Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
 
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 
 
 
 
 
 
 
 
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 802}
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
 
 
 
 
 
 
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
1393			break;
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
 
 
 
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
 
 
 
 
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
 
 
 
 
 
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
 
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
 
 
 
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
 
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
 
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
 
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
 
 
 
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
 
 
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
2303	 */
2304	preempt_disable();
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
2308	schedule();
2309	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
 
2574	if (signr == 0)
2575		return signr;
2576
 
 
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
 
 
 
 
 
 
 
 
 
 
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
 
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
3233	sigset_t set;
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
 
 
 
 
 
 
 
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
3415		to->si_addr_lsb = from->si_addr_lsb;
 
 
 
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
 
 
 
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
 
 
 
 
 
 
 
 
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
3454{
3455	struct compat_siginfo new;
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
 
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
 
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
3985		return -EPERM;
3986
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
4032		return -EPERM;
4033
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
 
 
 
4224	}
4225	return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
 
 
 
 
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
4265{
4266	stack_t uss, uoss;
4267	int ret;
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
 
 
 
 
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650	sigset_t newset;
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
4658	return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 
 
 
 
 
 
 
 
 
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 
 
 
 
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 424	rcu_read_unlock();
 
 
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 441	}
 442
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 
 
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 
 624{
 625	bool resched_timer = false;
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 632	if (!signr) {
 
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 
 
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
 
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
 
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
 
 
 
 
 
 
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
 
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
 
 
1317		if (blocked) {
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
1372			break;
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
 
 
 
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
1812
1813	return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
1860		goto out;
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
 
 
 
 
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
 
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
 
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
 
 
 
 
 
 
 
 
 
2140	set_special_state(TASK_TRACED);
 
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
 
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
 
2239	current->last_siginfo = NULL;
 
 
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
 
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
 
 
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
 
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
 
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
 
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
 
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2521bool get_signal(struct ksignal *ksig)
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
 
2528		task_work_run();
2529
 
 
 
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
 
2542	/*
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
 
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
 
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
 
 
 
 
 
 
 
 
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
 
 
 
 
 
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
 
 
 
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044	sigset_t old_set = current->blocked;
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
3101	sigset_t set;
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
 
 
 
 
 
 
 
 
 
3164		}
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
3211		}
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
 
 
 
 
 
 
 
 
 
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
 
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
 
 
 
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
 
 
 
 
 
 
3317
 
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
 
 
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
 
 
 
 
 
 
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
3437	sigset_t mask = *which;
 
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
 
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
3846		return -EPERM;
3847
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
3893		return -EPERM;
3894
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3961	if (oact)
3962		*oact = *k;
3963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
 
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
4012		int ss_mode;
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
4021
 
 
 
 
 
 
 
 
 
 
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
 
 
 
 
 
 
 
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
4033	}
4034	return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
4078{
4079	stack_t uss, uoss;
4080	int ret;
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467	sigset_t newset;
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
4475	return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
 
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
 
 
 
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */