Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/io.h>
12#include <linux/kernel.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/hyperv.h>
17#include <linux/random.h>
18#include <linux/clockchips.h>
19#include <linux/delay.h>
20#include <linux/interrupt.h>
21#include <clocksource/hyperv_timer.h>
22#include <asm/mshyperv.h>
23#include <linux/set_memory.h>
24#include "hyperv_vmbus.h"
25
26/* The one and only */
27struct hv_context hv_context;
28
29/*
30 * hv_init - Main initialization routine.
31 *
32 * This routine must be called before any other routines in here are called
33 */
34int hv_init(void)
35{
36 hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
37 if (!hv_context.cpu_context)
38 return -ENOMEM;
39 return 0;
40}
41
42/*
43 * hv_post_message - Post a message using the hypervisor message IPC.
44 *
45 * This involves a hypercall.
46 */
47int hv_post_message(union hv_connection_id connection_id,
48 enum hv_message_type message_type,
49 void *payload, size_t payload_size)
50{
51 struct hv_input_post_message *aligned_msg;
52 unsigned long flags;
53 u64 status;
54
55 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
56 return -EMSGSIZE;
57
58 local_irq_save(flags);
59
60 /*
61 * A TDX VM with the paravisor must use the decrypted post_msg_page: see
62 * the comment in struct hv_per_cpu_context. A SNP VM with the paravisor
63 * can use the encrypted hyperv_pcpu_input_arg because it copies the
64 * input into the GHCB page, which has been decrypted by the paravisor.
65 */
66 if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present)
67 aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page;
68 else
69 aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg);
70
71 aligned_msg->connectionid = connection_id;
72 aligned_msg->reserved = 0;
73 aligned_msg->message_type = message_type;
74 aligned_msg->payload_size = payload_size;
75 memcpy((void *)aligned_msg->payload, payload, payload_size);
76
77 if (ms_hyperv.paravisor_present) {
78 if (hv_isolation_type_tdx())
79 status = hv_tdx_hypercall(HVCALL_POST_MESSAGE,
80 virt_to_phys(aligned_msg), 0);
81 else if (hv_isolation_type_snp())
82 status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
83 aligned_msg, NULL,
84 sizeof(*aligned_msg));
85 else
86 status = HV_STATUS_INVALID_PARAMETER;
87 } else {
88 status = hv_do_hypercall(HVCALL_POST_MESSAGE,
89 aligned_msg, NULL);
90 }
91
92 local_irq_restore(flags);
93
94 return hv_result(status);
95}
96
97int hv_synic_alloc(void)
98{
99 int cpu, ret = -ENOMEM;
100 struct hv_per_cpu_context *hv_cpu;
101
102 /*
103 * First, zero all per-cpu memory areas so hv_synic_free() can
104 * detect what memory has been allocated and cleanup properly
105 * after any failures.
106 */
107 for_each_present_cpu(cpu) {
108 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
109 memset(hv_cpu, 0, sizeof(*hv_cpu));
110 }
111
112 hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
113 GFP_KERNEL);
114 if (hv_context.hv_numa_map == NULL) {
115 pr_err("Unable to allocate NUMA map\n");
116 goto err;
117 }
118
119 for_each_present_cpu(cpu) {
120 hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
121
122 tasklet_init(&hv_cpu->msg_dpc,
123 vmbus_on_msg_dpc, (unsigned long) hv_cpu);
124
125 if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
126 hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
127 if (hv_cpu->post_msg_page == NULL) {
128 pr_err("Unable to allocate post msg page\n");
129 goto err;
130 }
131
132 ret = set_memory_decrypted((unsigned long)hv_cpu->post_msg_page, 1);
133 if (ret) {
134 pr_err("Failed to decrypt post msg page: %d\n", ret);
135 /* Just leak the page, as it's unsafe to free the page. */
136 hv_cpu->post_msg_page = NULL;
137 goto err;
138 }
139
140 memset(hv_cpu->post_msg_page, 0, PAGE_SIZE);
141 }
142
143 /*
144 * Synic message and event pages are allocated by paravisor.
