
2436		if (bio->bi_status &&
2437		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2438			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2439				md_error(conf->mddev, rdev);
2440		}
2441	}
2442	put_buf(r1_bio);
2443	md_done_sync(conf->mddev, s, 1);
2444}
2445
2446static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447{
2448	int m, idx;
2449	bool fail = false;
2450
2451	for (m = 0; m < conf->raid_disks * 2 ; m++)
2452		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2453			struct md_rdev *rdev = conf->mirrors[m].rdev;
2454			rdev_clear_badblocks(rdev,
2455					     r1_bio->sector,
2456					     r1_bio->sectors, 0);
2457			rdev_dec_pending(rdev, conf->mddev);
2458		} else if (r1_bio->bios[m] != NULL) {
2459			/* This drive got a write error.  We need to
2460			 * narrow down and record precise write
2461			 * errors.
2462			 */
2463			fail = true;
2464			if (!narrow_write_error(r1_bio, m)) {
2465				md_error(conf->mddev,
2466					 conf->mirrors[m].rdev);
2467				/* an I/O failed, we can't clear the bitmap */
2468				set_bit(R1BIO_Degraded, &r1_bio->state);
2469			}
2470			rdev_dec_pending(conf->mirrors[m].rdev,
2471					 conf->mddev);
2472		}
2473	if (fail) {
2474		spin_lock_irq(&conf->device_lock);
2475		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2476		idx = sector_to_idx(r1_bio->sector);
2477		atomic_inc(&conf->nr_queued[idx]);
2478		spin_unlock_irq(&conf->device_lock);
2479		/*
2480		 * In case freeze_array() is waiting for condition
2481		 * get_unqueued_pending() == extra to be true.
2482		 */
2483		wake_up(&conf->wait_barrier);
2484		md_wakeup_thread(conf->mddev->thread);
2485	} else {
2486		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487			close_write(r1_bio);
2488		raid_end_bio_io(r1_bio);
2489	}
2490}
2491
2492static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2493{
2494	struct mddev *mddev = conf->mddev;
 
 
2495	struct bio *bio;
2496	struct md_rdev *rdev;
2497	sector_t sector;
2498
2499	clear_bit(R1BIO_ReadError, &r1_bio->state);
2500	/* we got a read error. Maybe the drive is bad.  Maybe just
2501	 * the block and we can fix it.
2502	 * We freeze all other IO, and try reading the block from
2503	 * other devices.  When we find one, we re-write
2504	 * and check it that fixes the read error.
2505	 * This is all done synchronously while the array is
2506	 * frozen
2507	 */
 
 
 
 
 
 
 
2508
2509	bio = r1_bio->bios[r1_bio->read_disk];
2510	bio_put(bio);
2511	r1_bio->bios[r1_bio->read_disk] = NULL;
2512
2513	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2514	if (mddev->ro == 0
2515	    && !test_bit(FailFast, &rdev->flags)) {
2516		freeze_array(conf, 1);
2517		fix_read_error(conf, r1_bio);
2518		unfreeze_array(conf);
2519	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2520		md_error(mddev, rdev);
2521	} else {
2522		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2523	}
2524
2525	rdev_dec_pending(rdev, conf->mddev);
2526	sector = r1_bio->sector;
2527	bio = r1_bio->master_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528
2529	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2530	r1_bio->state = 0;
2531	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2532	allow_barrier(conf, sector);
2533}
2534
2535static void raid1d(struct md_thread *thread)
2536{
2537	struct mddev *mddev = thread->mddev;
2538	struct r1bio *r1_bio;
2539	unsigned long flags;
2540	struct r1conf *conf = mddev->private;
2541	struct list_head *head = &conf->retry_list;
2542	struct blk_plug plug;
2543	int idx;
2544
2545	md_check_recovery(mddev);
2546
2547	if (!list_empty_careful(&conf->bio_end_io_list) &&
2548	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2549		LIST_HEAD(tmp);
2550		spin_lock_irqsave(&conf->device_lock, flags);
2551		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2552			list_splice_init(&conf->bio_end_io_list, &tmp);
2553		spin_unlock_irqrestore(&conf->device_lock, flags);
2554		while (!list_empty(&tmp)) {
2555			r1_bio = list_first_entry(&tmp, struct r1bio,
2556						  retry_list);
2557			list_del(&r1_bio->retry_list);
2558			idx = sector_to_idx(r1_bio->sector);
2559			atomic_dec(&conf->nr_queued[idx]);
2560			if (mddev->degraded)
2561				set_bit(R1BIO_Degraded, &r1_bio->state);
2562			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2563				close_write(r1_bio);
2564			raid_end_bio_io(r1_bio);
2565		}
2566	}
2567
2568	blk_start_plug(&plug);
2569	for (;;) {
2570
2571		flush_pending_writes(conf);
 
2572
2573		spin_lock_irqsave(&conf->device_lock, flags);
2574		if (list_empty(head)) {
2575			spin_unlock_irqrestore(&conf->device_lock, flags);
2576			break;
2577		}
2578		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2579		list_del(head->prev);
2580		idx = sector_to_idx(r1_bio->sector);
2581		atomic_dec(&conf->nr_queued[idx]);
2582		spin_unlock_irqrestore(&conf->device_lock, flags);
2583
2584		mddev = r1_bio->mddev;
2585		conf = mddev->private;
2586		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2587			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588			    test_bit(R1BIO_WriteError, &r1_bio->state))
2589				handle_sync_write_finished(conf, r1_bio);
2590			else
2591				sync_request_write(mddev, r1_bio);
2592		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2593			   test_bit(R1BIO_WriteError, &r1_bio->state))
2594			handle_write_finished(conf, r1_bio);
2595		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2596			handle_read_error(conf, r1_bio);
2597		else
2598			WARN_ON_ONCE(1);
 
 
 
2599
2600		cond_resched();
2601		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2602			md_check_recovery(mddev);
2603	}
2604	blk_finish_plug(&plug);
2605}
2606
2607static int init_resync(struct r1conf *conf)
 
2608{
2609	int buffs;
2610
2611	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2612	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2613
2614	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2615			    r1buf_pool_free, conf->poolinfo);
2616}
2617
2618static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2619{
2620	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2621	struct resync_pages *rps;
2622	struct bio *bio;
2623	int i;
2624
2625	for (i = conf->poolinfo->raid_disks; i--; ) {
2626		bio = r1bio->bios[i];
2627		rps = bio->bi_private;
2628		bio_reset(bio, NULL, 0);
2629		bio->bi_private = rps;
2630	}
2631	r1bio->master_bio = NULL;
2632	return r1bio;
2633}
2634
2635/*
2636 * perform a "sync" on one "block"
2637 *
2638 * We need to make sure that no normal I/O request - particularly write
2639 * requests - conflict with active sync requests.
2640 *
2641 * This is achieved by tracking pending requests and a 'barrier' concept
2642 * that can be installed to exclude normal IO requests.
2643 */
2644
2645static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2646				   int *skipped)
2647{
2648	struct r1conf *conf = mddev->private;
2649	struct r1bio *r1_bio;
2650	struct bio *bio;
2651	sector_t max_sector, nr_sectors;
2652	int disk = -1;
2653	int i;
2654	int wonly = -1;
2655	int write_targets = 0, read_targets = 0;
2656	sector_t sync_blocks;
2657	int still_degraded = 0;
2658	int good_sectors = RESYNC_SECTORS;
2659	int min_bad = 0; /* number of sectors that are bad in all devices */
2660	int idx = sector_to_idx(sector_nr);
2661	int page_idx = 0;
2662
2663	if (!mempool_initialized(&conf->r1buf_pool))
2664		if (init_resync(conf))
2665			return 0;
2666
2667	max_sector = mddev->dev_sectors;
2668	if (sector_nr >= max_sector) {
2669		/* If we aborted, we need to abort the
2670		 * sync on the 'current' bitmap chunk (there will
2671		 * only be one in raid1 resync.
2672		 * We can find the current addess in mddev->curr_resync
2673		 */
2674		if (mddev->curr_resync < max_sector) /* aborted */
2675			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2676					   &sync_blocks, 1);
2677		else /* completed sync */
2678			conf->fullsync = 0;
2679
2680		md_bitmap_close_sync(mddev->bitmap);
2681		close_sync(conf);
2682
2683		if (mddev_is_clustered(mddev)) {
2684			conf->cluster_sync_low = 0;
2685			conf->cluster_sync_high = 0;
2686		}
2687		return 0;
2688	}
2689
2690	if (mddev->bitmap == NULL &&
2691	    mddev->recovery_cp == MaxSector &&
2692	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2693	    conf->fullsync == 0) {
2694		*skipped = 1;
2695		return max_sector - sector_nr;
2696	}
2697	/* before building a request, check if we can skip these blocks..
2698	 * This call the bitmap_start_sync doesn't actually record anything
2699	 */
2700	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2701	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2702		/* We can skip this block, and probably several more */
2703		*skipped = 1;
2704		return sync_blocks;
2705	}
2706
2707	/*
2708	 * If there is non-resync activity waiting for a turn, then let it
2709	 * though before starting on this new sync request.
 
2710	 */
2711	if (atomic_read(&conf->nr_waiting[idx]))
2712		schedule_timeout_uninterruptible(1);
2713
2714	/* we are incrementing sector_nr below. To be safe, we check against
2715	 * sector_nr + two times RESYNC_SECTORS
2716	 */
2717
2718	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2719		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2720
2721
2722	if (raise_barrier(conf, sector_nr))
2723		return 0;
2724
2725	r1_bio = raid1_alloc_init_r1buf(conf);
2726
 
2727	/*
2728	 * If we get a correctably read error during resync or recovery,
2729	 * we might want to read from a different device.  So we
2730	 * flag all drives that could conceivably be read from for READ,
2731	 * and any others (which will be non-In_sync devices) for WRITE.
2732	 * If a read fails, we try reading from something else for which READ
2733	 * is OK.
2734	 */
2735
2736	r1_bio->mddev = mddev;
2737	r1_bio->sector = sector_nr;
2738	r1_bio->state = 0;
2739	set_bit(R1BIO_IsSync, &r1_bio->state);
2740	/* make sure good_sectors won't go across barrier unit boundary */
2741	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2742
2743	for (i = 0; i < conf->raid_disks * 2; i++) {
2744		struct md_rdev *rdev;
2745		bio = r1_bio->bios[i];
2746
2747		rdev = conf->mirrors[i].rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
2748		if (rdev == NULL ||
2749		    test_bit(Faulty, &rdev->flags)) {
2750			if (i < conf->raid_disks)
2751				still_degraded = 1;
2752		} else if (!test_bit(In_sync, &rdev->flags)) {
2753			bio->bi_opf = REQ_OP_WRITE;
2754			bio->bi_end_io = end_sync_write;
2755			write_targets ++;
2756		} else {
2757			/* may need to read from here */
2758			sector_t first_bad = MaxSector;
2759			int bad_sectors;
2760
2761			if (is_badblock(rdev, sector_nr, good_sectors,
2762					&first_bad, &bad_sectors)) {
2763				if (first_bad > sector_nr)
2764					good_sectors = first_bad - sector_nr;
2765				else {
2766					bad_sectors -= (sector_nr - first_bad);
2767					if (min_bad == 0 ||
2768					    min_bad > bad_sectors)
2769						min_bad = bad_sectors;
2770				}
2771			}
2772			if (sector_nr < first_bad) {
2773				if (test_bit(WriteMostly, &rdev->flags)) {
2774					if (wonly < 0)
2775						wonly = i;
2776				} else {
2777					if (disk < 0)
2778						disk = i;
2779				}
2780				bio->bi_opf = REQ_OP_READ;
2781				bio->bi_end_io = end_sync_read;
2782				read_targets++;
2783			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2784				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2785				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2786				/*
2787				 * The device is suitable for reading (InSync),
2788				 * but has bad block(s) here. Let's try to correct them,
2789				 * if we are doing resync or repair. Otherwise, leave
2790				 * this device alone for this sync request.
2791				 */
2792				bio->bi_opf = REQ_OP_WRITE;
2793				bio->bi_end_io = end_sync_write;
2794				write_targets++;
2795			}
2796		}
2797		if (rdev && bio->bi_end_io) {
2798			atomic_inc(&rdev->nr_pending);
2799			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2800			bio_set_dev(bio, rdev->bdev);
2801			if (test_bit(FailFast, &rdev->flags))
2802				bio->bi_opf |= MD_FAILFAST;
2803		}
2804	}
 
2805	if (disk < 0)
2806		disk = wonly;
2807	r1_bio->read_disk = disk;
2808
2809	if (read_targets == 0 && min_bad > 0) {
2810		/* These sectors are bad on all InSync devices, so we
2811		 * need to mark them bad on all write targets
2812		 */
2813		int ok = 1;
2814		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816				struct md_rdev *rdev = conf->mirrors[i].rdev;
 
2817				ok = rdev_set_badblocks(rdev, sector_nr,
2818							min_bad, 0
2819					) && ok;
2820			}
2821		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2822		*skipped = 1;
2823		put_buf(r1_bio);
2824
2825		if (!ok) {
2826			/* Cannot record the badblocks, so need to
2827			 * abort the resync.
2828			 * If there are multiple read targets, could just
2829			 * fail the really bad ones ???
2830			 */
2831			conf->recovery_disabled = mddev->recovery_disabled;
2832			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2833			return 0;
2834		} else
2835			return min_bad;
2836
2837	}
2838	if (min_bad > 0 && min_bad < good_sectors) {
2839		/* only resync enough to reach the next bad->good
2840		 * transition */
2841		good_sectors = min_bad;
2842	}
2843
2844	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845		/* extra read targets are also write targets */
2846		write_targets += read_targets-1;
2847
2848	if (write_targets == 0 || read_targets == 0) {
2849		/* There is nowhere to write, so all non-sync
2850		 * drives must be failed - so we are finished
2851		 */
2852		sector_t rv;
2853		if (min_bad > 0)
2854			max_sector = sector_nr + min_bad;
2855		rv = max_sector - sector_nr;
2856		*skipped = 1;
2857		put_buf(r1_bio);
2858		return rv;
2859	}
2860
2861	if (max_sector > mddev->resync_max)
2862		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863	if (max_sector > sector_nr + good_sectors)
2864		max_sector = sector_nr + good_sectors;
2865	nr_sectors = 0;
2866	sync_blocks = 0;
2867	do {
2868		struct page *page;
2869		int len = PAGE_SIZE;
2870		if (sector_nr + (len>>9) > max_sector)
2871			len = (max_sector - sector_nr) << 9;
2872		if (len == 0)
2873			break;
2874		if (sync_blocks == 0) {
2875			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876						  &sync_blocks, still_degraded) &&
2877			    !conf->fullsync &&
2878			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2879				break;
 
