Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * PowerPC64 SLB support.
  3 *
  4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5 * Based on earlier code written by:
  6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7 *    Copyright (c) 2001 Dave Engebretsen
  8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9 *
 10 *
 11 *      This program is free software; you can redistribute it and/or
 12 *      modify it under the terms of the GNU General Public License
 13 *      as published by the Free Software Foundation; either version
 14 *      2 of the License, or (at your option) any later version.
 15 */
 16
 17#include <asm/pgtable.h>
 18#include <asm/mmu.h>
 19#include <asm/mmu_context.h>
 20#include <asm/paca.h>
 21#include <asm/cputable.h>
 22#include <asm/cacheflush.h>
 23#include <asm/smp.h>
 24#include <linux/compiler.h>
 25#include <linux/context_tracking.h>
 26#include <linux/mm_types.h>
 27
 28#include <asm/udbg.h>
 29#include <asm/code-patching.h>
 30
 31enum slb_index {
 32	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
 33	VMALLOC_INDEX	= 1, /* Kernel virtual map (0xd000000000000000) */
 34	KSTACK_INDEX	= 2, /* Kernel stack map */
 35};
 36
 37extern void slb_allocate(unsigned long ea);
 38
 39#define slb_esid_mask(ssize)	\
 40	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
 41
 42static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
 43					 enum slb_index index)
 44{
 45	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
 46}
 47
 48static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
 49					 unsigned long flags)
 50{
 51	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
 52		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
 53}
 54
 55static inline void slb_shadow_update(unsigned long ea, int ssize,
 56				     unsigned long flags,
 57				     enum slb_index index)
 58{
 59	struct slb_shadow *p = get_slb_shadow();
 60
 61	/*
 62	 * Clear the ESID first so the entry is not valid while we are
 63	 * updating it.  No write barriers are needed here, provided
 64	 * we only update the current CPU's SLB shadow buffer.
 65	 */
 66	p->save_area[index].esid = 0;
 67	p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
 68	p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
 69}
 70
 71static inline void slb_shadow_clear(enum slb_index index)
 72{
 73	get_slb_shadow()->save_area[index].esid = 0;
 74}
 75
 76static inline void create_shadowed_slbe(unsigned long ea, int ssize,
 77					unsigned long flags,
 78					enum slb_index index)
 79{
 80	/*
 81	 * Updating the shadow buffer before writing the SLB ensures
 82	 * we don't get a stale entry here if we get preempted by PHYP
 83	 * between these two statements.
 84	 */
 85	slb_shadow_update(ea, ssize, flags, index);
 86
 87	asm volatile("slbmte  %0,%1" :
 88		     : "r" (mk_vsid_data(ea, ssize, flags)),
 89		       "r" (mk_esid_data(ea, ssize, index))
 90		     : "memory" );
 91}
 92
 93static void __slb_flush_and_rebolt(void)
 94{
 95	/* If you change this make sure you change SLB_NUM_BOLTED
 96	 * and PR KVM appropriately too. */
 97	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
 98	unsigned long ksp_esid_data, ksp_vsid_data;
 99
100	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
101	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
102	lflags = SLB_VSID_KERNEL | linear_llp;
103	vflags = SLB_VSID_KERNEL | vmalloc_llp;
104
105	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
106	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
107		ksp_esid_data &= ~SLB_ESID_V;
108		ksp_vsid_data = 0;
109		slb_shadow_clear(KSTACK_INDEX);
110	} else {
111		/* Update stack entry; others don't change */
112		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
113		ksp_vsid_data =
114			be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
115	}
116
117	/* We need to do this all in asm, so we're sure we don't touch
118	 * the stack between the slbia and rebolting it. */
119	asm volatile("isync\n"
120		     "slbia\n"
121		     /* Slot 1 - first VMALLOC segment */
122		     "slbmte	%0,%1\n"
123		     /* Slot 2 - kernel stack */
124		     "slbmte	%2,%3\n"
125		     "isync"
126		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
127		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
128		        "r"(ksp_vsid_data),
129		        "r"(ksp_esid_data)
130		     : "memory");
131}
132
133void slb_flush_and_rebolt(void)
134{
135
136	WARN_ON(!irqs_disabled());
137
138	/*
139	 * We can't take a PMU exception in the following code, so hard
140	 * disable interrupts.
141	 */
142	hard_irq_disable();
143
144	__slb_flush_and_rebolt();
145	get_paca()->slb_cache_ptr = 0;
146}
147
148void slb_vmalloc_update(void)
149{
150	unsigned long vflags;
151
152	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
153	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
154	slb_flush_and_rebolt();
155}
156
157/* Helper function to compare esids.  There are four cases to handle.
