Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
 
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
 
 
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 
 
 
 
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 802}
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
 
 
 
 
 
 
 
 
 
 
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
 
 
 
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
 
 
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
1393			break;
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
 
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
 
 
 
 
 
 
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
 
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
 
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
1489}
1490
 
 
 
 
 
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
 
 
 
 
 
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 
 
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
 
 
 
 
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
 
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
 
 
 
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
 
 
 
 
 
 
 
2303	 */
2304	preempt_disable();
 
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
 
2308	schedule();
2309	cgroup_leave_frozen(true);
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
2574	if (signr == 0)
2575		return signr;
2576
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
 
 
 
 
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
 
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
 
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
 
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
3233	sigset_t set;
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
3415		to->si_addr_lsb = from->si_addr_lsb;
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
3454{
3455	struct compat_siginfo new;
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
 
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
 
 
 
 
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
 
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
 
 
 
 
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
 
 
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
3985		return -EPERM;
3986
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
4032		return -EPERM;
4033
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
4224	}
4225	return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
4265{
4266	stack_t uss, uoss;
4267	int ret;
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650	sigset_t newset;
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
4658	return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
  62/*
  63 * SLAB caches for signal bits.
  64 */
  65
  66static struct kmem_cache *sigqueue_cachep;
  67
  68int print_fatal_signals __read_mostly;
  69
  70static void __user *sig_handler(struct task_struct *t, int sig)
  71{
  72	return t->sighand->action[sig - 1].sa.sa_handler;
  73}
  74
  75static inline bool sig_handler_ignored(void __user *handler, int sig)
  76{
  77	/* Is it explicitly or implicitly ignored? */
  78	return handler == SIG_IGN ||
  79	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  80}
  81
  82static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  83{
  84	void __user *handler;
  85
  86	handler = sig_handler(t, sig);
  87
  88	/* SIGKILL and SIGSTOP may not be sent to the global init */
  89	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  90		return true;
  91
  92	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  93	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  94		return true;
  95
  96	/* Only allow kernel generated signals to this kthread */
  97	if (unlikely((t->flags & PF_KTHREAD) &&
  98		     (handler == SIG_KTHREAD_KERNEL) && !force))
  99		return true;
 100
 101	return sig_handler_ignored(handler, sig);
 102}
 103
 104static bool sig_ignored(struct task_struct *t, int sig, bool force)
 105{
 106	/*
 107	 * Blocked signals are never ignored, since the
 108	 * signal handler may change by the time it is
 109	 * unblocked.
 110	 */
 111	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 112		return false;
 113
 114	/*
 115	 * Tracers may want to know about even ignored signal unless it
 116	 * is SIGKILL which can't be reported anyway but can be ignored
 117	 * by SIGNAL_UNKILLABLE task.
 118	 */
 119	if (t->ptrace && sig != SIGKILL)
 120		return false;
 121
 122	return sig_task_ignored(t, sig, force);
 123}
 124
 125/*
 126 * Re-calculate pending state from the set of locally pending
 127 * signals, globally pending signals, and blocked signals.
 128 */
 129static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 130{
 131	unsigned long ready;
 132	long i;
 133
 134	switch (_NSIG_WORDS) {
 135	default:
 136		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 137			ready |= signal->sig[i] &~ blocked->sig[i];
 138		break;
 139
 140	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 141		ready |= signal->sig[2] &~ blocked->sig[2];
 142		ready |= signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 147		ready |= signal->sig[0] &~ blocked->sig[0];
 148		break;
 149
 150	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 151	}
 152	return ready !=	0;
 153}
 154
 155#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 156
 157static bool recalc_sigpending_tsk(struct task_struct *t)
 158{
 159	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 160	    PENDING(&t->pending, &t->blocked) ||
 161	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 162	    cgroup_task_frozen(t)) {
 163		set_tsk_thread_flag(t, TIF_SIGPENDING);
 164		return true;
 165	}
 166
 167	/*
 168	 * We must never clear the flag in another thread, or in current
 169	 * when it's possible the current syscall is returning -ERESTART*.
 170	 * So we don't clear it here, and only callers who know they should do.
 171	 */
 172	return false;
 173}
 174
 
 
 
 
 
 
 
 
 
 
 175void recalc_sigpending(void)
 176{
 177	if (!recalc_sigpending_tsk(current) && !freezing(current))
 178		clear_thread_flag(TIF_SIGPENDING);
 179
 180}
 181EXPORT_SYMBOL(recalc_sigpending);
 182
 183void calculate_sigpending(void)
 184{
 185	/* Have any signals or users of TIF_SIGPENDING been delayed
 186	 * until after fork?
 187	 */
 188	spin_lock_irq(&current->sighand->siglock);
 189	set_tsk_thread_flag(current, TIF_SIGPENDING);
 190	recalc_sigpending();
 191	spin_unlock_irq(&current->sighand->siglock);
 192}
 193
 194/* Given the mask, find the first available signal that should be serviced. */
 195
 196#define SYNCHRONOUS_MASK \
 197	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 198	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 199
 200int next_signal(struct sigpending *pending, sigset_t *mask)
 201{
 202	unsigned long i, *s, *m, x;
 203	int sig = 0;
 204
 205	s = pending->signal.sig;
 206	m = mask->sig;
 207
 208	/*
 209	 * Handle the first word specially: it contains the
 210	 * synchronous signals that need to be dequeued first.
 211	 */
 212	x = *s &~ *m;
 213	if (x) {
 214		if (x & SYNCHRONOUS_MASK)
 215			x &= SYNCHRONOUS_MASK;
 216		sig = ffz(~x) + 1;
 217		return sig;
 218	}
 219
 220	switch (_NSIG_WORDS) {
 221	default:
 222		for (i = 1; i < _NSIG_WORDS; ++i) {
 223			x = *++s &~ *++m;
 224			if (!x)
 225				continue;
 226			sig = ffz(~x) + i*_NSIG_BPW + 1;
 227			break;
 228		}
 229		break;
 230
 231	case 2:
 232		x = s[1] &~ m[1];
 233		if (!x)
 234			break;
 235		sig = ffz(~x) + _NSIG_BPW + 1;
 236		break;
 237
 238	case 1:
 239		/* Nothing to do */
 240		break;
 241	}
 242
 243	return sig;
 244}
 245
 246static inline void print_dropped_signal(int sig)
 247{
 248	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 249
 250	if (!print_fatal_signals)
 251		return;
 252
 253	if (!__ratelimit(&ratelimit_state))
 254		return;
 255
 256	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 257				current->comm, current->pid, sig);
 258}
 259
 260/**
 261 * task_set_jobctl_pending - set jobctl pending bits
 262 * @task: target task
 263 * @mask: pending bits to set
 264 *
 265 * Clear @mask from @task->jobctl.  @mask must be subset of
 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 267 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 268 * cleared.  If @task is already being killed or exiting, this function
 269 * becomes noop.
 270 *
 271 * CONTEXT:
 272 * Must be called with @task->sighand->siglock held.
 273 *
 274 * RETURNS:
 275 * %true if @mask is set, %false if made noop because @task was dying.
 276 */
 277bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 278{
 279	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 280			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 281	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 282
 283	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 284		return false;
 285
 286	if (mask & JOBCTL_STOP_SIGMASK)
 287		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 288
 289	task->jobctl |= mask;
 290	return true;
 291}
 292
 293/**
 294 * task_clear_jobctl_trapping - clear jobctl trapping bit
 295 * @task: target task
 296 *
 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 298 * Clear it and wake up the ptracer.  Note that we don't need any further
 299 * locking.  @task->siglock guarantees that @task->parent points to the
 300 * ptracer.
 301 *
 302 * CONTEXT:
 303 * Must be called with @task->sighand->siglock held.
 304 */
 305void task_clear_jobctl_trapping(struct task_struct *task)
 306{
 307	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 308		task->jobctl &= ~JOBCTL_TRAPPING;
 309		smp_mb();	/* advised by wake_up_bit() */
 310		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 311	}
 312}
 313
 314/**
 315 * task_clear_jobctl_pending - clear jobctl pending bits
 316 * @task: target task
 317 * @mask: pending bits to clear
 318 *
 319 * Clear @mask from @task->jobctl.  @mask must be subset of
 320 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 321 * STOP bits are cleared together.
 322 *
 323 * If clearing of @mask leaves no stop or trap pending, this function calls
 324 * task_clear_jobctl_trapping().
 325 *
 326 * CONTEXT:
 327 * Must be called with @task->sighand->siglock held.
 328 */
 329void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 330{
 331	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 332
 333	if (mask & JOBCTL_STOP_PENDING)
 334		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 335
 336	task->jobctl &= ~mask;
 337
 338	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 339		task_clear_jobctl_trapping(task);
 340}
 341
 342/**
 343 * task_participate_group_stop - participate in a group stop
 344 * @task: task participating in a group stop
 345 *
 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 347 * Group stop states are cleared and the group stop count is consumed if
 348 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 349 * stop, the appropriate `SIGNAL_*` flags are set.
 350 *
 351 * CONTEXT:
 352 * Must be called with @task->sighand->siglock held.
 353 *
 354 * RETURNS:
 355 * %true if group stop completion should be notified to the parent, %false
 356 * otherwise.
 357 */
 358static bool task_participate_group_stop(struct task_struct *task)
 359{
 360	struct signal_struct *sig = task->signal;
 361	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 362
 363	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 364
 365	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 366
 367	if (!consume)
 368		return false;
 369
 370	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 371		sig->group_stop_count--;
 372
 373	/*
 374	 * Tell the caller to notify completion iff we are entering into a
 375	 * fresh group stop.  Read comment in do_signal_stop() for details.
 376	 */
 377	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 378		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 379		return true;
 380	}
 381	return false;
 382}
 383
 384void task_join_group_stop(struct task_struct *task)
 385{
 386	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 387	struct signal_struct *sig = current->signal;
 388
 389	if (sig->group_stop_count) {
 390		sig->group_stop_count++;
 391		mask |= JOBCTL_STOP_CONSUME;
 392	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 393		return;
 394
 395	/* Have the new thread join an on-going signal group stop */
 396	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 397}
 398
 399/*
 400 * allocate a new signal queue record
 401 * - this may be called without locks if and only if t == current, otherwise an
 402 *   appropriate lock must be held to stop the target task from exiting
 403 */
 404static struct sigqueue *
 405__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 406		 int override_rlimit, const unsigned int sigqueue_flags)
 407{
 408	struct sigqueue *q = NULL;
 409	struct ucounts *ucounts;
 410	long sigpending;
 411
 412	/*
 413	 * Protect access to @t credentials. This can go away when all
 414	 * callers hold rcu read lock.
 415	 *
 416	 * NOTE! A pending signal will hold on to the user refcount,
 417	 * and we get/put the refcount only when the sigpending count
 418	 * changes from/to zero.
 419	 */
 420	rcu_read_lock();
 421	ucounts = task_ucounts(t);
 422	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 423	rcu_read_unlock();
 424	if (!sigpending)
 425		return NULL;
 426
 427	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 428		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 429	} else {
 430		print_dropped_signal(sig);
 431	}
 432
 433	if (unlikely(q == NULL)) {
 434		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 435	} else {
 436		INIT_LIST_HEAD(&q->list);
 437		q->flags = sigqueue_flags;
 438		q->ucounts = ucounts;
 439	}
 440	return q;
 441}
 442
 443static void __sigqueue_free(struct sigqueue *q)
 444{
 445	if (q->flags & SIGQUEUE_PREALLOC)
 446		return;
 447	if (q->ucounts) {
 448		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 449		q->ucounts = NULL;
 450	}
 451	kmem_cache_free(sigqueue_cachep, q);
 452}
 453
 454void flush_sigqueue(struct sigpending *queue)
 455{
 456	struct sigqueue *q;
 457
 458	sigemptyset(&queue->signal);
 459	while (!list_empty(&queue->list)) {
 460		q = list_entry(queue->list.next, struct sigqueue , list);
 461		list_del_init(&q->list);
 462		__sigqueue_free(q);
 463	}
 464}
 465
 466/*
 467 * Flush all pending signals for this kthread.
 468 */
 469void flush_signals(struct task_struct *t)
 470{
 471	unsigned long flags;
 472
 473	spin_lock_irqsave(&t->sighand->siglock, flags);
 474	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 475	flush_sigqueue(&t->pending);
 476	flush_sigqueue(&t->signal->shared_pending);
 477	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 478}
 479EXPORT_SYMBOL(flush_signals);
 480
 481#ifdef CONFIG_POSIX_TIMERS
 482static void __flush_itimer_signals(struct sigpending *pending)
 483{
 484	sigset_t signal, retain;
 485	struct sigqueue *q, *n;
 486
 487	signal = pending->signal;
 488	sigemptyset(&retain);
 489
 490	list_for_each_entry_safe(q, n, &pending->list, list) {
 491		int sig = q->info.si_signo;
 492
 493		if (likely(q->info.si_code != SI_TIMER)) {
 494			sigaddset(&retain, sig);
 495		} else {
 496			sigdelset(&signal, sig);
 497			list_del_init(&q->list);
 498			__sigqueue_free(q);
 499		}
 500	}
 501
 502	sigorsets(&pending->signal, &signal, &retain);
 503}
 504
 505void flush_itimer_signals(void)
 506{
 507	struct task_struct *tsk = current;
 508	unsigned long flags;
 509
 510	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 511	__flush_itimer_signals(&tsk->pending);
 512	__flush_itimer_signals(&tsk->signal->shared_pending);
 513	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 514}
 515#endif
 516
 517void ignore_signals(struct task_struct *t)
 518{
 519	int i;
 520
 521	for (i = 0; i < _NSIG; ++i)
 522		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 523
 524	flush_signals(t);
 525}
 526
 527/*
 528 * Flush all handlers for a task.
 529 */
 530
 531void
 532flush_signal_handlers(struct task_struct *t, int force_default)
 533{
 534	int i;
 535	struct k_sigaction *ka = &t->sighand->action[0];
 536	for (i = _NSIG ; i != 0 ; i--) {
 537		if (force_default || ka->sa.sa_handler != SIG_IGN)
 538			ka->sa.sa_handler = SIG_DFL;
 539		ka->sa.sa_flags = 0;
 540#ifdef __ARCH_HAS_SA_RESTORER
 541		ka->sa.sa_restorer = NULL;
 542#endif
 543		sigemptyset(&ka->sa.sa_mask);
 544		ka++;
 545	}
 546}
 547
 548bool unhandled_signal(struct task_struct *tsk, int sig)
 549{
 550	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 551	if (is_global_init(tsk))
 552		return true;
 553
 554	if (handler != SIG_IGN && handler != SIG_DFL)
 555		return false;
 556
 557	/* If dying, we handle all new signals by ignoring them */
 558	if (fatal_signal_pending(tsk))
 559		return false;
 560
 561	/* if ptraced, let the tracer determine */
 562	return !tsk->ptrace;
 563}
 564
 565static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 566			   bool *resched_timer)
 567{
 568	struct sigqueue *q, *first = NULL;
 569
 570	/*
 571	 * Collect the siginfo appropriate to this signal.  Check if
 572	 * there is another siginfo for the same signal.
 573	*/
 574	list_for_each_entry(q, &list->list, list) {
 575		if (q->info.si_signo == sig) {
 576			if (first)
 577				goto still_pending;
 578			first = q;
 579		}
 580	}
 581
 582	sigdelset(&list->signal, sig);
 583
 584	if (first) {
 585still_pending:
 586		list_del_init(&first->list);
 587		copy_siginfo(info, &first->info);
 588
 589		*resched_timer =
 590			(first->flags & SIGQUEUE_PREALLOC) &&
 591			(info->si_code == SI_TIMER) &&
 592			(info->si_sys_private);
 593
 594		__sigqueue_free(first);
 595	} else {
 596		/*
 597		 * Ok, it wasn't in the queue.  This must be
 598		 * a fast-pathed signal or we must have been
 599		 * out of queue space.  So zero out the info.
 600		 */
 601		clear_siginfo(info);
 602		info->si_signo = sig;
 603		info->si_errno = 0;
 604		info->si_code = SI_USER;
 605		info->si_pid = 0;
 606		info->si_uid = 0;
 607	}
 608}
 609
 610static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 611			kernel_siginfo_t *info, bool *resched_timer)
 612{
 613	int sig = next_signal(pending, mask);
 614
 615	if (sig)
 616		collect_signal(sig, pending, info, resched_timer);
 617	return sig;
 618}
 619
 620/*
 621 * Dequeue a signal and return the element to the caller, which is
 622 * expected to free it.
 623 *
 624 * All callers have to hold the siglock.
 625 */
 626int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 627		   kernel_siginfo_t *info, enum pid_type *type)
 628{
 629	bool resched_timer = false;
 630	int signr;
 631
 632	/* We only dequeue private signals from ourselves, we don't let
 633	 * signalfd steal them
 634	 */
 635	*type = PIDTYPE_PID;
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		*type = PIDTYPE_TGID;
 639		signr = __dequeue_signal(&tsk->signal->shared_pending,
 640					 mask, info, &resched_timer);
 641#ifdef CONFIG_POSIX_TIMERS
 642		/*
 643		 * itimer signal ?
 644		 *
 645		 * itimers are process shared and we restart periodic
 646		 * itimers in the signal delivery path to prevent DoS
 647		 * attacks in the high resolution timer case. This is
 648		 * compliant with the old way of self-restarting
 649		 * itimers, as the SIGALRM is a legacy signal and only
 650		 * queued once. Changing the restart behaviour to
 651		 * restart the timer in the signal dequeue path is
 652		 * reducing the timer noise on heavy loaded !highres
 653		 * systems too.
 654		 */
 655		if (unlikely(signr == SIGALRM)) {
 656			struct hrtimer *tmr = &tsk->signal->real_timer;
 657
 658			if (!hrtimer_is_queued(tmr) &&
 659			    tsk->signal->it_real_incr != 0) {
 660				hrtimer_forward(tmr, tmr->base->get_time(),
 661						tsk->signal->it_real_incr);
 662				hrtimer_restart(tmr);
 663			}
 664		}
 665#endif
 666	}
 667
 668	recalc_sigpending();
 669	if (!signr)
 670		return 0;
 671
 672	if (unlikely(sig_kernel_stop(signr))) {
 673		/*
 674		 * Set a marker that we have dequeued a stop signal.  Our
 675		 * caller might release the siglock and then the pending
 676		 * stop signal it is about to process is no longer in the
 677		 * pending bitmasks, but must still be cleared by a SIGCONT
 678		 * (and overruled by a SIGKILL).  So those cases clear this
 679		 * shared flag after we've set it.  Note that this flag may
 680		 * remain set after the signal we return is ignored or
 681		 * handled.  That doesn't matter because its only purpose
 682		 * is to alert stop-signal processing code when another
 683		 * processor has come along and cleared the flag.
 684		 */
 685		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 686	}
 687#ifdef CONFIG_POSIX_TIMERS
 688	if (resched_timer) {
 689		/*
 690		 * Release the siglock to ensure proper locking order
 691		 * of timer locks outside of siglocks.  Note, we leave
 692		 * irqs disabled here, since the posix-timers code is
 693		 * about to disable them again anyway.
 694		 */
 695		spin_unlock(&tsk->sighand->siglock);
 696		posixtimer_rearm(info);
 697		spin_lock(&tsk->sighand->siglock);
 698
 699		/* Don't expose the si_sys_private value to userspace */
 700		info->si_sys_private = 0;
 701	}
 702#endif
 703	return signr;
 704}
 705EXPORT_SYMBOL_GPL(dequeue_signal);
 706
 707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 708{
 709	struct task_struct *tsk = current;
 710	struct sigpending *pending = &tsk->pending;
 711	struct sigqueue *q, *sync = NULL;
 712
 713	/*
 714	 * Might a synchronous signal be in the queue?
 715	 */
 716	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 717		return 0;
 718
 719	/*
 720	 * Return the first synchronous signal in the queue.
 721	 */
 722	list_for_each_entry(q, &pending->list, list) {
 723		/* Synchronous signals have a positive si_code */
 724		if ((q->info.si_code > SI_USER) &&
 725		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 726			sync = q;
 727			goto next;
 728		}
 729	}
 730	return 0;
 731next:
 732	/*
 733	 * Check if there is another siginfo for the same signal.
 734	 */
 735	list_for_each_entry_continue(q, &pending->list, list) {
 736		if (q->info.si_signo == sync->info.si_signo)
 737			goto still_pending;
 738	}
 739
 740	sigdelset(&pending->signal, sync->info.si_signo);
 741	recalc_sigpending();
 742still_pending:
 743	list_del_init(&sync->list);
 744	copy_siginfo(info, &sync->info);
 745	__sigqueue_free(sync);
 746	return info->si_signo;
 747}
 748
 749/*
 750 * Tell a process that it has a new active signal..
 751 *
 752 * NOTE! we rely on the previous spin_lock to
 753 * lock interrupts for us! We can only be called with
 754 * "siglock" held, and the local interrupt must
 755 * have been disabled when that got acquired!
 756 *
 757 * No need to set need_resched since signal event passing
 758 * goes through ->blocked
 759 */
 760void signal_wake_up_state(struct task_struct *t, unsigned int state)
 761{
 762	lockdep_assert_held(&t->sighand->siglock);
 763
 764	set_tsk_thread_flag(t, TIF_SIGPENDING);
 765
 766	/*
 767	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 768	 * case. We don't check t->state here because there is a race with it
 769	 * executing another processor and just now entering stopped state.
 770	 * By using wake_up_state, we ensure the process will wake up and
 771	 * handle its death signal.
 772	 */
 773	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 774		kick_process(t);
 775}
 776
 777/*
 778 * Remove signals in mask from the pending set and queue.
 779 * Returns 1 if any signals were found.
 780 *
 781 * All callers must be holding the siglock.
 782 */
 783static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 784{
 785	struct sigqueue *q, *n;
 786	sigset_t m;
 787
 788	sigandsets(&m, mask, &s->signal);
 789	if (sigisemptyset(&m))
 790		return;
 791
 792	sigandnsets(&s->signal, &s->signal, mask);
 793	list_for_each_entry_safe(q, n, &s->list, list) {
 794		if (sigismember(mask, q->info.si_signo)) {
 795			list_del_init(&q->list);
 796			__sigqueue_free(q);
 797		}
 798	}
 799}
 800
 801static inline int is_si_special(const struct kernel_siginfo *info)
 802{
 803	return info <= SEND_SIG_PRIV;
 804}
 805
 806static inline bool si_fromuser(const struct kernel_siginfo *info)
 807{
 808	return info == SEND_SIG_NOINFO ||
 809		(!is_si_special(info) && SI_FROMUSER(info));
 810}
 811
 812/*
 813 * called with RCU read lock from check_kill_permission()
 814 */
 815static bool kill_ok_by_cred(struct task_struct *t)
 816{
 817	const struct cred *cred = current_cred();
 818	const struct cred *tcred = __task_cred(t);
 819
 820	return uid_eq(cred->euid, tcred->suid) ||
 821	       uid_eq(cred->euid, tcred->uid) ||
 822	       uid_eq(cred->uid, tcred->suid) ||
 823	       uid_eq(cred->uid, tcred->uid) ||
 824	       ns_capable(tcred->user_ns, CAP_KILL);
 825}
 826
 827/*
 828 * Bad permissions for sending the signal
 829 * - the caller must hold the RCU read lock
 830 */
 831static int check_kill_permission(int sig, struct kernel_siginfo *info,
 832				 struct task_struct *t)
 833{
 834	struct pid *sid;
 835	int error;
 836
 837	if (!valid_signal(sig))
 838		return -EINVAL;
 839
 840	if (!si_fromuser(info))
 841		return 0;
 842
 843	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 844	if (error)
 845		return error;
 846
 847	if (!same_thread_group(current, t) &&
 848	    !kill_ok_by_cred(t)) {
 849		switch (sig) {
 850		case SIGCONT:
 851			sid = task_session(t);
 852			/*
 853			 * We don't return the error if sid == NULL. The
 854			 * task was unhashed, the caller must notice this.
 855			 */
 856			if (!sid || sid == task_session(current))
 857				break;
 858			fallthrough;
 859		default:
 860			return -EPERM;
 861		}
 862	}
 863
 864	return security_task_kill(t, info, sig, NULL);
 865}
 866
 867/**
 868 * ptrace_trap_notify - schedule trap to notify ptracer
 869 * @t: tracee wanting to notify tracer
 870 *
 871 * This function schedules sticky ptrace trap which is cleared on the next
 872 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 873 * ptracer.
 874 *
 875 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 876 * ptracer is listening for events, tracee is woken up so that it can
 877 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 878 * eventually taken without returning to userland after the existing traps
 879 * are finished by PTRACE_CONT.
 880 *
 881 * CONTEXT:
 882 * Must be called with @task->sighand->siglock held.
 883 */
 884static void ptrace_trap_notify(struct task_struct *t)
 885{
 886	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 887	lockdep_assert_held(&t->sighand->siglock);
 888
 889	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 890	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 891}
 892
 893/*
 894 * Handle magic process-wide effects of stop/continue signals. Unlike
 895 * the signal actions, these happen immediately at signal-generation
 896 * time regardless of blocking, ignoring, or handling.  This does the
 897 * actual continuing for SIGCONT, but not the actual stopping for stop
 898 * signals. The process stop is done as a signal action for SIG_DFL.
 899 *
 900 * Returns true if the signal should be actually delivered, otherwise
 901 * it should be dropped.
 902 */
 903static bool prepare_signal(int sig, struct task_struct *p, bool force)
 904{
 905	struct signal_struct *signal = p->signal;
 906	struct task_struct *t;
 907	sigset_t flush;
 908
 909	if (signal->flags & SIGNAL_GROUP_EXIT) {
 910		if (signal->core_state)
 911			return sig == SIGKILL;
 912		/*
 913		 * The process is in the middle of dying, drop the signal.
 914		 */
 915		return false;
 916	} else if (sig_kernel_stop(sig)) {
 917		/*
 918		 * This is a stop signal.  Remove SIGCONT from all queues.
 919		 */
 920		siginitset(&flush, sigmask(SIGCONT));
 921		flush_sigqueue_mask(&flush, &signal->shared_pending);
 922		for_each_thread(p, t)
 923			flush_sigqueue_mask(&flush, &t->pending);
 924	} else if (sig == SIGCONT) {
 925		unsigned int why;
 926		/*
 927		 * Remove all stop signals from all queues, wake all threads.
 928		 */
 929		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 930		flush_sigqueue_mask(&flush, &signal->shared_pending);
 931		for_each_thread(p, t) {
 932			flush_sigqueue_mask(&flush, &t->pending);
 933			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 934			if (likely(!(t->ptrace & PT_SEIZED))) {
 935				t->jobctl &= ~JOBCTL_STOPPED;
 936				wake_up_state(t, __TASK_STOPPED);
 937			} else
 938				ptrace_trap_notify(t);
 939		}
 940
 941		/*
 942		 * Notify the parent with CLD_CONTINUED if we were stopped.
 943		 *
 944		 * If we were in the middle of a group stop, we pretend it
 945		 * was already finished, and then continued. Since SIGCHLD
 946		 * doesn't queue we report only CLD_STOPPED, as if the next
 947		 * CLD_CONTINUED was dropped.
 948		 */
 949		why = 0;
 950		if (signal->flags & SIGNAL_STOP_STOPPED)
 951			why |= SIGNAL_CLD_CONTINUED;
 952		else if (signal->group_stop_count)
 953			why |= SIGNAL_CLD_STOPPED;
 954
 955		if (why) {
 956			/*
 957			 * The first thread which returns from do_signal_stop()
 958			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 959			 * notify its parent. See get_signal().
 960			 */
 961			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 962			signal->group_stop_count = 0;
 963			signal->group_exit_code = 0;
 964		}
 965	}
 966
 967	return !sig_ignored(p, sig, force);
 968}
 969
 970/*
 971 * Test if P wants to take SIG.  After we've checked all threads with this,
 972 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 973 * blocking SIG were ruled out because they are not running and already
 974 * have pending signals.  Such threads will dequeue from the shared queue
 975 * as soon as they're available, so putting the signal on the shared queue
 976 * will be equivalent to sending it to one such thread.
 977 */
 978static inline bool wants_signal(int sig, struct task_struct *p)
 979{
 980	if (sigismember(&p->blocked, sig))
 981		return false;
 982
 983	if (p->flags & PF_EXITING)
 984		return false;
 985
 986	if (sig == SIGKILL)
 987		return true;
 988
 989	if (task_is_stopped_or_traced(p))
 990		return false;
 991
 992	return task_curr(p) || !task_sigpending(p);
 993}
 994
 995static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 996{
 997	struct signal_struct *signal = p->signal;
 998	struct task_struct *t;
 999
1000	/*
1001	 * Now find a thread we can wake up to take the signal off the queue.
1002	 *
1003	 * Try the suggested task first (may or may not be the main thread).
 