2880			if ((len >> 9) > sync_blocks)
2881				len = sync_blocks<<9;
2882		}
2883
2884		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885			struct resync_pages *rp;
2886
2887			bio = r1_bio->bios[i];
2888			rp = get_resync_pages(bio);
2889			if (bio->bi_end_io) {
2890				page = resync_fetch_page(rp, page_idx);
2891
2892				/*
2893				 * won't fail because the vec table is big
2894				 * enough to hold all these pages
2895				 */
2896				__bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
2897			}
2898		}
2899		nr_sectors += len>>9;
2900		sector_nr += len>>9;
2901		sync_blocks -= (len>>9);
2902	} while (++page_idx < RESYNC_PAGES);
2903
2904	r1_bio->sectors = nr_sectors;
2905
2906	if (mddev_is_clustered(mddev) &&
2907			conf->cluster_sync_high < sector_nr + nr_sectors) {
2908		conf->cluster_sync_low = mddev->curr_resync_completed;
2909		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910		/* Send resync message */
2911		md_cluster_ops->resync_info_update(mddev,
2912				conf->cluster_sync_low,
2913				conf->cluster_sync_high);
2914	}
2915
2916	/* For a user-requested sync, we read all readable devices and do a
2917	 * compare
2918	 */
2919	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920		atomic_set(&r1_bio->remaining, read_targets);
2921		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922			bio = r1_bio->bios[i];
2923			if (bio->bi_end_io == end_sync_read) {
2924				read_targets--;
2925				md_sync_acct_bio(bio, nr_sectors);
2926				if (read_targets == 1)
2927					bio->bi_opf &= ~MD_FAILFAST;
2928				submit_bio_noacct(bio);
2929			}
2930		}
2931	} else {
2932		atomic_set(&r1_bio->remaining, 1);
2933		bio = r1_bio->bios[r1_bio->read_disk];
2934		md_sync_acct_bio(bio, nr_sectors);
2935		if (read_targets == 1)
2936			bio->bi_opf &= ~MD_FAILFAST;
2937		submit_bio_noacct(bio);
2938	}
2939	return nr_sectors;
2940}
2941
2942static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2943{
2944	if (sectors)
2945		return sectors;
2946
2947	return mddev->dev_sectors;
2948}
2949
2950static struct r1conf *setup_conf(struct mddev *mddev)
2951{
2952	struct r1conf *conf;
2953	int i;
2954	struct raid1_info *disk;
2955	struct md_rdev *rdev;
2956	int err = -ENOMEM;
2957
2958	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959	if (!conf)
2960		goto abort;
2961
2962	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963				   sizeof(atomic_t), GFP_KERNEL);
2964	if (!conf->nr_pending)
2965		goto abort;
2966
2967	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968				   sizeof(atomic_t), GFP_KERNEL);
2969	if (!conf->nr_waiting)
2970		goto abort;
2971
2972	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973				  sizeof(atomic_t), GFP_KERNEL);
2974	if (!conf->nr_queued)
2975		goto abort;
2976
2977	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978				sizeof(atomic_t), GFP_KERNEL);
2979	if (!conf->barrier)
2980		goto abort;
2981
2982	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983					    mddev->raid_disks, 2),
2984				GFP_KERNEL);
2985	if (!conf->mirrors)
2986		goto abort;
2987
2988	conf->tmppage = alloc_page(GFP_KERNEL);
2989	if (!conf->tmppage)
2990		goto abort;
2991
2992	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993	if (!conf->poolinfo)
2994		goto abort;
2995	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997			   rbio_pool_free, conf->poolinfo);
2998	if (err)
2999		goto abort;
3000
3001	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002	if (err)
3003		goto abort;
3004
3005	conf->poolinfo->mddev = mddev;
3006
3007	err = -EINVAL;
3008	spin_lock_init(&conf->device_lock);
3009	rdev_for_each(rdev, mddev) {
3010		int disk_idx = rdev->raid_disk;
3011		if (disk_idx >= mddev->raid_disks
3012		    || disk_idx < 0)
3013			continue;
3014		if (test_bit(Replacement, &rdev->flags))
3015			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3016		else
3017			disk = conf->mirrors + disk_idx;
3018
3019		if (disk->rdev)
3020			goto abort;
3021		disk->rdev = rdev;
 
3022		disk->head_position = 0;
3023		disk->seq_start = MaxSector;
3024	}
3025	conf->raid_disks = mddev->raid_disks;
3026	conf->mddev = mddev;
3027	INIT_LIST_HEAD(&conf->retry_list);
3028	INIT_LIST_HEAD(&conf->bio_end_io_list);
3029
3030	spin_lock_init(&conf->resync_lock);
3031	init_waitqueue_head(&conf->wait_barrier);
3032
3033	bio_list_init(&conf->pending_bio_list);
3034	conf->recovery_disabled = mddev->recovery_disabled - 1;
3035
3036	err = -EIO;
3037	for (i = 0; i < conf->raid_disks * 2; i++) {
3038
3039		disk = conf->mirrors + i;
3040
3041		if (i < conf->raid_disks &&
3042		    disk[conf->raid_disks].rdev) {
3043			/* This slot has a replacement. */
3044			if (!disk->rdev) {
3045				/* No original, just make the replacement
3046				 * a recovering spare
3047				 */
3048				disk->rdev =
3049					disk[conf->raid_disks].rdev;
3050				disk[conf->raid_disks].rdev = NULL;
3051			} else if (!test_bit(In_sync, &disk->rdev->flags))
3052				/* Original is not in_sync - bad */
3053				goto abort;
3054		}
3055
3056		if (!disk->rdev ||
3057		    !test_bit(In_sync, &disk->rdev->flags)) {
3058			disk->head_position = 0;
3059			if (disk->rdev &&
3060			    (disk->rdev->saved_raid_disk < 0))
3061				conf->fullsync = 1;
3062		}
 
 
 
 
 
3063	}
3064
 
 
 
 
 
 
3065	err = -ENOMEM;
3066	rcu_assign_pointer(conf->thread,
3067			   md_register_thread(raid1d, mddev, "raid1"));
3068	if (!conf->thread)
 
 
3069		goto abort;
 
3070
3071	return conf;
3072
3073 abort:
3074	if (conf) {
3075		mempool_exit(&conf->r1bio_pool);
 
3076		kfree(conf->mirrors);
3077		safe_put_page(conf->tmppage);
3078		kfree(conf->poolinfo);
3079		kfree(conf->nr_pending);
3080		kfree(conf->nr_waiting);
3081		kfree(conf->nr_queued);
3082		kfree(conf->barrier);
3083		bioset_exit(&conf->bio_split);
3084		kfree(conf);
3085	}
3086	return ERR_PTR(err);
3087}
3088
3089static void raid1_free(struct mddev *mddev, void *priv);
3090static int raid1_run(struct mddev *mddev)
3091{
3092	struct r1conf *conf;
3093	int i;
3094	struct md_rdev *rdev;
3095	int ret;
3096
3097	if (mddev->level != 1) {
3098		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3099			mdname(mddev), mddev->level);
3100		return -EIO;
3101	}
3102	if (mddev->reshape_position != MaxSector) {
3103		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3104			mdname(mddev));
3105		return -EIO;
3106	}
3107
3108	/*
3109	 * copy the already verified devices into our private RAID1
3110	 * bookkeeping area. [whatever we allocate in run(),
3111	 * should be freed in raid1_free()]
3112	 */
3113	if (mddev->private == NULL)
3114		conf = setup_conf(mddev);
3115	else
3116		conf = mddev->private;
3117
3118	if (IS_ERR(conf))
3119		return PTR_ERR(conf);
3120
3121	if (mddev->queue)
3122		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3123
3124	rdev_for_each(rdev, mddev) {
3125		if (!mddev->gendisk)
3126			continue;
3127		disk_stack_limits(mddev->gendisk, rdev->bdev,
3128				  rdev->data_offset << 9);
 
 
 
 
 
 
 
 
 
3129	}
3130
3131	mddev->degraded = 0;
3132	for (i = 0; i < conf->raid_disks; i++)
3133		if (conf->mirrors[i].rdev == NULL ||
3134		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3135		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3136			mddev->degraded++;
3137	/*
3138	 * RAID1 needs at least one disk in active
3139	 */
3140	if (conf->raid_disks - mddev->degraded < 1) {
3141		md_unregister_thread(mddev, &conf->thread);
3142		ret = -EINVAL;
3143		goto abort;
3144	}
3145
3146	if (conf->raid_disks - mddev->degraded == 1)
3147		mddev->recovery_cp = MaxSector;
3148
3149	if (mddev->recovery_cp != MaxSector)
3150		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3151			mdname(mddev));
3152	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3153		mdname(mddev), mddev->raid_disks - mddev->degraded,
 
 
3154		mddev->raid_disks);
3155
3156	/*
3157	 * Ok, everything is just fine now
3158	 */
3159	rcu_assign_pointer(mddev->thread, conf->thread);
3160	rcu_assign_pointer(conf->thread, NULL);
3161	mddev->private = conf;
3162	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3163
3164	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3165
3166	ret = md_integrity_register(mddev);
3167	if (ret) {
3168		md_unregister_thread(mddev, &mddev->thread);
3169		goto abort;
3170	}
3171	return 0;
3172
3173abort:
3174	raid1_free(mddev, conf);
3175	return ret;
3176}
3177
3178static void raid1_free(struct mddev *mddev, void *priv)
3179{
3180	struct r1conf *conf = priv;
 
 
 
 
 
 
 
 
 
 
 
 
 
3181
3182	mempool_exit(&conf->r1bio_pool);
 
 
3183	kfree(conf->mirrors);
3184	safe_put_page(conf->tmppage);
3185	kfree(conf->poolinfo);
3186	kfree(conf->nr_pending);
3187	kfree(conf->nr_waiting);
3188	kfree(conf->nr_queued);
3189	kfree(conf->barrier);
3190	bioset_exit(&conf->bio_split);
3191	kfree(conf);
 
 
3192}
3193
3194static int raid1_resize(struct mddev *mddev, sector_t sectors)
3195{
3196	/* no resync is happening, and there is enough space
3197	 * on all devices, so we can resize.
3198	 * We need to make sure resync covers any new space.
3199	 * If the array is shrinking we should possibly wait until
3200	 * any io in the removed space completes, but it hardly seems
3201	 * worth it.
3202	 */
3203	sector_t newsize = raid1_size(mddev, sectors, 0);
3204	if (mddev->external_size &&
3205	    mddev->array_sectors > newsize)
3206		return -EINVAL;
3207	if (mddev->bitmap) {
3208		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3209		if (ret)
3210			return ret;
3211	}
3212	md_set_array_sectors(mddev, newsize);
3213	if (sectors > mddev->dev_sectors &&
3214	    mddev->recovery_cp > mddev->dev_sectors) {
3215		mddev->recovery_cp = mddev->dev_sectors;
3216		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3217	}
3218	mddev->dev_sectors = sectors;
3219	mddev->resync_max_sectors = sectors;
3220	return 0;
3221}
3222
3223static int raid1_reshape(struct mddev *mddev)
3224{
3225	/* We need to:
3226	 * 1/ resize the r1bio_pool
3227	 * 2/ resize conf->mirrors
3228	 *
3229	 * We allocate a new r1bio_pool if we can.
3230	 * Then raise a device barrier and wait until all IO stops.
3231	 * Then resize conf->mirrors and swap in the new r1bio pool.
3232	 *
3233	 * At the same time, we "pack" the devices so that all the missing
3234	 * devices have the higher raid_disk numbers.
3235	 */
3236	mempool_t newpool, oldpool;
3237	struct pool_info *newpoolinfo;
3238	struct raid1_info *newmirrors;
3239	struct r1conf *conf = mddev->private;
3240	int cnt, raid_disks;
3241	unsigned long flags;
3242	int d, d2;
3243	int ret;
3244
3245	memset(&newpool, 0, sizeof(newpool));
3246	memset(&oldpool, 0, sizeof(oldpool));
3247
3248	/* Cannot change chunk_size, layout, or level */
3249	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3250	    mddev->layout != mddev->new_layout ||
3251	    mddev->level != mddev->new_level) {
3252		mddev->new_chunk_sectors = mddev->chunk_sectors;
3253		mddev->new_layout = mddev->layout;
3254		mddev->new_level = mddev->level;
3255		return -EINVAL;
3256	}
3257
3258	if (!mddev_is_clustered(mddev))
3259		md_allow_write(mddev);
 
3260
3261	raid_disks = mddev->raid_disks + mddev->delta_disks;
3262
3263	if (raid_disks < conf->raid_disks) {
3264		cnt=0;
3265		for (d= 0; d < conf->raid_disks; d++)
3266			if (conf->mirrors[d].rdev)
3267				cnt++;
3268		if (cnt > raid_disks)
3269			return -EBUSY;
3270	}
3271
3272	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3273	if (!newpoolinfo)
3274		return -ENOMEM;
3275	newpoolinfo->mddev = mddev;
3276	newpoolinfo->raid_disks = raid_disks * 2;
3277
3278	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3279			   rbio_pool_free, newpoolinfo);
3280	if (ret) {
3281		kfree(newpoolinfo);
3282		return ret;
3283	}
3284	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3285					 raid_disks, 2),
3286			     GFP_KERNEL);
3287	if (!newmirrors) {
3288		kfree(newpoolinfo);
3289		mempool_exit(&newpool);
3290		return -ENOMEM;
3291	}
3292
3293	freeze_array(conf, 0);
3294
3295	/* ok, everything is stopped */
3296	oldpool = conf->r1bio_pool;
3297	conf->r1bio_pool = newpool;
3298
3299	for (d = d2 = 0; d < conf->raid_disks; d++) {
3300		struct md_rdev *rdev = conf->mirrors[d].rdev;
3301		if (rdev && rdev->raid_disk != d2) {
3302			sysfs_unlink_rdev(mddev, rdev);
3303			rdev->raid_disk = d2;
3304			sysfs_unlink_rdev(mddev, rdev);
3305			if (sysfs_link_rdev(mddev, rdev))
3306				pr_warn("md/raid1:%s: cannot register rd%d\n",
3307					mdname(mddev), rdev->raid_disk);
 
3308		}
3309		if (rdev)
3310			newmirrors[d2++].rdev = rdev;
3311	}
3312	kfree(conf->mirrors);
3313	conf->mirrors = newmirrors;
3314	kfree(conf->poolinfo);
3315	conf->poolinfo = newpoolinfo;
3316
3317	spin_lock_irqsave(&conf->device_lock, flags);
3318	mddev->degraded += (raid_disks - conf->raid_disks);
3319	spin_unlock_irqrestore(&conf->device_lock, flags);
3320	conf->raid_disks = mddev->raid_disks = raid_disks;
3321	mddev->delta_disks = 0;
3322
3323	unfreeze_array(conf);
 
3324
3325	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3326	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3327	md_wakeup_thread(mddev->thread);
3328
3329	mempool_exit(&oldpool);
3330	return 0;
3331}
3332
3333static void raid1_quiesce(struct mddev *mddev, int quiesce)
3334{
3335	struct r1conf *conf = mddev->private;
3336
3337	if (quiesce)
3338		freeze_array(conf, 0);
3339	else
3340		unfreeze_array(conf);
 
 
 
 
 
 
 
3341}
3342
3343static void *raid1_takeover(struct mddev *mddev)
3344{
3345	/* raid1 can take over:
3346	 *  raid5 with 2 devices, any layout or chunk size
3347	 */
3348	if (mddev->level == 5 && mddev->raid_disks == 2) {
3349		struct r1conf *conf;
3350		mddev->new_level = 1;
3351		mddev->new_layout = 0;
3352		mddev->new_chunk_sectors = 0;
3353		conf = setup_conf(mddev);
3354		if (!IS_ERR(conf)) {
3355			/* Array must appear to be quiesced */
3356			conf->array_frozen = 1;
3357			mddev_clear_unsupported_flags(mddev,
3358				UNSUPPORTED_MDDEV_FLAGS);
3359		}
3360		return conf;
3361	}
3362	return ERR_PTR(-EINVAL);
3363}
3364
3365static struct md_personality raid1_personality =
3366{
3367	.name		= "raid1",
3368	.level		= 1,
3369	.owner		= THIS_MODULE,
3370	.make_request	= raid1_make_request,
3371	.run		= raid1_run,
3372	.free		= raid1_free,
3373	.status		= raid1_status,
3374	.error_handler	= raid1_error,
3375	.hot_add_disk	= raid1_add_disk,
3376	.hot_remove_disk= raid1_remove_disk,
3377	.spare_active	= raid1_spare_active,
3378	.sync_request	= raid1_sync_request,
3379	.resize		= raid1_resize,
3380	.size		= raid1_size,
3381	.check_reshape	= raid1_reshape,
3382	.quiesce	= raid1_quiesce,
3383	.takeover	= raid1_takeover,
3384};
3385
3386static int __init raid_init(void)
3387{
3388	return register_md_personality(&raid1_personality);
3389}
3390
3391static void raid_exit(void)
3392{
3393	unregister_md_personality(&raid1_personality);
3394}
3395
3396module_init(raid_init);
3397module_exit(raid_exit);
3398MODULE_LICENSE("GPL");
3399MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3400MODULE_ALIAS("md-personality-3"); /* RAID1 */
3401MODULE_ALIAS("md-raid1");
3402MODULE_ALIAS("md-level-1");
v3.1
 
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
 
  37#include <linux/seq_file.h>
  38#include <linux/ratelimit.h>
 
 
 
 
  39#include "md.h"
  40#include "raid1.h"
  41#include "bitmap.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42
  43#define DEBUG 0
  44#define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45
  46/*
  47 * Number of guaranteed r1bios in case of extreme VM load:
 
  48 */
  49#define	NR_RAID1_BIOS 256
  50
  51
  52static void allow_barrier(conf_t *conf);
  53static void lower_barrier(conf_t *conf);
  54
  55static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  56{
  57	struct pool_info *pi = data;
  58	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  59
  60	/* allocate a r1bio with room for raid_disks entries in the bios array */
  61	return kzalloc(size, gfp_flags);
  62}
  63
  64static void r1bio_pool_free(void *r1_bio, void *data)
  65{
  66	kfree(r1_bio);
  67}
  68
  69#define RESYNC_BLOCK_SIZE (64*1024)
  70//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  71#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  72#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  73#define RESYNC_WINDOW (2048*1024)
 
 
  74
  75static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  76{
  77	struct pool_info *pi = data;
  78	struct page *page;
  79	r1bio_t *r1_bio;
  80	struct bio *bio;
  81	int i, j;
 
 
  82
  83	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  84	if (!r1_bio)
  85		return NULL;
  86
 
 
 
 
 
  87	/*
  88	 * Allocate bios : 1 for reading, n-1 for writing
  89	 */
  90	for (j = pi->raid_disks ; j-- ; ) {
  91		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  92		if (!bio)
  93			goto out_free_bio;
 
  94		r1_bio->bios[j] = bio;
  95	}
  96	/*
  97	 * Allocate RESYNC_PAGES data pages and attach them to
  98	 * the first bio.
  99	 * If this is a user-requested check/repair, allocate
 100	 * RESYNC_PAGES for each bio.
 101	 */
 102	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 103		j = pi->raid_disks;
 104	else
 105		j = 1;
 106	while(j--) {
 
 
 107		bio = r1_bio->bios[j];
 108		for (i = 0; i < RESYNC_PAGES; i++) {
 109			page = alloc_page(gfp_flags);
 110			if (unlikely(!page))
 111				goto out_free_pages;
 
 
 
 
 112
 113			bio->bi_io_vec[i].bv_page = page;
 114			bio->bi_vcnt = i+1;
 115		}
 116	}
 117	/* If not user-requests, copy the page pointers to all bios */
 118	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 119		for (i=0; i<RESYNC_PAGES ; i++)
 120			for (j=1; j<pi->raid_disks; j++)
 121				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 122					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 123	}
 124
 125	r1_bio->master_bio = NULL;
 126
 127	return r1_bio;
 128
 129out_free_pages:
 130	for (j=0 ; j < pi->raid_disks; j++)
 131		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 132			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 133	j = -1;
 134out_free_bio:
 135	while ( ++j < pi->raid_disks )
 136		bio_put(r1_bio->bios[j]);
 137	r1bio_pool_free(r1_bio, data);
 
 
 
 
 
 138	return NULL;
 139}
 140
 141static void r1buf_pool_free(void *__r1_bio, void *data)
 142{
 143	struct pool_info *pi = data;
 144	int i,j;
 145	r1bio_t *r1bio = __r1_bio;
 
 
 
 
 
 
 
 
 146
 147	for (i = 0; i < RESYNC_PAGES; i++)
 148		for (j = pi->raid_disks; j-- ;) {
 149			if (j == 0 ||
 150			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 151			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 152				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 153		}
 154	for (i=0 ; i < pi->raid_disks; i++)
 155		bio_put(r1bio->bios[i]);
 156
 157	r1bio_pool_free(r1bio, data);
 158}
 159
 160static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
 161{
 162	int i;
 163
 164	for (i = 0; i < conf->raid_disks; i++) {
 165		struct bio **bio = r1_bio->bios + i;
 166		if (!BIO_SPECIAL(*bio))
 167			bio_put(*bio);
 168		*bio = NULL;
 169	}
 170}
 171
 172static void free_r1bio(r1bio_t *r1_bio)
 173{
 174	conf_t *conf = r1_bio->mddev->private;
 175
 176	put_all_bios(conf, r1_bio);
 177	mempool_free(r1_bio, conf->r1bio_pool);
 178}
 179
 180static void put_buf(r1bio_t *r1_bio)
 181{
 182	conf_t *conf = r1_bio->mddev->private;
 
 183	int i;
 184
 185	for (i=0; i<conf->raid_disks; i++) {
 186		struct bio *bio = r1_bio->bios[i];
 187		if (bio->bi_end_io)
 188			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 189	}
 190
 191	mempool_free(r1_bio, conf->r1buf_pool);
 192
 193	lower_barrier(conf);
 194}
 195
 196static void reschedule_retry(r1bio_t *r1_bio)
 197{
 198	unsigned long flags;
 199	mddev_t *mddev = r1_bio->mddev;
 200	conf_t *conf = mddev->private;
 
 201
 
 202	spin_lock_irqsave(&conf->device_lock, flags);
 203	list_add(&r1_bio->retry_list, &conf->retry_list);
 204	conf->nr_queued ++;
 205	spin_unlock_irqrestore(&conf->device_lock, flags);
 206
 207	wake_up(&conf->wait_barrier);
 208	md_wakeup_thread(mddev->thread);
 209}
 210
 211/*
 212 * raid_end_bio_io() is called when we have finished servicing a mirrored
 213 * operation and are ready to return a success/failure code to the buffer
 214 * cache layer.
 215 */
 216static void call_bio_endio(r1bio_t *r1_bio)
 217{
 218	struct bio *bio = r1_bio->master_bio;
 219	int done;
 220	conf_t *conf = r1_bio->mddev->private;
 221
 222	if (bio->bi_phys_segments) {
 223		unsigned long flags;
 224		spin_lock_irqsave(&conf->device_lock, flags);
 225		bio->bi_phys_segments--;
 226		done = (bio->bi_phys_segments == 0);
 227		spin_unlock_irqrestore(&conf->device_lock, flags);
 228	} else
 229		done = 1;
 230
 231	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 232		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 233	if (done) {
 234		bio_endio(bio, 0);
 235		/*
 236		 * Wake up any possible resync thread that waits for the device
 237		 * to go idle.
 238		 */
 239		allow_barrier(conf);
 240	}
 241}
 242
 243static void raid_end_bio_io(r1bio_t *r1_bio)
 244{
 245	struct bio *bio = r1_bio->master_bio;
 
 
 246
 247	/* if nobody has done the final endio yet, do it now */
 248	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 249		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
 250			(bio_data_dir(bio) == WRITE) ? "write" : "read",
 251			(unsigned long long) bio->bi_sector,
 252			(unsigned long long) bio->bi_sector +
 253				(bio->bi_size >> 9) - 1);
 254
 255		call_bio_endio(r1_bio);
 256	}
 
 257	free_r1bio(r1_bio);
 
 
 
 
 
 258}
 259
 260/*
 261 * Update disk head position estimator based on IRQ completion info.
 262 */
 263static inline void update_head_pos(int disk, r1bio_t *r1_bio)
 264{
 265	conf_t *conf = r1_bio->mddev->private;
 266
 267	conf->mirrors[disk].head_position =
 268		r1_bio->sector + (r1_bio->sectors);
 269}
 270
 271static void raid1_end_read_request(struct bio *bio, int error)
 
 
 
 272{
 273	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 274	r1bio_t *r1_bio = bio->bi_private;
 275	int mirror;
 276	conf_t *conf = r1_bio->mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	mirror = r1_bio->read_disk;
 279	/*
 280	 * this branch is our 'one mirror IO has finished' event handler:
 281	 */
 282	update_head_pos(mirror, r1_bio);
 283
 284	if (uptodate)
 285		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 286	else {
 287		/* If all other devices have failed, we want to return
 288		 * the error upwards rather than fail the last device.
 289		 * Here we redefine "uptodate" to mean "Don't want to retry"
 290		 */
 291		unsigned long flags;
 292		spin_lock_irqsave(&conf->device_lock, flags);
 293		if (r1_bio->mddev->degraded == conf->raid_disks ||
 294		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 295		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 296			uptodate = 1;
 297		spin_unlock_irqrestore(&conf->device_lock, flags);
 298	}
 299
 300	if (uptodate)
 301		raid_end_bio_io(r1_bio);
 302	else {
 
 303		/*
 304		 * oops, read error:
 305		 */
 306		char b[BDEVNAME_SIZE];
 307		printk_ratelimited(
 308			KERN_ERR "md/raid1:%s: %s: "
 309			"rescheduling sector %llu\n",
 310			mdname(conf->mddev),
 311			bdevname(conf->mirrors[mirror].rdev->bdev,
 312				 b),
 313			(unsigned long long)r1_bio->sector);
 314		set_bit(R1BIO_ReadError, &r1_bio->state);
 315		reschedule_retry(r1_bio);
 
 316	}
 317
 318	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 319}
 320
 321static void close_write(r1bio_t *r1_bio)
 322{
 323	/* it really is the end of this request */
 324	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 325		/* free extra copy of the data pages */
 326		int i = r1_bio->behind_page_count;
 327		while (i--)
 328			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 329		kfree(r1_bio->behind_bvecs);
 330		r1_bio->behind_bvecs = NULL;
 331	}
 332	/* clear the bitmap if all writes complete successfully */
 333	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 334			r1_bio->sectors,
 335			!test_bit(R1BIO_Degraded, &r1_bio->state),
 336			test_bit(R1BIO_BehindIO, &r1_bio->state));
 337	md_write_end(r1_bio->mddev);
 338}
 339
 340static void r1_bio_write_done(r1bio_t *r1_bio)
 341{
 342	if (!atomic_dec_and_test(&r1_bio->remaining))
 343		return;
 344
 345	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 346		reschedule_retry(r1_bio);
 347	else {
 348		close_write(r1_bio);
 349		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 350			reschedule_retry(r1_bio);
 351		else
 352			raid_end_bio_io(r1_bio);
 353	}
 354}
 355
 356static void raid1_end_write_request(struct bio *bio, int error)
 357{
 358	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 359	r1bio_t *r1_bio = bio->bi_private;
 360	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 361	conf_t *conf = r1_bio->mddev->private;
 362	struct bio *to_put = NULL;
 
 
 
 
 
 363
 364
 365	for (mirror = 0; mirror < conf->raid_disks; mirror++)
 366		if (r1_bio->bios[mirror] == bio)
 367			break;
 368
 369	/*
 370	 * 'one mirror IO has finished' event handler:
 371	 */
 372	if (!uptodate) {
 373		set_bit(WriteErrorSeen,
 374			&conf->mirrors[mirror].rdev->flags);
 375		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376	} else {
 377		/*
 378		 * Set R1BIO_Uptodate in our master bio, so that we
 379		 * will return a good error code for to the higher
 380		 * levels even if IO on some other mirrored buffer
 381		 * fails.
 382		 *
 383		 * The 'master' represents the composite IO operation
 384		 * to user-side. So if something waits for IO, then it
 385		 * will wait for the 'master' bio.
 386		 */
 387		sector_t first_bad;
 388		int bad_sectors;
 389
 390		r1_bio->bios[mirror] = NULL;
 391		to_put = bio;
 392		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 393
 394		/* Maybe we can clear some bad blocks. */
 395		if (is_badblock(conf->mirrors[mirror].rdev,
 396				r1_bio->sector, r1_bio->sectors,
 397				&first_bad, &bad_sectors)) {
 398			r1_bio->bios[mirror] = IO_MADE_GOOD;
 399			set_bit(R1BIO_MadeGood, &r1_bio->state);
 400		}
 401	}
 402
 403	update_head_pos(mirror, r1_bio);
 404
 405	if (behind) {
 406		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 
 
 407			atomic_dec(&r1_bio->behind_remaining);
 408
 409		/*
 410		 * In behind mode, we ACK the master bio once the I/O
 411		 * has safely reached all non-writemostly
 412		 * disks. Setting the Returned bit ensures that this
 413		 * gets done only once -- we don't ever want to return
 414		 * -EIO here, instead we'll wait
 415		 */
 416		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 417		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 418			/* Maybe we can return now */
 419			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 420				struct bio *mbio = r1_bio->master_bio;
 421				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
 422				       (unsigned long long) mbio->bi_sector,
 423				       (unsigned long long) mbio->bi_sector +
 424				       (mbio->bi_size >> 9) - 1);
 425				call_bio_endio(r1_bio);
 426			}
 427		}
 428	}
 
 429	if (r1_bio->bios[mirror] == NULL)
 430		rdev_dec_pending(conf->mirrors[mirror].rdev,
 431				 conf->mddev);
 432
 433	/*
 434	 * Let's see if all mirrored write operations have finished
 435	 * already.
 436	 */
 437	r1_bio_write_done(r1_bio);
 438
 439	if (to_put)
 440		bio_put(to_put);
 441}
 442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444/*
 445 * This routine returns the disk from which the requested read should
 446 * be done. There is a per-array 'next expected sequential IO' sector
 447 * number - if this matches on the next IO then we use the last disk.
 448 * There is also a per-disk 'last know head position' sector that is
 449 * maintained from IRQ contexts, both the normal and the resync IO
 450 * completion handlers update this position correctly. If there is no
 451 * perfect sequential match then we pick the disk whose head is closest.
 452 *
 453 * If there are 2 mirrors in the same 2 devices, performance degrades
 454 * because position is mirror, not device based.
 455 *
 456 * The rdev for the device selected will have nr_pending incremented.
 457 */
 458static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
 459{
 460	const sector_t this_sector = r1_bio->sector;
 461	int sectors;
 462	int best_good_sectors;
 463	int start_disk;
 464	int best_disk;
 465	int i;
 466	sector_t best_dist;
 467	mdk_rdev_t *rdev;
 
 468	int choose_first;
 
 469
 470	rcu_read_lock();
 471	/*
 472	 * Check if we can balance. We can balance on the whole
 473	 * device if no resync is going on, or below the resync window.
 474	 * We take the first readable disk when above the resync window.
 475	 */
 476 retry:
 477	sectors = r1_bio->sectors;
 478	best_disk = -1;
 
 479	best_dist = MaxSector;
 
 
 480	best_good_sectors = 0;
 481
 482	if (conf->mddev->recovery_cp < MaxSector &&
 483	    (this_sector + sectors >= conf->next_resync)) {
 
 
 
 
 