158 * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
159 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
160 * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
161 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
162 */
163static inline int esids_match(unsigned long addr1, unsigned long addr2)
164{
165	int esid_1t_count;
166
167	/* System is not 1T segment size capable. */
168	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
169		return (GET_ESID(addr1) == GET_ESID(addr2));
170
171	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
172				((addr2 >> SID_SHIFT_1T) != 0));
173
174	/* both addresses are < 1T */
175	if (esid_1t_count == 0)
176		return (GET_ESID(addr1) == GET_ESID(addr2));
177
178	/* One address < 1T, the other > 1T.  Not a match */
179	if (esid_1t_count == 1)
180		return 0;
181
182	/* Both addresses are > 1T. */
183	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
184}
185
186/* Flush all user entries from the segment table of the current processor. */
187void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
188{
189	unsigned long offset;
190	unsigned long slbie_data = 0;
191	unsigned long pc = KSTK_EIP(tsk);
192	unsigned long stack = KSTK_ESP(tsk);
193	unsigned long exec_base;
194
195	/*
196	 * We need interrupts hard-disabled here, not just soft-disabled,
197	 * so that a PMU interrupt can't occur, which might try to access
198	 * user memory (to get a stack trace) and possible cause an SLB miss
199	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
200	 */
201	hard_irq_disable();
202	offset = get_paca()->slb_cache_ptr;
203	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
204	    offset <= SLB_CACHE_ENTRIES) {
205		int i;
206		asm volatile("isync" : : : "memory");
207		for (i = 0; i < offset; i++) {
208			slbie_data = (unsigned long)get_paca()->slb_cache[i]
209				<< SID_SHIFT; /* EA */
210			slbie_data |= user_segment_size(slbie_data)
211				<< SLBIE_SSIZE_SHIFT;
212			slbie_data |= SLBIE_C; /* C set for user addresses */
213			asm volatile("slbie %0" : : "r" (slbie_data));
214		}
215		asm volatile("isync" : : : "memory");
216	} else {
217		__slb_flush_and_rebolt();
218	}
219
220	/* Workaround POWER5 < DD2.1 issue */
221	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
222		asm volatile("slbie %0" : : "r" (slbie_data));
223
224	get_paca()->slb_cache_ptr = 0;
225	copy_mm_to_paca(mm);
226
227	/*
228	 * preload some userspace segments into the SLB.
229	 * Almost all 32 and 64bit PowerPC executables are linked at
230	 * 0x10000000 so it makes sense to preload this segment.
231	 */
232	exec_base = 0x10000000;
233
234	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
235	    is_kernel_addr(exec_base))
236		return;
237
238	slb_allocate(pc);
239
240	if (!esids_match(pc, stack))
241		slb_allocate(stack);
242
243	if (!esids_match(pc, exec_base) &&
244	    !esids_match(stack, exec_base))
245		slb_allocate(exec_base);
246}
247
248static inline void patch_slb_encoding(unsigned int *insn_addr,
249				      unsigned int immed)
250{
251
252	/*
253	 * This function patches either an li or a cmpldi instruction with
254	 * a new immediate value. This relies on the fact that both li
255	 * (which is actually addi) and cmpldi both take a 16-bit immediate
256	 * value, and it is situated in the same location in the instruction,
257	 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
258	 * The signedness of the immediate operand differs between the two
259	 * instructions however this code is only ever patching a small value,
260	 * much less than 1 << 15, so we can get away with it.
261	 * To patch the value we read the existing instruction, clear the
262	 * immediate value, and or in our new value, then write the instruction
263	 * back.
