Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "block-group.h"
21#include "space-info.h"
22#include "zoned.h"
23#include "inode-item.h"
24#include "fs.h"
25#include "accessors.h"
26#include "extent-tree.h"
27#include "root-tree.h"
28#include "dir-item.h"
29#include "file-item.h"
30#include "file.h"
31#include "orphan.h"
32#include "tree-checker.h"
33
34#define MAX_CONFLICT_INODES 10
35
36/* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
42enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
45};
46
47/*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
90/*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
99enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104};
105
106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 struct btrfs_inode *inode,
108 int inode_only,
109 struct btrfs_log_ctx *ctx);
110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
118static void wait_log_commit(struct btrfs_root *root, int transid);
119
120/*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
143/*
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
147 */
148static int start_log_trans(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
151{
152 struct btrfs_fs_info *fs_info = root->fs_info;
153 struct btrfs_root *tree_root = fs_info->tree_root;
154 const bool zoned = btrfs_is_zoned(fs_info);
155 int ret = 0;
156 bool created = false;
157
158 /*
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
161 */
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
166 if (!ret) {
167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
168 created = true;
169 }
170 }
171 mutex_unlock(&tree_root->log_mutex);
172 if (ret)
173 return ret;
174 }
175
176 mutex_lock(&root->log_mutex);
177
178again:
179 if (root->log_root) {
180 int index = (root->log_transid + 1) % 2;
181
182 if (btrfs_need_log_full_commit(trans)) {
183 ret = BTRFS_LOG_FORCE_COMMIT;
184 goto out;
185 }
186
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
189 goto again;
190 }
191
192 if (!root->log_start_pid) {
193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194 root->log_start_pid = current->pid;
195 } else if (root->log_start_pid != current->pid) {
196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
197 }
198 } else {
199 /*
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
203 * writing.
204 */
205 if (zoned && !created) {
206 ret = BTRFS_LOG_FORCE_COMMIT;
207 goto out;
208 }
209
210 ret = btrfs_add_log_tree(trans, root);
211 if (ret)
212 goto out;
213
214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
217 }
218
219 atomic_inc(&root->log_writers);
220 if (!ctx->logging_new_name) {
221 int index = root->log_transid % 2;
222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
223 ctx->log_transid = root->log_transid;
224 }
225
226out:
227 mutex_unlock(&root->log_mutex);
228 return ret;
229}
230
231/*
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
234 * in progress
235 */
236static int join_running_log_trans(struct btrfs_root *root)
237{
238 const bool zoned = btrfs_is_zoned(root->fs_info);
239 int ret = -ENOENT;
240
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 return ret;
243
244 mutex_lock(&root->log_mutex);
245again:
246 if (root->log_root) {
247 int index = (root->log_transid + 1) % 2;
248
249 ret = 0;
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
252 goto again;
253 }
254 atomic_inc(&root->log_writers);
255 }
256 mutex_unlock(&root->log_mutex);
257 return ret;
258}
259
260/*
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
264 */
265void btrfs_pin_log_trans(struct btrfs_root *root)
266{
267 atomic_inc(&root->log_writers);
268}
269
270/*
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
273 */
274void btrfs_end_log_trans(struct btrfs_root *root)
275{
276 if (atomic_dec_and_test(&root->log_writers)) {
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
279 }
280}
281
282static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
283{
284 filemap_fdatawait_range(buf->pages[0]->mapping,
285 buf->start, buf->start + buf->len - 1);
286}
287
288/*
289 * the walk control struct is used to pass state down the chain when
290 * processing the log tree. The stage field tells us which part
291 * of the log tree processing we are currently doing. The others
292 * are state fields used for that specific part
293 */
294struct walk_control {
295 /* should we free the extent on disk when done? This is used
296 * at transaction commit time while freeing a log tree
297 */
298 int free;
299
300 /* pin only walk, we record which extents on disk belong to the
301 * log trees
302 */
303 int pin;
304
305 /* what stage of the replay code we're currently in */
306 int stage;
307
308 /*
309 * Ignore any items from the inode currently being processed. Needs
310 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
311 * the LOG_WALK_REPLAY_INODES stage.
312 */
313 bool ignore_cur_inode;
314
315 /* the root we are currently replaying */
316 struct btrfs_root *replay_dest;
317
318 /* the trans handle for the current replay */
319 struct btrfs_trans_handle *trans;
320
321 /* the function that gets used to process blocks we find in the
322 * tree. Note the extent_buffer might not be up to date when it is
323 * passed in, and it must be checked or read if you need the data
324 * inside it
325 */
326 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
327 struct walk_control *wc, u64 gen, int level);
328};
329
330/*
331 * process_func used to pin down extents, write them or wait on them
332 */
333static int process_one_buffer(struct btrfs_root *log,
334 struct extent_buffer *eb,
335 struct walk_control *wc, u64 gen, int level)
336{
337 struct btrfs_fs_info *fs_info = log->fs_info;
338 int ret = 0;
339
340 /*
341 * If this fs is mixed then we need to be able to process the leaves to
342 * pin down any logged extents, so we have to read the block.
343 */
344 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
345 struct btrfs_tree_parent_check check = {
346 .level = level,
347 .transid = gen
348 };
349
350 ret = btrfs_read_extent_buffer(eb, &check);
351 if (ret)
352 return ret;
353 }
354
355 if (wc->pin) {
356 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
357 eb->len);
358 if (ret)
359 return ret;
360
361 if (btrfs_buffer_uptodate(eb, gen, 0) &&
362 btrfs_header_level(eb) == 0)
363 ret = btrfs_exclude_logged_extents(eb);
364 }
365 return ret;
366}
367
368/*
369 * Item overwrite used by replay and tree logging. eb, slot and key all refer
370 * to the src data we are copying out.
371 *
372 * root is the tree we are copying into, and path is a scratch
373 * path for use in this function (it should be released on entry and
374 * will be released on exit).
375 *
376 * If the key is already in the destination tree the existing item is
377 * overwritten. If the existing item isn't big enough, it is extended.
378 * If it is too large, it is truncated.
379 *
380 * If the key isn't in the destination yet, a new item is inserted.
381 */
382static int overwrite_item(struct btrfs_trans_handle *trans,
383 struct btrfs_root *root,
384 struct btrfs_path *path,
385 struct extent_buffer *eb, int slot,
386 struct btrfs_key *key)
387{
388 int ret;
389 u32 item_size;
390 u64 saved_i_size = 0;
391 int save_old_i_size = 0;
392 unsigned long src_ptr;
393 unsigned long dst_ptr;
394 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
395
396 /*
397 * This is only used during log replay, so the root is always from a
398 * fs/subvolume tree. In case we ever need to support a log root, then
399 * we'll have to clone the leaf in the path, release the path and use
400 * the leaf before writing into the log tree. See the comments at
401 * copy_items() for more details.
402 */
403 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
404
405 item_size = btrfs_item_size(eb, slot);
406 src_ptr = btrfs_item_ptr_offset(eb, slot);
407
408 /* Look for the key in the destination tree. */
409 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
410 if (ret < 0)
411 return ret;
412
413 if (ret == 0) {
414 char *src_copy;
415 char *dst_copy;
416 u32 dst_size = btrfs_item_size(path->nodes[0],
417 path->slots[0]);
418 if (dst_size != item_size)
419 goto insert;
420
421 if (item_size == 0) {
422 btrfs_release_path(path);
423 return 0;
424 }
425 dst_copy = kmalloc(item_size, GFP_NOFS);
426 src_copy = kmalloc(item_size, GFP_NOFS);
427 if (!dst_copy || !src_copy) {
428 btrfs_release_path(path);
429 kfree(dst_copy);
430 kfree(src_copy);
431 return -ENOMEM;
432 }
433
434 read_extent_buffer(eb, src_copy, src_ptr, item_size);
435
436 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
437 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
438 item_size);
439 ret = memcmp(dst_copy, src_copy, item_size);
440
441 kfree(dst_copy);
442 kfree(src_copy);
443 /*
444 * they have the same contents, just return, this saves
445 * us from cowing blocks in the destination tree and doing
446 * extra writes that may not have been done by a previous
447 * sync
448 */
449 if (ret == 0) {
450 btrfs_release_path(path);
451 return 0;
452 }
453
454 /*
455 * We need to load the old nbytes into the inode so when we
456 * replay the extents we've logged we get the right nbytes.
457 */
458 if (inode_item) {
459 struct btrfs_inode_item *item;
460 u64 nbytes;
461 u32 mode;
462
463 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
464 struct btrfs_inode_item);
465 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
466 item = btrfs_item_ptr(eb, slot,
467 struct btrfs_inode_item);
468 btrfs_set_inode_nbytes(eb, item, nbytes);
469
470 /*
471 * If this is a directory we need to reset the i_size to
472 * 0 so that we can set it up properly when replaying
473 * the rest of the items in this log.
474 */
475 mode = btrfs_inode_mode(eb, item);
476 if (S_ISDIR(mode))
477 btrfs_set_inode_size(eb, item, 0);
478 }
479 } else if (inode_item) {
480 struct btrfs_inode_item *item;
481 u32 mode;
482
483 /*
484 * New inode, set nbytes to 0 so that the nbytes comes out
485 * properly when we replay the extents.
486 */
487 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
488 btrfs_set_inode_nbytes(eb, item, 0);
489
490 /*
491 * If this is a directory we need to reset the i_size to 0 so
492 * that we can set it up properly when replaying the rest of
493 * the items in this log.
494 */
495 mode = btrfs_inode_mode(eb, item);
496 if (S_ISDIR(mode))
497 btrfs_set_inode_size(eb, item, 0);
498 }
499insert:
500 btrfs_release_path(path);
501 /* try to insert the key into the destination tree */
502 path->skip_release_on_error = 1;
503 ret = btrfs_insert_empty_item(trans, root, path,
504 key, item_size);
505 path->skip_release_on_error = 0;
506
507 /* make sure any existing item is the correct size */
508 if (ret == -EEXIST || ret == -EOVERFLOW) {
509 u32 found_size;
510 found_size = btrfs_item_size(path->nodes[0],
511 path->slots[0]);
512 if (found_size > item_size)
513 btrfs_truncate_item(path, item_size, 1);
514 else if (found_size < item_size)
515 btrfs_extend_item(path, item_size - found_size);
516 } else if (ret) {
517 return ret;
518 }
519 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
520 path->slots[0]);
521
522 /* don't overwrite an existing inode if the generation number
523 * was logged as zero. This is done when the tree logging code
524 * is just logging an inode to make sure it exists after recovery.
525 *
526 * Also, don't overwrite i_size on directories during replay.
527 * log replay inserts and removes directory items based on the
528 * state of the tree found in the subvolume, and i_size is modified
529 * as it goes
530 */
531 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
532 struct btrfs_inode_item *src_item;
533 struct btrfs_inode_item *dst_item;
534
535 src_item = (struct btrfs_inode_item *)src_ptr;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537
538 if (btrfs_inode_generation(eb, src_item) == 0) {
539 struct extent_buffer *dst_eb = path->nodes[0];
540 const u64 ino_size = btrfs_inode_size(eb, src_item);
541
542 /*
543 * For regular files an ino_size == 0 is used only when
544 * logging that an inode exists, as part of a directory
545 * fsync, and the inode wasn't fsynced before. In this
546 * case don't set the size of the inode in the fs/subvol
547 * tree, otherwise we would be throwing valid data away.
548 */
549 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
550 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
551 ino_size != 0)
552 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
553 goto no_copy;
554 }
555
556 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
557 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
558 save_old_i_size = 1;
559 saved_i_size = btrfs_inode_size(path->nodes[0],
560 dst_item);
561 }
562 }
563
564 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
565 src_ptr, item_size);
566
567 if (save_old_i_size) {
568 struct btrfs_inode_item *dst_item;
569 dst_item = (struct btrfs_inode_item *)dst_ptr;
570 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
571 }
572
573 /* make sure the generation is filled in */
574 if (key->type == BTRFS_INODE_ITEM_KEY) {
575 struct btrfs_inode_item *dst_item;
576 dst_item = (struct btrfs_inode_item *)dst_ptr;
577 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
578 btrfs_set_inode_generation(path->nodes[0], dst_item,
579 trans->transid);
580 }
581 }
582no_copy:
583 btrfs_mark_buffer_dirty(path->nodes[0]);
584 btrfs_release_path(path);
585 return 0;
586}
587
588static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
589 struct fscrypt_str *name)
590{
591 char *buf;
592
593 buf = kmalloc(len, GFP_NOFS);
594 if (!buf)
595 return -ENOMEM;
596
597 read_extent_buffer(eb, buf, (unsigned long)start, len);
598 name->name = buf;
599 name->len = len;
600 return 0;
601}
602
603/*
604 * simple helper to read an inode off the disk from a given root
605 * This can only be called for subvolume roots and not for the log
606 */
607static noinline struct inode *read_one_inode(struct btrfs_root *root,
608 u64 objectid)
609{
610 struct inode *inode;
611
612 inode = btrfs_iget(root->fs_info->sb, objectid, root);
613 if (IS_ERR(inode))
614 inode = NULL;
615 return inode;
616}
617
618/* replays a single extent in 'eb' at 'slot' with 'key' into the
619 * subvolume 'root'. path is released on entry and should be released
620 * on exit.
621 *
622 * extents in the log tree have not been allocated out of the extent
623 * tree yet. So, this completes the allocation, taking a reference
624 * as required if the extent already exists or creating a new extent
625 * if it isn't in the extent allocation tree yet.
626 *
627 * The extent is inserted into the file, dropping any existing extents
628 * from the file that overlap the new one.
629 */
630static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path,
633 struct extent_buffer *eb, int slot,
634 struct btrfs_key *key)
635{
636 struct btrfs_drop_extents_args drop_args = { 0 };
637 struct btrfs_fs_info *fs_info = root->fs_info;
638 int found_type;
639 u64 extent_end;
640 u64 start = key->offset;
641 u64 nbytes = 0;
642 struct btrfs_file_extent_item *item;
643 struct inode *inode = NULL;
644 unsigned long size;
645 int ret = 0;
646
647 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 found_type = btrfs_file_extent_type(eb, item);
649
650 if (found_type == BTRFS_FILE_EXTENT_REG ||
651 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 nbytes = btrfs_file_extent_num_bytes(eb, item);
653 extent_end = start + nbytes;
654
655 /*
656 * We don't add to the inodes nbytes if we are prealloc or a
657 * hole.
658 */
659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
660 nbytes = 0;
661 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
662 size = btrfs_file_extent_ram_bytes(eb, item);
663 nbytes = btrfs_file_extent_ram_bytes(eb, item);
664 extent_end = ALIGN(start + size,
665 fs_info->sectorsize);
666 } else {
667 ret = 0;
668 goto out;
669 }
670
671 inode = read_one_inode(root, key->objectid);
672 if (!inode) {
673 ret = -EIO;
674 goto out;
675 }
676
677 /*
678 * first check to see if we already have this extent in the
679 * file. This must be done before the btrfs_drop_extents run
680 * so we don't try to drop this extent.