1004	 */
1005	if (wants_signal(sig, p))
1006		t = p;
1007	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008		/*
1009		 * There is just one thread and it does not need to be woken.
1010		 * It will dequeue unblocked signals before it runs again.
1011		 */
1012		return;
1013	else {
1014		/*
1015		 * Otherwise try to find a suitable thread.
1016		 */
1017		t = signal->curr_target;
1018		while (!wants_signal(sig, t)) {
1019			t = next_thread(t);
1020			if (t == signal->curr_target)
1021				/*
1022				 * No thread needs to be woken.
1023				 * Any eligible threads will see
1024				 * the signal in the queue soon.
1025				 */
1026				return;
1027		}
1028		signal->curr_target = t;
1029	}
1030
1031	/*
1032	 * Found a killable thread.  If the signal will be fatal,
1033	 * then start taking the whole group down immediately.
1034	 */
1035	if (sig_fatal(p, sig) &&
1036	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037	    !sigismember(&t->real_blocked, sig) &&
1038	    (sig == SIGKILL || !p->ptrace)) {
1039		/*
1040		 * This signal will be fatal to the whole group.
1041		 */
1042		if (!sig_kernel_coredump(sig)) {
1043			/*
1044			 * Start a group exit and wake everybody up.
1045			 * This way we don't have other threads
1046			 * running and doing things after a slower
1047			 * thread has the fatal signal pending.
1048			 */
1049			signal->flags = SIGNAL_GROUP_EXIT;
1050			signal->group_exit_code = sig;
1051			signal->group_stop_count = 0;
1052			__for_each_thread(signal, t) {
 
1053				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054				sigaddset(&t->pending.signal, SIGKILL);
1055				signal_wake_up(t, 1);
1056			}
1057			return;
1058		}
1059	}
1060
1061	/*
1062	 * The signal is already in the shared-pending queue.
1063	 * Tell the chosen thread to wake up and dequeue it.
1064	 */
1065	signal_wake_up(t, sig == SIGKILL);
1066	return;
1067}
1068
1069static inline bool legacy_queue(struct sigpending *signals, int sig)
1070{
1071	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072}
1073
1074static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075				struct task_struct *t, enum pid_type type, bool force)
1076{
1077	struct sigpending *pending;
1078	struct sigqueue *q;
1079	int override_rlimit;
1080	int ret = 0, result;
1081
1082	lockdep_assert_held(&t->sighand->siglock);
1083
1084	result = TRACE_SIGNAL_IGNORED;
1085	if (!prepare_signal(sig, t, force))
1086		goto ret;
1087
1088	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089	/*
1090	 * Short-circuit ignored signals and support queuing
1091	 * exactly one non-rt signal, so that we can get more
1092	 * detailed information about the cause of the signal.
1093	 */
1094	result = TRACE_SIGNAL_ALREADY_PENDING;
1095	if (legacy_queue(pending, sig))
1096		goto ret;
1097
1098	result = TRACE_SIGNAL_DELIVERED;
1099	/*
1100	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101	 */
1102	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103		goto out_set;
1104
1105	/*
1106	 * Real-time signals must be queued if sent by sigqueue, or
1107	 * some other real-time mechanism.  It is implementation
1108	 * defined whether kill() does so.  We attempt to do so, on
1109	 * the principle of least surprise, but since kill is not
1110	 * allowed to fail with EAGAIN when low on memory we just
1111	 * make sure at least one signal gets delivered and don't
1112	 * pass on the info struct.
1113	 */
1114	if (sig < SIGRTMIN)
1115		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116	else
1117		override_rlimit = 0;
1118
1119	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120
1121	if (q) {
1122		list_add_tail(&q->list, &pending->list);
1123		switch ((unsigned long) info) {
1124		case (unsigned long) SEND_SIG_NOINFO:
1125			clear_siginfo(&q->info);
1126			q->info.si_signo = sig;
1127			q->info.si_errno = 0;
1128			q->info.si_code = SI_USER;
1129			q->info.si_pid = task_tgid_nr_ns(current,
1130							task_active_pid_ns(t));
1131			rcu_read_lock();
1132			q->info.si_uid =
1133				from_kuid_munged(task_cred_xxx(t, user_ns),
1134						 current_uid());
1135			rcu_read_unlock();
1136			break;
1137		case (unsigned long) SEND_SIG_PRIV:
1138			clear_siginfo(&q->info);
1139			q->info.si_signo = sig;
1140			q->info.si_errno = 0;
1141			q->info.si_code = SI_KERNEL;
1142			q->info.si_pid = 0;
1143			q->info.si_uid = 0;
1144			break;
1145		default:
1146			copy_siginfo(&q->info, info);
1147			break;
1148		}
1149	} else if (!is_si_special(info) &&
1150		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151		/*
1152		 * Queue overflow, abort.  We may abort if the
1153		 * signal was rt and sent by user using something
1154		 * other than kill().
1155		 */
1156		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157		ret = -EAGAIN;
1158		goto ret;
1159	} else {
1160		/*
1161		 * This is a silent loss of information.  We still
1162		 * send the signal, but the *info bits are lost.
1163		 */
1164		result = TRACE_SIGNAL_LOSE_INFO;
1165	}
1166
1167out_set:
1168	signalfd_notify(t, sig);
1169	sigaddset(&pending->signal, sig);
1170
1171	/* Let multiprocess signals appear after on-going forks */
1172	if (type > PIDTYPE_TGID) {
1173		struct multiprocess_signals *delayed;
1174		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175			sigset_t *signal = &delayed->signal;
1176			/* Can't queue both a stop and a continue signal */
1177			if (sig == SIGCONT)
1178				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179			else if (sig_kernel_stop(sig))
1180				sigdelset(signal, SIGCONT);
1181			sigaddset(signal, sig);
1182		}
1183	}
1184
1185	complete_signal(sig, t, type);
1186ret:
1187	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188	return ret;
1189}
1190
1191static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192{
1193	bool ret = false;
1194	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195	case SIL_KILL:
1196	case SIL_CHLD:
1197	case SIL_RT:
1198		ret = true;
1199		break;
1200	case SIL_TIMER:
1201	case SIL_POLL:
1202	case SIL_FAULT:
1203	case SIL_FAULT_TRAPNO:
1204	case SIL_FAULT_MCEERR:
1205	case SIL_FAULT_BNDERR:
1206	case SIL_FAULT_PKUERR:
1207	case SIL_FAULT_PERF_EVENT:
1208	case SIL_SYS:
1209		ret = false;
1210		break;
1211	}
1212	return ret;
1213}
1214
1215int send_signal_locked(int sig, struct kernel_siginfo *info,
1216		       struct task_struct *t, enum pid_type type)
1217{
1218	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219	bool force = false;
1220
1221	if (info == SEND_SIG_NOINFO) {
1222		/* Force if sent from an ancestor pid namespace */
1223		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224	} else if (info == SEND_SIG_PRIV) {
1225		/* Don't ignore kernel generated signals */
1226		force = true;
1227	} else if (has_si_pid_and_uid(info)) {
1228		/* SIGKILL and SIGSTOP is special or has ids */
1229		struct user_namespace *t_user_ns;
1230
1231		rcu_read_lock();
1232		t_user_ns = task_cred_xxx(t, user_ns);
1233		if (current_user_ns() != t_user_ns) {
1234			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236		}
1237		rcu_read_unlock();
1238
1239		/* A kernel generated signal? */
1240		force = (info->si_code == SI_KERNEL);
1241
1242		/* From an ancestor pid namespace? */
1243		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244			info->si_pid = 0;
1245			force = true;
1246		}
1247	}
1248	return __send_signal_locked(sig, info, t, type, force);
1249}
1250
1251static void print_fatal_signal(int signr)
1252{
1253	struct pt_regs *regs = task_pt_regs(current);
1254	struct file *exe_file;
1255
1256	exe_file = get_task_exe_file(current);
1257	if (exe_file) {
1258		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259			exe_file, current->comm, signr);
1260		fput(exe_file);
1261	} else {
1262		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263			current->comm, signr);
1264	}
1265
1266#if defined(__i386__) && !defined(__arch_um__)
1267	pr_info("code at %08lx: ", regs->ip);
1268	{
1269		int i;
1270		for (i = 0; i < 16; i++) {
1271			unsigned char insn;
1272
1273			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274				break;
1275			pr_cont("%02x ", insn);
1276		}
1277	}
1278	pr_cont("\n");
1279#endif
1280	preempt_disable();
1281	show_regs(regs);
1282	preempt_enable();
1283}
1284
1285static int __init setup_print_fatal_signals(char *str)
1286{
1287	get_option (&str, &print_fatal_signals);
1288
1289	return 1;
1290}
1291
1292__setup("print-fatal-signals=", setup_print_fatal_signals);
1293
1294int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295			enum pid_type type)
1296{
1297	unsigned long flags;
1298	int ret = -ESRCH;
1299
1300	if (lock_task_sighand(p, &flags)) {
1301		ret = send_signal_locked(sig, info, p, type);
1302		unlock_task_sighand(p, &flags);
1303	}
1304
1305	return ret;
1306}
1307
1308enum sig_handler {
1309	HANDLER_CURRENT, /* If reachable use the current handler */
1310	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312};
1313
1314/*
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 *
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1321 *
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1324 */
1325static int
1326force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327	enum sig_handler handler)
1328{
1329	unsigned long int flags;
1330	int ret, blocked, ignored;
1331	struct k_sigaction *action;
1332	int sig = info->si_signo;
1333
1334	spin_lock_irqsave(&t->sighand->siglock, flags);
1335	action = &t->sighand->action[sig-1];
1336	ignored = action->sa.sa_handler == SIG_IGN;
1337	blocked = sigismember(&t->blocked, sig);
1338	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339		action->sa.sa_handler = SIG_DFL;
1340		if (handler == HANDLER_EXIT)
1341			action->sa.sa_flags |= SA_IMMUTABLE;
1342		if (blocked)
1343			sigdelset(&t->blocked, sig);
 
