Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
 
 
 
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
  63
  64#include <asm/acpi.h>
  65#include <asm/cacheinfo.h>
  66#include <asm/desc.h>
  67#include <asm/nmi.h>
  68#include <asm/irq.h>
  69#include <asm/realmode.h>
 
  70#include <asm/cpu.h>
  71#include <asm/numa.h>
 
  72#include <asm/tlbflush.h>
  73#include <asm/mtrr.h>
  74#include <asm/mwait.h>
  75#include <asm/apic.h>
  76#include <asm/io_apic.h>
  77#include <asm/fpu/api.h>
  78#include <asm/setup.h>
  79#include <asm/uv/uv.h>
  80#include <asm/microcode.h>
  81#include <asm/i8259.h>
  82#include <asm/misc.h>
  83#include <asm/qspinlock.h>
  84#include <asm/intel-family.h>
  85#include <asm/cpu_device_id.h>
  86#include <asm/spec-ctrl.h>
  87#include <asm/hw_irq.h>
  88#include <asm/stackprotector.h>
  89#include <asm/sev.h>
  90#include <asm/spec-ctrl.h>
  91
  92/* representing HT siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  95
  96/* representing HT and core siblings of each logical CPU */
  97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  99
 100/* representing HT, core, and die siblings of each logical CPU */
 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 103
 104/* Per CPU bogomips and other parameters */
 105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 106EXPORT_PER_CPU_SYMBOL(cpu_info);
 107
 108/* CPUs which are the primary SMT threads */
 109struct cpumask __cpu_primary_thread_mask __read_mostly;
 110
 111/* Representing CPUs for which sibling maps can be computed */
 112static cpumask_var_t cpu_sibling_setup_mask;
 113
 114struct mwait_cpu_dead {
 115	unsigned int	control;
 116	unsigned int	status;
 117};
 118
 119#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 120#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 
 
 
 
 
 121
 122/*
 123 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 124 * that it's unlikely to be touched by other CPUs.
 125 */
 126static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 127
 128/* Logical package management. */
 129struct logical_maps {
 130	u32	phys_pkg_id;
 131	u32	phys_die_id;
 132	u32	logical_pkg_id;
 133	u32	logical_die_id;
 134};
 135
 136/* Temporary workaround until the full topology mechanics is in place */
 137static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = {
 138	.phys_pkg_id	= U32_MAX,
 139	.phys_die_id	= U32_MAX,
 140};
 141
 142unsigned int __max_logical_packages __read_mostly;
 143EXPORT_SYMBOL(__max_logical_packages);
 144static unsigned int logical_packages __read_mostly;
 145static unsigned int logical_die __read_mostly;
 
 
 
 146
 147/* Maximum number of SMT threads on any online core */
 148int __read_mostly __max_smt_threads = 1;
 
 149
 150/* Flag to indicate if a complete sched domain rebuild is required */
 151bool x86_topology_update;
 152
 153int arch_update_cpu_topology(void)
 154{
 155	int retval = x86_topology_update;
 156
 157	x86_topology_update = false;
 158	return retval;
 159}
 160
 161static unsigned int smpboot_warm_reset_vector_count;
 162
 163static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 164{
 165	unsigned long flags;
 166
 167	spin_lock_irqsave(&rtc_lock, flags);
 168	if (!smpboot_warm_reset_vector_count++) {
 169		CMOS_WRITE(0xa, 0xf);
 170		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 171		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 172	}
 173	spin_unlock_irqrestore(&rtc_lock, flags);
 174}
 175
 176static inline void smpboot_restore_warm_reset_vector(void)
 
 
 
 
 177{
 178	unsigned long flags;
 
 179
 180	/*
 181	 * Paranoid:  Set warm reset code and vector here back
 182	 * to default values.
 
 
 183	 */
 184	spin_lock_irqsave(&rtc_lock, flags);
 185	if (!--smpboot_warm_reset_vector_count) {
 186		CMOS_WRITE(0, 0xf);
 187		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 188	}
 189	spin_unlock_irqrestore(&rtc_lock, flags);
 190
 191}
 192
 193/* Run the next set of setup steps for the upcoming CPU */
 194static void ap_starting(void)
 195{
 196	int cpuid = smp_processor_id();
 197
 198	/* Mop up eventual mwait_play_dead() wreckage */
 199	this_cpu_write(mwait_cpu_dead.status, 0);
 200	this_cpu_write(mwait_cpu_dead.control, 0);
 201
 202	/*
 203	 * If woken up by an INIT in an 82489DX configuration the alive
 204	 * synchronization guarantees that the CPU does not reach this
 205	 * point before an INIT_deassert IPI reaches the local APIC, so it
 206	 * is now safe to touch the local APIC.
 207	 *
 208	 * Set up this CPU, first the APIC, which is probably redundant on
 209	 * most boards.
 210	 */
 211	apic_ap_setup();
 
 
 
 
 
 
 212
 213	/* Save the processor parameters. */
 214	smp_store_cpu_info(cpuid);
 
 
 
 
 
 215
 216	/*
 217	 * The topology information must be up to date before
 218	 * notify_cpu_starting().
 219	 */
 220	set_cpu_sibling_map(cpuid);
 
 
 
 
 
 
 
 
 221
 222	ap_init_aperfmperf();
 
 
 
 223
 224	pr_debug("Stack at about %p\n", &cpuid);
 
 
 
 
 
 225
 226	wmb();
 
 
 
 
 227
 228	/*
 229	 * This runs the AP through all the cpuhp states to its target
 230	 * state CPUHP_ONLINE.
 231	 */
 232	notify_cpu_starting(cpuid);
 233}
 234
 235static void ap_calibrate_delay(void)
 236{
 237	/*
 238	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 239	 * smp_store_cpu_info() stored a value that is close but not as
 240	 * accurate as the value just calculated.
 241	 *
 242	 * As this is invoked after the TSC synchronization check,
 243	 * calibrate_delay_is_known() will skip the calibration routine
 244	 * when TSC is synchronized across sockets.
 245	 */
 
 246	calibrate_delay();
 247	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 248}
 249
 250/*
 251 * Activate a secondary processor.
 252 */
 253static void notrace start_secondary(void *unused)
 254{
 255	/*
 256	 * Don't put *anything* except direct CPU state initialization
 257	 * before cpu_init(), SMP booting is too fragile that we want to
 258	 * limit the things done here to the most necessary things.
 259	 */
 260	cr4_init();
 261
 262	/*
 263	 * 32-bit specific. 64-bit reaches this code with the correct page
 264	 * table established. Yet another historical divergence.
 265	 */
 266	if (IS_ENABLED(CONFIG_X86_32)) {
 267		/* switch away from the initial page table */
 268		load_cr3(swapper_pg_dir);
 269		__flush_tlb_all();
 270	}
 271
 272	cpu_init_exception_handling();
 273
 274	/*
 275	 * Load the microcode before reaching the AP alive synchronization
 276	 * point below so it is not part of the full per CPU serialized
 277	 * bringup part when "parallel" bringup is enabled.
 278	 *
 279	 * That's even safe when hyperthreading is enabled in the CPU as
 280	 * the core code starts the primary threads first and leaves the
 281	 * secondary threads waiting for SIPI. Loading microcode on
 282	 * physical cores concurrently is a safe operation.
 283	 *
 284	 * This covers both the Intel specific issue that concurrent
 285	 * microcode loading on SMT siblings must be prohibited and the
 286	 * vendor independent issue`that microcode loading which changes
 287	 * CPUID, MSRs etc. must be strictly serialized to maintain
 288	 * software state correctness.
 289	 */
 290	load_ucode_ap();
 
 291
 
 
 
 
 
 292	/*
 293	 * Synchronization point with the hotplug core. Sets this CPUs
 294	 * synchronization state to ALIVE and spin-waits for the control CPU to
 295	 * release this CPU for further bringup.
 296	 */
 297	cpuhp_ap_sync_alive();
 298
 299	cpu_init();
 300	fpu__init_cpu();
 301	rcutree_report_cpu_starting(raw_smp_processor_id());
 302	x86_cpuinit.early_percpu_clock_init();
 303
 304	ap_starting();
 305
 306	/* Check TSC synchronization with the control CPU. */
 307	check_tsc_sync_target();
 
 
 
 308
 
 
 309	/*
 310	 * Calibrate the delay loop after the TSC synchronization check.
 311	 * This allows to skip the calibration when TSC is synchronized
 312	 * across sockets.
 313	 */
 314	ap_calibrate_delay();
 315
 316	speculative_store_bypass_ht_init();
 317
 318	/*
 319	 * Lock vector_lock, set CPU online and bring the vector
 320	 * allocator online. Online must be set with vector_lock held
 321	 * to prevent a concurrent irq setup/teardown from seeing a
 322	 * half valid vector space.
 
 
 
 
 
 
 323	 */
 
 324	lock_vector_lock();
 325	set_cpu_online(smp_processor_id(), true);
 326	lapic_online();
 327	unlock_vector_lock();
 
 
 328	x86_platform.nmi_init();
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 330	/* enable local interrupts */
 331	local_irq_enable();
 332
 
 
 
 333	x86_cpuinit.setup_percpu_clockev();
 334
 335	wmb();
 336	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 337}
 338
 339/**
 340 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 341 * @phys_pkg:	The physical package id to map
 342 *
 343 * Returns logical package id or -1 if not found
 344 */
 345int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 346{
 347	int cpu;
 348
 349	for_each_possible_cpu(cpu) {
 350		if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg)
 351			return per_cpu(logical_maps.logical_pkg_id, cpu);
 352	}
 353	return -1;
 354}
 355EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 356
 357/**
 358 * topology_phys_to_logical_die - Map a physical die id to logical
 359 * @die_id:	The physical die id to map
 360 * @cur_cpu:	The CPU for which the mapping is done
 361 *
 362 * Returns logical die id or -1 if not found
 363 */
 364static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 365{
 366	int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id;
 367
 368	for_each_possible_cpu(cpu) {
 369		if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id &&
 370		    per_cpu(logical_maps.phys_die_id, cpu) == die_id)
 371			return per_cpu(logical_maps.logical_die_id, cpu);
 372	}
 373	return -1;
 374}
 375
 376/**
 377 * topology_update_package_map - Update the physical to logical package map
 378 * @pkg:	The physical package id as retrieved via CPUID
 379 * @cpu:	The cpu for which this is updated
 380 */
 381int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 382{
 383	int new;
 384
 385	/* Already available somewhere? */
 386	new = topology_phys_to_logical_pkg(pkg);
 387	if (new >= 0)
 388		goto found;
 389
 390	new = logical_packages++;
 391	if (new != pkg) {
 392		pr_info("CPU %u Converting physical %u to logical package %u\n",
 393			cpu, pkg, new);
 394	}
 395found:
 396	per_cpu(logical_maps.phys_pkg_id, cpu) = pkg;
 397	per_cpu(logical_maps.logical_pkg_id, cpu) = new;
 398	cpu_data(cpu).topo.logical_pkg_id = new;
 399	return 0;
 400}
 401/**
 402 * topology_update_die_map - Update the physical to logical die map
 403 * @die:	The die id as retrieved via CPUID
 404 * @cpu:	The cpu for which this is updated
 405 */
 406int topology_update_die_map(unsigned int die, unsigned int cpu)
 407{
 408	int new;
 409
 410	/* Already available somewhere? */
 411	new = topology_phys_to_logical_die(die, cpu);
 412	if (new >= 0)
 413		goto found;
 414
 415	new = logical_die++;
 416	if (new != die) {
 417		pr_info("CPU %u Converting physical %u to logical die %u\n",
 418			cpu, die, new);
 419	}
 420found:
 421	per_cpu(logical_maps.phys_die_id, cpu) = die;
 422	per_cpu(logical_maps.logical_die_id, cpu) = new;
 423	cpu_data(cpu).topo.logical_die_id = new;
 424	return 0;
 425}
 426
 427static void __init smp_store_boot_cpu_info(void)
 428{
 429	int id = 0; /* CPU 0 */
 430	struct cpuinfo_x86 *c = &cpu_data(id);
 431
 432	*c = boot_cpu_data;
 433	c->cpu_index = id;
 434	topology_update_package_map(c->topo.pkg_id, id);
 435	topology_update_die_map(c->topo.die_id, id);
 436	c->initialized = true;
 437}
 438
 439/*
 440 * The bootstrap kernel entry code has set these up. Save them for
 441 * a given CPU
 442 */
 443void smp_store_cpu_info(int id)
 