681 */
682 ret = btrfs_lookup_file_extent(trans, root, path,
683 btrfs_ino(BTRFS_I(inode)), start, 0);
684
685 if (ret == 0 &&
686 (found_type == BTRFS_FILE_EXTENT_REG ||
687 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
688 struct btrfs_file_extent_item cmp1;
689 struct btrfs_file_extent_item cmp2;
690 struct btrfs_file_extent_item *existing;
691 struct extent_buffer *leaf;
692
693 leaf = path->nodes[0];
694 existing = btrfs_item_ptr(leaf, path->slots[0],
695 struct btrfs_file_extent_item);
696
697 read_extent_buffer(eb, &cmp1, (unsigned long)item,
698 sizeof(cmp1));
699 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
700 sizeof(cmp2));
701
702 /*
703 * we already have a pointer to this exact extent,
704 * we don't have to do anything
705 */
706 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
707 btrfs_release_path(path);
708 goto out;
709 }
710 }
711 btrfs_release_path(path);
712
713 /* drop any overlapping extents */
714 drop_args.start = start;
715 drop_args.end = extent_end;
716 drop_args.drop_cache = true;
717 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
718 if (ret)
719 goto out;
720
721 if (found_type == BTRFS_FILE_EXTENT_REG ||
722 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
723 u64 offset;
724 unsigned long dest_offset;
725 struct btrfs_key ins;
726
727 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
728 btrfs_fs_incompat(fs_info, NO_HOLES))
729 goto update_inode;
730
731 ret = btrfs_insert_empty_item(trans, root, path, key,
732 sizeof(*item));
733 if (ret)
734 goto out;
735 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
736 path->slots[0]);
737 copy_extent_buffer(path->nodes[0], eb, dest_offset,
738 (unsigned long)item, sizeof(*item));
739
740 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
741 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
742 ins.type = BTRFS_EXTENT_ITEM_KEY;
743 offset = key->offset - btrfs_file_extent_offset(eb, item);
744
745 /*
746 * Manually record dirty extent, as here we did a shallow
747 * file extent item copy and skip normal backref update,
748 * but modifying extent tree all by ourselves.
749 * So need to manually record dirty extent for qgroup,
750 * as the owner of the file extent changed from log tree
751 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
752 */
753 ret = btrfs_qgroup_trace_extent(trans,
754 btrfs_file_extent_disk_bytenr(eb, item),
755 btrfs_file_extent_disk_num_bytes(eb, item));
756 if (ret < 0)
757 goto out;
758
759 if (ins.objectid > 0) {
760 struct btrfs_ref ref = { 0 };
761 u64 csum_start;
762 u64 csum_end;
763 LIST_HEAD(ordered_sums);
764
765 /*
766 * is this extent already allocated in the extent
767 * allocation tree? If so, just add a reference
768 */
769 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
770 ins.offset);
771 if (ret < 0) {
772 goto out;
773 } else if (ret == 0) {
774 btrfs_init_generic_ref(&ref,
775 BTRFS_ADD_DELAYED_REF,
776 ins.objectid, ins.offset, 0);
777 btrfs_init_data_ref(&ref,
778 root->root_key.objectid,
779 key->objectid, offset, 0, false);
780 ret = btrfs_inc_extent_ref(trans, &ref);
781 if (ret)
782 goto out;
783 } else {
784 /*
785 * insert the extent pointer in the extent
786 * allocation tree
787 */
788 ret = btrfs_alloc_logged_file_extent(trans,
789 root->root_key.objectid,
790 key->objectid, offset, &ins);
791 if (ret)
792 goto out;
793 }
794 btrfs_release_path(path);
795
796 if (btrfs_file_extent_compression(eb, item)) {
797 csum_start = ins.objectid;
798 csum_end = csum_start + ins.offset;
799 } else {
800 csum_start = ins.objectid +
801 btrfs_file_extent_offset(eb, item);
802 csum_end = csum_start +
803 btrfs_file_extent_num_bytes(eb, item);
804 }
805
806 ret = btrfs_lookup_csums_list(root->log_root,
807 csum_start, csum_end - 1,
808 &ordered_sums, 0, false);
809 if (ret)
810 goto out;
811 /*
812 * Now delete all existing cums in the csum root that
813 * cover our range. We do this because we can have an
814 * extent that is completely referenced by one file
815 * extent item and partially referenced by another
816 * file extent item (like after using the clone or
817 * extent_same ioctls). In this case if we end up doing
818 * the replay of the one that partially references the
819 * extent first, and we do not do the csum deletion
820 * below, we can get 2 csum items in the csum tree that
821 * overlap each other. For example, imagine our log has
822 * the two following file extent items:
823 *
824 * key (257 EXTENT_DATA 409600)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 20480 nr 20480 ram 102400
827 *
828 * key (257 EXTENT_DATA 819200)
829 * extent data disk byte 12845056 nr 102400
830 * extent data offset 0 nr 102400 ram 102400
831 *
832 * Where the second one fully references the 100K extent
833 * that starts at disk byte 12845056, and the log tree
834 * has a single csum item that covers the entire range
835 * of the extent:
836 *
837 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
838 *
839 * After the first file extent item is replayed, the
840 * csum tree gets the following csum item:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
843 *
844 * Which covers the 20K sub-range starting at offset 20K
845 * of our extent. Now when we replay the second file
846 * extent item, if we do not delete existing csum items
847 * that cover any of its blocks, we end up getting two
848 * csum items in our csum tree that overlap each other:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
852 *
853 * Which is a problem, because after this anyone trying
854 * to lookup up for the checksum of any block of our
855 * extent starting at an offset of 40K or higher, will
856 * end up looking at the second csum item only, which
857 * does not contain the checksum for any block starting
858 * at offset 40K or higher of our extent.
859 */
860 while (!list_empty(&ordered_sums)) {
861 struct btrfs_ordered_sum *sums;
862 struct btrfs_root *csum_root;
863
864 sums = list_entry(ordered_sums.next,
865 struct btrfs_ordered_sum,
866 list);
867 csum_root = btrfs_csum_root(fs_info,
868 sums->bytenr);
869 if (!ret)
870 ret = btrfs_del_csums(trans, csum_root,
871 sums->bytenr,
872 sums->len);
873 if (!ret)
874 ret = btrfs_csum_file_blocks(trans,
875 csum_root,
876 sums);
877 list_del(&sums->list);
878 kfree(sums);
879 }
880 if (ret)
881 goto out;
882 } else {
883 btrfs_release_path(path);
884 }
885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
886 /* inline extents are easy, we just overwrite them */
887 ret = overwrite_item(trans, root, path, eb, slot, key);
888 if (ret)
889 goto out;
890 }
891
892 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
893 extent_end - start);
894 if (ret)
895 goto out;
896
897update_inode:
898 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
899 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
900out:
901 iput(inode);
902 return ret;
903}
904
905static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
906 struct btrfs_inode *dir,
907 struct btrfs_inode *inode,
908 const struct fscrypt_str *name)
909{
910 int ret;
911
912 ret = btrfs_unlink_inode(trans, dir, inode, name);
913 if (ret)
914 return ret;
915 /*
916 * Whenever we need to check if a name exists or not, we check the
917 * fs/subvolume tree. So after an unlink we must run delayed items, so
918 * that future checks for a name during log replay see that the name
919 * does not exists anymore.
920 */
921 return btrfs_run_delayed_items(trans);
922}
923
924/*
925 * when cleaning up conflicts between the directory names in the
926 * subvolume, directory names in the log and directory names in the
927 * inode back references, we may have to unlink inodes from directories.
928 *
929 * This is a helper function to do the unlink of a specific directory
930 * item
931 */
932static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
933 struct btrfs_path *path,
934 struct btrfs_inode *dir,
935 struct btrfs_dir_item *di)
936{
937 struct btrfs_root *root = dir->root;
938 struct inode *inode;
939 struct fscrypt_str name;
940 struct extent_buffer *leaf;
941 struct btrfs_key location;
942 int ret;
943
944 leaf = path->nodes[0];
945
946 btrfs_dir_item_key_to_cpu(leaf, di, &location);
947 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
948 if (ret)
949 return -ENOMEM;
950
951 btrfs_release_path(path);
952
953 inode = read_one_inode(root, location.objectid);
954 if (!inode) {
955 ret = -EIO;
956 goto out;
957 }
958
959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 if (ret)
961 goto out;
962
963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
964out:
965 kfree(name.name);
966 iput(inode);
967 return ret;
968}
969
970/*
971 * See if a given name and sequence number found in an inode back reference are
972 * already in a directory and correctly point to this inode.
973 *
974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
975 * exists.
976 */
977static noinline int inode_in_dir(struct btrfs_root *root,
978 struct btrfs_path *path,
979 u64 dirid, u64 objectid, u64 index,
980 struct fscrypt_str *name)
981{
982 struct btrfs_dir_item *di;
983 struct btrfs_key location;
984 int ret = 0;
985
986 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
987 index, name, 0);
988 if (IS_ERR(di)) {
989 ret = PTR_ERR(di);
990 goto out;
991 } else if (di) {
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid != objectid)
994 goto out;
995 } else {
996 goto out;
997 }
998
999 btrfs_release_path(path);
1000 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid == objectid)
1007 ret = 1;
1008 }
1009out:
1010 btrfs_release_path(path);
1011 return ret;
1012}
1013
1014/*
1015 * helper function to check a log tree for a named back reference in
1016 * an inode. This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1018 *
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1023 */
1024static noinline int backref_in_log(struct btrfs_root *log,
1025 struct btrfs_key *key,
1026 u64 ref_objectid,
1027 const struct fscrypt_str *name)
1028{
1029 struct btrfs_path *path;
1030 int ret;
1031
1032 path = btrfs_alloc_path();
1033 if (!path)
1034 return -ENOMEM;
1035
1036 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1037 if (ret < 0) {
1038 goto out;
1039 } else if (ret == 1) {
1040 ret = 0;
1041 goto out;
1042 }
1043
1044 if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046 path->slots[0],
1047 ref_objectid, name);
1048 else
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050 path->slots[0], name);
1051out:
1052 btrfs_free_path(path);
1053 return ret;
1054}
1055
1056static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1057 struct btrfs_root *root,
1058 struct btrfs_path *path,
1059 struct btrfs_root *log_root,
1060 struct btrfs_inode *dir,
1061 struct btrfs_inode *inode,
1062 u64 inode_objectid, u64 parent_objectid,
1063 u64 ref_index, struct fscrypt_str *name)
1064{
1065 int ret;
1066 struct extent_buffer *leaf;
1067 struct btrfs_dir_item *di;
1068 struct btrfs_key search_key;
1069 struct btrfs_inode_extref *extref;
1070
1071again:
1072 /* Search old style refs */
1073 search_key.objectid = inode_objectid;
1074 search_key.type = BTRFS_INODE_REF_KEY;
1075 search_key.offset = parent_objectid;
1076 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1077 if (ret == 0) {
1078 struct btrfs_inode_ref *victim_ref;
1079 unsigned long ptr;
1080 unsigned long ptr_end;
1081
1082 leaf = path->nodes[0];
1083
1084 /* are we trying to overwrite a back ref for the root directory
1085 * if so, just jump out, we're done
1086 */
1087 if (search_key.objectid == search_key.offset)
1088 return 1;
1089
1090 /* check all the names in this back reference to see
1091 * if they are in the log. if so, we allow them to stay
1092 * otherwise they must be unlinked as a conflict
1093 */
1094 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1095 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1096 while (ptr < ptr_end) {
1097 struct fscrypt_str victim_name;
1098
1099 victim_ref = (struct btrfs_inode_ref *)ptr;
1100 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101 btrfs_inode_ref_name_len(leaf, victim_ref),
1102 &victim_name);
1103 if (ret)
1104 return ret;
1105
1106 ret = backref_in_log(log_root, &search_key,
1107 parent_objectid, &victim_name);
1108 if (ret < 0) {
1109 kfree(victim_name.name);
1110 return ret;
1111 } else if (!ret) {
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1114
1115 ret = unlink_inode_for_log_replay(trans, dir, inode,
1116 &victim_name);
1117 kfree(victim_name.name);
1118 if (ret)
1119 return ret;
1120 goto again;
1121 }
1122 kfree(victim_name.name);
1123
1124 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1125 }
1126 }
1127 btrfs_release_path(path);
1128
1129 /* Same search but for extended refs */
1130 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1131 inode_objectid, parent_objectid, 0,
1132 0);
1133 if (IS_ERR(extref)) {
1134 return PTR_ERR(extref);
1135 } else if (extref) {
1136 u32 item_size;
1137 u32 cur_offset = 0;
1138 unsigned long base;
1139 struct inode *victim_parent;
1140
1141 leaf = path->nodes[0];
1142
1143 item_size = btrfs_item_size(leaf, path->slots[0]);
1144 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1145
1146 while (cur_offset < item_size) {
1147 struct fscrypt_str victim_name;
1148
1149 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1150
1151 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1152 goto next;
1153
1154 ret = read_alloc_one_name(leaf, &extref->name,
1155 btrfs_inode_extref_name_len(leaf, extref),
1156 &victim_name);
1157 if (ret)
1158 return ret;
1159
1160 search_key.objectid = inode_objectid;
1161 search_key.type = BTRFS_INODE_EXTREF_KEY;
1162 search_key.offset = btrfs_extref_hash(parent_objectid,
1163 victim_name.name,
1164 victim_name.len);
1165 ret = backref_in_log(log_root, &search_key,
1166 parent_objectid, &victim_name);
1167 if (ret < 0) {
1168 kfree(victim_name.name);
1169 return ret;
1170 } else if (!ret) {
1171 ret = -ENOENT;
1172 victim_parent = read_one_inode(root,
1173 parent_objectid);
1174 if (victim_parent) {
1175 inc_nlink(&inode->vfs_inode);
1176 btrfs_release_path(path);
1177
1178 ret = unlink_inode_for_log_replay(trans,
1179 BTRFS_I(victim_parent),
1180 inode, &victim_name);
1181 }
1182 iput(victim_parent);
1183 kfree(victim_name.name);
1184 if (ret)
1185 return ret;
1186 goto again;
1187 }
1188 kfree(victim_name.name);
1189next:
1190 cur_offset += victim_name.len + sizeof(*extref);
1191 }
1192 }
1193 btrfs_release_path(path);
1194
1195 /* look for a conflicting sequence number */
1196 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1197 ref_index, name, 0);
1198 if (IS_ERR(di)) {
1199 return PTR_ERR(di);
1200 } else if (di) {
1201 ret = drop_one_dir_item(trans, path, dir, di);
1202 if (ret)
1203 return ret;
1204 }
1205 btrfs_release_path(path);
1206
1207 /* look for a conflicting name */
1208 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1209 if (IS_ERR(di)) {
1210 return PTR_ERR(di);
1211 } else if (di) {
1212 ret = drop_one_dir_item(trans, path, dir, di);
1213 if (ret)
1214 return ret;
1215 }
1216 btrfs_release_path(path);
1217
1218 return 0;
1219}
1220
1221static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1222 struct fscrypt_str *name, u64 *index,
1223 u64 *parent_objectid)
1224{
1225 struct btrfs_inode_extref *extref;
1226 int ret;
1227
1228 extref = (struct btrfs_inode_extref *)ref_ptr;
1229
1230 ret = read_alloc_one_name(eb, &extref->name,
1231 btrfs_inode_extref_name_len(eb, extref), name);
1232 if (ret)
1233 return ret;
1234
1235 if (index)
1236 *index = btrfs_inode_extref_index(eb, extref);
1237 if (parent_objectid)
1238 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1239
1240 return 0;
1241}
1242
1243static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 struct fscrypt_str *name, u64 *index)
1245{
1246 struct btrfs_inode_ref *ref;
1247 int ret;
1248
1249 ref = (struct btrfs_inode_ref *)ref_ptr;
1250
1251 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1252 name);
1253 if (ret)
1254 return ret;
1255
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
1258
1259 return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1295 while (ref_ptr < ref_end) {
1296 struct fscrypt_str name;
1297 u64 parent_id;
1298
1299 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1300 ret = extref_get_fields(eb, ref_ptr, &name,
1301 NULL, &parent_id);
1302 } else {
1303 parent_id = key->offset;
1304 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1305 }
1306 if (ret)
1307 goto out;
1308
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1311 parent_id, &name);
1312 else
1313 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1314
1315 if (!ret) {
1316 struct inode *dir;
1317
1318 btrfs_release_path(path);
1319 dir = read_one_inode(root, parent_id);
1320 if (!dir) {
1321 ret = -ENOENT;
1322 kfree(name.name);
1323 goto out;
1324 }
1325 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1326 inode, &name);
1327 kfree(name.name);
1328 iput(dir);
1329 if (ret)
1330 goto out;
1331 goto again;
1332 }
1333
1334 kfree(name.name);
1335 ref_ptr += name.len;
1336 if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 ref_ptr += sizeof(struct btrfs_inode_extref);
1338 else
1339 ref_ptr += sizeof(struct btrfs_inode_ref);
1340 }
1341 ret = 0;
1342 out:
1343 btrfs_release_path(path);
1344 return ret;
1345}
1346
1347/*
1348 * replay one inode back reference item found in the log tree.