 484		choose_first = 1;
 485		start_disk = 0;
 486	} else {
 487		choose_first = 0;
 488		start_disk = conf->last_used;
 489	}
 490
 491	for (i = 0 ; i < conf->raid_disks ; i++) {
 492		sector_t dist;
 493		sector_t first_bad;
 494		int bad_sectors;
 
 
 495
 496		int disk = start_disk + i;
 497		if (disk >= conf->raid_disks)
 498			disk -= conf->raid_disks;
 499
 500		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 501		if (r1_bio->bios[disk] == IO_BLOCKED
 502		    || rdev == NULL
 503		    || test_bit(Faulty, &rdev->flags))
 504			continue;
 505		if (!test_bit(In_sync, &rdev->flags) &&
 506		    rdev->recovery_offset < this_sector + sectors)
 507			continue;
 508		if (test_bit(WriteMostly, &rdev->flags)) {
 509			/* Don't balance among write-mostly, just
 510			 * use the first as a last resort */
 511			if (best_disk < 0)
 512				best_disk = disk;
 
 
 
 
 
 
 
 
 
 
 513			continue;
 514		}
 515		/* This is a reasonable device to use.  It might
 516		 * even be best.
 517		 */
 518		if (is_badblock(rdev, this_sector, sectors,
 519				&first_bad, &bad_sectors)) {
 520			if (best_dist < MaxSector)
 521				/* already have a better device */
 522				continue;
 523			if (first_bad <= this_sector) {
 524				/* cannot read here. If this is the 'primary'
 525				 * device, then we must not read beyond
 526				 * bad_sectors from another device..
 527				 */
 528				bad_sectors -= (this_sector - first_bad);
 529				if (choose_first && sectors > bad_sectors)
 530					sectors = bad_sectors;
 531				if (best_good_sectors > sectors)
 532					best_good_sectors = sectors;
 533
 534			} else {
 535				sector_t good_sectors = first_bad - this_sector;
 536				if (good_sectors > best_good_sectors) {
 537					best_good_sectors = good_sectors;
 538					best_disk = disk;
 539				}
 540				if (choose_first)
 541					break;
 542			}
 543			continue;
 544		} else
 
 
 545			best_good_sectors = sectors;
 
 546
 
 
 
 
 
 
 
 547		dist = abs(this_sector - conf->mirrors[disk].head_position);
 548		if (choose_first
 549		    /* Don't change to another disk for sequential reads */
 550		    || conf->next_seq_sect == this_sector
 551		    || dist == 0
 552		    /* If device is idle, use it */
 553		    || atomic_read(&rdev->nr_pending) == 0) {
 554			best_disk = disk;
 555			break;
 556		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557		if (dist < best_dist) {
 558			best_dist = dist;
 559			best_disk = disk;
 560		}
 561	}
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	if (best_disk >= 0) {
 564		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 565		if (!rdev)
 566			goto retry;
 567		atomic_inc(&rdev->nr_pending);
 568		if (test_bit(Faulty, &rdev->flags)) {
 569			/* cannot risk returning a device that failed
 570			 * before we inc'ed nr_pending
 571			 */
 572			rdev_dec_pending(rdev, conf->mddev);
 573			goto retry;
 574		}
 575		sectors = best_good_sectors;
 576		conf->next_seq_sect = this_sector + sectors;
 577		conf->last_used = best_disk;
 
 
 
 578	}
 579	rcu_read_unlock();
 580	*max_sectors = sectors;
 581
 582	return best_disk;
 583}
 584
 585int md_raid1_congested(mddev_t *mddev, int bits)
 586{
 587	conf_t *conf = mddev->private;
 588	int i, ret = 0;
 
 589
 590	rcu_read_lock();
 591	for (i = 0; i < mddev->raid_disks; i++) {
 592		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 593		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 594			struct request_queue *q = bdev_get_queue(rdev->bdev);
 595
 596			BUG_ON(!q);
 
 597
 598			/* Note the '|| 1' - when read_balance prefers
 599			 * non-congested targets, it can be removed
 600			 */
 601			if ((bits & (1<<BDI_async_congested)) || 1)
 602				ret |= bdi_congested(&q->backing_dev_info, bits);
 603			else
 604				ret &= bdi_congested(&q->backing_dev_info, bits);
 605		}
 606	}
 607	rcu_read_unlock();
 608	return ret;
 609}
 610EXPORT_SYMBOL_GPL(md_raid1_congested);
 611
 612static int raid1_congested(void *data, int bits)
 613{
 614	mddev_t *mddev = data;
 615
 616	return mddev_congested(mddev, bits) ||
 617		md_raid1_congested(mddev, bits);
 618}
 619
 620static void flush_pending_writes(conf_t *conf)
 621{
 622	/* Any writes that have been queued but are awaiting
 623	 * bitmap updates get flushed here.
 624	 */
 625	spin_lock_irq(&conf->device_lock);
 626
 627	if (conf->pending_bio_list.head) {
 
 628		struct bio *bio;
 
 629		bio = bio_list_get(&conf->pending_bio_list);
 630		spin_unlock_irq(&conf->device_lock);
 631		/* flush any pending bitmap writes to
 632		 * disk before proceeding w/ I/O */
 633		bitmap_unplug(conf->mddev->bitmap);
 634
 635		while (bio) { /* submit pending writes */
 636			struct bio *next = bio->bi_next;
 637			bio->bi_next = NULL;
 638			generic_make_request(bio);
 639			bio = next;
 640		}
 
 
 
 
 641	} else
 642		spin_unlock_irq(&conf->device_lock);
 643}
 644
 645/* Barriers....
 646 * Sometimes we need to suspend IO while we do something else,
 647 * either some resync/recovery, or reconfigure the array.
 648 * To do this we raise a 'barrier'.
 649 * The 'barrier' is a counter that can be raised multiple times
 650 * to count how many activities are happening which preclude
 651 * normal IO.
 652 * We can only raise the barrier if there is no pending IO.
 653 * i.e. if nr_pending == 0.
 654 * We choose only to raise the barrier if no-one is waiting for the
 655 * barrier to go down.  This means that as soon as an IO request
 656 * is ready, no other operations which require a barrier will start
 657 * until the IO request has had a chance.
 658 *
 659 * So: regular IO calls 'wait_barrier'.  When that returns there
 660 *    is no backgroup IO happening,  It must arrange to call
 661 *    allow_barrier when it has finished its IO.
 662 * backgroup IO calls must call raise_barrier.  Once that returns
 663 *    there is no normal IO happeing.  It must arrange to call
 664 *    lower_barrier when the particular background IO completes.
 
 
 
 665 */
 666#define RESYNC_DEPTH 32
 
 
 667
 668static void raise_barrier(conf_t *conf)
 669{
 670	spin_lock_irq(&conf->resync_lock);
 671
 672	/* Wait until no block IO is waiting */
 673	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 674			    conf->resync_lock, );
 
 675
 676	/* block any new IO from starting */
 677	conf->barrier++;
 678
 679	/* Now wait for all pending IO to complete */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680	wait_event_lock_irq(conf->wait_barrier,
 681			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 682			    conf->resync_lock, );
 
 
 
 
 
 
 
 
 
 
 683
 
 684	spin_unlock_irq(&conf->resync_lock);
 
 
 685}
 686
 687static void lower_barrier(conf_t *conf)
 688{
 689	unsigned long flags;
 690	BUG_ON(conf->barrier <= 0);
 691	spin_lock_irqsave(&conf->resync_lock, flags);
 692	conf->barrier--;
 693	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 694	wake_up(&conf->wait_barrier);
 695}
 696
 697static void wait_barrier(conf_t *conf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	spin_lock_irq(&conf->resync_lock);
 700	if (conf->barrier) {
 701		conf->nr_waiting++;
 702		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 703				    conf->resync_lock,
 704				    );
 705		conf->nr_waiting--;
 
 
 
 
 
 
 
 
 
 
 
 
 706	}
 707	conf->nr_pending++;
 
 708	spin_unlock_irq(&conf->resync_lock);
 
 709}
 710
 711static void allow_barrier(conf_t *conf)
 712{
 713	unsigned long flags;
 714	spin_lock_irqsave(&conf->resync_lock, flags);
 715	conf->nr_pending--;
 716	spin_unlock_irqrestore(&conf->resync_lock, flags);
 717	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718}
 719
 720static void freeze_array(conf_t *conf)
 721{
 722	/* stop syncio and normal IO and wait for everything to
 723	 * go quite.
 724	 * We increment barrier and nr_waiting, and then
 725	 * wait until nr_pending match nr_queued+1
 726	 * This is called in the context of one normal IO request
 727	 * that has failed. Thus any sync request that might be pending
 728	 * will be blocked by nr_pending, and we need to wait for
 729	 * pending IO requests to complete or be queued for re-try.
 730	 * Thus the number queued (nr_queued) plus this request (1)
 731	 * must match the number of pending IOs (nr_pending) before
 732	 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 733	 */
 734	spin_lock_irq(&conf->resync_lock);
 735	conf->barrier++;
 736	conf->nr_waiting++;
 737	wait_event_lock_irq(conf->wait_barrier,
 738			    conf->nr_pending == conf->nr_queued+1,
 739			    conf->resync_lock,
 740			    flush_pending_writes(conf));
 
 741	spin_unlock_irq(&conf->resync_lock);
 742}
 743static void unfreeze_array(conf_t *conf)
 744{
 745	/* reverse the effect of the freeze */
 746	spin_lock_irq(&conf->resync_lock);
 747	conf->barrier--;
 748	conf->nr_waiting--;
 749	wake_up(&conf->wait_barrier);
 750	spin_unlock_irq(&conf->resync_lock);
 751}
 752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754/* duplicate the data pages for behind I/O 
 755 */
 756static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
 757{
 758	int i;
 759	struct bio_vec *bvec;
 760	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 761					GFP_NOIO);
 762	if (unlikely(!bvecs))
 763		return;
 764
 765	bio_for_each_segment(bvec, bio, i) {
 766		bvecs[i] = *bvec;
 767		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 768		if (unlikely(!bvecs[i].bv_page))
 769			goto do_sync_io;
 770		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 771		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 772		kunmap(bvecs[i].bv_page);
 773		kunmap(bvec->bv_page);
 774	}
 775	r1_bio->behind_bvecs = bvecs;
 776	r1_bio->behind_page_count = bio->bi_vcnt;
 
 
 777	set_bit(R1BIO_BehindIO, &r1_bio->state);
 
 778	return;
 779
 780do_sync_io:
 781	for (i = 0; i < bio->bi_vcnt; i++)
 782		if (bvecs[i].bv_page)
 783			put_page(bvecs[i].bv_page);
 784	kfree(bvecs);
 785	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788static int make_request(mddev_t *mddev, struct bio * bio)
 789{
 790	conf_t *conf = mddev->private;
 791	mirror_info_t *mirror;
 792	r1bio_t *r1_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	struct bio *read_bio;
 794	int i, disks;
 795	struct bitmap *bitmap;
 796	unsigned long flags;
 797	const int rw = bio_data_dir(bio);
 798	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 799	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 800	mdk_rdev_t *blocked_rdev;
 801	int plugged;
 802	int first_clone;
 803	int sectors_handled;
 804	int max_sectors;
 
 
 
 805
 806	/*
 807	 * Register the new request and wait if the reconstruction
 808	 * thread has put up a bar for new requests.
 809	 * Continue immediately if no resync is active currently.
 810	 */
 
 
 
 
 
 811
 812	md_write_start(mddev, bio); /* wait on superblock update early */
 
 
 
 
 813
 814	if (bio_data_dir(bio) == WRITE &&
 815	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 816	    bio->bi_sector < mddev->suspend_hi) {
 817		/* As the suspend_* range is controlled by
 818		 * userspace, we want an interruptible
 819		 * wait.
 820		 */
 821		DEFINE_WAIT(w);
 822		for (;;) {
 823			flush_signals(current);
 824			prepare_to_wait(&conf->wait_barrier,
 825					&w, TASK_INTERRUPTIBLE);
 826			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 827			    bio->bi_sector >= mddev->suspend_hi)
 828				break;
 829			schedule();
 830		}
 831		finish_wait(&conf->wait_barrier, &w);
 832	}
 833
 834	wait_barrier(conf);
 835
 836	bitmap = mddev->bitmap;
 
 
 837
 838	/*
 839	 * make_request() can abort the operation when READA is being
 840	 * used and no empty request is available.
 841	 *
 842	 */
 843	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 844
 845	r1_bio->master_bio = bio;
 846	r1_bio->sectors = bio->bi_size >> 9;
 847	r1_bio->state = 0;
 848	r1_bio->mddev = mddev;
 849	r1_bio->sector = bio->bi_sector;
 
 
 
 
 
 
 
 850
 851	/* We might need to issue multiple reads to different
 852	 * devices if there are bad blocks around, so we keep
 853	 * track of the number of reads in bio->bi_phys_segments.
 854	 * If this is 0, there is only one r1_bio and no locking
 855	 * will be needed when requests complete.  If it is
 856	 * non-zero, then it is the number of not-completed requests.
 857	 */
 858	bio->bi_phys_segments = 0;
 859	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 860
 861	if (rw == READ) {
 
 862		/*
 863		 * read balancing logic:
 
 864		 */
 865		int rdisk;
 
 
 
 866
 867read_again:
 868		rdisk = read_balance(conf, r1_bio, &max_sectors);
 
 
 
 
 
 
 
 869
 870		if (rdisk < 0) {
 871			/* couldn't find anywhere to read from */
 872			raid_end_bio_io(r1_bio);
 873			return 0;
 874		}
 875		mirror = conf->mirrors + rdisk;
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 878		    bitmap) {
 879			/* Reading from a write-mostly device must
 880			 * take care not to over-take any writes
 881			 * that are 'behind'
 882			 */
 883			wait_event(bitmap->behind_wait,
 884				   atomic_read(&bitmap->behind_writes) == 0);
 885		}
 886		r1_bio->read_disk = rdisk;
 887
 888		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 889		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
 890			    max_sectors);
 891
 892		r1_bio->bios[rdisk] = read_bio;
 893
 894		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 895		read_bio->bi_bdev = mirror->rdev->bdev;
 896		read_bio->bi_end_io = raid1_end_read_request;
 897		read_bio->bi_rw = READ | do_sync;
 898		read_bio->bi_private = r1_bio;
 899
 900		if (max_sectors < r1_bio->sectors) {
 901			/* could not read all from this device, so we will
 902			 * need another r1_bio.
 903			 */
 904
 905			sectors_handled = (r1_bio->sector + max_sectors
 906					   - bio->bi_sector);
 907			r1_bio->sectors = max_sectors;
 908			spin_lock_irq(&conf->device_lock);
 909			if (bio->bi_phys_segments == 0)
 910				bio->bi_phys_segments = 2;
 911			else
 912				bio->bi_phys_segments++;
 913			spin_unlock_irq(&conf->device_lock);
 914			/* Cannot call generic_make_request directly
 915			 * as that will be queued in __make_request
 916			 * and subsequent mempool_alloc might block waiting
 917			 * for it.  So hand bio over to raid1d.
 918			 */
 919			reschedule_retry(r1_bio);
 920
 921			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 
 
 922
 923			r1_bio->master_bio = bio;
 924			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
 925			r1_bio->state = 0;
 926			r1_bio->mddev = mddev;
 927			r1_bio->sector = bio->bi_sector + sectors_handled;
 928			goto read_again;
 929		} else
 930			generic_make_request(read_bio);
 931		return 0;
 
 
 
 
 