 444{
 445	struct cpuinfo_x86 *c = &cpu_data(id);
 446
 447	/* Copy boot_cpu_data only on the first bringup */
 448	if (!c->initialized)
 449		*c = boot_cpu_data;
 450	c->cpu_index = id;
 451	/*
 452	 * During boot time, CPU0 has this setup already. Save the info when
 453	 * bringing up an AP.
 454	 */
 455	identify_secondary_cpu(c);
 456	c->initialized = true;
 457}
 458
 459static bool
 460topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 461{
 462	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 463
 464	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 
 
 
 465}
 466
 467static bool
 468topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 469{
 470	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 471
 472	return !WARN_ONCE(!topology_same_node(c, o),
 473		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 474		"[node: %d != %d]. Ignoring dependency.\n",
 475		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 476}
 477
 478#define link_mask(mfunc, c1, c2)					\
 479do {									\
 480	cpumask_set_cpu((c1), mfunc(c2));				\
 481	cpumask_set_cpu((c2), mfunc(c1));				\
 482} while (0)
 483
 484static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 485{
 486	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 487		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 488
 489		if (c->topo.pkg_id == o->topo.pkg_id &&
 490		    c->topo.die_id == o->topo.die_id &&
 491		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 492			if (c->topo.core_id == o->topo.core_id)
 493				return topology_sane(c, o, "smt");
 494
 495			if ((c->topo.cu_id != 0xff) &&
 496			    (o->topo.cu_id != 0xff) &&
 497			    (c->topo.cu_id == o->topo.cu_id))
 498				return topology_sane(c, o, "smt");
 
 
 
 
 
 
 
 
 
 499		}
 500
 501	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 502		   c->topo.die_id == o->topo.die_id &&
 503		   c->topo.core_id == o->topo.core_id) {
 504		return topology_sane(c, o, "smt");
 505	}
 506
 507	return false;
 508}
 509
 510static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 511{
 512	if (c->topo.pkg_id == o->topo.pkg_id &&
 513	    c->topo.die_id == o->topo.die_id)
 514		return true;
 515	return false;
 516}
 517
 518static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 519{
 520	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 521
 522	/* If the arch didn't set up l2c_id, fall back to SMT */
 523	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 524		return match_smt(c, o);
 525
 526	/* Do not match if L2 cache id does not match: */
 527	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 528		return false;
 529
 530	return topology_sane(c, o, "l2c");
 531}
 532
 533/*
 534 * Unlike the other levels, we do not enforce keeping a
 535 * multicore group inside a NUMA node.  If this happens, we will
 536 * discard the MC level of the topology later.
 537 */
 538static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 539{
 540	if (c->topo.pkg_id == o->topo.pkg_id)
 541		return true;
 542	return false;
 543}
 544
 545/*
 546 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 547 *
 548 * Any Intel CPU that has multiple nodes per package and does not
 549 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 550 *
 551 * When in SNC mode, these CPUs enumerate an LLC that is shared
 552 * by multiple NUMA nodes. The LLC is shared for off-package data
 553 * access but private to the NUMA node (half of the package) for
 554 * on-package access. CPUID (the source of the information about
 555 * the LLC) can only enumerate the cache as shared or unshared,
 556 * but not this particular configuration.
 557 */
 558
 559static const struct x86_cpu_id intel_cod_cpu[] = {
 560	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
 561	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
 562	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
 563	{}
 564};
 565
 566static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 567{
 568	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 569	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 570	bool intel_snc = id && id->driver_data;
 571
 572	/* Do not match if we do not have a valid APICID for cpu: */
 573	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 574		return false;
 575
 576	/* Do not match if LLC id does not match: */
 577	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 578		return false;
 579
 580	/*
 581	 * Allow the SNC topology without warning. Return of false
 582	 * means 'c' does not share the LLC of 'o'. This will be
 583	 * reflected to userspace.
 584	 */
 585	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 586		return false;
 587
 588	return topology_sane(c, o, "llc");
 589}
 590
 591
 592static inline int x86_sched_itmt_flags(void)
 593{
 594	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 595}
 596
 597#ifdef CONFIG_SCHED_MC
 598static int x86_core_flags(void)
 599{
 600	return cpu_core_flags() | x86_sched_itmt_flags();
 601}
 602#endif
 603#ifdef CONFIG_SCHED_SMT
 604static int x86_smt_flags(void)
 605{
 606	return cpu_smt_flags();
 607}
 608#endif
 609#ifdef CONFIG_SCHED_CLUSTER
 610static int x86_cluster_flags(void)
 611{
 612	return cpu_cluster_flags() | x86_sched_itmt_flags();
 613}
 614#endif
 615
 616static int x86_die_flags(void)
 617{
 618	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
 619	       return x86_sched_itmt_flags();
 620
 621	return 0;
 622}
 623
 624/*
 625 * Set if a package/die has multiple NUMA nodes inside.
 626 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 627 * Sub-NUMA Clustering have this.
 628 */
 629static bool x86_has_numa_in_package;
 630
 631static struct sched_domain_topology_level x86_topology[6];
 632
 633static void __init build_sched_topology(void)
 634{
 635	int i = 0;
 636
 637#ifdef CONFIG_SCHED_SMT
 638	x86_topology[i++] = (struct sched_domain_topology_level){
 639		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 640	};
 641#endif
 642#ifdef CONFIG_SCHED_CLUSTER
 643	x86_topology[i++] = (struct sched_domain_topology_level){
 644		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 645	};
 646#endif
 647#ifdef CONFIG_SCHED_MC
 648	x86_topology[i++] = (struct sched_domain_topology_level){
 649		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 650	};
 651#endif
 652	/*
 653	 * When there is NUMA topology inside the package skip the PKG domain
 654	 * since the NUMA domains will auto-magically create the right spanning
 655	 * domains based on the SLIT.
 656	 */
 657	if (!x86_has_numa_in_package) {
 658		x86_topology[i++] = (struct sched_domain_topology_level){
 659			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
 660		};
 661	}
 662
 663	/*
 664	 * There must be one trailing NULL entry left.
 665	 */
 666	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 667
 668	set_sched_topology(x86_topology);
 669}
 670
 671void set_cpu_sibling_map(int cpu)
 672{
 673	bool has_smt = smp_num_siblings > 1;
 674	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 675	struct cpuinfo_x86 *c = &cpu_data(cpu);
 676	struct cpuinfo_x86 *o;
 677	int i, threads;
 678
 679	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 680
 681	if (!has_mp) {
 682		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 683		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 684		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 685		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 686		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 687		c->booted_cores = 1;
 688		return;
 689	}
 690
 691	for_each_cpu(i, cpu_sibling_setup_mask) {
 692		o = &cpu_data(i);
 693
 694		if (match_pkg(c, o) && !topology_same_node(c, o))
 695			x86_has_numa_in_package = true;
 696
 697		if ((i == cpu) || (has_smt && match_smt(c, o)))
 698			link_mask(topology_sibling_cpumask, cpu, i);
 699
 700		if ((i == cpu) || (has_mp && match_llc(c, o)))
 701			link_mask(cpu_llc_shared_mask, cpu, i);
 702
 703		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 704			link_mask(cpu_l2c_shared_mask, cpu, i);
 705
 706		if ((i == cpu) || (has_mp && match_die(c, o)))
 707			link_mask(topology_die_cpumask, cpu, i);
 708	}
 709
 710	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 711	if (threads > __max_smt_threads)
 712		__max_smt_threads = threads;
 713
 714	for_each_cpu(i, topology_sibling_cpumask(cpu))
 715		cpu_data(i).smt_active = threads > 1;
 716
 717	/*
 718	 * This needs a separate iteration over the cpus because we rely on all
 719	 * topology_sibling_cpumask links to be set-up.
 720	 */
 721	for_each_cpu(i, cpu_sibling_setup_mask) {
 722		o = &cpu_data(i);
 723
 724		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 725			link_mask(topology_core_cpumask, cpu, i);
 726
 727			/*
 728			 *  Does this new cpu bringup a new core?
 729			 */
 730			if (threads == 1) {
 731				/*
 732				 * for each core in package, increment
 733				 * the booted_cores for this new cpu
 734				 */
 735				if (cpumask_first(
 736				    topology_sibling_cpumask(i)) == i)
 737					c->booted_cores++;
 738				/*
 739				 * increment the core count for all
 740				 * the other cpus in this package
 741				 */
 742				if (i != cpu)
 743					cpu_data(i).booted_cores++;
 744			} else if (i != cpu && !c->booted_cores)
 745				c->booted_cores = cpu_data(i).booted_cores;
 746		}
 747	}
 748}
 749
 750/* maps the cpu to the sched domain representing multi-core */
 751const struct cpumask *cpu_coregroup_mask(int cpu)
 752{
 753	return cpu_llc_shared_mask(cpu);
 754}
 755
 756const struct cpumask *cpu_clustergroup_mask(int cpu)
 757{
 758	return cpu_l2c_shared_mask(cpu);
 
 
 
 
 759}
 760EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 761
 762static void impress_friends(void)
 763{
 764	int cpu;
 765	unsigned long bogosum = 0;
 766	/*
 767	 * Allow the user to impress friends.
 768	 */
 769	pr_debug("Before bogomips\n");
 770	for_each_online_cpu(cpu)
 771		bogosum += cpu_data(cpu).loops_per_jiffy;
 772
 773	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 
 774		num_online_cpus(),
 775		bogosum/(500000/HZ),
 776		(bogosum/(5000/HZ))%100);
 777
 778	pr_debug("Before bogocount - setting activated=1\n");
 779}
 780
 781/*
 782 * The Multiprocessor Specification 1.4 (1997) example code suggests
 783 * that there should be a 10ms delay between the BSP asserting INIT
 784 * and de-asserting INIT, when starting a remote processor.
 785 * But that slows boot and resume on modern processors, which include
 786 * many cores and don't require that delay.
 787 *
 788 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 789 * Modern processor families are quirked to remove the delay entirely.
 790 */
 791#define UDELAY_10MS_DEFAULT 10000
 792
 793static unsigned int init_udelay = UINT_MAX;
 794
 795static int __init cpu_init_udelay(char *str)
 796{
 797	get_option(&str, &init_udelay);
 
 
 
 798
 799	return 0;
 800}
 801early_param("cpu_init_udelay", cpu_init_udelay);
 802
 803static void __init smp_quirk_init_udelay(void)
 804{
 805	/* if cmdline changed it from default, leave it alone */
 806	if (init_udelay != UINT_MAX)
 807		return;
 808
 809	/* if modern processor, use no delay */
 810	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 811	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 812	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 813		init_udelay = 0;
 814		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815	}
 816	/* else, use legacy delay */
 817	init_udelay = UDELAY_10MS_DEFAULT;
 818}
 819
 820/*
 821 * Wake up AP by INIT, INIT, STARTUP sequence.
 