1349 * eb, slot and key refer to the buffer and key found in the log tree.
1350 * root is the destination we are replaying into, and path is for temp
1351 * use by this function. (it should be released on return).
1352 */
1353static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354 struct btrfs_root *root,
1355 struct btrfs_root *log,
1356 struct btrfs_path *path,
1357 struct extent_buffer *eb, int slot,
1358 struct btrfs_key *key)
1359{
1360 struct inode *dir = NULL;
1361 struct inode *inode = NULL;
1362 unsigned long ref_ptr;
1363 unsigned long ref_end;
1364 struct fscrypt_str name;
1365 int ret;
1366 int log_ref_ver = 0;
1367 u64 parent_objectid;
1368 u64 inode_objectid;
1369 u64 ref_index = 0;
1370 int ref_struct_size;
1371
1372 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1373 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1374
1375 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376 struct btrfs_inode_extref *r;
1377
1378 ref_struct_size = sizeof(struct btrfs_inode_extref);
1379 log_ref_ver = 1;
1380 r = (struct btrfs_inode_extref *)ref_ptr;
1381 parent_objectid = btrfs_inode_extref_parent(eb, r);
1382 } else {
1383 ref_struct_size = sizeof(struct btrfs_inode_ref);
1384 parent_objectid = key->offset;
1385 }
1386 inode_objectid = key->objectid;
1387
1388 /*
1389 * it is possible that we didn't log all the parent directories
1390 * for a given inode. If we don't find the dir, just don't
1391 * copy the back ref in. The link count fixup code will take
1392 * care of the rest
1393 */
1394 dir = read_one_inode(root, parent_objectid);
1395 if (!dir) {
1396 ret = -ENOENT;
1397 goto out;
1398 }
1399
1400 inode = read_one_inode(root, inode_objectid);
1401 if (!inode) {
1402 ret = -EIO;
1403 goto out;
1404 }
1405
1406 while (ref_ptr < ref_end) {
1407 if (log_ref_ver) {
1408 ret = extref_get_fields(eb, ref_ptr, &name,
1409 &ref_index, &parent_objectid);
1410 /*
1411 * parent object can change from one array
1412 * item to another.
1413 */
1414 if (!dir)
1415 dir = read_one_inode(root, parent_objectid);
1416 if (!dir) {
1417 ret = -ENOENT;
1418 goto out;
1419 }
1420 } else {
1421 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1422 }
1423 if (ret)
1424 goto out;
1425
1426 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1427 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1428 if (ret < 0) {
1429 goto out;
1430 } else if (ret == 0) {
1431 /*
1432 * look for a conflicting back reference in the
1433 * metadata. if we find one we have to unlink that name
1434 * of the file before we add our new link. Later on, we
1435 * overwrite any existing back reference, and we don't
1436 * want to create dangling pointers in the directory.
1437 */
1438 ret = __add_inode_ref(trans, root, path, log,
1439 BTRFS_I(dir), BTRFS_I(inode),
1440 inode_objectid, parent_objectid,
1441 ref_index, &name);
1442 if (ret) {
1443 if (ret == 1)
1444 ret = 0;
1445 goto out;
1446 }
1447
1448 /* insert our name */
1449 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1450 &name, 0, ref_index);
1451 if (ret)
1452 goto out;
1453
1454 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1455 if (ret)
1456 goto out;
1457 }
1458 /* Else, ret == 1, we already have a perfect match, we're done. */
1459
1460 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1461 kfree(name.name);
1462 name.name = NULL;
1463 if (log_ref_ver) {
1464 iput(dir);
1465 dir = NULL;
1466 }
1467 }
1468
1469 /*
1470 * Before we overwrite the inode reference item in the subvolume tree
1471 * with the item from the log tree, we must unlink all names from the
1472 * parent directory that are in the subvolume's tree inode reference
1473 * item, otherwise we end up with an inconsistent subvolume tree where
1474 * dir index entries exist for a name but there is no inode reference
1475 * item with the same name.
1476 */
1477 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1478 key);
1479 if (ret)
1480 goto out;
1481
1482 /* finally write the back reference in the inode */
1483 ret = overwrite_item(trans, root, path, eb, slot, key);
1484out:
1485 btrfs_release_path(path);
1486 kfree(name.name);
1487 iput(dir);
1488 iput(inode);
1489 return ret;
1490}
1491
1492static int count_inode_extrefs(struct btrfs_root *root,
1493 struct btrfs_inode *inode, struct btrfs_path *path)
1494{
1495 int ret = 0;
1496 int name_len;
1497 unsigned int nlink = 0;
1498 u32 item_size;
1499 u32 cur_offset = 0;
1500 u64 inode_objectid = btrfs_ino(inode);
1501 u64 offset = 0;
1502 unsigned long ptr;
1503 struct btrfs_inode_extref *extref;
1504 struct extent_buffer *leaf;
1505
1506 while (1) {
1507 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1508 &extref, &offset);
1509 if (ret)
1510 break;
1511
1512 leaf = path->nodes[0];
1513 item_size = btrfs_item_size(leaf, path->slots[0]);
1514 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1515 cur_offset = 0;
1516
1517 while (cur_offset < item_size) {
1518 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519 name_len = btrfs_inode_extref_name_len(leaf, extref);
1520
1521 nlink++;
1522
1523 cur_offset += name_len + sizeof(*extref);
1524 }
1525
1526 offset++;
1527 btrfs_release_path(path);
1528 }
1529 btrfs_release_path(path);
1530
1531 if (ret < 0 && ret != -ENOENT)
1532 return ret;
1533 return nlink;
1534}
1535
1536static int count_inode_refs(struct btrfs_root *root,
1537 struct btrfs_inode *inode, struct btrfs_path *path)
1538{
1539 int ret;
1540 struct btrfs_key key;
1541 unsigned int nlink = 0;
1542 unsigned long ptr;
1543 unsigned long ptr_end;
1544 int name_len;
1545 u64 ino = btrfs_ino(inode);
1546
1547 key.objectid = ino;
1548 key.type = BTRFS_INODE_REF_KEY;
1549 key.offset = (u64)-1;
1550
1551 while (1) {
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 if (ret < 0)
1554 break;
1555 if (ret > 0) {
1556 if (path->slots[0] == 0)
1557 break;
1558 path->slots[0]--;
1559 }
1560process_slot:
1561 btrfs_item_key_to_cpu(path->nodes[0], &key,
1562 path->slots[0]);
1563 if (key.objectid != ino ||
1564 key.type != BTRFS_INODE_REF_KEY)
1565 break;
1566 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1567 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1568 path->slots[0]);
1569 while (ptr < ptr_end) {
1570 struct btrfs_inode_ref *ref;
1571
1572 ref = (struct btrfs_inode_ref *)ptr;
1573 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1574 ref);
1575 ptr = (unsigned long)(ref + 1) + name_len;
1576 nlink++;
1577 }
1578
1579 if (key.offset == 0)
1580 break;
1581 if (path->slots[0] > 0) {
1582 path->slots[0]--;
1583 goto process_slot;
1584 }
1585 key.offset--;
1586 btrfs_release_path(path);
1587 }
1588 btrfs_release_path(path);
1589
1590 return nlink;
1591}
1592
1593/*
1594 * There are a few corners where the link count of the file can't
1595 * be properly maintained during replay. So, instead of adding
1596 * lots of complexity to the log code, we just scan the backrefs
1597 * for any file that has been through replay.
1598 *
1599 * The scan will update the link count on the inode to reflect the
1600 * number of back refs found. If it goes down to zero, the iput
1601 * will free the inode.
1602 */
1603static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct inode *inode)
1606{
1607 struct btrfs_path *path;
1608 int ret;
1609 u64 nlink = 0;
1610 u64 ino = btrfs_ino(BTRFS_I(inode));
1611
1612 path = btrfs_alloc_path();
1613 if (!path)
1614 return -ENOMEM;
1615
1616 ret = count_inode_refs(root, BTRFS_I(inode), path);
1617 if (ret < 0)
1618 goto out;
1619
1620 nlink = ret;
1621
1622 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1623 if (ret < 0)
1624 goto out;
1625
1626 nlink += ret;
1627
1628 ret = 0;
1629
1630 if (nlink != inode->i_nlink) {
1631 set_nlink(inode, nlink);
1632 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1633 if (ret)
1634 goto out;
1635 }
1636 BTRFS_I(inode)->index_cnt = (u64)-1;
1637
1638 if (inode->i_nlink == 0) {
1639 if (S_ISDIR(inode->i_mode)) {
1640 ret = replay_dir_deletes(trans, root, NULL, path,
1641 ino, 1);
1642 if (ret)
1643 goto out;
1644 }
1645 ret = btrfs_insert_orphan_item(trans, root, ino);
1646 if (ret == -EEXIST)
1647 ret = 0;
1648 }
1649
1650out:
1651 btrfs_free_path(path);
1652 return ret;
1653}
1654
1655static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_path *path)
1658{
1659 int ret;
1660 struct btrfs_key key;
1661 struct inode *inode;
1662
1663 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664 key.type = BTRFS_ORPHAN_ITEM_KEY;
1665 key.offset = (u64)-1;
1666 while (1) {
1667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668 if (ret < 0)
1669 break;
1670
1671 if (ret == 1) {
1672 ret = 0;
1673 if (path->slots[0] == 0)
1674 break;
1675 path->slots[0]--;
1676 }
1677
1678 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680 key.type != BTRFS_ORPHAN_ITEM_KEY)
1681 break;
1682
1683 ret = btrfs_del_item(trans, root, path);
1684 if (ret)
1685 break;
1686
1687 btrfs_release_path(path);
1688 inode = read_one_inode(root, key.offset);
1689 if (!inode) {
1690 ret = -EIO;
1691 break;
1692 }
1693
1694 ret = fixup_inode_link_count(trans, root, inode);
1695 iput(inode);
1696 if (ret)
1697 break;
1698
1699 /*
1700 * fixup on a directory may create new entries,
1701 * make sure we always look for the highset possible
1702 * offset
1703 */
1704 key.offset = (u64)-1;
1705 }
1706 btrfs_release_path(path);
1707 return ret;
1708}
1709
1710
1711/*
1712 * record a given inode in the fixup dir so we can check its link
1713 * count when replay is done. The link count is incremented here
1714 * so the inode won't go away until we check it
1715 */
1716static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717 struct btrfs_root *root,
1718 struct btrfs_path *path,
1719 u64 objectid)
1720{
1721 struct btrfs_key key;
1722 int ret = 0;
1723 struct inode *inode;
1724
1725 inode = read_one_inode(root, objectid);
1726 if (!inode)
1727 return -EIO;
1728
1729 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1730 key.type = BTRFS_ORPHAN_ITEM_KEY;
1731 key.offset = objectid;
1732
1733 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1734
1735 btrfs_release_path(path);
1736 if (ret == 0) {
1737 if (!inode->i_nlink)
1738 set_nlink(inode, 1);
1739 else
1740 inc_nlink(inode);
1741 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1742 } else if (ret == -EEXIST) {
1743 ret = 0;
1744 }
1745 iput(inode);
1746
1747 return ret;
1748}
1749
1750/*
1751 * when replaying the log for a directory, we only insert names
1752 * for inodes that actually exist. This means an fsync on a directory
1753 * does not implicitly fsync all the new files in it
1754 */
1755static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 u64 dirid, u64 index,
1758 const struct fscrypt_str *name,
1759 struct btrfs_key *location)
1760{
1761 struct inode *inode;
1762 struct inode *dir;
1763 int ret;
1764
1765 inode = read_one_inode(root, location->objectid);
1766 if (!inode)
1767 return -ENOENT;
1768
1769 dir = read_one_inode(root, dirid);
1770 if (!dir) {
1771 iput(inode);
1772 return -EIO;
1773 }
1774
1775 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1776 1, index);
1777
1778 /* FIXME, put inode into FIXUP list */
1779
1780 iput(inode);
1781 iput(dir);
1782 return ret;
1783}
1784
1785static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786 struct btrfs_inode *dir,
1787 struct btrfs_path *path,
1788 struct btrfs_dir_item *dst_di,
1789 const struct btrfs_key *log_key,
1790 u8 log_flags,
1791 bool exists)
1792{
1793 struct btrfs_key found_key;
1794
1795 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796 /* The existing dentry points to the same inode, don't delete it. */
1797 if (found_key.objectid == log_key->objectid &&
1798 found_key.type == log_key->type &&
1799 found_key.offset == log_key->offset &&
1800 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1801 return 1;
1802
1803 /*
1804 * Don't drop the conflicting directory entry if the inode for the new
1805 * entry doesn't exist.
1806 */
1807 if (!exists)
1808 return 0;
1809
1810 return drop_one_dir_item(trans, path, dir, dst_di);
1811}
1812
1813/*
1814 * take a single entry in a log directory item and replay it into
1815 * the subvolume.
1816 *
1817 * if a conflicting item exists in the subdirectory already,
1818 * the inode it points to is unlinked and put into the link count
1819 * fix up tree.
1820 *
1821 * If a name from the log points to a file or directory that does
1822 * not exist in the FS, it is skipped. fsyncs on directories
1823 * do not force down inodes inside that directory, just changes to the
1824 * names or unlinks in a directory.
1825 *
1826 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827 * non-existing inode) and 1 if the name was replayed.