 
 932	}
 933
 934	/*
 935	 * WRITE:
 
 
 936	 */
 
 
 
 
 
 
 
 
 
 
 937	/* first select target devices under rcu_lock and
 938	 * inc refcount on their rdev.  Record them by setting
 939	 * bios[x] to bio
 940	 * If there are known/acknowledged bad blocks on any device on
 941	 * which we have seen a write error, we want to avoid writing those
 942	 * blocks.
 943	 * This potentially requires several writes to write around
 944	 * the bad blocks.  Each set of writes gets it's own r1bio
 945	 * with a set of bios attached.
 946	 */
 947	plugged = mddev_check_plugged(mddev);
 948
 949	disks = conf->raid_disks;
 950 retry_write:
 951	blocked_rdev = NULL;
 952	rcu_read_lock();
 953	max_sectors = r1_bio->sectors;
 954	for (i = 0;  i < disks; i++) {
 955		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 
 
 
 
 
 
 956		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 957			atomic_inc(&rdev->nr_pending);
 958			blocked_rdev = rdev;
 959			break;
 960		}
 961		r1_bio->bios[i] = NULL;
 962		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 963			set_bit(R1BIO_Degraded, &r1_bio->state);
 
 964			continue;
 965		}
 966
 967		atomic_inc(&rdev->nr_pending);
 968		if (test_bit(WriteErrorSeen, &rdev->flags)) {
 969			sector_t first_bad;
 970			int bad_sectors;
 971			int is_bad;
 972
 973			is_bad = is_badblock(rdev, r1_bio->sector,
 974					     max_sectors,
 975					     &first_bad, &bad_sectors);
 976			if (is_bad < 0) {
 977				/* mustn't write here until the bad block is
 978				 * acknowledged*/
 979				set_bit(BlockedBadBlocks, &rdev->flags);
 980				blocked_rdev = rdev;
 981				break;
 982			}
 983			if (is_bad && first_bad <= r1_bio->sector) {
 984				/* Cannot write here at all */
 985				bad_sectors -= (r1_bio->sector - first_bad);
 986				if (bad_sectors < max_sectors)
 987					/* mustn't write more than bad_sectors
 988					 * to other devices yet
 989					 */
 990					max_sectors = bad_sectors;
 991				rdev_dec_pending(rdev, mddev);
 992				/* We don't set R1BIO_Degraded as that
 993				 * only applies if the disk is
 994				 * missing, so it might be re-added,
 995				 * and we want to know to recover this
 996				 * chunk.
 997				 * In this case the device is here,
 998				 * and the fact that this chunk is not
 999				 * in-sync is recorded in the bad
1000				 * block log
1001				 */
1002				continue;
1003			}
1004			if (is_bad) {
1005				int good_sectors = first_bad - r1_bio->sector;
1006				if (good_sectors < max_sectors)
1007					max_sectors = good_sectors;
1008			}
1009		}
1010		r1_bio->bios[i] = bio;
1011	}
1012	rcu_read_unlock();
1013
1014	if (unlikely(blocked_rdev)) {
1015		/* Wait for this device to become unblocked */
1016		int j;
1017
1018		for (j = 0; j < i; j++)
1019			if (r1_bio->bios[j])
1020				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021		r1_bio->state = 0;
1022		allow_barrier(conf);
 
 
 
 
 
 
1023		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024		wait_barrier(conf);
1025		goto retry_write;
1026	}
1027
1028	if (max_sectors < r1_bio->sectors) {
1029		/* We are splitting this write into multiple parts, so
1030		 * we need to prepare for allocating another r1_bio.
1031		 */
 
 
 
 
 
 
 
 
 
 
 
 
1032		r1_bio->sectors = max_sectors;
1033		spin_lock_irq(&conf->device_lock);
1034		if (bio->bi_phys_segments == 0)
1035			bio->bi_phys_segments = 2;
1036		else
1037			bio->bi_phys_segments++;
1038		spin_unlock_irq(&conf->device_lock);
1039	}
1040	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1041
 
 
1042	atomic_set(&r1_bio->remaining, 1);
1043	atomic_set(&r1_bio->behind_remaining, 0);
1044
1045	first_clone = 1;
 
1046	for (i = 0; i < disks; i++) {
1047		struct bio *mbio;
 
1048		if (!r1_bio->bios[i])
1049			continue;
1050
1051		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053
1054		if (first_clone) {
1055			/* do behind I/O ?
1056			 * Not if there are too many, or cannot
1057			 * allocate memory, or a reader on WriteMostly
1058			 * is waiting for behind writes to flush */
1059			if (bitmap &&
1060			    (atomic_read(&bitmap->behind_writes)
1061			     < mddev->bitmap_info.max_write_behind) &&
1062			    !waitqueue_active(&bitmap->behind_wait))
1063				alloc_behind_pages(mbio, r1_bio);
 
1064
1065			bitmap_startwrite(bitmap, r1_bio->sector,
1066					  r1_bio->sectors,
1067					  test_bit(R1BIO_BehindIO,
1068						   &r1_bio->state));
1069			first_clone = 0;
1070		}
1071		if (r1_bio->behind_bvecs) {
1072			struct bio_vec *bvec;
1073			int j;
1074
1075			/* Yes, I really want the '__' version so that
1076			 * we clear any unused pointer in the io_vec, rather
1077			 * than leave them unchanged.  This is important
1078			 * because when we come to free the pages, we won't
1079			 * know the original bi_idx, so we just free
1080			 * them all
1081			 */
1082			__bio_for_each_segment(bvec, mbio, j, 0)
1083				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085				atomic_inc(&r1_bio->behind_remaining);
 
 
 
 
 
 
1086		}
1087
1088		r1_bio->bios[i] = mbio;
1089
1090		mbio->bi_sector	= (r1_bio->sector +
1091				   conf->mirrors[i].rdev->data_offset);
1092		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093		mbio->bi_end_io	= raid1_end_write_request;
1094		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
 
 
 
 
1095		mbio->bi_private = r1_bio;
1096
1097		atomic_inc(&r1_bio->remaining);
1098		spin_lock_irqsave(&conf->device_lock, flags);
1099		bio_list_add(&conf->pending_bio_list, mbio);
1100		spin_unlock_irqrestore(&conf->device_lock, flags);
1101	}
1102	/* Mustn't call r1_bio_write_done before this next test,
1103	 * as it could result in the bio being freed.
1104	 */
1105	if (sectors_handled < (bio->bi_size >> 9)) {
1106		r1_bio_write_done(r1_bio);
1107		/* We need another r1_bio.  It has already been counted
1108		 * in bio->bi_phys_segments
1109		 */
1110		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1111		r1_bio->master_bio = bio;
1112		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1113		r1_bio->state = 0;
1114		r1_bio->mddev = mddev;
1115		r1_bio->sector = bio->bi_sector + sectors_handled;
1116		goto retry_write;
1117	}
1118
1119	r1_bio_write_done(r1_bio);
1120
1121	/* In case raid1d snuck in to freeze_array */
1122	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
1123
1124	if (do_sync || !bitmap || !plugged)
1125		md_wakeup_thread(mddev->thread);
 
 
 
 
 
 
 
1126
1127	return 0;
 
 
 
 
 
 
 
1128}
1129
1130static void status(struct seq_file *seq, mddev_t *mddev)
1131{
1132	conf_t *conf = mddev->private;
1133	int i;
1134
 
 
1135	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1136		   conf->raid_disks - mddev->degraded);
1137	rcu_read_lock();
1138	for (i = 0; i < conf->raid_disks; i++) {
1139		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
1140		seq_printf(seq, "%s",
1141			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1142	}
1143	rcu_read_unlock();
1144	seq_printf(seq, "]");
1145}
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1149{
1150	char b[BDEVNAME_SIZE];
1151	conf_t *conf = mddev->private;
1152
1153	/*
1154	 * If it is not operational, then we have already marked it as dead
1155	 * else if it is the last working disks, ignore the error, let the
1156	 * next level up know.
1157	 * else mark the drive as failed
1158	 */
1159	if (test_bit(In_sync, &rdev->flags)
1160	    && (conf->raid_disks - mddev->degraded) == 1) {
1161		/*
1162		 * Don't fail the drive, act as though we were just a
1163		 * normal single drive.
1164		 * However don't try a recovery from this drive as
1165		 * it is very likely to fail.
1166		 */
1167		conf->recovery_disabled = mddev->recovery_disabled;
1168		return;
1169	}
1170	set_bit(Blocked, &rdev->flags);
1171	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1172		unsigned long flags;
1173		spin_lock_irqsave(&conf->device_lock, flags);
1174		mddev->degraded++;
1175		set_bit(Faulty, &rdev->flags);
1176		spin_unlock_irqrestore(&conf->device_lock, flags);
1177		/*
1178		 * if recovery is running, make sure it aborts.
1179		 */
1180		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1181	} else
1182		set_bit(Faulty, &rdev->flags);
1183	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1184	printk(KERN_ALERT
1185	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186	       "md/raid1:%s: Operation continuing on %d devices.\n",
1187	       mdname(mddev), bdevname(rdev->bdev, b),
1188	       mdname(mddev), conf->raid_disks - mddev->degraded);
1189}
1190
1191static void print_conf(conf_t *conf)
1192{
1193	int i;
1194
1195	printk(KERN_DEBUG "RAID1 conf printout:\n");
1196	if (!conf) {
1197		printk(KERN_DEBUG "(!conf)\n");
1198		return;
1199	}
1200	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1201		conf->raid_disks);
1202
1203	rcu_read_lock();
1204	for (i = 0; i < conf->raid_disks; i++) {
1205		char b[BDEVNAME_SIZE];
1206		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1207		if (rdev)
1208			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1209			       i, !test_bit(In_sync, &rdev->flags),
1210			       !test_bit(Faulty, &rdev->flags),
1211			       bdevname(rdev->bdev,b));
1212	}
1213	rcu_read_unlock();
1214}
1215
1216static void close_sync(conf_t *conf)
1217{
1218	wait_barrier(conf);
1219	allow_barrier(conf);
1220
1221	mempool_destroy(conf->r1buf_pool);
1222	conf->r1buf_pool = NULL;
 
 
 
 
1223}
1224
1225static int raid1_spare_active(mddev_t *mddev)
1226{
1227	int i;
1228	conf_t *conf = mddev->private;
1229	int count = 0;
1230	unsigned long flags;
1231
1232	/*
1233	 * Find all failed disks within the RAID1 configuration 
1234	 * and mark them readable.
1235	 * Called under mddev lock, so rcu protection not needed.
 
 
1236	 */
 
1237	for (i = 0; i < conf->raid_disks; i++) {
1238		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239		if (rdev
 
1240		    && !test_bit(Faulty, &rdev->flags)
1241		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1242			count++;
1243			sysfs_notify_dirent_safe(rdev->sysfs_state);
1244		}
1245	}
1246	spin_lock_irqsave(&conf->device_lock, flags);
1247	mddev->degraded -= count;
1248	spin_unlock_irqrestore(&conf->device_lock, flags);
1249
1250	print_conf(conf);
1251	return count;
1252}
1253
1254
1255static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1256{
1257	conf_t *conf = mddev->private;
1258	int err = -EEXIST;
1259	int mirror = 0;
1260	mirror_info_t *p;
1261	int first = 0;
1262	int last = mddev->raid_disks - 1;
1263
1264	if (mddev->recovery_disabled == conf->recovery_disabled)
1265		return -EBUSY;
1266
 
 
 
1267	if (rdev->raid_disk >= 0)
1268		first = last = rdev->raid_disk;
1269
1270	for (mirror = first; mirror <= last; mirror++)
1271		if ( !(p=conf->mirrors+mirror)->rdev) {
1272
1273			disk_stack_limits(mddev->gendisk, rdev->bdev,
1274					  rdev->data_offset << 9);
1275			/* as we don't honour merge_bvec_fn, we must
1276			 * never risk violating it, so limit
1277			 * ->max_segments to one lying with a single
1278			 * page, as a one page request is never in
1279			 * violation.
1280			 */
1281			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1282				blk_queue_max_segments(mddev->queue, 1);
1283				blk_queue_segment_boundary(mddev->queue,
1284							   PAGE_CACHE_SIZE - 1);
1285			}
1286
1287			p->head_position = 0;
1288			rdev->raid_disk = mirror;
1289			err = 0;
1290			/* As all devices are equivalent, we don't need a full recovery
1291			 * if this was recently any drive of the array
1292			 */
1293			if (rdev->saved_raid_disk < 0)
1294				conf->fullsync = 1;
1295			rcu_assign_pointer(p->rdev, rdev);
1296			break;
1297		}
1298	md_integrity_add_rdev(rdev, mddev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	print_conf(conf);
1300	return err;
1301}
1302
1303static int raid1_remove_disk(mddev_t *mddev, int number)
1304{
1305	conf_t *conf = mddev->private;
1306	int err = 0;
1307	mdk_rdev_t *rdev;
1308	mirror_info_t *p = conf->mirrors+ number;
 
 
 
 
 
 
1309
1310	print_conf(conf);
1311	rdev = p->rdev;
1312	if (rdev) {
1313		if (test_bit(In_sync, &rdev->flags) ||
1314		    atomic_read(&rdev->nr_pending)) {
1315			err = -EBUSY;
1316			goto abort;
1317		}
1318		/* Only remove non-faulty devices if recovery
1319		 * is not possible.
1320		 */
1321		if (!test_bit(Faulty, &rdev->flags) &&
1322		    mddev->recovery_disabled != conf->recovery_disabled &&
1323		    mddev->degraded < conf->raid_disks) {
1324			err = -EBUSY;
1325			goto abort;
1326		}
1327		p->rdev = NULL;
1328		synchronize_rcu();
1329		if (atomic_read(&rdev->nr_pending)) {
1330			/* lost the race, try later */
1331			err = -EBUSY;
1332			p->rdev = rdev;
1333			goto abort;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334		}
 
 
1335		err = md_integrity_register(mddev);
1336	}
1337abort:
1338
1339	print_conf(conf);
1340	return err;
1341}
1342
 
 
 
1343
1344static void end_sync_read(struct bio *bio, int error)
1345{
1346	r1bio_t *r1_bio = bio->bi_private;
1347	int i;
1348
1349	for (i=r1_bio->mddev->raid_disks; i--; )
1350		if (r1_bio->bios[i] == bio)
1351			break;
1352	BUG_ON(i < 0);
1353	update_head_pos(i, r1_bio);
1354	/*
1355	 * we have read a block, now it needs to be re-written,
1356	 * or re-read if the read failed.
1357	 * We don't do much here, just schedule handling by raid1d
1358	 */
1359	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1360		set_bit(R1BIO_Uptodate, &r1_bio->state);
1361
1362	if (atomic_dec_and_test(&r1_bio->remaining))
1363		reschedule_retry(r1_bio);
1364}
1365
1366static void end_sync_write(struct bio *bio, int error)
1367{
1368	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1369	r1bio_t *r1_bio = bio->bi_private;
1370	mddev_t *mddev = r1_bio->mddev;
1371	conf_t *conf = mddev->private;
1372	int i;
1373	int mirror=0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374	sector_t first_bad;
1375	int bad_sectors;
 
