Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#define RAID_1_10_NAME "raid1"
  53#include "raid1-10.c"
  54
  55#define START(node) ((node)->start)
  56#define LAST(node) ((node)->last)
  57INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  58		     START, LAST, static inline, raid1_rb);
  59
  60static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  61				struct serial_info *si, int idx)
  62{
  63	unsigned long flags;
  64	int ret = 0;
  65	sector_t lo = r1_bio->sector;
  66	sector_t hi = lo + r1_bio->sectors;
  67	struct serial_in_rdev *serial = &rdev->serial[idx];
  68
  69	spin_lock_irqsave(&serial->serial_lock, flags);
  70	/* collision happened */
  71	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  72		ret = -EBUSY;
  73	else {
  74		si->start = lo;
  75		si->last = hi;
  76		raid1_rb_insert(si, &serial->serial_rb);
  77	}
  78	spin_unlock_irqrestore(&serial->serial_lock, flags);
  79
  80	return ret;
  81}
  82
  83static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  84{
  85	struct mddev *mddev = rdev->mddev;
  86	struct serial_info *si;
  87	int idx = sector_to_idx(r1_bio->sector);
  88	struct serial_in_rdev *serial = &rdev->serial[idx];
  89
  90	if (WARN_ON(!mddev->serial_info_pool))
  91		return;
  92	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  93	wait_event(serial->serial_io_wait,
  94		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  95}
  96
  97static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  98{
  99	struct serial_info *si;
 100	unsigned long flags;
 101	int found = 0;
 102	struct mddev *mddev = rdev->mddev;
 103	int idx = sector_to_idx(lo);
 104	struct serial_in_rdev *serial = &rdev->serial[idx];
 105
 106	spin_lock_irqsave(&serial->serial_lock, flags);
 107	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 108	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 109		if (si->start == lo && si->last == hi) {
 110			raid1_rb_remove(si, &serial->serial_rb);
 111			mempool_free(si, mddev->serial_info_pool);
 112			found = 1;
 113			break;
 114		}
 115	}
 116	if (!found)
 117		WARN(1, "The write IO is not recorded for serialization\n");
 118	spin_unlock_irqrestore(&serial->serial_lock, flags);
 119	wake_up(&serial->serial_io_wait);
 120}
 121
 122/*
 123 * for resync bio, r1bio pointer can be retrieved from the per-bio
 124 * 'struct resync_pages'.
 125 */
 126static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 127{
 128	return get_resync_pages(bio)->raid_bio;
 129}
 130
 131static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 132{
 133	struct pool_info *pi = data;
 134	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 135
 136	/* allocate a r1bio with room for raid_disks entries in the bios array */
 137	return kzalloc(size, gfp_flags);
 138}
 139
 
 
 
 
 
 140#define RESYNC_DEPTH 32
 141#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 142#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 143#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 144#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 146
 147static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 148{
 149	struct pool_info *pi = data;
 150	struct r1bio *r1_bio;
 151	struct bio *bio;
 152	int need_pages;
 153	int j;
 154	struct resync_pages *rps;
 155
 156	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 157	if (!r1_bio)
 158		return NULL;
 159
 160	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 161			    gfp_flags);
 162	if (!rps)
 163		goto out_free_r1bio;
 164
 165	/*
 166	 * Allocate bios : 1 for reading, n-1 for writing
 167	 */
 168	for (j = pi->raid_disks ; j-- ; ) {
 169		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 170		if (!bio)
 171			goto out_free_bio;
 172		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 173		r1_bio->bios[j] = bio;
 174	}
 175	/*
 176	 * Allocate RESYNC_PAGES data pages and attach them to
 177	 * the first bio.
 178	 * If this is a user-requested check/repair, allocate
 179	 * RESYNC_PAGES for each bio.
 180	 */
 181	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 182		need_pages = pi->raid_disks;
 183	else
 184		need_pages = 1;
 185	for (j = 0; j < pi->raid_disks; j++) {
 186		struct resync_pages *rp = &rps[j];
 187
 188		bio = r1_bio->bios[j];
 189
 190		if (j < need_pages) {
 191			if (resync_alloc_pages(rp, gfp_flags))
 192				goto out_free_pages;
 193		} else {
 194			memcpy(rp, &rps[0], sizeof(*rp));
 195			resync_get_all_pages(rp);
 196		}
 197
 198		rp->raid_bio = r1_bio;
 199		bio->bi_private = rp;
 200	}
 201
 202	r1_bio->master_bio = NULL;
 203
 204	return r1_bio;
 205
 206out_free_pages:
 207	while (--j >= 0)
 208		resync_free_pages(&rps[j]);
 209
 210out_free_bio:
 211	while (++j < pi->raid_disks) {
 212		bio_uninit(r1_bio->bios[j]);
 213		kfree(r1_bio->bios[j]);
 214	}
 215	kfree(rps);
 216
 217out_free_r1bio:
 218	rbio_pool_free(r1_bio, data);
 219	return NULL;
 220}
 221
 222static void r1buf_pool_free(void *__r1_bio, void *data)
 223{
 224	struct pool_info *pi = data;
 225	int i;
 226	struct r1bio *r1bio = __r1_bio;
 227	struct resync_pages *rp = NULL;
 228
 229	for (i = pi->raid_disks; i--; ) {
 230		rp = get_resync_pages(r1bio->bios[i]);
 231		resync_free_pages(rp);
 232		bio_uninit(r1bio->bios[i]);
 233		kfree(r1bio->bios[i]);
 234	}
 235
 236	/* resync pages array stored in the 1st bio's .bi_private */
 237	kfree(rp);
 238
 239	rbio_pool_free(r1bio, data);
 240}
 241
 242static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 243{
 244	int i;
 245
 246	for (i = 0; i < conf->raid_disks * 2; i++) {
 247		struct bio **bio = r1_bio->bios + i;
 248		if (!BIO_SPECIAL(*bio))
 249			bio_put(*bio);
 250		*bio = NULL;
 251	}
 252}
 253
 254static void free_r1bio(struct r1bio *r1_bio)
 255{
 256	struct r1conf *conf = r1_bio->mddev->private;
 257
 258	put_all_bios(conf, r1_bio);
 259	mempool_free(r1_bio, &conf->r1bio_pool);
 260}
 261
 262static void put_buf(struct r1bio *r1_bio)
 263{
 264	struct r1conf *conf = r1_bio->mddev->private;
 265	sector_t sect = r1_bio->sector;
 266	int i;
 267
 268	for (i = 0; i < conf->raid_disks * 2; i++) {
 269		struct bio *bio = r1_bio->bios[i];
 270		if (bio->bi_end_io)
 271			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 272	}
 273
 274	mempool_free(r1_bio, &conf->r1buf_pool);
 275
 276	lower_barrier(conf, sect);
 277}
 278
 279static void reschedule_retry(struct r1bio *r1_bio)
 280{
 281	unsigned long flags;
 282	struct mddev *mddev = r1_bio->mddev;
 283	struct r1conf *conf = mddev->private;
 284	int idx;
 285
 286	idx = sector_to_idx(r1_bio->sector);
 287	spin_lock_irqsave(&conf->device_lock, flags);
 288	list_add(&r1_bio->retry_list, &conf->retry_list);
 289	atomic_inc(&conf->nr_queued[idx]);
 290	spin_unlock_irqrestore(&conf->device_lock, flags);
 291
 292	wake_up(&conf->wait_barrier);
 293	md_wakeup_thread(mddev->thread);
 294}
 295
 296/*
 297 * raid_end_bio_io() is called when we have finished servicing a mirrored
 298 * operation and are ready to return a success/failure code to the buffer
 299 * cache layer.
 300 */
 301static void call_bio_endio(struct r1bio *r1_bio)
 302{
 303	struct bio *bio = r1_bio->master_bio;
 
 304
 305	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 306		bio->bi_status = BLK_STS_IOERR;
 307
 308	bio_endio(bio);
 
 
 
 
 
 309}
 310
 311static void raid_end_bio_io(struct r1bio *r1_bio)
 312{
 313	struct bio *bio = r1_bio->master_bio;
 314	struct r1conf *conf = r1_bio->mddev->private;
 315	sector_t sector = r1_bio->sector;
 316
 317	/* if nobody has done the final endio yet, do it now */
 318	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321			 (unsigned long long) bio->bi_iter.bi_sector,
 322			 (unsigned long long) bio_end_sector(bio) - 1);
 323
 324		call_bio_endio(r1_bio);
 325	}
 326
 327	free_r1bio(r1_bio);
 328	/*
 329	 * Wake up any possible resync thread that waits for the device
 330	 * to go idle.  All I/Os, even write-behind writes, are done.
 331	 */
 332	allow_barrier(conf, sector);
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340	struct r1conf *conf = r1_bio->mddev->private;
 341
 342	conf->mirrors[disk].head_position =
 343		r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 351	int mirror;
 352	struct r1conf *conf = r1_bio->mddev->private;
 353	int raid_disks = conf->raid_disks;
 354
 355	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356		if (r1_bio->bios[mirror] == bio)
 357			break;
 358
 359	BUG_ON(mirror == raid_disks * 2);
 360	update_head_pos(mirror, r1_bio);
 361
 362	return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367	int uptodate = !bio->bi_status;
 368	struct r1bio *r1_bio = bio->bi_private;
 369	struct r1conf *conf = r1_bio->mddev->private;
 370	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 372	/*
 373	 * this branch is our 'one mirror IO has finished' event handler:
 374	 */
 375	update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377	if (uptodate)
 378		set_bit(R1BIO_Uptodate, &r1_bio->state);
 379	else if (test_bit(FailFast, &rdev->flags) &&
 380		 test_bit(R1BIO_FailFast, &r1_bio->state))
 381		/* This was a fail-fast read so we definitely
 382		 * want to retry */
 383		;
 384	else {
 385		/* If all other devices have failed, we want to return
 386		 * the error upwards rather than fail the last device.
 387		 * Here we redefine "uptodate" to mean "Don't want to retry"
 388		 */
 389		unsigned long flags;
 390		spin_lock_irqsave(&conf->device_lock, flags);
 391		if (r1_bio->mddev->degraded == conf->raid_disks ||
 392		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393		     test_bit(In_sync, &rdev->flags)))
 394			uptodate = 1;
 395		spin_unlock_irqrestore(&conf->device_lock, flags);
 396	}
 397
 398	if (uptodate) {
 399		raid_end_bio_io(r1_bio);
 400		rdev_dec_pending(rdev, conf->mddev);
 401	} else {
 402		/*
 403		 * oops, read error:
 404		 */
 405		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 
 406				   mdname(conf->mddev),
 407				   rdev->bdev,
 408				   (unsigned long long)r1_bio->sector);
 409		set_bit(R1BIO_ReadError, &r1_bio->state);
 410		reschedule_retry(r1_bio);
 411		/* don't drop the reference on read_disk yet */
 412	}
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417	/* it really is the end of this request */
 418	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419		bio_free_pages(r1_bio->behind_master_bio);
 420		bio_put(r1_bio->behind_master_bio);
 421		r1_bio->behind_master_bio = NULL;
 422	}
 423	/* clear the bitmap if all writes complete successfully */
 424	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425			   r1_bio->sectors,
 426			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 427			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 428	md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433	if (!atomic_dec_and_test(&r1_bio->remaining))
 434		return;
 435
 436	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437		reschedule_retry(r1_bio);
 438	else {
 439		close_write(r1_bio);
 440		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441			reschedule_retry(r1_bio);
 442		else
 443			raid_end_bio_io(r1_bio);
 444	}
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 449	struct r1bio *r1_bio = bio->bi_private;
 450	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451	struct r1conf *conf = r1_bio->mddev->private;
 452	struct bio *to_put = NULL;
 453	int mirror = find_bio_disk(r1_bio, bio);
 454	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455	bool discard_error;
 456	sector_t lo = r1_bio->sector;
 457	sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 460
 461	/*
 462	 * 'one mirror IO has finished' event handler:
 463	 */
 464	if (bio->bi_status && !discard_error) {
 465		set_bit(WriteErrorSeen,	&rdev->flags);
 466		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 467			set_bit(MD_RECOVERY_NEEDED, &
 468				conf->mddev->recovery);
 469
 470		if (test_bit(FailFast, &rdev->flags) &&
 471		    (bio->bi_opf & MD_FAILFAST) &&
 472		    /* We never try FailFast to WriteMostly devices */
 473		    !test_bit(WriteMostly, &rdev->flags)) {
 474			md_error(r1_bio->mddev, rdev);
 475		}
 476
 477		/*
 478		 * When the device is faulty, it is not necessary to
 479		 * handle write error.
 480		 */
 481		if (!test_bit(Faulty, &rdev->flags))
 
 
 
 
 
 482			set_bit(R1BIO_WriteError, &r1_bio->state);
 483		else {
 484			/* Fail the request */
 485			set_bit(R1BIO_Degraded, &r1_bio->state);
 486			/* Finished with this branch */
 487			r1_bio->bios[mirror] = NULL;
 488			to_put = bio;
 489		}
 490	} else {
 491		/*
 492		 * Set R1BIO_Uptodate in our master bio, so that we
 493		 * will return a good error code for to the higher
 494		 * levels even if IO on some other mirrored buffer
 495		 * fails.
 496		 *
 497		 * The 'master' represents the composite IO operation
 498		 * to user-side. So if something waits for IO, then it
 499		 * will wait for the 'master' bio.
 500		 */
 501		sector_t first_bad;
 502		int bad_sectors;
 503
 504		r1_bio->bios[mirror] = NULL;
 505		to_put = bio;
 506		/*
 507		 * Do not set R1BIO_Uptodate if the current device is
 508		 * rebuilding or Faulty. This is because we cannot use
 509		 * such device for properly reading the data back (we could
 510		 * potentially use it, if the current write would have felt
 511		 * before rdev->recovery_offset, but for simplicity we don't
 512		 * check this here.
 513		 */
 514		if (test_bit(In_sync, &rdev->flags) &&
 515		    !test_bit(Faulty, &rdev->flags))
 516			set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518		/* Maybe we can clear some bad blocks. */
 519		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520				&first_bad, &bad_sectors) && !discard_error) {
 521			r1_bio->bios[mirror] = IO_MADE_GOOD;
 522			set_bit(R1BIO_MadeGood, &r1_bio->state);
 523		}
 524	}
 525
 526	if (behind) {
 527		if (test_bit(CollisionCheck, &rdev->flags))
 528			remove_serial(rdev, lo, hi);
 529		if (test_bit(WriteMostly, &rdev->flags))
 530			atomic_dec(&r1_bio->behind_remaining);
 531
 532		/*
 533		 * In behind mode, we ACK the master bio once the I/O
 534		 * has safely reached all non-writemostly
 535		 * disks. Setting the Returned bit ensures that this
 536		 * gets done only once -- we don't ever want to return
 537		 * -EIO here, instead we'll wait
 538		 */
 539		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541			/* Maybe we can return now */
 542			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543				struct bio *mbio = r1_bio->master_bio;
 544				pr_debug("raid1: behind end write sectors"
 545					 " %llu-%llu\n",
 546					 (unsigned long long) mbio->bi_iter.bi_sector,
 547					 (unsigned long long) bio_end_sector(mbio) - 1);
 548				call_bio_endio(r1_bio);
 549			}
 550		}
 551	} else if (rdev->mddev->serialize_policy)
 552		remove_serial(rdev, lo, hi);
 553	if (r1_bio->bios[mirror] == NULL)
 554		rdev_dec_pending(rdev, conf->mddev);
 555
 556	/*
 557	 * Let's see if all mirrored write operations have finished
 558	 * already.
 559	 */
 560	r1_bio_write_done(r1_bio);
 561
 562	if (to_put)
 563		bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567					  sector_t sectors)
 568{
 569	sector_t len;
 570
 571	WARN_ON(sectors == 0);
 572	/*
 573	 * len is the number of sectors from start_sector to end of the
 574	 * barrier unit which start_sector belongs to.
 575	 */
 576	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577	      start_sector;
 578
 579	if (len > sectors)
 580		len = sectors;
 581
 582	return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601	const sector_t this_sector = r1_bio->sector;
 602	int sectors;
 603	int best_good_sectors;
 604	int best_disk, best_dist_disk, best_pending_disk;
 605	int has_nonrot_disk;
 606	int disk;
 607	sector_t best_dist;
 608	unsigned int min_pending;
 609	struct md_rdev *rdev;
 610	int choose_first;
 611	int choose_next_idle;
 612
 
 613	/*
 614	 * Check if we can balance. We can balance on the whole
 615	 * device if no resync is going on, or below the resync window.
 616	 * We take the first readable disk when above the resync window.
 617	 */
 618 retry:
 619	sectors = r1_bio->sectors;
 620	best_disk = -1;
 621	best_dist_disk = -1;
 622	best_dist = MaxSector;
 623	best_pending_disk = -1;
 624	min_pending = UINT_MAX;
 625	best_good_sectors = 0;
 626	has_nonrot_disk = 0;
 627	choose_next_idle = 0;
 628	clear_bit(R1BIO_FailFast, &r1_bio->state);
 629
 630	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 631	    (mddev_is_clustered(conf->mddev) &&
 632	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 633		    this_sector + sectors)))
 634		choose_first = 1;
 635	else
 636		choose_first = 0;
 637
 638	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 639		sector_t dist;
 640		sector_t first_bad;
 641		int bad_sectors;
 642		unsigned int pending;
 643		bool nonrot;
 644
 645		rdev = conf->mirrors[disk].rdev;
 646		if (r1_bio->bios[disk] == IO_BLOCKED
 647		    || rdev == NULL
 648		    || test_bit(Faulty, &rdev->flags))
 649			continue;
 650		if (!test_bit(In_sync, &rdev->flags) &&
 651		    rdev->recovery_offset < this_sector + sectors)
 652			continue;
 653		if (test_bit(WriteMostly, &rdev->flags)) {
 654			/* Don't balance among write-mostly, just
 655			 * use the first as a last resort */
 656			if (best_dist_disk < 0) {
 657				if (is_badblock(rdev, this_sector, sectors,
 658						&first_bad, &bad_sectors)) {
 659					if (first_bad <= this_sector)
 660						/* Cannot use this */
 661						continue;
 662					best_good_sectors = first_bad - this_sector;
 663				} else
 664					best_good_sectors = sectors;
 665				best_dist_disk = disk;
 666				best_pending_disk = disk;
 667			}
 668			continue;
 669		}
 670		/* This is a reasonable device to use.  It might
 671		 * even be best.
 672		 */
 673		if (is_badblock(rdev, this_sector, sectors,
 674				&first_bad, &bad_sectors)) {
 675			if (best_dist < MaxSector)
 676				/* already have a better device */
 677				continue;
 678			if (first_bad <= this_sector) {
 679				/* cannot read here. If this is the 'primary'
 680				 * device, then we must not read beyond
 681				 * bad_sectors from another device..
 682				 */
 683				bad_sectors -= (this_sector - first_bad);
 684				if (choose_first && sectors > bad_sectors)
 685					sectors = bad_sectors;
 686				if (best_good_sectors > sectors)
 687					best_good_sectors = sectors;
 688
 689			} else {
 690				sector_t good_sectors = first_bad - this_sector;
 691				if (good_sectors > best_good_sectors) {
 692					best_good_sectors = good_sectors;
 693					best_disk = disk;
 694				}
 695				if (choose_first)
 696					break;
 697			}
 698			continue;
 699		} else {
 700			if ((sectors > best_good_sectors) && (best_disk >= 0))
 701				best_disk = -1;
 702			best_good_sectors = sectors;
 703		}
 704
 705		if (best_disk >= 0)
 706			/* At least two disks to choose from so failfast is OK */
 707			set_bit(R1BIO_FailFast, &r1_bio->state);
 708
 709		nonrot = bdev_nonrot(rdev->bdev);
 710		has_nonrot_disk |= nonrot;
 711		pending = atomic_read(&rdev->nr_pending);
 712		dist = abs(this_sector - conf->mirrors[disk].head_position);
 713		if (choose_first) {
 714			best_disk = disk;
 715			break;
 716		}
 717		/* Don't change to another disk for sequential reads */
 718		if (conf->mirrors[disk].next_seq_sect == this_sector
 719		    || dist == 0) {
 720			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 721			struct raid1_info *mirror = &conf->mirrors[disk];
 722
 723			best_disk = disk;
 724			/*
 725			 * If buffered sequential IO size exceeds optimal
 726			 * iosize, check if there is idle disk. If yes, choose
 727			 * the idle disk. read_balance could already choose an
 728			 * idle disk before noticing it's a sequential IO in
 729			 * this disk. This doesn't matter because this disk
 730			 * will idle, next time it will be utilized after the
 731			 * first disk has IO size exceeds optimal iosize. In
 732			 * this way, iosize of the first disk will be optimal
 733			 * iosize at least. iosize of the second disk might be
 734			 * small, but not a big deal since when the second disk
 735			 * starts IO, the first disk is likely still busy.
 736			 */
 737			if (nonrot && opt_iosize > 0 &&
 738			    mirror->seq_start != MaxSector &&
 739			    mirror->next_seq_sect > opt_iosize &&
 740			    mirror->next_seq_sect - opt_iosize >=
 741			    mirror->seq_start) {
 742				choose_next_idle = 1;
 743				continue;
 744			}
 745			break;
 746		}
 747
 748		if (choose_next_idle)
 749			continue;
 750
 751		if (min_pending > pending) {
 752			min_pending = pending;
 753			best_pending_disk = disk;
 754		}
 755
 756		if (dist < best_dist) {
 757			best_dist = dist;
 758			best_dist_disk = disk;
 759		}
 760	}
 761
 762	/*
 763	 * If all disks are rotational, choose the closest disk. If any disk is
 764	 * non-rotational, choose the disk with less pending request even the
 765	 * disk is rotational, which might/might not be optimal for raids with
 766	 * mixed ratation/non-rotational disks depending on workload.
 767	 */
 768	if (best_disk == -1) {
 769		if (has_nonrot_disk || min_pending == 0)
 770			best_disk = best_pending_disk;
 771		else
 772			best_disk = best_dist_disk;
 773	}
 774
 775	if (best_disk >= 0) {
 776		rdev = conf->mirrors[best_disk].rdev;
 777		if (!rdev)
 778			goto retry;
 779		atomic_inc(&rdev->nr_pending);
 780		sectors = best_good_sectors;
 781
 782		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 783			conf->mirrors[best_disk].seq_start = this_sector;
 784
 785		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 786	}
 
 787	*max_sectors = sectors;
 788
 789	return best_disk;
 790}
 791
 792static void wake_up_barrier(struct r1conf *conf)
 793{
 794	if (wq_has_sleeper(&conf->wait_barrier))
 795		wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796}
 797
 798static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 799{
 800	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 801	raid1_prepare_flush_writes(conf->mddev->bitmap);
 802	wake_up_barrier(conf);
 803
 804	while (bio) { /* submit pending writes */
 805		struct bio *next = bio->bi_next;
 806
 807		raid1_submit_write(bio);
 
 
 
 
 
 
 
 
 
 808		bio = next;
 809		cond_resched();
 810	}
 811}
 812
 813static void flush_pending_writes(struct r1conf *conf)
 814{
 815	/* Any writes that have been queued but are awaiting
 816	 * bitmap updates get flushed here.
 817	 */
 818	spin_lock_irq(&conf->device_lock);
 819
 820	if (conf->pending_bio_list.head) {
 821		struct blk_plug plug;
 822		struct bio *bio;
 823
 824		bio = bio_list_get(&conf->pending_bio_list);
 