1828 */
1829static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct btrfs_path *path,
1832 struct extent_buffer *eb,
1833 struct btrfs_dir_item *di,
1834 struct btrfs_key *key)
1835{
1836 struct fscrypt_str name;
1837 struct btrfs_dir_item *dir_dst_di;
1838 struct btrfs_dir_item *index_dst_di;
1839 bool dir_dst_matches = false;
1840 bool index_dst_matches = false;
1841 struct btrfs_key log_key;
1842 struct btrfs_key search_key;
1843 struct inode *dir;
1844 u8 log_flags;
1845 bool exists;
1846 int ret;
1847 bool update_size = true;
1848 bool name_added = false;
1849
1850 dir = read_one_inode(root, key->objectid);
1851 if (!dir)
1852 return -EIO;
1853
1854 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1855 if (ret)
1856 goto out;
1857
1858 log_flags = btrfs_dir_flags(eb, di);
1859 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1860 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1861 btrfs_release_path(path);
1862 if (ret < 0)
1863 goto out;
1864 exists = (ret == 0);
1865 ret = 0;
1866
1867 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1868 &name, 1);
1869 if (IS_ERR(dir_dst_di)) {
1870 ret = PTR_ERR(dir_dst_di);
1871 goto out;
1872 } else if (dir_dst_di) {
1873 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1874 dir_dst_di, &log_key,
1875 log_flags, exists);
1876 if (ret < 0)
1877 goto out;
1878 dir_dst_matches = (ret == 1);
1879 }
1880
1881 btrfs_release_path(path);
1882
1883 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884 key->objectid, key->offset,
1885 &name, 1);
1886 if (IS_ERR(index_dst_di)) {
1887 ret = PTR_ERR(index_dst_di);
1888 goto out;
1889 } else if (index_dst_di) {
1890 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891 index_dst_di, &log_key,
1892 log_flags, exists);
1893 if (ret < 0)
1894 goto out;
1895 index_dst_matches = (ret == 1);
1896 }
1897
1898 btrfs_release_path(path);
1899
1900 if (dir_dst_matches && index_dst_matches) {
1901 ret = 0;
1902 update_size = false;
1903 goto out;
1904 }
1905
1906 /*
1907 * Check if the inode reference exists in the log for the given name,
1908 * inode and parent inode
1909 */
1910 search_key.objectid = log_key.objectid;
1911 search_key.type = BTRFS_INODE_REF_KEY;
1912 search_key.offset = key->objectid;
1913 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1914 if (ret < 0) {
1915 goto out;
1916 } else if (ret) {
1917 /* The dentry will be added later. */
1918 ret = 0;
1919 update_size = false;
1920 goto out;
1921 }
1922
1923 search_key.objectid = log_key.objectid;
1924 search_key.type = BTRFS_INODE_EXTREF_KEY;
1925 search_key.offset = key->objectid;
1926 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1927 if (ret < 0) {
1928 goto out;
1929 } else if (ret) {
1930 /* The dentry will be added later. */
1931 ret = 0;
1932 update_size = false;
1933 goto out;
1934 }
1935 btrfs_release_path(path);
1936 ret = insert_one_name(trans, root, key->objectid, key->offset,
1937 &name, &log_key);
1938 if (ret && ret != -ENOENT && ret != -EEXIST)
1939 goto out;
1940 if (!ret)
1941 name_added = true;
1942 update_size = false;
1943 ret = 0;
1944
1945out:
1946 if (!ret && update_size) {
1947 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1948 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1949 }
1950 kfree(name.name);
1951 iput(dir);
1952 if (!ret && name_added)
1953 ret = 1;
1954 return ret;
1955}
1956
1957/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1958static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_path *path,
1961 struct extent_buffer *eb, int slot,
1962 struct btrfs_key *key)
1963{
1964 int ret;
1965 struct btrfs_dir_item *di;
1966
1967 /* We only log dir index keys, which only contain a single dir item. */
1968 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1969
1970 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971 ret = replay_one_name(trans, root, path, eb, di, key);
1972 if (ret < 0)
1973 return ret;
1974
1975 /*
1976 * If this entry refers to a non-directory (directories can not have a
1977 * link count > 1) and it was added in the transaction that was not
1978 * committed, make sure we fixup the link count of the inode the entry
1979 * points to. Otherwise something like the following would result in a
1980 * directory pointing to an inode with a wrong link that does not account
1981 * for this dir entry:
1982 *
1983 * mkdir testdir
1984 * touch testdir/foo
1985 * touch testdir/bar
1986 * sync
1987 *
1988 * ln testdir/bar testdir/bar_link
1989 * ln testdir/foo testdir/foo_link
1990 * xfs_io -c "fsync" testdir/bar
1991 *
1992 * <power failure>
1993 *
1994 * mount fs, log replay happens
1995 *
1996 * File foo would remain with a link count of 1 when it has two entries
1997 * pointing to it in the directory testdir. This would make it impossible
1998 * to ever delete the parent directory has it would result in stale
1999 * dentries that can never be deleted.
2000 */
2001 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2002 struct btrfs_path *fixup_path;
2003 struct btrfs_key di_key;
2004
2005 fixup_path = btrfs_alloc_path();
2006 if (!fixup_path)
2007 return -ENOMEM;
2008
2009 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011 btrfs_free_path(fixup_path);
2012 }
2013
2014 return ret;
2015}
2016
2017/*
2018 * directory replay has two parts. There are the standard directory
2019 * items in the log copied from the subvolume, and range items
2020 * created in the log while the subvolume was logged.
2021 *
2022 * The range items tell us which parts of the key space the log
2023 * is authoritative for. During replay, if a key in the subvolume
2024 * directory is in a logged range item, but not actually in the log
2025 * that means it was deleted from the directory before the fsync
2026 * and should be removed.
2027 */
2028static noinline int find_dir_range(struct btrfs_root *root,
2029 struct btrfs_path *path,
2030 u64 dirid,
2031 u64 *start_ret, u64 *end_ret)
2032{
2033 struct btrfs_key key;
2034 u64 found_end;
2035 struct btrfs_dir_log_item *item;
2036 int ret;
2037 int nritems;
2038
2039 if (*start_ret == (u64)-1)
2040 return 1;
2041
2042 key.objectid = dirid;
2043 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2044 key.offset = *start_ret;
2045
2046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2047 if (ret < 0)
2048 goto out;
2049 if (ret > 0) {
2050 if (path->slots[0] == 0)
2051 goto out;
2052 path->slots[0]--;
2053 }
2054 if (ret != 0)
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2058 ret = 1;
2059 goto next;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064
2065 if (*start_ret >= key.offset && *start_ret <= found_end) {
2066 ret = 0;
2067 *start_ret = key.offset;
2068 *end_ret = found_end;
2069 goto out;
2070 }
2071 ret = 1;
2072next:
2073 /* check the next slot in the tree to see if it is a valid item */
2074 nritems = btrfs_header_nritems(path->nodes[0]);
2075 path->slots[0]++;
2076 if (path->slots[0] >= nritems) {
2077 ret = btrfs_next_leaf(root, path);
2078 if (ret)
2079 goto out;
2080 }
2081
2082 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2083
2084 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2085 ret = 1;
2086 goto out;
2087 }
2088 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089 struct btrfs_dir_log_item);
2090 found_end = btrfs_dir_log_end(path->nodes[0], item);
2091 *start_ret = key.offset;
2092 *end_ret = found_end;
2093 ret = 0;
2094out:
2095 btrfs_release_path(path);
2096 return ret;
2097}
2098
2099/*
2100 * this looks for a given directory item in the log. If the directory
2101 * item is not in the log, the item is removed and the inode it points
2102 * to is unlinked
2103 */
2104static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *log,
2106 struct btrfs_path *path,
2107 struct btrfs_path *log_path,
2108 struct inode *dir,
2109 struct btrfs_key *dir_key)
2110{
2111 struct btrfs_root *root = BTRFS_I(dir)->root;
2112 int ret;
2113 struct extent_buffer *eb;
2114 int slot;
2115 struct btrfs_dir_item *di;
2116 struct fscrypt_str name;
2117 struct inode *inode = NULL;
2118 struct btrfs_key location;
2119
2120 /*
2121 * Currently we only log dir index keys. Even if we replay a log created
2122 * by an older kernel that logged both dir index and dir item keys, all
2123 * we need to do is process the dir index keys, we (and our caller) can
2124 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2125 */
2126 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2127
2128 eb = path->nodes[0];
2129 slot = path->slots[0];
2130 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2131 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2132 if (ret)
2133 goto out;
2134
2135 if (log) {
2136 struct btrfs_dir_item *log_di;
2137
2138 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2139 dir_key->objectid,
2140 dir_key->offset, &name, 0);
2141 if (IS_ERR(log_di)) {
2142 ret = PTR_ERR(log_di);
2143 goto out;
2144 } else if (log_di) {
2145 /* The dentry exists in the log, we have nothing to do. */
2146 ret = 0;
2147 goto out;
2148 }
2149 }
2150
2151 btrfs_dir_item_key_to_cpu(eb, di, &location);
2152 btrfs_release_path(path);
2153 btrfs_release_path(log_path);
2154 inode = read_one_inode(root, location.objectid);
2155 if (!inode) {
2156 ret = -EIO;
2157 goto out;
2158 }
2159
2160 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2161 if (ret)
2162 goto out;
2163
2164 inc_nlink(inode);
2165 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2166 &name);
2167 /*
2168 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169 * them, as there are no key collisions since each key has a unique offset
2170 * (an index number), so we're done.
2171 */
2172out:
2173 btrfs_release_path(path);
2174 btrfs_release_path(log_path);
2175 kfree(name.name);
2176 iput(inode);
2177 return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size(path->nodes[0], i);
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2293{
2294 u64 range_start;
2295 u64 range_end;
2296 int ret = 0;
2297 struct btrfs_key dir_key;
2298 struct btrfs_key found_key;
2299 struct btrfs_path *log_path;
2300 struct inode *dir;
2301
2302 dir_key.objectid = dirid;
2303 dir_key.type = BTRFS_DIR_INDEX_KEY;
2304 log_path = btrfs_alloc_path();
2305 if (!log_path)
2306 return -ENOMEM;
2307
2308 dir = read_one_inode(root, dirid);
2309 /* it isn't an error if the inode isn't there, that can happen
2310 * because we replay the deletes before we copy in the inode item
2311 * from the log
2312 */
2313 if (!dir) {
2314 btrfs_free_path(log_path);
2315 return 0;
2316 }
2317
2318 range_start = 0;
2319 range_end = 0;
2320 while (1) {
2321 if (del_all)
2322 range_end = (u64)-1;
2323 else {
2324 ret = find_dir_range(log, path, dirid,
2325 &range_start, &range_end);
2326 if (ret < 0)
2327 goto out;
2328 else if (ret > 0)
2329 break;
2330 }
2331
2332 dir_key.offset = range_start;
2333 while (1) {
2334 int nritems;
2335 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 nritems = btrfs_header_nritems(path->nodes[0]);
2341 if (path->slots[0] >= nritems) {
2342 ret = btrfs_next_leaf(root, path);
2343 if (ret == 1)
2344 break;
2345 else if (ret < 0)
2346 goto out;
2347 }
2348 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349 path->slots[0]);
2350 if (found_key.objectid != dirid ||
2351 found_key.type != dir_key.type) {
2352 ret = 0;
2353 goto out;
2354 }
2355
2356 if (found_key.offset > range_end)
2357 break;
2358
2359 ret = check_item_in_log(trans, log, path,
2360 log_path, dir,
2361 &found_key);
2362 if (ret)
2363 goto out;
2364 if (found_key.offset == (u64)-1)
2365 break;
2366 dir_key.offset = found_key.offset + 1;
2367 }
2368 btrfs_release_path(path);
2369 if (range_end == (u64)-1)
2370 break;
2371 range_start = range_end + 1;
2372 }
2373 ret = 0;
2374out:
2375 btrfs_release_path(path);
2376 btrfs_free_path(log_path);
2377 iput(dir);
2378 return ret;
2379}
2380
2381/*
2382 * the process_func used to replay items from the log tree. This
2383 * gets called in two different stages. The first stage just looks
2384 * for inodes and makes sure they are all copied into the subvolume.
2385 *
2386 * The second stage copies all the other item types from the log into
2387 * the subvolume. The two stage approach is slower, but gets rid of
2388 * lots of complexity around inodes referencing other inodes that exist
2389 * only in the log (references come from either directory items or inode
2390 * back refs).
2391 */
2392static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2393 struct walk_control *wc, u64 gen, int level)
2394{
2395 int nritems;
2396 struct btrfs_tree_parent_check check = {
2397 .transid = gen,
2398 .level = level
2399 };
2400 struct btrfs_path *path;
2401 struct btrfs_root *root = wc->replay_dest;
2402 struct btrfs_key key;
2403 int i;
2404 int ret;
2405
2406 ret = btrfs_read_extent_buffer(eb, &check);
2407 if (ret)
2408 return ret;
2409
2410 level = btrfs_header_level(eb);
2411
2412 if (level != 0)
2413 return 0;
2414
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOMEM;
2418
2419 nritems = btrfs_header_nritems(eb);
2420 for (i = 0; i < nritems; i++) {
2421 btrfs_item_key_to_cpu(eb, &key, i);
2422
2423 /* inode keys are done during the first stage */
2424 if (key.type == BTRFS_INODE_ITEM_KEY &&
2425 wc->stage == LOG_WALK_REPLAY_INODES) {
2426 struct btrfs_inode_item *inode_item;
2427 u32 mode;
2428
2429 inode_item = btrfs_item_ptr(eb, i,
2430 struct btrfs_inode_item);
2431 /*
2432 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433 * and never got linked before the fsync, skip it, as
2434 * replaying it is pointless since it would be deleted
2435 * later. We skip logging tmpfiles, but it's always
2436 * possible we are replaying a log created with a kernel
2437 * that used to log tmpfiles.
2438 */
2439 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440 wc->ignore_cur_inode = true;
2441 continue;
2442 } else {
2443 wc->ignore_cur_inode = false;
2444 }
2445 ret = replay_xattr_deletes(wc->trans, root, log,
2446 path, key.objectid);
2447 if (ret)
2448 break;
2449 mode = btrfs_inode_mode(eb, inode_item);
2450 if (S_ISDIR(mode)) {
2451 ret = replay_dir_deletes(wc->trans,
2452 root, log, path, key.objectid, 0);
2453 if (ret)
2454 break;
2455 }
2456 ret = overwrite_item(wc->trans, root, path,
2457 eb, i, &key);
2458 if (ret)
2459 break;
2460
2461 /*
2462 * Before replaying extents, truncate the inode to its
2463 * size. We need to do it now and not after log replay
2464 * because before an fsync we can have prealloc extents
2465 * added beyond the inode's i_size. If we did it after,
2466 * through orphan cleanup for example, we would drop
2467 * those prealloc extents just after replaying them.
2468 */
2469 if (S_ISREG(mode)) {
2470 struct btrfs_drop_extents_args drop_args = { 0 };
2471 struct inode *inode;
2472 u64 from;
2473
2474 inode = read_one_inode(root, key.objectid);
2475 if (!inode) {
2476 ret = -EIO;
2477 break;
2478 }
2479 from = ALIGN(i_size_read(inode),
2480 root->fs_info->sectorsize);
2481 drop_args.start = from;
2482 drop_args.end = (u64)-1;
2483 drop_args.drop_cache = true;
2484 ret = btrfs_drop_extents(wc->trans, root,
2485 BTRFS_I(inode),
2486 &drop_args);
2487 if (!ret) {
2488 inode_sub_bytes(inode,
2489 drop_args.bytes_found);
2490 /* Update the inode's nbytes. */
2491 ret = btrfs_update_inode(wc->trans,
2492 root, BTRFS_I(inode));
2493 }
2494 iput(inode);
2495 if (ret)
2496 break;
2497 }
2498
2499 ret = link_to_fixup_dir(wc->trans, root,
2500 path, key.objectid);
2501 if (ret)
2502 break;
2503 }
2504
2505 if (wc->ignore_cur_inode)
2506 continue;
2507
2508 if (key.type == BTRFS_DIR_INDEX_KEY &&
2509 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510 ret = replay_one_dir_item(wc->trans, root, path,
2511 eb, i, &key);
2512 if (ret)
2513 break;
2514 }
2515
2516 if (wc->stage < LOG_WALK_REPLAY_ALL)
2517 continue;
2518
2519 /* these keys are simply copied */
2520 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521 ret = overwrite_item(wc->trans, root, path,
2522 eb, i, &key);
2523 if (ret)
2524 break;
2525 } else if (key.type == BTRFS_INODE_REF_KEY ||
2526 key.type == BTRFS_INODE_EXTREF_KEY) {
2527 ret = add_inode_ref(wc->trans, root, log, path,
2528 eb, i, &key);
2529 if (ret && ret != -ENOENT)
2530 break;
2531 ret = 0;
2532 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533 ret = replay_one_extent(wc->trans, root, path,
2534 eb, i, &key);
2535 if (ret)
2536 break;
2537 }
2538 /*
2539 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542 * older kernel with such keys, ignore them.