1376
1377	for (i = 0; i < conf->raid_disks; i++)
1378		if (r1_bio->bios[i] == bio) {
1379			mirror = i;
1380			break;
1381		}
1382	if (!uptodate) {
1383		sector_t sync_blocks = 0;
1384		sector_t s = r1_bio->sector;
1385		long sectors_to_go = r1_bio->sectors;
1386		/* make sure these bits doesn't get cleared. */
1387		do {
1388			bitmap_end_sync(mddev->bitmap, s,
1389					&sync_blocks, 1);
1390			s += sync_blocks;
1391			sectors_to_go -= sync_blocks;
1392		} while (sectors_to_go > 0);
1393		set_bit(WriteErrorSeen,
1394			&conf->mirrors[mirror].rdev->flags);
1395		set_bit(R1BIO_WriteError, &r1_bio->state);
1396	} else if (is_badblock(conf->mirrors[mirror].rdev,
1397			       r1_bio->sector,
1398			       r1_bio->sectors,
1399			       &first_bad, &bad_sectors) &&
1400		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1401				r1_bio->sector,
1402				r1_bio->sectors,
1403				&first_bad, &bad_sectors)
1404		)
1405		set_bit(R1BIO_MadeGood, &r1_bio->state);
1406
1407	update_head_pos(mirror, r1_bio);
1408
1409	if (atomic_dec_and_test(&r1_bio->remaining)) {
1410		int s = r1_bio->sectors;
1411		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1412		    test_bit(R1BIO_WriteError, &r1_bio->state))
1413			reschedule_retry(r1_bio);
1414		else {
1415			put_buf(r1_bio);
1416			md_done_sync(mddev, s, uptodate);
1417		}
1418	}
1419}
1420
1421static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1422			    int sectors, struct page *page, int rw)
1423{
1424	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1425		/* success */
1426		return 1;
1427	if (rw == WRITE)
1428		set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
 
1429	/* need to record an error - either for the block or the device */
1430	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1431		md_error(rdev->mddev, rdev);
1432	return 0;
1433}
1434
1435static int fix_sync_read_error(r1bio_t *r1_bio)
1436{
1437	/* Try some synchronous reads of other devices to get
1438	 * good data, much like with normal read errors.  Only
1439	 * read into the pages we already have so we don't
1440	 * need to re-issue the read request.
1441	 * We don't need to freeze the array, because being in an
1442	 * active sync request, there is no normal IO, and
1443	 * no overlapping syncs.
1444	 * We don't need to check is_badblock() again as we
1445	 * made sure that anything with a bad block in range
1446	 * will have bi_end_io clear.
1447	 */
1448	mddev_t *mddev = r1_bio->mddev;
1449	conf_t *conf = mddev->private;
1450	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 
1451	sector_t sect = r1_bio->sector;
1452	int sectors = r1_bio->sectors;
1453	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1454
1455	while(sectors) {
1456		int s = sectors;
1457		int d = r1_bio->read_disk;
1458		int success = 0;
1459		mdk_rdev_t *rdev;
1460		int start;
1461
1462		if (s > (PAGE_SIZE>>9))
1463			s = PAGE_SIZE >> 9;
1464		do {
1465			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1466				/* No rcu protection needed here devices
1467				 * can only be removed when no resync is
1468				 * active, and resync is currently active
1469				 */
1470				rdev = conf->mirrors[d].rdev;
1471				if (sync_page_io(rdev, sect, s<<9,
1472						 bio->bi_io_vec[idx].bv_page,
1473						 READ, false)) {
1474					success = 1;
1475					break;
1476				}
1477			}
1478			d++;
1479			if (d == conf->raid_disks)
1480				d = 0;
1481		} while (!success && d != r1_bio->read_disk);
1482
1483		if (!success) {
1484			char b[BDEVNAME_SIZE];
1485			int abort = 0;
1486			/* Cannot read from anywhere, this block is lost.
1487			 * Record a bad block on each device.  If that doesn't
1488			 * work just disable and interrupt the recovery.
1489			 * Don't fail devices as that won't really help.
1490			 */
1491			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1492			       " for block %llu\n",
1493			       mdname(mddev),
1494			       bdevname(bio->bi_bdev, b),
1495			       (unsigned long long)r1_bio->sector);
1496			for (d = 0; d < conf->raid_disks; d++) {
1497				rdev = conf->mirrors[d].rdev;
1498				if (!rdev || test_bit(Faulty, &rdev->flags))
1499					continue;
1500				if (!rdev_set_badblocks(rdev, sect, s, 0))
1501					abort = 1;
1502			}
1503			if (abort) {
1504				mddev->recovery_disabled = 1;
 
1505				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506				md_done_sync(mddev, r1_bio->sectors, 0);
1507				put_buf(r1_bio);
1508				return 0;
1509			}
1510			/* Try next page */
1511			sectors -= s;
1512			sect += s;
1513			idx++;
1514			continue;
1515		}
1516
1517		start = d;
1518		/* write it back and re-read */
1519		while (d != r1_bio->read_disk) {
1520			if (d == 0)
1521				d = conf->raid_disks;
1522			d--;
1523			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1524				continue;
1525			rdev = conf->mirrors[d].rdev;
1526			if (r1_sync_page_io(rdev, sect, s,
1527					    bio->bi_io_vec[idx].bv_page,
1528					    WRITE) == 0) {
1529				r1_bio->bios[d]->bi_end_io = NULL;
1530				rdev_dec_pending(rdev, mddev);
1531			}
1532		}
1533		d = start;
1534		while (d != r1_bio->read_disk) {
1535			if (d == 0)
1536				d = conf->raid_disks;
1537			d--;
1538			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1539				continue;
1540			rdev = conf->mirrors[d].rdev;
1541			if (r1_sync_page_io(rdev, sect, s,
1542					    bio->bi_io_vec[idx].bv_page,
1543					    READ) != 0)
1544				atomic_add(s, &rdev->corrected_errors);
1545		}
1546		sectors -= s;
1547		sect += s;
1548		idx ++;
1549	}
1550	set_bit(R1BIO_Uptodate, &r1_bio->state);
1551	set_bit(BIO_UPTODATE, &bio->bi_flags);
1552	return 1;
1553}
1554
1555static int process_checks(r1bio_t *r1_bio)
1556{
1557	/* We have read all readable devices.  If we haven't
1558	 * got the block, then there is no hope left.
1559	 * If we have, then we want to do a comparison
1560	 * and skip the write if everything is the same.
1561	 * If any blocks failed to read, then we need to
1562	 * attempt an over-write
1563	 */
1564	mddev_t *mddev = r1_bio->mddev;
1565	conf_t *conf = mddev->private;
1566	int primary;
1567	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	for (primary = 0; primary < conf->raid_disks; primary++)
 
 
 
1570		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1571		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1572			r1_bio->bios[primary]->bi_end_io = NULL;
1573			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1574			break;
1575		}
1576	r1_bio->read_disk = primary;
1577	for (i = 0; i < conf->raid_disks; i++) {
1578		int j;
1579		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1580		struct bio *pbio = r1_bio->bios[primary];
1581		struct bio *sbio = r1_bio->bios[i];
1582		int size;
 
 
 
 
 
1583
1584		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1585			continue;
 
 
1586
1587		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
 
 
 
1588			for (j = vcnt; j-- ; ) {
1589				struct page *p, *s;
1590				p = pbio->bi_io_vec[j].bv_page;
1591				s = sbio->bi_io_vec[j].bv_page;
1592				if (memcmp(page_address(p),
1593					   page_address(s),
1594					   PAGE_SIZE))
1595					break;
1596			}
1597		} else
1598			j = 0;
1599		if (j >= 0)
1600			mddev->resync_mismatches += r1_bio->sectors;
1601		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1602			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1603			/* No need to write to this device. */
1604			sbio->bi_end_io = NULL;
1605			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1606			continue;
1607		}
1608		/* fixup the bio for reuse */
1609		sbio->bi_vcnt = vcnt;
1610		sbio->bi_size = r1_bio->sectors << 9;
1611		sbio->bi_idx = 0;
1612		sbio->bi_phys_segments = 0;
1613		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614		sbio->bi_flags |= 1 << BIO_UPTODATE;
1615		sbio->bi_next = NULL;
1616		sbio->bi_sector = r1_bio->sector +
1617			conf->mirrors[i].rdev->data_offset;
1618		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1619		size = sbio->bi_size;
1620		for (j = 0; j < vcnt ; j++) {
1621			struct bio_vec *bi;
1622			bi = &sbio->bi_io_vec[j];
1623			bi->bv_offset = 0;
1624			if (size > PAGE_SIZE)
1625				bi->bv_len = PAGE_SIZE;
1626			else
1627				bi->bv_len = size;
1628			size -= PAGE_SIZE;
1629			memcpy(page_address(bi->bv_page),
1630			       page_address(pbio->bi_io_vec[j].bv_page),
1631			       PAGE_SIZE);
1632		}
1633	}
1634	return 0;
1635}
1636
1637static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1638{
1639	conf_t *conf = mddev->private;
1640	int i;
1641	int disks = conf->raid_disks;
1642	struct bio *bio, *wbio;
1643
1644	bio = r1_bio->bios[r1_bio->read_disk];
1645
1646	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1647		/* ouch - failed to read all of that. */
1648		if (!fix_sync_read_error(r1_bio))
1649			return;
1650
1651	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1652		if (process_checks(r1_bio) < 0)
1653			return;
1654	/*
1655	 * schedule writes
1656	 */
1657	atomic_set(&r1_bio->remaining, 1);
1658	for (i = 0; i < disks ; i++) {
1659		wbio = r1_bio->bios[i];
1660		if (wbio->bi_end_io == NULL ||
1661		    (wbio->bi_end_io == end_sync_read &&
1662		     (i == r1_bio->read_disk ||
1663		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1664			continue;
 
 
 
 
 
 
 
 
1665
1666		wbio->bi_rw = WRITE;
1667		wbio->bi_end_io = end_sync_write;
1668		atomic_inc(&r1_bio->remaining);
1669		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1670
1671		generic_make_request(wbio);
1672	}
1673
1674	if (atomic_dec_and_test(&r1_bio->remaining)) {
1675		/* if we're here, all write(s) have completed, so clean up */
1676		md_done_sync(mddev, r1_bio->sectors, 1);
1677		put_buf(r1_bio);
1678	}
1679}
1680
1681/*
1682 * This is a kernel thread which:
1683 *
1684 *	1.	Retries failed read operations on working mirrors.
1685 *	2.	Updates the raid superblock when problems encounter.
1686 *	3.	Performs writes following reads for array synchronising.
1687 */
1688
1689static void fix_read_error(conf_t *conf, int read_disk,
1690			   sector_t sect, int sectors)
1691{
1692	mddev_t *mddev = conf->mddev;
 
 
 
 
 
 
 
 
 
 
1693	while(sectors) {
1694		int s = sectors;
1695		int d = read_disk;
1696		int success = 0;
1697		int start;
1698		mdk_rdev_t *rdev;
1699
1700		if (s > (PAGE_SIZE>>9))
1701			s = PAGE_SIZE >> 9;
1702
1703		do {
1704			/* Note: no rcu protection needed here
1705			 * as this is synchronous in the raid1d thread
1706			 * which is the thread that might remove
1707			 * a device.  If raid1d ever becomes multi-threaded....
1708			 */
1709			sector_t first_bad;
1710			int bad_sectors;
1711
1712			rdev = conf->mirrors[d].rdev;
1713			if (rdev &&
1714			    test_bit(In_sync, &rdev->flags) &&
 
 
1715			    is_badblock(rdev, sect, s,
1716					&first_bad, &bad_sectors) == 0 &&
1717			    sync_page_io(rdev, sect, s<<9,
1718					 conf->tmppage, READ, false))
1719				success = 1;
1720			else {
1721				d++;
1722				if (d == conf->raid_disks)
1723					d = 0;
1724			}
1725		} while (!success && d != read_disk);
 
 
 
 
1726
1727		if (!success) {
1728			/* Cannot read from anywhere - mark it bad */
1729			mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1730			if (!rdev_set_badblocks(rdev, sect, s, 0))
1731				md_error(mddev, rdev);
1732			break;
1733		}
1734		/* write it back and re-read */
1735		start = d;
1736		while (d != read_disk) {
1737			if (d==0)
1738				d = conf->raid_disks;
1739			d--;
1740			rdev = conf->mirrors[d].rdev;
1741			if (rdev &&
1742			    test_bit(In_sync, &rdev->flags))
 
1743				r1_sync_page_io(rdev, sect, s,
1744						conf->tmppage, WRITE);
 
 
1745		}
1746		d = start;
1747		while (d != read_disk) {
1748			char b[BDEVNAME_SIZE];
1749			if (d==0)
1750				d = conf->raid_disks;
1751			d--;
1752			rdev = conf->mirrors[d].rdev;
1753			if (rdev &&
1754			    test_bit(In_sync, &rdev->flags)) {
 
1755				if (r1_sync_page_io(rdev, sect, s,
1756						    conf->tmppage, READ)) {
1757					atomic_add(s, &rdev->corrected_errors);
1758					printk(KERN_INFO
1759					       "md/raid1:%s: read error corrected "
1760					       "(%d sectors at %llu on %s)\n",
1761					       mdname(mddev), s,
1762					       (unsigned long long)(sect +
1763					           rdev->data_offset),
1764					       bdevname(rdev->bdev, b));
1765				}
 
1766			}
1767		}
1768		sectors -= s;
1769		sect += s;
1770	}
1771}
1772
1773static void bi_complete(struct bio *bio, int error)
1774{
1775	complete((struct completion *)bio->bi_private);
1776}
1777
1778static int submit_bio_wait(int rw, struct bio *bio)
1779{
1780	struct completion event;
1781	rw |= REQ_SYNC;
1782
1783	init_completion(&event);
1784	bio->bi_private = &event;
1785	bio->bi_end_io = bi_complete;
1786	submit_bio(rw, bio);
1787	wait_for_completion(&event);
1788
1789	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1790}
1791
1792static int narrow_write_error(r1bio_t *r1_bio, int i)
1793{
1794	mddev_t *mddev = r1_bio->mddev;
1795	conf_t *conf = mddev->private;
1796	mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1797	int vcnt, idx;
1798	struct bio_vec *vec;
1799
1800	/* bio has the data to be written to device 'i' where
1801	 * we just recently had a write error.
1802	 * We repeatedly clone the bio and trim down to one block,
1803	 * then try the write.  Where the write fails we record
1804	 * a bad block.
1805	 * It is conceivable that the bio doesn't exactly align with
1806	 * blocks.  We must handle this somehow.
1807	 *
1808	 * We currently own a reference on the rdev.
1809	 */
1810
1811	int block_sectors;
1812	sector_t sector;
1813	int sectors;
1814	int sect_to_write = r1_bio->sectors;
1815	int ok = 1;
1816
1817	if (rdev->badblocks.shift < 0)
1818		return 0;
1819
1820	block_sectors = 1 << rdev->badblocks.shift;
 
1821	sector = r1_bio->sector;
1822	sectors = ((sector + block_sectors)
1823		   & ~(sector_t)(block_sectors - 1))
1824		- sector;
1825
1826	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1827		vcnt = r1_bio->behind_page_count;
1828		vec = r1_bio->behind_bvecs;
1829		idx = 0;
1830		while (vec[idx].bv_page == NULL)
1831			idx++;
1832	} else {
1833		vcnt = r1_bio->master_bio->bi_vcnt;
1834		vec = r1_bio->master_bio->bi_io_vec;
1835		idx = r1_bio->master_bio->bi_idx;
1836	}
1837	while (sect_to_write) {
1838		struct bio *wbio;
1839		if (sectors > sect_to_write)
1840			sectors = sect_to_write;
1841		/* Write at 'sector' for 'sectors'*/
1842
1843		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1844		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1845		wbio->bi_sector = r1_bio->sector;
1846		wbio->bi_rw = WRITE;
1847		wbio->bi_vcnt = vcnt;
1848		wbio->bi_size = r1_bio->sectors << 9;
1849		wbio->bi_idx = idx;
1850
1851		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1852		wbio->bi_sector += rdev->data_offset;
1853		wbio->bi_bdev = rdev->bdev;
1854		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
 