 825		spin_unlock_irq(&conf->device_lock);
 826
 827		/*
 828		 * As this is called in a wait_event() loop (see freeze_array),
 829		 * current->state might be TASK_UNINTERRUPTIBLE which will
 830		 * cause a warning when we prepare to wait again.  As it is
 831		 * rare that this path is taken, it is perfectly safe to force
 832		 * us to go around the wait_event() loop again, so the warning
 833		 * is a false-positive.  Silence the warning by resetting
 834		 * thread state
 835		 */
 836		__set_current_state(TASK_RUNNING);
 837		blk_start_plug(&plug);
 838		flush_bio_list(conf, bio);
 839		blk_finish_plug(&plug);
 840	} else
 841		spin_unlock_irq(&conf->device_lock);
 842}
 843
 844/* Barriers....
 845 * Sometimes we need to suspend IO while we do something else,
 846 * either some resync/recovery, or reconfigure the array.
 847 * To do this we raise a 'barrier'.
 848 * The 'barrier' is a counter that can be raised multiple times
 849 * to count how many activities are happening which preclude
 850 * normal IO.
 851 * We can only raise the barrier if there is no pending IO.
 852 * i.e. if nr_pending == 0.
 853 * We choose only to raise the barrier if no-one is waiting for the
 854 * barrier to go down.  This means that as soon as an IO request
 855 * is ready, no other operations which require a barrier will start
 856 * until the IO request has had a chance.
 857 *
 858 * So: regular IO calls 'wait_barrier'.  When that returns there
 859 *    is no backgroup IO happening,  It must arrange to call
 860 *    allow_barrier when it has finished its IO.
 861 * backgroup IO calls must call raise_barrier.  Once that returns
 862 *    there is no normal IO happeing.  It must arrange to call
 863 *    lower_barrier when the particular background IO completes.
 864 *
 865 * If resync/recovery is interrupted, returns -EINTR;
 866 * Otherwise, returns 0.
 867 */
 868static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 869{
 870	int idx = sector_to_idx(sector_nr);
 871
 872	spin_lock_irq(&conf->resync_lock);
 873
 874	/* Wait until no block IO is waiting */
 875	wait_event_lock_irq(conf->wait_barrier,
 876			    !atomic_read(&conf->nr_waiting[idx]),
 877			    conf->resync_lock);
 878
 879	/* block any new IO from starting */
 880	atomic_inc(&conf->barrier[idx]);
 881	/*
 882	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 883	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 884	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 885	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 886	 * be fetched before conf->barrier[idx] is increased. Otherwise
 887	 * there will be a race between raise_barrier() and _wait_barrier().
 888	 */
 889	smp_mb__after_atomic();
 890
 891	/* For these conditions we must wait:
 892	 * A: while the array is in frozen state
 893	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 894	 *    existing in corresponding I/O barrier bucket.
 895	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 896	 *    max resync count which allowed on current I/O barrier bucket.
 897	 */
 898	wait_event_lock_irq(conf->wait_barrier,
 899			    (!conf->array_frozen &&
 900			     !atomic_read(&conf->nr_pending[idx]) &&
 901			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 902				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 903			    conf->resync_lock);
 904
 905	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 906		atomic_dec(&conf->barrier[idx]);
 907		spin_unlock_irq(&conf->resync_lock);
 908		wake_up(&conf->wait_barrier);
 909		return -EINTR;
 910	}
 911
 912	atomic_inc(&conf->nr_sync_pending);
 913	spin_unlock_irq(&conf->resync_lock);
 914
 915	return 0;
 916}
 917
 918static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 919{
 920	int idx = sector_to_idx(sector_nr);
 921
 922	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 923
 924	atomic_dec(&conf->barrier[idx]);
 925	atomic_dec(&conf->nr_sync_pending);
 926	wake_up(&conf->wait_barrier);
 927}
 928
 929static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 930{
 931	bool ret = true;
 932
 933	/*
 934	 * We need to increase conf->nr_pending[idx] very early here,
 935	 * then raise_barrier() can be blocked when it waits for
 936	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 937	 * conf->resync_lock when there is no barrier raised in same
 938	 * barrier unit bucket. Also if the array is frozen, I/O
 939	 * should be blocked until array is unfrozen.
 940	 */
 941	atomic_inc(&conf->nr_pending[idx]);
 942	/*
 943	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 944	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 945	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 946	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 947	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 948	 * will be a race between _wait_barrier() and raise_barrier().
 949	 */
 950	smp_mb__after_atomic();
 951
 952	/*
 953	 * Don't worry about checking two atomic_t variables at same time
 954	 * here. If during we check conf->barrier[idx], the array is
 955	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 956	 * 0, it is safe to return and make the I/O continue. Because the
 957	 * array is frozen, all I/O returned here will eventually complete
 958	 * or be queued, no race will happen. See code comment in
 959	 * frozen_array().
 960	 */
 961	if (!READ_ONCE(conf->array_frozen) &&
 962	    !atomic_read(&conf->barrier[idx]))
 963		return ret;
 964
 965	/*
 966	 * After holding conf->resync_lock, conf->nr_pending[idx]
 967	 * should be decreased before waiting for barrier to drop.
 968	 * Otherwise, we may encounter a race condition because
 969	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 970	 * to be 0 at same time.
 971	 */
 972	spin_lock_irq(&conf->resync_lock);
 973	atomic_inc(&conf->nr_waiting[idx]);
 974	atomic_dec(&conf->nr_pending[idx]);
 975	/*
 976	 * In case freeze_array() is waiting for
 977	 * get_unqueued_pending() == extra
 978	 */
 979	wake_up_barrier(conf);
 980	/* Wait for the barrier in same barrier unit bucket to drop. */
 981
 982	/* Return false when nowait flag is set */
 983	if (nowait) {
 984		ret = false;
 985	} else {
 986		wait_event_lock_irq(conf->wait_barrier,
 987				!conf->array_frozen &&
 988				!atomic_read(&conf->barrier[idx]),
 989				conf->resync_lock);
 990		atomic_inc(&conf->nr_pending[idx]);
 991	}
 992
 993	atomic_dec(&conf->nr_waiting[idx]);
 994	spin_unlock_irq(&conf->resync_lock);
 995	return ret;
 996}
 997
 998static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 999{
1000	int idx = sector_to_idx(sector_nr);
1001	bool ret = true;
1002
1003	/*
1004	 * Very similar to _wait_barrier(). The difference is, for read
1005	 * I/O we don't need wait for sync I/O, but if the whole array
1006	 * is frozen, the read I/O still has to wait until the array is
1007	 * unfrozen. Since there is no ordering requirement with
1008	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1009	 */
1010	atomic_inc(&conf->nr_pending[idx]);
1011
1012	if (!READ_ONCE(conf->array_frozen))
1013		return ret;
1014
1015	spin_lock_irq(&conf->resync_lock);
1016	atomic_inc(&conf->nr_waiting[idx]);
1017	atomic_dec(&conf->nr_pending[idx]);
1018	/*
1019	 * In case freeze_array() is waiting for
1020	 * get_unqueued_pending() == extra
1021	 */
1022	wake_up_barrier(conf);
1023	/* Wait for array to be unfrozen */
1024
1025	/* Return false when nowait flag is set */
1026	if (nowait) {
1027		/* Return false when nowait flag is set */
1028		ret = false;
1029	} else {
1030		wait_event_lock_irq(conf->wait_barrier,
1031				!conf->array_frozen,
1032				conf->resync_lock);
1033		atomic_inc(&conf->nr_pending[idx]);
1034	}
1035
1036	atomic_dec(&conf->nr_waiting[idx]);
1037	spin_unlock_irq(&conf->resync_lock);
1038	return ret;
1039}
1040
1041static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1042{
1043	int idx = sector_to_idx(sector_nr);
1044
1045	return _wait_barrier(conf, idx, nowait);
1046}
1047
1048static void _allow_barrier(struct r1conf *conf, int idx)
1049{
1050	atomic_dec(&conf->nr_pending[idx]);
1051	wake_up_barrier(conf);
1052}
1053
1054static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1055{
1056	int idx = sector_to_idx(sector_nr);
1057
1058	_allow_barrier(conf, idx);
1059}
1060
1061/* conf->resync_lock should be held */
1062static int get_unqueued_pending(struct r1conf *conf)
1063{
1064	int idx, ret;
1065
1066	ret = atomic_read(&conf->nr_sync_pending);
1067	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1068		ret += atomic_read(&conf->nr_pending[idx]) -
1069			atomic_read(&conf->nr_queued[idx]);
1070
1071	return ret;
1072}
1073
1074static void freeze_array(struct r1conf *conf, int extra)
1075{
1076	/* Stop sync I/O and normal I/O and wait for everything to
1077	 * go quiet.
1078	 * This is called in two situations:
1079	 * 1) management command handlers (reshape, remove disk, quiesce).
1080	 * 2) one normal I/O request failed.
1081
1082	 * After array_frozen is set to 1, new sync IO will be blocked at
1083	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1084	 * or wait_read_barrier(). The flying I/Os will either complete or be
1085	 * queued. When everything goes quite, there are only queued I/Os left.
1086
1087	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1088	 * barrier bucket index which this I/O request hits. When all sync and
1089	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1090	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1091	 * in handle_read_error(), we may call freeze_array() before trying to
1092	 * fix the read error. In this case, the error read I/O is not queued,
1093	 * so get_unqueued_pending() == 1.
1094	 *
1095	 * Therefore before this function returns, we need to wait until
1096	 * get_unqueued_pendings(conf) gets equal to extra. For
1097	 * normal I/O context, extra is 1, in rested situations extra is 0.
1098	 */
1099	spin_lock_irq(&conf->resync_lock);
1100	conf->array_frozen = 1;
1101	raid1_log(conf->mddev, "wait freeze");
1102	wait_event_lock_irq_cmd(
1103		conf->wait_barrier,
1104		get_unqueued_pending(conf) == extra,
1105		conf->resync_lock,
1106		flush_pending_writes(conf));
1107	spin_unlock_irq(&conf->resync_lock);
1108}
1109static void unfreeze_array(struct r1conf *conf)
1110{
1111	/* reverse the effect of the freeze */
1112	spin_lock_irq(&conf->resync_lock);
1113	conf->array_frozen = 0;
1114	spin_unlock_irq(&conf->resync_lock);
1115	wake_up(&conf->wait_barrier);
1116}
1117
1118static void alloc_behind_master_bio(struct r1bio *r1_bio,
1119					   struct bio *bio)
1120{
1121	int size = bio->bi_iter.bi_size;
1122	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123	int i = 0;
1124	struct bio *behind_bio = NULL;
1125
1126	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1127				      &r1_bio->mddev->bio_set);
 
1128
1129	/* discard op, we don't support writezero/writesame yet */
1130	if (!bio_has_data(bio)) {
1131		behind_bio->bi_iter.bi_size = size;
1132		goto skip_copy;
1133	}
1134
 
 
1135	while (i < vcnt && size) {
1136		struct page *page;
1137		int len = min_t(int, PAGE_SIZE, size);
1138
1139		page = alloc_page(GFP_NOIO);
1140		if (unlikely(!page))
1141			goto free_pages;
1142
1143		if (!bio_add_page(behind_bio, page, len, 0)) {
1144			put_page(page);
1145			goto free_pages;
1146		}
1147
1148		size -= len;
1149		i++;
1150	}
1151
1152	bio_copy_data(behind_bio, bio);
1153skip_copy:
1154	r1_bio->behind_master_bio = behind_bio;
1155	set_bit(R1BIO_BehindIO, &r1_bio->state);
1156
1157	return;
1158
1159free_pages:
1160	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1161		 bio->bi_iter.bi_size);
1162	bio_free_pages(behind_bio);
1163	bio_put(behind_bio);
1164}
1165
 
 
 
 
 
 
1166static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1167{
1168	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1169						  cb);
1170	struct mddev *mddev = plug->cb.data;
1171	struct r1conf *conf = mddev->private;
1172	struct bio *bio;
1173
1174	if (from_schedule) {
1175		spin_lock_irq(&conf->device_lock);
1176		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 
1177		spin_unlock_irq(&conf->device_lock);
1178		wake_up_barrier(conf);
1179		md_wakeup_thread(mddev->thread);
1180		kfree(plug);
1181		return;
1182	}
1183
1184	/* we aren't scheduling, so we can do the write-out directly. */
1185	bio = bio_list_get(&plug->pending);
1186	flush_bio_list(conf, bio);
1187	kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192	r1_bio->master_bio = bio;
1193	r1_bio->sectors = bio_sectors(bio);
1194	r1_bio->state = 0;
1195	r1_bio->mddev = mddev;
1196	r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202	struct r1conf *conf = mddev->private;
1203	struct r1bio *r1_bio;
1204
1205	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206	/* Ensure no bio records IO_BLOCKED */
1207	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208	init_r1bio(r1_bio, mddev, bio);
1209	return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213			       int max_read_sectors, struct r1bio *r1_bio)
1214{
1215	struct r1conf *conf = mddev->private;
1216	struct raid1_info *mirror;
1217	struct bio *read_bio;
1218	struct bitmap *bitmap = mddev->bitmap;
1219	const enum req_op op = bio_op(bio);
1220	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1221	int max_sectors;
1222	int rdisk;
1223	bool r1bio_existed = !!r1_bio;
1224	char b[BDEVNAME_SIZE];
1225
1226	/*
1227	 * If r1_bio is set, we are blocking the raid1d thread
1228	 * so there is a tiny risk of deadlock.  So ask for
1229	 * emergency memory if needed.
1230	 */
1231	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233	if (r1bio_existed) {
1234		/* Need to get the block device name carefully */
1235		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1236
 
1237		if (rdev)
1238			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1239		else
1240			strcpy(b, "???");
 
1241	}
1242
1243	/*
1244	 * Still need barrier for READ in case that whole
1245	 * array is frozen.
1246	 */
1247	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248				bio->bi_opf & REQ_NOWAIT)) {
1249		bio_wouldblock_error(bio);
1250		return;
1251	}
1252
1253	if (!r1_bio)
1254		r1_bio = alloc_r1bio(mddev, bio);
1255	else
1256		init_r1bio(r1_bio, mddev, bio);
1257	r1_bio->sectors = max_read_sectors;
1258
1259	/*
1260	 * make_request() can abort the operation when read-ahead is being
1261	 * used and no empty request is available.
1262	 */
1263	rdisk = read_balance(conf, r1_bio, &max_sectors);
1264
1265	if (rdisk < 0) {
1266		/* couldn't find anywhere to read from */
1267		if (r1bio_existed) {
1268			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269					    mdname(mddev),
1270					    b,
1271					    (unsigned long long)r1_bio->sector);
1272		}
1273		raid_end_bio_io(r1_bio);
1274		return;
1275	}
1276	mirror = conf->mirrors + rdisk;
1277
1278	if (r1bio_existed)
1279		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1280				    mdname(mddev),
1281				    (unsigned long long)r1_bio->sector,
1282				    mirror->rdev->bdev);
1283
1284	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1285	    bitmap) {
1286		/*
1287		 * Reading from a write-mostly device must take care not to
1288		 * over-take any writes that are 'behind'
1289		 */
1290		raid1_log(mddev, "wait behind writes");
1291		wait_event(bitmap->behind_wait,
1292			   atomic_read(&bitmap->behind_writes) == 0);
1293	}
1294
1295	if (max_sectors < bio_sectors(bio)) {
1296		struct bio *split = bio_split(bio, max_sectors,
1297					      gfp, &conf->bio_split);
1298		bio_chain(split, bio);
1299		submit_bio_noacct(bio);
1300		bio = split;
1301		r1_bio->master_bio = bio;
1302		r1_bio->sectors = max_sectors;
1303	}
1304
1305	r1_bio->read_disk = rdisk;
1306	if (!r1bio_existed) {
1307		md_account_bio(mddev, &bio);
1308		r1_bio->master_bio = bio;
1309	}
1310	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1311				   &mddev->bio_set);
1312
1313	r1_bio->bios[rdisk] = read_bio;
1314
1315	read_bio->bi_iter.bi_sector = r1_bio->sector +
1316		mirror->rdev->data_offset;
 
1317	read_bio->bi_end_io = raid1_end_read_request;
1318	read_bio->bi_opf = op | do_sync;
1319	if (test_bit(FailFast, &mirror->rdev->flags) &&
1320	    test_bit(R1BIO_FailFast, &r1_bio->state))
1321	        read_bio->bi_opf |= MD_FAILFAST;
1322	read_bio->bi_private = r1_bio;
1323
1324	if (mddev->gendisk)
1325	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1326				      r1_bio->sector);
1327
1328	submit_bio_noacct(read_bio);
1329}
1330
1331static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332				int max_write_sectors)
1333{
1334	struct r1conf *conf = mddev->private;
1335	struct r1bio *r1_bio;
1336	int i, disks;
1337	struct bitmap *bitmap = mddev->bitmap;
1338	unsigned long flags;
1339	struct md_rdev *blocked_rdev;
 
 
1340	int first_clone;
1341	int max_sectors;
1342	bool write_behind = false;
1343	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1344
1345	if (mddev_is_clustered(mddev) &&
1346	     md_cluster_ops->area_resyncing(mddev, WRITE,
1347		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1348
1349		DEFINE_WAIT(w);
1350		if (bio->bi_opf & REQ_NOWAIT) {
1351			bio_wouldblock_error(bio);
1352			return;
1353		}
1354		for (;;) {
1355			prepare_to_wait(&conf->wait_barrier,
1356					&w, TASK_IDLE);
1357			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1358							bio->bi_iter.bi_sector,
1359							bio_end_sector(bio)))
1360				break;
1361			schedule();
1362		}
1363		finish_wait(&conf->wait_barrier, &w);
1364	}
1365
1366	/*
1367	 * Register the new request and wait if the reconstruction
1368	 * thread has put up a bar for new requests.
1369	 * Continue immediately if no resync is active currently.
1370	 */
1371	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1372				bio->bi_opf & REQ_NOWAIT)) {
1373		bio_wouldblock_error(bio);
1374		return;
1375	}
1376
1377 retry_write:
1378	r1_bio = alloc_r1bio(mddev, bio);
1379	r1_bio->sectors = max_write_sectors;
1380
 
 
 
 
 
 
1381	/* first select target devices under rcu_lock and
1382	 * inc refcount on their rdev.  Record them by setting
1383	 * bios[x] to bio
1384	 * If there are known/acknowledged bad blocks on any device on
1385	 * which we have seen a write error, we want to avoid writing those
1386	 * blocks.
1387	 * This potentially requires several writes to write around
1388	 * the bad blocks.  Each set of writes gets it's own r1bio
1389	 * with a set of bios attached.
1390	 */
1391
1392	disks = conf->raid_disks * 2;
 
1393	blocked_rdev = NULL;
 
1394	max_sectors = r1_bio->sectors;
1395	for (i = 0;  i < disks; i++) {
1396		struct md_rdev *rdev = conf->mirrors[i].rdev;
1397
1398		/*
1399		 * The write-behind io is only attempted on drives marked as
1400		 * write-mostly, which means we could allocate write behind
1401		 * bio later.
1402		 */
1403		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1404			write_behind = true;
1405
1406		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407			atomic_inc(&rdev->nr_pending);
1408			blocked_rdev = rdev;
1409			break;
1410		}
1411		r1_bio->bios[i] = NULL;
1412		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1413			if (i < conf->raid_disks)
1414				set_bit(R1BIO_Degraded, &r1_bio->state);
1415			continue;
1416		}
1417
1418		atomic_inc(&rdev->nr_pending);
1419		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1420			sector_t first_bad;
1421			int bad_sectors;
1422			int is_bad;
1423
1424			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1425					     &first_bad, &bad_sectors);
1426			if (is_bad < 0) {
1427				/* mustn't write here until the bad block is
1428				 * acknowledged*/
1429				set_bit(BlockedBadBlocks, &rdev->flags);
1430				blocked_rdev = rdev;
1431				break;
1432			}
1433			if (is_bad && first_bad <= r1_bio->sector) {
1434				/* Cannot write here at all */
1435				bad_sectors -= (r1_bio->sector - first_bad);
1436				if (bad_sectors < max_sectors)
1437					/* mustn't write more than bad_sectors
1438					 * to other devices yet
1439					 */
1440					max_sectors = bad_sectors;
1441				rdev_dec_pending(rdev, mddev);
1442				/* We don't set R1BIO_Degraded as that
1443				 * only applies if the disk is
1444				 * missing, so it might be re-added,
1445				 * and we want to know to recover this
1446				 * chunk.
1447				 * In this case the device is here,
1448				 * and the fact that this chunk is not
1449				 * in-sync is recorded in the bad
1450				 * block log
1451				 */
1452				continue;
1453			}
1454			if (is_bad) {
1455				int good_sectors = first_bad - r1_bio->sector;
1456				if (good_sectors < max_sectors)
1457					max_sectors = good_sectors;
1458			}
1459		}
1460		r1_bio->bios[i] = bio;
1461	}
 
1462
1463	if (unlikely(blocked_rdev)) {
1464		/* Wait for this device to become unblocked */
1465		int j;
1466
1467		for (j = 0; j < i; j++)
1468			if (r1_bio->bios[j])
1469				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1470		free_r1bio(r1_bio);
1471		allow_barrier(conf, bio->bi_iter.bi_sector);
1472
1473		if (bio->bi_opf & REQ_NOWAIT) {
1474			bio_wouldblock_error(bio);
1475			return;
1476		}
1477		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1480		goto retry_write;
1481	}
1482
1483	/*
1484	 * When using a bitmap, we may call alloc_behind_master_bio below.
1485	 * alloc_behind_master_bio allocates a copy of the data payload a page
1486	 * at a time and thus needs a new bio that can fit the whole payload
1487	 * this bio in page sized chunks.
1488	 */
1489	if (write_behind && bitmap)
1490		max_sectors = min_t(int, max_sectors,
1491				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1492	if (max_sectors < bio_sectors(bio)) {
1493		struct bio *split = bio_split(bio, max_sectors,
1494					      GFP_NOIO, &conf->bio_split);
1495		bio_chain(split, bio);
1496		submit_bio_noacct(bio);
1497		bio = split;
1498		r1_bio->master_bio = bio;
1499		r1_bio->sectors = max_sectors;
1500	}
1501
1502	md_account_bio(mddev, &bio);
1503	r1_bio->master_bio = bio;
1504	atomic_set(&r1_bio->remaining, 1);
1505	atomic_set(&r1_bio->behind_remaining, 0);
1506
1507	first_clone = 1;
1508
1509	for (i = 0; i < disks; i++) {
1510		struct bio *mbio = NULL;
1511		struct md_rdev *rdev = conf->mirrors[i].rdev;
1512		if (!r1_bio->bios[i])
1513			continue;
1514
 
1515		if (first_clone) {
1516			/* do behind I/O ?
1517			 * Not if there are too many, or cannot
1518			 * allocate memory, or a reader on WriteMostly
1519			 * is waiting for behind writes to flush */
1520			if (bitmap && write_behind &&
1521			    (atomic_read(&bitmap->behind_writes)
1522			     < mddev->bitmap_info.max_write_behind) &&
1523			    !waitqueue_active(&bitmap->behind_wait)) {
1524				alloc_behind_master_bio(r1_bio, bio);
1525			}
1526
1527			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1528					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 
 
1529			first_clone = 0;
1530		}
1531
 
 
 
 
 
 
1532		if (r1_bio->behind_master_bio) {
1533			mbio = bio_alloc_clone(rdev->bdev,
1534					       r1_bio->behind_master_bio,
1535					       GFP_NOIO, &mddev->bio_set);
1536			if (test_bit(CollisionCheck, &rdev->flags))
1537				wait_for_serialization(rdev, r1_bio);
1538			if (test_bit(WriteMostly, &rdev->flags))
1539				atomic_inc(&r1_bio->behind_remaining);
1540		} else {
1541			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1542					       &mddev->bio_set);
1543
1544			if (mddev->serialize_policy)
1545				wait_for_serialization(rdev, r1_bio);
1546		}
1547
1548		r1_bio->bios[i] = mbio;
1549
1550		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 
 
1551		mbio->bi_end_io	= raid1_end_write_request;
1552		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1553		if (test_bit(FailFast, &rdev->flags) &&
1554		    !test_bit(WriteMostly, &rdev->flags) &&
1555		    conf->raid_disks - mddev->degraded > 1)
1556			mbio->bi_opf |= MD_FAILFAST;
1557		mbio->bi_private = r1_bio;
1558
1559		atomic_inc(&r1_bio->remaining);
1560
1561		if (mddev->gendisk)
1562			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
 
1563					      r1_bio->sector);
1564		/* flush_pending_writes() needs access to the rdev so...*/
1565		mbio->bi_bdev = (void *)rdev;
1566		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
 
 
 
 
 
 
 
 
 
1567			spin_lock_irqsave(&conf->device_lock, flags);
1568			bio_list_add(&conf->pending_bio_list, mbio);
 
1569			spin_unlock_irqrestore(&conf->device_lock, flags);
1570			md_wakeup_thread(mddev->thread);
1571		}
1572	}
1573
1574	r1_bio_write_done(r1_bio);
1575
1576	/* In case raid1d snuck in to freeze_array */
1577	wake_up_barrier(conf);
1578}
1579
1580static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1581{
1582	sector_t sectors;
1583
1584	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1585	    && md_flush_request(mddev, bio))
1586		return true;
 
1587
1588	/*
1589	 * There is a limit to the maximum size, but
1590	 * the read/write handler might find a lower limit
1591	 * due to bad blocks.  To avoid multiple splits,
1592	 * we pass the maximum number of sectors down
1593	 * and let the lower level perform the split.
1594	 */
1595	sectors = align_to_barrier_unit_end(
1596		bio->bi_iter.bi_sector, bio_sectors(bio));
1597
1598	if (bio_data_dir(bio) == READ)
1599		raid1_read_request(mddev, bio, sectors, NULL);
1600	else {
1601		if (!md_write_start(mddev,bio))
1602			return false;
1603		raid1_write_request(mddev, bio, sectors);
1604	}
1605	return true;
1606}
1607
1608static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609{
1610	struct r1conf *conf = mddev->private;
1611	int i;
1612
1613	lockdep_assert_held(&mddev->lock);
1614
1615	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616		   conf->raid_disks - mddev->degraded);
 
1617	for (i = 0; i < conf->raid_disks; i++) {
1618		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1619
1620		seq_printf(seq, "%s",
1621			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1622	}
 
1623	seq_printf(seq, "]");
1624}
1625
1626/**
1627 * raid1_error() - RAID1 error handler.
1628 * @mddev: affected md device.
1629 * @rdev: member device to fail.
1630 *
1631 * The routine acknowledges &rdev failure and determines new @mddev state.
1632 * If it failed, then:
1633 *	- &MD_BROKEN flag is set in &mddev->flags.
1634 *	- recovery is disabled.
1635 * Otherwise, it must be degraded:
1636 *	- recovery is interrupted.
1637 *	- &mddev->degraded is bumped.
1638 *
1639 * @rdev is marked as &Faulty excluding case when array is failed and
1640 * &mddev->fail_last_dev is off.
1641 */
1642static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1643{
 
1644	struct r1conf *conf = mddev->private;
1645	unsigned long flags;
1646
 
 
 
 
 
 
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648
1649	if (test_bit(In_sync, &rdev->flags) &&
1650	    (conf->raid_disks - mddev->degraded) == 1) {
1651		set_bit(MD_BROKEN, &mddev->flags);
1652
1653		if (!mddev->fail_last_dev) {
1654			conf->recovery_disabled = mddev->recovery_disabled;
1655			spin_unlock_irqrestore(&conf->device_lock, flags);
1656			return;
1657		}
 
1658	}
1659	set_bit(Blocked, &rdev->flags);
1660	if (test_and_clear_bit(In_sync, &rdev->flags))
1661		mddev->degraded++;
1662	set_bit(Faulty, &rdev->flags);
 
 
1663	spin_unlock_irqrestore(&conf->device_lock, flags);
1664	/*
1665	 * if recovery is running, make sure it aborts.
1666	 */
1667	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1668	set_mask_bits(&mddev->sb_flags, 0,
1669		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1671		"md/raid1:%s: Operation continuing on %d devices.\n",
1672		mdname(mddev), rdev->bdev,
1673		mdname(mddev), conf->raid_disks - mddev->degraded);
1674}
1675
1676static void print_conf(struct r1conf *conf)
1677{
1678	int i;
1679
1680	pr_debug("RAID1 conf printout:\n");
1681	if (!conf) {
1682		pr_debug("(!conf)\n");
1683		return;
1684	}
1685	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1686		 conf->raid_disks);
1687
1688	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1689	for (i = 0; i < conf->raid_disks; i++) {
1690		struct md_rdev *rdev = conf->mirrors[i].rdev;
 
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 rdev->bdev);
1696	}
 
1697}
1698
1699static void close_sync(struct r1conf *conf)
1700{
1701	int idx;
1702
1703	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1704		_wait_barrier(conf, idx, false);
1705		_allow_barrier(conf, idx);
1706	}
1707
1708	mempool_exit(&conf->r1buf_pool);
 
1709}
1710
1711static int raid1_spare_active(struct mddev *mddev)
1712{
1713	int i;
1714	struct r1conf *conf = mddev->private;
1715	int count = 0;
1716	unsigned long flags;
1717
1718	/*
1719	 * Find all failed disks within the RAID1 configuration
1720	 * and mark them readable.
1721	 * Called under mddev lock, so rcu protection not needed.
1722	 * device_lock used to avoid races with raid1_end_read_request
1723	 * which expects 'In_sync' flags and ->degraded to be consistent.
1724	 */
1725	spin_lock_irqsave(&conf->device_lock, flags);
1726	for (i = 0; i < conf->raid_disks; i++) {
1727		struct md_rdev *rdev = conf->mirrors[i].rdev;
1728		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1729		if (repl
1730		    && !test_bit(Candidate, &repl->flags)
1731		    && repl->recovery_offset == MaxSector
1732		    && !test_bit(Faulty, &repl->flags)
1733		    && !test_and_set_bit(In_sync, &repl->flags)) {
1734			/* replacement has just become active */
1735			if (!rdev ||
1736			    !test_and_clear_bit(In_sync, &rdev->flags))
1737				count++;
1738			if (rdev) {
1739				/* Replaced device not technically
1740				 * faulty, but we need to be sure
1741				 * it gets removed and never re-added
1742				 */
1743				set_bit(Faulty, &rdev->flags);
1744				sysfs_notify_dirent_safe(
1745					rdev->sysfs_state);
1746			}
1747		}
1748		if (rdev
1749		    && rdev->recovery_offset == MaxSector
1750		    && !test_bit(Faulty, &rdev->flags)
1751		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1752			count++;
1753			sysfs_notify_dirent_safe(rdev->sysfs_state);
1754		}
1755	}
1756	mddev->degraded -= count;
1757	spin_unlock_irqrestore(&conf->device_lock, flags);
1758
1759	print_conf(conf);
1760	return count;
1761}
1762
1763static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1764{
1765	struct r1conf *conf = mddev->private;
1766	int err = -EEXIST;
1767	int mirror = 0, repl_slot = -1;
1768	struct raid1_info *p;
1769	int first = 0;
1770	int last = conf->raid_disks - 1;
1771
1772	if (mddev->recovery_disabled == conf->recovery_disabled)
1773		return -EBUSY;
1774
1775	if (md_integrity_add_rdev(rdev, mddev))
1776		return -ENXIO;
1777
1778	if (rdev->raid_disk >= 0)
1779		first = last = rdev->raid_disk;
1780
1781	/*
1782	 * find the disk ... but prefer rdev->saved_raid_disk
1783	 * if possible.
1784	 */
1785	if (rdev->saved_raid_disk >= 0 &&
1786	    rdev->saved_raid_disk >= first &&
1787	    rdev->saved_raid_disk < conf->raid_disks &&
1788	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1789		first = last = rdev->saved_raid_disk;
1790
1791	for (mirror = first; mirror <= last; mirror++) {
1792		p = conf->mirrors + mirror;
1793		if (!p->rdev) {
 