 
 822 */
 823static void send_init_sequence(u32 phys_apicid)
 
 824{
 825	int maxlvt = lapic_get_maxlvt();
 
 
 
 
 
 
 826
 827	/* Be paranoid about clearing APIC errors. */
 828	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 829		/* Due to the Pentium erratum 3AP.  */
 830		if (maxlvt > 3)
 
 
 
 
 
 
 831			apic_write(APIC_ESR, 0);
 832		apic_read(APIC_ESR);
 833	}
 
 834
 835	/* Assert INIT on the target CPU */
 836	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 837	safe_apic_wait_icr_idle();
 838
 839	udelay(init_udelay);
 840
 841	/* Deassert INIT on the target CPU */
 842	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 843	safe_apic_wait_icr_idle();
 844}
 845
 846/*
 847 * Wake up AP by INIT, INIT, STARTUP sequence.
 848 */
 849static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 850{
 851	unsigned long send_status = 0, accept_status = 0;
 852	int num_starts, j, maxlvt;
 853
 854	preempt_disable();
 855	maxlvt = lapic_get_maxlvt();
 856	send_init_sequence(phys_apicid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858	mb();
 
 859
 860	/*
 861	 * Should we send STARTUP IPIs ?
 862	 *
 863	 * Determine this based on the APIC version.
 864	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 865	 */
 866	if (APIC_INTEGRATED(boot_cpu_apic_version))
 867		num_starts = 2;
 868	else
 869		num_starts = 0;
 870
 871	/*
 
 
 
 
 
 
 
 872	 * Run STARTUP IPI loop.
 873	 */
 874	pr_debug("#startup loops: %d\n", num_starts);
 875
 876	for (j = 1; j <= num_starts; j++) {
 877		pr_debug("Sending STARTUP #%d\n", j);
 878		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 879			apic_write(APIC_ESR, 0);
 880		apic_read(APIC_ESR);
 881		pr_debug("After apic_write\n");
 882
 883		/*
 884		 * STARTUP IPI
 885		 */
 886
 887		/* Target chip */
 888		/* Boot on the stack */
 889		/* Kick the second */
 890		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 891			       phys_apicid);
 892
 893		/*
 894		 * Give the other CPU some time to accept the IPI.
 895		 */
 896		if (init_udelay == 0)
 897			udelay(10);
 898		else
 899			udelay(300);
 900
 901		pr_debug("Startup point 1\n");
 902
 903		pr_debug("Waiting for send to finish...\n");
 904		send_status = safe_apic_wait_icr_idle();
 905
 906		/*
 907		 * Give the other CPU some time to accept the IPI.
 908		 */
 909		if (init_udelay == 0)
 910			udelay(10);
 911		else
 912			udelay(200);
 913
 914		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 915			apic_write(APIC_ESR, 0);
 916		accept_status = (apic_read(APIC_ESR) & 0xEF);
 917		if (send_status || accept_status)
 918			break;
 919	}
 920	pr_debug("After Startup\n");
 921
 922	if (send_status)
 923		pr_err("APIC never delivered???\n");
 924	if (accept_status)
 925		pr_err("APIC delivery error (%lx)\n", accept_status);
 926
 927	preempt_enable();
 928	return (send_status | accept_status);
 929}
 930
 931/* reduce the number of lines printed when booting a large cpu count system */
 932static void announce_cpu(int cpu, int apicid)
 933{
 934	static int width, node_width, first = 1;
 935	static int current_node = NUMA_NO_NODE;
 936	int node = early_cpu_to_node(cpu);
 937
 938	if (!width)
 939		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 
 
 940
 941	if (!node_width)
 942		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 
 943
 944	if (system_state < SYSTEM_RUNNING) {
 945		if (first)
 946			pr_info("x86: Booting SMP configuration:\n");
 
 
 947
 
 948		if (node != current_node) {
 949			if (current_node > (-1))
 950				pr_cont("\n");
 951			current_node = node;
 952
 953			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 954			       node_width - num_digits(node), " ", node);
 955		}
 956
 957		/* Add padding for the BSP */
 958		if (first)
 959			pr_cont("%*s", width + 1, " ");
 960		first = 0;
 961
 962		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 963	} else
 964		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 965			node, cpu, apicid);
 966}
 967
 968int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 969{
 970	int ret;
 971
 972	/* Just in case we booted with a single CPU. */
 973	alternatives_enable_smp();
 974
 975	per_cpu(pcpu_hot.current_task, cpu) = idle;
 976	cpu_init_stack_canary(cpu, idle);
 977
 978	/* Initialize the interrupt stack(s) */
 979	ret = irq_init_percpu_irqstack(cpu);
 980	if (ret)
 981		return ret;
 982
 983#ifdef CONFIG_X86_32
 984	/* Stack for startup_32 can be just as for start_secondary onwards */
 985	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 986#endif
 987	return 0;
 988}
 989
 990/*
 991 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 992 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 993 * Returns zero if startup was successfully sent, else error code from
 994 * ->wakeup_secondary_cpu.
 995 */
 996static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 997{
 998	unsigned long start_ip = real_mode_header->trampoline_start;
 999	int ret;
 
 
 
 
 
1000
1001#ifdef CONFIG_X86_64
1002	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1003	if (apic->wakeup_secondary_cpu_64)
1004		start_ip = real_mode_header->trampoline_start64;
1005#endif
1006	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1007	initial_code = (unsigned long)start_secondary;
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	if (IS_ENABLED(CONFIG_X86_32)) {
1010		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1011		initial_stack  = idle->thread.sp;
1012	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1013		smpboot_control = cpu;
1014	}
1015
1016	/* Enable the espfix hack for this CPU */
1017	init_espfix_ap(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019	/* So we see what's up */
1020	announce_cpu(cpu, apicid);
1021
1022	/*
1023	 * This grunge runs the startup process for
1024	 * the targeted processor.
1025	 */
1026	if (x86_platform.legacy.warm_reset) {
 
 
 
 
 
1027
1028		pr_debug("Setting warm reset code and vector.\n");
1029
1030		smpboot_setup_warm_reset_vector(start_ip);
1031		/*
1032		 * Be paranoid about clearing APIC errors.
1033		*/
1034		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1035			apic_write(APIC_ESR, 0);
1036			apic_read(APIC_ESR);
1037		}
1038	}
1039
1040	smp_mb();
1041
1042	/*
1043	 * Wake up a CPU in difference cases:
1044	 * - Use a method from the APIC driver if one defined, with wakeup
1045	 *   straight to 64-bit mode preferred over wakeup to RM.
1046	 * Otherwise,
1047	 * - Use an INIT boot APIC message
1048	 */
1049	if (apic->wakeup_secondary_cpu_64)
1050		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1051	else if (apic->wakeup_secondary_cpu)
1052		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1053	else
1054		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1057	if (ret)
1058		arch_cpuhp_cleanup_kick_cpu(cpu);
1059	return ret;
1060}
1061
1062int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1063{
1064	u32 apicid = apic->cpu_present_to_apicid(cpu);
 
1065	int err;
1066
1067	lockdep_assert_irqs_enabled();
1068
1069	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1070
1071	if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1072	    !apic_id_valid(apicid)) {
1073		pr_err("%s: bad cpu %d\n", __func__, cpu);
1074		return -EINVAL;
1075	}
1076
1077	/*
 
 
 
 
 
 
 
 
1078	 * Save current MTRR state in case it was changed since early boot
1079	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1080	 */
1081	mtrr_save_state();
1082
1083	/* the FPU context is blank, nobody can own it */
1084	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1085
1086	err = common_cpu_up(cpu, tidle);
1087	if (err)
1088		return err;
1089
1090	err = do_boot_cpu(apicid, cpu, tidle);
1091	if (err)
1092		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1093
1094	return err;
1095}
1096
1097int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1098{
1099	return smp_ops.kick_ap_alive(cpu, tidle);
1100}
1101
1102void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1103{
1104	/* Cleanup possible dangling ends... */
1105	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1106		smpboot_restore_warm_reset_vector();
1107}
1108
1109void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1110{
1111	if (smp_ops.cleanup_dead_cpu)
1112		smp_ops.cleanup_dead_cpu(cpu);
 
 
 
1113
1114	if (system_state == SYSTEM_RUNNING)
1115		pr_info("CPU %u is now offline\n", cpu);
1116}
 
1117
1118void arch_cpuhp_sync_state_poll(void)
1119{
1120	if (smp_ops.poll_sync_state)
1121		smp_ops.poll_sync_state();
1122}
1123
1124/**
1125 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1126 */
1127void __init arch_disable_smp_support(void)
1128{
1129	disable_ioapic_support();
1130}
1131
1132/*
1133 * Fall back to non SMP mode after errors.
1134 *
1135 * RED-PEN audit/test this more. I bet there is more state messed up here.
1136 */
1137static __init void disable_smp(void)
1138{
1139	pr_info("SMP disabled\n");
1140
1141	disable_ioapic_support();
1142
1143	init_cpu_present(cpumask_of(0));
1144	init_cpu_possible(cpumask_of(0));
 
1145
1146	if (smp_found_config)
1147		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1148	else
1149		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1150	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1151	cpumask_set_cpu(0, topology_core_cpumask(0));
1152	cpumask_set_cpu(0, topology_die_cpumask(0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153}
1154
1155static void __init smp_cpu_index_default(void)
1156{
1157	int i;
1158	struct cpuinfo_x86 *c;
1159
1160	for_each_possible_cpu(i) {
1161		c = &cpu_data(i);
1162		/* mark all to hotplug */
1163		c->cpu_index = nr_cpu_ids;
1164	}
1165}
1166
1167void __init smp_prepare_cpus_common(void)
 
 
 
 
1168{
1169	unsigned int i;
1170
 
1171	smp_cpu_index_default();
1172
1173	/*
1174	 * Setup boot CPU information
1175	 */
1176	smp_store_boot_cpu_info(); /* Final full version of the data */
 
1177	mb();
1178
 
1179	for_each_possible_cpu(i) {
1180		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1181		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1182		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1183		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1184		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1185	}
1186
1187	set_cpu_sibling_map(0);
1188}
1189
1190#ifdef CONFIG_X86_64
1191/* Establish whether parallel bringup can be supported. */
1192bool __init arch_cpuhp_init_parallel_bringup(void)
1193{
1194	if (!x86_cpuinit.parallel_bringup) {
1195		pr_info("Parallel CPU startup disabled by the platform\n");
1196		return false;
1197	}
1198
1199	smpboot_control = STARTUP_READ_APICID;
1200	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1201	return true;
1202}
1203#endif
1204
1205/*
1206 * Prepare for SMP bootup.
1207 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1208 *            for common interface support.
1209 */
1210void __init native_smp_prepare_cpus(unsigned int max_cpus)
1211{
1212	smp_prepare_cpus_common();
1213
1214	switch (apic_intr_mode) {
1215	case APIC_PIC:
1216	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1217		disable_smp();
1218		return;
1219	case APIC_SYMMETRIC_IO_NO_ROUTING:
1220		disable_smp();
1221		/* Setup local timer */
1222		x86_init.timers.setup_percpu_clockev();
1223		return;
1224	case APIC_VIRTUAL_WIRE:
1225	case APIC_SYMMETRIC_IO:
1226		break;
1227	}
 