2543 */
2544 }
2545 btrfs_free_path(path);
2546 return ret;
2547}
2548
2549/*
2550 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2551 */
2552static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2553{
2554 struct btrfs_block_group *cache;
2555
2556 cache = btrfs_lookup_block_group(fs_info, start);
2557 if (!cache) {
2558 btrfs_err(fs_info, "unable to find block group for %llu", start);
2559 return;
2560 }
2561
2562 spin_lock(&cache->space_info->lock);
2563 spin_lock(&cache->lock);
2564 cache->reserved -= fs_info->nodesize;
2565 cache->space_info->bytes_reserved -= fs_info->nodesize;
2566 spin_unlock(&cache->lock);
2567 spin_unlock(&cache->space_info->lock);
2568
2569 btrfs_put_block_group(cache);
2570}
2571
2572static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2573 struct btrfs_root *root,
2574 struct btrfs_path *path, int *level,
2575 struct walk_control *wc)
2576{
2577 struct btrfs_fs_info *fs_info = root->fs_info;
2578 u64 bytenr;
2579 u64 ptr_gen;
2580 struct extent_buffer *next;
2581 struct extent_buffer *cur;
2582 u32 blocksize;
2583 int ret = 0;
2584
2585 while (*level > 0) {
2586 struct btrfs_tree_parent_check check = { 0 };
2587
2588 cur = path->nodes[*level];
2589
2590 WARN_ON(btrfs_header_level(cur) != *level);
2591
2592 if (path->slots[*level] >=
2593 btrfs_header_nritems(cur))
2594 break;
2595
2596 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2598 check.transid = ptr_gen;
2599 check.level = *level - 1;
2600 check.has_first_key = true;
2601 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2602 blocksize = fs_info->nodesize;
2603
2604 next = btrfs_find_create_tree_block(fs_info, bytenr,
2605 btrfs_header_owner(cur),
2606 *level - 1);
2607 if (IS_ERR(next))
2608 return PTR_ERR(next);
2609
2610 if (*level == 1) {
2611 ret = wc->process_func(root, next, wc, ptr_gen,
2612 *level - 1);
2613 if (ret) {
2614 free_extent_buffer(next);
2615 return ret;
2616 }
2617
2618 path->slots[*level]++;
2619 if (wc->free) {
2620 ret = btrfs_read_extent_buffer(next, &check);
2621 if (ret) {
2622 free_extent_buffer(next);
2623 return ret;
2624 }
2625
2626 if (trans) {
2627 btrfs_tree_lock(next);
2628 btrfs_clean_tree_block(next);
2629 btrfs_wait_tree_block_writeback(next);
2630 btrfs_tree_unlock(next);
2631 ret = btrfs_pin_reserved_extent(trans,
2632 bytenr, blocksize);
2633 if (ret) {
2634 free_extent_buffer(next);
2635 return ret;
2636 }
2637 btrfs_redirty_list_add(
2638 trans->transaction, next);
2639 } else {
2640 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 clear_extent_buffer_dirty(next);
2642 unaccount_log_buffer(fs_info, bytenr);
2643 }
2644 }
2645 free_extent_buffer(next);
2646 continue;
2647 }
2648 ret = btrfs_read_extent_buffer(next, &check);
2649 if (ret) {
2650 free_extent_buffer(next);
2651 return ret;
2652 }
2653
2654 if (path->nodes[*level-1])
2655 free_extent_buffer(path->nodes[*level-1]);
2656 path->nodes[*level-1] = next;
2657 *level = btrfs_header_level(next);
2658 path->slots[*level] = 0;
2659 cond_resched();
2660 }
2661 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2662
2663 cond_resched();
2664 return 0;
2665}
2666
2667static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2668 struct btrfs_root *root,
2669 struct btrfs_path *path, int *level,
2670 struct walk_control *wc)
2671{
2672 struct btrfs_fs_info *fs_info = root->fs_info;
2673 int i;
2674 int slot;
2675 int ret;
2676
2677 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678 slot = path->slots[i];
2679 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2680 path->slots[i]++;
2681 *level = i;
2682 WARN_ON(*level == 0);
2683 return 0;
2684 } else {
2685 ret = wc->process_func(root, path->nodes[*level], wc,
2686 btrfs_header_generation(path->nodes[*level]),
2687 *level);
2688 if (ret)
2689 return ret;
2690
2691 if (wc->free) {
2692 struct extent_buffer *next;
2693
2694 next = path->nodes[*level];
2695
2696 if (trans) {
2697 btrfs_tree_lock(next);
2698 btrfs_clean_tree_block(next);
2699 btrfs_wait_tree_block_writeback(next);
2700 btrfs_tree_unlock(next);
2701 ret = btrfs_pin_reserved_extent(trans,
2702 path->nodes[*level]->start,
2703 path->nodes[*level]->len);
2704 if (ret)
2705 return ret;
2706 btrfs_redirty_list_add(trans->transaction,
2707 next);
2708 } else {
2709 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710 clear_extent_buffer_dirty(next);
2711
2712 unaccount_log_buffer(fs_info,
2713 path->nodes[*level]->start);
2714 }
2715 }
2716 free_extent_buffer(path->nodes[*level]);
2717 path->nodes[*level] = NULL;
2718 *level = i + 1;
2719 }
2720 }
2721 return 1;
2722}
2723
2724/*
2725 * drop the reference count on the tree rooted at 'snap'. This traverses
2726 * the tree freeing any blocks that have a ref count of zero after being
2727 * decremented.
2728 */
2729static int walk_log_tree(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *log, struct walk_control *wc)
2731{
2732 struct btrfs_fs_info *fs_info = log->fs_info;
2733 int ret = 0;
2734 int wret;
2735 int level;
2736 struct btrfs_path *path;
2737 int orig_level;
2738
2739 path = btrfs_alloc_path();
2740 if (!path)
2741 return -ENOMEM;
2742
2743 level = btrfs_header_level(log->node);
2744 orig_level = level;
2745 path->nodes[level] = log->node;
2746 atomic_inc(&log->node->refs);
2747 path->slots[level] = 0;
2748
2749 while (1) {
2750 wret = walk_down_log_tree(trans, log, path, &level, wc);
2751 if (wret > 0)
2752 break;
2753 if (wret < 0) {
2754 ret = wret;
2755 goto out;
2756 }
2757
2758 wret = walk_up_log_tree(trans, log, path, &level, wc);
2759 if (wret > 0)
2760 break;
2761 if (wret < 0) {
2762 ret = wret;
2763 goto out;
2764 }
2765 }
2766
2767 /* was the root node processed? if not, catch it here */
2768 if (path->nodes[orig_level]) {
2769 ret = wc->process_func(log, path->nodes[orig_level], wc,
2770 btrfs_header_generation(path->nodes[orig_level]),
2771 orig_level);
2772 if (ret)
2773 goto out;
2774 if (wc->free) {
2775 struct extent_buffer *next;
2776
2777 next = path->nodes[orig_level];
2778
2779 if (trans) {
2780 btrfs_tree_lock(next);
2781 btrfs_clean_tree_block(next);
2782 btrfs_wait_tree_block_writeback(next);
2783 btrfs_tree_unlock(next);
2784 ret = btrfs_pin_reserved_extent(trans,
2785 next->start, next->len);
2786 if (ret)
2787 goto out;
2788 btrfs_redirty_list_add(trans->transaction, next);
2789 } else {
2790 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791 clear_extent_buffer_dirty(next);
2792 unaccount_log_buffer(fs_info, next->start);
2793 }
2794 }
2795 }
2796
2797out:
2798 btrfs_free_path(path);
2799 return ret;
2800}
2801
2802/*
2803 * helper function to update the item for a given subvolumes log root
2804 * in the tree of log roots
2805 */
2806static int update_log_root(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *log,
2808 struct btrfs_root_item *root_item)
2809{
2810 struct btrfs_fs_info *fs_info = log->fs_info;
2811 int ret;
2812
2813 if (log->log_transid == 1) {
2814 /* insert root item on the first sync */
2815 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2816 &log->root_key, root_item);
2817 } else {
2818 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2819 &log->root_key, root_item);
2820 }
2821 return ret;
2822}
2823
2824static void wait_log_commit(struct btrfs_root *root, int transid)
2825{
2826 DEFINE_WAIT(wait);
2827 int index = transid % 2;
2828
2829 /*
2830 * we only allow two pending log transactions at a time,
2831 * so we know that if ours is more than 2 older than the
2832 * current transaction, we're done
2833 */
2834 for (;;) {
2835 prepare_to_wait(&root->log_commit_wait[index],
2836 &wait, TASK_UNINTERRUPTIBLE);
2837
2838 if (!(root->log_transid_committed < transid &&
2839 atomic_read(&root->log_commit[index])))
2840 break;
2841
2842 mutex_unlock(&root->log_mutex);
2843 schedule();
2844 mutex_lock(&root->log_mutex);
2845 }
2846 finish_wait(&root->log_commit_wait[index], &wait);
2847}
2848
2849static void wait_for_writer(struct btrfs_root *root)
2850{
2851 DEFINE_WAIT(wait);
2852
2853 for (;;) {
2854 prepare_to_wait(&root->log_writer_wait, &wait,
2855 TASK_UNINTERRUPTIBLE);
2856 if (!atomic_read(&root->log_writers))
2857 break;
2858
2859 mutex_unlock(&root->log_mutex);
2860 schedule();
2861 mutex_lock(&root->log_mutex);
2862 }
2863 finish_wait(&root->log_writer_wait, &wait);
2864}
2865
2866static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867 struct btrfs_log_ctx *ctx)
2868{
2869 mutex_lock(&root->log_mutex);
2870 list_del_init(&ctx->list);
2871 mutex_unlock(&root->log_mutex);
2872}
2873
2874/*
2875 * Invoked in log mutex context, or be sure there is no other task which
2876 * can access the list.
2877 */
2878static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879 int index, int error)
2880{
2881 struct btrfs_log_ctx *ctx;
2882 struct btrfs_log_ctx *safe;
2883
2884 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885 list_del_init(&ctx->list);
2886 ctx->log_ret = error;
2887 }
2888}
2889
2890/*
2891 * btrfs_sync_log does sends a given tree log down to the disk and
2892 * updates the super blocks to record it. When this call is done,
2893 * you know that any inodes previously logged are safely on disk only
2894 * if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904{
2905 int index1;
2906 int index2;
2907 int mark;
2908 int ret;
2909 struct btrfs_fs_info *fs_info = root->fs_info;
2910 struct btrfs_root *log = root->log_root;
2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 struct btrfs_root_item new_root_item;
2913 int log_transid = 0;
2914 struct btrfs_log_ctx root_log_ctx;
2915 struct blk_plug plug;
2916 u64 log_root_start;
2917 u64 log_root_level;
2918
2919 mutex_lock(&root->log_mutex);
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
2927 if (atomic_read(&root->log_commit[index1])) {
2928 wait_log_commit(root, log_transid);
2929 mutex_unlock(&root->log_mutex);
2930 return ctx->log_ret;
2931 }
2932 ASSERT(log_transid == root->log_transid);
2933 atomic_set(&root->log_commit[index1], 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 wait_log_commit(root, log_transid - 1);
2938
2939 while (1) {
2940 int batch = atomic_read(&root->log_batch);
2941 /* when we're on an ssd, just kick the log commit out */
2942 if (!btrfs_test_opt(fs_info, SSD) &&
2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2947 }
2948 wait_for_writer(root);
2949 if (batch == atomic_read(&root->log_batch))
2950 break;
2951 }
2952
2953 /* bail out if we need to do a full commit */
2954 if (btrfs_need_log_full_commit(trans)) {
2955 ret = BTRFS_LOG_FORCE_COMMIT;
2956 mutex_unlock(&root->log_mutex);
2957 goto out;
2958 }
2959
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
2968 blk_start_plug(&plug);
2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
2981 if (ret) {
2982 blk_finish_plug(&plug);
2983 btrfs_set_log_full_commit(trans);
2984 mutex_unlock(&root->log_mutex);
2985 goto out;
2986 }
2987
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
3001 btrfs_set_root_node(&log->root_item, log->node);
3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003
3004 root->log_transid++;
3005 log->log_transid = root->log_transid;
3006 root->log_start_pid = 0;
3007 /*
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
3011 */
3012 mutex_unlock(&root->log_mutex);
3013
3014 if (btrfs_is_zoned(fs_info)) {
3015 mutex_lock(&fs_info->tree_root->log_mutex);
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 if (ret) {
3019 mutex_unlock(&fs_info->tree_root->log_mutex);
3020 blk_finish_plug(&plug);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_info->tree_root->log_mutex);
3025 }
3026
3027 btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, &new_root_item);
3041 if (ret) {
3042 if (!list_empty(&root_log_ctx.list))
3043 list_del_init(&root_log_ctx.list);
3044
3045 blk_finish_plug(&plug);
3046 btrfs_set_log_full_commit(trans);
3047 if (ret != -ENOSPC)
3048 btrfs_err(fs_info,
3049 "failed to update log for root %llu ret %d",
3050 root->root_key.objectid, ret);
3051 btrfs_wait_tree_log_extents(log, mark);
3052 mutex_unlock(&log_root_tree->log_mutex);
3053 goto out;
3054 }
3055
3056 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3057 blk_finish_plug(&plug);
3058 list_del_init(&root_log_ctx.list);
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 ret = root_log_ctx.log_ret;
3061 goto out;
3062 }
3063
3064 index2 = root_log_ctx.log_transid % 2;
3065 if (atomic_read(&log_root_tree->log_commit[index2])) {
3066 blk_finish_plug(&plug);
3067 ret = btrfs_wait_tree_log_extents(log, mark);
3068 wait_log_commit(log_root_tree,
3069 root_log_ctx.log_transid);
3070 mutex_unlock(&log_root_tree->log_mutex);
3071 if (!ret)
3072 ret = root_log_ctx.log_ret;
3073 goto out;
3074 }
3075 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3076 atomic_set(&log_root_tree->log_commit[index2], 1);
3077
3078 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3079 wait_log_commit(log_root_tree,
3080 root_log_ctx.log_transid - 1);
3081 }
3082
3083 /*
3084 * now that we've moved on to the tree of log tree roots,
3085 * check the full commit flag again
3086 */
3087 if (btrfs_need_log_full_commit(trans)) {
3088 blk_finish_plug(&plug);
3089 btrfs_wait_tree_log_extents(log, mark);
3090 mutex_unlock(&log_root_tree->log_mutex);
3091 ret = BTRFS_LOG_FORCE_COMMIT;
3092 goto out_wake_log_root;
3093 }
3094
3095 ret = btrfs_write_marked_extents(fs_info,
3096 &log_root_tree->dirty_log_pages,
3097 EXTENT_DIRTY | EXTENT_NEW);
3098 blk_finish_plug(&plug);
3099 /*
3100 * As described above, -EAGAIN indicates a hole in the extents. We
3101 * cannot wait for these write outs since the waiting cause a
3102 * deadlock. Bail out to the full commit instead.
3103 */
3104 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3105 btrfs_set_log_full_commit(trans);
3106 btrfs_wait_tree_log_extents(log, mark);
3107 mutex_unlock(&log_root_tree->log_mutex);
3108 goto out_wake_log_root;
3109 } else if (ret) {
3110 btrfs_set_log_full_commit(trans);
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 goto out_wake_log_root;
3113 }
3114 ret = btrfs_wait_tree_log_extents(log, mark);
3115 if (!ret)
3116 ret = btrfs_wait_tree_log_extents(log_root_tree,
3117 EXTENT_NEW | EXTENT_DIRTY);
3118 if (ret) {
3119 btrfs_set_log_full_commit(trans);
3120 mutex_unlock(&log_root_tree->log_mutex);
3121 goto out_wake_log_root;
3122 }
3123
3124 log_root_start = log_root_tree->node->start;
3125 log_root_level = btrfs_header_level(log_root_tree->node);
3126 log_root_tree->log_transid++;
3127 mutex_unlock(&log_root_tree->log_mutex);
3128
3129 /*
3130 * Here we are guaranteed that nobody is going to write the superblock
3131 * for the current transaction before us and that neither we do write
3132 * our superblock before the previous transaction finishes its commit
3133 * and writes its superblock, because:
3134 *
3135 * 1) We are holding a handle on the current transaction, so no body
3136 * can commit it until we release the handle;
3137 *
3138 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3139 * if the previous transaction is still committing, and hasn't yet
3140 * written its superblock, we wait for it to do it, because a
3141 * transaction commit acquires the tree_log_mutex when the commit
3142 * begins and releases it only after writing its superblock.
3143 */
3144 mutex_lock(&fs_info->tree_log_mutex);
3145
3146 /*
3147 * The previous transaction writeout phase could have failed, and thus
3148 * marked the fs in an error state. We must not commit here, as we
3149 * could have updated our generation in the super_for_commit and
3150 * writing the super here would result in transid mismatches. If there
3151 * is an error here just bail.
3152 */
3153 if (BTRFS_FS_ERROR(fs_info)) {
3154 ret = -EIO;
3155 btrfs_set_log_full_commit(trans);
3156 btrfs_abort_transaction(trans, ret);
3157 mutex_unlock(&fs_info->tree_log_mutex);
3158 goto out_wake_log_root;
3159 }
3160
3161 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3162 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3163 ret = write_all_supers(fs_info, 1);
3164 mutex_unlock(&fs_info->tree_log_mutex);
3165 if (ret) {
3166 btrfs_set_log_full_commit(trans);
3167 btrfs_abort_transaction(trans, ret);
3168 goto out_wake_log_root;
3169 }
3170
3171 /*
3172 * We know there can only be one task here, since we have not yet set
3173 * root->log_commit[index1] to 0 and any task attempting to sync the
3174 * log must wait for the previous log transaction to commit if it's
3175 * still in progress or wait for the current log transaction commit if
3176 * someone else already started it. We use <= and not < because the
3177 * first log transaction has an ID of 0.
3178 */
3179 ASSERT(root->last_log_commit <= log_transid);
3180 root->last_log_commit = log_transid;
3181
3182out_wake_log_root:
3183 mutex_lock(&log_root_tree->log_mutex);
3184 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3185
3186 log_root_tree->log_transid_committed++;
3187 atomic_set(&log_root_tree->log_commit[index2], 0);
3188 mutex_unlock(&log_root_tree->log_mutex);
3189
3190 /*
3191 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3192 * all the updates above are seen by the woken threads. It might not be
3193 * necessary, but proving that seems to be hard.
3194 */
3195 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3196out:
3197 mutex_lock(&root->log_mutex);
3198 btrfs_remove_all_log_ctxs(root, index1, ret);
3199 root->log_transid_committed++;
3200 atomic_set(&root->log_commit[index1], 0);
3201 mutex_unlock(&root->log_mutex);
3202
3203 /*
3204 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205 * all the updates above are seen by the woken threads. It might not be
3206 * necessary, but proving that seems to be hard.
3207 */
3208 cond_wake_up(&root->log_commit_wait[index1]);
3209 return ret;
3210}
3211
3212static void free_log_tree(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *log)
3214{
3215 int ret;
3216 struct walk_control wc = {
3217 .free = 1,
3218 .process_func = process_one_buffer
3219 };
3220
3221 if (log->node) {
3222 ret = walk_log_tree(trans, log, &wc);
3223 if (ret) {
3224 /*
3225 * We weren't able to traverse the entire log tree, the
3226 * typical scenario is getting an -EIO when reading an
3227 * extent buffer of the tree, due to a previous writeback
3228 * failure of it.
3229 */
3230 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3231 &log->fs_info->fs_state);
3232
3233 /*
3234 * Some extent buffers of the log tree may still be dirty
3235 * and not yet written back to storage, because we may
3236 * have updates to a log tree without syncing a log tree,
3237 * such as during rename and link operations. So flush
3238 * them out and wait for their writeback to complete, so
3239 * that we properly cleanup their state and pages.
3240 */
3241 btrfs_write_marked_extents(log->fs_info,
3242 &log->dirty_log_pages,
3243 EXTENT_DIRTY | EXTENT_NEW);
3244 btrfs_wait_tree_log_extents(log,
3245 EXTENT_DIRTY | EXTENT_NEW);
3246
3247 if (trans)
3248 btrfs_abort_transaction(trans, ret);
3249 else
3250 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3251 }
3252 }
3253
3254 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3255 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3256 extent_io_tree_release(&log->log_csum_range);
3257
3258 btrfs_put_root(log);
3259}
3260
3261/*
3262 * free all the extents used by the tree log. This should be called
3263 * at commit time of the full transaction
3264 */
3265int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266{
3267 if (root->log_root) {
3268 free_log_tree(trans, root->log_root);
3269 root->log_root = NULL;
3270 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3271 }
3272 return 0;
3273}
3274
3275int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3276 struct btrfs_fs_info *fs_info)
3277{
3278 if (fs_info->log_root_tree) {
3279 free_log_tree(trans, fs_info->log_root_tree);
3280 fs_info->log_root_tree = NULL;
3281 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3282 }
3283 return 0;
3284}
3285
3286/*
3287 * Check if an inode was logged in the current transaction. This correctly deals
3288 * with the case where the inode was logged but has a logged_trans of 0, which
3289 * happens if the inode is evicted and loaded again, as logged_trans is an in
3290 * memory only field (not persisted).
3291 *
3292 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3293 * and < 0 on error.
3294 */
3295static int inode_logged(struct btrfs_trans_handle *trans,
3296 struct btrfs_inode *inode,
3297 struct btrfs_path *path_in)
3298{
3299 struct btrfs_path *path = path_in;
3300 struct btrfs_key key;
3301 int ret;
3302
3303 if (inode->logged_trans == trans->transid)
3304 return 1;
3305
3306 /*
3307 * If logged_trans is not 0, then we know the inode logged was not logged
3308 * in this transaction, so we can return false right away.
3309 */
3310 if (inode->logged_trans > 0)
3311 return 0;
3312
3313 /*
3314 * If no log tree was created for this root in this transaction, then
3315 * the inode can not have been logged in this transaction. In that case
3316 * set logged_trans to anything greater than 0 and less than the current
3317 * transaction's ID, to avoid the search below in a future call in case
3318 * a log tree gets created after this.
3319 */
3320 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3321 inode->logged_trans = trans->transid - 1;
3322 return 0;
3323 }
3324
3325 /*
3326 * We have a log tree and the inode's logged_trans is 0. We can't tell
3327 * for sure if the inode was logged before in this transaction by looking
3328 * only at logged_trans. We could be pessimistic and assume it was, but
3329 * that can lead to unnecessarily logging an inode during rename and link
3330 * operations, and then further updating the log in followup rename and
3331 * link operations, specially if it's a directory, which adds latency
3332 * visible to applications doing a series of rename or link operations.
3333 *
3334 * A logged_trans of 0 here can mean several things:
3335 *
3336 * 1) The inode was never logged since the filesystem was mounted, and may
3337 * or may have not been evicted and loaded again;
3338 *
3339 * 2) The inode was logged in a previous transaction, then evicted and
3340 * then loaded again;
3341 *
3342 * 3) The inode was logged in the current transaction, then evicted and
3343 * then loaded again.
3344 *
3345 * For cases 1) and 2) we don't want to return true, but we need to detect
3346 * case 3) and return true. So we do a search in the log root for the inode
3347 * item.
3348 */
3349 key.objectid = btrfs_ino(inode);
3350 key.type = BTRFS_INODE_ITEM_KEY;
3351 key.offset = 0;
3352
3353 if (!path) {
3354 path = btrfs_alloc_path();
3355 if (!path)
3356 return -ENOMEM;
3357 }
3358
3359 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3360
3361 if (path_in)
3362 btrfs_release_path(path);
3363 else
3364 btrfs_free_path(path);
3365
3366 /*
3367 * Logging an inode always results in logging its inode item. So if we
3368 * did not find the item we know the inode was not logged for sure.
3369 */
3370 if (ret < 0) {
3371 return ret;
3372 } else if (ret > 0) {
3373 /*
3374 * Set logged_trans to a value greater than 0 and less then the
3375 * current transaction to avoid doing the search in future calls.
3376 */
3377 inode->logged_trans = trans->transid - 1;
3378 return 0;
3379 }
3380
3381 /*
3382 * The inode was previously logged and then evicted, set logged_trans to
3383 * the current transacion's ID, to avoid future tree searches as long as
3384 * the inode is not evicted again.
3385 */
3386 inode->logged_trans = trans->transid;
3387
3388 /*
3389 * If it's a directory, then we must set last_dir_index_offset to the
3390 * maximum possible value, so that the next attempt to log the inode does
3391 * not skip checking if dir index keys found in modified subvolume tree
3392 * leaves have been logged before, otherwise it would result in attempts
3393 * to insert duplicate dir index keys in the log tree. This must be done
3394 * because last_dir_index_offset is an in-memory only field, not persisted
3395 * in the inode item or any other on-disk structure, so its value is lost
3396 * once the inode is evicted.
3397 */
3398 if (S_ISDIR(inode->vfs_inode.i_mode))
3399 inode->last_dir_index_offset = (u64)-1;
3400
3401 return 1;
3402}
3403
3404/*
3405 * Delete a directory entry from the log if it exists.
3406 *
3407 * Returns < 0 on error
3408 * 1 if the entry does not exists
3409 * 0 if the entry existed and was successfully deleted
3410 */
3411static int del_logged_dentry(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *log,
3413 struct btrfs_path *path,
3414 u64 dir_ino,
3415 const struct fscrypt_str *name,
3416 u64 index)
3417{
3418 struct btrfs_dir_item *di;
3419
3420 /*
3421 * We only log dir index items of a directory, so we don't need to look
3422 * for dir item keys.
3423 */
3424 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3425 index, name, -1);
3426 if (IS_ERR(di))
3427 return PTR_ERR(di);
3428 else if (!di)
3429 return 1;
3430
3431 /*
3432 * We do not need to update the size field of the directory's
3433 * inode item because on log replay we update the field to reflect
3434 * all existing entries in the directory (see overwrite_item()).
3435 */
3436 return btrfs_delete_one_dir_name(trans, log, path, di);
3437}
3438
3439/*
3440 * If both a file and directory are logged, and unlinks or renames are
3441 * mixed in, we have a few interesting corners:
3442 *
3443 * create file X in dir Y
3444 * link file X to X.link in dir Y
3445 * fsync file X
3446 * unlink file X but leave X.link
3447 * fsync dir Y
3448 *
3449 * After a crash we would expect only X.link to exist. But file X
3450 * didn't get fsync'd again so the log has back refs for X and X.link.
3451 *
3452 * We solve this by removing directory entries and inode backrefs from the
3453 * log when a file that was logged in the current transaction is
3454 * unlinked. Any later fsync will include the updated log entries, and
3455 * we'll be able to reconstruct the proper directory items from backrefs.
3456 *
3457 * This optimizations allows us to avoid relogging the entire inode
3458 * or the entire directory.
3459 */
3460void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3461 struct btrfs_root *root,
3462 const struct fscrypt_str *name,
3463 struct btrfs_inode *dir, u64 index)
3464{
3465 struct btrfs_path *path;
3466 int ret;
3467
3468 ret = inode_logged(trans, dir, NULL);
3469 if (ret == 0)
3470 return;
3471 else if (ret < 0) {
3472 btrfs_set_log_full_commit(trans);
3473 return;
3474 }
3475
3476 ret = join_running_log_trans(root);
3477 if (ret)
3478 return;
3479
3480 mutex_lock(&dir->log_mutex);
3481
3482 path = btrfs_alloc_path();
3483 if (!path) {
3484 ret = -ENOMEM;
3485 goto out_unlock;
3486 }
3487
3488 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3489 name, index);
3490 btrfs_free_path(path);
3491out_unlock:
3492 mutex_unlock(&dir->log_mutex);
3493 if (ret < 0)
3494 btrfs_set_log_full_commit(trans);
3495 btrfs_end_log_trans(root);
3496}
3497
3498/* see comments for btrfs_del_dir_entries_in_log */
3499void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3500 struct btrfs_root *root,
3501 const struct fscrypt_str *name,
3502 struct btrfs_inode *inode, u64 dirid)
3503{
3504 struct btrfs_root *log;
3505 u64 index;
3506 int ret;
3507
3508 ret = inode_logged(trans, inode, NULL);
3509 if (ret == 0)
3510 return;
3511 else if (ret < 0) {
3512 btrfs_set_log_full_commit(trans);
3513 return;
3514 }
3515
3516 ret = join_running_log_trans(root);
3517 if (ret)
3518 return;
3519 log = root->log_root;
3520 mutex_lock(&inode->log_mutex);
3521
3522 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3523 dirid, &index);
3524 mutex_unlock(&inode->log_mutex);
3525 if (ret < 0 && ret != -ENOENT)
3526 btrfs_set_log_full_commit(trans);
3527 btrfs_end_log_trans(root);
3528}
3529
3530/*
3531 * creates a range item in the log for 'dirid'. first_offset and
3532 * last_offset tell us which parts of the key space the log should
3533 * be considered authoritative for.
3534 */
3535static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *log,
3537 struct btrfs_path *path,
3538 u64 dirid,
3539 u64 first_offset, u64 last_offset)
3540{
3541 int ret;
3542 struct btrfs_key key;
3543 struct btrfs_dir_log_item *item;
3544
3545 key.objectid = dirid;
3546 key.offset = first_offset;
3547 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549 /*
3550 * -EEXIST is fine and can happen sporadically when we are logging a
3551 * directory and have concurrent insertions in the subvolume's tree for
3552 * items from other inodes and that result in pushing off some dir items
3553 * from one leaf to another in order to accommodate for the new items.
3554 * This results in logging the same dir index range key.
3555 */
3556 if (ret && ret != -EEXIST)
3557 return ret;
3558
3559 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560 struct btrfs_dir_log_item);
3561 if (ret == -EEXIST) {
3562 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3563
3564 /*
3565 * btrfs_del_dir_entries_in_log() might have been called during
3566 * an unlink between the initial insertion of this key and the
3567 * current update, or we might be logging a single entry deletion
3568 * during a rename, so set the new last_offset to the max value.
3569 */
3570 last_offset = max(last_offset, curr_end);
3571 }
3572 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3573 btrfs_mark_buffer_dirty(path->nodes[0]);
3574 btrfs_release_path(path);
3575 return 0;
3576}
3577
3578static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3579 struct btrfs_inode *inode,
3580 struct extent_buffer *src,
3581 struct btrfs_path *dst_path,
3582 int start_slot,
3583 int count)
3584{
3585 struct btrfs_root *log = inode->root->log_root;
3586 char *ins_data = NULL;
3587 struct btrfs_item_batch batch;
3588 struct extent_buffer *dst;
3589 unsigned long src_offset;
3590 unsigned long dst_offset;
3591 u64 last_index;
3592 struct btrfs_key key;
3593 u32 item_size;
3594 int ret;
3595 int i;
3596
3597 ASSERT(count > 0);
3598 batch.nr = count;
3599
3600 if (count == 1) {
3601 btrfs_item_key_to_cpu(src, &key, start_slot);
3602 item_size = btrfs_item_size(src, start_slot);
3603 batch.keys = &key;
3604 batch.data_sizes = &item_size;
3605 batch.total_data_size = item_size;
3606 } else {
3607 struct btrfs_key *ins_keys;
3608 u32 *ins_sizes;
3609
3610 ins_data = kmalloc(count * sizeof(u32) +
3611 count * sizeof(struct btrfs_key), GFP_NOFS);
3612 if (!ins_data)
3613 return -ENOMEM;
3614
3615 ins_sizes = (u32 *)ins_data;
3616 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3617 batch.keys = ins_keys;
3618 batch.data_sizes = ins_sizes;
3619 batch.total_data_size = 0;
3620
3621 for (i = 0; i < count; i++) {
3622 const int slot = start_slot + i;
3623
3624 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3625 ins_sizes[i] = btrfs_item_size(src, slot);
3626 batch.total_data_size += ins_sizes[i];
3627 }
3628 }
3629
3630 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3631 if (ret)
3632 goto out;
3633
3634 dst = dst_path->nodes[0];
3635 /*
3636 * Copy all the items in bulk, in a single copy operation. Item data is
3637 * organized such that it's placed at the end of a leaf and from right
3638 * to left. For example, the data for the second item ends at an offset
3639 * that matches the offset where the data for the first item starts, the
3640 * data for the third item ends at an offset that matches the offset
3641 * where the data of the second items starts, and so on.
3642 * Therefore our source and destination start offsets for copy match the
3643 * offsets of the last items (highest slots).