145 * Skip these pages allocation here.
146 */
147 if (!ms_hyperv.paravisor_present && !hv_root_partition) {
148 hv_cpu->synic_message_page =
149 (void *)get_zeroed_page(GFP_ATOMIC);
150 if (hv_cpu->synic_message_page == NULL) {
151 pr_err("Unable to allocate SYNIC message page\n");
152 goto err;
153 }
154
155 hv_cpu->synic_event_page =
156 (void *)get_zeroed_page(GFP_ATOMIC);
157 if (hv_cpu->synic_event_page == NULL) {
158 pr_err("Unable to allocate SYNIC event page\n");
159
160 free_page((unsigned long)hv_cpu->synic_message_page);
161 hv_cpu->synic_message_page = NULL;
162 goto err;
163 }
164 }
165
166 if (!ms_hyperv.paravisor_present &&
167 (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
168 ret = set_memory_decrypted((unsigned long)
169 hv_cpu->synic_message_page, 1);
170 if (ret) {
171 pr_err("Failed to decrypt SYNIC msg page: %d\n", ret);
172 hv_cpu->synic_message_page = NULL;
173
174 /*
175 * Free the event page here so that hv_synic_free()
176 * won't later try to re-encrypt it.
177 */
178 free_page((unsigned long)hv_cpu->synic_event_page);
179 hv_cpu->synic_event_page = NULL;
180 goto err;
181 }
182
183 ret = set_memory_decrypted((unsigned long)
184 hv_cpu->synic_event_page, 1);
185 if (ret) {
186 pr_err("Failed to decrypt SYNIC event page: %d\n", ret);
187 hv_cpu->synic_event_page = NULL;
188 goto err;
189 }
190
191 memset(hv_cpu->synic_message_page, 0, PAGE_SIZE);
192 memset(hv_cpu->synic_event_page, 0, PAGE_SIZE);
193 }
194 }
195
196 return 0;
197
198err:
199 /*
200 * Any memory allocations that succeeded will be freed when
201 * the caller cleans up by calling hv_synic_free()
202 */
203 return ret;
204}
205
206
207void hv_synic_free(void)
208{
209 int cpu, ret;
210
211 for_each_present_cpu(cpu) {
212 struct hv_per_cpu_context *hv_cpu
213 = per_cpu_ptr(hv_context.cpu_context, cpu);
214
215 /* It's better to leak the page if the encryption fails. */
216 if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
217 if (hv_cpu->post_msg_page) {
218 ret = set_memory_encrypted((unsigned long)
219 hv_cpu->post_msg_page, 1);
220 if (ret) {
221 pr_err("Failed to encrypt post msg page: %d\n", ret);
222 hv_cpu->post_msg_page = NULL;
223 }
224 }
225 }
226
227 if (!ms_hyperv.paravisor_present &&
228 (hv_isolation_type_snp() || hv_isolation_type_tdx())) {
229 if (hv_cpu->synic_message_page) {
230 ret = set_memory_encrypted((unsigned long)
231 hv_cpu->synic_message_page, 1);
232 if (ret) {
233 pr_err("Failed to encrypt SYNIC msg page: %d\n", ret);
234 hv_cpu->synic_message_page = NULL;
235 }
236 }
237
238 if (hv_cpu->synic_event_page) {
239 ret = set_memory_encrypted((unsigned long)
240 hv_cpu->synic_event_page, 1);
241 if (ret) {
242 pr_err("Failed to encrypt SYNIC event page: %d\n", ret);
243 hv_cpu->synic_event_page = NULL;
244 }
245 }
246 }
247
248 free_page((unsigned long)hv_cpu->post_msg_page);
249 free_page((unsigned long)hv_cpu->synic_event_page);
250 free_page((unsigned long)hv_cpu->synic_message_page);
251 }
252
253 kfree(hv_context.hv_numa_map);
254}
255
256/*
257 * hv_synic_init - Initialize the Synthetic Interrupt Controller.