1228
1229	/* Setup local timer */
1230	x86_init.timers.setup_percpu_clockev();
1231
1232	pr_info("CPU0: ");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233	print_cpu_info(&cpu_data(0));
 
1234
1235	uv_system_init();
 
1236
1237	smp_quirk_init_udelay();
 
 
 
1238
1239	speculative_store_bypass_ht_init();
 
 
 
 
 
 
 
1240
1241	snp_set_wakeup_secondary_cpu();
 
 
1242}
1243
1244void arch_thaw_secondary_cpus_begin(void)
1245{
1246	set_cache_aps_delayed_init(true);
1247}
1248
1249void arch_thaw_secondary_cpus_end(void)
1250{
1251	cache_aps_init();
1252}
1253
1254/*
1255 * Early setup to make printk work.
1256 */
1257void __init native_smp_prepare_boot_cpu(void)
1258{
1259	int me = smp_processor_id();
1260
1261	/* SMP handles this from setup_per_cpu_areas() */
1262	if (!IS_ENABLED(CONFIG_SMP))
1263		switch_gdt_and_percpu_base(me);
1264
1265	native_pv_lock_init();
1266}
1267
1268void __init calculate_max_logical_packages(void)
1269{
1270	int ncpus;
1271
1272	/*
1273	 * Today neither Intel nor AMD support heterogeneous systems so
1274	 * extrapolate the boot cpu's data to all packages.
1275	 */
1276	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1277	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1278	pr_info("Max logical packages: %u\n", __max_logical_packages);
1279}
1280
1281void __init native_smp_cpus_done(unsigned int max_cpus)
1282{
1283	pr_debug("Boot done\n");
1284
1285	calculate_max_logical_packages();
1286	build_sched_topology();
1287	nmi_selftest();
1288	impress_friends();
1289	cache_aps_init();
 
 
 
1290}
1291
1292static int __initdata setup_possible_cpus = -1;
1293static int __init _setup_possible_cpus(char *str)
1294{
1295	get_option(&str, &setup_possible_cpus);
1296	return 0;
1297}
1298early_param("possible_cpus", _setup_possible_cpus);
1299
1300
1301/*
1302 * cpu_possible_mask should be static, it cannot change as cpu's
1303 * are onlined, or offlined. The reason is per-cpu data-structures
1304 * are allocated by some modules at init time, and don't expect to
1305 * do this dynamically on cpu arrival/departure.
1306 * cpu_present_mask on the other hand can change dynamically.
1307 * In case when cpu_hotplug is not compiled, then we resort to current
1308 * behaviour, which is cpu_possible == cpu_present.
1309 * - Ashok Raj
1310 *
1311 * Three ways to find out the number of additional hotplug CPUs:
1312 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1313 * - The user can overwrite it with possible_cpus=NUM
1314 * - Otherwise don't reserve additional CPUs.
1315 * We do this because additional CPUs waste a lot of memory.
1316 * -AK
1317 */
1318__init void prefill_possible_map(void)
1319{
1320	int i, possible;
1321
 
 
 
 
1322	i = setup_max_cpus ?: 1;
1323	if (setup_possible_cpus == -1) {
1324		possible = num_processors;
1325#ifdef CONFIG_HOTPLUG_CPU
1326		if (setup_max_cpus)
1327			possible += disabled_cpus;
1328#else
1329		if (possible > i)
1330			possible = i;
1331#endif
1332	} else
1333		possible = setup_possible_cpus;
1334
1335	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1336
1337	/* nr_cpu_ids could be reduced via nr_cpus= */
1338	if (possible > nr_cpu_ids) {
1339		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
 
1340			possible, nr_cpu_ids);
1341		possible = nr_cpu_ids;
1342	}
1343
1344#ifdef CONFIG_HOTPLUG_CPU
1345	if (!setup_max_cpus)
1346#endif
1347	if (possible > i) {
1348		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
 
1349			possible, setup_max_cpus);
1350		possible = i;
1351	}
1352
1353	set_nr_cpu_ids(possible);
1354
1355	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1356		possible, max_t(int, possible - num_processors, 0));
1357
1358	reset_cpu_possible_mask();
1359
1360	for (i = 0; i < possible; i++)
1361		set_cpu_possible(i, true);
1362}
 
1363
1364/* correctly size the local cpu masks */
1365void __init setup_cpu_local_masks(void)
1366{
1367	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1368}
1369
1370#ifdef CONFIG_HOTPLUG_CPU
1371
1372/* Recompute SMT state for all CPUs on offline */
1373static void recompute_smt_state(void)
1374{
1375	int max_threads, cpu;
1376
1377	max_threads = 0;
1378	for_each_online_cpu (cpu) {
1379		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1380
1381		if (threads > max_threads)
1382			max_threads = threads;
1383	}
1384	__max_smt_threads = max_threads;
1385}
1386
1387static void remove_siblinginfo(int cpu)
1388{
1389	int sibling;
1390	struct cpuinfo_x86 *c = &cpu_data(cpu);
1391
1392	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1393		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1394		/*/
1395		 * last thread sibling in this cpu core going down
1396		 */
1397		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1398			cpu_data(sibling).booted_cores--;
1399	}
1400
1401	for_each_cpu(sibling, topology_die_cpumask(cpu))
1402		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1403
1404	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1405		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1406		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1407			cpu_data(sibling).smt_active = false;
1408	}
1409
1410	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1411		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1412	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1413		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1414	cpumask_clear(cpu_llc_shared_mask(cpu));
1415	cpumask_clear(cpu_l2c_shared_mask(cpu));
1416	cpumask_clear(topology_sibling_cpumask(cpu));
1417	cpumask_clear(topology_core_cpumask(cpu));
1418	cpumask_clear(topology_die_cpumask(cpu));
1419	c->topo.core_id = 0;
1420	c->booted_cores = 0;
1421	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1422	recompute_smt_state();
1423}
1424
1425static void remove_cpu_from_maps(int cpu)
1426{
1427	set_cpu_online(cpu, false);
 
 
 
 
1428	numa_remove_cpu(cpu);
1429}
1430
1431void cpu_disable_common(void)
1432{
1433	int cpu = smp_processor_id();
1434
1435	remove_siblinginfo(cpu);
1436
1437	/* It's now safe to remove this processor from the online map */
1438	lock_vector_lock();
1439	remove_cpu_from_maps(cpu);
1440	unlock_vector_lock();
1441	fixup_irqs();
1442	lapic_offline();
1443}
1444
1445int native_cpu_disable(void)
1446{
1447	int ret;
 
 
 
 
 
 
 
 
 
 
 
1448
1449	ret = lapic_can_unplug_cpu();
1450	if (ret)
1451		return ret;
1452
1453	cpu_disable_common();
 
 
1454
1455        /*
1456         * Disable the local APIC. Otherwise IPI broadcasts will reach
1457         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1458         * messages.
1459         *
1460         * Disabling the APIC must happen after cpu_disable_common()
1461         * which invokes fixup_irqs().
1462         *
1463         * Disabling the APIC preserves already set bits in IRR, but
1464         * an interrupt arriving after disabling the local APIC does not
1465         * set the corresponding IRR bit.
1466         *
1467         * fixup_irqs() scans IRR for set bits so it can raise a not
1468         * yet handled interrupt on the new destination CPU via an IPI
1469         * but obviously it can't do so for IRR bits which are not set.
1470         * IOW, interrupts arriving after disabling the local APIC will
1471         * be lost.
1472         */
1473	apic_soft_disable();
1474
1475	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1476}
1477
1478void play_dead_common(void)
1479{
1480	idle_task_exit();
 
 
1481
1482	cpuhp_ap_report_dead();
 
 
1483
 
 
 
1484	local_irq_disable();
1485}
1486
1487/*
1488 * We need to flush the caches before going to sleep, lest we have
1489 * dirty data in our caches when we come back up.
1490 */
1491static inline void mwait_play_dead(void)
1492{
1493	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1494	unsigned int eax, ebx, ecx, edx;
1495	unsigned int highest_cstate = 0;
1496	unsigned int highest_subcstate = 0;
1497	int i;
 
 
1498
1499	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1500	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1501		return;
1502	if (!this_cpu_has(X86_FEATURE_MWAIT))
1503		return;
1504	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1505		return;
1506	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1507		return;
1508
1509	eax = CPUID_MWAIT_LEAF;
1510	ecx = 0;
1511	native_cpuid(&eax, &ebx, &ecx, &edx);
1512
1513	/*
1514	 * eax will be 0 if EDX enumeration is not valid.
1515	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1516	 */
1517	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1518		eax = 0;
1519	} else {
1520		edx >>= MWAIT_SUBSTATE_SIZE;
1521		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1522			if (edx & MWAIT_SUBSTATE_MASK) {
1523				highest_cstate = i;
1524				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1525			}
1526		}
1527		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1528			(highest_subcstate - 1);
1529	}
1530
1531	/* Set up state for the kexec() hack below */
1532	md->status = CPUDEAD_MWAIT_WAIT;
1533	md->control = CPUDEAD_MWAIT_WAIT;
 
 
 
1534
1535	wbinvd();
1536
1537	while (1) {
1538		/*
1539		 * The CLFLUSH is a workaround for erratum AAI65 for
1540		 * the Xeon 7400 series.  It's not clear it is actually
1541		 * needed, but it should be harmless in either case.
1542		 * The WBINVD is insufficient due to the spurious-wakeup
1543		 * case where we return around the loop.
1544		 */
1545		mb();
1546		clflush(md);
1547		mb();
1548		__monitor(md, 0, 0);
1549		mb();
1550		__mwait(eax, 0);
1551
1552		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1553			/*
1554			 * Kexec is about to happen. Don't go back into mwait() as
1555			 * the kexec kernel might overwrite text and data including
1556			 * page tables and stack. So mwait() would resume when the
1557			 * monitor cache line is written to and then the CPU goes
1558			 * south due to overwritten text, page tables and stack.
1559			 *
1560			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1561			 * SMI. They will resume execution at the instruction
1562			 * following the HLT instruction and run into the problem
1563			 * which this is trying to prevent.
1564			 */
1565			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1566			while(1)
1567				native_halt();
1568		}
1569	}
1570}
1571
1572/*
1573 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1574 * mwait_play_dead().
1575 */
1576void smp_kick_mwait_play_dead(void)
1577{
1578	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1579	struct mwait_cpu_dead *md;
1580	unsigned int cpu, i;
1581
1582	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1583		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1584
1585		/* Does it sit in mwait_play_dead() ? */
1586		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1587			continue;
1588
1589		/* Wait up to 5ms */
1590		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1591			/* Bring it out of mwait */
1592			WRITE_ONCE(md->control, newstate);
1593			udelay(5);
1594		}
1595
1596		if (READ_ONCE(md->status) != newstate)
1597			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1598	}
1599}
1600
1601void __noreturn hlt_play_dead(void)
1602{
1603	if (__this_cpu_read(cpu_info.x86) >= 4)
1604		wbinvd();
1605
1606	while (1)
1607		native_halt();
 
1608}
1609
1610/*
1611 * native_play_dead() is essentially a __noreturn function, but it can't
1612 * be marked as such as the compiler may complain about it.
1613 */
1614void native_play_dead(void)
1615{
1616	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1617		__update_spec_ctrl(0);
1618
1619	play_dead_common();
1620	tboot_shutdown(TB_SHUTDOWN_WFS);
1621
1622	mwait_play_dead();
1623	if (cpuidle_play_dead())
1624		hlt_play_dead();
1625}
1626
1627#else /* ... !CONFIG_HOTPLUG_CPU */
1628int native_cpu_disable(void)
1629{
1630	return -ENOSYS;
 
