Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
  5 * Authors:
  6 *   Haiyang Zhang <haiyangz@microsoft.com>
  7 *   Hank Janssen  <hjanssen@microsoft.com>
  8 */
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/io.h>
 12#include <linux/kernel.h>
 13#include <linux/mm.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/hyperv.h>
 17#include <linux/random.h>
 18#include <linux/clockchips.h>
 19#include <linux/delay.h>
 20#include <linux/interrupt.h>
 21#include <clocksource/hyperv_timer.h>
 22#include <asm/mshyperv.h>
 23#include <linux/set_memory.h>
 24#include "hyperv_vmbus.h"
 25
 26/* The one and only */
 27struct hv_context hv_context;
 28
 29/*
 30 * hv_init - Main initialization routine.
 31 *
 32 * This routine must be called before any other routines in here are called
 33 */
 34int hv_init(void)
 35{
 36	hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
 37	if (!hv_context.cpu_context)
 38		return -ENOMEM;
 39	return 0;
 40}
 41
 42/*
 43 * hv_post_message - Post a message using the hypervisor message IPC.
 44 *
 45 * This involves a hypercall.
 46 */
 47int hv_post_message(union hv_connection_id connection_id,
 48		  enum hv_message_type message_type,
 49		  void *payload, size_t payload_size)
 50{
 51	struct hv_input_post_message *aligned_msg;
 52	unsigned long flags;
 53	u64 status;
 54
 55	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
 56		return -EMSGSIZE;
 57
 58	local_irq_save(flags);
 59
 60	/*
 61	 * A TDX VM with the paravisor must use the decrypted post_msg_page: see
 62	 * the comment in struct hv_per_cpu_context. A SNP VM with the paravisor
 63	 * can use the encrypted hyperv_pcpu_input_arg because it copies the
 64	 * input into the GHCB page, which has been decrypted by the paravisor.
 65	 */
 66	if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present)
 67		aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page;
 68	else
 69		aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg);
 70
 71	aligned_msg->connectionid = connection_id;
 72	aligned_msg->reserved = 0;
 73	aligned_msg->message_type = message_type;
 74	aligned_msg->payload_size = payload_size;
 75	memcpy((void *)aligned_msg->payload, payload, payload_size);
 76
 77	if (ms_hyperv.paravisor_present) {
 78		if (hv_isolation_type_tdx())
 79			status = hv_tdx_hypercall(HVCALL_POST_MESSAGE,
 80						  virt_to_phys(aligned_msg), 0);
 81		else if (hv_isolation_type_snp())
 82			status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
 83						   aligned_msg, NULL,
 84						   sizeof(*aligned_msg));
 85		else
 86			status = HV_STATUS_INVALID_PARAMETER;
 87	} else {
 88		status = hv_do_hypercall(HVCALL_POST_MESSAGE,
 89				aligned_msg, NULL);
 90	}
 91
 92	local_irq_restore(flags);
 93
 94	return hv_result(status);
 95}
 96
 97int hv_synic_alloc(void)
 98{
 99	int cpu, ret = -ENOMEM;
100	struct hv_per_cpu_context *hv_cpu;
101
102	/*
103	 * First, zero all per-cpu memory areas so hv_synic_free() can
104	 * detect what memory has been allocated and cleanup properly
105	 * after any failures.
106	 */
107	for_each_present_cpu(cpu) {
108		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
109		memset(hv_cpu, 0, sizeof(*hv_cpu));
110	}
111
112	hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
113					 GFP_KERNEL);
114	if (hv_context.hv_numa_map == NULL) {
115		pr_err("Unable to allocate NUMA map\n");
116		goto err;
117	}
118
119	for_each_present_cpu(cpu) {
120		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
121
122		tasklet_init(&hv_cpu->msg_dpc,
123			     vmbus_on_msg_dpc, (unsigned long) hv_cpu);
124
125		if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
126			hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
127			if (hv_cpu->post_msg_page == NULL) {
128				pr_err("Unable to allocate post msg page\n");
129				goto err;
130			}
131
132			ret = set_memory_decrypted((unsigned long)hv_cpu->post_msg_page, 1);
133			if (ret) {
134				pr_err("Failed to decrypt post msg page: %d\n", ret);
135				/* Just leak the page, as it's unsafe to free the page. */
136				hv_cpu->post_msg_page = NULL;
137				goto err;
138			}
139
140			memset(hv_cpu->post_msg_page, 0, PAGE_SIZE);
141		}
142
143		/*
144		 * Synic message and event pages are allocated by paravisor.
