Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * PowerPC64 SLB support.
  3 *
  4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5 * Based on earlier code written by:
  6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7 *    Copyright (c) 2001 Dave Engebretsen
  8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9 *
 10 *
 11 *      This program is free software; you can redistribute it and/or
 12 *      modify it under the terms of the GNU General Public License
 13 *      as published by the Free Software Foundation; either version
 14 *      2 of the License, or (at your option) any later version.
 15 */
 16
 17#include <asm/pgtable.h>
 18#include <asm/mmu.h>
 19#include <asm/mmu_context.h>
 20#include <asm/paca.h>
 21#include <asm/cputable.h>
 22#include <asm/cacheflush.h>
 23#include <asm/smp.h>
 24#include <asm/firmware.h>
 25#include <linux/compiler.h>
 26#include <asm/udbg.h>
 27#include <asm/code-patching.h>
 28
 29
 30extern void slb_allocate_realmode(unsigned long ea);
 31extern void slb_allocate_user(unsigned long ea);
 32
 33static void slb_allocate(unsigned long ea)
 34{
 35	/* Currently, we do real mode for all SLBs including user, but
 36	 * that will change if we bring back dynamic VSIDs
 37	 */
 38	slb_allocate_realmode(ea);
 39}
 40
 41#define slb_esid_mask(ssize)	\
 42	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
 43
 44static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
 45					 unsigned long slot)
 46{
 47	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot;
 48}
 49
 50#define slb_vsid_shift(ssize)	\
 51	((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
 52
 53static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
 54					 unsigned long flags)
 55{
 56	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
 57		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
 58}
 59
 60static inline void slb_shadow_update(unsigned long ea, int ssize,
 61				     unsigned long flags,
 62				     unsigned long entry)
 63{
 64	/*
 65	 * Clear the ESID first so the entry is not valid while we are
 66	 * updating it.  No write barriers are needed here, provided
 67	 * we only update the current CPU's SLB shadow buffer.
 68	 */
 69	get_slb_shadow()->save_area[entry].esid = 0;
 70	get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
 71	get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
 72}
 73
 74static inline void slb_shadow_clear(unsigned long entry)
 75{
 76	get_slb_shadow()->save_area[entry].esid = 0;
 77}
 78
 79static inline void create_shadowed_slbe(unsigned long ea, int ssize,
 80					unsigned long flags,
 81					unsigned long entry)
 82{
 83	/*
 84	 * Updating the shadow buffer before writing the SLB ensures
 85	 * we don't get a stale entry here if we get preempted by PHYP
 86	 * between these two statements.
 87	 */
 88	slb_shadow_update(ea, ssize, flags, entry);
 89
 90	asm volatile("slbmte  %0,%1" :
 91		     : "r" (mk_vsid_data(ea, ssize, flags)),
 92		       "r" (mk_esid_data(ea, ssize, entry))
 93		     : "memory" );
 94}
 95
 96static void __slb_flush_and_rebolt(void)
 97{
 98	/* If you change this make sure you change SLB_NUM_BOLTED
 99	 * appropriately too. */
100	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
101	unsigned long ksp_esid_data, ksp_vsid_data;
102
103	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
104	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
105	lflags = SLB_VSID_KERNEL | linear_llp;
106	vflags = SLB_VSID_KERNEL | vmalloc_llp;
107
108	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
109	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
110		ksp_esid_data &= ~SLB_ESID_V;
111		ksp_vsid_data = 0;
112		slb_shadow_clear(2);
113	} else {
114		/* Update stack entry; others don't change */
115		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
116		ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
117	}
118
119	/* We need to do this all in asm, so we're sure we don't touch
120	 * the stack between the slbia and rebolting it. */
121	asm volatile("isync\n"
122		     "slbia\n"
123		     /* Slot 1 - first VMALLOC segment */
124		     "slbmte	%0,%1\n"
125		     /* Slot 2 - kernel stack */
126		     "slbmte	%2,%3\n"
127		     "isync"
128		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
129		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
130		        "r"(ksp_vsid_data),
131		        "r"(ksp_esid_data)
132		     : "memory");
133}
134
135void slb_flush_and_rebolt(void)
136{
137
138	WARN_ON(!irqs_disabled());
139
140	/*
141	 * We can't take a PMU exception in the following code, so hard
142	 * disable interrupts.
143	 */
144	hard_irq_disable();
145
146	__slb_flush_and_rebolt();
147	get_paca()->slb_cache_ptr = 0;
148}
149
150void slb_vmalloc_update(void)
151{
152	unsigned long vflags;
153
154	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
155	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
156	slb_flush_and_rebolt();
157}
158
159/* Helper function to compare esids.  There are four cases to handle.