 
 
 
 
 
1631}
1632
1633void native_play_dead(void)
1634{
1635	BUG();
1636}
1637
1638#endif
v3.1
   1/*
 
   2 *	x86 SMP booting functions
   3 *
   4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   5 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   6 *	Copyright 2001 Andi Kleen, SuSE Labs.
   7 *
   8 *	Much of the core SMP work is based on previous work by Thomas Radke, to
   9 *	whom a great many thanks are extended.
  10 *
  11 *	Thanks to Intel for making available several different Pentium,
  12 *	Pentium Pro and Pentium-II/Xeon MP machines.
  13 *	Original development of Linux SMP code supported by Caldera.
  14 *
  15 *	This code is released under the GNU General Public License version 2 or
  16 *	later.
  17 *
  18 *	Fixes
  19 *		Felix Koop	:	NR_CPUS used properly
  20 *		Jose Renau	:	Handle single CPU case.
  21 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  22 *		Greg Wright	:	Fix for kernel stacks panic.
  23 *		Erich Boleyn	:	MP v1.4 and additional changes.
  24 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  25 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  26 *	Michael Chastain	:	Change trampoline.S to gnu as.
  27 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  28 *		Ingo Molnar	:	Added APIC timers, based on code
  29 *					from Jose Renau
  30 *		Ingo Molnar	:	various cleanups and rewrites
  31 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  32 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  33 *	Andi Kleen		:	Changed for SMP boot into long mode.
  34 *		Martin J. Bligh	: 	Added support for multi-quad systems
  35 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  36 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  37 *      Andi Kleen              :       Converted to new state machine.
  38 *	Ashok Raj		: 	CPU hotplug support
  39 *	Glauber Costa		:	i386 and x86_64 integration
  40 */
  41
 
 
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/module.h>
  45#include <linux/sched.h>
 
 
 
  46#include <linux/percpu.h>
  47#include <linux/bootmem.h>
  48#include <linux/err.h>
  49#include <linux/nmi.h>
  50#include <linux/tboot.h>
 
 
 
 
 
 
  51#include <linux/stackprotector.h>
  52#include <linux/gfp.h>
 
  53
  54#include <asm/acpi.h>
 
  55#include <asm/desc.h>
  56#include <asm/nmi.h>
  57#include <asm/irq.h>
  58#include <asm/idle.h>
  59#include <asm/trampoline.h>
  60#include <asm/cpu.h>
  61#include <asm/numa.h>
  62#include <asm/pgtable.h>
  63#include <asm/tlbflush.h>
  64#include <asm/mtrr.h>
  65#include <asm/mwait.h>
  66#include <asm/apic.h>
  67#include <asm/io_apic.h>
 
  68#include <asm/setup.h>
  69#include <asm/uv/uv.h>
  70#include <linux/mc146818rtc.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72#include <asm/smpboot_hooks.h>
  73#include <asm/i8259.h>
  74
  75/* State of each CPU */
  76DEFINE_PER_CPU(int, cpu_state) = { 0 };
  77
  78/* Store all idle threads, this can be reused instead of creating
  79* a new thread. Also avoids complicated thread destroy functionality
  80* for idle threads.
  81*/
  82#ifdef CONFIG_HOTPLUG_CPU
  83/*
  84 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
  85 * removed after init for !CONFIG_HOTPLUG_CPU.
  86 */
  87static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
  88#define get_idle_for_cpu(x)      (per_cpu(idle_thread_array, x))
  89#define set_idle_for_cpu(x, p)   (per_cpu(idle_thread_array, x) = (p))
  90
  91/*
  92 * We need this for trampoline_base protection from concurrent accesses when
  93 * off- and onlining cores wildly.
  94 */
  95static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex);
  96
  97void cpu_hotplug_driver_lock(void)
  98{
  99        mutex_lock(&x86_cpu_hotplug_driver_mutex);
 100}
 
 
 
 101
 102void cpu_hotplug_driver_unlock(void)
 103{
 104        mutex_unlock(&x86_cpu_hotplug_driver_mutex);
 105}
 
 106
 107ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; }
 108ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; }
 109#else
 110static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
 111#define get_idle_for_cpu(x)      (idle_thread_array[(x)])
 112#define set_idle_for_cpu(x, p)   (idle_thread_array[(x)] = (p))
 113#endif
 114
 115/* Number of siblings per CPU package */
 116int smp_num_siblings = 1;
 117EXPORT_SYMBOL(smp_num_siblings);
 118
 119/* Last level cache ID of each logical CPU */
 120DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
 121
 122/* representing HT siblings of each logical CPU */
 123DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
 124EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 125
 126/* representing HT and core siblings of each logical CPU */
 127DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
 128EXPORT_PER_CPU_SYMBOL(cpu_core_map);
 129
 130DEFINE_PER_CPU(cpumask_var_t, cpu_llc_shared_map);
 131
 132/* Per CPU bogomips and other parameters */
 133DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
 134EXPORT_PER_CPU_SYMBOL(cpu_info);
 135
 136atomic_t init_deasserted;
 
 
 
 
 
 
 
 137
 138/*
 139 * Report back to the Boot Processor.
 140 * Running on AP.
 141 */
 142static void __cpuinit smp_callin(void)
 143{
 144	int cpuid, phys_id;
 145	unsigned long timeout;
 146
 147	/*
 148	 * If waken up by an INIT in an 82489DX configuration
 149	 * we may get here before an INIT-deassert IPI reaches
 150	 * our local APIC.  We have to wait for the IPI or we'll
 151	 * lock up on an APIC access.
 152	 */
 153	if (apic->wait_for_init_deassert)
 154		apic->wait_for_init_deassert(&init_deasserted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155
 156	/*
 157	 * (This works even if the APIC is not enabled.)
 
 
 
 
 
 
 158	 */
 159	phys_id = read_apic_id();
 160	cpuid = smp_processor_id();
 161	if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
 162		panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
 163					phys_id, cpuid);
 164	}
 165	pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
 166
 167	/*
 168	 * STARTUP IPIs are fragile beasts as they might sometimes
 169	 * trigger some glue motherboard logic. Complete APIC bus
 170	 * silence for 1 second, this overestimates the time the
 171	 * boot CPU is spending to send the up to 2 STARTUP IPIs
 172	 * by a factor of two. This should be enough.
 173	 */
 174
 175	/*
 176	 * Waiting 2s total for startup (udelay is not yet working)
 
 177	 */
 178	timeout = jiffies + 2*HZ;
 179	while (time_before(jiffies, timeout)) {
 180		/*
 181		 * Has the boot CPU finished it's STARTUP sequence?
 182		 */
 183		if (cpumask_test_cpu(cpuid, cpu_callout_mask))
 184			break;
 185		cpu_relax();
 186	}
 187
 188	if (!time_before(jiffies, timeout)) {
 189		panic("%s: CPU%d started up but did not get a callout!\n",
 190		      __func__, cpuid);
 191	}
 192
 193	/*
 194	 * the boot CPU has finished the init stage and is spinning
 195	 * on callin_map until we finish. We are free to set up this
 196	 * CPU, first the APIC. (this is probably redundant on most
 197	 * boards)
 198	 */
 199
 200	pr_debug("CALLIN, before setup_local_APIC().\n");
 201	if (apic->smp_callin_clear_local_apic)
 202		apic->smp_callin_clear_local_apic();
 203	setup_local_APIC();
 204	end_local_APIC_setup();
 205
 206	/*
 207	 * Need to setup vector mappings before we enable interrupts.
 
 208	 */
 209	setup_vector_irq(smp_processor_id());
 
 
 
 
 210	/*
 211	 * Get our bogomips.
 
 
 212	 *
 213	 * Need to enable IRQs because it can take longer and then
 214	 * the NMI watchdog might kill us.
 
 215	 */
 216	local_irq_enable();
 217	calibrate_delay();
 218	local_irq_disable();
 219	pr_debug("Stack at about %p\n", &cpuid);
 220
 
 
 
 
 
 221	/*
 222	 * Save our processor parameters
 
 
 223	 */
 224	smp_store_cpu_info(cpuid);
 225
 226	/*
 227	 * This must be done before setting cpu_online_mask
 228	 * or calling notify_cpu_starting.
 229	 */
 230	set_cpu_sibling_map(raw_smp_processor_id());
 231	wmb();
 
 
 
 232
 233	notify_cpu_starting(cpuid);
 234
 235	/*
 236	 * Allow the master to continue.
 
 
 
 
 
 
 
 
 
 
 
 
 
 237	 */
 238	cpumask_set_cpu(cpuid, cpu_callin_mask);
 239}
 240
 241/*
 242 * Activate a secondary processor.
 243 */
 244notrace static void __cpuinit start_secondary(void *unused)
 245{
 246	/*
 247	 * Don't put *anything* before cpu_init(), SMP booting is too
 248	 * fragile that we want to limit the things done here to the
 249	 * most necessary things.
 250	 */
 
 
 251	cpu_init();
 252	preempt_disable();
 253	smp_callin();
 
 
 
 254
 255#ifdef CONFIG_X86_32
 256	/* switch away from the initial page table */
 257	load_cr3(swapper_pg_dir);
 258	__flush_tlb_all();
 259#endif
 260
 261	/* otherwise gcc will move up smp_processor_id before the cpu_init */
 262	barrier();
 263	/*
 264	 * Check TSC synchronization with the BP:
 
 
 265	 */
 266	check_tsc_sync_target();
 
 
 267
 268	/*
 269	 * We need to hold call_lock, so there is no inconsistency
 270	 * between the time smp_call_function() determines number of
 271	 * IPI recipients, and the time when the determination is made
 272	 * for which cpus receive the IPI. Holding this
 273	 * lock helps us to not include this cpu in a currently in progress
 274	 * smp_call_function().
 275	 *
 276	 * We need to hold vector_lock so there the set of online cpus
 277	 * does not change while we are assigning vectors to cpus.  Holding
 278	 * this lock ensures we don't half assign or remove an irq from a cpu.
 279	 */
 280	ipi_call_lock();
 281	lock_vector_lock();
 282	set_cpu_online(smp_processor_id(), true);
 
 283	unlock_vector_lock();
 284	ipi_call_unlock();
 285	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 286	x86_platform.nmi_init();
 287
 288	/*
 289	 * Wait until the cpu which brought this one up marked it
 290	 * online before enabling interrupts. If we don't do that then
 291	 * we can end up waking up the softirq thread before this cpu
 292	 * reached the active state, which makes the scheduler unhappy
 293	 * and schedule the softirq thread on the wrong cpu. This is
 294	 * only observable with forced threaded interrupts, but in
 295	 * theory it could also happen w/o them. It's just way harder
 296	 * to achieve.
 297	 */
 298	while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
 299		cpu_relax();
 300
 301	/* enable local interrupts */
 302	local_irq_enable();
 303
 304	/* to prevent fake stack check failure in clock setup */
 305	boot_init_stack_canary();
 306
 307	x86_cpuinit.setup_percpu_clockev();
 308
 309	wmb();
 310	cpu_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311}
 312
 313/*
 314 * The bootstrap kernel entry code has set these up. Save them for
 315 * a given CPU
 316 */
 317
 318void __cpuinit smp_store_cpu_info(int id)
 319{
 320	struct cpuinfo_x86 *c = &cpu_data(id);
 321
 322	*c = boot_cpu_data;
 