1794			if (mddev->gendisk)
1795				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796						  rdev->data_offset << 9);
1797
1798			p->head_position = 0;
1799			rdev->raid_disk = mirror;
1800			err = 0;
1801			/* As all devices are equivalent, we don't need a full recovery
1802			 * if this was recently any drive of the array
1803			 */
1804			if (rdev->saved_raid_disk < 0)
1805				conf->fullsync = 1;
1806			WRITE_ONCE(p->rdev, rdev);
1807			break;
1808		}
1809		if (test_bit(WantReplacement, &p->rdev->flags) &&
1810		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1811			repl_slot = mirror;
1812	}
1813
1814	if (err && repl_slot >= 0) {
1815		/* Add this device as a replacement */
1816		p = conf->mirrors + repl_slot;
1817		clear_bit(In_sync, &rdev->flags);
1818		set_bit(Replacement, &rdev->flags);
1819		rdev->raid_disk = repl_slot;
1820		err = 0;
1821		conf->fullsync = 1;
1822		WRITE_ONCE(p[conf->raid_disks].rdev, rdev);
1823	}
1824
 
1825	print_conf(conf);
1826	return err;
1827}
1828
1829static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830{
1831	struct r1conf *conf = mddev->private;
1832	int err = 0;
1833	int number = rdev->raid_disk;
1834	struct raid1_info *p = conf->mirrors + number;
1835
1836	if (unlikely(number >= conf->raid_disks))
1837		goto abort;
1838
1839	if (rdev != p->rdev)
1840		p = conf->mirrors + conf->raid_disks + number;
1841
1842	print_conf(conf);
1843	if (rdev == p->rdev) {
1844		if (test_bit(In_sync, &rdev->flags) ||
1845		    atomic_read(&rdev->nr_pending)) {
1846			err = -EBUSY;
1847			goto abort;
1848		}
1849		/* Only remove non-faulty devices if recovery
1850		 * is not possible.
1851		 */
1852		if (!test_bit(Faulty, &rdev->flags) &&
1853		    mddev->recovery_disabled != conf->recovery_disabled &&
1854		    mddev->degraded < conf->raid_disks) {
1855			err = -EBUSY;
1856			goto abort;
1857		}
1858		WRITE_ONCE(p->rdev, NULL);
 
 
 
 
 
 
 
 
 
1859		if (conf->mirrors[conf->raid_disks + number].rdev) {
1860			/* We just removed a device that is being replaced.
1861			 * Move down the replacement.  We drain all IO before
1862			 * doing this to avoid confusion.
1863			 */
1864			struct md_rdev *repl =
1865				conf->mirrors[conf->raid_disks + number].rdev;
1866			freeze_array(conf, 0);
1867			if (atomic_read(&repl->nr_pending)) {
1868				/* It means that some queued IO of retry_list
1869				 * hold repl. Thus, we cannot set replacement
1870				 * as NULL, avoiding rdev NULL pointer
1871				 * dereference in sync_request_write and
1872				 * handle_write_finished.
1873				 */
1874				err = -EBUSY;
1875				unfreeze_array(conf);
1876				goto abort;
1877			}
1878			clear_bit(Replacement, &repl->flags);
1879			WRITE_ONCE(p->rdev, repl);
1880			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1881			unfreeze_array(conf);
1882		}
1883
1884		clear_bit(WantReplacement, &rdev->flags);
1885		err = md_integrity_register(mddev);
1886	}
1887abort:
1888
1889	print_conf(conf);
1890	return err;
1891}
1892
1893static void end_sync_read(struct bio *bio)
1894{
1895	struct r1bio *r1_bio = get_resync_r1bio(bio);
1896
1897	update_head_pos(r1_bio->read_disk, r1_bio);
1898
1899	/*
1900	 * we have read a block, now it needs to be re-written,
1901	 * or re-read if the read failed.
1902	 * We don't do much here, just schedule handling by raid1d
1903	 */
1904	if (!bio->bi_status)
1905		set_bit(R1BIO_Uptodate, &r1_bio->state);
1906
1907	if (atomic_dec_and_test(&r1_bio->remaining))
1908		reschedule_retry(r1_bio);
1909}
1910
1911static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1912{
1913	sector_t sync_blocks = 0;
1914	sector_t s = r1_bio->sector;
1915	long sectors_to_go = r1_bio->sectors;
1916
1917	/* make sure these bits don't get cleared. */
1918	do {
1919		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1920		s += sync_blocks;
1921		sectors_to_go -= sync_blocks;
1922	} while (sectors_to_go > 0);
1923}
1924
1925static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1926{
1927	if (atomic_dec_and_test(&r1_bio->remaining)) {
1928		struct mddev *mddev = r1_bio->mddev;
1929		int s = r1_bio->sectors;
1930
1931		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1932		    test_bit(R1BIO_WriteError, &r1_bio->state))
1933			reschedule_retry(r1_bio);
1934		else {
1935			put_buf(r1_bio);
1936			md_done_sync(mddev, s, uptodate);
1937		}
1938	}
1939}
1940
1941static void end_sync_write(struct bio *bio)
1942{
1943	int uptodate = !bio->bi_status;
1944	struct r1bio *r1_bio = get_resync_r1bio(bio);
1945	struct mddev *mddev = r1_bio->mddev;
1946	struct r1conf *conf = mddev->private;
1947	sector_t first_bad;
1948	int bad_sectors;
1949	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1950
1951	if (!uptodate) {
1952		abort_sync_write(mddev, r1_bio);
 
 
 
 
 
 
 
 
 
1953		set_bit(WriteErrorSeen, &rdev->flags);
1954		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1955			set_bit(MD_RECOVERY_NEEDED, &
1956				mddev->recovery);
1957		set_bit(R1BIO_WriteError, &r1_bio->state);
1958	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1959			       &first_bad, &bad_sectors) &&
1960		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1961				r1_bio->sector,
1962				r1_bio->sectors,
1963				&first_bad, &bad_sectors)
1964		)
1965		set_bit(R1BIO_MadeGood, &r1_bio->state);
1966
1967	put_sync_write_buf(r1_bio, uptodate);
 
 
 
 
 
 
 
 
 
1968}
1969
1970static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1971			   int sectors, struct page *page, blk_opf_t rw)
1972{
1973	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1974		/* success */
1975		return 1;
1976	if (rw == REQ_OP_WRITE) {
1977		set_bit(WriteErrorSeen, &rdev->flags);
1978		if (!test_and_set_bit(WantReplacement,
1979				      &rdev->flags))
1980			set_bit(MD_RECOVERY_NEEDED, &
1981				rdev->mddev->recovery);
1982	}
1983	/* need to record an error - either for the block or the device */
1984	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1985		md_error(rdev->mddev, rdev);
1986	return 0;
1987}
1988
1989static int fix_sync_read_error(struct r1bio *r1_bio)
1990{
1991	/* Try some synchronous reads of other devices to get
1992	 * good data, much like with normal read errors.  Only
1993	 * read into the pages we already have so we don't
1994	 * need to re-issue the read request.
1995	 * We don't need to freeze the array, because being in an
1996	 * active sync request, there is no normal IO, and
1997	 * no overlapping syncs.
1998	 * We don't need to check is_badblock() again as we
1999	 * made sure that anything with a bad block in range
2000	 * will have bi_end_io clear.
2001	 */
2002	struct mddev *mddev = r1_bio->mddev;
2003	struct r1conf *conf = mddev->private;
2004	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2005	struct page **pages = get_resync_pages(bio)->pages;
2006	sector_t sect = r1_bio->sector;
2007	int sectors = r1_bio->sectors;
2008	int idx = 0;
2009	struct md_rdev *rdev;
2010
2011	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2012	if (test_bit(FailFast, &rdev->flags)) {
2013		/* Don't try recovering from here - just fail it
2014		 * ... unless it is the last working device of course */
2015		md_error(mddev, rdev);
2016		if (test_bit(Faulty, &rdev->flags))
2017			/* Don't try to read from here, but make sure
2018			 * put_buf does it's thing
2019			 */
2020			bio->bi_end_io = end_sync_write;
2021	}
2022
2023	while(sectors) {
2024		int s = sectors;
2025		int d = r1_bio->read_disk;
2026		int success = 0;
2027		int start;
2028
2029		if (s > (PAGE_SIZE>>9))
2030			s = PAGE_SIZE >> 9;
2031		do {
2032			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2033				/* No rcu protection needed here devices
2034				 * can only be removed when no resync is
2035				 * active, and resync is currently active
2036				 */
2037				rdev = conf->mirrors[d].rdev;
2038				if (sync_page_io(rdev, sect, s<<9,
2039						 pages[idx],
2040						 REQ_OP_READ, false)) {
2041					success = 1;
2042					break;
2043				}
2044			}
2045			d++;
2046			if (d == conf->raid_disks * 2)
2047				d = 0;
2048		} while (!success && d != r1_bio->read_disk);
2049
2050		if (!success) {
 
2051			int abort = 0;
2052			/* Cannot read from anywhere, this block is lost.
2053			 * Record a bad block on each device.  If that doesn't
2054			 * work just disable and interrupt the recovery.
2055			 * Don't fail devices as that won't really help.
2056			 */
2057			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2058					    mdname(mddev), bio->bi_bdev,
2059					    (unsigned long long)r1_bio->sector);
2060			for (d = 0; d < conf->raid_disks * 2; d++) {
2061				rdev = conf->mirrors[d].rdev;
2062				if (!rdev || test_bit(Faulty, &rdev->flags))
2063					continue;
2064				if (!rdev_set_badblocks(rdev, sect, s, 0))
2065					abort = 1;
2066			}
2067			if (abort) {
2068				conf->recovery_disabled =
2069					mddev->recovery_disabled;
2070				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2071				md_done_sync(mddev, r1_bio->sectors, 0);
2072				put_buf(r1_bio);
2073				return 0;
2074			}
2075			/* Try next page */
2076			sectors -= s;
2077			sect += s;
2078			idx++;
2079			continue;
2080		}
2081
2082		start = d;
2083		/* write it back and re-read */
2084		while (d != r1_bio->read_disk) {
2085			if (d == 0)
2086				d = conf->raid_disks * 2;
2087			d--;
2088			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089				continue;
2090			rdev = conf->mirrors[d].rdev;
2091			if (r1_sync_page_io(rdev, sect, s,
2092					    pages[idx],
2093					    REQ_OP_WRITE) == 0) {
2094				r1_bio->bios[d]->bi_end_io = NULL;
2095				rdev_dec_pending(rdev, mddev);
2096			}
2097		}
2098		d = start;
2099		while (d != r1_bio->read_disk) {
2100			if (d == 0)
2101				d = conf->raid_disks * 2;
2102			d--;
2103			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104				continue;
2105			rdev = conf->mirrors[d].rdev;
2106			if (r1_sync_page_io(rdev, sect, s,
2107					    pages[idx],
2108					    REQ_OP_READ) != 0)
2109				atomic_add(s, &rdev->corrected_errors);
2110		}
2111		sectors -= s;
2112		sect += s;
2113		idx ++;
2114	}
2115	set_bit(R1BIO_Uptodate, &r1_bio->state);
2116	bio->bi_status = 0;
2117	return 1;
2118}
2119
2120static void process_checks(struct r1bio *r1_bio)
2121{
2122	/* We have read all readable devices.  If we haven't
2123	 * got the block, then there is no hope left.
2124	 * If we have, then we want to do a comparison
2125	 * and skip the write if everything is the same.
2126	 * If any blocks failed to read, then we need to
2127	 * attempt an over-write
2128	 */
2129	struct mddev *mddev = r1_bio->mddev;
2130	struct r1conf *conf = mddev->private;
2131	int primary;
2132	int i;
2133	int vcnt;
2134
2135	/* Fix variable parts of all bios */
2136	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2137	for (i = 0; i < conf->raid_disks * 2; i++) {
2138		blk_status_t status;
2139		struct bio *b = r1_bio->bios[i];
2140		struct resync_pages *rp = get_resync_pages(b);
2141		if (b->bi_end_io != end_sync_read)
2142			continue;
2143		/* fixup the bio for reuse, but preserve errno */
2144		status = b->bi_status;
2145		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2146		b->bi_status = status;
2147		b->bi_iter.bi_sector = r1_bio->sector +
2148			conf->mirrors[i].rdev->data_offset;
 
2149		b->bi_end_io = end_sync_read;
2150		rp->raid_bio = r1_bio;
2151		b->bi_private = rp;
2152
2153		/* initialize bvec table again */
2154		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2155	}
2156	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2157		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2158		    !r1_bio->bios[primary]->bi_status) {
2159			r1_bio->bios[primary]->bi_end_io = NULL;
2160			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2161			break;
2162		}
2163	r1_bio->read_disk = primary;
2164	for (i = 0; i < conf->raid_disks * 2; i++) {
2165		int j = 0;
2166		struct bio *pbio = r1_bio->bios[primary];
2167		struct bio *sbio = r1_bio->bios[i];
2168		blk_status_t status = sbio->bi_status;
2169		struct page **ppages = get_resync_pages(pbio)->pages;
2170		struct page **spages = get_resync_pages(sbio)->pages;
2171		struct bio_vec *bi;
2172		int page_len[RESYNC_PAGES] = { 0 };
2173		struct bvec_iter_all iter_all;
2174
2175		if (sbio->bi_end_io != end_sync_read)
2176			continue;
2177		/* Now we can 'fixup' the error value */
2178		sbio->bi_status = 0;
2179
2180		bio_for_each_segment_all(bi, sbio, iter_all)
2181			page_len[j++] = bi->bv_len;
2182
2183		if (!status) {
2184			for (j = vcnt; j-- ; ) {
2185				if (memcmp(page_address(ppages[j]),
2186					   page_address(spages[j]),
2187					   page_len[j]))
2188					break;
2189			}
2190		} else
2191			j = 0;
2192		if (j >= 0)
2193			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2194		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2195			      && !status)) {
2196			/* No need to write to this device. */
2197			sbio->bi_end_io = NULL;
2198			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2199			continue;
2200		}
2201
2202		bio_copy_data(sbio, pbio);
2203	}
2204}
2205
2206static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2207{
2208	struct r1conf *conf = mddev->private;
2209	int i;
2210	int disks = conf->raid_disks * 2;
2211	struct bio *wbio;
2212
2213	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2214		/* ouch - failed to read all of that. */
2215		if (!fix_sync_read_error(r1_bio))
2216			return;
2217
2218	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2219		process_checks(r1_bio);
2220
2221	/*
2222	 * schedule writes
2223	 */
2224	atomic_set(&r1_bio->remaining, 1);
2225	for (i = 0; i < disks ; i++) {
2226		wbio = r1_bio->bios[i];
2227		if (wbio->bi_end_io == NULL ||
2228		    (wbio->bi_end_io == end_sync_read &&
2229		     (i == r1_bio->read_disk ||
2230		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2231			continue;
2232		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2233			abort_sync_write(mddev, r1_bio);
2234			continue;
2235		}
2236
2237		wbio->bi_opf = REQ_OP_WRITE;
2238		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2239			wbio->bi_opf |= MD_FAILFAST;
2240
2241		wbio->bi_end_io = end_sync_write;
2242		atomic_inc(&r1_bio->remaining);
2243		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2244
2245		submit_bio_noacct(wbio);
2246	}
2247
2248	put_sync_write_buf(r1_bio, 1);
 
 
 
 
 
 
 
 
 
 
2249}
2250
2251/*
2252 * This is a kernel thread which:
2253 *
2254 *	1.	Retries failed read operations on working mirrors.
2255 *	2.	Updates the raid superblock when problems encounter.
2256 *	3.	Performs writes following reads for array synchronising.
2257 */
2258
2259static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 
2260{
2261	sector_t sect = r1_bio->sector;
2262	int sectors = r1_bio->sectors;
2263	int read_disk = r1_bio->read_disk;
2264	struct mddev *mddev = conf->mddev;
2265	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2266
2267	if (exceed_read_errors(mddev, rdev)) {
2268		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2269		return;
2270	}
2271
2272	while(sectors) {
2273		int s = sectors;
2274		int d = read_disk;
2275		int success = 0;
2276		int start;
 
2277
2278		if (s > (PAGE_SIZE>>9))
2279			s = PAGE_SIZE >> 9;
2280
2281		do {
2282			sector_t first_bad;
2283			int bad_sectors;
2284
2285			rdev = conf->mirrors[d].rdev;
 
2286			if (rdev &&
2287			    (test_bit(In_sync, &rdev->flags) ||
2288			     (!test_bit(Faulty, &rdev->flags) &&
2289			      rdev->recovery_offset >= sect + s)) &&
2290			    is_badblock(rdev, sect, s,
2291					&first_bad, &bad_sectors) == 0) {
2292				atomic_inc(&rdev->nr_pending);
 
2293				if (sync_page_io(rdev, sect, s<<9,
2294					 conf->tmppage, REQ_OP_READ, false))
2295					success = 1;
2296				rdev_dec_pending(rdev, mddev);
2297				if (success)
2298					break;
2299			}
2300
2301			d++;
2302			if (d == conf->raid_disks * 2)
2303				d = 0;
2304		} while (d != read_disk);
2305
2306		if (!success) {
2307			/* Cannot read from anywhere - mark it bad */
2308			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2309			if (!rdev_set_badblocks(rdev, sect, s, 0))
2310				md_error(mddev, rdev);
2311			break;
2312		}
2313		/* write it back and re-read */
2314		start = d;
2315		while (d != read_disk) {
2316			if (d==0)
2317				d = conf->raid_disks * 2;
2318			d--;
2319			rdev = conf->mirrors[d].rdev;
 
2320			if (rdev &&
2321			    !test_bit(Faulty, &rdev->flags)) {
2322				atomic_inc(&rdev->nr_pending);
 
2323				r1_sync_page_io(rdev, sect, s,
2324						conf->tmppage, REQ_OP_WRITE);
2325				rdev_dec_pending(rdev, mddev);
2326			}
 
2327		}
2328		d = start;
2329		while (d != read_disk) {
 
2330			if (d==0)
2331				d = conf->raid_disks * 2;
2332			d--;
2333			rdev = conf->mirrors[d].rdev;
 
2334			if (rdev &&
2335			    !test_bit(Faulty, &rdev->flags)) {
2336				atomic_inc(&rdev->nr_pending);
 
2337				if (r1_sync_page_io(rdev, sect, s,
2338						conf->tmppage, REQ_OP_READ)) {
2339					atomic_add(s, &rdev->corrected_errors);
2340					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2341						mdname(mddev), s,
2342						(unsigned long long)(sect +
2343								     rdev->data_offset),
2344						rdev->bdev);
2345				}
2346				rdev_dec_pending(rdev, mddev);
2347			}
 
2348		}
2349		sectors -= s;
2350		sect += s;
2351	}
2352}
2353
2354static int narrow_write_error(struct r1bio *r1_bio, int i)
2355{
2356	struct mddev *mddev = r1_bio->mddev;
2357	struct r1conf *conf = mddev->private;
2358	struct md_rdev *rdev = conf->mirrors[i].rdev;
2359
2360	/* bio has the data to be written to device 'i' where
2361	 * we just recently had a write error.
2362	 * We repeatedly clone the bio and trim down to one block,
2363	 * then try the write.  Where the write fails we record
2364	 * a bad block.
2365	 * It is conceivable that the bio doesn't exactly align with
2366	 * blocks.  We must handle this somehow.
2367	 *
2368	 * We currently own a reference on the rdev.
2369	 */
2370
2371	int block_sectors;
2372	sector_t sector;
2373	int sectors;
2374	int sect_to_write = r1_bio->sectors;
2375	int ok = 1;
2376
2377	if (rdev->badblocks.shift < 0)
2378		return 0;
2379
2380	block_sectors = roundup(1 << rdev->badblocks.shift,
2381				bdev_logical_block_size(rdev->bdev) >> 9);
2382	sector = r1_bio->sector;
2383	sectors = ((sector + block_sectors)
2384		   & ~(sector_t)(block_sectors - 1))
2385		- sector;
2386
2387	while (sect_to_write) {
2388		struct bio *wbio;
2389		if (sectors > sect_to_write)
2390			sectors = sect_to_write;
2391		/* Write at 'sector' for 'sectors'*/
2392
2393		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394			wbio = bio_alloc_clone(rdev->bdev,
2395					       r1_bio->behind_master_bio,
2396					       GFP_NOIO, &mddev->bio_set);
2397		} else {
2398			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2399					       GFP_NOIO, &mddev->bio_set);
2400		}
2401
2402		wbio->bi_opf = REQ_OP_WRITE;
2403		wbio->bi_iter.bi_sector = r1_bio->sector;
2404		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2405
2406		bio_trim(wbio, sector - r1_bio->sector, sectors);
2407		wbio->bi_iter.bi_sector += rdev->data_offset;
 
2408
2409		if (submit_bio_wait(wbio) < 0)
2410			/* failure! */
2411			ok = rdev_set_badblocks(rdev, sector,
2412						sectors, 0)
2413				&& ok;
2414
2415		bio_put(wbio);
2416		sect_to_write -= sectors;
2417		sector += sectors;
2418		sectors = block_sectors;
2419	}
2420	return ok;
2421}
2422
2423static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2424{
2425	int m;
2426	int s = r1_bio->sectors;
2427	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2428		struct md_rdev *rdev = conf->mirrors[m].rdev;
2429		struct bio *bio = r1_bio->bios[m];
2430		if (bio->bi_end_io == NULL)
2431			continue;
2432		if (!bio->bi_status &&
2433		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2434			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2435		}
2436		if (bio->bi_status &&
2437		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2438			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2439				md_error(conf->mddev, rdev);
2440		}
2441	}
2442	put_buf(r1_bio);
2443	md_done_sync(conf->mddev, s, 1);
2444}
2445
2446static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447{
2448	int m, idx;
2449	bool fail = false;
2450
2451	for (m = 0; m < conf->raid_disks * 2 ; m++)
2452		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2453			struct md_rdev *rdev = conf->mirrors[m].rdev;
2454			rdev_clear_badblocks(rdev,
2455					     r1_bio->sector,
2456					     r1_bio->sectors, 0);
2457			rdev_dec_pending(rdev, conf->mddev);
2458		} else if (r1_bio->bios[m] != NULL) {
2459			/* This drive got a write error.  We need to
2460			 * narrow down and record precise write
2461			 * errors.
2462			 */
2463			fail = true;
2464			if (!narrow_write_error(r1_bio, m)) {
2465				md_error(conf->mddev,
2466					 conf->mirrors[m].rdev);
2467				/* an I/O failed, we can't clear the bitmap */
2468				set_bit(R1BIO_Degraded, &r1_bio->state);
2469			}
2470			rdev_dec_pending(conf->mirrors[m].rdev,
2471					 conf->mddev);
2472		}
2473	if (fail) {
2474		spin_lock_irq(&conf->device_lock);
2475		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2476		idx = sector_to_idx(r1_bio->sector);
2477		atomic_inc(&conf->nr_queued[idx]);
2478		spin_unlock_irq(&conf->device_lock);
2479		/*
2480		 * In case freeze_array() is waiting for condition
2481		 * get_unqueued_pending() == extra to be true.
2482		 */
2483		wake_up(&conf->wait_barrier);
2484		md_wakeup_thread(conf->mddev->thread);
2485	} else {
2486		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487			close_write(r1_bio);
2488		raid_end_bio_io(r1_bio);
2489	}
2490}
2491
2492static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2493{
2494	struct mddev *mddev = conf->mddev;
2495	struct bio *bio;
2496	struct md_rdev *rdev;
2497	sector_t sector;
2498
2499	clear_bit(R1BIO_ReadError, &r1_bio->state);
2500	/* we got a read error. Maybe the drive is bad.  Maybe just
2501	 * the block and we can fix it.
2502	 * We freeze all other IO, and try reading the block from
2503	 * other devices.  When we find one, we re-write
2504	 * and check it that fixes the read error.
2505	 * This is all done synchronously while the array is
2506	 * frozen
2507	 */
2508
2509	bio = r1_bio->bios[r1_bio->read_disk];
 
2510	bio_put(bio);
2511	r1_bio->bios[r1_bio->read_disk] = NULL;
2512
2513	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2514	if (mddev->ro == 0
2515	    && !test_bit(FailFast, &rdev->flags)) {
2516		freeze_array(conf, 1);
2517		fix_read_error(conf, r1_bio);
 
2518		unfreeze_array(conf);
2519	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2520		md_error(mddev, rdev);
2521	} else {
2522		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2523	}
2524
2525	rdev_dec_pending(rdev, conf->mddev);
2526	sector = r1_bio->sector;
2527	bio = r1_bio->master_bio;
2528
2529	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2530	r1_bio->state = 0;
2531	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2532	allow_barrier(conf, sector);
2533}
2534
2535static void raid1d(struct md_thread *thread)
2536{
2537	struct mddev *mddev = thread->mddev;
2538	struct r1bio *r1_bio;
2539	unsigned long flags;
2540	struct r1conf *conf = mddev->private;
2541	struct list_head *head = &conf->retry_list;
2542	struct blk_plug plug;
2543	int idx;
2544
2545	md_check_recovery(mddev);
2546
2547	if (!list_empty_careful(&conf->bio_end_io_list) &&
2548	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2549		LIST_HEAD(tmp);
2550		spin_lock_irqsave(&conf->device_lock, flags);
2551		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2552			list_splice_init(&conf->bio_end_io_list, &tmp);
2553		spin_unlock_irqrestore(&conf->device_lock, flags);
2554		while (!list_empty(&tmp)) {
2555			r1_bio = list_first_entry(&tmp, struct r1bio,
2556						  retry_list);
2557			list_del(&r1_bio->retry_list);
2558			idx = sector_to_idx(r1_bio->sector);
2559			atomic_dec(&conf->nr_queued[idx]);
2560			if (mddev->degraded)
2561				set_bit(R1BIO_Degraded, &r1_bio->state);
2562			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2563				close_write(r1_bio);
2564			raid_end_bio_io(r1_bio);
2565		}
2566	}
2567
2568	blk_start_plug(&plug);
2569	for (;;) {
2570
2571		flush_pending_writes(conf);
2572
2573		spin_lock_irqsave(&conf->device_lock, flags);
2574		if (list_empty(head)) {
2575			spin_unlock_irqrestore(&conf->device_lock, flags);
2576			break;
2577		}
2578		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2579		list_del(head->prev);
2580		idx = sector_to_idx(r1_bio->sector);
2581		atomic_dec(&conf->nr_queued[idx]);
2582		spin_unlock_irqrestore(&conf->device_lock, flags);
2583
2584		mddev = r1_bio->mddev;
2585		conf = mddev->private;
2586		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2587			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588			    test_bit(R1BIO_WriteError, &r1_bio->state))
2589				handle_sync_write_finished(conf, r1_bio);
2590			else
2591				sync_request_write(mddev, r1_bio);
2592		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2593			   test_bit(R1BIO_WriteError, &r1_bio->state))
2594			handle_write_finished(conf, r1_bio);
2595		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2596			handle_read_error(conf, r1_bio);
2597		else
2598			WARN_ON_ONCE(1);
2599
2600		cond_resched();
2601		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2602			md_check_recovery(mddev);
2603	}
2604	blk_finish_plug(&plug);
2605}
2606
2607static int init_resync(struct r1conf *conf)
2608{
2609	int buffs;
2610
2611	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2612	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2613
2614	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2615			    r1buf_pool_free, conf->poolinfo);
 