 
1344	}
1345	/*
1346	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348	 */
1349	if (action->sa.sa_handler == SIG_DFL &&
1350	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353	/* This can happen if the signal was already pending and blocked */
1354	if (!task_sigpending(t))
1355		signal_wake_up(t, 0);
1356	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357
1358	return ret;
1359}
1360
1361int force_sig_info(struct kernel_siginfo *info)
1362{
1363	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364}
1365
1366/*
1367 * Nuke all other threads in the group.
1368 */
1369int zap_other_threads(struct task_struct *p)
1370{
1371	struct task_struct *t;
1372	int count = 0;
1373
1374	p->signal->group_stop_count = 0;
1375
1376	for_other_threads(p, t) {
1377		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378		/* Don't require de_thread to wait for the vhost_worker */
1379		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380			count++;
1381
1382		/* Don't bother with already dead threads */
1383		if (t->exit_state)
1384			continue;
1385		sigaddset(&t->pending.signal, SIGKILL);
1386		signal_wake_up(t, 1);
1387	}
1388
1389	return count;
1390}
1391
1392struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393					   unsigned long *flags)
1394{
1395	struct sighand_struct *sighand;
1396
1397	rcu_read_lock();
1398	for (;;) {
1399		sighand = rcu_dereference(tsk->sighand);
1400		if (unlikely(sighand == NULL))
1401			break;
1402
1403		/*
1404		 * This sighand can be already freed and even reused, but
1405		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406		 * initializes ->siglock: this slab can't go away, it has
1407		 * the same object type, ->siglock can't be reinitialized.
1408		 *
1409		 * We need to ensure that tsk->sighand is still the same
1410		 * after we take the lock, we can race with de_thread() or
1411		 * __exit_signal(). In the latter case the next iteration
1412		 * must see ->sighand == NULL.
1413		 */
1414		spin_lock_irqsave(&sighand->siglock, *flags);
1415		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416			break;
1417		spin_unlock_irqrestore(&sighand->siglock, *flags);
1418	}
1419	rcu_read_unlock();
1420
1421	return sighand;
1422}
1423
1424#ifdef CONFIG_LOCKDEP
1425void lockdep_assert_task_sighand_held(struct task_struct *task)
1426{
1427	struct sighand_struct *sighand;
1428
1429	rcu_read_lock();
1430	sighand = rcu_dereference(task->sighand);
1431	if (sighand)
1432		lockdep_assert_held(&sighand->siglock);
1433	else
1434		WARN_ON_ONCE(1);
1435	rcu_read_unlock();
1436}
1437#endif
1438
1439/*
1440 * send signal info to all the members of a thread group or to the
1441 * individual thread if type == PIDTYPE_PID.
1442 */
1443int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444			struct task_struct *p, enum pid_type type)
1445{
1446	int ret;
1447
1448	rcu_read_lock();
1449	ret = check_kill_permission(sig, info, p);
1450	rcu_read_unlock();
1451
1452	if (!ret && sig)
1453		ret = do_send_sig_info(sig, info, p, type);
1454
1455	return ret;
1456}
1457
1458/*
1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460 * control characters do (^C, ^Z etc)
1461 * - the caller must hold at least a readlock on tasklist_lock
1462 */
1463int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464{
1465	struct task_struct *p = NULL;
1466	int ret = -ESRCH;
1467
 
 
1468	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470		/*
1471		 * If group_send_sig_info() succeeds at least once ret
1472		 * becomes 0 and after that the code below has no effect.
1473		 * Otherwise we return the last err or -ESRCH if this
1474		 * process group is empty.
1475		 */
1476		if (ret)
1477			ret = err;
1478	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479
1480	return ret;
1481}
1482
1483static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484				struct pid *pid, enum pid_type type)
1485{
1486	int error = -ESRCH;
1487	struct task_struct *p;
1488
1489	for (;;) {
1490		rcu_read_lock();
1491		p = pid_task(pid, PIDTYPE_PID);
1492		if (p)
1493			error = group_send_sig_info(sig, info, p, type);
1494		rcu_read_unlock();
1495		if (likely(!p || error != -ESRCH))
1496			return error;
 
1497		/*
1498		 * The task was unhashed in between, try again.  If it
1499		 * is dead, pid_task() will return NULL, if we race with
1500		 * de_thread() it will find the new leader.
1501		 */
1502	}
1503}
1504
1505int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506{
1507	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508}
1509
1510static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511{
1512	int error;
1513	rcu_read_lock();
1514	error = kill_pid_info(sig, info, find_vpid(pid));
1515	rcu_read_unlock();
1516	return error;
1517}
1518
1519static inline bool kill_as_cred_perm(const struct cred *cred,
1520				     struct task_struct *target)
1521{
1522	const struct cred *pcred = __task_cred(target);
1523
1524	return uid_eq(cred->euid, pcred->suid) ||
1525	       uid_eq(cred->euid, pcred->uid) ||
1526	       uid_eq(cred->uid, pcred->suid) ||
1527	       uid_eq(cred->uid, pcred->uid);
1528}
1529
1530/*
1531 * The usb asyncio usage of siginfo is wrong.  The glibc support
1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533 * AKA after the generic fields:
1534 *	kernel_pid_t	si_pid;
1535 *	kernel_uid32_t	si_uid;
1536 *	sigval_t	si_value;
1537 *
1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539 * after the generic fields is:
1540 *	void __user 	*si_addr;
1541 *
1542 * This is a practical problem when there is a 64bit big endian kernel
1543 * and a 32bit userspace.  As the 32bit address will encoded in the low
1544 * 32bits of the pointer.  Those low 32bits will be stored at higher
1545 * address than appear in a 32 bit pointer.  So userspace will not
1546 * see the address it was expecting for it's completions.
1547 *
1548 * There is nothing in the encoding that can allow
1549 * copy_siginfo_to_user32 to detect this confusion of formats, so
1550 * handle this by requiring the caller of kill_pid_usb_asyncio to
1551 * notice when this situration takes place and to store the 32bit
1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 * parameter.
1554 */
1555int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556			 struct pid *pid, const struct cred *cred)
1557{
1558	struct kernel_siginfo info;
1559	struct task_struct *p;
1560	unsigned long flags;
1561	int ret = -EINVAL;
1562
1563	if (!valid_signal(sig))
1564		return ret;
1565
1566	clear_siginfo(&info);
1567	info.si_signo = sig;
1568	info.si_errno = errno;
1569	info.si_code = SI_ASYNCIO;
1570	*((sigval_t *)&info.si_pid) = addr;
1571
1572	rcu_read_lock();
1573	p = pid_task(pid, PIDTYPE_PID);
1574	if (!p) {
1575		ret = -ESRCH;
1576		goto out_unlock;
1577	}
1578	if (!kill_as_cred_perm(cred, p)) {
1579		ret = -EPERM;
1580		goto out_unlock;
1581	}
1582	ret = security_task_kill(p, &info, sig, cred);
1583	if (ret)
1584		goto out_unlock;
1585
1586	if (sig) {
1587		if (lock_task_sighand(p, &flags)) {
1588			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589			unlock_task_sighand(p, &flags);
1590		} else
1591			ret = -ESRCH;
1592	}
1593out_unlock:
1594	rcu_read_unlock();
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598
1599/*
1600 * kill_something_info() interprets pid in interesting ways just like kill(2).
1601 *
1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603 * is probably wrong.  Should make it like BSD or SYSV.
1604 */
1605
1606static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607{
1608	int ret;
1609
1610	if (pid > 0)
1611		return kill_proc_info(sig, info, pid);
1612
1613	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1614	if (pid == INT_MIN)
1615		return -ESRCH;
1616
1617	read_lock(&tasklist_lock);
1618	if (pid != -1) {
1619		ret = __kill_pgrp_info(sig, info,
1620				pid ? find_vpid(-pid) : task_pgrp(current));
1621	} else {
1622		int retval = 0, count = 0;
1623		struct task_struct * p;
1624
1625		for_each_process(p) {
1626			if (task_pid_vnr(p) > 1 &&
1627					!same_thread_group(p, current)) {
1628				int err = group_send_sig_info(sig, info, p,
1629							      PIDTYPE_MAX);
1630				++count;
1631				if (err != -EPERM)
1632					retval = err;
1633			}
1634		}
1635		ret = count ? retval : -ESRCH;
1636	}
1637	read_unlock(&tasklist_lock);
1638
1639	return ret;
1640}
1641
1642/*
1643 * These are for backward compatibility with the rest of the kernel source.
1644 */
1645
1646int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647{
1648	/*
1649	 * Make sure legacy kernel users don't send in bad values
1650	 * (normal paths check this in check_kill_permission).
1651	 */
1652	if (!valid_signal(sig))
1653		return -EINVAL;
1654
1655	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656}
1657EXPORT_SYMBOL(send_sig_info);
1658
1659#define __si_special(priv) \
1660	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661
1662int
1663send_sig(int sig, struct task_struct *p, int priv)
1664{
1665	return send_sig_info(sig, __si_special(priv), p);
1666}
1667EXPORT_SYMBOL(send_sig);
1668
1669void force_sig(int sig)
1670{
1671	struct kernel_siginfo info;
1672
1673	clear_siginfo(&info);
1674	info.si_signo = sig;
1675	info.si_errno = 0;
1676	info.si_code = SI_KERNEL;
1677	info.si_pid = 0;
1678	info.si_uid = 0;
1679	force_sig_info(&info);
1680}
1681EXPORT_SYMBOL(force_sig);
1682
1683void force_fatal_sig(int sig)
1684{
1685	struct kernel_siginfo info;
1686
1687	clear_siginfo(&info);
1688	info.si_signo = sig;
1689	info.si_errno = 0;
1690	info.si_code = SI_KERNEL;
1691	info.si_pid = 0;
1692	info.si_uid = 0;
1693	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694}
1695
1696void force_exit_sig(int sig)
1697{
1698	struct kernel_siginfo info;
1699
1700	clear_siginfo(&info);
1701	info.si_signo = sig;
1702	info.si_errno = 0;
1703	info.si_code = SI_KERNEL;
1704	info.si_pid = 0;
1705	info.si_uid = 0;
1706	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707}
1708
1709/*
1710 * When things go south during signal handling, we
1711 * will force a SIGSEGV. And if the signal that caused
1712 * the problem was already a SIGSEGV, we'll want to
1713 * make sure we don't even try to deliver the signal..
1714 */
1715void force_sigsegv(int sig)
1716{
1717	if (sig == SIGSEGV)
1718		force_fatal_sig(SIGSEGV);
1719	else
1720		force_sig(SIGSEGV);
1721}
1722
1723int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724			    struct task_struct *t)
 
1725{
1726	struct kernel_siginfo info;
1727
1728	clear_siginfo(&info);
1729	info.si_signo = sig;
1730	info.si_errno = 0;
1731	info.si_code  = code;
1732	info.si_addr  = addr;
 
 
 
 
 
1733	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734}
1735
1736int force_sig_fault(int sig, int code, void __user *addr)
 
1737{
1738	return force_sig_fault_to_task(sig, code, addr, current);
 
1739}
1740
1741int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
 
 
1742{
1743	struct kernel_siginfo info;
1744
1745	clear_siginfo(&info);
1746	info.si_signo = sig;
1747	info.si_errno = 0;
1748	info.si_code  = code;
1749	info.si_addr  = addr;
 
 
 
 
 
1750	return send_sig_info(info.si_signo, &info, t);
1751}
1752
1753int force_sig_mceerr(int code, void __user *addr, short lsb)
1754{
1755	struct kernel_siginfo info;
1756
1757	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758	clear_siginfo(&info);
1759	info.si_signo = SIGBUS;
1760	info.si_errno = 0;
1761	info.si_code = code;
1762	info.si_addr = addr;
1763	info.si_addr_lsb = lsb;
1764	return force_sig_info(&info);
1765}
1766
1767int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768{
1769	struct kernel_siginfo info;
1770
1771	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772	clear_siginfo(&info);
1773	info.si_signo = SIGBUS;
1774	info.si_errno = 0;
1775	info.si_code = code;
1776	info.si_addr = addr;
1777	info.si_addr_lsb = lsb;
1778	return send_sig_info(info.si_signo, &info, t);
1779}
1780EXPORT_SYMBOL(send_sig_mceerr);
1781
1782int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783{
1784	struct kernel_siginfo info;
1785
1786	clear_siginfo(&info);
1787	info.si_signo = SIGSEGV;
1788	info.si_errno = 0;
1789	info.si_code  = SEGV_BNDERR;
1790	info.si_addr  = addr;
1791	info.si_lower = lower;
1792	info.si_upper = upper;
1793	return force_sig_info(&info);
1794}
1795
1796#ifdef SEGV_PKUERR
1797int force_sig_pkuerr(void __user *addr, u32 pkey)
1798{
1799	struct kernel_siginfo info;
1800
1801	clear_siginfo(&info);
1802	info.si_signo = SIGSEGV;
1803	info.si_errno = 0;
1804	info.si_code  = SEGV_PKUERR;
1805	info.si_addr  = addr;
1806	info.si_pkey  = pkey;
1807	return force_sig_info(&info);
1808}
1809#endif
1810
1811int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812{
1813	struct kernel_siginfo info;
1814
1815	clear_siginfo(&info);
1816	info.si_signo     = SIGTRAP;
1817	info.si_errno     = 0;
1818	info.si_code      = TRAP_PERF;
1819	info.si_addr      = addr;
1820	info.si_perf_data = sig_data;
1821	info.si_perf_type = type;
1822
1823	/*
1824	 * Signals generated by perf events should not terminate the whole
1825	 * process if SIGTRAP is blocked, however, delivering the signal
1826	 * asynchronously is better than not delivering at all. But tell user
1827	 * space if the signal was asynchronous, so it can clearly be
1828	 * distinguished from normal synchronous ones.
1829	 */
1830	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831				     TRAP_PERF_FLAG_ASYNC :
1832				     0;
1833
1834	return send_sig_info(info.si_signo, &info, current);
1835}
1836
1837/**
1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839 * @syscall: syscall number to send to userland
1840 * @reason: filter-supplied reason code to send to userland (via si_errno)
1841 * @force_coredump: true to trigger a coredump
1842 *
1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844 */
1845int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846{
1847	struct kernel_siginfo info;
1848
1849	clear_siginfo(&info);
1850	info.si_signo = SIGSYS;
1851	info.si_code = SYS_SECCOMP;
1852	info.si_call_addr = (void __user *)KSTK_EIP(current);
1853	info.si_errno = reason;
1854	info.si_arch = syscall_get_arch(current);
1855	info.si_syscall = syscall;
1856	return force_sig_info_to_task(&info, current,
1857		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858}
1859
1860/* For the crazy architectures that include trap information in
1861 * the errno field, instead of an actual errno value.
1862 */
1863int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864{
1865	struct kernel_siginfo info;
1866
1867	clear_siginfo(&info);
1868	info.si_signo = SIGTRAP;
1869	info.si_errno = errno;
1870	info.si_code  = TRAP_HWBKPT;
1871	info.si_addr  = addr;
1872	return force_sig_info(&info);
1873}
1874
1875/* For the rare architectures that include trap information using
1876 * si_trapno.
1877 */
1878int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879{
1880	struct kernel_siginfo info;
1881
1882	clear_siginfo(&info);
1883	info.si_signo = sig;
1884	info.si_errno = 0;
1885	info.si_code  = code;
1886	info.si_addr  = addr;
1887	info.si_trapno = trapno;
1888	return force_sig_info(&info);
1889}
1890
1891/* For the rare architectures that include trap information using
1892 * si_trapno.
1893 */
1894int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895			  struct task_struct *t)
1896{
1897	struct kernel_siginfo info;
1898
1899	clear_siginfo(&info);
1900	info.si_signo = sig;
1901	info.si_errno = 0;
1902	info.si_code  = code;
1903	info.si_addr  = addr;
1904	info.si_trapno = trapno;
1905	return send_sig_info(info.si_signo, &info, t);
1906}
1907
1908static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909{
1910	int ret;
 
