Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2005-2007 Red Hat GmbH
  4 *
  5 * A target that delays reads and/or writes and can send
  6 * them to different devices.
  7 *
  8 * This file is released under the GPL.
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/init.h>
 13#include <linux/blkdev.h>
 14#include <linux/bio.h>
 15#include <linux/slab.h>
 16#include <linux/kthread.h>
 17
 18#include <linux/device-mapper.h>
 19
 20#define DM_MSG_PREFIX "delay"
 21
 22struct delay_class {
 23	struct dm_dev *dev;
 24	sector_t start;
 25	unsigned int delay;
 26	unsigned int ops;
 27};
 28
 29struct delay_c {
 30	struct timer_list delay_timer;
 31	struct mutex timer_lock;
 32	struct workqueue_struct *kdelayd_wq;
 33	struct work_struct flush_expired_bios;
 34	struct list_head delayed_bios;
 35	struct task_struct *worker;
 36	bool may_delay;
 37
 38	struct delay_class read;
 39	struct delay_class write;
 40	struct delay_class flush;
 41
 42	int argc;
 
 
 
 
 43};
 44
 45struct dm_delay_info {
 46	struct delay_c *context;
 47	struct delay_class *class;
 48	struct list_head list;
 
 49	unsigned long expires;
 50};
 51
 52static DEFINE_MUTEX(delayed_bios_lock);
 53
 54static void handle_delayed_timer(struct timer_list *t)
 
 
 
 55{
 56	struct delay_c *dc = from_timer(dc, t, delay_timer);
 57
 58	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
 59}
 60
 61static void queue_timeout(struct delay_c *dc, unsigned long expires)
 62{
 63	mutex_lock(&dc->timer_lock);
 64
 65	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 66		mod_timer(&dc->delay_timer, expires);
 67
 68	mutex_unlock(&dc->timer_lock);
 69}
 70
 71static inline bool delay_is_fast(struct delay_c *dc)
 72{
 73	return !!dc->worker;
 74}
 75
 76static void flush_bios(struct bio *bio)
 77{
 78	struct bio *n;
 79
 80	while (bio) {
 81		n = bio->bi_next;
 82		bio->bi_next = NULL;
 83		dm_submit_bio_remap(bio, NULL);
 84		bio = n;
 85	}
 86}
 87
 88static void flush_delayed_bios(struct delay_c *dc, bool flush_all)
 89{
 90	struct dm_delay_info *delayed, *next;
 91	struct bio_list flush_bio_list;
 92	unsigned long next_expires = 0;
 93	bool start_timer = false;
 94	bio_list_init(&flush_bio_list);
 95
 96	mutex_lock(&delayed_bios_lock);
 97	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 98		cond_resched();
 99		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
100			struct bio *bio = dm_bio_from_per_bio_data(delayed,
101						sizeof(struct dm_delay_info));
102			list_del(&delayed->list);
103			bio_list_add(&flush_bio_list, bio);
104			delayed->class->ops--;
 
 
 
 
105			continue;
106		}
107
108		if (!delay_is_fast(dc)) {
109			if (!start_timer) {
110				start_timer = true;
111				next_expires = delayed->expires;
112			} else {
113				next_expires = min(next_expires, delayed->expires);
114			}
115		}
116	}
 