 
2616}
2617
2618static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2619{
2620	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2621	struct resync_pages *rps;
2622	struct bio *bio;
2623	int i;
2624
2625	for (i = conf->poolinfo->raid_disks; i--; ) {
2626		bio = r1bio->bios[i];
2627		rps = bio->bi_private;
2628		bio_reset(bio, NULL, 0);
2629		bio->bi_private = rps;
2630	}
2631	r1bio->master_bio = NULL;
2632	return r1bio;
2633}
2634
2635/*
2636 * perform a "sync" on one "block"
2637 *
2638 * We need to make sure that no normal I/O request - particularly write
2639 * requests - conflict with active sync requests.
2640 *
2641 * This is achieved by tracking pending requests and a 'barrier' concept
2642 * that can be installed to exclude normal IO requests.
2643 */
2644
2645static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2646				   int *skipped)
2647{
2648	struct r1conf *conf = mddev->private;
2649	struct r1bio *r1_bio;
2650	struct bio *bio;
2651	sector_t max_sector, nr_sectors;
2652	int disk = -1;
2653	int i;
2654	int wonly = -1;
2655	int write_targets = 0, read_targets = 0;
2656	sector_t sync_blocks;
2657	int still_degraded = 0;
2658	int good_sectors = RESYNC_SECTORS;
2659	int min_bad = 0; /* number of sectors that are bad in all devices */
2660	int idx = sector_to_idx(sector_nr);
2661	int page_idx = 0;
2662
2663	if (!mempool_initialized(&conf->r1buf_pool))
2664		if (init_resync(conf))
2665			return 0;
2666
2667	max_sector = mddev->dev_sectors;
2668	if (sector_nr >= max_sector) {
2669		/* If we aborted, we need to abort the
2670		 * sync on the 'current' bitmap chunk (there will
2671		 * only be one in raid1 resync.
2672		 * We can find the current addess in mddev->curr_resync
2673		 */
2674		if (mddev->curr_resync < max_sector) /* aborted */
2675			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2676					   &sync_blocks, 1);
2677		else /* completed sync */
2678			conf->fullsync = 0;
2679
2680		md_bitmap_close_sync(mddev->bitmap);
2681		close_sync(conf);
2682
2683		if (mddev_is_clustered(mddev)) {
2684			conf->cluster_sync_low = 0;
2685			conf->cluster_sync_high = 0;
2686		}
2687		return 0;
2688	}
2689
2690	if (mddev->bitmap == NULL &&
2691	    mddev->recovery_cp == MaxSector &&
2692	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2693	    conf->fullsync == 0) {
2694		*skipped = 1;
2695		return max_sector - sector_nr;
2696	}
2697	/* before building a request, check if we can skip these blocks..
2698	 * This call the bitmap_start_sync doesn't actually record anything
2699	 */
2700	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2701	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2702		/* We can skip this block, and probably several more */
2703		*skipped = 1;
2704		return sync_blocks;
2705	}
2706
2707	/*
2708	 * If there is non-resync activity waiting for a turn, then let it
2709	 * though before starting on this new sync request.
2710	 */
2711	if (atomic_read(&conf->nr_waiting[idx]))
2712		schedule_timeout_uninterruptible(1);
2713
2714	/* we are incrementing sector_nr below. To be safe, we check against
2715	 * sector_nr + two times RESYNC_SECTORS
2716	 */
2717
2718	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2719		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2720
2721
2722	if (raise_barrier(conf, sector_nr))
2723		return 0;
2724
2725	r1_bio = raid1_alloc_init_r1buf(conf);
2726
 
2727	/*
2728	 * If we get a correctably read error during resync or recovery,
2729	 * we might want to read from a different device.  So we
2730	 * flag all drives that could conceivably be read from for READ,
2731	 * and any others (which will be non-In_sync devices) for WRITE.
2732	 * If a read fails, we try reading from something else for which READ
2733	 * is OK.
2734	 */
2735
2736	r1_bio->mddev = mddev;
2737	r1_bio->sector = sector_nr;
2738	r1_bio->state = 0;
2739	set_bit(R1BIO_IsSync, &r1_bio->state);
2740	/* make sure good_sectors won't go across barrier unit boundary */
2741	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2742
2743	for (i = 0; i < conf->raid_disks * 2; i++) {
2744		struct md_rdev *rdev;
2745		bio = r1_bio->bios[i];
2746
2747		rdev = conf->mirrors[i].rdev;
2748		if (rdev == NULL ||
2749		    test_bit(Faulty, &rdev->flags)) {
2750			if (i < conf->raid_disks)
2751				still_degraded = 1;
2752		} else if (!test_bit(In_sync, &rdev->flags)) {
2753			bio->bi_opf = REQ_OP_WRITE;
2754			bio->bi_end_io = end_sync_write;
2755			write_targets ++;
2756		} else {
2757			/* may need to read from here */
2758			sector_t first_bad = MaxSector;
2759			int bad_sectors;
2760
2761			if (is_badblock(rdev, sector_nr, good_sectors,
2762					&first_bad, &bad_sectors)) {
2763				if (first_bad > sector_nr)
2764					good_sectors = first_bad - sector_nr;
2765				else {
2766					bad_sectors -= (sector_nr - first_bad);
2767					if (min_bad == 0 ||
2768					    min_bad > bad_sectors)
2769						min_bad = bad_sectors;
2770				}
2771			}
2772			if (sector_nr < first_bad) {
2773				if (test_bit(WriteMostly, &rdev->flags)) {
2774					if (wonly < 0)
2775						wonly = i;
2776				} else {
2777					if (disk < 0)
2778						disk = i;
2779				}
2780				bio->bi_opf = REQ_OP_READ;
2781				bio->bi_end_io = end_sync_read;
2782				read_targets++;
2783			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2784				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2785				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2786				/*
2787				 * The device is suitable for reading (InSync),
2788				 * but has bad block(s) here. Let's try to correct them,
2789				 * if we are doing resync or repair. Otherwise, leave
2790				 * this device alone for this sync request.
2791				 */
2792				bio->bi_opf = REQ_OP_WRITE;
2793				bio->bi_end_io = end_sync_write;
2794				write_targets++;
2795			}
2796		}
2797		if (rdev && bio->bi_end_io) {
2798			atomic_inc(&rdev->nr_pending);
2799			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2800			bio_set_dev(bio, rdev->bdev);
2801			if (test_bit(FailFast, &rdev->flags))
2802				bio->bi_opf |= MD_FAILFAST;
2803		}
2804	}
 
2805	if (disk < 0)
2806		disk = wonly;
2807	r1_bio->read_disk = disk;
2808
2809	if (read_targets == 0 && min_bad > 0) {
2810		/* These sectors are bad on all InSync devices, so we
2811		 * need to mark them bad on all write targets
2812		 */
2813		int ok = 1;
2814		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816				struct md_rdev *rdev = conf->mirrors[i].rdev;
2817				ok = rdev_set_badblocks(rdev, sector_nr,
2818							min_bad, 0
2819					) && ok;
2820			}
2821		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2822		*skipped = 1;
2823		put_buf(r1_bio);
2824
2825		if (!ok) {
2826			/* Cannot record the badblocks, so need to
2827			 * abort the resync.
2828			 * If there are multiple read targets, could just
2829			 * fail the really bad ones ???
2830			 */
2831			conf->recovery_disabled = mddev->recovery_disabled;
2832			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2833			return 0;
2834		} else
2835			return min_bad;
2836
2837	}
2838	if (min_bad > 0 && min_bad < good_sectors) {
2839		/* only resync enough to reach the next bad->good
2840		 * transition */
2841		good_sectors = min_bad;
2842	}
2843
2844	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845		/* extra read targets are also write targets */
2846		write_targets += read_targets-1;
2847
2848	if (write_targets == 0 || read_targets == 0) {
2849		/* There is nowhere to write, so all non-sync
2850		 * drives must be failed - so we are finished
2851		 */
2852		sector_t rv;
2853		if (min_bad > 0)
2854			max_sector = sector_nr + min_bad;
2855		rv = max_sector - sector_nr;
2856		*skipped = 1;
2857		put_buf(r1_bio);
2858		return rv;
2859	}
2860
2861	if (max_sector > mddev->resync_max)
2862		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863	if (max_sector > sector_nr + good_sectors)
2864		max_sector = sector_nr + good_sectors;
2865	nr_sectors = 0;
2866	sync_blocks = 0;
2867	do {
2868		struct page *page;
2869		int len = PAGE_SIZE;
2870		if (sector_nr + (len>>9) > max_sector)
2871			len = (max_sector - sector_nr) << 9;
2872		if (len == 0)
2873			break;
2874		if (sync_blocks == 0) {
2875			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876						  &sync_blocks, still_degraded) &&
2877			    !conf->fullsync &&
2878			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2879				break;
2880			if ((len >> 9) > sync_blocks)
2881				len = sync_blocks<<9;
2882		}
2883
2884		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885			struct resync_pages *rp;
2886
2887			bio = r1_bio->bios[i];
2888			rp = get_resync_pages(bio);
2889			if (bio->bi_end_io) {
2890				page = resync_fetch_page(rp, page_idx);
2891
2892				/*
2893				 * won't fail because the vec table is big
2894				 * enough to hold all these pages
2895				 */
2896				__bio_add_page(bio, page, len, 0);
2897			}
2898		}
2899		nr_sectors += len>>9;
2900		sector_nr += len>>9;
2901		sync_blocks -= (len>>9);
2902	} while (++page_idx < RESYNC_PAGES);
2903
2904	r1_bio->sectors = nr_sectors;
2905
2906	if (mddev_is_clustered(mddev) &&
2907			conf->cluster_sync_high < sector_nr + nr_sectors) {
2908		conf->cluster_sync_low = mddev->curr_resync_completed;
2909		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910		/* Send resync message */
2911		md_cluster_ops->resync_info_update(mddev,
2912				conf->cluster_sync_low,
2913				conf->cluster_sync_high);
2914	}
2915
2916	/* For a user-requested sync, we read all readable devices and do a
2917	 * compare
2918	 */
2919	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920		atomic_set(&r1_bio->remaining, read_targets);
2921		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922			bio = r1_bio->bios[i];
2923			if (bio->bi_end_io == end_sync_read) {
2924				read_targets--;
2925				md_sync_acct_bio(bio, nr_sectors);
2926				if (read_targets == 1)
2927					bio->bi_opf &= ~MD_FAILFAST;
2928				submit_bio_noacct(bio);
2929			}
2930		}
2931	} else {
2932		atomic_set(&r1_bio->remaining, 1);
2933		bio = r1_bio->bios[r1_bio->read_disk];
2934		md_sync_acct_bio(bio, nr_sectors);
2935		if (read_targets == 1)
2936			bio->bi_opf &= ~MD_FAILFAST;
2937		submit_bio_noacct(bio);
 
2938	}
2939	return nr_sectors;
2940}
2941
2942static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2943{
2944	if (sectors)
2945		return sectors;
2946
2947	return mddev->dev_sectors;
2948}
2949
2950static struct r1conf *setup_conf(struct mddev *mddev)
2951{
2952	struct r1conf *conf;
2953	int i;
2954	struct raid1_info *disk;
2955	struct md_rdev *rdev;
2956	int err = -ENOMEM;
2957
2958	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959	if (!conf)
2960		goto abort;
2961
2962	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963				   sizeof(atomic_t), GFP_KERNEL);
2964	if (!conf->nr_pending)
2965		goto abort;
2966
2967	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968				   sizeof(atomic_t), GFP_KERNEL);
2969	if (!conf->nr_waiting)
2970		goto abort;
2971
2972	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973				  sizeof(atomic_t), GFP_KERNEL);
2974	if (!conf->nr_queued)
2975		goto abort;
2976
2977	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978				sizeof(atomic_t), GFP_KERNEL);
2979	if (!conf->barrier)
2980		goto abort;
2981
2982	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983					    mddev->raid_disks, 2),
2984				GFP_KERNEL);
2985	if (!conf->mirrors)
2986		goto abort;
2987
2988	conf->tmppage = alloc_page(GFP_KERNEL);
2989	if (!conf->tmppage)
2990		goto abort;
2991
2992	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993	if (!conf->poolinfo)
2994		goto abort;
2995	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997			   rbio_pool_free, conf->poolinfo);
2998	if (err)
 
2999		goto abort;
3000
3001	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002	if (err)
3003		goto abort;
3004
3005	conf->poolinfo->mddev = mddev;
3006
3007	err = -EINVAL;
3008	spin_lock_init(&conf->device_lock);
3009	rdev_for_each(rdev, mddev) {
3010		int disk_idx = rdev->raid_disk;
3011		if (disk_idx >= mddev->raid_disks
3012		    || disk_idx < 0)
3013			continue;
3014		if (test_bit(Replacement, &rdev->flags))
3015			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3016		else
3017			disk = conf->mirrors + disk_idx;
3018
3019		if (disk->rdev)
3020			goto abort;
3021		disk->rdev = rdev;
3022		disk->head_position = 0;
3023		disk->seq_start = MaxSector;
3024	}
3025	conf->raid_disks = mddev->raid_disks;
3026	conf->mddev = mddev;
3027	INIT_LIST_HEAD(&conf->retry_list);
3028	INIT_LIST_HEAD(&conf->bio_end_io_list);
3029
3030	spin_lock_init(&conf->resync_lock);
3031	init_waitqueue_head(&conf->wait_barrier);
3032
3033	bio_list_init(&conf->pending_bio_list);
 
3034	conf->recovery_disabled = mddev->recovery_disabled - 1;
3035
3036	err = -EIO;
3037	for (i = 0; i < conf->raid_disks * 2; i++) {
3038
3039		disk = conf->mirrors + i;
3040
3041		if (i < conf->raid_disks &&
3042		    disk[conf->raid_disks].rdev) {
3043			/* This slot has a replacement. */
3044			if (!disk->rdev) {
3045				/* No original, just make the replacement
3046				 * a recovering spare
3047				 */
3048				disk->rdev =
3049					disk[conf->raid_disks].rdev;
3050				disk[conf->raid_disks].rdev = NULL;
3051			} else if (!test_bit(In_sync, &disk->rdev->flags))
3052				/* Original is not in_sync - bad */
3053				goto abort;
3054		}
3055
3056		if (!disk->rdev ||
3057		    !test_bit(In_sync, &disk->rdev->flags)) {
3058			disk->head_position = 0;
3059			if (disk->rdev &&
3060			    (disk->rdev->saved_raid_disk < 0))
3061				conf->fullsync = 1;
3062		}
3063	}
3064
3065	err = -ENOMEM;
3066	rcu_assign_pointer(conf->thread,
3067			   md_register_thread(raid1d, mddev, "raid1"));
3068	if (!conf->thread)
3069		goto abort;
3070
3071	return conf;
3072
3073 abort:
3074	if (conf) {
3075		mempool_exit(&conf->r1bio_pool);
3076		kfree(conf->mirrors);
3077		safe_put_page(conf->tmppage);
3078		kfree(conf->poolinfo);
3079		kfree(conf->nr_pending);
3080		kfree(conf->nr_waiting);
3081		kfree(conf->nr_queued);
3082		kfree(conf->barrier);
3083		bioset_exit(&conf->bio_split);
 
3084		kfree(conf);
3085	}
3086	return ERR_PTR(err);
3087}
3088
3089static void raid1_free(struct mddev *mddev, void *priv);
3090static int raid1_run(struct mddev *mddev)
3091{
3092	struct r1conf *conf;
3093	int i;
3094	struct md_rdev *rdev;
3095	int ret;
 
3096
3097	if (mddev->level != 1) {
3098		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3099			mdname(mddev), mddev->level);
3100		return -EIO;
3101	}
3102	if (mddev->reshape_position != MaxSector) {
3103		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3104			mdname(mddev));
3105		return -EIO;
3106	}
3107
 
3108	/*
3109	 * copy the already verified devices into our private RAID1
3110	 * bookkeeping area. [whatever we allocate in run(),
3111	 * should be freed in raid1_free()]
3112	 */
3113	if (mddev->private == NULL)
3114		conf = setup_conf(mddev);
3115	else
3116		conf = mddev->private;
3117
3118	if (IS_ERR(conf))
3119		return PTR_ERR(conf);
3120
3121	if (mddev->queue)
 
3122		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
 
3123
3124	rdev_for_each(rdev, mddev) {
3125		if (!mddev->gendisk)
3126			continue;
3127		disk_stack_limits(mddev->gendisk, rdev->bdev,
3128				  rdev->data_offset << 9);
 
 
3129	}
3130
3131	mddev->degraded = 0;
3132	for (i = 0; i < conf->raid_disks; i++)
3133		if (conf->mirrors[i].rdev == NULL ||
3134		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3135		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3136			mddev->degraded++;
3137	/*
3138	 * RAID1 needs at least one disk in active
3139	 */
3140	if (conf->raid_disks - mddev->degraded < 1) {
3141		md_unregister_thread(mddev, &conf->thread);
3142		ret = -EINVAL;
3143		goto abort;
3144	}
3145
3146	if (conf->raid_disks - mddev->degraded == 1)
3147		mddev->recovery_cp = MaxSector;
3148
3149	if (mddev->recovery_cp != MaxSector)
3150		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3151			mdname(mddev));
3152	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3153		mdname(mddev), mddev->raid_disks - mddev->degraded,
3154		mddev->raid_disks);
3155
3156	/*
3157	 * Ok, everything is just fine now
3158	 */
3159	rcu_assign_pointer(mddev->thread, conf->thread);
3160	rcu_assign_pointer(conf->thread, NULL);
3161	mddev->private = conf;
3162	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3163
3164	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3165
3166	ret = md_integrity_register(mddev);
3167	if (ret) {
3168		md_unregister_thread(mddev, &mddev->thread);
3169		goto abort;
 
 
 
3170	}
3171	return 0;
3172
3173abort:
3174	raid1_free(mddev, conf);
 
 
 
3175	return ret;
3176}
3177
3178static void raid1_free(struct mddev *mddev, void *priv)
3179{
3180	struct r1conf *conf = priv;
3181
3182	mempool_exit(&conf->r1bio_pool);
3183	kfree(conf->mirrors);
3184	safe_put_page(conf->tmppage);
3185	kfree(conf->poolinfo);
3186	kfree(conf->nr_pending);
3187	kfree(conf->nr_waiting);
3188	kfree(conf->nr_queued);
3189	kfree(conf->barrier);
3190	bioset_exit(&conf->bio_split);
 
3191	kfree(conf);
3192}
3193
3194static int raid1_resize(struct mddev *mddev, sector_t sectors)
3195{
3196	/* no resync is happening, and there is enough space
3197	 * on all devices, so we can resize.
3198	 * We need to make sure resync covers any new space.
3199	 * If the array is shrinking we should possibly wait until
3200	 * any io in the removed space completes, but it hardly seems
3201	 * worth it.
3202	 */
3203	sector_t newsize = raid1_size(mddev, sectors, 0);
3204	if (mddev->external_size &&
3205	    mddev->array_sectors > newsize)
3206		return -EINVAL;
3207	if (mddev->bitmap) {
3208		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3209		if (ret)
3210			return ret;
3211	}
3212	md_set_array_sectors(mddev, newsize);
3213	if (sectors > mddev->dev_sectors &&
3214	    mddev->recovery_cp > mddev->dev_sectors) {
3215		mddev->recovery_cp = mddev->dev_sectors;
3216		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3217	}
3218	mddev->dev_sectors = sectors;
3219	mddev->resync_max_sectors = sectors;
3220	return 0;
3221}
3222
3223static int raid1_reshape(struct mddev *mddev)
3224{
3225	/* We need to:
3226	 * 1/ resize the r1bio_pool
3227	 * 2/ resize conf->mirrors
3228	 *
3229	 * We allocate a new r1bio_pool if we can.
3230	 * Then raise a device barrier and wait until all IO stops.
3231	 * Then resize conf->mirrors and swap in the new r1bio pool.
3232	 *
3233	 * At the same time, we "pack" the devices so that all the missing
3234	 * devices have the higher raid_disk numbers.
3235	 */
3236	mempool_t newpool, oldpool;
3237	struct pool_info *newpoolinfo;
3238	struct raid1_info *newmirrors;
3239	struct r1conf *conf = mddev->private;
3240	int cnt, raid_disks;
3241	unsigned long flags;
3242	int d, d2;
3243	int ret;
3244
3245	memset(&newpool, 0, sizeof(newpool));
3246	memset(&oldpool, 0, sizeof(oldpool));
3247
3248	/* Cannot change chunk_size, layout, or level */
3249	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3250	    mddev->layout != mddev->new_layout ||
3251	    mddev->level != mddev->new_level) {
3252		mddev->new_chunk_sectors = mddev->chunk_sectors;
3253		mddev->new_layout = mddev->layout;
3254		mddev->new_level = mddev->level;
3255		return -EINVAL;
3256	}
3257
3258	if (!mddev_is_clustered(mddev))
3259		md_allow_write(mddev);
3260
3261	raid_disks = mddev->raid_disks + mddev->delta_disks;
3262
3263	if (raid_disks < conf->raid_disks) {
3264		cnt=0;
3265		for (d= 0; d < conf->raid_disks; d++)
3266			if (conf->mirrors[d].rdev)
3267				cnt++;
3268		if (cnt > raid_disks)
3269			return -EBUSY;
3270	}
3271
3272	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3273	if (!newpoolinfo)
3274		return -ENOMEM;
3275	newpoolinfo->mddev = mddev;
3276	newpoolinfo->raid_disks = raid_disks * 2;
3277
3278	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3279			   rbio_pool_free, newpoolinfo);
3280	if (ret) {
3281		kfree(newpoolinfo);
3282		return ret;
3283	}
3284	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3285					 raid_disks, 2),
3286			     GFP_KERNEL);
3287	if (!newmirrors) {
3288		kfree(newpoolinfo);
3289		mempool_exit(&newpool);
3290		return -ENOMEM;
3291	}
3292
3293	freeze_array(conf, 0);
3294
3295	/* ok, everything is stopped */
3296	oldpool = conf->r1bio_pool;
3297	conf->r1bio_pool = newpool;
3298
3299	for (d = d2 = 0; d < conf->raid_disks; d++) {
3300		struct md_rdev *rdev = conf->mirrors[d].rdev;
3301		if (rdev && rdev->raid_disk != d2) {
3302			sysfs_unlink_rdev(mddev, rdev);
3303			rdev->raid_disk = d2;
3304			sysfs_unlink_rdev(mddev, rdev);
3305			if (sysfs_link_rdev(mddev, rdev))
3306				pr_warn("md/raid1:%s: cannot register rd%d\n",
3307					mdname(mddev), rdev->raid_disk);
3308		}
3309		if (rdev)
3310			newmirrors[d2++].rdev = rdev;
3311	}
3312	kfree(conf->mirrors);
3313	conf->mirrors = newmirrors;
3314	kfree(conf->poolinfo);
3315	conf->poolinfo = newpoolinfo;
3316
3317	spin_lock_irqsave(&conf->device_lock, flags);
3318	mddev->degraded += (raid_disks - conf->raid_disks);
3319	spin_unlock_irqrestore(&conf->device_lock, flags);
3320	conf->raid_disks = mddev->raid_disks = raid_disks;
3321	mddev->delta_disks = 0;
3322
3323	unfreeze_array(conf);
3324
3325	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3326	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3327	md_wakeup_thread(mddev->thread);
3328
3329	mempool_exit(&oldpool);
3330	return 0;
3331}
3332
3333static void raid1_quiesce(struct mddev *mddev, int quiesce)
3334{
3335	struct r1conf *conf = mddev->private;
3336
3337	if (quiesce)
3338		freeze_array(conf, 0);
3339	else
3340		unfreeze_array(conf);
3341}
3342
3343static void *raid1_takeover(struct mddev *mddev)
3344{
3345	/* raid1 can take over:
3346	 *  raid5 with 2 devices, any layout or chunk size
3347	 */
3348	if (mddev->level == 5 && mddev->raid_disks == 2) {
3349		struct r1conf *conf;
3350		mddev->new_level = 1;
3351		mddev->new_layout = 0;
3352		mddev->new_chunk_sectors = 0;
3353		conf = setup_conf(mddev);
3354		if (!IS_ERR(conf)) {
3355			/* Array must appear to be quiesced */
3356			conf->array_frozen = 1;
3357			mddev_clear_unsupported_flags(mddev,
3358				UNSUPPORTED_MDDEV_FLAGS);
3359		}
3360		return conf;
3361	}
3362	return ERR_PTR(-EINVAL);
3363}
3364
3365static struct md_personality raid1_personality =
3366{
3367	.name		= "raid1",
3368	.level		= 1,
3369	.owner		= THIS_MODULE,
3370	.make_request	= raid1_make_request,
3371	.run		= raid1_run,
3372	.free		= raid1_free,
3373	.status		= raid1_status,
3374	.error_handler	= raid1_error,
3375	.hot_add_disk	= raid1_add_disk,
3376	.hot_remove_disk= raid1_remove_disk,
3377	.spare_active	= raid1_spare_active,
3378	.sync_request	= raid1_sync_request,
3379	.resize		= raid1_resize,
3380	.size		= raid1_size,
3381	.check_reshape	= raid1_reshape,
3382	.quiesce	= raid1_quiesce,
3383	.takeover	= raid1_takeover,
 
3384};
3385
3386static int __init raid_init(void)
3387{
3388	return register_md_personality(&raid1_personality);
3389}
3390
3391static void raid_exit(void)
3392{
3393	unregister_md_personality(&raid1_personality);
3394}
3395
3396module_init(raid_init);
3397module_exit(raid_exit);
3398MODULE_LICENSE("GPL");
3399MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3400MODULE_ALIAS("md-personality-3"); /* RAID1 */
3401MODULE_ALIAS("md-raid1");
3402MODULE_ALIAS("md-level-1");
v4.17
 