1911	read_lock(&tasklist_lock);
1912	ret = __kill_pgrp_info(sig, info, pgrp);
1913	read_unlock(&tasklist_lock);
 
1914	return ret;
1915}
1916
1917int kill_pgrp(struct pid *pid, int sig, int priv)
1918{
1919	return kill_pgrp_info(sig, __si_special(priv), pid);
1920}
1921EXPORT_SYMBOL(kill_pgrp);
1922
1923int kill_pid(struct pid *pid, int sig, int priv)
1924{
1925	return kill_pid_info(sig, __si_special(priv), pid);
1926}
1927EXPORT_SYMBOL(kill_pid);
1928
1929/*
1930 * These functions support sending signals using preallocated sigqueue
1931 * structures.  This is needed "because realtime applications cannot
1932 * afford to lose notifications of asynchronous events, like timer
1933 * expirations or I/O completions".  In the case of POSIX Timers
1934 * we allocate the sigqueue structure from the timer_create.  If this
1935 * allocation fails we are able to report the failure to the application
1936 * with an EAGAIN error.
1937 */
1938struct sigqueue *sigqueue_alloc(void)
1939{
1940	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941}
1942
1943void sigqueue_free(struct sigqueue *q)
1944{
1945	unsigned long flags;
1946	spinlock_t *lock = &current->sighand->siglock;
1947
1948	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949	/*
1950	 * We must hold ->siglock while testing q->list
1951	 * to serialize with collect_signal() or with
1952	 * __exit_signal()->flush_sigqueue().
1953	 */
1954	spin_lock_irqsave(lock, flags);
1955	q->flags &= ~SIGQUEUE_PREALLOC;
1956	/*
1957	 * If it is queued it will be freed when dequeued,
1958	 * like the "regular" sigqueue.
1959	 */
1960	if (!list_empty(&q->list))
1961		q = NULL;
1962	spin_unlock_irqrestore(lock, flags);
1963
1964	if (q)
1965		__sigqueue_free(q);
1966}
1967
1968int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969{
1970	int sig = q->info.si_signo;
1971	struct sigpending *pending;
1972	struct task_struct *t;
1973	unsigned long flags;
1974	int ret, result;
1975
1976	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977
1978	ret = -1;
1979	rcu_read_lock();
1980
1981	/*
1982	 * This function is used by POSIX timers to deliver a timer signal.
1983	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984	 * set), the signal must be delivered to the specific thread (queues
1985	 * into t->pending).
1986	 *
1987	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988	 * process. In this case, prefer to deliver to current if it is in
1989	 * the same thread group as the target process, which avoids
1990	 * unnecessarily waking up a potentially idle task.
1991	 */
1992	t = pid_task(pid, type);
1993	if (!t)
1994		goto ret;
1995	if (type != PIDTYPE_PID && same_thread_group(t, current))
1996		t = current;
1997	if (!likely(lock_task_sighand(t, &flags)))
1998		goto ret;
1999
2000	ret = 1; /* the signal is ignored */
2001	result = TRACE_SIGNAL_IGNORED;
2002	if (!prepare_signal(sig, t, false))
2003		goto out;
2004
2005	ret = 0;
2006	if (unlikely(!list_empty(&q->list))) {
2007		/*
2008		 * If an SI_TIMER entry is already queue just increment
2009		 * the overrun count.
2010		 */
2011		BUG_ON(q->info.si_code != SI_TIMER);
2012		q->info.si_overrun++;
2013		result = TRACE_SIGNAL_ALREADY_PENDING;
2014		goto out;
2015	}
2016	q->info.si_overrun = 0;
2017
2018	signalfd_notify(t, sig);
2019	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020	list_add_tail(&q->list, &pending->list);
2021	sigaddset(&pending->signal, sig);
2022	complete_signal(sig, t, type);
2023	result = TRACE_SIGNAL_DELIVERED;
2024out:
2025	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026	unlock_task_sighand(t, &flags);
2027ret:
2028	rcu_read_unlock();
2029	return ret;
2030}
2031
2032void do_notify_pidfd(struct task_struct *task)
2033{
2034	struct pid *pid = task_pid(task);
2035
2036	WARN_ON(task->exit_state == 0);
2037
2038	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039			poll_to_key(EPOLLIN | EPOLLRDNORM));
2040}
2041
2042/*
2043 * Let a parent know about the death of a child.
2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 *
2046 * Returns true if our parent ignored us and so we've switched to
2047 * self-reaping.
2048 */
2049bool do_notify_parent(struct task_struct *tsk, int sig)
2050{
2051	struct kernel_siginfo info;
2052	unsigned long flags;
2053	struct sighand_struct *psig;
2054	bool autoreap = false;
2055	u64 utime, stime;
2056
2057	WARN_ON_ONCE(sig == -1);
2058
2059	/* do_notify_parent_cldstop should have been called instead.  */
2060	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061
2062	WARN_ON_ONCE(!tsk->ptrace &&
2063	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064	/*
2065	 * tsk is a group leader and has no threads, wake up the
2066	 * non-PIDFD_THREAD waiters.
2067	 */
2068	if (thread_group_empty(tsk))
2069		do_notify_pidfd(tsk);
2070
2071	if (sig != SIGCHLD) {
2072		/*
2073		 * This is only possible if parent == real_parent.
2074		 * Check if it has changed security domain.
2075		 */
2076		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077			sig = SIGCHLD;
2078	}
2079
2080	clear_siginfo(&info);
2081	info.si_signo = sig;
2082	info.si_errno = 0;
2083	/*
2084	 * We are under tasklist_lock here so our parent is tied to
2085	 * us and cannot change.
2086	 *
2087	 * task_active_pid_ns will always return the same pid namespace
2088	 * until a task passes through release_task.
2089	 *
2090	 * write_lock() currently calls preempt_disable() which is the
2091	 * same as rcu_read_lock(), but according to Oleg, this is not
2092	 * correct to rely on this
2093	 */
2094	rcu_read_lock();
2095	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097				       task_uid(tsk));
2098	rcu_read_unlock();
2099
2100	task_cputime(tsk, &utime, &stime);
2101	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103
2104	info.si_status = tsk->exit_code & 0x7f;
2105	if (tsk->exit_code & 0x80)
2106		info.si_code = CLD_DUMPED;
2107	else if (tsk->exit_code & 0x7f)
2108		info.si_code = CLD_KILLED;
2109	else {
2110		info.si_code = CLD_EXITED;
2111		info.si_status = tsk->exit_code >> 8;
2112	}
2113
2114	psig = tsk->parent->sighand;
2115	spin_lock_irqsave(&psig->siglock, flags);
2116	if (!tsk->ptrace && sig == SIGCHLD &&
2117	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119		/*
2120		 * We are exiting and our parent doesn't care.  POSIX.1
2121		 * defines special semantics for setting SIGCHLD to SIG_IGN
2122		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123		 * automatically and not left for our parent's wait4 call.
2124		 * Rather than having the parent do it as a magic kind of
2125		 * signal handler, we just set this to tell do_exit that we
2126		 * can be cleaned up without becoming a zombie.  Note that
2127		 * we still call __wake_up_parent in this case, because a
2128		 * blocked sys_wait4 might now return -ECHILD.
2129		 *
2130		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131		 * is implementation-defined: we do (if you don't want
2132		 * it, just use SIG_IGN instead).
2133		 */
2134		autoreap = true;
2135		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136			sig = 0;
2137	}
2138	/*
2139	 * Send with __send_signal as si_pid and si_uid are in the
2140	 * parent's namespaces.
2141	 */
2142	if (valid_signal(sig) && sig)
2143		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144	__wake_up_parent(tsk, tsk->parent);
2145	spin_unlock_irqrestore(&psig->siglock, flags);
2146
2147	return autoreap;
2148}
2149
2150/**
2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152 * @tsk: task reporting the state change
2153 * @for_ptracer: the notification is for ptracer
2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 *
2156 * Notify @tsk's parent that the stopped/continued state has changed.  If
2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 *
2160 * CONTEXT:
2161 * Must be called with tasklist_lock at least read locked.
2162 */
2163static void do_notify_parent_cldstop(struct task_struct *tsk,
2164				     bool for_ptracer, int why)
2165{
2166	struct kernel_siginfo info;
2167	unsigned long flags;
2168	struct task_struct *parent;
2169	struct sighand_struct *sighand;
2170	u64 utime, stime;
2171
2172	if (for_ptracer) {
2173		parent = tsk->parent;
2174	} else {
2175		tsk = tsk->group_leader;
2176		parent = tsk->real_parent;
2177	}
2178
2179	clear_siginfo(&info);
2180	info.si_signo = SIGCHLD;
2181	info.si_errno = 0;
2182	/*
2183	 * see comment in do_notify_parent() about the following 4 lines
2184	 */
2185	rcu_read_lock();
2186	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188	rcu_read_unlock();
2189
2190	task_cputime(tsk, &utime, &stime);
2191	info.si_utime = nsec_to_clock_t(utime);
2192	info.si_stime = nsec_to_clock_t(stime);
2193
2194 	info.si_code = why;
2195 	switch (why) {
2196 	case CLD_CONTINUED:
2197 		info.si_status = SIGCONT;
2198 		break;
2199 	case CLD_STOPPED:
2200 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 		break;
2202 	case CLD_TRAPPED:
2203 		info.si_status = tsk->exit_code & 0x7f;
2204 		break;
2205 	default:
2206 		BUG();
2207 	}
2208
2209	sighand = parent->sighand;
2210	spin_lock_irqsave(&sighand->siglock, flags);
2211	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214	/*
2215	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216	 */
2217	__wake_up_parent(tsk, parent);
2218	spin_unlock_irqrestore(&sighand->siglock, flags);
2219}
2220
2221/*
2222 * This must be called with current->sighand->siglock held.
2223 *
2224 * This should be the path for all ptrace stops.
2225 * We always set current->last_siginfo while stopped here.
2226 * That makes it a way to test a stopped process for
2227 * being ptrace-stopped vs being job-control-stopped.
2228 *
2229 * Returns the signal the ptracer requested the code resume
2230 * with.  If the code did not stop because the tracer is gone,
2231 * the stop signal remains unchanged unless clear_code.
2232 */
2233static int ptrace_stop(int exit_code, int why, unsigned long message,
2234		       kernel_siginfo_t *info)
2235	__releases(&current->sighand->siglock)
2236	__acquires(&current->sighand->siglock)
2237{
2238	bool gstop_done = false;
2239
2240	if (arch_ptrace_stop_needed()) {
2241		/*
2242		 * The arch code has something special to do before a
2243		 * ptrace stop.  This is allowed to block, e.g. for faults
2244		 * on user stack pages.  We can't keep the siglock while
2245		 * calling arch_ptrace_stop, so we must release it now.
2246		 * To preserve proper semantics, we must do this before
2247		 * any signal bookkeeping like checking group_stop_count.
2248		 */
2249		spin_unlock_irq(&current->sighand->siglock);
2250		arch_ptrace_stop();
2251		spin_lock_irq(&current->sighand->siglock);
2252	}
2253
2254	/*
2255	 * After this point ptrace_signal_wake_up or signal_wake_up
2256	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2258	 * signals here to prevent ptrace_stop sleeping in schedule.
2259	 */
2260	if (!current->ptrace || __fatal_signal_pending(current))
2261		return exit_code;
2262
2263	set_special_state(TASK_TRACED);
2264	current->jobctl |= JOBCTL_TRACED;
2265
2266	/*
2267	 * We're committing to trapping.  TRACED should be visible before
2268	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269	 * Also, transition to TRACED and updates to ->jobctl should be
2270	 * atomic with respect to siglock and should be done after the arch
2271	 * hook as siglock is released and regrabbed across it.
2272	 *
2273	 *     TRACER				    TRACEE
2274	 *
2275	 *     ptrace_attach()
2276	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2277	 *     do_wait()
2278	 *       set_current_state()                smp_wmb();
2279	 *       ptrace_do_wait()
2280	 *         wait_task_stopped()
2281	 *           task_stopped_code()
2282	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2283	 */
2284	smp_wmb();
2285
2286	current->ptrace_message = message;
2287	current->last_siginfo = info;
2288	current->exit_code = exit_code;
2289
2290	/*
2291	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2293	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294	 * could be clear now.  We act as if SIGCONT is received after
2295	 * TASK_TRACED is entered - ignore it.
2296	 */
2297	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298		gstop_done = task_participate_group_stop(current);
2299
2300	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304
2305	/* entering a trap, clear TRAPPING */
2306	task_clear_jobctl_trapping(current);
2307
2308	spin_unlock_irq(&current->sighand->siglock);
2309	read_lock(&tasklist_lock);
2310	/*
2311	 * Notify parents of the stop.
2312	 *
2313	 * While ptraced, there are two parents - the ptracer and
2314	 * the real_parent of the group_leader.  The ptracer should
2315	 * know about every stop while the real parent is only
2316	 * interested in the completion of group stop.  The states
2317	 * for the two don't interact with each other.  Notify
2318	 * separately unless they're gonna be duplicates.
2319	 */
2320	if (current->ptrace)
2321		do_notify_parent_cldstop(current, true, why);
2322	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323		do_notify_parent_cldstop(current, false, why);
2324
2325	/*
2326	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327	 * One a PREEMPTION kernel this can result in preemption requirement
2328	 * which will be fulfilled after read_unlock() and the ptracer will be
2329	 * put on the CPU.
2330	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331	 * this task wait in schedule(). If this task gets preempted then it
2332	 * remains enqueued on the runqueue. The ptracer will observe this and
2333	 * then sleep for a delay of one HZ tick. In the meantime this task
2334	 * gets scheduled, enters schedule() and will wait for the ptracer.
2335	 *
2336	 * This preemption point is not bad from a correctness point of
2337	 * view but extends the runtime by one HZ tick time due to the
2338	 * ptracer's sleep.  The preempt-disable section ensures that there
2339	 * will be no preemption between unlock and schedule() and so
2340	 * improving the performance since the ptracer will observe that
2341	 * the tracee is scheduled out once it gets on the CPU.
2342	 *
2343	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345	 * before unlocking tasklist_lock so there is no benefit in doing this.
2346	 *
2347	 * In fact disabling preemption is harmful on PREEMPT_RT because
2348	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349	 * with preemption disabled due to the 'sleeping' spinlock
2350	 * substitution of RT.
2351	 */
2352	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353		preempt_disable();
2354	read_unlock(&tasklist_lock);
2355	cgroup_enter_frozen();
2356	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357		preempt_enable_no_resched();
2358	schedule();
2359	cgroup_leave_frozen(true);
2360
2361	/*
2362	 * We are back.  Now reacquire the siglock before touching
2363	 * last_siginfo, so that we are sure to have synchronized with
2364	 * any signal-sending on another CPU that wants to examine it.
2365	 */
2366	spin_lock_irq(&current->sighand->siglock);
2367	exit_code = current->exit_code;
2368	current->last_siginfo = NULL;
2369	current->ptrace_message = 0;
2370	current->exit_code = 0;
2371
2372	/* LISTENING can be set only during STOP traps, clear it */
2373	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374
2375	/*
2376	 * Queued signals ignored us while we were stopped for tracing.
2377	 * So check for any that we should take before resuming user mode.
2378	 * This sets TIF_SIGPENDING, but never clears it.
2379	 */
2380	recalc_sigpending_tsk(current);
2381	return exit_code;
2382}
2383
2384static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385{
2386	kernel_siginfo_t info;
2387
2388	clear_siginfo(&info);
2389	info.si_signo = signr;
2390	info.si_code = exit_code;
2391	info.si_pid = task_pid_vnr(current);
2392	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393
2394	/* Let the debugger run.  */
2395	return ptrace_stop(exit_code, why, message, &info);
2396}
2397
2398int ptrace_notify(int exit_code, unsigned long message)
2399{
2400	int signr;
2401
2402	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403	if (unlikely(task_work_pending(current)))
2404		task_work_run();
2405
2406	spin_lock_irq(&current->sighand->siglock);
2407	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408	spin_unlock_irq(&current->sighand->siglock);
2409	return signr;
2410}
2411
2412/**
2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414 * @signr: signr causing group stop if initiating
2415 *
2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417 * and participate in it.  If already set, participate in the existing
2418 * group stop.  If participated in a group stop (and thus slept), %true is
2419 * returned with siglock released.
2420 *
2421 * If ptraced, this function doesn't handle stop itself.  Instead,
2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2424 * places afterwards.
2425 *
2426 * CONTEXT:
2427 * Must be called with @current->sighand->siglock held, which is released
2428 * on %true return.
2429 *
2430 * RETURNS:
2431 * %false if group stop is already cancelled or ptrace trap is scheduled.
2432 * %true if participated in group stop.
2433 */
2434static bool do_signal_stop(int signr)
2435	__releases(&current->sighand->siglock)
2436{
2437	struct signal_struct *sig = current->signal;
2438
2439	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441		struct task_struct *t;
2442
2443		/* signr will be recorded in task->jobctl for retries */
2444		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445
2446		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448		    unlikely(sig->group_exec_task))
2449			return false;
2450		/*
2451		 * There is no group stop already in progress.  We must
2452		 * initiate one now.
2453		 *
2454		 * While ptraced, a task may be resumed while group stop is
2455		 * still in effect and then receive a stop signal and
2456		 * initiate another group stop.  This deviates from the
2457		 * usual behavior as two consecutive stop signals can't
2458		 * cause two group stops when !ptraced.  That is why we
2459		 * also check !task_is_stopped(t) below.
2460		 *
2461		 * The condition can be distinguished by testing whether
2462		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2463		 * group_exit_code in such case.
2464		 *
2465		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466		 * an intervening stop signal is required to cause two
2467		 * continued events regardless of ptrace.
2468		 */
2469		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470			sig->group_exit_code = signr;
2471
2472		sig->group_stop_count = 0;
 