258 *
259 * If it is already initialized by another entity (ie x2v shim), we need to
260 * retrieve the initialized message and event pages. Otherwise, we create and
261 * initialize the message and event pages.
262 */
263void hv_synic_enable_regs(unsigned int cpu)
264{
265 struct hv_per_cpu_context *hv_cpu
266 = per_cpu_ptr(hv_context.cpu_context, cpu);
267 union hv_synic_simp simp;
268 union hv_synic_siefp siefp;
269 union hv_synic_sint shared_sint;
270 union hv_synic_scontrol sctrl;
271
272 /* Setup the Synic's message page */
273 simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
274 simp.simp_enabled = 1;
275
276 if (ms_hyperv.paravisor_present || hv_root_partition) {
277 /* Mask out vTOM bit. ioremap_cache() maps decrypted */
278 u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) &
279 ~ms_hyperv.shared_gpa_boundary;
280 hv_cpu->synic_message_page
281 = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
282 if (!hv_cpu->synic_message_page)
283 pr_err("Fail to map synic message page.\n");
284 } else {
285 simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
286 >> HV_HYP_PAGE_SHIFT;
287 }
288
289 hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
290
291 /* Setup the Synic's event page */
292 siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
293 siefp.siefp_enabled = 1;
294
295 if (ms_hyperv.paravisor_present || hv_root_partition) {
296 /* Mask out vTOM bit. ioremap_cache() maps decrypted */
297 u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) &
298 ~ms_hyperv.shared_gpa_boundary;
299 hv_cpu->synic_event_page
300 = (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
301 if (!hv_cpu->synic_event_page)
302 pr_err("Fail to map synic event page.\n");
303 } else {
304 siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
305 >> HV_HYP_PAGE_SHIFT;
306 }
307
308 hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
309
310 /* Setup the shared SINT. */
311 if (vmbus_irq != -1)
312 enable_percpu_irq(vmbus_irq, 0);
313 shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
314 VMBUS_MESSAGE_SINT);
315
316 shared_sint.vector = vmbus_interrupt;
317 shared_sint.masked = false;
318
319 /*
320 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
321 * it doesn't provide a recommendation flag and AEOI must be disabled.
322 */
323#ifdef HV_DEPRECATING_AEOI_RECOMMENDED
324 shared_sint.auto_eoi =
325 !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
326#else
327 shared_sint.auto_eoi = 0;
328#endif
329 hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
330 shared_sint.as_uint64);
331
332 /* Enable the global synic bit */
333 sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
334 sctrl.enable = 1;
335
336 hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
337}
338
339int hv_synic_init(unsigned int cpu)
340{
341 hv_synic_enable_regs(cpu);
342
343 hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
344
345 return 0;
346}
347
348/*
349 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
350 */
351void hv_synic_disable_regs(unsigned int cpu)
352{
353 struct hv_per_cpu_context *hv_cpu
354 = per_cpu_ptr(hv_context.cpu_context, cpu);
355 union hv_synic_sint shared_sint;
356 union hv_synic_simp simp;
357 union hv_synic_siefp siefp;
358 union hv_synic_scontrol sctrl;
359
360 shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
361 VMBUS_MESSAGE_SINT);
362
363 shared_sint.masked = 1;
364
365 /* Need to correctly cleanup in the case of SMP!!! */
366 /* Disable the interrupt */
367 hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
368 shared_sint.as_uint64);
369
370 simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
371 /*
372 * In Isolation VM, sim and sief pages are allocated by
373 * paravisor. These pages also will be used by kdump
374 * kernel. So just reset enable bit here and keep page
375 * addresses.