 
 323	c->cpu_index = id;
 324	if (id != 0)
 325		identify_secondary_cpu(c);
 
 
 
 
 326}
 327
 328static void __cpuinit link_thread_siblings(int cpu1, int cpu2)
 
 329{
 330	cpumask_set_cpu(cpu1, cpu_sibling_mask(cpu2));
 331	cpumask_set_cpu(cpu2, cpu_sibling_mask(cpu1));
 332	cpumask_set_cpu(cpu1, cpu_core_mask(cpu2));
 333	cpumask_set_cpu(cpu2, cpu_core_mask(cpu1));
 334	cpumask_set_cpu(cpu1, cpu_llc_shared_mask(cpu2));
 335	cpumask_set_cpu(cpu2, cpu_llc_shared_mask(cpu1));
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338
 339void __cpuinit set_cpu_sibling_map(int cpu)
 340{
 341	int i;
 342	struct cpuinfo_x86 *c = &cpu_data(cpu);
 343
 344	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 
 
 
 
 345
 346	if (smp_num_siblings > 1) {
 347		for_each_cpu(i, cpu_sibling_setup_mask) {
 348			struct cpuinfo_x86 *o = &cpu_data(i);
 349
 350			if (cpu_has(c, X86_FEATURE_TOPOEXT)) {
 351				if (c->phys_proc_id == o->phys_proc_id &&
 352				    per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i) &&
 353				    c->compute_unit_id == o->compute_unit_id)
 354					link_thread_siblings(cpu, i);
 355			} else if (c->phys_proc_id == o->phys_proc_id &&
 356				   c->cpu_core_id == o->cpu_core_id) {
 357				link_thread_siblings(cpu, i);
 358			}
 359		}
 360	} else {
 361		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362	}
 363
 364	cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 
 
 
 
 
 
 365
 366	if (__this_cpu_read(cpu_info.x86_max_cores) == 1) {
 367		cpumask_copy(cpu_core_mask(cpu), cpu_sibling_mask(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368		c->booted_cores = 1;
 369		return;
 370	}
 371
 372	for_each_cpu(i, cpu_sibling_setup_mask) {
 373		if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
 374		    per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
 375			cpumask_set_cpu(i, cpu_llc_shared_mask(cpu));
 376			cpumask_set_cpu(cpu, cpu_llc_shared_mask(i));
 377		}
 378		if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
 379			cpumask_set_cpu(i, cpu_core_mask(cpu));
 380			cpumask_set_cpu(cpu, cpu_core_mask(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381			/*
 382			 *  Does this new cpu bringup a new core?
 383			 */
 384			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
 385				/*
 386				 * for each core in package, increment
 387				 * the booted_cores for this new cpu
 388				 */
 389				if (cpumask_first(cpu_sibling_mask(i)) == i)
 
 390					c->booted_cores++;
 391				/*
 392				 * increment the core count for all
 393				 * the other cpus in this package
 394				 */
 395				if (i != cpu)
 396					cpu_data(i).booted_cores++;
 397			} else if (i != cpu && !c->booted_cores)
 398				c->booted_cores = cpu_data(i).booted_cores;
 399		}
 400	}
 401}
 402
 403/* maps the cpu to the sched domain representing multi-core */
 404const struct cpumask *cpu_coregroup_mask(int cpu)
 405{
 406	struct cpuinfo_x86 *c = &cpu_data(cpu);
 407	/*
 408	 * For perf, we return last level cache shared map.
 409	 * And for power savings, we return cpu_core_map
 410	 */
 411	if ((sched_mc_power_savings || sched_smt_power_savings) &&
 412	    !(cpu_has(c, X86_FEATURE_AMD_DCM)))
 413		return cpu_core_mask(cpu);
 414	else
 415		return cpu_llc_shared_mask(cpu);
 416}
 
 417
 418static void impress_friends(void)
 419{
 420	int cpu;
 421	unsigned long bogosum = 0;
 422	/*
 423	 * Allow the user to impress friends.
 424	 */
 425	pr_debug("Before bogomips.\n");
 426	for_each_possible_cpu(cpu)
 427		if (cpumask_test_cpu(cpu, cpu_callout_mask))
 428			bogosum += cpu_data(cpu).loops_per_jiffy;
 429	printk(KERN_INFO
 430		"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 431		num_online_cpus(),
 432		bogosum/(500000/HZ),
 433		(bogosum/(5000/HZ))%100);
 434
 435	pr_debug("Before bogocount - setting activated=1.\n");
 436}
 437
 438void __inquire_remote_apic(int apicid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439{
 440	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 441	const char * const names[] = { "ID", "VERSION", "SPIV" };
 442	int timeout;
 443	u32 status;
 444
 445	printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid);
 
 
 446
 447	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 448		printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]);
 
 
 
 449
 450		/*
 451		 * Wait for idle.
 452		 */
 453		status = safe_apic_wait_icr_idle();
 454		if (status)
 455			printk(KERN_CONT
 456			       "a previous APIC delivery may have failed\n");
 457
 458		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 459
 460		timeout = 0;
 461		do {
 462			udelay(100);
 463			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 464		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 465
 466		switch (status) {
 467		case APIC_ICR_RR_VALID:
 468			status = apic_read(APIC_RRR);
 469			printk(KERN_CONT "%08x\n", status);
 470			break;
 471		default:
 472			printk(KERN_CONT "failed\n");
 473		}
 474	}
 
 
 475}
 476
 477/*
 478 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 479 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 480 * won't ... remember to clear down the APIC, etc later.
 481 */
 482int __cpuinit
 483wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip)
 484{
 485	unsigned long send_status, accept_status = 0;
 486	int maxlvt;
 487
 488	/* Target chip */
 489	/* Boot on the stack */
 490	/* Kick the second */
 491	apic_icr_write(APIC_DM_NMI | apic->dest_logical, logical_apicid);
 492
 493	pr_debug("Waiting for send to finish...\n");
 494	send_status = safe_apic_wait_icr_idle();
 495
 496	/*
 497	 * Give the other CPU some time to accept the IPI.
 498	 */
 499	udelay(200);
 500	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
 501		maxlvt = lapic_get_maxlvt();
 502		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
 503			apic_write(APIC_ESR, 0);
 504		accept_status = (apic_read(APIC_ESR) & 0xEF);
 505	}
 506	pr_debug("NMI sent.\n");
 507
 508	if (send_status)
 509		printk(KERN_ERR "APIC never delivered???\n");
 510	if (accept_status)
 511		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
 
 512
 513	return (send_status | accept_status);
 
 
 514}
 515
 516static int __cpuinit
 517wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 
 
 518{
 519	unsigned long send_status, accept_status = 0;
 520	int maxlvt, num_starts, j;
 521
 
 522	maxlvt = lapic_get_maxlvt();
 523
 524	/*
 525	 * Be paranoid about clearing APIC errors.
 526	 */
 527	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
 528		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 529			apic_write(APIC_ESR, 0);
 530		apic_read(APIC_ESR);
 531	}
 532
 533	pr_debug("Asserting INIT.\n");
 534
 535	/*
 536	 * Turn INIT on target chip
 537	 */
 538	/*
 539	 * Send IPI
 540	 */
 541	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 542		       phys_apicid);
 543
 544	pr_debug("Waiting for send to finish...\n");
 545	send_status = safe_apic_wait_icr_idle();
 546
 547	mdelay(10);
 548
 549	pr_debug("Deasserting INIT.\n");
 550
 551	/* Target chip */
 552	/* Send IPI */
 553	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 554
 555	pr_debug("Waiting for send to finish...\n");
 556	send_status = safe_apic_wait_icr_idle();
 557
 558	mb();
 559	atomic_set(&init_deasserted, 1);
 560
 561	/*
 562	 * Should we send STARTUP IPIs ?
 563	 *
 564	 * Determine this based on the APIC version.
 565	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 566	 */
 567	if (APIC_INTEGRATED(apic_version[phys_apicid]))
 568		num_starts = 2;
 569	else
 570		num_starts = 0;
 571
 572	/*
 573	 * Paravirt / VMI wants a startup IPI hook here to set up the
 574	 * target processor state.
 575	 */
 576	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
 577			 stack_start);
 578
 579	/*
 580	 * Run STARTUP IPI loop.
 581	 */
 582	pr_debug("#startup loops: %d.\n", num_starts);
 583
 584	for (j = 1; j <= num_starts; j++) {
 585		pr_debug("Sending STARTUP #%d.\n", j);
 586		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 587			apic_write(APIC_ESR, 0);
 588		apic_read(APIC_ESR);
 589		pr_debug("After apic_write.\n");
 590
 591		/*
 592		 * STARTUP IPI
 593		 */
 594
 595		/* Target chip */
 596		/* Boot on the stack */
 597		/* Kick the second */
 598		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 599			       phys_apicid);
 600
 601		/*
 602		 * Give the other CPU some time to accept the IPI.
 603		 */
 604		udelay(300);
 
 
 
 605
 606		pr_debug("Startup point 1.\n");
 607
 608		pr_debug("Waiting for send to finish...\n");
 609		send_status = safe_apic_wait_icr_idle();
 610
 611		/*
 612		 * Give the other CPU some time to accept the IPI.
 613		 */
 614		udelay(200);
 
 
 
 
 615		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 616			apic_write(APIC_ESR, 0);
 617		accept_status = (apic_read(APIC_ESR) & 0xEF);
 618		if (send_status || accept_status)
 619			break;
 620	}
 621	pr_debug("After Startup.\n");
 622
 623	if (send_status)
 624		printk(KERN_ERR "APIC never delivered???\n");
 625	if (accept_status)
 626		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
 627
 
 628	return (send_status | accept_status);
 629}
 630
 631struct create_idle {
 632	struct work_struct work;
 633	struct task_struct *idle;
 634	struct completion done;
 635	int cpu;
 636};
 637
 638static void __cpuinit do_fork_idle(struct work_struct *work)
 639{
 640	struct create_idle *c_idle =
 641		container_of(work, struct create_idle, work);
 642
 643	c_idle->idle = fork_idle(c_idle->cpu);
 644	complete(&c_idle->done);
 645}
 646
 647/* reduce the number of lines printed when booting a large cpu count system */
 648static void __cpuinit announce_cpu(int cpu, int apicid)
 649{
 650	static int current_node = -1;
 651	int node = early_cpu_to_node(cpu);
 652
 653	if (system_state == SYSTEM_BOOTING) {
 654		if (node != current_node) {
 655			if (current_node > (-1))
 656				pr_cont(" Ok.\n");
 657			current_node = node;
 658			pr_info("Booting Node %3d, Processors ", node);
 
 
 659		}
 660		pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " Ok.\n" : "");
 661		return;
 
 
 
 
 
 662	} else
 663		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 664			node, cpu, apicid);
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667/*
 668 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 669 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 670 * Returns zero if CPU booted OK, else error code from
 671 * ->wakeup_secondary_cpu.
 672 */
 673static int __cpuinit do_boot_cpu(int apicid, int cpu)
 674{
 675	unsigned long boot_error = 0;
 676	unsigned long start_ip;
 677	int timeout;
 678	struct create_idle c_idle = {
 679		.cpu	= cpu,
 680		.done	= COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
 681	};
 682
 683	INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
 684
 685	alternatives_smp_switch(1);
 686
 687	c_idle.idle = get_idle_for_cpu(cpu);
 688
 689	/*
 690	 * We can't use kernel_thread since we must avoid to
 691	 * reschedule the child.
 692	 */
 693	if (c_idle.idle) {
 694		c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
 695			(THREAD_SIZE +  task_stack_page(c_idle.idle))) - 1);
 696		init_idle(c_idle.idle, cpu);
 697		goto do_rest;
 698	}
 699
 700	schedule_work(&c_idle.work);
 701	wait_for_completion(&c_idle.done);
 702
 703	if (IS_ERR(c_idle.idle)) {
 704		printk("failed fork for CPU %d\n", cpu);
 705		destroy_work_on_stack(&c_idle.work);
 706		return PTR_ERR(c_idle.idle);
 