2473		if (task_set_jobctl_pending(current, signr | gstop))
2474			sig->group_stop_count++;
2475
2476		for_other_threads(current, t) {
 
2477			/*
2478			 * Setting state to TASK_STOPPED for a group
2479			 * stop is always done with the siglock held,
2480			 * so this check has no races.
2481			 */
2482			if (!task_is_stopped(t) &&
2483			    task_set_jobctl_pending(t, signr | gstop)) {
2484				sig->group_stop_count++;
2485				if (likely(!(t->ptrace & PT_SEIZED)))
2486					signal_wake_up(t, 0);
2487				else
2488					ptrace_trap_notify(t);
2489			}
2490		}
2491	}
2492
2493	if (likely(!current->ptrace)) {
2494		int notify = 0;
2495
2496		/*
2497		 * If there are no other threads in the group, or if there
2498		 * is a group stop in progress and we are the last to stop,
2499		 * report to the parent.
2500		 */
2501		if (task_participate_group_stop(current))
2502			notify = CLD_STOPPED;
2503
2504		current->jobctl |= JOBCTL_STOPPED;
2505		set_special_state(TASK_STOPPED);
2506		spin_unlock_irq(&current->sighand->siglock);
2507
2508		/*
2509		 * Notify the parent of the group stop completion.  Because
2510		 * we're not holding either the siglock or tasklist_lock
2511		 * here, ptracer may attach inbetween; however, this is for
2512		 * group stop and should always be delivered to the real
2513		 * parent of the group leader.  The new ptracer will get
2514		 * its notification when this task transitions into
2515		 * TASK_TRACED.
2516		 */
2517		if (notify) {
2518			read_lock(&tasklist_lock);
2519			do_notify_parent_cldstop(current, false, notify);
2520			read_unlock(&tasklist_lock);
2521		}
2522
2523		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2524		cgroup_enter_frozen();
2525		schedule();
2526		return true;
2527	} else {
2528		/*
2529		 * While ptraced, group stop is handled by STOP trap.
2530		 * Schedule it and let the caller deal with it.
2531		 */
2532		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533		return false;
2534	}
2535}
2536
2537/**
2538 * do_jobctl_trap - take care of ptrace jobctl traps
2539 *
2540 * When PT_SEIZED, it's used for both group stop and explicit
2541 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2542 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2543 * the stop signal; otherwise, %SIGTRAP.
2544 *
2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546 * number as exit_code and no siginfo.
2547 *
2548 * CONTEXT:
2549 * Must be called with @current->sighand->siglock held, which may be
2550 * released and re-acquired before returning with intervening sleep.
2551 */
2552static void do_jobctl_trap(void)
2553{
2554	struct signal_struct *signal = current->signal;
2555	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556
2557	if (current->ptrace & PT_SEIZED) {
2558		if (!signal->group_stop_count &&
2559		    !(signal->flags & SIGNAL_STOP_STOPPED))
2560			signr = SIGTRAP;
2561		WARN_ON_ONCE(!signr);
2562		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563				 CLD_STOPPED, 0);
2564	} else {
2565		WARN_ON_ONCE(!signr);
2566		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2567	}
2568}
2569
2570/**
2571 * do_freezer_trap - handle the freezer jobctl trap
2572 *
2573 * Puts the task into frozen state, if only the task is not about to quit.
2574 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 *
2576 * CONTEXT:
2577 * Must be called with @current->sighand->siglock held,
2578 * which is always released before returning.
2579 */
2580static void do_freezer_trap(void)
2581	__releases(&current->sighand->siglock)
2582{
2583	/*
2584	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585	 * let's make another loop to give it a chance to be handled.
2586	 * In any case, we'll return back.
2587	 */
2588	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589	     JOBCTL_TRAP_FREEZE) {
2590		spin_unlock_irq(&current->sighand->siglock);
2591		return;
2592	}
2593
2594	/*
2595	 * Now we're sure that there is no pending fatal signal and no
2596	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597	 * immediately (if there is a non-fatal signal pending), and
2598	 * put the task into sleep.
2599	 */
2600	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601	clear_thread_flag(TIF_SIGPENDING);
2602	spin_unlock_irq(&current->sighand->siglock);
2603	cgroup_enter_frozen();
2604	schedule();
2605}
2606
2607static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608{
2609	/*
2610	 * We do not check sig_kernel_stop(signr) but set this marker
2611	 * unconditionally because we do not know whether debugger will
2612	 * change signr. This flag has no meaning unless we are going
2613	 * to stop after return from ptrace_stop(). In this case it will
2614	 * be checked in do_signal_stop(), we should only stop if it was
2615	 * not cleared by SIGCONT while we were sleeping. See also the
2616	 * comment in dequeue_signal().
2617	 */
2618	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620
2621	/* We're back.  Did the debugger cancel the sig?  */
2622	if (signr == 0)
2623		return signr;
2624
2625	/*
2626	 * Update the siginfo structure if the signal has
2627	 * changed.  If the debugger wanted something
2628	 * specific in the siginfo structure then it should
2629	 * have updated *info via PTRACE_SETSIGINFO.
2630	 */
2631	if (signr != info->si_signo) {
2632		clear_siginfo(info);
2633		info->si_signo = signr;
2634		info->si_errno = 0;
2635		info->si_code = SI_USER;
2636		rcu_read_lock();
2637		info->si_pid = task_pid_vnr(current->parent);
2638		info->si_uid = from_kuid_munged(current_user_ns(),
2639						task_uid(current->parent));
2640		rcu_read_unlock();
2641	}
2642
2643	/* If the (new) signal is now blocked, requeue it.  */
2644	if (sigismember(&current->blocked, signr) ||
2645	    fatal_signal_pending(current)) {
2646		send_signal_locked(signr, info, current, type);
2647		signr = 0;
2648	}
2649
2650	return signr;
2651}
2652
2653static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654{
2655	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656	case SIL_FAULT:
2657	case SIL_FAULT_TRAPNO:
2658	case SIL_FAULT_MCEERR:
2659	case SIL_FAULT_BNDERR:
2660	case SIL_FAULT_PKUERR:
2661	case SIL_FAULT_PERF_EVENT:
2662		ksig->info.si_addr = arch_untagged_si_addr(
2663			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664		break;
2665	case SIL_KILL:
2666	case SIL_TIMER:
2667	case SIL_POLL:
2668	case SIL_CHLD:
2669	case SIL_RT:
2670	case SIL_SYS:
2671		break;
2672	}
2673}
2674
2675bool get_signal(struct ksignal *ksig)
2676{
2677	struct sighand_struct *sighand = current->sighand;
2678	struct signal_struct *signal = current->signal;
2679	int signr;
2680
2681	clear_notify_signal();
2682	if (unlikely(task_work_pending(current)))
2683		task_work_run();
2684
2685	if (!task_sigpending(current))
2686		return false;
2687
2688	if (unlikely(uprobe_deny_signal()))
2689		return false;
2690
2691	/*
2692	 * Do this once, we can't return to user-mode if freezing() == T.
2693	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694	 * thus do not need another check after return.
2695	 */
2696	try_to_freeze();
2697
2698relock:
2699	spin_lock_irq(&sighand->siglock);
2700
2701	/*
2702	 * Every stopped thread goes here after wakeup. Check to see if
2703	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705	 */
2706	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707		int why;
2708
2709		if (signal->flags & SIGNAL_CLD_CONTINUED)
2710			why = CLD_CONTINUED;
2711		else
2712			why = CLD_STOPPED;
2713
2714		signal->flags &= ~SIGNAL_CLD_MASK;
2715
2716		spin_unlock_irq(&sighand->siglock);
2717
2718		/*
2719		 * Notify the parent that we're continuing.  This event is
2720		 * always per-process and doesn't make whole lot of sense
2721		 * for ptracers, who shouldn't consume the state via
2722		 * wait(2) either, but, for backward compatibility, notify
2723		 * the ptracer of the group leader too unless it's gonna be
2724		 * a duplicate.
2725		 */
2726		read_lock(&tasklist_lock);
2727		do_notify_parent_cldstop(current, false, why);
2728
2729		if (ptrace_reparented(current->group_leader))
2730			do_notify_parent_cldstop(current->group_leader,
2731						true, why);
2732		read_unlock(&tasklist_lock);
2733
2734		goto relock;
2735	}
2736
2737	for (;;) {
2738		struct k_sigaction *ka;
2739		enum pid_type type;
2740
2741		/* Has this task already been marked for death? */
2742		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743		     signal->group_exec_task) {
2744			signr = SIGKILL;
 
2745			sigdelset(&current->pending.signal, SIGKILL);
2746			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2747					     &sighand->action[SIGKILL-1]);
2748			recalc_sigpending();
2749			/*
2750			 * implies do_group_exit() or return to PF_USER_WORKER,
2751			 * no need to initialize ksig->info/etc.
2752			 */
2753			goto fatal;
2754		}
2755
2756		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2757		    do_signal_stop(0))
2758			goto relock;
2759
2760		if (unlikely(current->jobctl &
2761			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2762			if (current->jobctl & JOBCTL_TRAP_MASK) {
2763				do_jobctl_trap();
2764				spin_unlock_irq(&sighand->siglock);
2765			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766				do_freezer_trap();
2767
2768			goto relock;
2769		}
2770
2771		/*
2772		 * If the task is leaving the frozen state, let's update
2773		 * cgroup counters and reset the frozen bit.
2774		 */
2775		if (unlikely(cgroup_task_frozen(current))) {
2776			spin_unlock_irq(&sighand->siglock);
2777			cgroup_leave_frozen(false);
2778			goto relock;
2779		}
2780
2781		/*
2782		 * Signals generated by the execution of an instruction
2783		 * need to be delivered before any other pending signals
2784		 * so that the instruction pointer in the signal stack
2785		 * frame points to the faulting instruction.
2786		 */
2787		type = PIDTYPE_PID;
2788		signr = dequeue_synchronous_signal(&ksig->info);
2789		if (!signr)
2790			signr = dequeue_signal(current, &current->blocked,
2791					       &ksig->info, &type);
2792
2793		if (!signr)
2794			break; /* will return 0 */
2795
2796		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2797		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2798			signr = ptrace_signal(signr, &ksig->info, type);
2799			if (!signr)
2800				continue;
2801		}
2802
2803		ka = &sighand->action[signr-1];
2804
2805		/* Trace actually delivered signals. */
2806		trace_signal_deliver(signr, &ksig->info, ka);
2807
2808		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2809			continue;
2810		if (ka->sa.sa_handler != SIG_DFL) {
2811			/* Run the handler.  */
2812			ksig->ka = *ka;
2813
2814			if (ka->sa.sa_flags & SA_ONESHOT)
2815				ka->sa.sa_handler = SIG_DFL;
2816
2817			break; /* will return non-zero "signr" value */
2818		}
2819
2820		/*
2821		 * Now we are doing the default action for this signal.
2822		 */
2823		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2824			continue;
2825
2826		/*
2827		 * Global init gets no signals it doesn't want.
2828		 * Container-init gets no signals it doesn't want from same
2829		 * container.
2830		 *
2831		 * Note that if global/container-init sees a sig_kernel_only()
2832		 * signal here, the signal must have been generated internally
2833		 * or must have come from an ancestor namespace. In either
2834		 * case, the signal cannot be dropped.
2835		 */
2836		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2837				!sig_kernel_only(signr))
2838			continue;
2839
2840		if (sig_kernel_stop(signr)) {
2841			/*
2842			 * The default action is to stop all threads in
2843			 * the thread group.  The job control signals
2844			 * do nothing in an orphaned pgrp, but SIGSTOP
2845			 * always works.  Note that siglock needs to be
2846			 * dropped during the call to is_orphaned_pgrp()
2847			 * because of lock ordering with tasklist_lock.
2848			 * This allows an intervening SIGCONT to be posted.
2849			 * We need to check for that and bail out if necessary.
2850			 */
2851			if (signr != SIGSTOP) {
2852				spin_unlock_irq(&sighand->siglock);
2853
2854				/* signals can be posted during this window */
2855
2856				if (is_current_pgrp_orphaned())
2857					goto relock;
2858
2859				spin_lock_irq(&sighand->siglock);
2860			}
2861
2862			if (likely(do_signal_stop(signr))) {
2863				/* It released the siglock.  */
2864				goto relock;
2865			}
2866
2867			/*
2868			 * We didn't actually stop, due to a race
2869			 * with SIGCONT or something like that.
2870			 */
2871			continue;
2872		}
2873
2874	fatal:
2875		spin_unlock_irq(&sighand->siglock);
2876		if (unlikely(cgroup_task_frozen(current)))
2877			cgroup_leave_frozen(true);
2878
2879		/*
2880		 * Anything else is fatal, maybe with a core dump.
2881		 */
2882		current->flags |= PF_SIGNALED;
2883
2884		if (sig_kernel_coredump(signr)) {
2885			if (print_fatal_signals)
2886				print_fatal_signal(signr);
2887			proc_coredump_connector(current);
2888			/*
2889			 * If it was able to dump core, this kills all
2890			 * other threads in the group and synchronizes with
2891			 * their demise.  If we lost the race with another
2892			 * thread getting here, it set group_exit_code
2893			 * first and our do_group_exit call below will use
2894			 * that value and ignore the one we pass it.
2895			 */
2896			do_coredump(&ksig->info);
2897		}
2898
2899		/*
2900		 * PF_USER_WORKER threads will catch and exit on fatal signals
2901		 * themselves. They have cleanup that must be performed, so we
2902		 * cannot call do_exit() on their behalf. Note that ksig won't
2903		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2904		 */
2905		if (current->flags & PF_USER_WORKER)
2906			goto out;
2907
2908		/*
2909		 * Death signals, no core dump.
2910		 */
2911		do_group_exit(signr);
2912		/* NOTREACHED */
2913	}
2914	spin_unlock_irq(&sighand->siglock);
2915
2916	ksig->sig = signr;
2917
2918	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2919		hide_si_addr_tag_bits(ksig);
2920out:
2921	return signr > 0;
2922}
2923
2924/**
2925 * signal_delivered - called after signal delivery to update blocked signals
2926 * @ksig:		kernel signal struct
2927 * @stepping:		nonzero if debugger single-step or block-step in use
2928 *
2929 * This function should be called when a signal has successfully been
2930 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2931 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2932 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2933 */
2934static void signal_delivered(struct ksignal *ksig, int stepping)
2935{
2936	sigset_t blocked;
2937
2938	/* A signal was successfully delivered, and the
2939	   saved sigmask was stored on the signal frame,
2940	   and will be restored by sigreturn.  So we can
2941	   simply clear the restore sigmask flag.  */
2942	clear_restore_sigmask();
2943
2944	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2945	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2946		sigaddset(&blocked, ksig->sig);
2947	set_current_blocked(&blocked);
2948	if (current->sas_ss_flags & SS_AUTODISARM)
2949		sas_ss_reset(current);
2950	if (stepping)
2951		ptrace_notify(SIGTRAP, 0);
2952}
2953
2954void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955{
2956	if (failed)
2957		force_sigsegv(ksig->sig);
2958	else
2959		signal_delivered(ksig, stepping);
2960}
2961
2962/*
2963 * It could be that complete_signal() picked us to notify about the
2964 * group-wide signal. Other threads should be notified now to take
2965 * the shared signals in @which since we will not.
2966 */
2967static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968{
2969	sigset_t retarget;
2970	struct task_struct *t;
2971
2972	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2973	if (sigisemptyset(&retarget))
2974		return;
2975
2976	for_other_threads(tsk, t) {
 