376 */
377 simp.simp_enabled = 0;
378 if (ms_hyperv.paravisor_present || hv_root_partition) {
379 iounmap(hv_cpu->synic_message_page);
380 hv_cpu->synic_message_page = NULL;
381 } else {
382 simp.base_simp_gpa = 0;
383 }
384
385 hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
386
387 siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
388 siefp.siefp_enabled = 0;
389
390 if (ms_hyperv.paravisor_present || hv_root_partition) {
391 iounmap(hv_cpu->synic_event_page);
392 hv_cpu->synic_event_page = NULL;
393 } else {
394 siefp.base_siefp_gpa = 0;
395 }
396
397 hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
398
399 /* Disable the global synic bit */
400 sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
401 sctrl.enable = 0;
402 hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
403
404 if (vmbus_irq != -1)
405 disable_percpu_irq(vmbus_irq);
406}
407
408#define HV_MAX_TRIES 3
409/*
410 * Scan the event flags page of 'this' CPU looking for any bit that is set. If we find one
411 * bit set, then wait for a few milliseconds. Repeat these steps for a maximum of 3 times.
412 * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
413 *
414 * If a bit is set, that means there is a pending channel interrupt. The expectation is
415 * that the normal interrupt handling mechanism will find and process the channel interrupt
416 * "very soon", and in the process clear the bit.
417 */
418static bool hv_synic_event_pending(void)
419{
420 struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
421 union hv_synic_event_flags *event =
422 (union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
423 unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
424 bool pending;
425 u32 relid;
426 int tries = 0;
427
428retry:
429 pending = false;
430 for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
431 /* Special case - VMBus channel protocol messages */
432 if (relid == 0)
433 continue;
434 pending = true;
435 break;
436 }
437 if (pending && tries++ < HV_MAX_TRIES) {
438 usleep_range(10000, 20000);
439 goto retry;
440 }
441 return pending;
442}
443
444int hv_synic_cleanup(unsigned int cpu)
445{
446 struct vmbus_channel *channel, *sc;
447 bool channel_found = false;
448
449 if (vmbus_connection.conn_state != CONNECTED)
450 goto always_cleanup;
451
452 /*
453 * Hyper-V does not provide a way to change the connect CPU once
454 * it is set; we must prevent the connect CPU from going offline
455 * while the VM is running normally. But in the panic or kexec()
456 * path where the vmbus is already disconnected, the CPU must be
457 * allowed to shut down.
458 */
459 if (cpu == VMBUS_CONNECT_CPU)
460 return -EBUSY;
461
462 /*
463 * Search for channels which are bound to the CPU we're about to
464 * cleanup. In case we find one and vmbus is still connected, we
465 * fail; this will effectively prevent CPU offlining.
466 *
467 * TODO: Re-bind the channels to different CPUs.
468 */
469 mutex_lock(&vmbus_connection.channel_mutex);
470 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
471 if (channel->target_cpu == cpu) {
472 channel_found = true;
473 break;
474 }
475 list_for_each_entry(sc, &channel->sc_list, sc_list) {
476 if (sc->target_cpu == cpu) {
477 channel_found = true;
478 break;
479 }
480 }
481 if (channel_found)
482 break;
483 }
484 mutex_unlock(&vmbus_connection.channel_mutex);
485
486 if (channel_found)
487 return -EBUSY;
488
489 /*
490 * channel_found == false means that any channels that were previously
491 * assigned to the CPU have been reassigned elsewhere with a call of
492 * vmbus_send_modifychannel(). Scan the event flags page looking for
493 * bits that are set and waiting with a timeout for vmbus_chan_sched()
494 * to process such bits. If bits are still set after this operation
495 * and VMBus is connected, fail the CPU offlining operation.