117	mutex_unlock(&delayed_bios_lock);
118
119	if (start_timer)
120		queue_timeout(dc, next_expires);
121
122	flush_bios(bio_list_get(&flush_bio_list));
123}
124
125static int flush_worker_fn(void *data)
126{
127	struct delay_c *dc = data;
128
129	while (!kthread_should_stop()) {
130		flush_delayed_bios(dc, false);
131		mutex_lock(&delayed_bios_lock);
132		if (unlikely(list_empty(&dc->delayed_bios))) {
133			set_current_state(TASK_INTERRUPTIBLE);
134			mutex_unlock(&delayed_bios_lock);
135			schedule();
136		} else {
137			mutex_unlock(&delayed_bios_lock);
138			cond_resched();
139		}
140	}
141
142	return 0;
143}
144
145static void flush_expired_bios(struct work_struct *work)
146{
147	struct delay_c *dc;
148
149	dc = container_of(work, struct delay_c, flush_expired_bios);
150	flush_delayed_bios(dc, false);
151}
152
153static void delay_dtr(struct dm_target *ti)
154{
155	struct delay_c *dc = ti->private;
156
157	if (dc->kdelayd_wq)
158		destroy_workqueue(dc->kdelayd_wq);
159
160	if (dc->read.dev)
161		dm_put_device(ti, dc->read.dev);
162	if (dc->write.dev)
163		dm_put_device(ti, dc->write.dev);
164	if (dc->flush.dev)
165		dm_put_device(ti, dc->flush.dev);
166	if (dc->worker)
167		kthread_stop(dc->worker);
168
169	mutex_destroy(&dc->timer_lock);
170
171	kfree(dc);
172}
173
174static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
175{
176	int ret;
177	unsigned long long tmpll;
178	char dummy;
179
180	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
181		ti->error = "Invalid device sector";
182		return -EINVAL;
183	}
184	c->start = tmpll;
185
186	if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
187		ti->error = "Invalid delay";
188		return -EINVAL;
189	}
190
191	ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
192	if (ret) {
193		ti->error = "Device lookup failed";
194		return ret;
195	}
196
197	return 0;
198}
199
200/*
201 * Mapping parameters:
202 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
203 *
204 * With separate write parameters, the first set is only used for reads.
205 * Offsets are specified in sectors.
206 * Delays are specified in milliseconds.
207 */
208static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
209{
210	struct delay_c *dc;
211	int ret;
212	unsigned int max_delay;
213
214	if (argc != 3 && argc != 6 && argc != 9) {
215		ti->error = "Requires exactly 3, 6 or 9 arguments";
216		return -EINVAL;
217	}
218
219	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
220	if (!dc) {
221		ti->error = "Cannot allocate context";
222		return -ENOMEM;
223	}
224
225	ti->private = dc;
226	INIT_LIST_HEAD(&dc->delayed_bios);
227	mutex_init(&dc->timer_lock);
228	dc->may_delay = true;
229	dc->argc = argc;
230
231	ret = delay_class_ctr(ti, &dc->read, argv);
232	if (ret)
233		goto bad;
234	max_delay = dc->read.delay;
 
235
236	if (argc == 3) {
237		ret = delay_class_ctr(ti, &dc->write, argv);
238		if (ret)
239			goto bad;
240		ret = delay_class_ctr(ti, &dc->flush, argv);
241		if (ret)
242			goto bad;
243		max_delay = max(max_delay, dc->write.delay);
244		max_delay = max(max_delay, dc->flush.delay);
245		goto out;
246	}
247
248	ret = delay_class_ctr(ti, &dc->write, argv + 3);
249	if (ret)
 
250		goto bad;
251	if (argc == 6) {
252		ret = delay_class_ctr(ti, &dc->flush, argv + 3);
253		if (ret)
254			goto bad;
255		max_delay = max(max_delay, dc->flush.delay);
256		goto out;
 
 
 
 
257	}
 
258
259	ret = delay_class_ctr(ti, &dc->flush, argv + 6);
260	if (ret)
261		goto bad;
262	max_delay = max(max_delay, dc->flush.delay);
 
 
 
 
 
 
263
264out:
265	if (max_delay < 50) {
266		/*
267		 * In case of small requested delays, use kthread instead of
268		 * timers and workqueue to achieve better latency.
269		 */
270		dc->worker = kthread_create(&flush_worker_fn, dc,
271					    "dm-delay-flush-worker");
272		if (IS_ERR(dc->worker)) {
273			ret = PTR_ERR(dc->worker);
274			dc->worker = NULL;
275			goto bad;
276		}
277	} else {
278		timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
279		INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
280		dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
281		if (!dc->kdelayd_wq) {
282			ret = -EINVAL;
283			DMERR("Couldn't start kdelayd");
284			goto bad;
285		}
286	}
287
288	ti->num_flush_bios = 1;
289	ti->num_discard_bios = 1;
290	ti->accounts_remapped_io = true;
291	ti->per_io_data_size = sizeof(struct dm_delay_info);
 