3644 */
3645 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3646 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3647 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3648 btrfs_release_path(dst_path);
3649
3650 last_index = batch.keys[count - 1].offset;
3651 ASSERT(last_index > inode->last_dir_index_offset);
3652
3653 /*
3654 * If for some unexpected reason the last item's index is not greater
3655 * than the last index we logged, warn and return an error to fallback
3656 * to a transaction commit.
3657 */
3658 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3659 ret = -EUCLEAN;
3660 else
3661 inode->last_dir_index_offset = last_index;
3662out:
3663 kfree(ins_data);
3664
3665 return ret;
3666}
3667
3668static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3669 struct btrfs_inode *inode,
3670 struct btrfs_path *path,
3671 struct btrfs_path *dst_path,
3672 struct btrfs_log_ctx *ctx,
3673 u64 *last_old_dentry_offset)
3674{
3675 struct btrfs_root *log = inode->root->log_root;
3676 struct extent_buffer *src;
3677 const int nritems = btrfs_header_nritems(path->nodes[0]);
3678 const u64 ino = btrfs_ino(inode);
3679 bool last_found = false;
3680 int batch_start = 0;
3681 int batch_size = 0;
3682 int i;
3683
3684 /*
3685 * We need to clone the leaf, release the read lock on it, and use the
3686 * clone before modifying the log tree. See the comment at copy_items()
3687 * about why we need to do this.
3688 */
3689 src = btrfs_clone_extent_buffer(path->nodes[0]);
3690 if (!src)
3691 return -ENOMEM;
3692
3693 i = path->slots[0];
3694 btrfs_release_path(path);
3695 path->nodes[0] = src;
3696 path->slots[0] = i;
3697
3698 for (; i < nritems; i++) {
3699 struct btrfs_dir_item *di;
3700 struct btrfs_key key;
3701 int ret;
3702
3703 btrfs_item_key_to_cpu(src, &key, i);
3704
3705 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3706 last_found = true;
3707 break;
3708 }
3709
3710 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3711
3712 /*
3713 * Skip ranges of items that consist only of dir item keys created
3714 * in past transactions. However if we find a gap, we must log a
3715 * dir index range item for that gap, so that index keys in that
3716 * gap are deleted during log replay.
3717 */
3718 if (btrfs_dir_transid(src, di) < trans->transid) {
3719 if (key.offset > *last_old_dentry_offset + 1) {
3720 ret = insert_dir_log_key(trans, log, dst_path,
3721 ino, *last_old_dentry_offset + 1,
3722 key.offset - 1);
3723 if (ret < 0)
3724 return ret;
3725 }
3726
3727 *last_old_dentry_offset = key.offset;
3728 continue;
3729 }
3730
3731 /* If we logged this dir index item before, we can skip it. */
3732 if (key.offset <= inode->last_dir_index_offset)
3733 continue;
3734
3735 /*
3736 * We must make sure that when we log a directory entry, the
3737 * corresponding inode, after log replay, has a matching link
3738 * count. For example:
3739 *
3740 * touch foo
3741 * mkdir mydir
3742 * sync
3743 * ln foo mydir/bar
3744 * xfs_io -c "fsync" mydir
3745 * <crash>
3746 * <mount fs and log replay>
3747 *
3748 * Would result in a fsync log that when replayed, our file inode
3749 * would have a link count of 1, but we get two directory entries
3750 * pointing to the same inode. After removing one of the names,
3751 * it would not be possible to remove the other name, which
3752 * resulted always in stale file handle errors, and would not be
3753 * possible to rmdir the parent directory, since its i_size could
3754 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3755 * resulting in -ENOTEMPTY errors.
3756 */
3757 if (!ctx->log_new_dentries) {
3758 struct btrfs_key di_key;
3759
3760 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3761 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3762 ctx->log_new_dentries = true;
3763 }
3764
3765 if (batch_size == 0)
3766 batch_start = i;
3767 batch_size++;
3768 }
3769
3770 if (batch_size > 0) {
3771 int ret;
3772
3773 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3774 batch_start, batch_size);
3775 if (ret < 0)
3776 return ret;
3777 }
3778
3779 return last_found ? 1 : 0;
3780}
3781
3782/*
3783 * log all the items included in the current transaction for a given
3784 * directory. This also creates the range items in the log tree required
3785 * to replay anything deleted before the fsync
3786 */
3787static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3788 struct btrfs_inode *inode,
3789 struct btrfs_path *path,
3790 struct btrfs_path *dst_path,
3791 struct btrfs_log_ctx *ctx,
3792 u64 min_offset, u64 *last_offset_ret)
3793{
3794 struct btrfs_key min_key;
3795 struct btrfs_root *root = inode->root;
3796 struct btrfs_root *log = root->log_root;
3797 int err = 0;
3798 int ret;
3799 u64 last_old_dentry_offset = min_offset - 1;
3800 u64 last_offset = (u64)-1;
3801 u64 ino = btrfs_ino(inode);
3802
3803 min_key.objectid = ino;
3804 min_key.type = BTRFS_DIR_INDEX_KEY;
3805 min_key.offset = min_offset;
3806
3807 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3808
3809 /*
3810 * we didn't find anything from this transaction, see if there
3811 * is anything at all
3812 */
3813 if (ret != 0 || min_key.objectid != ino ||
3814 min_key.type != BTRFS_DIR_INDEX_KEY) {
3815 min_key.objectid = ino;
3816 min_key.type = BTRFS_DIR_INDEX_KEY;
3817 min_key.offset = (u64)-1;
3818 btrfs_release_path(path);
3819 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3820 if (ret < 0) {
3821 btrfs_release_path(path);
3822 return ret;
3823 }
3824 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3825
3826 /* if ret == 0 there are items for this type,
3827 * create a range to tell us the last key of this type.
3828 * otherwise, there are no items in this directory after
3829 * *min_offset, and we create a range to indicate that.
3830 */
3831 if (ret == 0) {
3832 struct btrfs_key tmp;
3833
3834 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3835 path->slots[0]);
3836 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3837 last_old_dentry_offset = tmp.offset;
3838 } else if (ret < 0) {
3839 err = ret;
3840 }
3841
3842 goto done;
3843 }
3844
3845 /* go backward to find any previous key */
3846 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3847 if (ret == 0) {
3848 struct btrfs_key tmp;
3849
3850 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3851 /*
3852 * The dir index key before the first one we found that needs to
3853 * be logged might be in a previous leaf, and there might be a
3854 * gap between these keys, meaning that we had deletions that
3855 * happened. So the key range item we log (key type
3856 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3857 * previous key's offset plus 1, so that those deletes are replayed.
3858 */
3859 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3860 last_old_dentry_offset = tmp.offset;
3861 } else if (ret < 0) {
3862 err = ret;
3863 goto done;
3864 }
3865
3866 btrfs_release_path(path);
3867
3868 /*
3869 * Find the first key from this transaction again or the one we were at
3870 * in the loop below in case we had to reschedule. We may be logging the
3871 * directory without holding its VFS lock, which happen when logging new
3872 * dentries (through log_new_dir_dentries()) or in some cases when we
3873 * need to log the parent directory of an inode. This means a dir index
3874 * key might be deleted from the inode's root, and therefore we may not
3875 * find it anymore. If we can't find it, just move to the next key. We
3876 * can not bail out and ignore, because if we do that we will simply
3877 * not log dir index keys that come after the one that was just deleted
3878 * and we can end up logging a dir index range that ends at (u64)-1
3879 * (@last_offset is initialized to that), resulting in removing dir
3880 * entries we should not remove at log replay time.
3881 */
3882search:
3883 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3884 if (ret > 0)
3885 ret = btrfs_next_item(root, path);
3886 if (ret < 0)
3887 err = ret;
3888 /* If ret is 1, there are no more keys in the inode's root. */
3889 if (ret != 0)
3890 goto done;
3891
3892 /*
3893 * we have a block from this transaction, log every item in it
3894 * from our directory
3895 */
3896 while (1) {
3897 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3898 &last_old_dentry_offset);
3899 if (ret != 0) {
3900 if (ret < 0)
3901 err = ret;
3902 goto done;
3903 }
3904 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3905
3906 /*
3907 * look ahead to the next item and see if it is also
3908 * from this directory and from this transaction
3909 */
3910 ret = btrfs_next_leaf(root, path);
3911 if (ret) {
3912 if (ret == 1)
3913 last_offset = (u64)-1;
3914 else
3915 err = ret;
3916 goto done;
3917 }
3918 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3919 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3920 last_offset = (u64)-1;
3921 goto done;
3922 }
3923 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3924 /*
3925 * The next leaf was not changed in the current transaction
3926 * and has at least one dir index key.
3927 * We check for the next key because there might have been
3928 * one or more deletions between the last key we logged and
3929 * that next key. So the key range item we log (key type
3930 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3931 * offset minus 1, so that those deletes are replayed.
3932 */
3933 last_offset = min_key.offset - 1;
3934 goto done;
3935 }
3936 if (need_resched()) {
3937 btrfs_release_path(path);
3938 cond_resched();
3939 goto search;
3940 }
3941 }
3942done:
3943 btrfs_release_path(path);
3944 btrfs_release_path(dst_path);
3945
3946 if (err == 0) {
3947 *last_offset_ret = last_offset;
3948 /*
3949 * In case the leaf was changed in the current transaction but
3950 * all its dir items are from a past transaction, the last item
3951 * in the leaf is a dir item and there's no gap between that last
3952 * dir item and the first one on the next leaf (which did not
3953 * change in the current transaction), then we don't need to log
3954 * a range, last_old_dentry_offset is == to last_offset.
3955 */
3956 ASSERT(last_old_dentry_offset <= last_offset);
3957 if (last_old_dentry_offset < last_offset) {
3958 ret = insert_dir_log_key(trans, log, path, ino,
3959 last_old_dentry_offset + 1,
3960 last_offset);
3961 if (ret)
3962 err = ret;
3963 }
3964 }
3965 return err;
3966}
3967
3968/*
3969 * If the inode was logged before and it was evicted, then its
3970 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3971 * key offset. If that's the case, search for it and update the inode. This
3972 * is to avoid lookups in the log tree every time we try to insert a dir index
3973 * key from a leaf changed in the current transaction, and to allow us to always
3974 * do batch insertions of dir index keys.
3975 */
3976static int update_last_dir_index_offset(struct btrfs_inode *inode,
3977 struct btrfs_path *path,
3978 const struct btrfs_log_ctx *ctx)
3979{
3980 const u64 ino = btrfs_ino(inode);
3981 struct btrfs_key key;
3982 int ret;
3983
3984 lockdep_assert_held(&inode->log_mutex);
3985
3986 if (inode->last_dir_index_offset != (u64)-1)
3987 return 0;
3988
3989 if (!ctx->logged_before) {
3990 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3991 return 0;
3992 }
3993
3994 key.objectid = ino;
3995 key.type = BTRFS_DIR_INDEX_KEY;
3996 key.offset = (u64)-1;
3997
3998 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3999 /*
4000 * An error happened or we actually have an index key with an offset
4001 * value of (u64)-1. Bail out, we're done.
4002 */
4003 if (ret <= 0)
4004 goto out;
4005
4006 ret = 0;
4007 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4008
4009 /*
4010 * No dir index items, bail out and leave last_dir_index_offset with
4011 * the value right before the first valid index value.
4012 */
4013 if (path->slots[0] == 0)
4014 goto out;
4015
4016 /*
4017 * btrfs_search_slot() left us at one slot beyond the slot with the last
4018 * index key, or beyond the last key of the directory that is not an
4019 * index key. If we have an index key before, set last_dir_index_offset
4020 * to its offset value, otherwise leave it with a value right before the
4021 * first valid index value, as it means we have an empty directory.
4022 */
4023 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4024 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4025 inode->last_dir_index_offset = key.offset;
4026
4027out:
4028 btrfs_release_path(path);
4029
4030 return ret;
4031}
4032
4033/*
4034 * logging directories is very similar to logging inodes, We find all the items
4035 * from the current transaction and write them to the log.
4036 *
4037 * The recovery code scans the directory in the subvolume, and if it finds a
4038 * key in the range logged that is not present in the log tree, then it means
4039 * that dir entry was unlinked during the transaction.
4040 *
4041 * In order for that scan to work, we must include one key smaller than
4042 * the smallest logged by this transaction and one key larger than the largest
4043 * key logged by this transaction.
4044 */
4045static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4046 struct btrfs_inode *inode,
4047 struct btrfs_path *path,
4048 struct btrfs_path *dst_path,
4049 struct btrfs_log_ctx *ctx)
4050{
4051 u64 min_key;
4052 u64 max_key;
4053 int ret;
4054
4055 ret = update_last_dir_index_offset(inode, path, ctx);
4056 if (ret)
4057 return ret;
4058
4059 min_key = BTRFS_DIR_START_INDEX;
4060 max_key = 0;
4061
4062 while (1) {
4063 ret = log_dir_items(trans, inode, path, dst_path,
4064 ctx, min_key, &max_key);
4065 if (ret)
4066 return ret;
4067 if (max_key == (u64)-1)
4068 break;
4069 min_key = max_key + 1;
4070 }
4071
4072 return 0;
4073}
4074
4075/*
4076 * a helper function to drop items from the log before we relog an
4077 * inode. max_key_type indicates the highest item type to remove.
4078 * This cannot be run for file data extents because it does not
4079 * free the extents they point to.
4080 */
4081static int drop_inode_items(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *log,
4083 struct btrfs_path *path,
4084 struct btrfs_inode *inode,
4085 int max_key_type)
4086{
4087 int ret;
4088 struct btrfs_key key;
4089 struct btrfs_key found_key;
4090 int start_slot;
4091
4092 key.objectid = btrfs_ino(inode);
4093 key.type = max_key_type;
4094 key.offset = (u64)-1;
4095
4096 while (1) {
4097 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4098 BUG_ON(ret == 0); /* Logic error */
4099 if (ret < 0)
4100 break;
4101
4102 if (path->slots[0] == 0)
4103 break;
4104
4105 path->slots[0]--;
4106 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4107 path->slots[0]);
4108
4109 if (found_key.objectid != key.objectid)
4110 break;
4111
4112 found_key.offset = 0;
4113 found_key.type = 0;
4114 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4115 if (ret < 0)
4116 break;
4117
4118 ret = btrfs_del_items(trans, log, path, start_slot,
4119 path->slots[0] - start_slot + 1);
4120 /*
4121 * If start slot isn't 0 then we don't need to re-search, we've
4122 * found the last guy with the objectid in this tree.
4123 */
4124 if (ret || start_slot != 0)
4125 break;
4126 btrfs_release_path(path);
4127 }
4128 btrfs_release_path(path);
4129 if (ret > 0)
4130 ret = 0;
4131 return ret;
4132}
4133
4134static int truncate_inode_items(struct btrfs_trans_handle *trans,
4135 struct btrfs_root *log_root,
4136 struct btrfs_inode *inode,
4137 u64 new_size, u32 min_type)
4138{
4139 struct btrfs_truncate_control control = {
4140 .new_size = new_size,
4141 .ino = btrfs_ino(inode),
4142 .min_type = min_type,
4143 .skip_ref_updates = true,
4144 };
4145
4146 return btrfs_truncate_inode_items(trans, log_root, &control);
4147}
4148
4149static void fill_inode_item(struct btrfs_trans_handle *trans,
4150 struct extent_buffer *leaf,
4151 struct btrfs_inode_item *item,
4152 struct inode *inode, int log_inode_only,
4153 u64 logged_isize)
4154{
4155 struct btrfs_map_token token;
4156 u64 flags;
4157
4158 btrfs_init_map_token(&token, leaf);
4159
4160 if (log_inode_only) {
4161 /* set the generation to zero so the recover code
4162 * can tell the difference between an logging
4163 * just to say 'this inode exists' and a logging
4164 * to say 'update this inode with these values'
4165 */
4166 btrfs_set_token_inode_generation(&token, item, 0);
4167 btrfs_set_token_inode_size(&token, item, logged_isize);
4168 } else {
4169 btrfs_set_token_inode_generation(&token, item,
4170 BTRFS_I(inode)->generation);
4171 btrfs_set_token_inode_size(&token, item, inode->i_size);
4172 }
4173
4174 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4175 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4176 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4177 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4178
4179 btrfs_set_token_timespec_sec(&token, &item->atime,
4180 inode->i_atime.tv_sec);
4181 btrfs_set_token_timespec_nsec(&token, &item->atime,
4182 inode->i_atime.tv_nsec);
4183
4184 btrfs_set_token_timespec_sec(&token, &item->mtime,
4185 inode->i_mtime.tv_sec);
4186 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4187 inode->i_mtime.tv_nsec);
4188
4189 btrfs_set_token_timespec_sec(&token, &item->ctime,
4190 inode->i_ctime.tv_sec);
4191 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4192 inode->i_ctime.tv_nsec);
4193
4194 /*
4195 * We do not need to set the nbytes field, in fact during a fast fsync
4196 * its value may not even be correct, since a fast fsync does not wait
4197 * for ordered extent completion, which is where we update nbytes, it
4198 * only waits for writeback to complete. During log replay as we find
4199 * file extent items and replay them, we adjust the nbytes field of the
4200 * inode item in subvolume tree as needed (see overwrite_item()).