496 */
497 if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
498 return -EBUSY;
499
500always_cleanup:
501 hv_stimer_legacy_cleanup(cpu);
502
503 hv_synic_disable_regs(cpu);
504
505 return 0;
506}
1/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 *
21 */
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24#include <linux/kernel.h>
25#include <linux/mm.h>
26#include <linux/slab.h>
27#include <linux/vmalloc.h>
28#include <linux/hyperv.h>
29#include <asm/hyperv.h>
30#include "hyperv_vmbus.h"
31
32/* The one and only */
33struct hv_context hv_context = {
34 .synic_initialized = false,
35 .hypercall_page = NULL,
36 .signal_event_param = NULL,
37 .signal_event_buffer = NULL,
38};
39
40/*
41 * query_hypervisor_presence
42 * - Query the cpuid for presence of windows hypervisor
43 */
44static int query_hypervisor_presence(void)
45{
46 unsigned int eax;
47 unsigned int ebx;
48 unsigned int ecx;
49 unsigned int edx;
50 unsigned int op;
51
52 eax = 0;
53 ebx = 0;
54 ecx = 0;
55 edx = 0;
56 op = HVCPUID_VERSION_FEATURES;
57 cpuid(op, &eax, &ebx, &ecx, &edx);
58
59 return ecx & HV_PRESENT_BIT;
60}
61
62/*
63 * query_hypervisor_info - Get version info of the windows hypervisor
64 */
65static int query_hypervisor_info(void)
66{
67 unsigned int eax;
68 unsigned int ebx;
69 unsigned int ecx;
70 unsigned int edx;
71 unsigned int max_leaf;
72 unsigned int op;
73
74 /*
75 * Its assumed that this is called after confirming that Viridian
76 * is present. Query id and revision.
77 */
78 eax = 0;
79 ebx = 0;
80 ecx = 0;
81 edx = 0;
82 op = HVCPUID_VENDOR_MAXFUNCTION;
83 cpuid(op, &eax, &ebx, &ecx, &edx);
84
85 max_leaf = eax;
86
87 if (max_leaf >= HVCPUID_VERSION) {
88 eax = 0;
89 ebx = 0;
90 ecx = 0;
91 edx = 0;
92 op = HVCPUID_VERSION;
93 cpuid(op, &eax, &ebx, &ecx, &edx);
94 pr_info("Hyper-V Host OS Build:%d-%d.%d-%d-%d.%d\n",
95 eax,
96 ebx >> 16,
97 ebx & 0xFFFF,
98 ecx,
99 edx >> 24,
100 edx & 0xFFFFFF);
101 }
102 return max_leaf;
103}
104
105/*
106 * do_hypercall- Invoke the specified hypercall
107 */
108static u64 do_hypercall(u64 control, void *input, void *output)
109{
110#ifdef CONFIG_X86_64
111 u64 hv_status = 0;
112 u64 input_address = (input) ? virt_to_phys(input) : 0;
113 u64 output_address = (output) ? virt_to_phys(output) : 0;
114 void *hypercall_page = hv_context.hypercall_page;
115
116 __asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
117 __asm__ __volatile__("call *%3" : "=a" (hv_status) :
118 "c" (control), "d" (input_address),
119 "m" (hypercall_page));
120
121 return hv_status;
122
123#else
124
125 u32 control_hi = control >> 32;
126 u32 control_lo = control & 0xFFFFFFFF;
127 u32 hv_status_hi = 1;
128 u32 hv_status_lo = 1;
129 u64 input_address = (input) ? virt_to_phys(input) : 0;
130 u32 input_address_hi = input_address >> 32;
131 u32 input_address_lo = input_address & 0xFFFFFFFF;
132 u64 output_address = (output) ? virt_to_phys(output) : 0;
133 u32 output_address_hi = output_address >> 32;
134 u32 output_address_lo = output_address & 0xFFFFFFFF;
135 void *hypercall_page = hv_context.hypercall_page;
136
137 __asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
138 "=a"(hv_status_lo) : "d" (control_hi),
139 "a" (control_lo), "b" (input_address_hi),
140 "c" (input_address_lo), "D"(output_address_hi),
141 "S"(output_address_lo), "m" (hypercall_page));
142
143 return hv_status_lo | ((u64)hv_status_hi << 32);
144#endif /* !x86_64 */
145}
146
147/*
148 * hv_init - Main initialization routine.