2977		if (t->flags & PF_EXITING)
2978			continue;
2979
2980		if (!has_pending_signals(&retarget, &t->blocked))
2981			continue;
2982		/* Remove the signals this thread can handle. */
2983		sigandsets(&retarget, &retarget, &t->blocked);
2984
2985		if (!task_sigpending(t))
2986			signal_wake_up(t, 0);
2987
2988		if (sigisemptyset(&retarget))
2989			break;
2990	}
2991}
2992
2993void exit_signals(struct task_struct *tsk)
2994{
2995	int group_stop = 0;
2996	sigset_t unblocked;
2997
2998	/*
2999	 * @tsk is about to have PF_EXITING set - lock out users which
3000	 * expect stable threadgroup.
3001	 */
3002	cgroup_threadgroup_change_begin(tsk);
3003
3004	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3005		sched_mm_cid_exit_signals(tsk);
3006		tsk->flags |= PF_EXITING;
3007		cgroup_threadgroup_change_end(tsk);
3008		return;
3009	}
3010
3011	spin_lock_irq(&tsk->sighand->siglock);
3012	/*
3013	 * From now this task is not visible for group-wide signals,
3014	 * see wants_signal(), do_signal_stop().
3015	 */
3016	sched_mm_cid_exit_signals(tsk);
3017	tsk->flags |= PF_EXITING;
3018
3019	cgroup_threadgroup_change_end(tsk);
3020
3021	if (!task_sigpending(tsk))
3022		goto out;
3023
3024	unblocked = tsk->blocked;
3025	signotset(&unblocked);
3026	retarget_shared_pending(tsk, &unblocked);
3027
3028	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3029	    task_participate_group_stop(tsk))
3030		group_stop = CLD_STOPPED;
3031out:
3032	spin_unlock_irq(&tsk->sighand->siglock);
3033
3034	/*
3035	 * If group stop has completed, deliver the notification.  This
3036	 * should always go to the real parent of the group leader.
3037	 */
3038	if (unlikely(group_stop)) {
3039		read_lock(&tasklist_lock);
3040		do_notify_parent_cldstop(tsk, false, group_stop);
3041		read_unlock(&tasklist_lock);
3042	}
3043}
3044
3045/*
3046 * System call entry points.
3047 */
3048
3049/**
3050 *  sys_restart_syscall - restart a system call
3051 */
3052SYSCALL_DEFINE0(restart_syscall)
3053{
3054	struct restart_block *restart = &current->restart_block;
3055	return restart->fn(restart);
3056}
3057
3058long do_no_restart_syscall(struct restart_block *param)
3059{
3060	return -EINTR;
3061}
3062
3063static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3064{
3065	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3066		sigset_t newblocked;
3067		/* A set of now blocked but previously unblocked signals. */
3068		sigandnsets(&newblocked, newset, &current->blocked);
3069		retarget_shared_pending(tsk, &newblocked);
3070	}
3071	tsk->blocked = *newset;
3072	recalc_sigpending();
3073}
3074
3075/**
3076 * set_current_blocked - change current->blocked mask
3077 * @newset: new mask
3078 *
3079 * It is wrong to change ->blocked directly, this helper should be used
3080 * to ensure the process can't miss a shared signal we are going to block.
3081 */
3082void set_current_blocked(sigset_t *newset)
3083{
3084	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3085	__set_current_blocked(newset);
3086}
3087
3088void __set_current_blocked(const sigset_t *newset)
3089{
3090	struct task_struct *tsk = current;
3091
3092	/*
3093	 * In case the signal mask hasn't changed, there is nothing we need
3094	 * to do. The current->blocked shouldn't be modified by other task.
3095	 */
3096	if (sigequalsets(&tsk->blocked, newset))
3097		return;
3098
3099	spin_lock_irq(&tsk->sighand->siglock);
3100	__set_task_blocked(tsk, newset);
3101	spin_unlock_irq(&tsk->sighand->siglock);
3102}
3103
3104/*
3105 * This is also useful for kernel threads that want to temporarily
3106 * (or permanently) block certain signals.
3107 *
3108 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3109 * interface happily blocks "unblockable" signals like SIGKILL
3110 * and friends.
3111 */
3112int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3113{
3114	struct task_struct *tsk = current;
3115	sigset_t newset;
3116
3117	/* Lockless, only current can change ->blocked, never from irq */
3118	if (oldset)
3119		*oldset = tsk->blocked;
3120
3121	switch (how) {
3122	case SIG_BLOCK:
3123		sigorsets(&newset, &tsk->blocked, set);
3124		break;
3125	case SIG_UNBLOCK:
3126		sigandnsets(&newset, &tsk->blocked, set);
3127		break;
3128	case SIG_SETMASK:
3129		newset = *set;
3130		break;
3131	default:
3132		return -EINVAL;
3133	}
3134
3135	__set_current_blocked(&newset);
3136	return 0;
3137}
3138EXPORT_SYMBOL(sigprocmask);
3139
3140/*
3141 * The api helps set app-provided sigmasks.
3142 *
3143 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3144 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3145 *
3146 * Note that it does set_restore_sigmask() in advance, so it must be always
3147 * paired with restore_saved_sigmask_unless() before return from syscall.
3148 */
3149int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3150{
3151	sigset_t kmask;
3152
3153	if (!umask)
3154		return 0;
3155	if (sigsetsize != sizeof(sigset_t))
3156		return -EINVAL;
3157	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158		return -EFAULT;
3159
3160	set_restore_sigmask();
3161	current->saved_sigmask = current->blocked;
3162	set_current_blocked(&kmask);
3163
3164	return 0;
3165}
3166
3167#ifdef CONFIG_COMPAT
3168int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169			    size_t sigsetsize)
3170{
3171	sigset_t kmask;
3172
3173	if (!umask)
3174		return 0;
3175	if (sigsetsize != sizeof(compat_sigset_t))
3176		return -EINVAL;
3177	if (get_compat_sigset(&kmask, umask))
3178		return -EFAULT;
3179
3180	set_restore_sigmask();
3181	current->saved_sigmask = current->blocked;
3182	set_current_blocked(&kmask);
3183
3184	return 0;
3185}
3186#endif
3187
3188/**
3189 *  sys_rt_sigprocmask - change the list of currently blocked signals
3190 *  @how: whether to add, remove, or set signals
3191 *  @nset: stores pending signals
3192 *  @oset: previous value of signal mask if non-null
3193 *  @sigsetsize: size of sigset_t type
3194 */
3195SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3196		sigset_t __user *, oset, size_t, sigsetsize)
3197{
3198	sigset_t old_set, new_set;
3199	int error;
3200
3201	/* XXX: Don't preclude handling different sized sigset_t's.  */
3202	if (sigsetsize != sizeof(sigset_t))
3203		return -EINVAL;
3204
3205	old_set = current->blocked;
3206
3207	if (nset) {
3208		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3209			return -EFAULT;
3210		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3211
3212		error = sigprocmask(how, &new_set, NULL);
3213		if (error)
3214			return error;
3215	}
3216
3217	if (oset) {
3218		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219			return -EFAULT;
3220	}
3221
3222	return 0;
3223}
3224
3225#ifdef CONFIG_COMPAT
3226COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3227		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3228{
3229	sigset_t old_set = current->blocked;
3230
3231	/* XXX: Don't preclude handling different sized sigset_t's.  */
3232	if (sigsetsize != sizeof(sigset_t))
3233		return -EINVAL;
3234
3235	if (nset) {
3236		sigset_t new_set;
3237		int error;
3238		if (get_compat_sigset(&new_set, nset))
3239			return -EFAULT;
3240		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3241
3242		error = sigprocmask(how, &new_set, NULL);
3243		if (error)
3244			return error;
3245	}
3246	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3247}
3248#endif
3249
3250static void do_sigpending(sigset_t *set)
3251{
3252	spin_lock_irq(&current->sighand->siglock);
3253	sigorsets(set, &current->pending.signal,
3254		  &current->signal->shared_pending.signal);
3255	spin_unlock_irq(&current->sighand->siglock);
3256
3257	/* Outside the lock because only this thread touches it.  */
3258	sigandsets(set, &current->blocked, set);
3259}
3260
3261/**
3262 *  sys_rt_sigpending - examine a pending signal that has been raised
3263 *			while blocked
3264 *  @uset: stores pending signals
3265 *  @sigsetsize: size of sigset_t type or larger
3266 */
3267SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3268{
3269	sigset_t set;
3270
3271	if (sigsetsize > sizeof(*uset))
3272		return -EINVAL;
3273
3274	do_sigpending(&set);
3275
3276	if (copy_to_user(uset, &set, sigsetsize))
3277		return -EFAULT;
3278
3279	return 0;
3280}
3281
3282#ifdef CONFIG_COMPAT
3283COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3284		compat_size_t, sigsetsize)
3285{
3286	sigset_t set;
3287
3288	if (sigsetsize > sizeof(*uset))
3289		return -EINVAL;
3290
3291	do_sigpending(&set);
3292
3293	return put_compat_sigset(uset, &set, sigsetsize);
3294}
3295#endif
3296
3297static const struct {
3298	unsigned char limit, layout;
3299} sig_sicodes[] = {
3300	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3301	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3302	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3303	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3304	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3305#if defined(SIGEMT)
3306	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3307#endif
3308	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3309	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3310	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3311};
3312
3313static bool known_siginfo_layout(unsigned sig, int si_code)
3314{
3315	if (si_code == SI_KERNEL)
3316		return true;
3317	else if ((si_code > SI_USER)) {
3318		if (sig_specific_sicodes(sig)) {
3319			if (si_code <= sig_sicodes[sig].limit)
3320				return true;
3321		}
3322		else if (si_code <= NSIGPOLL)
3323			return true;
3324	}
3325	else if (si_code >= SI_DETHREAD)
3326		return true;
3327	else if (si_code == SI_ASYNCNL)
3328		return true;
3329	return false;
3330}
3331
3332enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3333{
3334	enum siginfo_layout layout = SIL_KILL;
3335	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3336		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3337		    (si_code <= sig_sicodes[sig].limit)) {
3338			layout = sig_sicodes[sig].layout;
3339			/* Handle the exceptions */
3340			if ((sig == SIGBUS) &&
3341			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3342				layout = SIL_FAULT_MCEERR;
3343			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3344				layout = SIL_FAULT_BNDERR;
3345#ifdef SEGV_PKUERR
3346			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3347				layout = SIL_FAULT_PKUERR;
3348#endif
3349			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3350				layout = SIL_FAULT_PERF_EVENT;
3351			else if (IS_ENABLED(CONFIG_SPARC) &&
3352				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3353				layout = SIL_FAULT_TRAPNO;
3354			else if (IS_ENABLED(CONFIG_ALPHA) &&
3355				 ((sig == SIGFPE) ||
3356				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3357				layout = SIL_FAULT_TRAPNO;
3358		}
3359		else if (si_code <= NSIGPOLL)
3360			layout = SIL_POLL;
3361	} else {
3362		if (si_code == SI_TIMER)
3363			layout = SIL_TIMER;
3364		else if (si_code == SI_SIGIO)
3365			layout = SIL_POLL;
3366		else if (si_code < 0)
3367			layout = SIL_RT;
3368	}
3369	return layout;
3370}
3371
3372static inline char __user *si_expansion(const siginfo_t __user *info)
3373{
3374	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375}
3376
3377int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3378{
3379	char __user *expansion = si_expansion(to);
3380	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3381		return -EFAULT;
3382	if (clear_user(expansion, SI_EXPANSION_SIZE))
3383		return -EFAULT;
3384	return 0;
3385}
3386
3387static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3388				       const siginfo_t __user *from)
3389{
3390	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3391		char __user *expansion = si_expansion(from);
3392		char buf[SI_EXPANSION_SIZE];
3393		int i;
3394		/*
3395		 * An unknown si_code might need more than
3396		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3397		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3398		 * will return this data to userspace exactly.
3399		 */
3400		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3401			return -EFAULT;
3402		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3403			if (buf[i] != 0)
3404				return -E2BIG;
3405		}
3406	}
3407	return 0;
3408}
3409
3410static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3411				    const siginfo_t __user *from)
3412{
3413	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414		return -EFAULT;
3415	to->si_signo = signo;
3416	return post_copy_siginfo_from_user(to, from);
3417}
3418
3419int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3420{
3421	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3422		return -EFAULT;
3423	return post_copy_siginfo_from_user(to, from);
3424}
3425
3426#ifdef CONFIG_COMPAT
3427/**
3428 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3429 * @to: compat siginfo destination
3430 * @from: kernel siginfo source
3431 *
3432 * Note: This function does not work properly for the SIGCHLD on x32, but
3433 * fortunately it doesn't have to.  The only valid callers for this function are
3434 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3435 * The latter does not care because SIGCHLD will never cause a coredump.
3436 */
3437void copy_siginfo_to_external32(struct compat_siginfo *to,
3438		const struct kernel_siginfo *from)
3439{
3440	memset(to, 0, sizeof(*to));
3441
3442	to->si_signo = from->si_signo;
3443	to->si_errno = from->si_errno;
3444	to->si_code  = from->si_code;
3445	switch(siginfo_layout(from->si_signo, from->si_code)) {
3446	case SIL_KILL:
3447		to->si_pid = from->si_pid;
3448		to->si_uid = from->si_uid;
3449		break;
3450	case SIL_TIMER:
3451		to->si_tid     = from->si_tid;
3452		to->si_overrun = from->si_overrun;
3453		to->si_int     = from->si_int;
3454		break;
3455	case SIL_POLL:
3456		to->si_band = from->si_band;
3457		to->si_fd   = from->si_fd;
3458		break;
3459	case SIL_FAULT:
3460		to->si_addr = ptr_to_compat(from->si_addr);
3461		break;
3462	case SIL_FAULT_TRAPNO:
3463		to->si_addr = ptr_to_compat(from->si_addr);
3464		to->si_trapno = from->si_trapno;
3465		break;
3466	case SIL_FAULT_MCEERR:
3467		to->si_addr = ptr_to_compat(from->si_addr);
3468		to->si_addr_lsb = from->si_addr_lsb;
3469		break;
3470	case SIL_FAULT_BNDERR:
3471		to->si_addr = ptr_to_compat(from->si_addr);
3472		to->si_lower = ptr_to_compat(from->si_lower);
3473		to->si_upper = ptr_to_compat(from->si_upper);
3474		break;
3475	case SIL_FAULT_PKUERR:
3476		to->si_addr = ptr_to_compat(from->si_addr);
3477		to->si_pkey = from->si_pkey;
3478		break;
3479	case SIL_FAULT_PERF_EVENT:
3480		to->si_addr = ptr_to_compat(from->si_addr);
3481		to->si_perf_data = from->si_perf_data;
3482		to->si_perf_type = from->si_perf_type;
3483		to->si_perf_flags = from->si_perf_flags;
3484		break;
3485	case SIL_CHLD:
3486		to->si_pid = from->si_pid;
3487		to->si_uid = from->si_uid;
3488		to->si_status = from->si_status;
3489		to->si_utime = from->si_utime;
3490		to->si_stime = from->si_stime;
3491		break;
3492	case SIL_RT:
3493		to->si_pid = from->si_pid;
3494		to->si_uid = from->si_uid;
3495		to->si_int = from->si_int;
3496		break;
3497	case SIL_SYS:
3498		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3499		to->si_syscall   = from->si_syscall;
3500		to->si_arch      = from->si_arch;
3501		break;
3502	}
3503}
3504
3505int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3506			   const struct kernel_siginfo *from)
3507{
3508	struct compat_siginfo new;
3509
3510	copy_siginfo_to_external32(&new, from);
3511	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3512		return -EFAULT;
3513	return 0;
3514}
3515
3516static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3517					 const struct compat_siginfo *from)
3518{
3519	clear_siginfo(to);
3520	to->si_signo = from->si_signo;
3521	to->si_errno = from->si_errno;
3522	to->si_code  = from->si_code;
3523	switch(siginfo_layout(from->si_signo, from->si_code)) {
3524	case SIL_KILL:
3525		to->si_pid = from->si_pid;
3526		to->si_uid = from->si_uid;
3527		break;
3528	case SIL_TIMER:
3529		to->si_tid     = from->si_tid;
3530		to->si_overrun = from->si_overrun;
3531		to->si_int     = from->si_int;
3532		break;
3533	case SIL_POLL:
3534		to->si_band = from->si_band;
3535		to->si_fd   = from->si_fd;
3536		break;
3537	case SIL_FAULT:
3538		to->si_addr = compat_ptr(from->si_addr);
3539		break;
3540	case SIL_FAULT_TRAPNO:
3541		to->si_addr = compat_ptr(from->si_addr);
3542		to->si_trapno = from->si_trapno;
3543		break;
3544	case SIL_FAULT_MCEERR:
3545		to->si_addr = compat_ptr(from->si_addr);
3546		to->si_addr_lsb = from->si_addr_lsb;
3547		break;
3548	case SIL_FAULT_BNDERR:
3549		to->si_addr = compat_ptr(from->si_addr);
3550		to->si_lower = compat_ptr(from->si_lower);
3551		to->si_upper = compat_ptr(from->si_upper);
3552		break;
3553	case SIL_FAULT_PKUERR:
3554		to->si_addr = compat_ptr(from->si_addr);
3555		to->si_pkey = from->si_pkey;
3556		break;
3557	case SIL_FAULT_PERF_EVENT:
3558		to->si_addr = compat_ptr(from->si_addr);
3559		to->si_perf_data = from->si_perf_data;
3560		to->si_perf_type = from->si_perf_type;
3561		to->si_perf_flags = from->si_perf_flags;
3562		break;
3563	case SIL_CHLD:
3564		to->si_pid    = from->si_pid;
3565		to->si_uid    = from->si_uid;
3566		to->si_status = from->si_status;
3567#ifdef CONFIG_X86_X32_ABI
3568		if (in_x32_syscall()) {
3569			to->si_utime = from->_sifields._sigchld_x32._utime;
3570			to->si_stime = from->_sifields._sigchld_x32._stime;
3571		} else
3572#endif
3573		{
3574			to->si_utime = from->si_utime;
3575			to->si_stime = from->si_stime;
3576		}
3577		break;
3578	case SIL_RT:
3579		to->si_pid = from->si_pid;
3580		to->si_uid = from->si_uid;
3581		to->si_int = from->si_int;
3582		break;
3583	case SIL_SYS:
3584		to->si_call_addr = compat_ptr(from->si_call_addr);
3585		to->si_syscall   = from->si_syscall;
3586		to->si_arch      = from->si_arch;
3587		break;
3588	}
3589	return 0;
3590}
3591
3592static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3593				      const struct compat_siginfo __user *ufrom)
3594{
3595	struct compat_siginfo from;
3596
3597	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598		return -EFAULT;
3599
3600	from.si_signo = signo;
3601	return post_copy_siginfo_from_user32(to, &from);
3602}
3603
3604int copy_siginfo_from_user32(struct kernel_siginfo *to,
3605			     const struct compat_siginfo __user *ufrom)
3606{
3607	struct compat_siginfo from;
3608
3609	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610		return -EFAULT;
3611
3612	return post_copy_siginfo_from_user32(to, &from);
3613}
3614#endif /* CONFIG_COMPAT */
3615
3616/**
3617 *  do_sigtimedwait - wait for queued signals specified in @which
3618 *  @which: queued signals to wait for
3619 *  @info: if non-null, the signal's siginfo is returned here
3620 *  @ts: upper bound on process time suspension
3621 */
3622static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3623		    const struct timespec64 *ts)
3624{
3625	ktime_t *to = NULL, timeout = KTIME_MAX;
3626	struct task_struct *tsk = current;
3627	sigset_t mask = *which;
3628	enum pid_type type;
3629	int sig, ret = 0;
3630
3631	if (ts) {
3632		if (!timespec64_valid(ts))
3633			return -EINVAL;
3634		timeout = timespec64_to_ktime(*ts);
3635		to = &timeout;
3636	}
3637
3638	/*
3639	 * Invert the set of allowed signals to get those we want to block.
3640	 */
3641	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642	signotset(&mask);
3643
3644	spin_lock_irq(&tsk->sighand->siglock);
3645	sig = dequeue_signal(tsk, &mask, info, &type);
3646	if (!sig && timeout) {
3647		/*
3648		 * None ready, temporarily unblock those we're interested
3649		 * while we are sleeping in so that we'll be awakened when
3650		 * they arrive. Unblocking is always fine, we can avoid
3651		 * set_current_blocked().
3652		 */
3653		tsk->real_blocked = tsk->blocked;
3654		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3655		recalc_sigpending();
3656		spin_unlock_irq(&tsk->sighand->siglock);
3657
3658		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3659		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3660					       HRTIMER_MODE_REL);
3661		spin_lock_irq(&tsk->sighand->siglock);
3662		__set_task_blocked(tsk, &tsk->real_blocked);
3663		sigemptyset(&tsk->real_blocked);
3664		sig = dequeue_signal(tsk, &mask, info, &type);
3665	}
3666	spin_unlock_irq(&tsk->sighand->siglock);
3667
3668	if (sig)
3669		return sig;
3670	return ret ? -EINTR : -EAGAIN;
3671}
3672
3673/**
3674 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3675 *			in @uthese
3676 *  @uthese: queued signals to wait for
3677 *  @uinfo: if non-null, the signal's siginfo is returned here
3678 *  @uts: upper bound on process time suspension
3679 *  @sigsetsize: size of sigset_t type
3680 */
3681SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3682		siginfo_t __user *, uinfo,
3683		const struct __kernel_timespec __user *, uts,
3684		size_t, sigsetsize)
3685{
3686	sigset_t these;
3687	struct timespec64 ts;
3688	kernel_siginfo_t info;
3689	int ret;
3690
3691	/* XXX: Don't preclude handling different sized sigset_t's.  */
3692	if (sigsetsize != sizeof(sigset_t))
3693		return -EINVAL;
3694
3695	if (copy_from_user(&these, uthese, sizeof(these)))
3696		return -EFAULT;
3697
3698	if (uts) {
3699		if (get_timespec64(&ts, uts))
3700			return -EFAULT;
3701	}
3702
3703	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3704
3705	if (ret > 0 && uinfo) {
3706		if (copy_siginfo_to_user(uinfo, &info))
3707			ret = -EFAULT;
3708	}
3709
3710	return ret;
3711}
3712
3713#ifdef CONFIG_COMPAT_32BIT_TIME
3714SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3715		siginfo_t __user *, uinfo,
3716		const struct old_timespec32 __user *, uts,
3717		size_t, sigsetsize)
3718{
3719	sigset_t these;
3720	struct timespec64 ts;
3721	kernel_siginfo_t info;
3722	int ret;
3723
3724	if (sigsetsize != sizeof(sigset_t))
3725		return -EINVAL;
3726
3727	if (copy_from_user(&these, uthese, sizeof(these)))
3728		return -EFAULT;
3729
3730	if (uts) {
3731		if (get_old_timespec32(&ts, uts))
3732			return -EFAULT;
3733	}
3734
3735	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3736
3737	if (ret > 0 && uinfo) {
3738		if (copy_siginfo_to_user(uinfo, &info))
3739			ret = -EFAULT;
3740	}
3741
3742	return ret;
3743}
3744#endif
3745
3746#ifdef CONFIG_COMPAT
3747COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3748		struct compat_siginfo __user *, uinfo,
3749		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750{
3751	sigset_t s;
3752	struct timespec64 t;
3753	kernel_siginfo_t info;
3754	long ret;
3755
3756	if (sigsetsize != sizeof(sigset_t))
3757		return -EINVAL;
3758
3759	if (get_compat_sigset(&s, uthese))
3760		return -EFAULT;
3761
3762	if (uts) {
3763		if (get_timespec64(&t, uts))
3764			return -EFAULT;
3765	}
3766
3767	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3768
3769	if (ret > 0 && uinfo) {
3770		if (copy_siginfo_to_user32(uinfo, &info))
3771			ret = -EFAULT;
3772	}
3773
3774	return ret;
3775}
3776
3777#ifdef CONFIG_COMPAT_32BIT_TIME
3778COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3779		struct compat_siginfo __user *, uinfo,
3780		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781{
3782	sigset_t s;
3783	struct timespec64 t;
3784	kernel_siginfo_t info;
3785	long ret;
3786
3787	if (sigsetsize != sizeof(sigset_t))
3788		return -EINVAL;
3789
3790	if (get_compat_sigset(&s, uthese))
3791		return -EFAULT;
3792
3793	if (uts) {
3794		if (get_old_timespec32(&t, uts))
3795			return -EFAULT;
3796	}
3797
3798	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3799
3800	if (ret > 0 && uinfo) {
3801		if (copy_siginfo_to_user32(uinfo, &info))
3802			ret = -EFAULT;
3803	}
3804
3805	return ret;
3806}
3807#endif
3808#endif
3809
3810static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811				 enum pid_type type)
3812{
3813	clear_siginfo(info);
3814	info->si_signo = sig;
3815	info->si_errno = 0;
3816	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3817	info->si_pid = task_tgid_vnr(current);
3818	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3819}
3820
3821/**
3822 *  sys_kill - send a signal to a process
3823 *  @pid: the PID of the process
3824 *  @sig: signal to be sent
3825 */
3826SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3827{
3828	struct kernel_siginfo info;
3829
3830	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3831
3832	return kill_something_info(sig, &info, pid);
3833}
3834
3835/*
3836 * Verify that the signaler and signalee either are in the same pid namespace
3837 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838 * namespace.
3839 */
3840static bool access_pidfd_pidns(struct pid *pid)
3841{
3842	struct pid_namespace *active = task_active_pid_ns(current);
3843	struct pid_namespace *p = ns_of_pid(pid);
3844
3845	for (;;) {
3846		if (!p)
3847			return false;
3848		if (p == active)
3849			break;
3850		p = p->parent;
3851	}
3852
3853	return true;
3854}
3855
3856static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3857		siginfo_t __user *info)
3858{
3859#ifdef CONFIG_COMPAT
3860	/*
3861	 * Avoid hooking up compat syscalls and instead handle necessary
3862	 * conversions here. Note, this is a stop-gap measure and should not be
3863	 * considered a generic solution.
3864	 */
3865	if (in_compat_syscall())
3866		return copy_siginfo_from_user32(
3867			kinfo, (struct compat_siginfo __user *)info);
3868#endif
3869	return copy_siginfo_from_user(kinfo, info);
3870}
3871
3872static struct pid *pidfd_to_pid(const struct file *file)
3873{
3874	struct pid *pid;
3875
3876	pid = pidfd_pid(file);
3877	if (!IS_ERR(pid))
3878		return pid;
3879
3880	return tgid_pidfd_to_pid(file);
3881}
3882
3883#define PIDFD_SEND_SIGNAL_FLAGS                            \
3884	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3885	 PIDFD_SIGNAL_PROCESS_GROUP)
3886
3887/**
3888 * sys_pidfd_send_signal - Signal a process through a pidfd
3889 * @pidfd:  file descriptor of the process
3890 * @sig:    signal to send
3891 * @info:   signal info
3892 * @flags:  future flags
3893 *
3894 * Send the signal to the thread group or to the individual thread depending
3895 * on PIDFD_THREAD.
3896 * In the future extension to @flags may be used to override the default scope
3897 * of @pidfd.
 