160 * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
161 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
162 * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
163 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
164 */
165static inline int esids_match(unsigned long addr1, unsigned long addr2)
166{
167	int esid_1t_count;
168
169	/* System is not 1T segment size capable. */
170	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
171		return (GET_ESID(addr1) == GET_ESID(addr2));
172
173	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
174				((addr2 >> SID_SHIFT_1T) != 0));
175
176	/* both addresses are < 1T */
177	if (esid_1t_count == 0)
178		return (GET_ESID(addr1) == GET_ESID(addr2));
179
180	/* One address < 1T, the other > 1T.  Not a match */
181	if (esid_1t_count == 1)
182		return 0;
183
184	/* Both addresses are > 1T. */
185	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
186}
187
188/* Flush all user entries from the segment table of the current processor. */
189void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
190{
191	unsigned long offset;
192	unsigned long slbie_data = 0;
193	unsigned long pc = KSTK_EIP(tsk);
194	unsigned long stack = KSTK_ESP(tsk);
195	unsigned long exec_base;
196
197	/*
198	 * We need interrupts hard-disabled here, not just soft-disabled,
199	 * so that a PMU interrupt can't occur, which might try to access
200	 * user memory (to get a stack trace) and possible cause an SLB miss
201	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
202	 */
203	hard_irq_disable();
204	offset = get_paca()->slb_cache_ptr;
205	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
206	    offset <= SLB_CACHE_ENTRIES) {
207		int i;
208		asm volatile("isync" : : : "memory");
209		for (i = 0; i < offset; i++) {
210			slbie_data = (unsigned long)get_paca()->slb_cache[i]
211				<< SID_SHIFT; /* EA */
212			slbie_data |= user_segment_size(slbie_data)
213				<< SLBIE_SSIZE_SHIFT;
214			slbie_data |= SLBIE_C; /* C set for user addresses */
215			asm volatile("slbie %0" : : "r" (slbie_data));
216		}
217		asm volatile("isync" : : : "memory");
218	} else {
219		__slb_flush_and_rebolt();
220	}
221
222	/* Workaround POWER5 < DD2.1 issue */
223	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
224		asm volatile("slbie %0" : : "r" (slbie_data));
225
226	get_paca()->slb_cache_ptr = 0;
227	get_paca()->context = mm->context;
228
229	/*
230	 * preload some userspace segments into the SLB.
231	 * Almost all 32 and 64bit PowerPC executables are linked at
232	 * 0x10000000 so it makes sense to preload this segment.
233	 */
234	exec_base = 0x10000000;
235
236	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
237	    is_kernel_addr(exec_base))
238		return;
239
240	slb_allocate(pc);
241
242	if (!esids_match(pc, stack))
243		slb_allocate(stack);
244
245	if (!esids_match(pc, exec_base) &&
246	    !esids_match(stack, exec_base))
247		slb_allocate(exec_base);
248}
249
250static inline void patch_slb_encoding(unsigned int *insn_addr,
251				      unsigned int immed)
252{
253	int insn = (*insn_addr & 0xffff0000) | immed;
254	patch_instruction(insn_addr, insn);
255}
256
257void slb_set_size(u16 size)
258{
259	extern unsigned int *slb_compare_rr_to_size;
260
261	if (mmu_slb_size == size)
262		return;
263
264	mmu_slb_size = size;
265	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
266}
267
268void slb_initialize(void)
269{
270	unsigned long linear_llp, vmalloc_llp, io_llp;
271	unsigned long lflags, vflags;
272	static int slb_encoding_inited;
273	extern unsigned int *slb_miss_kernel_load_linear;
274	extern unsigned int *slb_miss_kernel_load_io;
275	extern unsigned int *slb_compare_rr_to_size;
276#ifdef CONFIG_SPARSEMEM_VMEMMAP
277	extern unsigned int *slb_miss_kernel_load_vmemmap;
278	unsigned long vmemmap_llp;
279#endif
280
281	/* Prepare our SLB miss handler based on our page size */
282	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
283	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
284	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
285	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
286#ifdef CONFIG_SPARSEMEM_VMEMMAP
287	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
288#endif
289	if (!slb_encoding_inited) {
290		slb_encoding_inited = 1;
291		patch_slb_encoding(slb_miss_kernel_load_linear,
292				   SLB_VSID_KERNEL | linear_llp);
293		patch_slb_encoding(slb_miss_kernel_load_io,
294				   SLB_VSID_KERNEL | io_llp);
295		patch_slb_encoding(slb_compare_rr_to_size,
296				   mmu_slb_size);
297
298		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
299		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
300
301#ifdef CONFIG_SPARSEMEM_VMEMMAP
302		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
303				   SLB_VSID_KERNEL | vmemmap_llp);
304		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
305#endif
306	}
307
308	get_paca()->stab_rr = SLB_NUM_BOLTED;
309
310	/* On iSeries the bolted entries have already been set up by
311	 * the hypervisor from the lparMap data in head.S */
312	if (firmware_has_feature(FW_FEATURE_ISERIES))
313		return;
314
315	lflags = SLB_VSID_KERNEL | linear_llp;
316	vflags = SLB_VSID_KERNEL | vmalloc_llp;
317
318	/* Invalidate the entire SLB (even slot 0) & all the ERATS */
319	asm volatile("isync":::"memory");
320	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
321	asm volatile("isync; slbia; isync":::"memory");
322	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
323
324	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
325
326	/* For the boot cpu, we're running on the stack in init_thread_union,
327	 * which is in the first segment of the linear mapping, and also
328	 * get_paca()->kstack hasn't been initialized yet.
329	 * For secondary cpus, we need to bolt the kernel stack entry now.
330	 */
331	slb_shadow_clear(2);
332	if (raw_smp_processor_id() != boot_cpuid &&
333	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
334		create_shadowed_slbe(get_paca()->kstack,
335				     mmu_kernel_ssize, lflags, 2);
336
337	asm volatile("isync":::"memory");
338}