 
 
1855			/* failure! */
1856			ok = rdev_set_badblocks(rdev, sector,
1857						sectors, 0)
1858				&& ok;
1859
1860		bio_put(wbio);
1861		sect_to_write -= sectors;
1862		sector += sectors;
1863		sectors = block_sectors;
1864	}
1865	return ok;
1866}
1867
1868static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1869{
1870	int m;
1871	int s = r1_bio->sectors;
1872	for (m = 0; m < conf->raid_disks ; m++) {
1873		mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1874		struct bio *bio = r1_bio->bios[m];
1875		if (bio->bi_end_io == NULL)
1876			continue;
1877		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1879			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1880		}
1881		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1882		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1883			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1884				md_error(conf->mddev, rdev);
1885		}
1886	}
1887	put_buf(r1_bio);
1888	md_done_sync(conf->mddev, s, 1);
1889}
1890
1891static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1892{
1893	int m;
1894	for (m = 0; m < conf->raid_disks ; m++)
 
 
1895		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1896			mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1897			rdev_clear_badblocks(rdev,
1898					     r1_bio->sector,
1899					     r1_bio->sectors);
1900			rdev_dec_pending(rdev, conf->mddev);
1901		} else if (r1_bio->bios[m] != NULL) {
1902			/* This drive got a write error.  We need to
1903			 * narrow down and record precise write
1904			 * errors.
1905			 */
 
1906			if (!narrow_write_error(r1_bio, m)) {
1907				md_error(conf->mddev,
1908					 conf->mirrors[m].rdev);
1909				/* an I/O failed, we can't clear the bitmap */
1910				set_bit(R1BIO_Degraded, &r1_bio->state);
1911			}
1912			rdev_dec_pending(conf->mirrors[m].rdev,
1913					 conf->mddev);
1914		}
1915	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1916		close_write(r1_bio);
1917	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918}
1919
1920static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1921{
1922	int disk;
1923	int max_sectors;
1924	mddev_t *mddev = conf->mddev;
1925	struct bio *bio;
1926	char b[BDEVNAME_SIZE];
1927	mdk_rdev_t *rdev;
1928
1929	clear_bit(R1BIO_ReadError, &r1_bio->state);
1930	/* we got a read error. Maybe the drive is bad.  Maybe just
1931	 * the block and we can fix it.
1932	 * We freeze all other IO, and try reading the block from
1933	 * other devices.  When we find one, we re-write
1934	 * and check it that fixes the read error.
1935	 * This is all done synchronously while the array is
1936	 * frozen
1937	 */
1938	if (mddev->ro == 0) {
1939		freeze_array(conf);
1940		fix_read_error(conf, r1_bio->read_disk,
1941			       r1_bio->sector, r1_bio->sectors);
1942		unfreeze_array(conf);
1943	} else
1944		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1945
1946	bio = r1_bio->bios[r1_bio->read_disk];
1947	bdevname(bio->bi_bdev, b);
1948read_more:
1949	disk = read_balance(conf, r1_bio, &max_sectors);
1950	if (disk == -1) {
1951		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1952		       " read error for block %llu\n",
1953		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1954		raid_end_bio_io(r1_bio);
 
 
 
1955	} else {
1956		const unsigned long do_sync
1957			= r1_bio->master_bio->bi_rw & REQ_SYNC;
1958		if (bio) {
1959			r1_bio->bios[r1_bio->read_disk] =
1960				mddev->ro ? IO_BLOCKED : NULL;
1961			bio_put(bio);
1962		}
1963		r1_bio->read_disk = disk;
1964		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1965		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1966		r1_bio->bios[r1_bio->read_disk] = bio;
1967		rdev = conf->mirrors[disk].rdev;
1968		printk_ratelimited(KERN_ERR
1969				   "md/raid1:%s: redirecting sector %llu"
1970				   " to other mirror: %s\n",
1971				   mdname(mddev),
1972				   (unsigned long long)r1_bio->sector,
1973				   bdevname(rdev->bdev, b));
1974		bio->bi_sector = r1_bio->sector + rdev->data_offset;
1975		bio->bi_bdev = rdev->bdev;
1976		bio->bi_end_io = raid1_end_read_request;
1977		bio->bi_rw = READ | do_sync;
1978		bio->bi_private = r1_bio;
1979		if (max_sectors < r1_bio->sectors) {
1980			/* Drat - have to split this up more */
1981			struct bio *mbio = r1_bio->master_bio;
1982			int sectors_handled = (r1_bio->sector + max_sectors
1983					       - mbio->bi_sector);
1984			r1_bio->sectors = max_sectors;
1985			spin_lock_irq(&conf->device_lock);
1986			if (mbio->bi_phys_segments == 0)
1987				mbio->bi_phys_segments = 2;
1988			else
1989				mbio->bi_phys_segments++;
1990			spin_unlock_irq(&conf->device_lock);
1991			generic_make_request(bio);
1992			bio = NULL;
1993
1994			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1995
1996			r1_bio->master_bio = mbio;
1997			r1_bio->sectors = (mbio->bi_size >> 9)
1998					  - sectors_handled;
1999			r1_bio->state = 0;
2000			set_bit(R1BIO_ReadError, &r1_bio->state);
2001			r1_bio->mddev = mddev;
2002			r1_bio->sector = mbio->bi_sector + sectors_handled;
2003
2004			goto read_more;
2005		} else
2006			generic_make_request(bio);
2007	}
2008}
2009
2010static void raid1d(mddev_t *mddev)
2011{
2012	r1bio_t *r1_bio;
 
2013	unsigned long flags;
2014	conf_t *conf = mddev->private;
2015	struct list_head *head = &conf->retry_list;
2016	struct blk_plug plug;
 
2017
2018	md_check_recovery(mddev);
2019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020	blk_start_plug(&plug);
2021	for (;;) {
2022
2023		if (atomic_read(&mddev->plug_cnt) == 0)
2024			flush_pending_writes(conf);
2025
2026		spin_lock_irqsave(&conf->device_lock, flags);
2027		if (list_empty(head)) {
2028			spin_unlock_irqrestore(&conf->device_lock, flags);
2029			break;
2030		}
2031		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2032		list_del(head->prev);
2033		conf->nr_queued--;
 
2034		spin_unlock_irqrestore(&conf->device_lock, flags);
2035
2036		mddev = r1_bio->mddev;
2037		conf = mddev->private;
2038		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2039			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2040			    test_bit(R1BIO_WriteError, &r1_bio->state))
2041				handle_sync_write_finished(conf, r1_bio);
2042			else
2043				sync_request_write(mddev, r1_bio);
2044		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045			   test_bit(R1BIO_WriteError, &r1_bio->state))
2046			handle_write_finished(conf, r1_bio);
2047		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2048			handle_read_error(conf, r1_bio);
2049		else
2050			/* just a partial read to be scheduled from separate
2051			 * context
2052			 */
2053			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2054
2055		cond_resched();
2056		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2057			md_check_recovery(mddev);
2058	}
2059	blk_finish_plug(&plug);
2060}
2061
2062
2063static int init_resync(conf_t *conf)
2064{
2065	int buffs;
2066
2067	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2068	BUG_ON(conf->r1buf_pool);
2069	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2070					  conf->poolinfo);
2071	if (!conf->r1buf_pool)
2072		return -ENOMEM;
2073	conf->next_resync = 0;
2074	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075}
2076
2077/*
2078 * perform a "sync" on one "block"
2079 *
2080 * We need to make sure that no normal I/O request - particularly write
2081 * requests - conflict with active sync requests.
2082 *
2083 * This is achieved by tracking pending requests and a 'barrier' concept
2084 * that can be installed to exclude normal IO requests.
2085 */
2086
2087static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2088{
2089	conf_t *conf = mddev->private;
2090	r1bio_t *r1_bio;
2091	struct bio *bio;
2092	sector_t max_sector, nr_sectors;
2093	int disk = -1;
2094	int i;
2095	int wonly = -1;
2096	int write_targets = 0, read_targets = 0;
2097	sector_t sync_blocks;
2098	int still_degraded = 0;
2099	int good_sectors = RESYNC_SECTORS;
2100	int min_bad = 0; /* number of sectors that are bad in all devices */
 
 
2101
2102	if (!conf->r1buf_pool)
2103		if (init_resync(conf))
2104			return 0;
2105
2106	max_sector = mddev->dev_sectors;
2107	if (sector_nr >= max_sector) {
2108		/* If we aborted, we need to abort the
2109		 * sync on the 'current' bitmap chunk (there will
2110		 * only be one in raid1 resync.
2111		 * We can find the current addess in mddev->curr_resync
2112		 */
2113		if (mddev->curr_resync < max_sector) /* aborted */
2114			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2115						&sync_blocks, 1);
2116		else /* completed sync */
2117			conf->fullsync = 0;
2118
2119		bitmap_close_sync(mddev->bitmap);
2120		close_sync(conf);
 
 
 
 
 
2121		return 0;
2122	}
2123
2124	if (mddev->bitmap == NULL &&
2125	    mddev->recovery_cp == MaxSector &&
2126	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2127	    conf->fullsync == 0) {
2128		*skipped = 1;
2129		return max_sector - sector_nr;
2130	}
2131	/* before building a request, check if we can skip these blocks..
2132	 * This call the bitmap_start_sync doesn't actually record anything
2133	 */
2134	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2135	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2136		/* We can skip this block, and probably several more */
2137		*skipped = 1;
2138		return sync_blocks;
2139	}
 
2140	/*
2141	 * If there is non-resync activity waiting for a turn,
2142	 * and resync is going fast enough,
2143	 * then let it though before starting on this new sync request.
2144	 */
2145	if (!go_faster && conf->nr_waiting)
2146		msleep_interruptible(1000);
2147
2148	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2149	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2150	raise_barrier(conf);
 
 
 
 
 
 
 
2151
2152	conf->next_resync = sector_nr;
2153
2154	rcu_read_lock();
2155	/*
2156	 * If we get a correctably read error during resync or recovery,
2157	 * we might want to read from a different device.  So we
2158	 * flag all drives that could conceivably be read from for READ,
2159	 * and any others (which will be non-In_sync devices) for WRITE.
2160	 * If a read fails, we try reading from something else for which READ
2161	 * is OK.
2162	 */
2163
2164	r1_bio->mddev = mddev;
2165	r1_bio->sector = sector_nr;
2166	r1_bio->state = 0;
2167	set_bit(R1BIO_IsSync, &r1_bio->state);
 
 
2168
2169	for (i=0; i < conf->raid_disks; i++) {
2170		mdk_rdev_t *rdev;
2171		bio = r1_bio->bios[i];
2172
2173		/* take from bio_init */
2174		bio->bi_next = NULL;
2175		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2176		bio->bi_flags |= 1 << BIO_UPTODATE;
2177		bio->bi_comp_cpu = -1;
2178		bio->bi_rw = READ;
2179		bio->bi_vcnt = 0;
2180		bio->bi_idx = 0;
2181		bio->bi_phys_segments = 0;
2182		bio->bi_size = 0;
2183		bio->bi_end_io = NULL;
2184		bio->bi_private = NULL;
2185
2186		rdev = rcu_dereference(conf->mirrors[i].rdev);
2187		if (rdev == NULL ||
2188		    test_bit(Faulty, &rdev->flags)) {
2189			still_degraded = 1;
 
2190		} else if (!test_bit(In_sync, &rdev->flags)) {
2191			bio->bi_rw = WRITE;
2192			bio->bi_end_io = end_sync_write;
2193			write_targets ++;
2194		} else {
2195			/* may need to read from here */
2196			sector_t first_bad = MaxSector;
2197			int bad_sectors;
2198
2199			if (is_badblock(rdev, sector_nr, good_sectors,
2200					&first_bad, &bad_sectors)) {
2201				if (first_bad > sector_nr)
2202					good_sectors = first_bad - sector_nr;
2203				else {
2204					bad_sectors -= (sector_nr - first_bad);
2205					if (min_bad == 0 ||
2206					    min_bad > bad_sectors)
2207						min_bad = bad_sectors;
2208				}
2209			}
2210			if (sector_nr < first_bad) {
2211				if (test_bit(WriteMostly, &rdev->flags)) {
2212					if (wonly < 0)
2213						wonly = i;
2214				} else {
2215					if (disk < 0)
2216						disk = i;
2217				}
2218				bio->bi_rw = READ;
2219				bio->bi_end_io = end_sync_read;
2220				read_targets++;
 
 
 
 
 
 
 
 
 
 
 
 
2221			}
2222		}
2223		if (bio->bi_end_io) {
2224			atomic_inc(&rdev->nr_pending);
2225			bio->bi_sector = sector_nr + rdev->data_offset;
2226			bio->bi_bdev = rdev->bdev;
2227			bio->bi_private = r1_bio;
 
2228		}
2229	}
2230	rcu_read_unlock();
2231	if (disk < 0)
2232		disk = wonly;
2233	r1_bio->read_disk = disk;
2234
2235	if (read_targets == 0 && min_bad > 0) {
2236		/* These sectors are bad on all InSync devices, so we
2237		 * need to mark them bad on all write targets
2238		 */
2239		int ok = 1;
2240		for (i = 0 ; i < conf->raid_disks ; i++)
2241			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2242				mdk_rdev_t *rdev =
2243					rcu_dereference(conf->mirrors[i].rdev);
2244				ok = rdev_set_badblocks(rdev, sector_nr,
2245							min_bad, 0
2246					) && ok;
2247			}
2248		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2249		*skipped = 1;
2250		put_buf(r1_bio);
2251
2252		if (!ok) {
2253			/* Cannot record the badblocks, so need to
2254			 * abort the resync.
2255			 * If there are multiple read targets, could just
2256			 * fail the really bad ones ???
2257			 */
2258			conf->recovery_disabled = mddev->recovery_disabled;
2259			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2260			return 0;
2261		} else
2262			return min_bad;
2263
2264	}
2265	if (min_bad > 0 && min_bad < good_sectors) {
2266		/* only resync enough to reach the next bad->good
2267		 * transition */
2268		good_sectors = min_bad;
2269	}
2270
2271	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2272		/* extra read targets are also write targets */
2273		write_targets += read_targets-1;
2274
2275	if (write_targets == 0 || read_targets == 0) {
2276		/* There is nowhere to write, so all non-sync
2277		 * drives must be failed - so we are finished
2278		 */
2279		sector_t rv = max_sector - sector_nr;
 
 
 
2280		*skipped = 1;
2281		put_buf(r1_bio);
2282		return rv;
2283	}
2284
2285	if (max_sector > mddev->resync_max)
2286		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2287	if (max_sector > sector_nr + good_sectors)
2288		max_sector = sector_nr + good_sectors;
2289	nr_sectors = 0;
2290	sync_blocks = 0;
2291	do {
2292		struct page *page;
2293		int len = PAGE_SIZE;
2294		if (sector_nr + (len>>9) > max_sector)
2295			len = (max_sector - sector_nr) << 9;
2296		if (len == 0)
2297			break;
2298		if (sync_blocks == 0) {
2299			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2300					       &sync_blocks, still_degraded) &&
2301			    !conf->fullsync &&
2302			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303				break;
2304			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2305			if ((len >> 9) > sync_blocks)
2306				len = sync_blocks<<9;
2307		}
2308
2309		for (i=0 ; i < conf->raid_disks; i++) {
 