 
 
 
3898 *
3899 * Return: 0 on success, negative errno on failure
3900 */
3901SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3902		siginfo_t __user *, info, unsigned int, flags)
3903{
3904	int ret;
3905	struct fd f;
3906	struct pid *pid;
3907	kernel_siginfo_t kinfo;
3908	enum pid_type type;
3909
3910	/* Enforce flags be set to 0 until we add an extension. */
3911	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912		return -EINVAL;
3913
3914	/* Ensure that only a single signal scope determining flag is set. */
3915	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3916		return -EINVAL;
3917
3918	f = fdget(pidfd);
3919	if (!f.file)
3920		return -EBADF;
3921
3922	/* Is this a pidfd? */
3923	pid = pidfd_to_pid(f.file);
3924	if (IS_ERR(pid)) {
3925		ret = PTR_ERR(pid);
3926		goto err;
3927	}
3928
3929	ret = -EINVAL;
3930	if (!access_pidfd_pidns(pid))
3931		goto err;
3932
3933	switch (flags) {
3934	case 0:
3935		/* Infer scope from the type of pidfd. */
3936		if (f.file->f_flags & PIDFD_THREAD)
3937			type = PIDTYPE_PID;
3938		else
3939			type = PIDTYPE_TGID;
3940		break;
3941	case PIDFD_SIGNAL_THREAD:
3942		type = PIDTYPE_PID;
3943		break;
3944	case PIDFD_SIGNAL_THREAD_GROUP:
3945		type = PIDTYPE_TGID;
3946		break;
3947	case PIDFD_SIGNAL_PROCESS_GROUP:
3948		type = PIDTYPE_PGID;
3949		break;
3950	}
3951
3952	if (info) {
3953		ret = copy_siginfo_from_user_any(&kinfo, info);
3954		if (unlikely(ret))
3955			goto err;
3956
3957		ret = -EINVAL;
3958		if (unlikely(sig != kinfo.si_signo))
3959			goto err;
3960
3961		/* Only allow sending arbitrary signals to yourself. */
3962		ret = -EPERM;
3963		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3964		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965			goto err;
3966	} else {
3967		prepare_kill_siginfo(sig, &kinfo, type);
3968	}
3969
3970	if (type == PIDTYPE_PGID)
3971		ret = kill_pgrp_info(sig, &kinfo, pid);
3972	else
3973		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3974err:
3975	fdput(f);
3976	return ret;
3977}
3978
3979static int
3980do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3981{
3982	struct task_struct *p;
3983	int error = -ESRCH;
3984
3985	rcu_read_lock();
3986	p = find_task_by_vpid(pid);
3987	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3988		error = check_kill_permission(sig, info, p);
3989		/*
3990		 * The null signal is a permissions and process existence
3991		 * probe.  No signal is actually delivered.
3992		 */
3993		if (!error && sig) {
3994			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3995			/*
3996			 * If lock_task_sighand() failed we pretend the task
3997			 * dies after receiving the signal. The window is tiny,
3998			 * and the signal is private anyway.
3999			 */
4000			if (unlikely(error == -ESRCH))
4001				error = 0;
4002		}
4003	}
4004	rcu_read_unlock();
4005
4006	return error;
4007}
4008
4009static int do_tkill(pid_t tgid, pid_t pid, int sig)
4010{
4011	struct kernel_siginfo info;
4012
4013	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
 
 
 
 
 