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
 
  40
  41#include <trace/events/block.h>
  42
  43#include "md.h"
  44#include "raid1.h"
  45#include "md-bitmap.h"
  46
  47#define UNSUPPORTED_MDDEV_FLAGS		\
  48	((1L << MD_HAS_JOURNAL) |	\
  49	 (1L << MD_JOURNAL_CLEAN) |	\
  50	 (1L << MD_HAS_PPL) |		\
  51	 (1L << MD_HAS_MULTIPLE_PPLS))
  52
  53/*
  54 * Number of guaranteed r1bios in case of extreme VM load:
  55 */
  56#define	NR_RAID1_BIOS 256
  57
  58/* when we get a read error on a read-only array, we redirect to another
  59 * device without failing the first device, or trying to over-write to
  60 * correct the read error.  To keep track of bad blocks on a per-bio
  61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  62 */
  63#define IO_BLOCKED ((struct bio *)1)
  64/* When we successfully write to a known bad-block, we need to remove the
  65 * bad-block marking which must be done from process context.  So we record
  66 * the success by setting devs[n].bio to IO_MADE_GOOD
  67 */
  68#define IO_MADE_GOOD ((struct bio *)2)
  69
  70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  71
  72/* When there are this many requests queue to be written by
  73 * the raid1 thread, we become 'congested' to provide back-pressure
  74 * for writeback.
  75 */
  76static int max_queued_requests = 1024;
  77
  78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  80
  81#define raid1_log(md, fmt, args...)				\
  82	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  83
 
  84#include "raid1-10.c"
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86/*
  87 * for resync bio, r1bio pointer can be retrieved from the per-bio
  88 * 'struct resync_pages'.
  89 */
  90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
  91{
  92	return get_resync_pages(bio)->raid_bio;
  93}
  94
  95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97	struct pool_info *pi = data;
  98	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  99
 100	/* allocate a r1bio with room for raid_disks entries in the bios array */
 101	return kzalloc(size, gfp_flags);
 102}
 103
 104static void r1bio_pool_free(void *r1_bio, void *data)
 105{
 106	kfree(r1_bio);
 107}
 108
 109#define RESYNC_DEPTH 32
 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 115
 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct pool_info *pi = data;
 119	struct r1bio *r1_bio;
 120	struct bio *bio;
 121	int need_pages;
 122	int j;
 123	struct resync_pages *rps;
 124
 125	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 126	if (!r1_bio)
 127		return NULL;
 128
 129	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
 130		      gfp_flags);
 131	if (!rps)
 132		goto out_free_r1bio;
 133
 134	/*
 135	 * Allocate bios : 1 for reading, n-1 for writing
 136	 */
 137	for (j = pi->raid_disks ; j-- ; ) {
 138		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 139		if (!bio)
 140			goto out_free_bio;
 
 141		r1_bio->bios[j] = bio;
 142	}
 143	/*
 144	 * Allocate RESYNC_PAGES data pages and attach them to
 145	 * the first bio.
 146	 * If this is a user-requested check/repair, allocate
 147	 * RESYNC_PAGES for each bio.
 148	 */
 149	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 150		need_pages = pi->raid_disks;
 151	else
 152		need_pages = 1;
 153	for (j = 0; j < pi->raid_disks; j++) {
 154		struct resync_pages *rp = &rps[j];
 155
 156		bio = r1_bio->bios[j];
 157
 158		if (j < need_pages) {
 159			if (resync_alloc_pages(rp, gfp_flags))
 160				goto out_free_pages;
 161		} else {
 162			memcpy(rp, &rps[0], sizeof(*rp));
 163			resync_get_all_pages(rp);
 164		}
 165
 166		rp->raid_bio = r1_bio;
 167		bio->bi_private = rp;
 168	}
 169
 170	r1_bio->master_bio = NULL;
 171
 172	return r1_bio;
 173
 174out_free_pages:
 175	while (--j >= 0)
 176		resync_free_pages(&rps[j]);
 177
 178out_free_bio:
 179	while (++j < pi->raid_disks)
 180		bio_put(r1_bio->bios[j]);
 
 
 181	kfree(rps);
 182
 183out_free_r1bio:
 184	r1bio_pool_free(r1_bio, data);
 185	return NULL;
 186}
 187
 188static void r1buf_pool_free(void *__r1_bio, void *data)
 189{
 190	struct pool_info *pi = data;
 191	int i;
 192	struct r1bio *r1bio = __r1_bio;
 193	struct resync_pages *rp = NULL;
 194
 195	for (i = pi->raid_disks; i--; ) {
 196		rp = get_resync_pages(r1bio->bios[i]);
 197		resync_free_pages(rp);
 198		bio_put(r1bio->bios[i]);
 
 199	}
 200
 201	/* resync pages array stored in the 1st bio's .bi_private */
 202	kfree(rp);
 203
 204	r1bio_pool_free(r1bio, data);
 205}
 206
 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 208{
 209	int i;
 210
 211	for (i = 0; i < conf->raid_disks * 2; i++) {
 212		struct bio **bio = r1_bio->bios + i;
 213		if (!BIO_SPECIAL(*bio))
 214			bio_put(*bio);
 215		*bio = NULL;
 216	}
 217}
 218
 219static void free_r1bio(struct r1bio *r1_bio)
 220{
 221	struct r1conf *conf = r1_bio->mddev->private;
 222
 223	put_all_bios(conf, r1_bio);
 224	mempool_free(r1_bio, conf->r1bio_pool);
 225}
 226
 227static void put_buf(struct r1bio *r1_bio)
 228{
 229	struct r1conf *conf = r1_bio->mddev->private;
 230	sector_t sect = r1_bio->sector;
 231	int i;
 232
 233	for (i = 0; i < conf->raid_disks * 2; i++) {
 234		struct bio *bio = r1_bio->bios[i];
 235		if (bio->bi_end_io)
 236			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 237	}
 238
 239	mempool_free(r1_bio, conf->r1buf_pool);
 240
 241	lower_barrier(conf, sect);
 242}
 243
 244static void reschedule_retry(struct r1bio *r1_bio)
 245{
 246	unsigned long flags;
 247	struct mddev *mddev = r1_bio->mddev;
 248	struct r1conf *conf = mddev->private;
 249	int idx;
 250
 251	idx = sector_to_idx(r1_bio->sector);
 252	spin_lock_irqsave(&conf->device_lock, flags);
 253	list_add(&r1_bio->retry_list, &conf->retry_list);
 254	atomic_inc(&conf->nr_queued[idx]);
 255	spin_unlock_irqrestore(&conf->device_lock, flags);
 256
 257	wake_up(&conf->wait_barrier);
 258	md_wakeup_thread(mddev->thread);
 259}
 260
 261/*
 262 * raid_end_bio_io() is called when we have finished servicing a mirrored
 263 * operation and are ready to return a success/failure code to the buffer
 264 * cache layer.
 265 */
 266static void call_bio_endio(struct r1bio *r1_bio)
 267{
 268	struct bio *bio = r1_bio->master_bio;
 269	struct r1conf *conf = r1_bio->mddev->private;
 270
 271	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 272		bio->bi_status = BLK_STS_IOERR;
 273
 274	bio_endio(bio);
 275	/*
 276	 * Wake up any possible resync thread that waits for the device
 277	 * to go idle.
 278	 */
 279	allow_barrier(conf, r1_bio->sector);
 280}
 281
 282static void raid_end_bio_io(struct r1bio *r1_bio)
 283{
 284	struct bio *bio = r1_bio->master_bio;
 
 
 285
 286	/* if nobody has done the final endio yet, do it now */
 287	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 288		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 289			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 290			 (unsigned long long) bio->bi_iter.bi_sector,
 291			 (unsigned long long) bio_end_sector(bio) - 1);
 292
 293		call_bio_endio(r1_bio);
 294	}
 
 295	free_r1bio(r1_bio);
 
 
 
 
 
 296}
 297
 298/*
 299 * Update disk head position estimator based on IRQ completion info.
 300 */
 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 302{
 303	struct r1conf *conf = r1_bio->mddev->private;
 304
 305	conf->mirrors[disk].head_position =
 306		r1_bio->sector + (r1_bio->sectors);
 307}
 308
 309/*
 310 * Find the disk number which triggered given bio
 311 */
 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 313{
 314	int mirror;
 315	struct r1conf *conf = r1_bio->mddev->private;
 316	int raid_disks = conf->raid_disks;
 317
 318	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 319		if (r1_bio->bios[mirror] == bio)
 320			break;
 321
 322	BUG_ON(mirror == raid_disks * 2);
 323	update_head_pos(mirror, r1_bio);
 324
 325	return mirror;
 326}
 327
 328static void raid1_end_read_request(struct bio *bio)
 329{
 330	int uptodate = !bio->bi_status;
 331	struct r1bio *r1_bio = bio->bi_private;
 332	struct r1conf *conf = r1_bio->mddev->private;
 333	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 334
 335	/*
 336	 * this branch is our 'one mirror IO has finished' event handler:
 337	 */
 338	update_head_pos(r1_bio->read_disk, r1_bio);
 339
 340	if (uptodate)
 341		set_bit(R1BIO_Uptodate, &r1_bio->state);
 342	else if (test_bit(FailFast, &rdev->flags) &&
 343		 test_bit(R1BIO_FailFast, &r1_bio->state))
 344		/* This was a fail-fast read so we definitely
 345		 * want to retry */
 346		;
 347	else {
 348		/* If all other devices have failed, we want to return
 349		 * the error upwards rather than fail the last device.
 350		 * Here we redefine "uptodate" to mean "Don't want to retry"
 351		 */
 352		unsigned long flags;
 353		spin_lock_irqsave(&conf->device_lock, flags);
 354		if (r1_bio->mddev->degraded == conf->raid_disks ||
 355		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 356		     test_bit(In_sync, &rdev->flags)))
 357			uptodate = 1;
 358		spin_unlock_irqrestore(&conf->device_lock, flags);
 359	}
 360
 361	if (uptodate) {
 362		raid_end_bio_io(r1_bio);
 363		rdev_dec_pending(rdev, conf->mddev);
 364	} else {
 365		/*
 366		 * oops, read error:
 367		 */
 368		char b[BDEVNAME_SIZE];
 369		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 370				   mdname(conf->mddev),
 371				   bdevname(rdev->bdev, b),
 372				   (unsigned long long)r1_bio->sector);
 373		set_bit(R1BIO_ReadError, &r1_bio->state);
 374		reschedule_retry(r1_bio);
 375		/* don't drop the reference on read_disk yet */
 376	}
 377}
 378
 379static void close_write(struct r1bio *r1_bio)
 380{
 381	/* it really is the end of this request */
 382	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 383		bio_free_pages(r1_bio->behind_master_bio);
 384		bio_put(r1_bio->behind_master_bio);
 385		r1_bio->behind_master_bio = NULL;
 386	}
 387	/* clear the bitmap if all writes complete successfully */
 388	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 389			r1_bio->sectors,
 390			!test_bit(R1BIO_Degraded, &r1_bio->state),
 391			test_bit(R1BIO_BehindIO, &r1_bio->state));
 392	md_write_end(r1_bio->mddev);
 393}
 394
 395static void r1_bio_write_done(struct r1bio *r1_bio)
 396{
 397	if (!atomic_dec_and_test(&r1_bio->remaining))
 398		return;
 399
 400	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 401		reschedule_retry(r1_bio);
 402	else {
 403		close_write(r1_bio);
 404		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 405			reschedule_retry(r1_bio);
 406		else
 407			raid_end_bio_io(r1_bio);
 408	}
 409}
 410
 411static void raid1_end_write_request(struct bio *bio)
 412{
 413	struct r1bio *r1_bio = bio->bi_private;
 414	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 415	struct r1conf *conf = r1_bio->mddev->private;
 416	struct bio *to_put = NULL;
 417	int mirror = find_bio_disk(r1_bio, bio);
 418	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 419	bool discard_error;
 
 
 420
 421	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 422
 423	/*
 424	 * 'one mirror IO has finished' event handler:
 425	 */
 426	if (bio->bi_status && !discard_error) {
 427		set_bit(WriteErrorSeen,	&rdev->flags);
 428		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 429			set_bit(MD_RECOVERY_NEEDED, &
 430				conf->mddev->recovery);
 431
 432		if (test_bit(FailFast, &rdev->flags) &&
 433		    (bio->bi_opf & MD_FAILFAST) &&
 434		    /* We never try FailFast to WriteMostly devices */
 435		    !test_bit(WriteMostly, &rdev->flags)) {
 436			md_error(r1_bio->mddev, rdev);
 437			if (!test_bit(Faulty, &rdev->flags))
 438				/* This is the only remaining device,
 439				 * We need to retry the write without
 440				 * FailFast
 441				 */
 442				set_bit(R1BIO_WriteError, &r1_bio->state);
 443			else {
 444				/* Finished with this branch */
 445				r1_bio->bios[mirror] = NULL;
 446				to_put = bio;
 447			}
 448		} else
 449			set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 450	} else {
 451		/*
 452		 * Set R1BIO_Uptodate in our master bio, so that we
 453		 * will return a good error code for to the higher
 454		 * levels even if IO on some other mirrored buffer
 455		 * fails.
 456		 *
 457		 * The 'master' represents the composite IO operation
 458		 * to user-side. So if something waits for IO, then it
 459		 * will wait for the 'master' bio.
 460		 */
 461		sector_t first_bad;
 462		int bad_sectors;
 463
 464		r1_bio->bios[mirror] = NULL;
 465		to_put = bio;
 466		/*
 467		 * Do not set R1BIO_Uptodate if the current device is
 468		 * rebuilding or Faulty. This is because we cannot use
 469		 * such device for properly reading the data back (we could
 470		 * potentially use it, if the current write would have felt
 471		 * before rdev->recovery_offset, but for simplicity we don't
 472		 * check this here.
 473		 */
 474		if (test_bit(In_sync, &rdev->flags) &&
 475		    !test_bit(Faulty, &rdev->flags))
 476			set_bit(R1BIO_Uptodate, &r1_bio->state);
 477
 478		/* Maybe we can clear some bad blocks. */
 479		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 480				&first_bad, &bad_sectors) && !discard_error) {
 481			r1_bio->bios[mirror] = IO_MADE_GOOD;
 482			set_bit(R1BIO_MadeGood, &r1_bio->state);
 483		}
 484	}
 485
 486	if (behind) {
 
 
 487		if (test_bit(WriteMostly, &rdev->flags))
 488			atomic_dec(&r1_bio->behind_remaining);
 489
 490		/*
 491		 * In behind mode, we ACK the master bio once the I/O
 492		 * has safely reached all non-writemostly
 493		 * disks. Setting the Returned bit ensures that this
 494		 * gets done only once -- we don't ever want to return
 495		 * -EIO here, instead we'll wait
 496		 */
 497		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 498		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 499			/* Maybe we can return now */
 500			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 501				struct bio *mbio = r1_bio->master_bio;
 502				pr_debug("raid1: behind end write sectors"
 503					 " %llu-%llu\n",
 504					 (unsigned long long) mbio->bi_iter.bi_sector,
 505					 (unsigned long long) bio_end_sector(mbio) - 1);
 506				call_bio_endio(r1_bio);
 507			}
 508		}
 509	}
 
 510	if (r1_bio->bios[mirror] == NULL)
 511		rdev_dec_pending(rdev, conf->mddev);
 512
 513	/*
 514	 * Let's see if all mirrored write operations have finished
 515	 * already.
 516	 */
 517	r1_bio_write_done(r1_bio);
 518
 519	if (to_put)
 520		bio_put(to_put);
 521}
 522
 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
 524					  sector_t sectors)
 525{
 526	sector_t len;
 527
 528	WARN_ON(sectors == 0);
 529	/*
 530	 * len is the number of sectors from start_sector to end of the
 531	 * barrier unit which start_sector belongs to.
 532	 */
 533	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 534	      start_sector;
 535
 536	if (len > sectors)
 537		len = sectors;
 538
 539	return len;
 540}
 541
 542/*
 543 * This routine returns the disk from which the requested read should
 544 * be done. There is a per-array 'next expected sequential IO' sector
 545 * number - if this matches on the next IO then we use the last disk.
 546 * There is also a per-disk 'last know head position' sector that is
 547 * maintained from IRQ contexts, both the normal and the resync IO
 548 * completion handlers update this position correctly. If there is no
 549 * perfect sequential match then we pick the disk whose head is closest.
 550 *
 551 * If there are 2 mirrors in the same 2 devices, performance degrades
 552 * because position is mirror, not device based.
 553 *
 554 * The rdev for the device selected will have nr_pending incremented.
 555 */
 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 557{
 558	const sector_t this_sector = r1_bio->sector;
 559	int sectors;
 560	int best_good_sectors;
 561	int best_disk, best_dist_disk, best_pending_disk;
 562	int has_nonrot_disk;
 563	int disk;
 564	sector_t best_dist;
 565	unsigned int min_pending;
 566	struct md_rdev *rdev;
 567	int choose_first;
 568	int choose_next_idle;
 569
 570	rcu_read_lock();
 571	/*
 572	 * Check if we can balance. We can balance on the whole
 573	 * device if no resync is going on, or below the resync window.
 574	 * We take the first readable disk when above the resync window.
 575	 */
 576 retry:
 577	sectors = r1_bio->sectors;
 578	best_disk = -1;
 579	best_dist_disk = -1;
 580	best_dist = MaxSector;
 581	best_pending_disk = -1;
 582	min_pending = UINT_MAX;
 583	best_good_sectors = 0;
 584	has_nonrot_disk = 0;
 585	choose_next_idle = 0;
 586	clear_bit(R1BIO_FailFast, &r1_bio->state);
 587
 588	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 589	    (mddev_is_clustered(conf->mddev) &&
 590	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 591		    this_sector + sectors)))
 592		choose_first = 1;
 593	else
 594		choose_first = 0;
 595
 596	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 597		sector_t dist;
 598		sector_t first_bad;
 599		int bad_sectors;
 600		unsigned int pending;
 601		bool nonrot;
 602
 603		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 604		if (r1_bio->bios[disk] == IO_BLOCKED
 605		    || rdev == NULL
 606		    || test_bit(Faulty, &rdev->flags))
 607			continue;
 608		if (!test_bit(In_sync, &rdev->flags) &&
 609		    rdev->recovery_offset < this_sector + sectors)
 610			continue;
 611		if (test_bit(WriteMostly, &rdev->flags)) {
 612			/* Don't balance among write-mostly, just
 613			 * use the first as a last resort */
 614			if (best_dist_disk < 0) {
 615				if (is_badblock(rdev, this_sector, sectors,
 616						&first_bad, &bad_sectors)) {
 617					if (first_bad <= this_sector)
 618						/* Cannot use this */
 619						continue;
 620					best_good_sectors = first_bad - this_sector;
 621				} else
 622					best_good_sectors = sectors;
 623				best_dist_disk = disk;
 624				best_pending_disk = disk;
 625			}
 626			continue;
 627		}
 628		/* This is a reasonable device to use.  It might
 629		 * even be best.
 630		 */
 631		if (is_badblock(rdev, this_sector, sectors,
 632				&first_bad, &bad_sectors)) {
 633			if (best_dist < MaxSector)
 634				/* already have a better device */
 635				continue;
 636			if (first_bad <= this_sector) {
 637				/* cannot read here. If this is the 'primary'
 638				 * device, then we must not read beyond
 639				 * bad_sectors from another device..
 640				 */
 641				bad_sectors -= (this_sector - first_bad);
 642				if (choose_first && sectors > bad_sectors)
 643					sectors = bad_sectors;
 644				if (best_good_sectors > sectors)
 645					best_good_sectors = sectors;
 646
 647			} else {
 648				sector_t good_sectors = first_bad - this_sector;
 649				if (good_sectors > best_good_sectors) {
 650					best_good_sectors = good_sectors;
 651					best_disk = disk;
 652				}
 653				if (choose_first)
 654					break;
 655			}
 656			continue;
 657		} else {
 658			if ((sectors > best_good_sectors) && (best_disk >= 0))
 659				best_disk = -1;
 660			best_good_sectors = sectors;
 661		}
 662
 663		if (best_disk >= 0)
 664			/* At least two disks to choose from so failfast is OK */
 665			set_bit(R1BIO_FailFast, &r1_bio->state);
 666
 667		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 668		has_nonrot_disk |= nonrot;
 669		pending = atomic_read(&rdev->nr_pending);
 670		dist = abs(this_sector - conf->mirrors[disk].head_position);
 671		if (choose_first) {
 672			best_disk = disk;
 673			break;
 674		}
 675		/* Don't change to another disk for sequential reads */
 676		if (conf->mirrors[disk].next_seq_sect == this_sector
 677		    || dist == 0) {
 678			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 679			struct raid1_info *mirror = &conf->mirrors[disk];
 680
 681			best_disk = disk;
 682			/*
 683			 * If buffered sequential IO size exceeds optimal
 684			 * iosize, check if there is idle disk. If yes, choose
 685			 * the idle disk. read_balance could already choose an
 686			 * idle disk before noticing it's a sequential IO in
 687			 * this disk. This doesn't matter because this disk
 688			 * will idle, next time it will be utilized after the
 689			 * first disk has IO size exceeds optimal iosize. In
 690			 * this way, iosize of the first disk will be optimal
 691			 * iosize at least. iosize of the second disk might be
 692			 * small, but not a big deal since when the second disk
 693			 * starts IO, the first disk is likely still busy.
 694			 */
 695			if (nonrot && opt_iosize > 0 &&
 696			    mirror->seq_start != MaxSector &&
 697			    mirror->next_seq_sect > opt_iosize &&
 698			    mirror->next_seq_sect - opt_iosize >=
 699			    mirror->seq_start) {
 700				choose_next_idle = 1;
 701				continue;
 702			}
 703			break;
 704		}
 705
 706		if (choose_next_idle)
 707			continue;
 708
 709		if (min_pending > pending) {
 710			min_pending = pending;
 711			best_pending_disk = disk;
 712		}
 713
 714		if (dist < best_dist) {
 715			best_dist = dist;
 716			best_dist_disk = disk;
 717		}
 718	}
 719
 720	/*
 721	 * If all disks are rotational, choose the closest disk. If any disk is
 722	 * non-rotational, choose the disk with less pending request even the
 723	 * disk is rotational, which might/might not be optimal for raids with
 724	 * mixed ratation/non-rotational disks depending on workload.
 725	 */
 726	if (best_disk == -1) {
 727		if (has_nonrot_disk || min_pending == 0)
 728			best_disk = best_pending_disk;
 729		else
 730			best_disk = best_dist_disk;
 731	}
 732
 733	if (best_disk >= 0) {
 734		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 735		if (!rdev)
 736			goto retry;
 737		atomic_inc(&rdev->nr_pending);
 738		sectors = best_good_sectors;
 739
 740		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 741			conf->mirrors[best_disk].seq_start = this_sector;
 742
 743		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 744	}
 745	rcu_read_unlock();
 746	*max_sectors = sectors;
 747
 748	return best_disk;
 749}
 750
 751static int raid1_congested(struct mddev *mddev, int bits)
 752{
 753	struct r1conf *conf = mddev->private;
 754	int i, ret = 0;
 755
 756	if ((bits & (1 << WB_async_congested)) &&
 757	    conf->pending_count >= max_queued_requests)
 758		return 1;
 759
 760	rcu_read_lock();
 761	for (i = 0; i < conf->raid_disks * 2; i++) {
 762		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 763		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 764			struct request_queue *q = bdev_get_queue(rdev->bdev);
 765
 766			BUG_ON(!q);
 767
 768			/* Note the '|| 1' - when read_balance prefers
 769			 * non-congested targets, it can be removed
 770			 */
 771			if ((bits & (1 << WB_async_congested)) || 1)
 772				ret |= bdi_congested(q->backing_dev_info, bits);
 773			else
 774				ret &= bdi_congested(q->backing_dev_info, bits);
 775		}
 776	}
 777	rcu_read_unlock();
 778	return ret;
 779}
 780
 781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 782{
 783	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 784	bitmap_unplug(conf->mddev->bitmap);
 785	wake_up(&conf->wait_barrier);
 786
 787	while (bio) { /* submit pending writes */
 788		struct bio *next = bio->bi_next;
 789		struct md_rdev *rdev = (void *)bio->bi_disk;
 790		bio->bi_next = NULL;
 791		bio_set_dev(bio, rdev->bdev);
 792		if (test_bit(Faulty, &rdev->flags)) {
 793			bio_io_error(bio);
 794		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 795				    !blk_queue_discard(bio->bi_disk->queue)))
 796			/* Just ignore it */
 797			bio_endio(bio);
 798		else
 799			generic_make_request(bio);
 800		bio = next;
 
 801	}
 802}
 803
 804static void flush_pending_writes(struct r1conf *conf)
 805{
 806	/* Any writes that have been queued but are awaiting
 807	 * bitmap updates get flushed here.
 808	 */
 809	spin_lock_irq(&conf->device_lock);
 810
 811	if (conf->pending_bio_list.head) {
 812		struct blk_plug plug;
 813		struct bio *bio;
 814
 815		bio = bio_list_get(&conf->pending_bio_list);
 816		conf->pending_count = 0;
 817		spin_unlock_irq(&conf->device_lock);
 818
 819		/*
 820		 * As this is called in a wait_event() loop (see freeze_array),
 821		 * current->state might be TASK_UNINTERRUPTIBLE which will
 822		 * cause a warning when we prepare to wait again.  As it is
 823		 * rare that this path is taken, it is perfectly safe to force
 824		 * us to go around the wait_event() loop again, so the warning
 825		 * is a false-positive.  Silence the warning by resetting
 826		 * thread state
 827		 */
 828		__set_current_state(TASK_RUNNING);
 829		blk_start_plug(&plug);
 830		flush_bio_list(conf, bio);
 831		blk_finish_plug(&plug);
 832	} else
 833		spin_unlock_irq(&conf->device_lock);
 834}
 835
 836/* Barriers....
 837 * Sometimes we need to suspend IO while we do something else,
 838 * either some resync/recovery, or reconfigure the array.
 839 * To do this we raise a 'barrier'.
 840 * The 'barrier' is a counter that can be raised multiple times
 841 * to count how many activities are happening which preclude
 842 * normal IO.
 843 * We can only raise the barrier if there is no pending IO.
 844 * i.e. if nr_pending == 0.
 845 * We choose only to raise the barrier if no-one is waiting for the
 846 * barrier to go down.  This means that as soon as an IO request
 847 * is ready, no other operations which require a barrier will start
 848 * until the IO request has had a chance.
 849 *
 850 * So: regular IO calls 'wait_barrier'.  When that returns there
 851 *    is no backgroup IO happening,  It must arrange to call
 852 *    allow_barrier when it has finished its IO.
 853 * backgroup IO calls must call raise_barrier.  Once that returns
 854 *    there is no normal IO happeing.  It must arrange to call
 855 *    lower_barrier when the particular background IO completes.
 