149 *
150 * This routine must be called before any other routines in here are called
151 */
152int hv_init(void)
153{
154 int max_leaf;
155 union hv_x64_msr_hypercall_contents hypercall_msr;
156 void *virtaddr = NULL;
157
158 memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
159 memset(hv_context.synic_message_page, 0,
160 sizeof(void *) * NR_CPUS);
161
162 if (!query_hypervisor_presence())
163 goto cleanup;
164
165 max_leaf = query_hypervisor_info();
166
167 /* Write our OS info */
168 wrmsrl(HV_X64_MSR_GUEST_OS_ID, HV_LINUX_GUEST_ID);
169 hv_context.guestid = HV_LINUX_GUEST_ID;
170
171 /* See if the hypercall page is already set */
172 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
173
174 virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
175
176 if (!virtaddr)
177 goto cleanup;
178
179 hypercall_msr.enable = 1;
180
181 hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
182 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
183
184 /* Confirm that hypercall page did get setup. */
185 hypercall_msr.as_uint64 = 0;
186 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
187
188 if (!hypercall_msr.enable)
189 goto cleanup;
190
191 hv_context.hypercall_page = virtaddr;
192
193 /* Setup the global signal event param for the signal event hypercall */
194 hv_context.signal_event_buffer =
195 kmalloc(sizeof(struct hv_input_signal_event_buffer),
196 GFP_KERNEL);
197 if (!hv_context.signal_event_buffer)
198 goto cleanup;
199
200 hv_context.signal_event_param =
201 (struct hv_input_signal_event *)
202 (ALIGN((unsigned long)
203 hv_context.signal_event_buffer,
204 HV_HYPERCALL_PARAM_ALIGN));
205 hv_context.signal_event_param->connectionid.asu32 = 0;
206 hv_context.signal_event_param->connectionid.u.id =
207 VMBUS_EVENT_CONNECTION_ID;
208 hv_context.signal_event_param->flag_number = 0;
209 hv_context.signal_event_param->rsvdz = 0;
210
211 return 0;
212
213cleanup:
214 if (virtaddr) {
215 if (hypercall_msr.enable) {
216 hypercall_msr.as_uint64 = 0;
217 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
218 }
219
220 vfree(virtaddr);
221 }
222
223 return -ENOTSUPP;
224}
225
226/*
227 * hv_cleanup - Cleanup routine.
228 *
229 * This routine is called normally during driver unloading or exiting.
230 */
231void hv_cleanup(void)
232{
233 union hv_x64_msr_hypercall_contents hypercall_msr;
234
235 /* Reset our OS id */
236 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
237
238 kfree(hv_context.signal_event_buffer);
239 hv_context.signal_event_buffer = NULL;
240 hv_context.signal_event_param = NULL;
241
242 if (hv_context.hypercall_page) {
243 hypercall_msr.as_uint64 = 0;
244 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
245 vfree(hv_context.hypercall_page);
246 hv_context.hypercall_page = NULL;
247 }
248}
249
250/*
251 * hv_post_message - Post a message using the hypervisor message IPC.
252 *
253 * This involves a hypercall.
254 */
255int hv_post_message(union hv_connection_id connection_id,
256 enum hv_message_type message_type,
257 void *payload, size_t payload_size)
258{
259 struct aligned_input {
260 u64 alignment8;
261 struct hv_input_post_message msg;
262 };
263
264 struct hv_input_post_message *aligned_msg;
265 u16 status;
266 unsigned long addr;
267
268 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
269 return -EMSGSIZE;
270
271 addr = (unsigned long)kmalloc(sizeof(struct aligned_input), GFP_ATOMIC);
272 if (!addr)
273 return -ENOMEM;
274
275 aligned_msg = (struct hv_input_post_message *)
276 (ALIGN(addr, HV_HYPERCALL_PARAM_ALIGN));
277
278 aligned_msg->connectionid = connection_id;
279 aligned_msg->message_type = message_type;
280 aligned_msg->payload_size = payload_size;
281 memcpy((void *)aligned_msg->payload, payload, payload_size);
282
283 status = do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL)
284 & 0xFFFF;
285
286 kfree((void *)addr);
287
288 return status;
289}
290
291
292/*
293 * hv_signal_event -
294 * Signal an event on the specified connection using the hypervisor event IPC.