 
 
 
 
 
292	return 0;
293
 
 
 
 
 
294bad:
295	delay_dtr(ti);
296	return ret;
297}
298
299static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300{
301	struct dm_delay_info *delayed;
302	unsigned long expires = 0;
303
304	if (!c->delay)
305		return DM_MAPIO_REMAPPED;
306
307	delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
308
309	delayed->context = dc;
310	delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
 
311
312	mutex_lock(&delayed_bios_lock);
313	if (unlikely(!dc->may_delay)) {
314		mutex_unlock(&delayed_bios_lock);
315		return DM_MAPIO_REMAPPED;
316	}
317	c->ops++;
 
318	list_add_tail(&delayed->list, &dc->delayed_bios);
 
319	mutex_unlock(&delayed_bios_lock);
320
321	if (delay_is_fast(dc))
322		wake_up_process(dc->worker);
323	else
324		queue_timeout(dc, expires);
325
326	return DM_MAPIO_SUBMITTED;
327}
328
329static void delay_presuspend(struct dm_target *ti)
330{
331	struct delay_c *dc = ti->private;
332
333	mutex_lock(&delayed_bios_lock);
334	dc->may_delay = false;
335	mutex_unlock(&delayed_bios_lock);
336
337	if (!delay_is_fast(dc))
338		del_timer_sync(&dc->delay_timer);
339	flush_delayed_bios(dc, true);
340}
341
342static void delay_resume(struct dm_target *ti)
343{
344	struct delay_c *dc = ti->private;
345
346	dc->may_delay = true;
347}
348
349static int delay_map(struct dm_target *ti, struct bio *bio)
 
350{
351	struct delay_c *dc = ti->private;
352	struct delay_class *c;
353	struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
354
355	if (bio_data_dir(bio) == WRITE) {
356		if (unlikely(bio->bi_opf & REQ_PREFLUSH))
357			c = &dc->flush;
358		else
359			c = &dc->write;
360	} else {
361		c = &dc->read;
362	}
363	delayed->class = c;
364	bio_set_dev(bio, c->dev->bdev);
365	bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
366
367	return delay_bio(dc, c, bio);
368}
369
370#define DMEMIT_DELAY_CLASS(c) \
371	DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
372
373static void delay_status(struct dm_target *ti, status_type_t type,
374			 unsigned int status_flags, char *result, unsigned int maxlen)
375{
376	struct delay_c *dc = ti->private;
377	int sz = 0;
378
379	switch (type) {
380	case STATUSTYPE_INFO:
381		DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
382		break;
383
384	case STATUSTYPE_TABLE:
385		DMEMIT_DELAY_CLASS(&dc->read);
386		if (dc->argc >= 6) {
387			DMEMIT(" ");
388			DMEMIT_DELAY_CLASS(&dc->write);
389		}
390		if (dc->argc >= 9) {
391			DMEMIT(" ");
392			DMEMIT_DELAY_CLASS(&dc->flush);
393		}
394		break;
395
396	case STATUSTYPE_IMA:
397		*result = '\0';
398		break;
399	}
 
 
400}
401
402static int delay_iterate_devices(struct dm_target *ti,
403				 iterate_devices_callout_fn fn, void *data)
404{
405	struct delay_c *dc = ti->private;
406	int ret = 0;
407
408	ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
409	if (ret)
410		goto out;
411	ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
412	if (ret)
413		goto out;
414	ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
415	if (ret)
416		goto out;
417
 
 
 