 
 
 856 */
 857static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
 858{
 859	int idx = sector_to_idx(sector_nr);
 860
 861	spin_lock_irq(&conf->resync_lock);
 862
 863	/* Wait until no block IO is waiting */
 864	wait_event_lock_irq(conf->wait_barrier,
 865			    !atomic_read(&conf->nr_waiting[idx]),
 866			    conf->resync_lock);
 867
 868	/* block any new IO from starting */
 869	atomic_inc(&conf->barrier[idx]);
 870	/*
 871	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 872	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 873	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 874	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 875	 * be fetched before conf->barrier[idx] is increased. Otherwise
 876	 * there will be a race between raise_barrier() and _wait_barrier().
 877	 */
 878	smp_mb__after_atomic();
 879
 880	/* For these conditions we must wait:
 881	 * A: while the array is in frozen state
 882	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 883	 *    existing in corresponding I/O barrier bucket.
 884	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 885	 *    max resync count which allowed on current I/O barrier bucket.
 886	 */
 887	wait_event_lock_irq(conf->wait_barrier,
 888			    (!conf->array_frozen &&
 889			     !atomic_read(&conf->nr_pending[idx]) &&
 890			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 891				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 892			    conf->resync_lock);
 893
 894	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 895		atomic_dec(&conf->barrier[idx]);
 896		spin_unlock_irq(&conf->resync_lock);
 897		wake_up(&conf->wait_barrier);
 898		return -EINTR;
 899	}
 900
 901	atomic_inc(&conf->nr_sync_pending);
 902	spin_unlock_irq(&conf->resync_lock);
 903
 904	return 0;
 905}
 906
 907static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 908{
 909	int idx = sector_to_idx(sector_nr);
 910
 911	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 912
 913	atomic_dec(&conf->barrier[idx]);
 914	atomic_dec(&conf->nr_sync_pending);
 915	wake_up(&conf->wait_barrier);
 916}
 917
 918static void _wait_barrier(struct r1conf *conf, int idx)
 919{
 
 
 920	/*
 921	 * We need to increase conf->nr_pending[idx] very early here,
 922	 * then raise_barrier() can be blocked when it waits for
 923	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 924	 * conf->resync_lock when there is no barrier raised in same
 925	 * barrier unit bucket. Also if the array is frozen, I/O
 926	 * should be blocked until array is unfrozen.
 927	 */
 928	atomic_inc(&conf->nr_pending[idx]);
 929	/*
 930	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 931	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 932	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 933	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 934	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 935	 * will be a race between _wait_barrier() and raise_barrier().
 936	 */
 937	smp_mb__after_atomic();
 938
 939	/*
 940	 * Don't worry about checking two atomic_t variables at same time
 941	 * here. If during we check conf->barrier[idx], the array is
 942	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 943	 * 0, it is safe to return and make the I/O continue. Because the
 944	 * array is frozen, all I/O returned here will eventually complete
 945	 * or be queued, no race will happen. See code comment in
 946	 * frozen_array().
 947	 */
 948	if (!READ_ONCE(conf->array_frozen) &&
 949	    !atomic_read(&conf->barrier[idx]))
 950		return;
 951
 952	/*
 953	 * After holding conf->resync_lock, conf->nr_pending[idx]
 954	 * should be decreased before waiting for barrier to drop.
 955	 * Otherwise, we may encounter a race condition because
 956	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 957	 * to be 0 at same time.
 958	 */
 959	spin_lock_irq(&conf->resync_lock);
 960	atomic_inc(&conf->nr_waiting[idx]);
 961	atomic_dec(&conf->nr_pending[idx]);
 962	/*
 963	 * In case freeze_array() is waiting for
 964	 * get_unqueued_pending() == extra
 965	 */
 966	wake_up(&conf->wait_barrier);
 967	/* Wait for the barrier in same barrier unit bucket to drop. */
 968	wait_event_lock_irq(conf->wait_barrier,
 969			    !conf->array_frozen &&
 970			     !atomic_read(&conf->barrier[idx]),
 971			    conf->resync_lock);
 972	atomic_inc(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 973	atomic_dec(&conf->nr_waiting[idx]);
 974	spin_unlock_irq(&conf->resync_lock);
 
 975}
 976
 977static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 978{
 979	int idx = sector_to_idx(sector_nr);
 
 980
 981	/*
 982	 * Very similar to _wait_barrier(). The difference is, for read
 983	 * I/O we don't need wait for sync I/O, but if the whole array
 984	 * is frozen, the read I/O still has to wait until the array is
 985	 * unfrozen. Since there is no ordering requirement with
 986	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
 987	 */
 988	atomic_inc(&conf->nr_pending[idx]);
 989
 990	if (!READ_ONCE(conf->array_frozen))
 991		return;
 992
 993	spin_lock_irq(&conf->resync_lock);
 994	atomic_inc(&conf->nr_waiting[idx]);
 995	atomic_dec(&conf->nr_pending[idx]);
 996	/*
 997	 * In case freeze_array() is waiting for
 998	 * get_unqueued_pending() == extra
 999	 */
1000	wake_up(&conf->wait_barrier);
1001	/* Wait for array to be unfrozen */
1002	wait_event_lock_irq(conf->wait_barrier,
1003			    !conf->array_frozen,
1004			    conf->resync_lock);
1005	atomic_inc(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 
1006	atomic_dec(&conf->nr_waiting[idx]);
1007	spin_unlock_irq(&conf->resync_lock);
 
1008}
1009
1010static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1011{
1012	int idx = sector_to_idx(sector_nr);
1013
1014	_wait_barrier(conf, idx);
1015}
1016
1017static void _allow_barrier(struct r1conf *conf, int idx)
1018{
1019	atomic_dec(&conf->nr_pending[idx]);
1020	wake_up(&conf->wait_barrier);
1021}
1022
1023static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1024{
1025	int idx = sector_to_idx(sector_nr);
1026
1027	_allow_barrier(conf, idx);
1028}
1029
1030/* conf->resync_lock should be held */
1031static int get_unqueued_pending(struct r1conf *conf)
1032{
1033	int idx, ret;
1034
1035	ret = atomic_read(&conf->nr_sync_pending);
1036	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1037		ret += atomic_read(&conf->nr_pending[idx]) -
1038			atomic_read(&conf->nr_queued[idx]);
1039
1040	return ret;
1041}
1042
1043static void freeze_array(struct r1conf *conf, int extra)
1044{
1045	/* Stop sync I/O and normal I/O and wait for everything to
1046	 * go quiet.
1047	 * This is called in two situations:
1048	 * 1) management command handlers (reshape, remove disk, quiesce).
1049	 * 2) one normal I/O request failed.
1050
1051	 * After array_frozen is set to 1, new sync IO will be blocked at
1052	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053	 * or wait_read_barrier(). The flying I/Os will either complete or be
1054	 * queued. When everything goes quite, there are only queued I/Os left.
1055
1056	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057	 * barrier bucket index which this I/O request hits. When all sync and
1058	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060	 * in handle_read_error(), we may call freeze_array() before trying to
1061	 * fix the read error. In this case, the error read I/O is not queued,
1062	 * so get_unqueued_pending() == 1.
1063	 *
1064	 * Therefore before this function returns, we need to wait until
1065	 * get_unqueued_pendings(conf) gets equal to extra. For
1066	 * normal I/O context, extra is 1, in rested situations extra is 0.
1067	 */
1068	spin_lock_irq(&conf->resync_lock);
1069	conf->array_frozen = 1;
1070	raid1_log(conf->mddev, "wait freeze");
1071	wait_event_lock_irq_cmd(
1072		conf->wait_barrier,
1073		get_unqueued_pending(conf) == extra,
1074		conf->resync_lock,
1075		flush_pending_writes(conf));
1076	spin_unlock_irq(&conf->resync_lock);
1077}
1078static void unfreeze_array(struct r1conf *conf)
1079{
1080	/* reverse the effect of the freeze */
1081	spin_lock_irq(&conf->resync_lock);
1082	conf->array_frozen = 0;
1083	spin_unlock_irq(&conf->resync_lock);
1084	wake_up(&conf->wait_barrier);
1085}
1086
1087static void alloc_behind_master_bio(struct r1bio *r1_bio,
1088					   struct bio *bio)
1089{
1090	int size = bio->bi_iter.bi_size;
1091	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092	int i = 0;
1093	struct bio *behind_bio = NULL;
1094
1095	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096	if (!behind_bio)
1097		return;
1098
1099	/* discard op, we don't support writezero/writesame yet */
1100	if (!bio_has_data(bio)) {
1101		behind_bio->bi_iter.bi_size = size;
1102		goto skip_copy;
1103	}
1104
1105	behind_bio->bi_write_hint = bio->bi_write_hint;
1106
1107	while (i < vcnt && size) {
1108		struct page *page;
1109		int len = min_t(int, PAGE_SIZE, size);
1110
1111		page = alloc_page(GFP_NOIO);
1112		if (unlikely(!page))
1113			goto free_pages;
1114
1115		bio_add_page(behind_bio, page, len, 0);
 
 
 
1116
1117		size -= len;
1118		i++;
1119	}
1120
1121	bio_copy_data(behind_bio, bio);
1122skip_copy:
1123	r1_bio->behind_master_bio = behind_bio;
1124	set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126	return;
1127
1128free_pages:
1129	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130		 bio->bi_iter.bi_size);
1131	bio_free_pages(behind_bio);
1132	bio_put(behind_bio);
1133}
1134
1135struct raid1_plug_cb {
1136	struct blk_plug_cb	cb;
1137	struct bio_list		pending;
1138	int			pending_cnt;
1139};
1140
1141static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142{
1143	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144						  cb);
1145	struct mddev *mddev = plug->cb.data;
1146	struct r1conf *conf = mddev->private;
1147	struct bio *bio;
1148
1149	if (from_schedule || current->bio_list) {
1150		spin_lock_irq(&conf->device_lock);
1151		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152		conf->pending_count += plug->pending_cnt;
1153		spin_unlock_irq(&conf->device_lock);
1154		wake_up(&conf->wait_barrier);
1155		md_wakeup_thread(mddev->thread);
1156		kfree(plug);
1157		return;
1158	}
1159
1160	/* we aren't scheduling, so we can do the write-out directly. */
1161	bio = bio_list_get(&plug->pending);
1162	flush_bio_list(conf, bio);
1163	kfree(plug);
1164}
1165
1166static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167{
1168	r1_bio->master_bio = bio;
1169	r1_bio->sectors = bio_sectors(bio);
1170	r1_bio->state = 0;
1171	r1_bio->mddev = mddev;
1172	r1_bio->sector = bio->bi_iter.bi_sector;
1173}
1174
1175static inline struct r1bio *
1176alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177{
1178	struct r1conf *conf = mddev->private;
1179	struct r1bio *r1_bio;
1180
1181	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1182	/* Ensure no bio records IO_BLOCKED */
1183	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184	init_r1bio(r1_bio, mddev, bio);
1185	return r1_bio;
1186}
1187
1188static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189			       int max_read_sectors, struct r1bio *r1_bio)
1190{
1191	struct r1conf *conf = mddev->private;
1192	struct raid1_info *mirror;
1193	struct bio *read_bio;
1194	struct bitmap *bitmap = mddev->bitmap;
1195	const int op = bio_op(bio);
1196	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1197	int max_sectors;
1198	int rdisk;
1199	bool print_msg = !!r1_bio;
1200	char b[BDEVNAME_SIZE];
1201
1202	/*
1203	 * If r1_bio is set, we are blocking the raid1d thread
1204	 * so there is a tiny risk of deadlock.  So ask for
1205	 * emergency memory if needed.
1206	 */
1207	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208
1209	if (print_msg) {
1210		/* Need to get the block device name carefully */
1211		struct md_rdev *rdev;
1212		rcu_read_lock();
1213		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214		if (rdev)
1215			bdevname(rdev->bdev, b);
1216		else
1217			strcpy(b, "???");
1218		rcu_read_unlock();
1219	}
1220
1221	/*
1222	 * Still need barrier for READ in case that whole
1223	 * array is frozen.
1224	 */
1225	wait_read_barrier(conf, bio->bi_iter.bi_sector);
 
 
 
 
1226
1227	if (!r1_bio)
1228		r1_bio = alloc_r1bio(mddev, bio);
1229	else
1230		init_r1bio(r1_bio, mddev, bio);
1231	r1_bio->sectors = max_read_sectors;
1232
1233	/*
1234	 * make_request() can abort the operation when read-ahead is being
1235	 * used and no empty request is available.
1236	 */
1237	rdisk = read_balance(conf, r1_bio, &max_sectors);
1238
1239	if (rdisk < 0) {
1240		/* couldn't find anywhere to read from */
1241		if (print_msg) {
1242			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243					    mdname(mddev),
1244					    b,
1245					    (unsigned long long)r1_bio->sector);
1246		}
1247		raid_end_bio_io(r1_bio);
1248		return;
1249	}
1250	mirror = conf->mirrors + rdisk;
1251
1252	if (print_msg)
1253		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254				    mdname(mddev),
1255				    (unsigned long long)r1_bio->sector,
1256				    bdevname(mirror->rdev->bdev, b));
1257
1258	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259	    bitmap) {
1260		/*
1261		 * Reading from a write-mostly device must take care not to
1262		 * over-take any writes that are 'behind'
1263		 */
1264		raid1_log(mddev, "wait behind writes");
1265		wait_event(bitmap->behind_wait,
1266			   atomic_read(&bitmap->behind_writes) == 0);
1267	}
1268
1269	if (max_sectors < bio_sectors(bio)) {
1270		struct bio *split = bio_split(bio, max_sectors,
1271					      gfp, conf->bio_split);
1272		bio_chain(split, bio);
1273		generic_make_request(bio);
1274		bio = split;
1275		r1_bio->master_bio = bio;
1276		r1_bio->sectors = max_sectors;
1277	}
1278
1279	r1_bio->read_disk = rdisk;
1280
1281	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
 
 
 
 
1282
1283	r1_bio->bios[rdisk] = read_bio;
1284
1285	read_bio->bi_iter.bi_sector = r1_bio->sector +
1286		mirror->rdev->data_offset;
1287	bio_set_dev(read_bio, mirror->rdev->bdev);
1288	read_bio->bi_end_io = raid1_end_read_request;
1289	bio_set_op_attrs(read_bio, op, do_sync);
1290	if (test_bit(FailFast, &mirror->rdev->flags) &&
1291	    test_bit(R1BIO_FailFast, &r1_bio->state))
1292	        read_bio->bi_opf |= MD_FAILFAST;
1293	read_bio->bi_private = r1_bio;
1294
1295	if (mddev->gendisk)
1296	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1297				disk_devt(mddev->gendisk), r1_bio->sector);
1298
1299	generic_make_request(read_bio);
1300}
1301
1302static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1303				int max_write_sectors)
1304{
1305	struct r1conf *conf = mddev->private;
1306	struct r1bio *r1_bio;
1307	int i, disks;
1308	struct bitmap *bitmap = mddev->bitmap;
1309	unsigned long flags;
1310	struct md_rdev *blocked_rdev;
1311	struct blk_plug_cb *cb;
1312	struct raid1_plug_cb *plug = NULL;
1313	int first_clone;
1314	int max_sectors;
 
 
1315
1316	if (mddev_is_clustered(mddev) &&
1317	     md_cluster_ops->area_resyncing(mddev, WRITE,
1318		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1319
1320		DEFINE_WAIT(w);
 
 
 
 
1321		for (;;) {
1322			prepare_to_wait(&conf->wait_barrier,
1323					&w, TASK_IDLE);
1324			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325							bio->bi_iter.bi_sector,
1326							bio_end_sector(bio)))
1327				break;
1328			schedule();
1329		}
1330		finish_wait(&conf->wait_barrier, &w);
1331	}
1332
1333	/*
1334	 * Register the new request and wait if the reconstruction
1335	 * thread has put up a bar for new requests.
1336	 * Continue immediately if no resync is active currently.
1337	 */
1338	wait_barrier(conf, bio->bi_iter.bi_sector);
 
 
 
 
1339
 
1340	r1_bio = alloc_r1bio(mddev, bio);
1341	r1_bio->sectors = max_write_sectors;
1342
1343	if (conf->pending_count >= max_queued_requests) {
1344		md_wakeup_thread(mddev->thread);
1345		raid1_log(mddev, "wait queued");
1346		wait_event(conf->wait_barrier,
1347			   conf->pending_count < max_queued_requests);
1348	}
1349	/* first select target devices under rcu_lock and
1350	 * inc refcount on their rdev.  Record them by setting
1351	 * bios[x] to bio
1352	 * If there are known/acknowledged bad blocks on any device on
1353	 * which we have seen a write error, we want to avoid writing those
1354	 * blocks.
1355	 * This potentially requires several writes to write around
1356	 * the bad blocks.  Each set of writes gets it's own r1bio
1357	 * with a set of bios attached.
1358	 */
1359
1360	disks = conf->raid_disks * 2;
1361 retry_write:
1362	blocked_rdev = NULL;
1363	rcu_read_lock();
1364	max_sectors = r1_bio->sectors;
1365	for (i = 0;  i < disks; i++) {
1366		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 
 
 
 
 
 
1367		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368			atomic_inc(&rdev->nr_pending);
1369			blocked_rdev = rdev;
1370			break;
1371		}
1372		r1_bio->bios[i] = NULL;
1373		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1374			if (i < conf->raid_disks)
1375				set_bit(R1BIO_Degraded, &r1_bio->state);
1376			continue;
1377		}
1378
1379		atomic_inc(&rdev->nr_pending);
1380		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381			sector_t first_bad;
1382			int bad_sectors;
1383			int is_bad;
1384
1385			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1386					     &first_bad, &bad_sectors);
1387			if (is_bad < 0) {
1388				/* mustn't write here until the bad block is
1389				 * acknowledged*/
1390				set_bit(BlockedBadBlocks, &rdev->flags);
1391				blocked_rdev = rdev;
1392				break;
1393			}
1394			if (is_bad && first_bad <= r1_bio->sector) {
1395				/* Cannot write here at all */
1396				bad_sectors -= (r1_bio->sector - first_bad);
1397				if (bad_sectors < max_sectors)
1398					/* mustn't write more than bad_sectors
1399					 * to other devices yet
1400					 */
1401					max_sectors = bad_sectors;
1402				rdev_dec_pending(rdev, mddev);
1403				/* We don't set R1BIO_Degraded as that
1404				 * only applies if the disk is
1405				 * missing, so it might be re-added,
1406				 * and we want to know to recover this
1407				 * chunk.
1408				 * In this case the device is here,
1409				 * and the fact that this chunk is not
1410				 * in-sync is recorded in the bad
1411				 * block log
1412				 */
1413				continue;
1414			}
1415			if (is_bad) {
1416				int good_sectors = first_bad - r1_bio->sector;
1417				if (good_sectors < max_sectors)
1418					max_sectors = good_sectors;
1419			}
1420		}
1421		r1_bio->bios[i] = bio;
1422	}
1423	rcu_read_unlock();
1424
1425	if (unlikely(blocked_rdev)) {
1426		/* Wait for this device to become unblocked */
1427		int j;
1428
1429		for (j = 0; j < i; j++)
1430			if (r1_bio->bios[j])
1431				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1432		r1_bio->state = 0;
1433		allow_barrier(conf, bio->bi_iter.bi_sector);
 
 
 
 
 
1434		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1435		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1436		wait_barrier(conf, bio->bi_iter.bi_sector);
1437		goto retry_write;
1438	}
1439
 
 
 
 
 
 
 
 
 
1440	if (max_sectors < bio_sectors(bio)) {
1441		struct bio *split = bio_split(bio, max_sectors,
1442					      GFP_NOIO, conf->bio_split);
1443		bio_chain(split, bio);
1444		generic_make_request(bio);
1445		bio = split;
1446		r1_bio->master_bio = bio;
1447		r1_bio->sectors = max_sectors;
1448	}
1449
 
 
1450	atomic_set(&r1_bio->remaining, 1);
1451	atomic_set(&r1_bio->behind_remaining, 0);
1452
1453	first_clone = 1;
1454
1455	for (i = 0; i < disks; i++) {
1456		struct bio *mbio = NULL;
 
1457		if (!r1_bio->bios[i])
1458			continue;
1459
1460
1461		if (first_clone) {
1462			/* do behind I/O ?
1463			 * Not if there are too many, or cannot
1464			 * allocate memory, or a reader on WriteMostly
1465			 * is waiting for behind writes to flush */
1466			if (bitmap &&
1467			    (atomic_read(&bitmap->behind_writes)
1468			     < mddev->bitmap_info.max_write_behind) &&
1469			    !waitqueue_active(&bitmap->behind_wait)) {
1470				alloc_behind_master_bio(r1_bio, bio);
1471			}
1472
1473			bitmap_startwrite(bitmap, r1_bio->sector,
1474					  r1_bio->sectors,
1475					  test_bit(R1BIO_BehindIO,
1476						   &r1_bio->state));
1477			first_clone = 0;
1478		}
1479
1480		if (r1_bio->behind_master_bio)
1481			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482					      GFP_NOIO, mddev->bio_set);
1483		else
1484			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1485
1486		if (r1_bio->behind_master_bio) {
1487			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 
 
 
 
 
1488				atomic_inc(&r1_bio->behind_remaining);
 
 
 
 
 
 
1489		}
1490
1491		r1_bio->bios[i] = mbio;
1492
1493		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1494				   conf->mirrors[i].rdev->data_offset);
1495		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1496		mbio->bi_end_io	= raid1_end_write_request;
1497		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500		    conf->raid_disks - mddev->degraded > 1)
1501			mbio->bi_opf |= MD_FAILFAST;
1502		mbio->bi_private = r1_bio;
1503
1504		atomic_inc(&r1_bio->remaining);
1505
1506		if (mddev->gendisk)
1507			trace_block_bio_remap(mbio->bi_disk->queue,
1508					      mbio, disk_devt(mddev->gendisk),
1509					      r1_bio->sector);
1510		/* flush_pending_writes() needs access to the rdev so...*/
1511		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1512
1513		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514		if (cb)
1515			plug = container_of(cb, struct raid1_plug_cb, cb);
1516		else
1517			plug = NULL;
1518		if (plug) {
1519			bio_list_add(&plug->pending, mbio);
1520			plug->pending_cnt++;
1521		} else {
1522			spin_lock_irqsave(&conf->device_lock, flags);
1523			bio_list_add(&conf->pending_bio_list, mbio);
1524			conf->pending_count++;
1525			spin_unlock_irqrestore(&conf->device_lock, flags);
1526			md_wakeup_thread(mddev->thread);
1527		}
1528	}
1529
1530	r1_bio_write_done(r1_bio);
1531
1532	/* In case raid1d snuck in to freeze_array */
1533	wake_up(&conf->wait_barrier);
1534}
1535
1536static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1537{
1538	sector_t sectors;
1539
1540	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1541		md_flush_request(mddev, bio);
1542		return true;
1543	}
1544
1545	/*
1546	 * There is a limit to the maximum size, but
1547	 * the read/write handler might find a lower limit
1548	 * due to bad blocks.  To avoid multiple splits,
1549	 * we pass the maximum number of sectors down
1550	 * and let the lower level perform the split.
1551	 */
1552	sectors = align_to_barrier_unit_end(
1553		bio->bi_iter.bi_sector, bio_sectors(bio));
1554
1555	if (bio_data_dir(bio) == READ)
1556		raid1_read_request(mddev, bio, sectors, NULL);
1557	else {
1558		if (!md_write_start(mddev,bio))
1559			return false;
1560		raid1_write_request(mddev, bio, sectors);
1561	}
1562	return true;
1563}
1564
1565static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1566{
1567	struct r1conf *conf = mddev->private;
1568	int i;
1569
 
 
1570	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1571		   conf->raid_disks - mddev->degraded);
1572	rcu_read_lock();
1573	for (i = 0; i < conf->raid_disks; i++) {
1574		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
1575		seq_printf(seq, "%s",
1576			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577	}
1578	rcu_read_unlock();
1579	seq_printf(seq, "]");
1580}
1581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1583{
1584	char b[BDEVNAME_SIZE];
1585	struct r1conf *conf = mddev->private;
1586	unsigned long flags;
1587
1588	/*
1589	 * If it is not operational, then we have already marked it as dead
1590	 * else if it is the last working disks, ignore the error, let the
1591	 * next level up know.
1592	 * else mark the drive as failed
1593	 */
1594	spin_lock_irqsave(&conf->device_lock, flags);
1595	if (test_bit(In_sync, &rdev->flags)
1596	    && (conf->raid_disks - mddev->degraded) == 1) {
1597		/*
1598		 * Don't fail the drive, act as though we were just a
1599		 * normal single drive.
1600		 * However don't try a recovery from this drive as
1601		 * it is very likely to fail.
1602		 */
1603		conf->recovery_disabled = mddev->recovery_disabled;
1604		spin_unlock_irqrestore(&conf->device_lock, flags);
1605		return;
1606	}
1607	set_bit(Blocked, &rdev->flags);
1608	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1609		mddev->degraded++;
1610		set_bit(Faulty, &rdev->flags);
1611	} else
1612		set_bit(Faulty, &rdev->flags);
1613	spin_unlock_irqrestore(&conf->device_lock, flags);
1614	/*
1615	 * if recovery is running, make sure it aborts.
1616	 */
1617	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1618	set_mask_bits(&mddev->sb_flags, 0,
1619		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1620	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1621		"md/raid1:%s: Operation continuing on %d devices.\n",
1622		mdname(mddev), bdevname(rdev->bdev, b),
1623		mdname(mddev), conf->raid_disks - mddev->degraded);
1624}
1625
1626static void print_conf(struct r1conf *conf)
1627{
1628	int i;
1629
1630	pr_debug("RAID1 conf printout:\n");
1631	if (!conf) {
1632		pr_debug("(!conf)\n");
1633		return;
1634	}
1635	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1636		 conf->raid_disks);
1637
1638	rcu_read_lock();
1639	for (i = 0; i < conf->raid_disks; i++) {
1640		char b[BDEVNAME_SIZE];
1641		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1642		if (rdev)
1643			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1644				 i, !test_bit(In_sync, &rdev->flags),
1645				 !test_bit(Faulty, &rdev->flags),
1646				 bdevname(rdev->bdev,b));
1647	}
1648	rcu_read_unlock();
1649}
1650
1651static void close_sync(struct r1conf *conf)
1652{
1653	int idx;
1654
1655	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1656		_wait_barrier(conf, idx);
1657		_allow_barrier(conf, idx);
1658	}
1659
1660	mempool_destroy(conf->r1buf_pool);
1661	conf->r1buf_pool = NULL;
1662}
1663
1664static int raid1_spare_active(struct mddev *mddev)
1665{
1666	int i;
1667	struct r1conf *conf = mddev->private;
1668	int count = 0;
1669	unsigned long flags;
1670
1671	/*
1672	 * Find all failed disks within the RAID1 configuration
1673	 * and mark them readable.
1674	 * Called under mddev lock, so rcu protection not needed.
1675	 * device_lock used to avoid races with raid1_end_read_request
1676	 * which expects 'In_sync' flags and ->degraded to be consistent.
1677	 */
1678	spin_lock_irqsave(&conf->device_lock, flags);
1679	for (i = 0; i < conf->raid_disks; i++) {
1680		struct md_rdev *rdev = conf->mirrors[i].rdev;
1681		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682		if (repl
1683		    && !test_bit(Candidate, &repl->flags)
1684		    && repl->recovery_offset == MaxSector
1685		    && !test_bit(Faulty, &repl->flags)
1686		    && !test_and_set_bit(In_sync, &repl->flags)) {
1687			/* replacement has just become active */
1688			if (!rdev ||
1689			    !test_and_clear_bit(In_sync, &rdev->flags))
1690				count++;
1691			if (rdev) {
1692				/* Replaced device not technically
1693				 * faulty, but we need to be sure
1694				 * it gets removed and never re-added
1695				 */
1696				set_bit(Faulty, &rdev->flags);
1697				sysfs_notify_dirent_safe(
1698					rdev->sysfs_state);
1699			}
1700		}
1701		if (rdev
1702		    && rdev->recovery_offset == MaxSector
1703		    && !test_bit(Faulty, &rdev->flags)
1704		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1705			count++;
1706			sysfs_notify_dirent_safe(rdev->sysfs_state);
1707		}
1708	}
1709	mddev->degraded -= count;
1710	spin_unlock_irqrestore(&conf->device_lock, flags);
1711
1712	print_conf(conf);
1713	return count;
1714}
1715
1716static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717{
1718	struct r1conf *conf = mddev->private;
1719	int err = -EEXIST;
1720	int mirror = 0;
1721	struct raid1_info *p;
1722	int first = 0;
1723	int last = conf->raid_disks - 1;
1724
1725	if (mddev->recovery_disabled == conf->recovery_disabled)
1726		return -EBUSY;
1727
1728	if (md_integrity_add_rdev(rdev, mddev))
1729		return -ENXIO;
1730
1731	if (rdev->raid_disk >= 0)
1732		first = last = rdev->raid_disk;
1733
1734	/*
1735	 * find the disk ... but prefer rdev->saved_raid_disk
1736	 * if possible.
1737	 */
1738	if (rdev->saved_raid_disk >= 0 &&
1739	    rdev->saved_raid_disk >= first &&
 