295 *
296 * This involves a hypercall.
297 */
298u16 hv_signal_event(void)
299{
300 u16 status;
301
302 status = do_hypercall(HVCALL_SIGNAL_EVENT,
303 hv_context.signal_event_param,
304 NULL) & 0xFFFF;
305 return status;
306}
307
308/*
309 * hv_synic_init - Initialize the Synthethic Interrupt Controller.
310 *
311 * If it is already initialized by another entity (ie x2v shim), we need to
312 * retrieve the initialized message and event pages. Otherwise, we create and
313 * initialize the message and event pages.
314 */
315void hv_synic_init(void *irqarg)
316{
317 u64 version;
318 union hv_synic_simp simp;
319 union hv_synic_siefp siefp;
320 union hv_synic_sint shared_sint;
321 union hv_synic_scontrol sctrl;
322
323 u32 irq_vector = *((u32 *)(irqarg));
324 int cpu = smp_processor_id();
325
326 if (!hv_context.hypercall_page)
327 return;
328
329 /* Check the version */
330 rdmsrl(HV_X64_MSR_SVERSION, version);
331
332 hv_context.synic_message_page[cpu] =
333 (void *)get_zeroed_page(GFP_ATOMIC);
334
335 if (hv_context.synic_message_page[cpu] == NULL) {
336 pr_err("Unable to allocate SYNIC message page\n");
337 goto cleanup;
338 }
339
340 hv_context.synic_event_page[cpu] =
341 (void *)get_zeroed_page(GFP_ATOMIC);
342
343 if (hv_context.synic_event_page[cpu] == NULL) {
344 pr_err("Unable to allocate SYNIC event page\n");
345 goto cleanup;
346 }
347
348 /* Setup the Synic's message page */
349 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
350 simp.simp_enabled = 1;
351 simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
352 >> PAGE_SHIFT;
353
354 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
355
356 /* Setup the Synic's event page */
357 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
358 siefp.siefp_enabled = 1;
359 siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
360 >> PAGE_SHIFT;
361
362 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
363
364 /* Setup the shared SINT. */
365 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
366
367 shared_sint.as_uint64 = 0;
368 shared_sint.vector = irq_vector; /* HV_SHARED_SINT_IDT_VECTOR + 0x20; */
369 shared_sint.masked = false;
370 shared_sint.auto_eoi = false;
371
372 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
373
374 /* Enable the global synic bit */
375 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
376 sctrl.enable = 1;
377
378 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
379
380 hv_context.synic_initialized = true;
381 return;
382
383cleanup:
384 if (hv_context.synic_event_page[cpu])
385 free_page((unsigned long)hv_context.synic_event_page[cpu]);
386
387 if (hv_context.synic_message_page[cpu])
388 free_page((unsigned long)hv_context.synic_message_page[cpu]);
389 return;
390}
391
392/*
393 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
394 */
395void hv_synic_cleanup(void *arg)
396{
397 union hv_synic_sint shared_sint;
398 union hv_synic_simp simp;
399 union hv_synic_siefp siefp;
400 int cpu = smp_processor_id();
401
402 if (!hv_context.synic_initialized)
403 return;
404
405 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
406
407 shared_sint.masked = 1;
408
409 /* Need to correctly cleanup in the case of SMP!!! */
410 /* Disable the interrupt */
411 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
412
413 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
414 simp.simp_enabled = 0;
415 simp.base_simp_gpa = 0;
416
417 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
418
419 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
420 siefp.siefp_enabled = 0;
421 siefp.base_siefp_gpa = 0;
422
423 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
424
425 free_page((unsigned long)hv_context.synic_message_page[cpu]);
426 free_page((unsigned long)hv_context.synic_event_page[cpu]);
427}