 707	}
 708
 709	set_idle_for_cpu(cpu, c_idle.idle);
 710do_rest:
 711	per_cpu(current_task, cpu) = c_idle.idle;
 712#ifdef CONFIG_X86_32
 713	/* Stack for startup_32 can be just as for start_secondary onwards */
 714	irq_ctx_init(cpu);
 715#else
 716	clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
 717	initial_gs = per_cpu_offset(cpu);
 718	per_cpu(kernel_stack, cpu) =
 719		(unsigned long)task_stack_page(c_idle.idle) -
 720		KERNEL_STACK_OFFSET + THREAD_SIZE;
 721#endif
 722	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
 723	initial_code = (unsigned long)start_secondary;
 724	stack_start  = c_idle.idle->thread.sp;
 725
 726	/* start_ip had better be page-aligned! */
 727	start_ip = trampoline_address();
 728
 729	/* So we see what's up */
 730	announce_cpu(cpu, apicid);
 731
 732	/*
 733	 * This grunge runs the startup process for
 734	 * the targeted processor.
 735	 */
 736
 737	printk(KERN_DEBUG "smpboot cpu %d: start_ip = %lx\n", cpu, start_ip);
 738
 739	atomic_set(&init_deasserted, 0);
 740
 741	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
 742
 743		pr_debug("Setting warm reset code and vector.\n");
 744
 745		smpboot_setup_warm_reset_vector(start_ip);
 746		/*
 747		 * Be paranoid about clearing APIC errors.
 748		*/
 749		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
 750			apic_write(APIC_ESR, 0);
 751			apic_read(APIC_ESR);
 752		}
 753	}
 754
 
 
 755	/*
 756	 * Kick the secondary CPU. Use the method in the APIC driver
 757	 * if it's defined - or use an INIT boot APIC message otherwise:
 758	 */
 759	if (apic->wakeup_secondary_cpu)
 760		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
 
 
 
 
 
 761	else
 762		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 763
 764	if (!boot_error) {
 765		/*
 766		 * allow APs to start initializing.
 767		 */
 768		pr_debug("Before Callout %d.\n", cpu);
 769		cpumask_set_cpu(cpu, cpu_callout_mask);
 770		pr_debug("After Callout %d.\n", cpu);
 771
 772		/*
 773		 * Wait 5s total for a response
 774		 */
 775		for (timeout = 0; timeout < 50000; timeout++) {
 776			if (cpumask_test_cpu(cpu, cpu_callin_mask))
 777				break;	/* It has booted */
 778			udelay(100);
 779			/*
 780			 * Allow other tasks to run while we wait for the
 781			 * AP to come online. This also gives a chance
 782			 * for the MTRR work(triggered by the AP coming online)
 783			 * to be completed in the stop machine context.
 784			 */
 785			schedule();
 786		}
 787
 788		if (cpumask_test_cpu(cpu, cpu_callin_mask))
 789			pr_debug("CPU%d: has booted.\n", cpu);
 790		else {
 791			boot_error = 1;
 792			if (*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status)
 793			    == 0xA5A5A5A5)
 794				/* trampoline started but...? */
 795				pr_err("CPU%d: Stuck ??\n", cpu);
 796			else
 797				/* trampoline code not run */
 798				pr_err("CPU%d: Not responding.\n", cpu);
 799			if (apic->inquire_remote_apic)
 800				apic->inquire_remote_apic(apicid);
 801		}
 802	}
 803
 804	if (boot_error) {
 805		/* Try to put things back the way they were before ... */
 806		numa_remove_cpu(cpu); /* was set by numa_add_cpu */
 807
 808		/* was set by do_boot_cpu() */
 809		cpumask_clear_cpu(cpu, cpu_callout_mask);
 810
 811		/* was set by cpu_init() */
 812		cpumask_clear_cpu(cpu, cpu_initialized_mask);
 813
 814		set_cpu_present(cpu, false);
 815		per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
 816	}
 817
 818	/* mark "stuck" area as not stuck */
 819	*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) = 0;
 820
 821	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
 822		/*
 823		 * Cleanup possible dangling ends...
 824		 */
 825		smpboot_restore_warm_reset_vector();
 826	}
 827
 828	destroy_work_on_stack(&c_idle.work);
 829	return boot_error;
 
 
 830}
 831
 832int __cpuinit native_cpu_up(unsigned int cpu)
 833{
 834	int apicid = apic->cpu_present_to_apicid(cpu);
 835	unsigned long flags;
 836	int err;
 837
 838	WARN_ON(irqs_disabled());
 839
 840	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 841
 842	if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
 843	    !physid_isset(apicid, phys_cpu_present_map)) {
 844		printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
 845		return -EINVAL;
 846	}
 847
 848	/*
 849	 * Already booted CPU?
 850	 */
 851	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
 852		pr_debug("do_boot_cpu %d Already started\n", cpu);
 853		return -ENOSYS;
 854	}
 855
 856	/*
 857	 * Save current MTRR state in case it was changed since early boot
 858	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 859	 */
 860	mtrr_save_state();
 861
 862	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 
 
 
 
 
 
 
 
 
 863
 864	err = do_boot_cpu(apicid, cpu);
 865	if (err) {
 866		pr_debug("do_boot_cpu failed %d\n", err);
 867		return -EIO;
 868	}
 
 
 
 
 
 
 
 
 
 869
 870	/*
 871	 * Check TSC synchronization with the AP (keep irqs disabled
 872	 * while doing so):
 873	 */
 874	local_irq_save(flags);
 875	check_tsc_sync_source(cpu);
 876	local_irq_restore(flags);
 877
 878	while (!cpu_online(cpu)) {
 879		cpu_relax();
 880		touch_nmi_watchdog();
 881	}
 882
 883	return 0;
 
 
 
 884}
 885
 886/**
 887 * arch_disable_smp_support() - disables SMP support for x86 at runtime
 888 */
 889void arch_disable_smp_support(void)
 890{
 891	disable_ioapic_support();
 892}
 893
 894/*
 895 * Fall back to non SMP mode after errors.
 896 *
 897 * RED-PEN audit/test this more. I bet there is more state messed up here.
 898 */
 899static __init void disable_smp(void)
 900{
 
 
 
 
 901	init_cpu_present(cpumask_of(0));
 902	init_cpu_possible(cpumask_of(0));
 903	smpboot_clear_io_apic_irqs();
 904
 905	if (smp_found_config)
 906		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
 907	else
 908		physid_set_mask_of_physid(0, &phys_cpu_present_map);
 909	cpumask_set_cpu(0, cpu_sibling_mask(0));
 910	cpumask_set_cpu(0, cpu_core_mask(0));
 911}
 912
 913/*
 914 * Various sanity checks.
 915 */
 916static int __init smp_sanity_check(unsigned max_cpus)
 917{
 918	preempt_disable();
 919
 920#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
 921	if (def_to_bigsmp && nr_cpu_ids > 8) {
 922		unsigned int cpu;
 923		unsigned nr;
 924
 925		printk(KERN_WARNING
 926		       "More than 8 CPUs detected - skipping them.\n"
 927		       "Use CONFIG_X86_BIGSMP.\n");
 928
 929		nr = 0;
 930		for_each_present_cpu(cpu) {
 931			if (nr >= 8)
 932				set_cpu_present(cpu, false);
 933			nr++;
 934		}
 935
 936		nr = 0;
 937		for_each_possible_cpu(cpu) {
 938			if (nr >= 8)
 939				set_cpu_possible(cpu, false);
 940			nr++;
 941		}
 942
 943		nr_cpu_ids = 8;
 944	}
 945#endif
 946
 947	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
 948		printk(KERN_WARNING
 949			"weird, boot CPU (#%d) not listed by the BIOS.\n",
 950			hard_smp_processor_id());
 951
 952		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
 953	}
 954
 955	/*
 956	 * If we couldn't find an SMP configuration at boot time,
 957	 * get out of here now!
 958	 */
 959	if (!smp_found_config && !acpi_lapic) {
 960		preempt_enable();
 961		printk(KERN_NOTICE "SMP motherboard not detected.\n");
 962		disable_smp();
 963		if (APIC_init_uniprocessor())
 964			printk(KERN_NOTICE "Local APIC not detected."
 965					   " Using dummy APIC emulation.\n");
 966		return -1;
 967	}
 968
 969	/*
 970	 * Should not be necessary because the MP table should list the boot
 971	 * CPU too, but we do it for the sake of robustness anyway.
 972	 */
 973	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
 974		printk(KERN_NOTICE
 975			"weird, boot CPU (#%d) not listed by the BIOS.\n",
 976			boot_cpu_physical_apicid);
 977		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
 978	}
 979	preempt_enable();
 980
 981	/*
 982	 * If we couldn't find a local APIC, then get out of here now!
 983	 */
 984	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
 985	    !cpu_has_apic) {
 986		if (!disable_apic) {
 987			pr_err("BIOS bug, local APIC #%d not detected!...\n",
 988				boot_cpu_physical_apicid);
 989			pr_err("... forcing use of dummy APIC emulation."
 990				"(tell your hw vendor)\n");
 991		}
 992		smpboot_clear_io_apic();
 993		disable_ioapic_support();
 994		return -1;
 995	}
 996
 997	verify_local_APIC();
 998
 999	/*
1000	 * If SMP should be disabled, then really disable it!
1001	 */
1002	if (!max_cpus) {
1003		printk(KERN_INFO "SMP mode deactivated.\n");
1004		smpboot_clear_io_apic();
1005
1006		connect_bsp_APIC();
1007		setup_local_APIC();
1008		bsp_end_local_APIC_setup();
1009		return -1;
1010	}
1011
1012	return 0;
1013}
1014
1015static void __init smp_cpu_index_default(void)
1016{
1017	int i;
1018	struct cpuinfo_x86 *c;
1019
1020	for_each_possible_cpu(i) {
1021		c = &cpu_data(i);
1022		/* mark all to hotplug */
1023		c->cpu_index = nr_cpu_ids;
1024	}
1025}
1026
1027/*
1028 * Prepare for SMP bootup.  The MP table or ACPI has been read
1029 * earlier.  Just do some sanity checking here and enable APIC mode.
1030 */
1031void __init native_smp_prepare_cpus(unsigned int max_cpus)
1032{
1033	unsigned int i;
1034
1035	preempt_disable();
1036	smp_cpu_index_default();
1037
1038	/*
1039	 * Setup boot CPU information
1040	 */
1041	smp_store_cpu_info(0); /* Final full version of the data */
1042	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1043	mb();
1044
1045	current_thread_info()->cpu = 0;  /* needed? */
1046	for_each_possible_cpu(i) {
1047		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1048		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
 
1049		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
 
1050	}
 
1051	set_cpu_sibling_map(0);
 
1052
 
 
 
 
 
 
 
 
1053
1054	if (smp_sanity_check(max_cpus) < 0) {
1055		printk(KERN_INFO "SMP disabled\n");
1056		disable_smp();
1057		goto out;
1058	}
1059
1060	default_setup_apic_routing();
 