145		 * Skip these pages allocation here.
146		 */
147		if (!ms_hyperv.paravisor_present && !hv_root_partition) {
148			hv_cpu->synic_message_page =
149				(void *)get_zeroed_page(GFP_ATOMIC);
150			if (hv_cpu->synic_message_page == NULL) {
151				pr_err("Unable to allocate SYNIC message page\n");
152				goto err;
153			}
154
155			hv_cpu->synic_event_page =
156				(void *)get_zeroed_page(GFP_ATOMIC);
157			if (hv_cpu->synic_event_page == NULL) {
158				pr_err("Unable to allocate SYNIC event page\n");
159
160				free_page((unsigned long)hv_cpu->synic_message_page);
161				hv_cpu->synic_message_page = NULL;
162				goto err;
163			}
164		}
165
166		if (!ms_hyperv.paravisor_present &&
167		    (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
168			ret = set_memory_decrypted((unsigned long)
169				hv_cpu->synic_message_page, 1);
170			if (ret) {
171				pr_err("Failed to decrypt SYNIC msg page: %d\n", ret);
172				hv_cpu->synic_message_page = NULL;
173
174				/*
175				 * Free the event page here so that hv_synic_free()
176				 * won't later try to re-encrypt it.
177				 */
178				free_page((unsigned long)hv_cpu->synic_event_page);
179				hv_cpu->synic_event_page = NULL;
180				goto err;
181			}
182
183			ret = set_memory_decrypted((unsigned long)
184				hv_cpu->synic_event_page, 1);
185			if (ret) {
186				pr_err("Failed to decrypt SYNIC event page: %d\n", ret);
187				hv_cpu->synic_event_page = NULL;
188				goto err;
189			}
190
191			memset(hv_cpu->synic_message_page, 0, PAGE_SIZE);
192			memset(hv_cpu->synic_event_page, 0, PAGE_SIZE);
193		}
194	}
195
196	return 0;
197
198err:
199	/*
200	 * Any memory allocations that succeeded will be freed when
201	 * the caller cleans up by calling hv_synic_free()
202	 */
203	return ret;
204}
205
206
207void hv_synic_free(void)
208{
209	int cpu, ret;
210
211	for_each_present_cpu(cpu) {
212		struct hv_per_cpu_context *hv_cpu
213			= per_cpu_ptr(hv_context.cpu_context, cpu);
214
215		/* It's better to leak the page if the encryption fails. */
216		if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
217			if (hv_cpu->post_msg_page) {
218				ret = set_memory_encrypted((unsigned long)
219					hv_cpu->post_msg_page, 1);
220				if (ret) {
221					pr_err("Failed to encrypt post msg page: %d\n", ret);
222					hv_cpu->post_msg_page = NULL;
223				}
224			}
225		}
226
227		if (!ms_hyperv.paravisor_present &&
228		    (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
229			if (hv_cpu->synic_message_page) {
230				ret = set_memory_encrypted((unsigned long)
231					hv_cpu->synic_message_page, 1);
232				if (ret) {
233					pr_err("Failed to encrypt SYNIC msg page: %d\n", ret);
234					hv_cpu->synic_message_page = NULL;
235				}
236			}
237
238			if (hv_cpu->synic_event_page) {
239				ret = set_memory_encrypted((unsigned long)
240					hv_cpu->synic_event_page, 1);
241				if (ret) {
242					pr_err("Failed to encrypt SYNIC event page: %d\n", ret);
243					hv_cpu->synic_event_page = NULL;
244				}
245			}
246		}
247
248		free_page((unsigned long)hv_cpu->post_msg_page);
249		free_page((unsigned long)hv_cpu->synic_event_page);
250		free_page((unsigned long)hv_cpu->synic_message_page);
251	}
252
253	kfree(hv_context.hv_numa_map);
254}
255
256/*
257 * hv_synic_init - Initialize the Synthetic Interrupt Controller.