4014
4015	return do_send_specific(tgid, pid, sig, &info);
4016}
4017
4018/**
4019 *  sys_tgkill - send signal to one specific thread
4020 *  @tgid: the thread group ID of the thread
4021 *  @pid: the PID of the thread
4022 *  @sig: signal to be sent
4023 *
4024 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4025 *  exists but it's not belonging to the target process anymore. This
4026 *  method solves the problem of threads exiting and PIDs getting reused.
4027 */
4028SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4029{
4030	/* This is only valid for single tasks */
4031	if (pid <= 0 || tgid <= 0)
4032		return -EINVAL;
4033
4034	return do_tkill(tgid, pid, sig);
4035}
4036
4037/**
4038 *  sys_tkill - send signal to one specific task
4039 *  @pid: the PID of the task
4040 *  @sig: signal to be sent
4041 *
4042 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4043 */
4044SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4045{
4046	/* This is only valid for single tasks */
4047	if (pid <= 0)
4048		return -EINVAL;
4049
4050	return do_tkill(0, pid, sig);
4051}
4052
4053static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4054{
4055	/* Not even root can pretend to send signals from the kernel.
4056	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057	 */
4058	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059	    (task_pid_vnr(current) != pid))
4060		return -EPERM;
4061
4062	/* POSIX.1b doesn't mention process groups.  */
4063	return kill_proc_info(sig, info, pid);
4064}
4065
4066/**
4067 *  sys_rt_sigqueueinfo - send signal information to a signal
4068 *  @pid: the PID of the thread
4069 *  @sig: signal to be sent
4070 *  @uinfo: signal info to be sent
4071 */
4072SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4073		siginfo_t __user *, uinfo)
4074{
4075	kernel_siginfo_t info;
4076	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077	if (unlikely(ret))
4078		return ret;
4079	return do_rt_sigqueueinfo(pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084			compat_pid_t, pid,
4085			int, sig,
4086			struct compat_siginfo __user *, uinfo)
4087{
4088	kernel_siginfo_t info;
4089	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090	if (unlikely(ret))
4091		return ret;
4092	return do_rt_sigqueueinfo(pid, sig, &info);
4093}
4094#endif
4095
4096static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4097{
4098	/* This is only valid for single tasks */
4099	if (pid <= 0 || tgid <= 0)
4100		return -EINVAL;
4101
4102	/* Not even root can pretend to send signals from the kernel.
4103	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4104	 */
4105	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4106	    (task_pid_vnr(current) != pid))
4107		return -EPERM;
4108
4109	return do_send_specific(tgid, pid, sig, info);
4110}
4111
4112SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4113		siginfo_t __user *, uinfo)
4114{
4115	kernel_siginfo_t info;
4116	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117	if (unlikely(ret))
4118		return ret;
4119	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120}
4121
4122#ifdef CONFIG_COMPAT
4123COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4124			compat_pid_t, tgid,
4125			compat_pid_t, pid,
4126			int, sig,
4127			struct compat_siginfo __user *, uinfo)
4128{
4129	kernel_siginfo_t info;
4130	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131	if (unlikely(ret))
4132		return ret;
4133	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4134}
4135#endif
4136
4137/*
4138 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4139 */
4140void kernel_sigaction(int sig, __sighandler_t action)
4141{
4142	spin_lock_irq(&current->sighand->siglock);
4143	current->sighand->action[sig - 1].sa.sa_handler = action;
4144	if (action == SIG_IGN) {
4145		sigset_t mask;
4146
4147		sigemptyset(&mask);
4148		sigaddset(&mask, sig);
4149
4150		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4151		flush_sigqueue_mask(&mask, &current->pending);
4152		recalc_sigpending();
4153	}
4154	spin_unlock_irq(&current->sighand->siglock);
4155}
4156EXPORT_SYMBOL(kernel_sigaction);
4157
4158void __weak sigaction_compat_abi(struct k_sigaction *act,
4159		struct k_sigaction *oact)
4160{
4161}
4162
4163int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4164{
4165	struct task_struct *p = current, *t;
4166	struct k_sigaction *k;
4167	sigset_t mask;
4168
4169	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170		return -EINVAL;
4171
4172	k = &p->sighand->action[sig-1];
4173
4174	spin_lock_irq(&p->sighand->siglock);
4175	if (k->sa.sa_flags & SA_IMMUTABLE) {
4176		spin_unlock_irq(&p->sighand->siglock);
4177		return -EINVAL;
4178	}
4179	if (oact)
4180		*oact = *k;
4181
4182	/*
4183	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4184	 * e.g. by having an architecture use the bit in their uapi.
4185	 */
4186	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187
4188	/*
4189	 * Clear unknown flag bits in order to allow userspace to detect missing
4190	 * support for flag bits and to allow the kernel to use non-uapi bits
4191	 * internally.
4192	 */
4193	if (act)
4194		act->sa.sa_flags &= UAPI_SA_FLAGS;
4195	if (oact)
4196		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4197
4198	sigaction_compat_abi(act, oact);
4199
4200	if (act) {
4201		sigdelsetmask(&act->sa.sa_mask,
4202			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4203		*k = *act;
4204		/*
4205		 * POSIX 3.3.1.3:
4206		 *  "Setting a signal action to SIG_IGN for a signal that is
4207		 *   pending shall cause the pending signal to be discarded,
4208		 *   whether or not it is blocked."
4209		 *
4210		 *  "Setting a signal action to SIG_DFL for a signal that is
4211		 *   pending and whose default action is to ignore the signal
4212		 *   (for example, SIGCHLD), shall cause the pending signal to
4213		 *   be discarded, whether or not it is blocked"
4214		 */
4215		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4216			sigemptyset(&mask);
4217			sigaddset(&mask, sig);
4218			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4219			for_each_thread(p, t)
4220				flush_sigqueue_mask(&mask, &t->pending);
4221		}
4222	}
4223
4224	spin_unlock_irq(&p->sighand->siglock);
4225	return 0;
4226}
4227
4228#ifdef CONFIG_DYNAMIC_SIGFRAME
4229static inline void sigaltstack_lock(void)
4230	__acquires(&current->sighand->siglock)
4231{
4232	spin_lock_irq(&current->sighand->siglock);
4233}
4234
4235static inline void sigaltstack_unlock(void)
4236	__releases(&current->sighand->siglock)
4237{
4238	spin_unlock_irq(&current->sighand->siglock);
4239}
4240#else
4241static inline void sigaltstack_lock(void) { }
4242static inline void sigaltstack_unlock(void) { }
4243#endif
4244
4245static int
4246do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247		size_t min_ss_size)
4248{
4249	struct task_struct *t = current;
4250	int ret = 0;
4251
4252	if (oss) {
4253		memset(oss, 0, sizeof(stack_t));
4254		oss->ss_sp = (void __user *) t->sas_ss_sp;
4255		oss->ss_size = t->sas_ss_size;
4256		oss->ss_flags = sas_ss_flags(sp) |
4257			(current->sas_ss_flags & SS_FLAG_BITS);
4258	}
4259
4260	if (ss) {
4261		void __user *ss_sp = ss->ss_sp;
4262		size_t ss_size = ss->ss_size;
4263		unsigned ss_flags = ss->ss_flags;
4264		int ss_mode;
4265
4266		if (unlikely(on_sig_stack(sp)))
4267			return -EPERM;
4268
4269		ss_mode = ss_flags & ~SS_FLAG_BITS;
4270		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4271				ss_mode != 0))
4272			return -EINVAL;
4273
4274		/*
4275		 * Return before taking any locks if no actual
4276		 * sigaltstack changes were requested.
4277		 */
4278		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4279		    t->sas_ss_size == ss_size &&
4280		    t->sas_ss_flags == ss_flags)
4281			return 0;
4282
4283		sigaltstack_lock();
4284		if (ss_mode == SS_DISABLE) {
4285			ss_size = 0;
4286			ss_sp = NULL;
4287		} else {
4288			if (unlikely(ss_size < min_ss_size))
4289				ret = -ENOMEM;
4290			if (!sigaltstack_size_valid(ss_size))
4291				ret = -ENOMEM;
4292		}
4293		if (!ret) {
4294			t->sas_ss_sp = (unsigned long) ss_sp;
4295			t->sas_ss_size = ss_size;
4296			t->sas_ss_flags = ss_flags;
4297		}
4298		sigaltstack_unlock();
4299	}
4300	return ret;
4301}
4302
4303SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4304{
4305	stack_t new, old;
4306	int err;
4307	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4308		return -EFAULT;
4309	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4310			      current_user_stack_pointer(),
4311			      MINSIGSTKSZ);
4312	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4313		err = -EFAULT;
4314	return err;
4315}
4316
4317int restore_altstack(const stack_t __user *uss)
4318{
4319	stack_t new;
4320	if (copy_from_user(&new, uss, sizeof(stack_t)))
4321		return -EFAULT;
4322	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4323			     MINSIGSTKSZ);
4324	/* squash all but EFAULT for now */
4325	return 0;
4326}
4327
4328int __save_altstack(stack_t __user *uss, unsigned long sp)
4329{
4330	struct task_struct *t = current;
4331	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4332		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4333		__put_user(t->sas_ss_size, &uss->ss_size);
4334	return err;
4335}
4336
4337#ifdef CONFIG_COMPAT
4338static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4339				 compat_stack_t __user *uoss_ptr)
4340{
4341	stack_t uss, uoss;
4342	int ret;
4343
4344	if (uss_ptr) {
4345		compat_stack_t uss32;
4346		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4347			return -EFAULT;
4348		uss.ss_sp = compat_ptr(uss32.ss_sp);
4349		uss.ss_flags = uss32.ss_flags;
4350		uss.ss_size = uss32.ss_size;
4351	}
4352	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4353			     compat_user_stack_pointer(),
4354			     COMPAT_MINSIGSTKSZ);
4355	if (ret >= 0 && uoss_ptr)  {
4356		compat_stack_t old;
4357		memset(&old, 0, sizeof(old));
4358		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4359		old.ss_flags = uoss.ss_flags;
4360		old.ss_size = uoss.ss_size;
4361		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4362			ret = -EFAULT;
4363	}
4364	return ret;
4365}
4366
4367COMPAT_SYSCALL_DEFINE2(sigaltstack,
4368			const compat_stack_t __user *, uss_ptr,
4369			compat_stack_t __user *, uoss_ptr)
4370{
4371	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372}
4373
4374int compat_restore_altstack(const compat_stack_t __user *uss)
4375{
4376	int err = do_compat_sigaltstack(uss, NULL);
4377	/* squash all but -EFAULT for now */
4378	return err == -EFAULT ? err : 0;
4379}
4380
4381int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382{
4383	int err;
4384	struct task_struct *t = current;
4385	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4386			 &uss->ss_sp) |
4387		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4388		__put_user(t->sas_ss_size, &uss->ss_size);
4389	return err;
4390}
4391#endif
4392
4393#ifdef __ARCH_WANT_SYS_SIGPENDING
4394
4395/**
4396 *  sys_sigpending - examine pending signals
4397 *  @uset: where mask of pending signal is returned
4398 */
4399SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4400{
4401	sigset_t set;
4402
4403	if (sizeof(old_sigset_t) > sizeof(*uset))
4404		return -EINVAL;
4405
4406	do_sigpending(&set);
4407
4408	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4409		return -EFAULT;
4410
4411	return 0;
4412}
4413
4414#ifdef CONFIG_COMPAT
4415COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4416{
4417	sigset_t set;
4418
4419	do_sigpending(&set);
4420
4421	return put_user(set.sig[0], set32);
4422}
4423#endif
4424
4425#endif
4426
4427#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4428/**
4429 *  sys_sigprocmask - examine and change blocked signals
4430 *  @how: whether to add, remove, or set signals
4431 *  @nset: signals to add or remove (if non-null)
4432 *  @oset: previous value of signal mask if non-null
4433 *
4434 * Some platforms have their own version with special arguments;
4435 * others support only sys_rt_sigprocmask.
4436 */
4437
4438SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4439		old_sigset_t __user *, oset)
4440{
4441	old_sigset_t old_set, new_set;
4442	sigset_t new_blocked;
4443
4444	old_set = current->blocked.sig[0];
4445
4446	if (nset) {
4447		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448			return -EFAULT;
4449
4450		new_blocked = current->blocked;
4451
4452		switch (how) {
4453		case SIG_BLOCK:
4454			sigaddsetmask(&new_blocked, new_set);
4455			break;
4456		case SIG_UNBLOCK:
4457			sigdelsetmask(&new_blocked, new_set);
4458			break;
4459		case SIG_SETMASK:
4460			new_blocked.sig[0] = new_set;
4461			break;
4462		default:
4463			return -EINVAL;
4464		}
4465
4466		set_current_blocked(&new_blocked);
4467	}
4468
4469	if (oset) {
4470		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4471			return -EFAULT;
4472	}
4473
4474	return 0;
4475}
4476#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4477
4478#ifndef CONFIG_ODD_RT_SIGACTION
4479/**
4480 *  sys_rt_sigaction - alter an action taken by a process
4481 *  @sig: signal to be sent
4482 *  @act: new sigaction
4483 *  @oact: used to save the previous sigaction
4484 *  @sigsetsize: size of sigset_t type
4485 */
4486SYSCALL_DEFINE4(rt_sigaction, int, sig,
4487		const struct sigaction __user *, act,
4488		struct sigaction __user *, oact,
4489		size_t, sigsetsize)
4490{
4491	struct k_sigaction new_sa, old_sa;
4492	int ret;
4493
4494	/* XXX: Don't preclude handling different sized sigset_t's.  */
4495	if (sigsetsize != sizeof(sigset_t))
4496		return -EINVAL;
4497
4498	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499		return -EFAULT;
4500
4501	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4502	if (ret)
4503		return ret;
4504
4505	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4506		return -EFAULT;
4507
4508	return 0;
4509}
4510#ifdef CONFIG_COMPAT
4511COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512		const struct compat_sigaction __user *, act,
4513		struct compat_sigaction __user *, oact,
4514		compat_size_t, sigsetsize)
4515{
4516	struct k_sigaction new_ka, old_ka;
4517#ifdef __ARCH_HAS_SA_RESTORER
4518	compat_uptr_t restorer;
4519#endif
4520	int ret;
4521
4522	/* XXX: Don't preclude handling different sized sigset_t's.  */
4523	if (sigsetsize != sizeof(compat_sigset_t))
4524		return -EINVAL;
4525
4526	if (act) {
4527		compat_uptr_t handler;
4528		ret = get_user(handler, &act->sa_handler);
4529		new_ka.sa.sa_handler = compat_ptr(handler);
4530#ifdef __ARCH_HAS_SA_RESTORER
4531		ret |= get_user(restorer, &act->sa_restorer);
4532		new_ka.sa.sa_restorer = compat_ptr(restorer);
4533#endif
4534		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4535		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4536		if (ret)
4537			return -EFAULT;
4538	}
4539
4540	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4541	if (!ret && oact) {
4542		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4543			       &oact->sa_handler);
4544		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4545					 sizeof(oact->sa_mask));
4546		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4547#ifdef __ARCH_HAS_SA_RESTORER
4548		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549				&oact->sa_restorer);
4550#endif
4551	}
4552	return ret;
4553}
4554#endif
4555#endif /* !CONFIG_ODD_RT_SIGACTION */
4556
4557#ifdef CONFIG_OLD_SIGACTION
4558SYSCALL_DEFINE3(sigaction, int, sig,
4559		const struct old_sigaction __user *, act,
4560	        struct old_sigaction __user *, oact)
4561{
4562	struct k_sigaction new_ka, old_ka;
4563	int ret;
4564
4565	if (act) {
4566		old_sigset_t mask;
4567		if (!access_ok(act, sizeof(*act)) ||
4568		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4569		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4570		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4571		    __get_user(mask, &act->sa_mask))
4572			return -EFAULT;
4573#ifdef __ARCH_HAS_KA_RESTORER
4574		new_ka.ka_restorer = NULL;
4575#endif
4576		siginitset(&new_ka.sa.sa_mask, mask);
4577	}
4578
4579	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581	if (!ret && oact) {
4582		if (!access_ok(oact, sizeof(*oact)) ||
4583		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4584		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4585		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4586		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4587			return -EFAULT;
4588	}
4589
4590	return ret;
4591}
4592#endif
4593#ifdef CONFIG_COMPAT_OLD_SIGACTION
4594COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4595		const struct compat_old_sigaction __user *, act,
4596	        struct compat_old_sigaction __user *, oact)
4597{
4598	struct k_sigaction new_ka, old_ka;
4599	int ret;
4600	compat_old_sigset_t mask;
4601	compat_uptr_t handler, restorer;
4602
4603	if (act) {
4604		if (!access_ok(act, sizeof(*act)) ||
4605		    __get_user(handler, &act->sa_handler) ||
4606		    __get_user(restorer, &act->sa_restorer) ||
4607		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4608		    __get_user(mask, &act->sa_mask))
4609			return -EFAULT;
4610
4611#ifdef __ARCH_HAS_KA_RESTORER
4612		new_ka.ka_restorer = NULL;
4613#endif
4614		new_ka.sa.sa_handler = compat_ptr(handler);
4615		new_ka.sa.sa_restorer = compat_ptr(restorer);
4616		siginitset(&new_ka.sa.sa_mask, mask);
4617	}
4618
4619	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620
4621	if (!ret && oact) {
4622		if (!access_ok(oact, sizeof(*oact)) ||
4623		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4624			       &oact->sa_handler) ||
4625		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4626			       &oact->sa_restorer) ||
4627		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4628		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4629			return -EFAULT;
4630	}
4631	return ret;
4632}
4633#endif
4634
4635#ifdef CONFIG_SGETMASK_SYSCALL
4636
4637/*
4638 * For backwards compatibility.  Functionality superseded by sigprocmask.
4639 */
4640SYSCALL_DEFINE0(sgetmask)
4641{
4642	/* SMP safe */
4643	return current->blocked.sig[0];
4644}
4645
4646SYSCALL_DEFINE1(ssetmask, int, newmask)
4647{
4648	int old = current->blocked.sig[0];
4649	sigset_t newset;
4650
4651	siginitset(&newset, newmask);
4652	set_current_blocked(&newset);
4653
4654	return old;
4655}
4656#endif /* CONFIG_SGETMASK_SYSCALL */
4657
4658#ifdef __ARCH_WANT_SYS_SIGNAL
4659/*
4660 * For backwards compatibility.  Functionality superseded by sigaction.
4661 */
4662SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4663{
4664	struct k_sigaction new_sa, old_sa;
4665	int ret;
4666
4667	new_sa.sa.sa_handler = handler;
4668	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4669	sigemptyset(&new_sa.sa.sa_mask);
4670
4671	ret = do_sigaction(sig, &new_sa, &old_sa);
4672
4673	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4674}
4675#endif /* __ARCH_WANT_SYS_SIGNAL */
4676
4677#ifdef __ARCH_WANT_SYS_PAUSE
4678
4679SYSCALL_DEFINE0(pause)
4680{
4681	while (!signal_pending(current)) {
4682		__set_current_state(TASK_INTERRUPTIBLE);
4683		schedule();
4684	}
4685	return -ERESTARTNOHAND;
4686}
4687
4688#endif
4689
4690static int sigsuspend(sigset_t *set)
4691{
4692	current->saved_sigmask = current->blocked;
4693	set_current_blocked(set);
4694
4695	while (!signal_pending(current)) {
4696		__set_current_state(TASK_INTERRUPTIBLE);
4697		schedule();
4698	}
4699	set_restore_sigmask();
4700	return -ERESTARTNOHAND;
4701}
4702
4703/**
4704 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4705 *	@unewset value until a signal is received
4706 *  @unewset: new signal mask value
4707 *  @sigsetsize: size of sigset_t type
4708 */
4709SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4710{
4711	sigset_t newset;
4712
4713	/* XXX: Don't preclude handling different sized sigset_t's.  */
4714	if (sigsetsize != sizeof(sigset_t))
4715		return -EINVAL;
4716
4717	if (copy_from_user(&newset, unewset, sizeof(newset)))
4718		return -EFAULT;
4719	return sigsuspend(&newset);
4720}
4721 
4722#ifdef CONFIG_COMPAT
4723COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4724{
4725	sigset_t newset;
4726
4727	/* XXX: Don't preclude handling different sized sigset_t's.  */
4728	if (sigsetsize != sizeof(sigset_t))
4729		return -EINVAL;
4730
4731	if (get_compat_sigset(&newset, unewset))
4732		return -EFAULT;
4733	return sigsuspend(&newset);
4734}
4735#endif
4736
4737#ifdef CONFIG_OLD_SIGSUSPEND
4738SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739{
4740	sigset_t blocked;
4741	siginitset(&blocked, mask);
4742	return sigsuspend(&blocked);
4743}
4744#endif
4745#ifdef CONFIG_OLD_SIGSUSPEND3
4746SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747{
4748	sigset_t blocked;
4749	siginitset(&blocked, mask);
4750	return sigsuspend(&blocked);
4751}
4752#endif
4753
4754__weak const char *arch_vma_name(struct vm_area_struct *vma)
4755{
4756	return NULL;
4757}
4758
4759static inline void siginfo_buildtime_checks(void)
4760{
4761	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4762
4763	/* Verify the offsets in the two siginfos match */
4764#define CHECK_OFFSET(field) \
4765	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766
4767	/* kill */
4768	CHECK_OFFSET(si_pid);
4769	CHECK_OFFSET(si_uid);
4770
4771	/* timer */
4772	CHECK_OFFSET(si_tid);
4773	CHECK_OFFSET(si_overrun);
4774	CHECK_OFFSET(si_value);
4775
4776	/* rt */
4777	CHECK_OFFSET(si_pid);
4778	CHECK_OFFSET(si_uid);
4779	CHECK_OFFSET(si_value);
4780
4781	/* sigchld */
4782	CHECK_OFFSET(si_pid);
4783	CHECK_OFFSET(si_uid);
4784	CHECK_OFFSET(si_status);
4785	CHECK_OFFSET(si_utime);
4786	CHECK_OFFSET(si_stime);
4787
4788	/* sigfault */
4789	CHECK_OFFSET(si_addr);
4790	CHECK_OFFSET(si_trapno);
4791	CHECK_OFFSET(si_addr_lsb);
4792	CHECK_OFFSET(si_lower);
4793	CHECK_OFFSET(si_upper);
4794	CHECK_OFFSET(si_pkey);
4795	CHECK_OFFSET(si_perf_data);
4796	CHECK_OFFSET(si_perf_type);
4797	CHECK_OFFSET(si_perf_flags);
4798
4799	/* sigpoll */
4800	CHECK_OFFSET(si_band);
4801	CHECK_OFFSET(si_fd);
4802
4803	/* sigsys */
4804	CHECK_OFFSET(si_call_addr);
4805	CHECK_OFFSET(si_syscall);
4806	CHECK_OFFSET(si_arch);
4807#undef CHECK_OFFSET
4808
4809	/* usb asyncio */
4810	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4811		     offsetof(struct siginfo, si_addr));
4812	if (sizeof(int) == sizeof(void __user *)) {
4813		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4814			     sizeof(void __user *));
4815	} else {
4816		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4817			      sizeof_field(struct siginfo, si_uid)) !=
4818			     sizeof(void __user *));
4819		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4820			     offsetof(struct siginfo, si_uid));
4821	}
4822#ifdef CONFIG_COMPAT
4823	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4824		     offsetof(struct compat_siginfo, si_addr));
4825	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826		     sizeof(compat_uptr_t));
4827	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4828		     sizeof_field(struct siginfo, si_pid));
4829#endif
4830}
4831
4832#if defined(CONFIG_SYSCTL)
4833static struct ctl_table signal_debug_table[] = {
4834#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4835	{
4836		.procname	= "exception-trace",
4837		.data		= &show_unhandled_signals,
4838		.maxlen		= sizeof(int),
4839		.mode		= 0644,
4840		.proc_handler	= proc_dointvec
4841	},
4842#endif
4843	{ }
4844};
4845
4846static int __init init_signal_sysctls(void)
4847{
4848	register_sysctl_init("debug", signal_debug_table);
4849	return 0;
4850}
4851early_initcall(init_signal_sysctls);
4852#endif /* CONFIG_SYSCTL */
4853
4854void __init signals_init(void)
4855{
4856	siginfo_buildtime_checks();
4857
4858	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4859}
4860
4861#ifdef CONFIG_KGDB_KDB
4862#include <linux/kdb.h>
4863/*
4864 * kdb_send_sig - Allows kdb to send signals without exposing
4865 * signal internals.  This function checks if the required locks are
4866 * available before calling the main signal code, to avoid kdb
4867 * deadlocks.
4868 */
4869void kdb_send_sig(struct task_struct *t, int sig)
4870{
4871	static struct task_struct *kdb_prev_t;
4872	int new_t, ret;
4873	if (!spin_trylock(&t->sighand->siglock)) {
4874		kdb_printf("Can't do kill command now.\n"
4875			   "The sigmask lock is held somewhere else in "
4876			   "kernel, try again later\n");
4877		return;
4878	}
4879	new_t = kdb_prev_t != t;
4880	kdb_prev_t = t;
4881	if (!task_is_running(t) && new_t) {
4882		spin_unlock(&t->sighand->siglock);
4883		kdb_printf("Process is not RUNNING, sending a signal from "
4884			   "kdb risks deadlock\n"
4885			   "on the run queue locks. "
4886			   "The signal has _not_ been sent.\n"
4887			   "Reissue the kill command if you want to risk "
4888			   "the deadlock.\n");
4889		return;
4890	}
4891	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4892	spin_unlock(&t->sighand->siglock);
4893	if (ret)
4894		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4895			   sig, t->pid);
4896	else
4897		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4898}
4899#endif	/* CONFIG_KGDB_KDB */