 
 
 
 
 
 
1061
1062	preempt_disable();
1063	if (read_apic_id() != boot_cpu_physical_apicid) {
1064		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1065		     read_apic_id(), boot_cpu_physical_apicid);
1066		/* Or can we switch back to PIC here? */
 
 
 
 
 
 
 
 
1067	}
1068	preempt_enable();
1069
1070	connect_bsp_APIC();
 
1071
1072	/*
1073	 * Switch from PIC to APIC mode.
1074	 */
1075	setup_local_APIC();
1076
1077	/*
1078	 * Enable IO APIC before setting up error vector
1079	 */
1080	if (!skip_ioapic_setup && nr_ioapics)
1081		enable_IO_APIC();
1082
1083	bsp_end_local_APIC_setup();
1084
1085	if (apic->setup_portio_remap)
1086		apic->setup_portio_remap();
1087
1088	smpboot_setup_io_apic();
1089	/*
1090	 * Set up local APIC timer on boot CPU.
1091	 */
1092
1093	printk(KERN_INFO "CPU%d: ", 0);
1094	print_cpu_info(&cpu_data(0));
1095	x86_init.timers.setup_percpu_clockev();
1096
1097	if (is_uv_system())
1098		uv_system_init();
1099
1100	set_mtrr_aps_delayed_init();
1101out:
1102	preempt_enable();
1103}
1104
1105void arch_disable_nonboot_cpus_begin(void)
1106{
1107	/*
1108	 * Avoid the smp alternatives switch during the disable_nonboot_cpus().
1109	 * In the suspend path, we will be back in the SMP mode shortly anyways.
1110	 */
1111	skip_smp_alternatives = true;
1112}
1113
1114void arch_disable_nonboot_cpus_end(void)
1115{
1116	skip_smp_alternatives = false;
1117}
1118
1119void arch_enable_nonboot_cpus_begin(void)
1120{
1121	set_mtrr_aps_delayed_init();
1122}
1123
1124void arch_enable_nonboot_cpus_end(void)
1125{
1126	mtrr_aps_init();
1127}
1128
1129/*
1130 * Early setup to make printk work.
1131 */
1132void __init native_smp_prepare_boot_cpu(void)
1133{
1134	int me = smp_processor_id();
1135	switch_to_new_gdt(me);
1136	/* already set me in cpu_online_mask in boot_cpu_init() */
1137	cpumask_set_cpu(me, cpu_callout_mask);
1138	per_cpu(cpu_state, me) = CPU_ONLINE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139}
1140
1141void __init native_smp_cpus_done(unsigned int max_cpus)
1142{
1143	pr_debug("Boot done.\n");
1144
 
 
 
1145	impress_friends();
1146#ifdef CONFIG_X86_IO_APIC
1147	setup_ioapic_dest();
1148#endif
1149	mtrr_aps_init();
1150}
1151
1152static int __initdata setup_possible_cpus = -1;
1153static int __init _setup_possible_cpus(char *str)
1154{
1155	get_option(&str, &setup_possible_cpus);
1156	return 0;
1157}
1158early_param("possible_cpus", _setup_possible_cpus);
1159
1160
1161/*
1162 * cpu_possible_mask should be static, it cannot change as cpu's
1163 * are onlined, or offlined. The reason is per-cpu data-structures
1164 * are allocated by some modules at init time, and dont expect to
1165 * do this dynamically on cpu arrival/departure.
1166 * cpu_present_mask on the other hand can change dynamically.
1167 * In case when cpu_hotplug is not compiled, then we resort to current
1168 * behaviour, which is cpu_possible == cpu_present.
1169 * - Ashok Raj
1170 *
1171 * Three ways to find out the number of additional hotplug CPUs:
1172 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1173 * - The user can overwrite it with possible_cpus=NUM
1174 * - Otherwise don't reserve additional CPUs.
1175 * We do this because additional CPUs waste a lot of memory.
1176 * -AK
1177 */
1178__init void prefill_possible_map(void)
1179{
1180	int i, possible;
1181
1182	/* no processor from mptable or madt */
1183	if (!num_processors)
1184		num_processors = 1;
1185
1186	i = setup_max_cpus ?: 1;
1187	if (setup_possible_cpus == -1) {
1188		possible = num_processors;
1189#ifdef CONFIG_HOTPLUG_CPU
1190		if (setup_max_cpus)
1191			possible += disabled_cpus;
1192#else
1193		if (possible > i)
1194			possible = i;
1195#endif
1196	} else
1197		possible = setup_possible_cpus;
1198
1199	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1200
1201	/* nr_cpu_ids could be reduced via nr_cpus= */
1202	if (possible > nr_cpu_ids) {
1203		printk(KERN_WARNING
1204			"%d Processors exceeds NR_CPUS limit of %d\n",
1205			possible, nr_cpu_ids);
1206		possible = nr_cpu_ids;
1207	}
1208
1209#ifdef CONFIG_HOTPLUG_CPU
1210	if (!setup_max_cpus)
1211#endif
1212	if (possible > i) {
1213		printk(KERN_WARNING
1214			"%d Processors exceeds max_cpus limit of %u\n",
1215			possible, setup_max_cpus);
1216		possible = i;
1217	}
1218
1219	printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
 
 
1220		possible, max_t(int, possible - num_processors, 0));
1221
 
 
1222	for (i = 0; i < possible; i++)
1223		set_cpu_possible(i, true);
1224	for (; i < NR_CPUS; i++)
1225		set_cpu_possible(i, false);
1226
1227	nr_cpu_ids = possible;
 
 
 
1228}
1229
1230#ifdef CONFIG_HOTPLUG_CPU
1231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232static void remove_siblinginfo(int cpu)
1233{
1234	int sibling;
1235	struct cpuinfo_x86 *c = &cpu_data(cpu);
1236
1237	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1238		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1239		/*/
1240		 * last thread sibling in this cpu core going down
1241		 */
1242		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1243			cpu_data(sibling).booted_cores--;
1244	}
1245
1246	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1247		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1248	cpumask_clear(cpu_sibling_mask(cpu));
1249	cpumask_clear(cpu_core_mask(cpu));
1250	c->phys_proc_id = 0;
1251	c->cpu_core_id = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
 
1253}
1254
1255static void __ref remove_cpu_from_maps(int cpu)
1256{
1257	set_cpu_online(cpu, false);
1258	cpumask_clear_cpu(cpu, cpu_callout_mask);
1259	cpumask_clear_cpu(cpu, cpu_callin_mask);
1260	/* was set by cpu_init() */
1261	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1262	numa_remove_cpu(cpu);
1263}
1264
1265void cpu_disable_common(void)
1266{
1267	int cpu = smp_processor_id();
1268
1269	remove_siblinginfo(cpu);
1270
1271	/* It's now safe to remove this processor from the online map */
1272	lock_vector_lock();
1273	remove_cpu_from_maps(cpu);
1274	unlock_vector_lock();
1275	fixup_irqs();
 
1276}
1277
1278int native_cpu_disable(void)
1279{
1280	int cpu = smp_processor_id();
1281
1282	/*
1283	 * Perhaps use cpufreq to drop frequency, but that could go
1284	 * into generic code.
1285	 *
1286	 * We won't take down the boot processor on i386 due to some
1287	 * interrupts only being able to be serviced by the BSP.
1288	 * Especially so if we're not using an IOAPIC	-zwane
1289	 */
1290	if (cpu == 0)
1291		return -EBUSY;
1292
1293	clear_local_APIC();
 
 
1294
1295	cpu_disable_common();
1296	return 0;
1297}
1298
1299void native_cpu_die(unsigned int cpu)
1300{
1301	/* We don't do anything here: idle task is faking death itself. */
1302	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304	for (i = 0; i < 10; i++) {
1305		/* They ack this in play_dead by setting CPU_DEAD */
1306		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1307			if (system_state == SYSTEM_RUNNING)
1308				pr_info("CPU %u is now offline\n", cpu);
1309
1310			if (1 == num_online_cpus())
1311				alternatives_smp_switch(0);
1312			return;
1313		}
1314		msleep(100);
1315	}
1316	pr_err("CPU %u didn't die...\n", cpu);
1317}
1318
1319void play_dead_common(void)
1320{
1321	idle_task_exit();
1322	reset_lazy_tlbstate();
1323	amd_e400_remove_cpu(raw_smp_processor_id());
1324
1325	mb();
1326	/* Ack it */
1327	__this_cpu_write(cpu_state, CPU_DEAD);
1328
1329	/*
1330	 * With physical CPU hotplug, we should halt the cpu
1331	 */
1332	local_irq_disable();
1333}
1334
1335/*
1336 * We need to flush the caches before going to sleep, lest we have
1337 * dirty data in our caches when we come back up.
1338 */
1339static inline void mwait_play_dead(void)
1340{
 
1341	unsigned int eax, ebx, ecx, edx;
1342	unsigned int highest_cstate = 0;
1343	unsigned int highest_subcstate = 0;
1344	int i;
1345	void *mwait_ptr;
1346	struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info);
1347
1348	if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c)))
 
 
 
1349		return;
1350	if (!this_cpu_has(X86_FEATURE_CLFLSH))
1351		return;
1352	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1353		return;
1354
1355	eax = CPUID_MWAIT_LEAF;
1356	ecx = 0;
1357	native_cpuid(&eax, &ebx, &ecx, &edx);
1358
1359	/*
1360	 * eax will be 0 if EDX enumeration is not valid.
1361	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1362	 */
1363	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1364		eax = 0;
1365	} else {
1366		edx >>= MWAIT_SUBSTATE_SIZE;
1367		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1368			if (edx & MWAIT_SUBSTATE_MASK) {
1369				highest_cstate = i;
1370				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1371			}
1372		}
1373		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1374			(highest_subcstate - 1);
1375	}
1376
1377	/*
1378	 * This should be a memory location in a cache line which is
1379	 * unlikely to be touched by other processors.  The actual
1380	 * content is immaterial as it is not actually modified in any way.
1381	 */
1382	mwait_ptr = &current_thread_info()->flags;
1383
1384	wbinvd();
1385
1386	while (1) {
1387		/*
1388		 * The CLFLUSH is a workaround for erratum AAI65 for
1389		 * the Xeon 7400 series.  It's not clear it is actually
1390		 * needed, but it should be harmless in either case.
1391		 * The WBINVD is insufficient due to the spurious-wakeup
1392		 * case where we return around the loop.
1393		 */
1394		clflush(mwait_ptr);
1395		__monitor(mwait_ptr, 0, 0);
 
 
1396		mb();
1397		__mwait(eax, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398	}
1399}
1400
1401static inline void hlt_play_dead(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402{
1403	if (__this_cpu_read(cpu_info.x86) >= 4)
1404		wbinvd();
1405
1406	while (1) {
1407		native_halt();
1408	}
1409}
1410
 
 
 
 
1411void native_play_dead(void)
1412{
 
 
 
1413	play_dead_common();
1414	tboot_shutdown(TB_SHUTDOWN_WFS);
1415
1416	mwait_play_dead();	/* Only returns on failure */
1417	hlt_play_dead();
 
1418}
1419
1420#else /* ... !CONFIG_HOTPLUG_CPU */
1421int native_cpu_disable(void)
1422{
1423	return -ENOSYS;
1424}
1425
1426void native_cpu_die(unsigned int cpu)
1427{
1428	/* We said "no" in __cpu_disable */
1429	BUG();
1430}
1431
1432void native_play_dead(void)
1433{
1434	BUG();
1435}
1436
1437#endif