258 *
259 * If it is already initialized by another entity (ie x2v shim), we need to
260 * retrieve the initialized message and event pages.  Otherwise, we create and
261 * initialize the message and event pages.
262 */
263void hv_synic_enable_regs(unsigned int cpu)
264{
265	struct hv_per_cpu_context *hv_cpu
266		= per_cpu_ptr(hv_context.cpu_context, cpu);
267	union hv_synic_simp simp;
268	union hv_synic_siefp siefp;
269	union hv_synic_sint shared_sint;
270	union hv_synic_scontrol sctrl;
271
272	/* Setup the Synic's message page */
273	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
274	simp.simp_enabled = 1;
275
276	if (ms_hyperv.paravisor_present || hv_root_partition) {
277		/* Mask out vTOM bit. ioremap_cache() maps decrypted */
278		u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) &
279				~ms_hyperv.shared_gpa_boundary;
280		hv_cpu->synic_message_page
281			= (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
282		if (!hv_cpu->synic_message_page)
283			pr_err("Fail to map synic message page.\n");
284	} else {
285		simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
286			>> HV_HYP_PAGE_SHIFT;
287	}
288
289	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
290
291	/* Setup the Synic's event page */
292	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
293	siefp.siefp_enabled = 1;
294
295	if (ms_hyperv.paravisor_present || hv_root_partition) {
296		/* Mask out vTOM bit. ioremap_cache() maps decrypted */
297		u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) &
298				~ms_hyperv.shared_gpa_boundary;
299		hv_cpu->synic_event_page
300			= (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
301		if (!hv_cpu->synic_event_page)
302			pr_err("Fail to map synic event page.\n");
303	} else {
304		siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
305			>> HV_HYP_PAGE_SHIFT;
306	}
307
308	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
309
310	/* Setup the shared SINT. */
311	if (vmbus_irq != -1)
312		enable_percpu_irq(vmbus_irq, 0);
313	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
314					VMBUS_MESSAGE_SINT);
315
316	shared_sint.vector = vmbus_interrupt;
317	shared_sint.masked = false;
318
319	/*
320	 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
321	 * it doesn't provide a recommendation flag and AEOI must be disabled.
322	 */
323#ifdef HV_DEPRECATING_AEOI_RECOMMENDED
324	shared_sint.auto_eoi =
325			!(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
326#else
327	shared_sint.auto_eoi = 0;
328#endif
329	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
330				shared_sint.as_uint64);
331
332	/* Enable the global synic bit */
333	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
334	sctrl.enable = 1;
335
336	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
337}
338
339int hv_synic_init(unsigned int cpu)
340{
341	hv_synic_enable_regs(cpu);
342
343	hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
344
345	return 0;
346}
347
348/*
349 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
350 */
351void hv_synic_disable_regs(unsigned int cpu)
352{
353	struct hv_per_cpu_context *hv_cpu
354		= per_cpu_ptr(hv_context.cpu_context, cpu);
355	union hv_synic_sint shared_sint;
356	union hv_synic_simp simp;
357	union hv_synic_siefp siefp;
358	union hv_synic_scontrol sctrl;
359
360	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
361					VMBUS_MESSAGE_SINT);
362
363	shared_sint.masked = 1;
364
365	/* Need to correctly cleanup in the case of SMP!!! */
366	/* Disable the interrupt */
367	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
368				shared_sint.as_uint64);
369
370	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
371	/*
372	 * In Isolation VM, sim and sief pages are allocated by
373	 * paravisor. These pages also will be used by kdump
374	 * kernel. So just reset enable bit here and keep page
375	 * addresses.