 
2310			bio = r1_bio->bios[i];
 
2311			if (bio->bi_end_io) {
2312				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2313				if (bio_add_page(bio, page, len, 0) == 0) {
2314					/* stop here */
2315					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2316					while (i > 0) {
2317						i--;
2318						bio = r1_bio->bios[i];
2319						if (bio->bi_end_io==NULL)
2320							continue;
2321						/* remove last page from this bio */
2322						bio->bi_vcnt--;
2323						bio->bi_size -= len;
2324						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2325					}
2326					goto bio_full;
2327				}
2328			}
2329		}
2330		nr_sectors += len>>9;
2331		sector_nr += len>>9;
2332		sync_blocks -= (len>>9);
2333	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2334 bio_full:
2335	r1_bio->sectors = nr_sectors;
2336
 
 
 
 
 
 
 
 
 
 
2337	/* For a user-requested sync, we read all readable devices and do a
2338	 * compare
2339	 */
2340	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2341		atomic_set(&r1_bio->remaining, read_targets);
2342		for (i=0; i<conf->raid_disks; i++) {
2343			bio = r1_bio->bios[i];
2344			if (bio->bi_end_io == end_sync_read) {
2345				md_sync_acct(bio->bi_bdev, nr_sectors);
2346				generic_make_request(bio);
 
 
 
2347			}
2348		}
2349	} else {
2350		atomic_set(&r1_bio->remaining, 1);
2351		bio = r1_bio->bios[r1_bio->read_disk];
2352		md_sync_acct(bio->bi_bdev, nr_sectors);
2353		generic_make_request(bio);
2354
 
2355	}
2356	return nr_sectors;
2357}
2358
2359static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2360{
2361	if (sectors)
2362		return sectors;
2363
2364	return mddev->dev_sectors;
2365}
2366
2367static conf_t *setup_conf(mddev_t *mddev)
2368{
2369	conf_t *conf;
2370	int i;
2371	mirror_info_t *disk;
2372	mdk_rdev_t *rdev;
2373	int err = -ENOMEM;
2374
2375	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2376	if (!conf)
2377		goto abort;
2378
2379	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2380				 GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381	if (!conf->mirrors)
2382		goto abort;
2383
2384	conf->tmppage = alloc_page(GFP_KERNEL);
2385	if (!conf->tmppage)
2386		goto abort;
2387
2388	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2389	if (!conf->poolinfo)
2390		goto abort;
2391	conf->poolinfo->raid_disks = mddev->raid_disks;
2392	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2393					  r1bio_pool_free,
2394					  conf->poolinfo);
2395	if (!conf->r1bio_pool)
 
 
 
2396		goto abort;
2397
2398	conf->poolinfo->mddev = mddev;
2399
 
2400	spin_lock_init(&conf->device_lock);
2401	list_for_each_entry(rdev, &mddev->disks, same_set) {
2402		int disk_idx = rdev->raid_disk;
2403		if (disk_idx >= mddev->raid_disks
2404		    || disk_idx < 0)
2405			continue;
2406		disk = conf->mirrors + disk_idx;
 
 
 
2407
 
 
2408		disk->rdev = rdev;
2409
2410		disk->head_position = 0;
 
2411	}
2412	conf->raid_disks = mddev->raid_disks;
2413	conf->mddev = mddev;
2414	INIT_LIST_HEAD(&conf->retry_list);
 
2415
2416	spin_lock_init(&conf->resync_lock);
2417	init_waitqueue_head(&conf->wait_barrier);
2418
2419	bio_list_init(&conf->pending_bio_list);
 
2420
2421	conf->last_used = -1;
2422	for (i = 0; i < conf->raid_disks; i++) {
2423
2424		disk = conf->mirrors + i;
2425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426		if (!disk->rdev ||
2427		    !test_bit(In_sync, &disk->rdev->flags)) {
2428			disk->head_position = 0;
2429			if (disk->rdev)
 
2430				conf->fullsync = 1;
2431		} else if (conf->last_used < 0)
2432			/*
2433			 * The first working device is used as a
2434			 * starting point to read balancing.
2435			 */
2436			conf->last_used = i;
2437	}
2438
2439	err = -EIO;
2440	if (conf->last_used < 0) {
2441		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2442		       mdname(mddev));
2443		goto abort;
2444	}
2445	err = -ENOMEM;
2446	conf->thread = md_register_thread(raid1d, mddev, NULL);
2447	if (!conf->thread) {
2448		printk(KERN_ERR
2449		       "md/raid1:%s: couldn't allocate thread\n",
2450		       mdname(mddev));
2451		goto abort;
2452	}
2453
2454	return conf;
2455
2456 abort:
2457	if (conf) {
2458		if (conf->r1bio_pool)
2459			mempool_destroy(conf->r1bio_pool);
2460		kfree(conf->mirrors);
2461		safe_put_page(conf->tmppage);
2462		kfree(conf->poolinfo);
 
 
 
 
 
2463		kfree(conf);
2464	}
2465	return ERR_PTR(err);
2466}
2467
2468static int run(mddev_t *mddev)
 
2469{
2470	conf_t *conf;
2471	int i;
2472	mdk_rdev_t *rdev;
 
2473
2474	if (mddev->level != 1) {
2475		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2476		       mdname(mddev), mddev->level);
2477		return -EIO;
2478	}
2479	if (mddev->reshape_position != MaxSector) {
2480		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2481		       mdname(mddev));
2482		return -EIO;
2483	}
 
2484	/*
2485	 * copy the already verified devices into our private RAID1
2486	 * bookkeeping area. [whatever we allocate in run(),
2487	 * should be freed in stop()]
2488	 */
2489	if (mddev->private == NULL)
2490		conf = setup_conf(mddev);
2491	else
2492		conf = mddev->private;
2493
2494	if (IS_ERR(conf))
2495		return PTR_ERR(conf);
2496
2497	list_for_each_entry(rdev, &mddev->disks, same_set) {
 
 
 
2498		if (!mddev->gendisk)
2499			continue;
2500		disk_stack_limits(mddev->gendisk, rdev->bdev,
2501				  rdev->data_offset << 9);
2502		/* as we don't honour merge_bvec_fn, we must never risk
2503		 * violating it, so limit ->max_segments to 1 lying within
2504		 * a single page, as a one page request is never in violation.
2505		 */
2506		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2507			blk_queue_max_segments(mddev->queue, 1);
2508			blk_queue_segment_boundary(mddev->queue,
2509						   PAGE_CACHE_SIZE - 1);
2510		}
2511	}
2512
2513	mddev->degraded = 0;
2514	for (i=0; i < conf->raid_disks; i++)
2515		if (conf->mirrors[i].rdev == NULL ||
2516		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2517		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2518			mddev->degraded++;
 
 
 
 
 
 
 
 
2519
2520	if (conf->raid_disks - mddev->degraded == 1)
2521		mddev->recovery_cp = MaxSector;
2522
2523	if (mddev->recovery_cp != MaxSector)
2524		printk(KERN_NOTICE "md/raid1:%s: not clean"
2525		       " -- starting background reconstruction\n",
2526		       mdname(mddev));
2527	printk(KERN_INFO 
2528		"md/raid1:%s: active with %d out of %d mirrors\n",
2529		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2530		mddev->raid_disks);
2531
2532	/*
2533	 * Ok, everything is just fine now
2534	 */
2535	mddev->thread = conf->thread;
2536	conf->thread = NULL;
2537	mddev->private = conf;
 
2538
2539	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2540
2541	if (mddev->queue) {
2542		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2543		mddev->queue->backing_dev_info.congested_data = mddev;
 
2544	}
2545	return md_integrity_register(mddev);
 
 
 
 
2546}
2547
2548static int stop(mddev_t *mddev)
2549{
2550	conf_t *conf = mddev->private;
2551	struct bitmap *bitmap = mddev->bitmap;
2552
2553	/* wait for behind writes to complete */
2554	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2555		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2556		       mdname(mddev));
2557		/* need to kick something here to make sure I/O goes? */
2558		wait_event(bitmap->behind_wait,
2559			   atomic_read(&bitmap->behind_writes) == 0);
2560	}
2561
2562	raise_barrier(conf);
2563	lower_barrier(conf);
2564
2565	md_unregister_thread(&mddev->thread);
2566	if (conf->r1bio_pool)
2567		mempool_destroy(conf->r1bio_pool);
2568	kfree(conf->mirrors);
 
2569	kfree(conf->poolinfo);
 
 
 
 
 
2570	kfree(conf);
2571	mddev->private = NULL;
2572	return 0;
2573}
2574
2575static int raid1_resize(mddev_t *mddev, sector_t sectors)
2576{
2577	/* no resync is happening, and there is enough space
2578	 * on all devices, so we can resize.
2579	 * We need to make sure resync covers any new space.
2580	 * If the array is shrinking we should possibly wait until
2581	 * any io in the removed space completes, but it hardly seems
2582	 * worth it.
2583	 */
2584	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2585	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
 
2586		return -EINVAL;
2587	set_capacity(mddev->gendisk, mddev->array_sectors);
2588	revalidate_disk(mddev->gendisk);
 
 
 
 
2589	if (sectors > mddev->dev_sectors &&
2590	    mddev->recovery_cp > mddev->dev_sectors) {
2591		mddev->recovery_cp = mddev->dev_sectors;
2592		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2593	}
2594	mddev->dev_sectors = sectors;
2595	mddev->resync_max_sectors = sectors;
2596	return 0;
2597}
2598
2599static int raid1_reshape(mddev_t *mddev)
2600{
2601	/* We need to:
2602	 * 1/ resize the r1bio_pool
2603	 * 2/ resize conf->mirrors
2604	 *
2605	 * We allocate a new r1bio_pool if we can.
2606	 * Then raise a device barrier and wait until all IO stops.
2607	 * Then resize conf->mirrors and swap in the new r1bio pool.
2608	 *
2609	 * At the same time, we "pack" the devices so that all the missing
2610	 * devices have the higher raid_disk numbers.
2611	 */
2612	mempool_t *newpool, *oldpool;
2613	struct pool_info *newpoolinfo;
2614	mirror_info_t *newmirrors;
2615	conf_t *conf = mddev->private;
2616	int cnt, raid_disks;
2617	unsigned long flags;
2618	int d, d2, err;
 
 
 
 
2619
2620	/* Cannot change chunk_size, layout, or level */
2621	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2622	    mddev->layout != mddev->new_layout ||
2623	    mddev->level != mddev->new_level) {
2624		mddev->new_chunk_sectors = mddev->chunk_sectors;
2625		mddev->new_layout = mddev->layout;
2626		mddev->new_level = mddev->level;
2627		return -EINVAL;
2628	}
2629
2630	err = md_allow_write(mddev);
2631	if (err)
2632		return err;
2633
2634	raid_disks = mddev->raid_disks + mddev->delta_disks;
2635
2636	if (raid_disks < conf->raid_disks) {
2637		cnt=0;
2638		for (d= 0; d < conf->raid_disks; d++)
2639			if (conf->mirrors[d].rdev)
2640				cnt++;
2641		if (cnt > raid_disks)
2642			return -EBUSY;
2643	}
2644
2645	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2646	if (!newpoolinfo)
2647		return -ENOMEM;
2648	newpoolinfo->mddev = mddev;
2649	newpoolinfo->raid_disks = raid_disks;
2650
2651	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652				 r1bio_pool_free, newpoolinfo);
2653	if (!newpool) {
2654		kfree(newpoolinfo);
2655		return -ENOMEM;
2656	}
2657	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
 
 
2658	if (!newmirrors) {
2659		kfree(newpoolinfo);
2660		mempool_destroy(newpool);
2661		return -ENOMEM;
2662	}
2663
2664	raise_barrier(conf);
2665
2666	/* ok, everything is stopped */
2667	oldpool = conf->r1bio_pool;
2668	conf->r1bio_pool = newpool;
2669
2670	for (d = d2 = 0; d < conf->raid_disks; d++) {
2671		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2672		if (rdev && rdev->raid_disk != d2) {
2673			sysfs_unlink_rdev(mddev, rdev);
2674			rdev->raid_disk = d2;
2675			sysfs_unlink_rdev(mddev, rdev);
2676			if (sysfs_link_rdev(mddev, rdev))
2677				printk(KERN_WARNING
2678				       "md/raid1:%s: cannot register rd%d\n",
2679				       mdname(mddev), rdev->raid_disk);
2680		}
2681		if (rdev)
2682			newmirrors[d2++].rdev = rdev;
2683	}
2684	kfree(conf->mirrors);
2685	conf->mirrors = newmirrors;
2686	kfree(conf->poolinfo);
2687	conf->poolinfo = newpoolinfo;
2688
2689	spin_lock_irqsave(&conf->device_lock, flags);
2690	mddev->degraded += (raid_disks - conf->raid_disks);
2691	spin_unlock_irqrestore(&conf->device_lock, flags);
2692	conf->raid_disks = mddev->raid_disks = raid_disks;
2693	mddev->delta_disks = 0;
2694
2695	conf->last_used = 0; /* just make sure it is in-range */
2696	lower_barrier(conf);
2697
 
2698	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699	md_wakeup_thread(mddev->thread);
2700
2701	mempool_destroy(oldpool);
2702	return 0;
2703}
2704
2705static void raid1_quiesce(mddev_t *mddev, int state)
2706{
2707	conf_t *conf = mddev->private;
2708
2709	switch(state) {
2710	case 2: /* wake for suspend */
2711		wake_up(&conf->wait_barrier);
2712		break;
2713	case 1:
2714		raise_barrier(conf);
2715		break;
2716	case 0:
2717		lower_barrier(conf);
2718		break;
2719	}
2720}
2721
2722static void *raid1_takeover(mddev_t *mddev)
2723{
2724	/* raid1 can take over:
2725	 *  raid5 with 2 devices, any layout or chunk size
2726	 */
2727	if (mddev->level == 5 && mddev->raid_disks == 2) {
2728		conf_t *conf;
2729		mddev->new_level = 1;
2730		mddev->new_layout = 0;
2731		mddev->new_chunk_sectors = 0;
2732		conf = setup_conf(mddev);
2733		if (!IS_ERR(conf))
2734			conf->barrier = 1;
 
 
 
 
2735		return conf;
2736	}
2737	return ERR_PTR(-EINVAL);
2738}
2739
2740static struct mdk_personality raid1_personality =
2741{
2742	.name		= "raid1",
2743	.level		= 1,
2744	.owner		= THIS_MODULE,
2745	.make_request	= make_request,
2746	.run		= run,
2747	.stop		= stop,
2748	.status		= status,
2749	.error_handler	= error,
2750	.hot_add_disk	= raid1_add_disk,
2751	.hot_remove_disk= raid1_remove_disk,
2752	.spare_active	= raid1_spare_active,
2753	.sync_request	= sync_request,
2754	.resize		= raid1_resize,
2755	.size		= raid1_size,
2756	.check_reshape	= raid1_reshape,
2757	.quiesce	= raid1_quiesce,
2758	.takeover	= raid1_takeover,
2759};
2760
2761static int __init raid_init(void)
2762{
2763	return register_md_personality(&raid1_personality);
2764}
2765
2766static void raid_exit(void)
2767{
2768	unregister_md_personality(&raid1_personality);
2769}
2770
2771module_init(raid_init);
2772module_exit(raid_exit);
2773MODULE_LICENSE("GPL");
2774MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776MODULE_ALIAS("md-raid1");
2777MODULE_ALIAS("md-level-1");