264	 */
265	unsigned int insn = (*insn_addr & 0xffff0000) | immed;
266	patch_instruction(insn_addr, insn);
267}
268
269extern u32 slb_miss_kernel_load_linear[];
270extern u32 slb_miss_kernel_load_io[];
271extern u32 slb_compare_rr_to_size[];
272extern u32 slb_miss_kernel_load_vmemmap[];
273
274void slb_set_size(u16 size)
275{
276	if (mmu_slb_size == size)
277		return;
278
279	mmu_slb_size = size;
280	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
281}
282
283void slb_initialize(void)
284{
285	unsigned long linear_llp, vmalloc_llp, io_llp;
286	unsigned long lflags, vflags;
287	static int slb_encoding_inited;
288#ifdef CONFIG_SPARSEMEM_VMEMMAP
289	unsigned long vmemmap_llp;
290#endif
291
292	/* Prepare our SLB miss handler based on our page size */
293	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
294	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
295	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
296	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
297#ifdef CONFIG_SPARSEMEM_VMEMMAP
298	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
299#endif
300	if (!slb_encoding_inited) {
301		slb_encoding_inited = 1;
302		patch_slb_encoding(slb_miss_kernel_load_linear,
303				   SLB_VSID_KERNEL | linear_llp);
304		patch_slb_encoding(slb_miss_kernel_load_io,
305				   SLB_VSID_KERNEL | io_llp);
306		patch_slb_encoding(slb_compare_rr_to_size,
307				   mmu_slb_size);
308
309		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
310		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
311
312#ifdef CONFIG_SPARSEMEM_VMEMMAP
313		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
314				   SLB_VSID_KERNEL | vmemmap_llp);
315		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
316#endif
317	}
318
319	get_paca()->stab_rr = SLB_NUM_BOLTED;
320
321	lflags = SLB_VSID_KERNEL | linear_llp;
322	vflags = SLB_VSID_KERNEL | vmalloc_llp;
323
324	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
325	asm volatile("isync":::"memory");
326	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
327	asm volatile("isync; slbia; isync":::"memory");
328	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
329	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
330
331	/* For the boot cpu, we're running on the stack in init_thread_union,
332	 * which is in the first segment of the linear mapping, and also
333	 * get_paca()->kstack hasn't been initialized yet.
334	 * For secondary cpus, we need to bolt the kernel stack entry now.
335	 */
336	slb_shadow_clear(KSTACK_INDEX);
337	if (raw_smp_processor_id() != boot_cpuid &&
338	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
339		create_shadowed_slbe(get_paca()->kstack,
340				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
341
342	asm volatile("isync":::"memory");
343}
344
345static void insert_slb_entry(unsigned long vsid, unsigned long ea,
346			     int bpsize, int ssize)
347{
348	unsigned long flags, vsid_data, esid_data;
349	enum slb_index index;
350	int slb_cache_index;
351
352	/*
353	 * We are irq disabled, hence should be safe to access PACA.
354	 */
355	index = get_paca()->stab_rr;
356
357	/*
358	 * simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
359	 */
360	if (index < (mmu_slb_size - 1))
361		index++;
362	else
363		index = SLB_NUM_BOLTED;
364
365	get_paca()->stab_rr = index;
366
367	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
368	vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
369		    ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
370	esid_data = mk_esid_data(ea, ssize, index);
371
372	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
373		     : "memory");
374
375	/*
376	 * Now update slb cache entries
377	 */
378	slb_cache_index = get_paca()->slb_cache_ptr;
379	if (slb_cache_index < SLB_CACHE_ENTRIES) {
380		/*
381		 * We have space in slb cache for optimized switch_slb().
382		 * Top 36 bits from esid_data as per ISA
383		 */
384		get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
385		get_paca()->slb_cache_ptr++;
386	} else {
387		/*
388		 * Our cache is full and the current cache content strictly
389		 * doesn't indicate the active SLB conents. Bump the ptr
390		 * so that switch_slb() will ignore the cache.
391		 */
392		get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
393	}
394}
395
396static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
397{
398	struct mm_struct *mm = current->mm;
399	unsigned long vsid;
400	int bpsize;
401
402	/*
403	 * We are always above 1TB, hence use high user segment size.
404	 */
405	vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
406	bpsize = get_slice_psize(mm, ea);
407	insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
408}
409
410void slb_miss_large_addr(struct pt_regs *regs)
411{
412	enum ctx_state prev_state = exception_enter();
413	unsigned long ea = regs->dar;
414	int context;
415
416	if (REGION_ID(ea) != USER_REGION_ID)
417		goto slb_bad_addr;
418
419	/*
420	 * Are we beyound what the page table layout supports ?
421	 */
422	if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
423		goto slb_bad_addr;
424
425	/* Lower address should have been handled by asm code */
426	if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
427		goto slb_bad_addr;
428
429	/*
430	 * consider this as bad access if we take a SLB miss
431	 * on an address above addr limit.
432	 */
433	if (ea >= current->mm->context.slb_addr_limit)
434		goto slb_bad_addr;
435
436	context = get_ea_context(&current->mm->context, ea);
437	if (!context)
438		goto slb_bad_addr;
439
440	handle_multi_context_slb_miss(context, ea);
441	exception_exit(prev_state);
442	return;
443
444slb_bad_addr:
445	if (user_mode(regs))
446		_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
447	else
448		bad_page_fault(regs, ea, SIGSEGV);
449	exception_exit(prev_state);
450}