418out:
419	return ret;
420}
421
422static struct target_type delay_target = {
423	.name	     = "delay",
424	.version     = {1, 4, 0},
425	.features    = DM_TARGET_PASSES_INTEGRITY,
426	.module      = THIS_MODULE,
427	.ctr	     = delay_ctr,
428	.dtr	     = delay_dtr,
429	.map	     = delay_map,
430	.presuspend  = delay_presuspend,
431	.resume	     = delay_resume,
432	.status	     = delay_status,
433	.iterate_devices = delay_iterate_devices,
434};
435module_dm(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
437MODULE_DESCRIPTION(DM_NAME " delay target");
438MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
439MODULE_LICENSE("GPL");
v3.1
 
  1/*
  2 * Copyright (C) 2005-2007 Red Hat GmbH
  3 *
  4 * A target that delays reads and/or writes and can send
  5 * them to different devices.
  6 *
  7 * This file is released under the GPL.
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/blkdev.h>
 13#include <linux/bio.h>
 14#include <linux/slab.h>
 
 15
 16#include <linux/device-mapper.h>
 17
 18#define DM_MSG_PREFIX "delay"
 19
 
 
 
 
 
 
 
 20struct delay_c {
 21	struct timer_list delay_timer;
 22	struct mutex timer_lock;
 
 23	struct work_struct flush_expired_bios;
 24	struct list_head delayed_bios;
 25	atomic_t may_delay;
 26	mempool_t *delayed_pool;
 27
 28	struct dm_dev *dev_read;
 29	sector_t start_read;
 30	unsigned read_delay;
 31	unsigned reads;
 32
 33	struct dm_dev *dev_write;
 34	sector_t start_write;
 35	unsigned write_delay;
 36	unsigned writes;
 37};
 38
 39struct dm_delay_info {
 40	struct delay_c *context;
 
 41	struct list_head list;
 42	struct bio *bio;
 43	unsigned long expires;
 44};
 45
 46static DEFINE_MUTEX(delayed_bios_lock);
 47
 48static struct workqueue_struct *kdelayd_wq;
 49static struct kmem_cache *delayed_cache;
 50
 51static void handle_delayed_timer(unsigned long data)
 52{
 53	struct delay_c *dc = (struct delay_c *)data;
 54
 55	queue_work(kdelayd_wq, &dc->flush_expired_bios);
 56}
 57
 58static void queue_timeout(struct delay_c *dc, unsigned long expires)
 59{
 60	mutex_lock(&dc->timer_lock);
 61
 62	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 63		mod_timer(&dc->delay_timer, expires);
 64
 65	mutex_unlock(&dc->timer_lock);
 66}
 67
 
 
 
 
 
 68static void flush_bios(struct bio *bio)
 69{
 70	struct bio *n;
 71
 72	while (bio) {
 73		n = bio->bi_next;
 74		bio->bi_next = NULL;
 75		generic_make_request(bio);
 76		bio = n;
 77	}
 78}
 79
 80static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
 81{
 82	struct dm_delay_info *delayed, *next;
 
 83	unsigned long next_expires = 0;
 84	int start_timer = 0;
 85	struct bio_list flush_bios = { };
 86
 87	mutex_lock(&delayed_bios_lock);
 88	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 
 89		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
 
 
 90			list_del(&delayed->list);
 91			bio_list_add(&flush_bios, delayed->bio);
 92			if ((bio_data_dir(delayed->bio) == WRITE))
 93				delayed->context->writes--;
 94			else
 95				delayed->context->reads--;
 96			mempool_free(delayed, dc->delayed_pool);
 97			continue;
 98		}
 99
100		if (!start_timer) {
101			start_timer = 1;
102			next_expires = delayed->expires;
103		} else
104			next_expires = min(next_expires, delayed->expires);
 
 
 
105	}
106
107	mutex_unlock(&delayed_bios_lock);
108
109	if (start_timer)
110		queue_timeout(dc, next_expires);
111
112	return bio_list_get(&flush_bios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113}
114
115static void flush_expired_bios(struct work_struct *work)
116{
117	struct delay_c *dc;
118
119	dc = container_of(work, struct delay_c, flush_expired_bios);
120	flush_bios(flush_delayed_bios(dc, 0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121}
122
123/*
124 * Mapping parameters:
125 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
126 *
127 * With separate write parameters, the first set is only used for reads.
 