1740	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741		first = last = rdev->saved_raid_disk;
1742
1743	for (mirror = first; mirror <= last; mirror++) {
1744		p = conf->mirrors+mirror;
1745		if (!p->rdev) {
1746
1747			if (mddev->gendisk)
1748				disk_stack_limits(mddev->gendisk, rdev->bdev,
1749						  rdev->data_offset << 9);
1750
1751			p->head_position = 0;
1752			rdev->raid_disk = mirror;
1753			err = 0;
1754			/* As all devices are equivalent, we don't need a full recovery
1755			 * if this was recently any drive of the array
1756			 */
1757			if (rdev->saved_raid_disk < 0)
1758				conf->fullsync = 1;
1759			rcu_assign_pointer(p->rdev, rdev);
1760			break;
1761		}
1762		if (test_bit(WantReplacement, &p->rdev->flags) &&
1763		    p[conf->raid_disks].rdev == NULL) {
1764			/* Add this device as a replacement */
1765			clear_bit(In_sync, &rdev->flags);
1766			set_bit(Replacement, &rdev->flags);
1767			rdev->raid_disk = mirror;
1768			err = 0;
1769			conf->fullsync = 1;
1770			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771			break;
1772		}
 
 
 
1773	}
1774	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1776	print_conf(conf);
1777	return err;
1778}
1779
1780static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781{
1782	struct r1conf *conf = mddev->private;
1783	int err = 0;
1784	int number = rdev->raid_disk;
1785	struct raid1_info *p = conf->mirrors + number;
1786
 
 
 
1787	if (rdev != p->rdev)
1788		p = conf->mirrors + conf->raid_disks + number;
1789
1790	print_conf(conf);
1791	if (rdev == p->rdev) {
1792		if (test_bit(In_sync, &rdev->flags) ||
1793		    atomic_read(&rdev->nr_pending)) {
1794			err = -EBUSY;
1795			goto abort;
1796		}
1797		/* Only remove non-faulty devices if recovery
1798		 * is not possible.
1799		 */
1800		if (!test_bit(Faulty, &rdev->flags) &&
1801		    mddev->recovery_disabled != conf->recovery_disabled &&
1802		    mddev->degraded < conf->raid_disks) {
1803			err = -EBUSY;
1804			goto abort;
1805		}
1806		p->rdev = NULL;
1807		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808			synchronize_rcu();
1809			if (atomic_read(&rdev->nr_pending)) {
1810				/* lost the race, try later */
1811				err = -EBUSY;
1812				p->rdev = rdev;
1813				goto abort;
1814			}
1815		}
1816		if (conf->mirrors[conf->raid_disks + number].rdev) {
1817			/* We just removed a device that is being replaced.
1818			 * Move down the replacement.  We drain all IO before
1819			 * doing this to avoid confusion.
1820			 */
1821			struct md_rdev *repl =
1822				conf->mirrors[conf->raid_disks + number].rdev;
1823			freeze_array(conf, 0);
1824			if (atomic_read(&repl->nr_pending)) {
1825				/* It means that some queued IO of retry_list
1826				 * hold repl. Thus, we cannot set replacement
1827				 * as NULL, avoiding rdev NULL pointer
1828				 * dereference in sync_request_write and
1829				 * handle_write_finished.
1830				 */
1831				err = -EBUSY;
1832				unfreeze_array(conf);
1833				goto abort;
1834			}
1835			clear_bit(Replacement, &repl->flags);
1836			p->rdev = repl;
1837			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1838			unfreeze_array(conf);
1839		}
1840
1841		clear_bit(WantReplacement, &rdev->flags);
1842		err = md_integrity_register(mddev);
1843	}
1844abort:
1845
1846	print_conf(conf);
1847	return err;
1848}
1849
1850static void end_sync_read(struct bio *bio)
1851{
1852	struct r1bio *r1_bio = get_resync_r1bio(bio);
1853
1854	update_head_pos(r1_bio->read_disk, r1_bio);
1855
1856	/*
1857	 * we have read a block, now it needs to be re-written,
1858	 * or re-read if the read failed.
1859	 * We don't do much here, just schedule handling by raid1d
1860	 */
1861	if (!bio->bi_status)
1862		set_bit(R1BIO_Uptodate, &r1_bio->state);
1863
1864	if (atomic_dec_and_test(&r1_bio->remaining))
1865		reschedule_retry(r1_bio);
1866}
1867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868static void end_sync_write(struct bio *bio)
1869{
1870	int uptodate = !bio->bi_status;
1871	struct r1bio *r1_bio = get_resync_r1bio(bio);
1872	struct mddev *mddev = r1_bio->mddev;
1873	struct r1conf *conf = mddev->private;
1874	sector_t first_bad;
1875	int bad_sectors;
1876	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1877
1878	if (!uptodate) {
1879		sector_t sync_blocks = 0;
1880		sector_t s = r1_bio->sector;
1881		long sectors_to_go = r1_bio->sectors;
1882		/* make sure these bits doesn't get cleared. */
1883		do {
1884			bitmap_end_sync(mddev->bitmap, s,
1885					&sync_blocks, 1);
1886			s += sync_blocks;
1887			sectors_to_go -= sync_blocks;
1888		} while (sectors_to_go > 0);
1889		set_bit(WriteErrorSeen, &rdev->flags);
1890		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1891			set_bit(MD_RECOVERY_NEEDED, &
1892				mddev->recovery);
1893		set_bit(R1BIO_WriteError, &r1_bio->state);
1894	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1895			       &first_bad, &bad_sectors) &&
1896		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1897				r1_bio->sector,
1898				r1_bio->sectors,
1899				&first_bad, &bad_sectors)
1900		)
1901		set_bit(R1BIO_MadeGood, &r1_bio->state);
1902
1903	if (atomic_dec_and_test(&r1_bio->remaining)) {
1904		int s = r1_bio->sectors;
1905		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1906		    test_bit(R1BIO_WriteError, &r1_bio->state))
1907			reschedule_retry(r1_bio);
1908		else {
1909			put_buf(r1_bio);
1910			md_done_sync(mddev, s, uptodate);
1911		}
1912	}
1913}
1914
1915static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1916			    int sectors, struct page *page, int rw)
1917{
1918	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1919		/* success */
1920		return 1;
1921	if (rw == WRITE) {
1922		set_bit(WriteErrorSeen, &rdev->flags);
1923		if (!test_and_set_bit(WantReplacement,
1924				      &rdev->flags))
1925			set_bit(MD_RECOVERY_NEEDED, &
1926				rdev->mddev->recovery);
1927	}
1928	/* need to record an error - either for the block or the device */
1929	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1930		md_error(rdev->mddev, rdev);
1931	return 0;
1932}
1933
1934static int fix_sync_read_error(struct r1bio *r1_bio)
1935{
1936	/* Try some synchronous reads of other devices to get
1937	 * good data, much like with normal read errors.  Only
1938	 * read into the pages we already have so we don't
1939	 * need to re-issue the read request.
1940	 * We don't need to freeze the array, because being in an
1941	 * active sync request, there is no normal IO, and
1942	 * no overlapping syncs.
1943	 * We don't need to check is_badblock() again as we
1944	 * made sure that anything with a bad block in range
1945	 * will have bi_end_io clear.
1946	 */
1947	struct mddev *mddev = r1_bio->mddev;
1948	struct r1conf *conf = mddev->private;
1949	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1950	struct page **pages = get_resync_pages(bio)->pages;
1951	sector_t sect = r1_bio->sector;
1952	int sectors = r1_bio->sectors;
1953	int idx = 0;
1954	struct md_rdev *rdev;
1955
1956	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1957	if (test_bit(FailFast, &rdev->flags)) {
1958		/* Don't try recovering from here - just fail it
1959		 * ... unless it is the last working device of course */
1960		md_error(mddev, rdev);
1961		if (test_bit(Faulty, &rdev->flags))
1962			/* Don't try to read from here, but make sure
1963			 * put_buf does it's thing
1964			 */
1965			bio->bi_end_io = end_sync_write;
1966	}
1967
1968	while(sectors) {
1969		int s = sectors;
1970		int d = r1_bio->read_disk;
1971		int success = 0;
1972		int start;
1973
1974		if (s > (PAGE_SIZE>>9))
1975			s = PAGE_SIZE >> 9;
1976		do {
1977			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1978				/* No rcu protection needed here devices
1979				 * can only be removed when no resync is
1980				 * active, and resync is currently active
1981				 */
1982				rdev = conf->mirrors[d].rdev;
1983				if (sync_page_io(rdev, sect, s<<9,
1984						 pages[idx],
1985						 REQ_OP_READ, 0, false)) {
1986					success = 1;
1987					break;
1988				}
1989			}
1990			d++;
1991			if (d == conf->raid_disks * 2)
1992				d = 0;
1993		} while (!success && d != r1_bio->read_disk);
1994
1995		if (!success) {
1996			char b[BDEVNAME_SIZE];
1997			int abort = 0;
1998			/* Cannot read from anywhere, this block is lost.
1999			 * Record a bad block on each device.  If that doesn't
2000			 * work just disable and interrupt the recovery.
2001			 * Don't fail devices as that won't really help.
2002			 */
2003			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2004					    mdname(mddev), bio_devname(bio, b),
2005					    (unsigned long long)r1_bio->sector);
2006			for (d = 0; d < conf->raid_disks * 2; d++) {
2007				rdev = conf->mirrors[d].rdev;
2008				if (!rdev || test_bit(Faulty, &rdev->flags))
2009					continue;
2010				if (!rdev_set_badblocks(rdev, sect, s, 0))
2011					abort = 1;
2012			}
2013			if (abort) {
2014				conf->recovery_disabled =
2015					mddev->recovery_disabled;
2016				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2017				md_done_sync(mddev, r1_bio->sectors, 0);
2018				put_buf(r1_bio);
2019				return 0;
2020			}
2021			/* Try next page */
2022			sectors -= s;
2023			sect += s;
2024			idx++;
2025			continue;
2026		}
2027
2028		start = d;
2029		/* write it back and re-read */
2030		while (d != r1_bio->read_disk) {
2031			if (d == 0)
2032				d = conf->raid_disks * 2;
2033			d--;
2034			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2035				continue;
2036			rdev = conf->mirrors[d].rdev;
2037			if (r1_sync_page_io(rdev, sect, s,
2038					    pages[idx],
2039					    WRITE) == 0) {
2040				r1_bio->bios[d]->bi_end_io = NULL;
2041				rdev_dec_pending(rdev, mddev);
2042			}
2043		}
2044		d = start;
2045		while (d != r1_bio->read_disk) {
2046			if (d == 0)
2047				d = conf->raid_disks * 2;
2048			d--;
2049			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2050				continue;
2051			rdev = conf->mirrors[d].rdev;
2052			if (r1_sync_page_io(rdev, sect, s,
2053					    pages[idx],
2054					    READ) != 0)
2055				atomic_add(s, &rdev->corrected_errors);
2056		}
2057		sectors -= s;
2058		sect += s;
2059		idx ++;
2060	}
2061	set_bit(R1BIO_Uptodate, &r1_bio->state);
2062	bio->bi_status = 0;
2063	return 1;
2064}
2065
2066static void process_checks(struct r1bio *r1_bio)
2067{
2068	/* We have read all readable devices.  If we haven't
2069	 * got the block, then there is no hope left.
2070	 * If we have, then we want to do a comparison
2071	 * and skip the write if everything is the same.
2072	 * If any blocks failed to read, then we need to
2073	 * attempt an over-write
2074	 */
2075	struct mddev *mddev = r1_bio->mddev;
2076	struct r1conf *conf = mddev->private;
2077	int primary;
2078	int i;
2079	int vcnt;
2080
2081	/* Fix variable parts of all bios */
2082	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2083	for (i = 0; i < conf->raid_disks * 2; i++) {
2084		blk_status_t status;
2085		struct bio *b = r1_bio->bios[i];
2086		struct resync_pages *rp = get_resync_pages(b);
2087		if (b->bi_end_io != end_sync_read)
2088			continue;
2089		/* fixup the bio for reuse, but preserve errno */
2090		status = b->bi_status;
2091		bio_reset(b);
2092		b->bi_status = status;
2093		b->bi_iter.bi_sector = r1_bio->sector +
2094			conf->mirrors[i].rdev->data_offset;
2095		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2096		b->bi_end_io = end_sync_read;
2097		rp->raid_bio = r1_bio;
2098		b->bi_private = rp;
2099
2100		/* initialize bvec table again */
2101		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2102	}
2103	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2104		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2105		    !r1_bio->bios[primary]->bi_status) {
2106			r1_bio->bios[primary]->bi_end_io = NULL;
2107			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2108			break;
2109		}
2110	r1_bio->read_disk = primary;
2111	for (i = 0; i < conf->raid_disks * 2; i++) {
2112		int j;
2113		struct bio *pbio = r1_bio->bios[primary];
2114		struct bio *sbio = r1_bio->bios[i];
2115		blk_status_t status = sbio->bi_status;
2116		struct page **ppages = get_resync_pages(pbio)->pages;
2117		struct page **spages = get_resync_pages(sbio)->pages;
2118		struct bio_vec *bi;
2119		int page_len[RESYNC_PAGES] = { 0 };
 
2120
2121		if (sbio->bi_end_io != end_sync_read)
2122			continue;
2123		/* Now we can 'fixup' the error value */
2124		sbio->bi_status = 0;
2125
2126		bio_for_each_segment_all(bi, sbio, j)
2127			page_len[j] = bi->bv_len;
2128
2129		if (!status) {
2130			for (j = vcnt; j-- ; ) {
2131				if (memcmp(page_address(ppages[j]),
2132					   page_address(spages[j]),
2133					   page_len[j]))
2134					break;
2135			}
2136		} else
2137			j = 0;
2138		if (j >= 0)
2139			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2140		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2141			      && !status)) {
2142			/* No need to write to this device. */
2143			sbio->bi_end_io = NULL;
2144			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2145			continue;
2146		}
2147
2148		bio_copy_data(sbio, pbio);
2149	}
2150}
2151
2152static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2153{
2154	struct r1conf *conf = mddev->private;
2155	int i;
2156	int disks = conf->raid_disks * 2;
2157	struct bio *wbio;
2158
2159	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2160		/* ouch - failed to read all of that. */
2161		if (!fix_sync_read_error(r1_bio))
2162			return;
2163
2164	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2165		process_checks(r1_bio);
2166
2167	/*
2168	 * schedule writes
2169	 */
2170	atomic_set(&r1_bio->remaining, 1);
2171	for (i = 0; i < disks ; i++) {
2172		wbio = r1_bio->bios[i];
2173		if (wbio->bi_end_io == NULL ||
2174		    (wbio->bi_end_io == end_sync_read &&
2175		     (i == r1_bio->read_disk ||
2176		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2177			continue;
2178		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
 
2179			continue;
 
2180
2181		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2182		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2183			wbio->bi_opf |= MD_FAILFAST;
2184
2185		wbio->bi_end_io = end_sync_write;
2186		atomic_inc(&r1_bio->remaining);
2187		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2188
2189		generic_make_request(wbio);
2190	}
2191
2192	if (atomic_dec_and_test(&r1_bio->remaining)) {
2193		/* if we're here, all write(s) have completed, so clean up */
2194		int s = r1_bio->sectors;
2195		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2196		    test_bit(R1BIO_WriteError, &r1_bio->state))
2197			reschedule_retry(r1_bio);
2198		else {
2199			put_buf(r1_bio);
2200			md_done_sync(mddev, s, 1);
2201		}
2202	}
2203}
2204
2205/*
2206 * This is a kernel thread which:
2207 *
2208 *	1.	Retries failed read operations on working mirrors.
2209 *	2.	Updates the raid superblock when problems encounter.
2210 *	3.	Performs writes following reads for array synchronising.
2211 */
2212
2213static void fix_read_error(struct r1conf *conf, int read_disk,
2214			   sector_t sect, int sectors)
2215{
 
 
 
2216	struct mddev *mddev = conf->mddev;
 
 
 
 
 
 
 
2217	while(sectors) {
2218		int s = sectors;
2219		int d = read_disk;
2220		int success = 0;
2221		int start;
2222		struct md_rdev *rdev;
2223
2224		if (s > (PAGE_SIZE>>9))
2225			s = PAGE_SIZE >> 9;
2226
2227		do {
2228			sector_t first_bad;
2229			int bad_sectors;
2230
2231			rcu_read_lock();
2232			rdev = rcu_dereference(conf->mirrors[d].rdev);
2233			if (rdev &&
2234			    (test_bit(In_sync, &rdev->flags) ||
2235			     (!test_bit(Faulty, &rdev->flags) &&
2236			      rdev->recovery_offset >= sect + s)) &&
2237			    is_badblock(rdev, sect, s,
2238					&first_bad, &bad_sectors) == 0) {
2239				atomic_inc(&rdev->nr_pending);
2240				rcu_read_unlock();
2241				if (sync_page_io(rdev, sect, s<<9,
2242					 conf->tmppage, REQ_OP_READ, 0, false))
2243					success = 1;
2244				rdev_dec_pending(rdev, mddev);
2245				if (success)
2246					break;
2247			} else
2248				rcu_read_unlock();
2249			d++;
2250			if (d == conf->raid_disks * 2)
2251				d = 0;
2252		} while (!success && d != read_disk);
2253
2254		if (!success) {
2255			/* Cannot read from anywhere - mark it bad */
2256			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2257			if (!rdev_set_badblocks(rdev, sect, s, 0))
2258				md_error(mddev, rdev);
2259			break;
2260		}
2261		/* write it back and re-read */
2262		start = d;
2263		while (d != read_disk) {
2264			if (d==0)
2265				d = conf->raid_disks * 2;
2266			d--;
2267			rcu_read_lock();
2268			rdev = rcu_dereference(conf->mirrors[d].rdev);
2269			if (rdev &&
2270			    !test_bit(Faulty, &rdev->flags)) {
2271				atomic_inc(&rdev->nr_pending);
2272				rcu_read_unlock();
2273				r1_sync_page_io(rdev, sect, s,
2274						conf->tmppage, WRITE);
2275				rdev_dec_pending(rdev, mddev);
2276			} else
2277				rcu_read_unlock();
2278		}
2279		d = start;
2280		while (d != read_disk) {
2281			char b[BDEVNAME_SIZE];
2282			if (d==0)
2283				d = conf->raid_disks * 2;
2284			d--;
2285			rcu_read_lock();
2286			rdev = rcu_dereference(conf->mirrors[d].rdev);
2287			if (rdev &&
2288			    !test_bit(Faulty, &rdev->flags)) {
2289				atomic_inc(&rdev->nr_pending);
2290				rcu_read_unlock();
2291				if (r1_sync_page_io(rdev, sect, s,
2292						    conf->tmppage, READ)) {
2293					atomic_add(s, &rdev->corrected_errors);
2294					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2295						mdname(mddev), s,
2296						(unsigned long long)(sect +
2297								     rdev->data_offset),
2298						bdevname(rdev->bdev, b));
2299				}
2300				rdev_dec_pending(rdev, mddev);
2301			} else
2302				rcu_read_unlock();
2303		}
2304		sectors -= s;
2305		sect += s;
2306	}
2307}
2308
2309static int narrow_write_error(struct r1bio *r1_bio, int i)
2310{
2311	struct mddev *mddev = r1_bio->mddev;
2312	struct r1conf *conf = mddev->private;
2313	struct md_rdev *rdev = conf->mirrors[i].rdev;
2314
2315	/* bio has the data to be written to device 'i' where
2316	 * we just recently had a write error.
2317	 * We repeatedly clone the bio and trim down to one block,
2318	 * then try the write.  Where the write fails we record
2319	 * a bad block.
2320	 * It is conceivable that the bio doesn't exactly align with
2321	 * blocks.  We must handle this somehow.
2322	 *
2323	 * We currently own a reference on the rdev.
2324	 */
2325
2326	int block_sectors;
2327	sector_t sector;
2328	int sectors;
2329	int sect_to_write = r1_bio->sectors;
2330	int ok = 1;
2331
2332	if (rdev->badblocks.shift < 0)
2333		return 0;
2334
2335	block_sectors = roundup(1 << rdev->badblocks.shift,
2336				bdev_logical_block_size(rdev->bdev) >> 9);
2337	sector = r1_bio->sector;
2338	sectors = ((sector + block_sectors)
2339		   & ~(sector_t)(block_sectors - 1))
2340		- sector;
2341
2342	while (sect_to_write) {
2343		struct bio *wbio;
2344		if (sectors > sect_to_write)
2345			sectors = sect_to_write;
2346		/* Write at 'sector' for 'sectors'*/
2347
2348		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2349			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2350					      GFP_NOIO,
2351					      mddev->bio_set);
2352		} else {
2353			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2354					      mddev->bio_set);
2355		}
2356
2357		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2358		wbio->bi_iter.bi_sector = r1_bio->sector;
2359		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2360
2361		bio_trim(wbio, sector - r1_bio->sector, sectors);
2362		wbio->bi_iter.bi_sector += rdev->data_offset;
2363		bio_set_dev(wbio, rdev->bdev);
2364
2365		if (submit_bio_wait(wbio) < 0)
2366			/* failure! */
2367			ok = rdev_set_badblocks(rdev, sector,
2368						sectors, 0)
2369				&& ok;
2370
2371		bio_put(wbio);
2372		sect_to_write -= sectors;
2373		sector += sectors;
2374		sectors = block_sectors;
2375	}
2376	return ok;
2377}
2378
2379static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2380{
2381	int m;
2382	int s = r1_bio->sectors;
2383	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2384		struct md_rdev *rdev = conf->mirrors[m].rdev;
2385		struct bio *bio = r1_bio->bios[m];
2386		if (bio->bi_end_io == NULL)
2387			continue;
2388		if (!bio->bi_status &&
2389		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2390			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2391		}
2392		if (bio->bi_status &&
2393		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2394			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2395				md_error(conf->mddev, rdev);
2396		}
2397	}
2398	put_buf(r1_bio);
2399	md_done_sync(conf->mddev, s, 1);
2400}
2401
2402static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2403{
2404	int m, idx;
2405	bool fail = false;
2406
2407	for (m = 0; m < conf->raid_disks * 2 ; m++)
2408		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2409			struct md_rdev *rdev = conf->mirrors[m].rdev;
2410			rdev_clear_badblocks(rdev,
2411					     r1_bio->sector,
2412					     r1_bio->sectors, 0);
2413			rdev_dec_pending(rdev, conf->mddev);
2414		} else if (r1_bio->bios[m] != NULL) {
2415			/* This drive got a write error.  We need to
2416			 * narrow down and record precise write
2417			 * errors.
2418			 */
2419			fail = true;
2420			if (!narrow_write_error(r1_bio, m)) {
2421				md_error(conf->mddev,
2422					 conf->mirrors[m].rdev);
2423				/* an I/O failed, we can't clear the bitmap */
2424				set_bit(R1BIO_Degraded, &r1_bio->state);
2425			}
2426			rdev_dec_pending(conf->mirrors[m].rdev,
2427					 conf->mddev);
2428		}
2429	if (fail) {
2430		spin_lock_irq(&conf->device_lock);
2431		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2432		idx = sector_to_idx(r1_bio->sector);
2433		atomic_inc(&conf->nr_queued[idx]);
2434		spin_unlock_irq(&conf->device_lock);
2435		/*
2436		 * In case freeze_array() is waiting for condition
2437		 * get_unqueued_pending() == extra to be true.
2438		 */
2439		wake_up(&conf->wait_barrier);
2440		md_wakeup_thread(conf->mddev->thread);
2441	} else {
2442		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2443			close_write(r1_bio);
2444		raid_end_bio_io(r1_bio);
2445	}
2446}
2447
2448static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2449{
2450	struct mddev *mddev = conf->mddev;
2451	struct bio *bio;
2452	struct md_rdev *rdev;
2453	sector_t bio_sector;
2454
2455	clear_bit(R1BIO_ReadError, &r1_bio->state);
2456	/* we got a read error. Maybe the drive is bad.  Maybe just
2457	 * the block and we can fix it.
2458	 * We freeze all other IO, and try reading the block from
2459	 * other devices.  When we find one, we re-write
2460	 * and check it that fixes the read error.
2461	 * This is all done synchronously while the array is
2462	 * frozen
2463	 */
2464
2465	bio = r1_bio->bios[r1_bio->read_disk];
2466	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2467	bio_put(bio);
2468	r1_bio->bios[r1_bio->read_disk] = NULL;
2469
2470	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2471	if (mddev->ro == 0
2472	    && !test_bit(FailFast, &rdev->flags)) {
2473		freeze_array(conf, 1);
2474		fix_read_error(conf, r1_bio->read_disk,
2475			       r1_bio->sector, r1_bio->sectors);
2476		unfreeze_array(conf);
 