376	 */
377	simp.simp_enabled = 0;
378	if (ms_hyperv.paravisor_present || hv_root_partition) {
379		iounmap(hv_cpu->synic_message_page);
380		hv_cpu->synic_message_page = NULL;
381	} else {
382		simp.base_simp_gpa = 0;
383	}
384
385	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
386
387	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
388	siefp.siefp_enabled = 0;
389
390	if (ms_hyperv.paravisor_present || hv_root_partition) {
391		iounmap(hv_cpu->synic_event_page);
392		hv_cpu->synic_event_page = NULL;
393	} else {
394		siefp.base_siefp_gpa = 0;
395	}
396
397	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
398
399	/* Disable the global synic bit */
400	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
401	sctrl.enable = 0;
402	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
403
404	if (vmbus_irq != -1)
405		disable_percpu_irq(vmbus_irq);
406}
407
408#define HV_MAX_TRIES 3
409/*
410 * Scan the event flags page of 'this' CPU looking for any bit that is set.  If we find one
411 * bit set, then wait for a few milliseconds.  Repeat these steps for a maximum of 3 times.
412 * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
413 *
414 * If a bit is set, that means there is a pending channel interrupt.  The expectation is
415 * that the normal interrupt handling mechanism will find and process the channel interrupt
416 * "very soon", and in the process clear the bit.
417 */
418static bool hv_synic_event_pending(void)
419{
420	struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
421	union hv_synic_event_flags *event =
422		(union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
423	unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
424	bool pending;
425	u32 relid;
426	int tries = 0;
427
428retry:
429	pending = false;
430	for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
431		/* Special case - VMBus channel protocol messages */
432		if (relid == 0)
433			continue;
434		pending = true;
435		break;
436	}
437	if (pending && tries++ < HV_MAX_TRIES) {
438		usleep_range(10000, 20000);
439		goto retry;
440	}
441	return pending;
442}
443
444int hv_synic_cleanup(unsigned int cpu)
445{
446	struct vmbus_channel *channel, *sc;
447	bool channel_found = false;
448
449	if (vmbus_connection.conn_state != CONNECTED)
450		goto always_cleanup;
451
452	/*
453	 * Hyper-V does not provide a way to change the connect CPU once
454	 * it is set; we must prevent the connect CPU from going offline
455	 * while the VM is running normally. But in the panic or kexec()
456	 * path where the vmbus is already disconnected, the CPU must be
457	 * allowed to shut down.
458	 */
459	if (cpu == VMBUS_CONNECT_CPU)
460		return -EBUSY;
461
462	/*
463	 * Search for channels which are bound to the CPU we're about to
464	 * cleanup.  In case we find one and vmbus is still connected, we
465	 * fail; this will effectively prevent CPU offlining.
466	 *
467	 * TODO: Re-bind the channels to different CPUs.
468	 */
469	mutex_lock(&vmbus_connection.channel_mutex);
470	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
471		if (channel->target_cpu == cpu) {
472			channel_found = true;
473			break;
474		}
475		list_for_each_entry(sc, &channel->sc_list, sc_list) {
476			if (sc->target_cpu == cpu) {
477				channel_found = true;
478				break;
479			}
480		}
481		if (channel_found)
482			break;
483	}
484	mutex_unlock(&vmbus_connection.channel_mutex);
485
486	if (channel_found)
487		return -EBUSY;
488
489	/*
490	 * channel_found == false means that any channels that were previously
491	 * assigned to the CPU have been reassigned elsewhere with a call of
492	 * vmbus_send_modifychannel().  Scan the event flags page looking for
493	 * bits that are set and waiting with a timeout for vmbus_chan_sched()
494	 * to process such bits.  If bits are still set after this operation
495	 * and VMBus is connected, fail the CPU offlining operation.
496	 */
497	if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
498		return -EBUSY;
499
500always_cleanup:
501	hv_stimer_legacy_cleanup(cpu);
502
503	hv_synic_disable_regs(cpu);
504
505	return 0;
506}