128 * Delays are specified in milliseconds.
129 */
130static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
131{
132	struct delay_c *dc;
133	unsigned long long tmpll;
 
134
135	if (argc != 3 && argc != 6) {
136		ti->error = "requires exactly 3 or 6 arguments";
137		return -EINVAL;
138	}
139
140	dc = kmalloc(sizeof(*dc), GFP_KERNEL);
141	if (!dc) {
142		ti->error = "Cannot allocate context";
143		return -ENOMEM;
144	}
145
146	dc->reads = dc->writes = 0;
 
 
 
 
147
148	if (sscanf(argv[1], "%llu", &tmpll) != 1) {
149		ti->error = "Invalid device sector";
150		goto bad;
151	}
152	dc->start_read = tmpll;
153
154	if (sscanf(argv[2], "%u", &dc->read_delay) != 1) {
155		ti->error = "Invalid delay";
156		goto bad;
 
 
 
 
 
 
 
157	}
158
159	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
160			  &dc->dev_read)) {
161		ti->error = "Device lookup failed";
162		goto bad;
163	}
164
165	dc->dev_write = NULL;
166	if (argc == 3)
 
167		goto out;
168
169	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
170		ti->error = "Invalid write device sector";
171		goto bad_dev_read;
172	}
173	dc->start_write = tmpll;
174
175	if (sscanf(argv[5], "%u", &dc->write_delay) != 1) {
176		ti->error = "Invalid write delay";
177		goto bad_dev_read;
178	}
179
180	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table),
181			  &dc->dev_write)) {
182		ti->error = "Write device lookup failed";
183		goto bad_dev_read;
184	}
185
186out:
187	dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache);
188	if (!dc->delayed_pool) {
189		DMERR("Couldn't create delayed bio pool.");
190		goto bad_dev_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191	}
192
193	setup_timer(&dc->delay_timer, handle_delayed_timer, (unsigned long)dc);
194
195	INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
196	INIT_LIST_HEAD(&dc->delayed_bios);
197	mutex_init(&dc->timer_lock);
198	atomic_set(&dc->may_delay, 1);
199
200	ti->num_flush_requests = 1;
201	ti->num_discard_requests = 1;
202	ti->private = dc;
203	return 0;
204
205bad_dev_write:
206	if (dc->dev_write)
207		dm_put_device(ti, dc->dev_write);
208bad_dev_read:
209	dm_put_device(ti, dc->dev_read);
210bad:
211	kfree(dc);
212	return -EINVAL;
213}
214
215static void delay_dtr(struct dm_target *ti)
216{
217	struct delay_c *dc = ti->private;
218
219	flush_workqueue(kdelayd_wq);
220
221	dm_put_device(ti, dc->dev_read);
222
223	if (dc->dev_write)
224		dm_put_device(ti, dc->dev_write);
225
226	mempool_destroy(dc->delayed_pool);
227	kfree(dc);
228}
229
230static int delay_bio(struct delay_c *dc, int delay, struct bio *bio)
231{
232	struct dm_delay_info *delayed;
233	unsigned long expires = 0;
234
235	if (!delay || !atomic_read(&dc->may_delay))
236		return 1;
237
238	delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO);
239
240	delayed->context = dc;
241	delayed->bio = bio;
242	delayed->expires = expires = jiffies + (delay * HZ / 1000);
243
244	mutex_lock(&delayed_bios_lock);
245
246	if (bio_data_dir(bio) == WRITE)
247		dc->writes++;
248	else
249		dc->reads++;
250
251	list_add_tail(&delayed->list, &dc->delayed_bios);
252
253	mutex_unlock(&delayed_bios_lock);
254
255	queue_timeout(dc, expires);
 
 
 
256
257	return 0;
258}
259
260static void delay_presuspend(struct dm_target *ti)
261{
262	struct delay_c *dc = ti->private;
263
264	atomic_set(&dc->may_delay, 0);
265	del_timer_sync(&dc->delay_timer);
266	flush_bios(flush_delayed_bios(dc, 1));
 