 
2477	} else {
2478		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2479	}
2480
2481	rdev_dec_pending(rdev, conf->mddev);
2482	allow_barrier(conf, r1_bio->sector);
2483	bio = r1_bio->master_bio;
2484
2485	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2486	r1_bio->state = 0;
2487	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 
2488}
2489
2490static void raid1d(struct md_thread *thread)
2491{
2492	struct mddev *mddev = thread->mddev;
2493	struct r1bio *r1_bio;
2494	unsigned long flags;
2495	struct r1conf *conf = mddev->private;
2496	struct list_head *head = &conf->retry_list;
2497	struct blk_plug plug;
2498	int idx;
2499
2500	md_check_recovery(mddev);
2501
2502	if (!list_empty_careful(&conf->bio_end_io_list) &&
2503	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2504		LIST_HEAD(tmp);
2505		spin_lock_irqsave(&conf->device_lock, flags);
2506		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2507			list_splice_init(&conf->bio_end_io_list, &tmp);
2508		spin_unlock_irqrestore(&conf->device_lock, flags);
2509		while (!list_empty(&tmp)) {
2510			r1_bio = list_first_entry(&tmp, struct r1bio,
2511						  retry_list);
2512			list_del(&r1_bio->retry_list);
2513			idx = sector_to_idx(r1_bio->sector);
2514			atomic_dec(&conf->nr_queued[idx]);
2515			if (mddev->degraded)
2516				set_bit(R1BIO_Degraded, &r1_bio->state);
2517			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2518				close_write(r1_bio);
2519			raid_end_bio_io(r1_bio);
2520		}
2521	}
2522
2523	blk_start_plug(&plug);
2524	for (;;) {
2525
2526		flush_pending_writes(conf);
2527
2528		spin_lock_irqsave(&conf->device_lock, flags);
2529		if (list_empty(head)) {
2530			spin_unlock_irqrestore(&conf->device_lock, flags);
2531			break;
2532		}
2533		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2534		list_del(head->prev);
2535		idx = sector_to_idx(r1_bio->sector);
2536		atomic_dec(&conf->nr_queued[idx]);
2537		spin_unlock_irqrestore(&conf->device_lock, flags);
2538
2539		mddev = r1_bio->mddev;
2540		conf = mddev->private;
2541		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2542			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2543			    test_bit(R1BIO_WriteError, &r1_bio->state))
2544				handle_sync_write_finished(conf, r1_bio);
2545			else
2546				sync_request_write(mddev, r1_bio);
2547		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2548			   test_bit(R1BIO_WriteError, &r1_bio->state))
2549			handle_write_finished(conf, r1_bio);
2550		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2551			handle_read_error(conf, r1_bio);
2552		else
2553			WARN_ON_ONCE(1);
2554
2555		cond_resched();
2556		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2557			md_check_recovery(mddev);
2558	}
2559	blk_finish_plug(&plug);
2560}
2561
2562static int init_resync(struct r1conf *conf)
2563{
2564	int buffs;
2565
2566	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2567	BUG_ON(conf->r1buf_pool);
2568	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2569					  conf->poolinfo);
2570	if (!conf->r1buf_pool)
2571		return -ENOMEM;
2572	return 0;
2573}
2574
2575static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2576{
2577	struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2578	struct resync_pages *rps;
2579	struct bio *bio;
2580	int i;
2581
2582	for (i = conf->poolinfo->raid_disks; i--; ) {
2583		bio = r1bio->bios[i];
2584		rps = bio->bi_private;
2585		bio_reset(bio);
2586		bio->bi_private = rps;
2587	}
2588	r1bio->master_bio = NULL;
2589	return r1bio;
2590}
2591
2592/*
2593 * perform a "sync" on one "block"
2594 *
2595 * We need to make sure that no normal I/O request - particularly write
2596 * requests - conflict with active sync requests.
2597 *
2598 * This is achieved by tracking pending requests and a 'barrier' concept
2599 * that can be installed to exclude normal IO requests.
2600 */
2601
2602static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2603				   int *skipped)
2604{
2605	struct r1conf *conf = mddev->private;
2606	struct r1bio *r1_bio;
2607	struct bio *bio;
2608	sector_t max_sector, nr_sectors;
2609	int disk = -1;
2610	int i;
2611	int wonly = -1;
2612	int write_targets = 0, read_targets = 0;
2613	sector_t sync_blocks;
2614	int still_degraded = 0;
2615	int good_sectors = RESYNC_SECTORS;
2616	int min_bad = 0; /* number of sectors that are bad in all devices */
2617	int idx = sector_to_idx(sector_nr);
2618	int page_idx = 0;
2619
2620	if (!conf->r1buf_pool)
2621		if (init_resync(conf))
2622			return 0;
2623
2624	max_sector = mddev->dev_sectors;
2625	if (sector_nr >= max_sector) {
2626		/* If we aborted, we need to abort the
2627		 * sync on the 'current' bitmap chunk (there will
2628		 * only be one in raid1 resync.
2629		 * We can find the current addess in mddev->curr_resync
2630		 */
2631		if (mddev->curr_resync < max_sector) /* aborted */
2632			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2633						&sync_blocks, 1);
2634		else /* completed sync */
2635			conf->fullsync = 0;
2636
2637		bitmap_close_sync(mddev->bitmap);
2638		close_sync(conf);
2639
2640		if (mddev_is_clustered(mddev)) {
2641			conf->cluster_sync_low = 0;
2642			conf->cluster_sync_high = 0;
2643		}
2644		return 0;
2645	}
2646
2647	if (mddev->bitmap == NULL &&
2648	    mddev->recovery_cp == MaxSector &&
2649	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2650	    conf->fullsync == 0) {
2651		*skipped = 1;
2652		return max_sector - sector_nr;
2653	}
2654	/* before building a request, check if we can skip these blocks..
2655	 * This call the bitmap_start_sync doesn't actually record anything
2656	 */
2657	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2658	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2659		/* We can skip this block, and probably several more */
2660		*skipped = 1;
2661		return sync_blocks;
2662	}
2663
2664	/*
2665	 * If there is non-resync activity waiting for a turn, then let it
2666	 * though before starting on this new sync request.
2667	 */
2668	if (atomic_read(&conf->nr_waiting[idx]))
2669		schedule_timeout_uninterruptible(1);
2670
2671	/* we are incrementing sector_nr below. To be safe, we check against
2672	 * sector_nr + two times RESYNC_SECTORS
2673	 */
2674
2675	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2676		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2677
2678
2679	if (raise_barrier(conf, sector_nr))
2680		return 0;
2681
2682	r1_bio = raid1_alloc_init_r1buf(conf);
2683
2684	rcu_read_lock();
2685	/*
2686	 * If we get a correctably read error during resync or recovery,
2687	 * we might want to read from a different device.  So we
2688	 * flag all drives that could conceivably be read from for READ,
2689	 * and any others (which will be non-In_sync devices) for WRITE.
2690	 * If a read fails, we try reading from something else for which READ
2691	 * is OK.
2692	 */
2693
2694	r1_bio->mddev = mddev;
2695	r1_bio->sector = sector_nr;
2696	r1_bio->state = 0;
2697	set_bit(R1BIO_IsSync, &r1_bio->state);
2698	/* make sure good_sectors won't go across barrier unit boundary */
2699	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2700
2701	for (i = 0; i < conf->raid_disks * 2; i++) {
2702		struct md_rdev *rdev;
2703		bio = r1_bio->bios[i];
2704
2705		rdev = rcu_dereference(conf->mirrors[i].rdev);
2706		if (rdev == NULL ||
2707		    test_bit(Faulty, &rdev->flags)) {
2708			if (i < conf->raid_disks)
2709				still_degraded = 1;
2710		} else if (!test_bit(In_sync, &rdev->flags)) {
2711			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712			bio->bi_end_io = end_sync_write;
2713			write_targets ++;
2714		} else {
2715			/* may need to read from here */
2716			sector_t first_bad = MaxSector;
2717			int bad_sectors;
2718
2719			if (is_badblock(rdev, sector_nr, good_sectors,
2720					&first_bad, &bad_sectors)) {
2721				if (first_bad > sector_nr)
2722					good_sectors = first_bad - sector_nr;
2723				else {
2724					bad_sectors -= (sector_nr - first_bad);
2725					if (min_bad == 0 ||
2726					    min_bad > bad_sectors)
2727						min_bad = bad_sectors;
2728				}
2729			}
2730			if (sector_nr < first_bad) {
2731				if (test_bit(WriteMostly, &rdev->flags)) {
2732					if (wonly < 0)
2733						wonly = i;
2734				} else {
2735					if (disk < 0)
2736						disk = i;
2737				}
2738				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2739				bio->bi_end_io = end_sync_read;
2740				read_targets++;
2741			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2742				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2743				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2744				/*
2745				 * The device is suitable for reading (InSync),
2746				 * but has bad block(s) here. Let's try to correct them,
2747				 * if we are doing resync or repair. Otherwise, leave
2748				 * this device alone for this sync request.
2749				 */
2750				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2751				bio->bi_end_io = end_sync_write;
2752				write_targets++;
2753			}
2754		}
2755		if (bio->bi_end_io) {
2756			atomic_inc(&rdev->nr_pending);
2757			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2758			bio_set_dev(bio, rdev->bdev);
2759			if (test_bit(FailFast, &rdev->flags))
2760				bio->bi_opf |= MD_FAILFAST;
2761		}
2762	}
2763	rcu_read_unlock();
2764	if (disk < 0)
2765		disk = wonly;
2766	r1_bio->read_disk = disk;
2767
2768	if (read_targets == 0 && min_bad > 0) {
2769		/* These sectors are bad on all InSync devices, so we
2770		 * need to mark them bad on all write targets
2771		 */
2772		int ok = 1;
2773		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2774			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2775				struct md_rdev *rdev = conf->mirrors[i].rdev;
2776				ok = rdev_set_badblocks(rdev, sector_nr,
2777							min_bad, 0
2778					) && ok;
2779			}
2780		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2781		*skipped = 1;
2782		put_buf(r1_bio);
2783
2784		if (!ok) {
2785			/* Cannot record the badblocks, so need to
2786			 * abort the resync.
2787			 * If there are multiple read targets, could just
2788			 * fail the really bad ones ???
2789			 */
2790			conf->recovery_disabled = mddev->recovery_disabled;
2791			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2792			return 0;
2793		} else
2794			return min_bad;
2795
2796	}
2797	if (min_bad > 0 && min_bad < good_sectors) {
2798		/* only resync enough to reach the next bad->good
2799		 * transition */
2800		good_sectors = min_bad;
2801	}
2802
2803	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2804		/* extra read targets are also write targets */
2805		write_targets += read_targets-1;
2806
2807	if (write_targets == 0 || read_targets == 0) {
2808		/* There is nowhere to write, so all non-sync
2809		 * drives must be failed - so we are finished
2810		 */
2811		sector_t rv;
2812		if (min_bad > 0)
2813			max_sector = sector_nr + min_bad;
2814		rv = max_sector - sector_nr;
2815		*skipped = 1;
2816		put_buf(r1_bio);
2817		return rv;
2818	}
2819
2820	if (max_sector > mddev->resync_max)
2821		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2822	if (max_sector > sector_nr + good_sectors)
2823		max_sector = sector_nr + good_sectors;
2824	nr_sectors = 0;
2825	sync_blocks = 0;
2826	do {
2827		struct page *page;
2828		int len = PAGE_SIZE;
2829		if (sector_nr + (len>>9) > max_sector)
2830			len = (max_sector - sector_nr) << 9;
2831		if (len == 0)
2832			break;
2833		if (sync_blocks == 0) {
2834			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2835					       &sync_blocks, still_degraded) &&
2836			    !conf->fullsync &&
2837			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2838				break;
2839			if ((len >> 9) > sync_blocks)
2840				len = sync_blocks<<9;
2841		}
2842
2843		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2844			struct resync_pages *rp;
2845
2846			bio = r1_bio->bios[i];
2847			rp = get_resync_pages(bio);
2848			if (bio->bi_end_io) {
2849				page = resync_fetch_page(rp, page_idx);
2850
2851				/*
2852				 * won't fail because the vec table is big
2853				 * enough to hold all these pages
2854				 */
2855				bio_add_page(bio, page, len, 0);
2856			}
2857		}
2858		nr_sectors += len>>9;
2859		sector_nr += len>>9;
2860		sync_blocks -= (len>>9);
2861	} while (++page_idx < RESYNC_PAGES);
2862
2863	r1_bio->sectors = nr_sectors;
2864
2865	if (mddev_is_clustered(mddev) &&
2866			conf->cluster_sync_high < sector_nr + nr_sectors) {
2867		conf->cluster_sync_low = mddev->curr_resync_completed;
2868		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2869		/* Send resync message */
2870		md_cluster_ops->resync_info_update(mddev,
2871				conf->cluster_sync_low,
2872				conf->cluster_sync_high);
2873	}
2874
2875	/* For a user-requested sync, we read all readable devices and do a
2876	 * compare
2877	 */
2878	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2879		atomic_set(&r1_bio->remaining, read_targets);
2880		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2881			bio = r1_bio->bios[i];
2882			if (bio->bi_end_io == end_sync_read) {
2883				read_targets--;
2884				md_sync_acct_bio(bio, nr_sectors);
2885				if (read_targets == 1)
2886					bio->bi_opf &= ~MD_FAILFAST;
2887				generic_make_request(bio);
2888			}
2889		}
2890	} else {
2891		atomic_set(&r1_bio->remaining, 1);
2892		bio = r1_bio->bios[r1_bio->read_disk];
2893		md_sync_acct_bio(bio, nr_sectors);
2894		if (read_targets == 1)
2895			bio->bi_opf &= ~MD_FAILFAST;
2896		generic_make_request(bio);
2897
2898	}
2899	return nr_sectors;
2900}
2901
2902static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2903{
2904	if (sectors)
2905		return sectors;
2906
2907	return mddev->dev_sectors;
2908}
2909
2910static struct r1conf *setup_conf(struct mddev *mddev)
2911{
2912	struct r1conf *conf;
2913	int i;
2914	struct raid1_info *disk;
2915	struct md_rdev *rdev;
2916	int err = -ENOMEM;
2917
2918	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2919	if (!conf)
2920		goto abort;
2921
2922	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2923				   sizeof(atomic_t), GFP_KERNEL);
2924	if (!conf->nr_pending)
2925		goto abort;
2926
2927	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2928				   sizeof(atomic_t), GFP_KERNEL);
2929	if (!conf->nr_waiting)
2930		goto abort;
2931
2932	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2933				  sizeof(atomic_t), GFP_KERNEL);
2934	if (!conf->nr_queued)
2935		goto abort;
2936
2937	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2938				sizeof(atomic_t), GFP_KERNEL);
2939	if (!conf->barrier)
2940		goto abort;
2941
2942	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2943				* mddev->raid_disks * 2,
2944				 GFP_KERNEL);
2945	if (!conf->mirrors)
2946		goto abort;
2947
2948	conf->tmppage = alloc_page(GFP_KERNEL);
2949	if (!conf->tmppage)
2950		goto abort;
2951
2952	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2953	if (!conf->poolinfo)
2954		goto abort;
2955	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2956	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957					  r1bio_pool_free,
2958					  conf->poolinfo);
2959	if (!conf->r1bio_pool)
2960		goto abort;
2961
2962	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2963	if (!conf->bio_split)
2964		goto abort;
2965
2966	conf->poolinfo->mddev = mddev;
2967
2968	err = -EINVAL;
2969	spin_lock_init(&conf->device_lock);
2970	rdev_for_each(rdev, mddev) {
2971		int disk_idx = rdev->raid_disk;
2972		if (disk_idx >= mddev->raid_disks
2973		    || disk_idx < 0)
2974			continue;
2975		if (test_bit(Replacement, &rdev->flags))
2976			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2977		else
2978			disk = conf->mirrors + disk_idx;
2979
2980		if (disk->rdev)
2981			goto abort;
2982		disk->rdev = rdev;
2983		disk->head_position = 0;
2984		disk->seq_start = MaxSector;
2985	}
2986	conf->raid_disks = mddev->raid_disks;
2987	conf->mddev = mddev;
2988	INIT_LIST_HEAD(&conf->retry_list);
2989	INIT_LIST_HEAD(&conf->bio_end_io_list);
2990
2991	spin_lock_init(&conf->resync_lock);
2992	init_waitqueue_head(&conf->wait_barrier);
2993
2994	bio_list_init(&conf->pending_bio_list);
2995	conf->pending_count = 0;
2996	conf->recovery_disabled = mddev->recovery_disabled - 1;
2997
2998	err = -EIO;
2999	for (i = 0; i < conf->raid_disks * 2; i++) {
3000
3001		disk = conf->mirrors + i;
3002
3003		if (i < conf->raid_disks &&
3004		    disk[conf->raid_disks].rdev) {
3005			/* This slot has a replacement. */
3006			if (!disk->rdev) {
3007				/* No original, just make the replacement
3008				 * a recovering spare
3009				 */
3010				disk->rdev =
3011					disk[conf->raid_disks].rdev;
3012				disk[conf->raid_disks].rdev = NULL;
3013			} else if (!test_bit(In_sync, &disk->rdev->flags))
3014				/* Original is not in_sync - bad */
3015				goto abort;
3016		}
3017
3018		if (!disk->rdev ||
3019		    !test_bit(In_sync, &disk->rdev->flags)) {
3020			disk->head_position = 0;
3021			if (disk->rdev &&
3022			    (disk->rdev->saved_raid_disk < 0))
3023				conf->fullsync = 1;
3024		}
3025	}
3026
3027	err = -ENOMEM;
3028	conf->thread = md_register_thread(raid1d, mddev, "raid1");
 
3029	if (!conf->thread)
3030		goto abort;
3031
3032	return conf;
3033
3034 abort:
3035	if (conf) {
3036		mempool_destroy(conf->r1bio_pool);
3037		kfree(conf->mirrors);
3038		safe_put_page(conf->tmppage);
3039		kfree(conf->poolinfo);
3040		kfree(conf->nr_pending);
3041		kfree(conf->nr_waiting);
3042		kfree(conf->nr_queued);
3043		kfree(conf->barrier);
3044		if (conf->bio_split)
3045			bioset_free(conf->bio_split);
3046		kfree(conf);
3047	}
3048	return ERR_PTR(err);
3049}
3050
3051static void raid1_free(struct mddev *mddev, void *priv);
3052static int raid1_run(struct mddev *mddev)
3053{
3054	struct r1conf *conf;
3055	int i;
3056	struct md_rdev *rdev;
3057	int ret;
3058	bool discard_supported = false;
3059
3060	if (mddev->level != 1) {
3061		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062			mdname(mddev), mddev->level);
3063		return -EIO;
3064	}
3065	if (mddev->reshape_position != MaxSector) {
3066		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067			mdname(mddev));
3068		return -EIO;
3069	}
3070	if (mddev_init_writes_pending(mddev) < 0)
3071		return -ENOMEM;
3072	/*
3073	 * copy the already verified devices into our private RAID1
3074	 * bookkeeping area. [whatever we allocate in run(),
3075	 * should be freed in raid1_free()]
3076	 */
3077	if (mddev->private == NULL)
3078		conf = setup_conf(mddev);
3079	else
3080		conf = mddev->private;
3081
3082	if (IS_ERR(conf))
3083		return PTR_ERR(conf);
3084
3085	if (mddev->queue) {
3086		blk_queue_max_write_same_sectors(mddev->queue, 0);
3087		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088	}
3089
3090	rdev_for_each(rdev, mddev) {
3091		if (!mddev->gendisk)
3092			continue;
3093		disk_stack_limits(mddev->gendisk, rdev->bdev,
3094				  rdev->data_offset << 9);
3095		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096			discard_supported = true;
3097	}
3098
3099	mddev->degraded = 0;
3100	for (i=0; i < conf->raid_disks; i++)
3101		if (conf->mirrors[i].rdev == NULL ||
3102		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104			mddev->degraded++;
 
 
 
 
 
 
 
 
3105
3106	if (conf->raid_disks - mddev->degraded == 1)
3107		mddev->recovery_cp = MaxSector;
3108
3109	if (mddev->recovery_cp != MaxSector)
3110		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111			mdname(mddev));
3112	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113		mdname(mddev), mddev->raid_disks - mddev->degraded,
3114		mddev->raid_disks);
3115
3116	/*
3117	 * Ok, everything is just fine now
3118	 */
3119	mddev->thread = conf->thread;
3120	conf->thread = NULL;
3121	mddev->private = conf;
3122	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123
3124	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125
3126	if (mddev->queue) {
3127		if (discard_supported)
3128			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3129						mddev->queue);
3130		else
3131			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3132						  mddev->queue);
3133	}
 
3134
3135	ret =  md_integrity_register(mddev);
3136	if (ret) {
3137		md_unregister_thread(&mddev->thread);
3138		raid1_free(mddev, conf);
3139	}
3140	return ret;
3141}
3142
3143static void raid1_free(struct mddev *mddev, void *priv)
3144{
3145	struct r1conf *conf = priv;
3146
3147	mempool_destroy(conf->r1bio_pool);
3148	kfree(conf->mirrors);
3149	safe_put_page(conf->tmppage);
3150	kfree(conf->poolinfo);
3151	kfree(conf->nr_pending);
3152	kfree(conf->nr_waiting);
3153	kfree(conf->nr_queued);
3154	kfree(conf->barrier);
3155	if (conf->bio_split)
3156		bioset_free(conf->bio_split);
3157	kfree(conf);
3158}
3159
3160static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161{
3162	/* no resync is happening, and there is enough space
3163	 * on all devices, so we can resize.
3164	 * We need to make sure resync covers any new space.
3165	 * If the array is shrinking we should possibly wait until
3166	 * any io in the removed space completes, but it hardly seems
3167	 * worth it.
3168	 */
3169	sector_t newsize = raid1_size(mddev, sectors, 0);
3170	if (mddev->external_size &&
3171	    mddev->array_sectors > newsize)
3172		return -EINVAL;
3173	if (mddev->bitmap) {
3174		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175		if (ret)
3176			return ret;
3177	}
3178	md_set_array_sectors(mddev, newsize);
3179	if (sectors > mddev->dev_sectors &&
3180	    mddev->recovery_cp > mddev->dev_sectors) {
3181		mddev->recovery_cp = mddev->dev_sectors;
3182		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183	}
3184	mddev->dev_sectors = sectors;
3185	mddev->resync_max_sectors = sectors;
3186	return 0;
3187}
3188
3189static int raid1_reshape(struct mddev *mddev)
3190{
3191	/* We need to:
3192	 * 1/ resize the r1bio_pool
3193	 * 2/ resize conf->mirrors
3194	 *
3195	 * We allocate a new r1bio_pool if we can.
3196	 * Then raise a device barrier and wait until all IO stops.
3197	 * Then resize conf->mirrors and swap in the new r1bio pool.
3198	 *
3199	 * At the same time, we "pack" the devices so that all the missing
3200	 * devices have the higher raid_disk numbers.
3201	 */
3202	mempool_t *newpool, *oldpool;
3203	struct pool_info *newpoolinfo;
3204	struct raid1_info *newmirrors;
3205	struct r1conf *conf = mddev->private;
3206	int cnt, raid_disks;
3207	unsigned long flags;
3208	int d, d2;
 
 
 
 
3209
3210	/* Cannot change chunk_size, layout, or level */
3211	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3212	    mddev->layout != mddev->new_layout ||
3213	    mddev->level != mddev->new_level) {
3214		mddev->new_chunk_sectors = mddev->chunk_sectors;
3215		mddev->new_layout = mddev->layout;
3216		mddev->new_level = mddev->level;
3217		return -EINVAL;
3218	}
3219
3220	if (!mddev_is_clustered(mddev))
3221		md_allow_write(mddev);
3222
3223	raid_disks = mddev->raid_disks + mddev->delta_disks;
3224
3225	if (raid_disks < conf->raid_disks) {
3226		cnt=0;
3227		for (d= 0; d < conf->raid_disks; d++)
3228			if (conf->mirrors[d].rdev)
3229				cnt++;
3230		if (cnt > raid_disks)
3231			return -EBUSY;
3232	}
3233
3234	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3235	if (!newpoolinfo)
3236		return -ENOMEM;
3237	newpoolinfo->mddev = mddev;
3238	newpoolinfo->raid_disks = raid_disks * 2;
3239
3240	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3241				 r1bio_pool_free, newpoolinfo);
3242	if (!newpool) {
3243		kfree(newpoolinfo);
3244		return -ENOMEM;
3245	}
3246	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
 
3247			     GFP_KERNEL);
3248	if (!newmirrors) {
3249		kfree(newpoolinfo);
3250		mempool_destroy(newpool);
3251		return -ENOMEM;
3252	}
3253
3254	freeze_array(conf, 0);
3255
3256	/* ok, everything is stopped */
3257	oldpool = conf->r1bio_pool;
3258	conf->r1bio_pool = newpool;
3259
3260	for (d = d2 = 0; d < conf->raid_disks; d++) {
3261		struct md_rdev *rdev = conf->mirrors[d].rdev;
3262		if (rdev && rdev->raid_disk != d2) {
3263			sysfs_unlink_rdev(mddev, rdev);
3264			rdev->raid_disk = d2;
3265			sysfs_unlink_rdev(mddev, rdev);
3266			if (sysfs_link_rdev(mddev, rdev))
3267				pr_warn("md/raid1:%s: cannot register rd%d\n",
3268					mdname(mddev), rdev->raid_disk);
3269		}
3270		if (rdev)
3271			newmirrors[d2++].rdev = rdev;
3272	}
3273	kfree(conf->mirrors);
3274	conf->mirrors = newmirrors;
3275	kfree(conf->poolinfo);
3276	conf->poolinfo = newpoolinfo;
3277
3278	spin_lock_irqsave(&conf->device_lock, flags);
3279	mddev->degraded += (raid_disks - conf->raid_disks);
3280	spin_unlock_irqrestore(&conf->device_lock, flags);
3281	conf->raid_disks = mddev->raid_disks = raid_disks;
3282	mddev->delta_disks = 0;
3283
3284	unfreeze_array(conf);
3285
3286	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3287	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288	md_wakeup_thread(mddev->thread);
3289
3290	mempool_destroy(oldpool);
3291	return 0;
3292}
3293
3294static void raid1_quiesce(struct mddev *mddev, int quiesce)
3295{
3296	struct r1conf *conf = mddev->private;
3297
3298	if (quiesce)
3299		freeze_array(conf, 0);
3300	else
3301		unfreeze_array(conf);
3302}
3303
3304static void *raid1_takeover(struct mddev *mddev)
3305{
3306	/* raid1 can take over:
3307	 *  raid5 with 2 devices, any layout or chunk size
3308	 */
3309	if (mddev->level == 5 && mddev->raid_disks == 2) {
3310		struct r1conf *conf;
3311		mddev->new_level = 1;
3312		mddev->new_layout = 0;
3313		mddev->new_chunk_sectors = 0;
3314		conf = setup_conf(mddev);
3315		if (!IS_ERR(conf)) {
3316			/* Array must appear to be quiesced */
3317			conf->array_frozen = 1;
3318			mddev_clear_unsupported_flags(mddev,
3319				UNSUPPORTED_MDDEV_FLAGS);
3320		}
3321		return conf;
3322	}
3323	return ERR_PTR(-EINVAL);
3324}
3325
3326static struct md_personality raid1_personality =
3327{
3328	.name		= "raid1",
3329	.level		= 1,
3330	.owner		= THIS_MODULE,
3331	.make_request	= raid1_make_request,
3332	.run		= raid1_run,
3333	.free		= raid1_free,
3334	.status		= raid1_status,
3335	.error_handler	= raid1_error,
3336	.hot_add_disk	= raid1_add_disk,
3337	.hot_remove_disk= raid1_remove_disk,
3338	.spare_active	= raid1_spare_active,
3339	.sync_request	= raid1_sync_request,
3340	.resize		= raid1_resize,
3341	.size		= raid1_size,
3342	.check_reshape	= raid1_reshape,
3343	.quiesce	= raid1_quiesce,
3344	.takeover	= raid1_takeover,
3345	.congested	= raid1_congested,
3346};
3347
3348static int __init raid_init(void)
3349{
3350	return register_md_personality(&raid1_personality);
3351}
3352
3353static void raid_exit(void)
3354{
3355	unregister_md_personality(&raid1_personality);
3356}
3357
3358module_init(raid_init);
3359module_exit(raid_exit);
3360MODULE_LICENSE("GPL");
3361MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3362MODULE_ALIAS("md-personality-3"); /* RAID1 */
3363MODULE_ALIAS("md-raid1");
3364MODULE_ALIAS("md-level-1");
3365
3366module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);