 
 
 
267}
268
269static void delay_resume(struct dm_target *ti)
270{
271	struct delay_c *dc = ti->private;
272
273	atomic_set(&dc->may_delay, 1);
274}
275
276static int delay_map(struct dm_target *ti, struct bio *bio,
277		     union map_info *map_context)
278{
279	struct delay_c *dc = ti->private;
 
 
280
281	if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) {
282		bio->bi_bdev = dc->dev_write->bdev;
283		if (bio_sectors(bio))
284			bio->bi_sector = dc->start_write +
285					 dm_target_offset(ti, bio->bi_sector);
286
287		return delay_bio(dc, dc->write_delay, bio);
288	}
 
 
 
289
290	bio->bi_bdev = dc->dev_read->bdev;
291	bio->bi_sector = dc->start_read + dm_target_offset(ti, bio->bi_sector);
292
293	return delay_bio(dc, dc->read_delay, bio);
294}
295
296static int delay_status(struct dm_target *ti, status_type_t type,
297			char *result, unsigned maxlen)
298{
299	struct delay_c *dc = ti->private;
300	int sz = 0;
301
302	switch (type) {
303	case STATUSTYPE_INFO:
304		DMEMIT("%u %u", dc->reads, dc->writes);
305		break;
306
307	case STATUSTYPE_TABLE:
308		DMEMIT("%s %llu %u", dc->dev_read->name,
309		       (unsigned long long) dc->start_read,
310		       dc->read_delay);
311		if (dc->dev_write)
312			DMEMIT(" %s %llu %u", dc->dev_write->name,
313			       (unsigned long long) dc->start_write,
314			       dc->write_delay);
 
 
 
 
 
 
315		break;
316	}
317
318	return 0;
319}
320
321static int delay_iterate_devices(struct dm_target *ti,
322				 iterate_devices_callout_fn fn, void *data)
323{
324	struct delay_c *dc = ti->private;
325	int ret = 0;
326
327	ret = fn(ti, dc->dev_read, dc->start_read, ti->len, data);
 
 
 
 
 
 
328	if (ret)
329		goto out;
330
331	if (dc->dev_write)
332		ret = fn(ti, dc->dev_write, dc->start_write, ti->len, data);
333
334out:
335	return ret;
336}
337
338static struct target_type delay_target = {
339	.name	     = "delay",
340	.version     = {1, 1, 0},
 
341	.module      = THIS_MODULE,
342	.ctr	     = delay_ctr,
343	.dtr	     = delay_dtr,
344	.map	     = delay_map,
345	.presuspend  = delay_presuspend,
346	.resume	     = delay_resume,
347	.status	     = delay_status,
348	.iterate_devices = delay_iterate_devices,
349};
350
351static int __init dm_delay_init(void)
352{
353	int r = -ENOMEM;
354
355	kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
356	if (!kdelayd_wq) {
357		DMERR("Couldn't start kdelayd");
358		goto bad_queue;
359	}
360
361	delayed_cache = KMEM_CACHE(dm_delay_info, 0);
362	if (!delayed_cache) {
363		DMERR("Couldn't create delayed bio cache.");
364		goto bad_memcache;
365	}
366
367	r = dm_register_target(&delay_target);
368	if (r < 0) {
369		DMERR("register failed %d", r);
370		goto bad_register;
371	}
372
373	return 0;
374
375bad_register:
376	kmem_cache_destroy(delayed_cache);
377bad_memcache:
378	destroy_workqueue(kdelayd_wq);
379bad_queue:
380	return r;
381}
382
383static void __exit dm_delay_exit(void)
384{
385	dm_unregister_target(&delay_target);
386	kmem_cache_destroy(delayed_cache);
387	destroy_workqueue(kdelayd_wq);
388}
389
390/* Module hooks */
391module_init(dm_delay_init);
392module_exit(dm_delay_exit);
393
394MODULE_DESCRIPTION(DM_NAME " delay target");
395MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
396MODULE_LICENSE("GPL");