4201 */
4202
4203 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4204 btrfs_set_token_inode_transid(&token, item, trans->transid);
4205 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4206 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4207 BTRFS_I(inode)->ro_flags);
4208 btrfs_set_token_inode_flags(&token, item, flags);
4209 btrfs_set_token_inode_block_group(&token, item, 0);
4210}
4211
4212static int log_inode_item(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *log, struct btrfs_path *path,
4214 struct btrfs_inode *inode, bool inode_item_dropped)
4215{
4216 struct btrfs_inode_item *inode_item;
4217 int ret;
4218
4219 /*
4220 * If we are doing a fast fsync and the inode was logged before in the
4221 * current transaction, then we know the inode was previously logged and
4222 * it exists in the log tree. For performance reasons, in this case use
4223 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4224 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4225 * contention in case there are concurrent fsyncs for other inodes of the
4226 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4227 * already exists can also result in unnecessarily splitting a leaf.
4228 */
4229 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4230 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4231 ASSERT(ret <= 0);
4232 if (ret > 0)
4233 ret = -ENOENT;
4234 } else {
4235 /*
4236 * This means it is the first fsync in the current transaction,
4237 * so the inode item is not in the log and we need to insert it.
4238 * We can never get -EEXIST because we are only called for a fast
4239 * fsync and in case an inode eviction happens after the inode was
4240 * logged before in the current transaction, when we load again
4241 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4242 * flags and set ->logged_trans to 0.
4243 */
4244 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4245 sizeof(*inode_item));
4246 ASSERT(ret != -EEXIST);
4247 }
4248 if (ret)
4249 return ret;
4250 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4251 struct btrfs_inode_item);
4252 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4253 0, 0);
4254 btrfs_release_path(path);
4255 return 0;
4256}
4257
4258static int log_csums(struct btrfs_trans_handle *trans,
4259 struct btrfs_inode *inode,
4260 struct btrfs_root *log_root,
4261 struct btrfs_ordered_sum *sums)
4262{
4263 const u64 lock_end = sums->bytenr + sums->len - 1;
4264 struct extent_state *cached_state = NULL;
4265 int ret;
4266
4267 /*
4268 * If this inode was not used for reflink operations in the current
4269 * transaction with new extents, then do the fast path, no need to
4270 * worry about logging checksum items with overlapping ranges.
4271 */
4272 if (inode->last_reflink_trans < trans->transid)
4273 return btrfs_csum_file_blocks(trans, log_root, sums);
4274
4275 /*
4276 * Serialize logging for checksums. This is to avoid racing with the
4277 * same checksum being logged by another task that is logging another
4278 * file which happens to refer to the same extent as well. Such races
4279 * can leave checksum items in the log with overlapping ranges.
4280 */
4281 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4282 &cached_state);
4283 if (ret)
4284 return ret;
4285 /*
4286 * Due to extent cloning, we might have logged a csum item that covers a
4287 * subrange of a cloned extent, and later we can end up logging a csum
4288 * item for a larger subrange of the same extent or the entire range.
4289 * This would leave csum items in the log tree that cover the same range
4290 * and break the searches for checksums in the log tree, resulting in
4291 * some checksums missing in the fs/subvolume tree. So just delete (or
4292 * trim and adjust) any existing csum items in the log for this range.
4293 */
4294 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4295 if (!ret)
4296 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4297
4298 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4299 &cached_state);
4300
4301 return ret;
4302}
4303
4304static noinline int copy_items(struct btrfs_trans_handle *trans,
4305 struct btrfs_inode *inode,
4306 struct btrfs_path *dst_path,
4307 struct btrfs_path *src_path,
4308 int start_slot, int nr, int inode_only,
4309 u64 logged_isize)
4310{
4311 struct btrfs_root *log = inode->root->log_root;
4312 struct btrfs_file_extent_item *extent;
4313 struct extent_buffer *src;
4314 int ret = 0;
4315 struct btrfs_key *ins_keys;
4316 u32 *ins_sizes;
4317 struct btrfs_item_batch batch;
4318 char *ins_data;
4319 int i;
4320 int dst_index;
4321 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4322 const u64 i_size = i_size_read(&inode->vfs_inode);
4323
4324 /*
4325 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4326 * use the clone. This is because otherwise we would be changing the log
4327 * tree, to insert items from the subvolume tree or insert csum items,
4328 * while holding a read lock on a leaf from the subvolume tree, which
4329 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4330 *
4331 * 1) Modifying the log tree triggers an extent buffer allocation while
4332 * holding a write lock on a parent extent buffer from the log tree.
4333 * Allocating the pages for an extent buffer, or the extent buffer
4334 * struct, can trigger inode eviction and finally the inode eviction
4335 * will trigger a release/remove of a delayed node, which requires
4336 * taking the delayed node's mutex;
4337 *
4338 * 2) Allocating a metadata extent for a log tree can trigger the async
4339 * reclaim thread and make us wait for it to release enough space and
4340 * unblock our reservation ticket. The reclaim thread can start
4341 * flushing delayed items, and that in turn results in the need to
4342 * lock delayed node mutexes and in the need to write lock extent
4343 * buffers of a subvolume tree - all this while holding a write lock
4344 * on the parent extent buffer in the log tree.
4345 *
4346 * So one task in scenario 1) running in parallel with another task in
4347 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4348 * node mutex while having a read lock on a leaf from the subvolume,
4349 * while the other is holding the delayed node's mutex and wants to
4350 * write lock the same subvolume leaf for flushing delayed items.
4351 */
4352 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4353 if (!src)
4354 return -ENOMEM;
4355
4356 i = src_path->slots[0];
4357 btrfs_release_path(src_path);
4358 src_path->nodes[0] = src;
4359 src_path->slots[0] = i;
4360
4361 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4362 nr * sizeof(u32), GFP_NOFS);
4363 if (!ins_data)
4364 return -ENOMEM;
4365
4366 ins_sizes = (u32 *)ins_data;
4367 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4368 batch.keys = ins_keys;
4369 batch.data_sizes = ins_sizes;
4370 batch.total_data_size = 0;
4371 batch.nr = 0;
4372
4373 dst_index = 0;
4374 for (i = 0; i < nr; i++) {
4375 const int src_slot = start_slot + i;
4376 struct btrfs_root *csum_root;
4377 struct btrfs_ordered_sum *sums;
4378 struct btrfs_ordered_sum *sums_next;
4379 LIST_HEAD(ordered_sums);
4380 u64 disk_bytenr;
4381 u64 disk_num_bytes;
4382 u64 extent_offset;
4383 u64 extent_num_bytes;
4384 bool is_old_extent;
4385
4386 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4387
4388 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4389 goto add_to_batch;
4390
4391 extent = btrfs_item_ptr(src, src_slot,
4392 struct btrfs_file_extent_item);
4393
4394 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4395 trans->transid);
4396
4397 /*
4398 * Don't copy extents from past generations. That would make us
4399 * log a lot more metadata for common cases like doing only a
4400 * few random writes into a file and then fsync it for the first
4401 * time or after the full sync flag is set on the inode. We can
4402 * get leaves full of extent items, most of which are from past
4403 * generations, so we can skip them - as long as the inode has
4404 * not been the target of a reflink operation in this transaction,
4405 * as in that case it might have had file extent items with old
4406 * generations copied into it. We also must always log prealloc
4407 * extents that start at or beyond eof, otherwise we would lose
4408 * them on log replay.
4409 */
4410 if (is_old_extent &&
4411 ins_keys[dst_index].offset < i_size &&
4412 inode->last_reflink_trans < trans->transid)
4413 continue;
4414
4415 if (skip_csum)
4416 goto add_to_batch;
4417
4418 /* Only regular extents have checksums. */
4419 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4420 goto add_to_batch;
4421
4422 /*
4423 * If it's an extent created in a past transaction, then its
4424 * checksums are already accessible from the committed csum tree,
4425 * no need to log them.
4426 */
4427 if (is_old_extent)
4428 goto add_to_batch;
4429
4430 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4431 /* If it's an explicit hole, there are no checksums. */
4432 if (disk_bytenr == 0)
4433 goto add_to_batch;
4434
4435 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4436
4437 if (btrfs_file_extent_compression(src, extent)) {
4438 extent_offset = 0;
4439 extent_num_bytes = disk_num_bytes;
4440 } else {
4441 extent_offset = btrfs_file_extent_offset(src, extent);
4442 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4443 }
4444
4445 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4446 disk_bytenr += extent_offset;
4447 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4448 disk_bytenr + extent_num_bytes - 1,
4449 &ordered_sums, 0, false);
4450 if (ret)
4451 goto out;
4452
4453 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4454 if (!ret)
4455 ret = log_csums(trans, inode, log, sums);
4456 list_del(&sums->list);
4457 kfree(sums);
4458 }
4459 if (ret)
4460 goto out;
4461
4462add_to_batch:
4463 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4464 batch.total_data_size += ins_sizes[dst_index];
4465 batch.nr++;
4466 dst_index++;
4467 }
4468
4469 /*
4470 * We have a leaf full of old extent items that don't need to be logged,
4471 * so we don't need to do anything.
4472 */
4473 if (batch.nr == 0)
4474 goto out;
4475
4476 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4477 if (ret)
4478 goto out;
4479
4480 dst_index = 0;
4481 for (i = 0; i < nr; i++) {
4482 const int src_slot = start_slot + i;
4483 const int dst_slot = dst_path->slots[0] + dst_index;
4484 struct btrfs_key key;
4485 unsigned long src_offset;
4486 unsigned long dst_offset;
4487
4488 /*
4489 * We're done, all the remaining items in the source leaf
4490 * correspond to old file extent items.
4491 */
4492 if (dst_index >= batch.nr)
4493 break;
4494
4495 btrfs_item_key_to_cpu(src, &key, src_slot);
4496
4497 if (key.type != BTRFS_EXTENT_DATA_KEY)
4498 goto copy_item;
4499
4500 extent = btrfs_item_ptr(src, src_slot,
4501 struct btrfs_file_extent_item);
4502
4503 /* See the comment in the previous loop, same logic. */
4504 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4505 key.offset < i_size &&
4506 inode->last_reflink_trans < trans->transid)
4507 continue;
4508
4509copy_item:
4510 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4511 src_offset = btrfs_item_ptr_offset(src, src_slot);
4512
4513 if (key.type == BTRFS_INODE_ITEM_KEY) {
4514 struct btrfs_inode_item *inode_item;
4515
4516 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4517 struct btrfs_inode_item);
4518 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4519 &inode->vfs_inode,
4520 inode_only == LOG_INODE_EXISTS,
4521 logged_isize);
4522 } else {
4523 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4524 src_offset, ins_sizes[dst_index]);
4525 }
4526
4527 dst_index++;
4528 }
4529
4530 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4531 btrfs_release_path(dst_path);
4532out:
4533 kfree(ins_data);
4534
4535 return ret;
4536}
4537
4538static int extent_cmp(void *priv, const struct list_head *a,
4539 const struct list_head *b)
4540{
4541 const struct extent_map *em1, *em2;
4542
4543 em1 = list_entry(a, struct extent_map, list);
4544 em2 = list_entry(b, struct extent_map, list);
4545
4546 if (em1->start < em2->start)
4547 return -1;
4548 else if (em1->start > em2->start)
4549 return 1;
4550 return 0;
4551}
4552
4553static int log_extent_csums(struct btrfs_trans_handle *trans,
4554 struct btrfs_inode *inode,
4555 struct btrfs_root *log_root,
4556 const struct extent_map *em,
4557 struct btrfs_log_ctx *ctx)
4558{
4559 struct btrfs_ordered_extent *ordered;
4560 struct btrfs_root *csum_root;
4561 u64 csum_offset;
4562 u64 csum_len;
4563 u64 mod_start = em->mod_start;
4564 u64 mod_len = em->mod_len;
4565 LIST_HEAD(ordered_sums);
4566 int ret = 0;
4567
4568 if (inode->flags & BTRFS_INODE_NODATASUM ||
4569 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4570 em->block_start == EXTENT_MAP_HOLE)
4571 return 0;
4572
4573 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4574 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4575 const u64 mod_end = mod_start + mod_len;
4576 struct btrfs_ordered_sum *sums;
4577
4578 if (mod_len == 0)
4579 break;
4580
4581 if (ordered_end <= mod_start)
4582 continue;
4583 if (mod_end <= ordered->file_offset)
4584 break;
4585
4586 /*
4587 * We are going to copy all the csums on this ordered extent, so
4588 * go ahead and adjust mod_start and mod_len in case this ordered
4589 * extent has already been logged.
4590 */
4591 if (ordered->file_offset > mod_start) {
4592 if (ordered_end >= mod_end)
4593 mod_len = ordered->file_offset - mod_start;
4594 /*
4595 * If we have this case
4596 *
4597 * |--------- logged extent ---------|
4598 * |----- ordered extent ----|
4599 *
4600 * Just don't mess with mod_start and mod_len, we'll
4601 * just end up logging more csums than we need and it
4602 * will be ok.
4603 */
4604 } else {
4605 if (ordered_end < mod_end) {
4606 mod_len = mod_end - ordered_end;
4607 mod_start = ordered_end;
4608 } else {
4609 mod_len = 0;
4610 }
4611 }
4612
4613 /*
4614 * To keep us from looping for the above case of an ordered
4615 * extent that falls inside of the logged extent.
4616 */
4617 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4618 continue;
4619
4620 list_for_each_entry(sums, &ordered->list, list) {
4621 ret = log_csums(trans, inode, log_root, sums);
4622 if (ret)
4623 return ret;
4624 }
4625 }
4626
4627 /* We're done, found all csums in the ordered extents. */
4628 if (mod_len == 0)
4629 return 0;
4630
4631 /* If we're compressed we have to save the entire range of csums. */
4632 if (em->compress_type) {
4633 csum_offset = 0;
4634 csum_len = max(em->block_len, em->orig_block_len);
4635 } else {
4636 csum_offset = mod_start - em->start;
4637 csum_len = mod_len;
4638 }
4639
4640 /* block start is already adjusted for the file extent offset. */
4641 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4642 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4643 em->block_start + csum_offset +
4644 csum_len - 1, &ordered_sums, 0, false);
4645 if (ret)
4646 return ret;
4647
4648 while (!list_empty(&ordered_sums)) {
4649 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4650 struct btrfs_ordered_sum,
4651 list);
4652 if (!ret)
4653 ret = log_csums(trans, inode, log_root, sums);
4654 list_del(&sums->list);
4655 kfree(sums);
4656 }
4657
4658 return ret;
4659}
4660
4661static int log_one_extent(struct btrfs_trans_handle *trans,
4662 struct btrfs_inode *inode,
4663 const struct extent_map *em,
4664 struct btrfs_path *path,
4665 struct btrfs_log_ctx *ctx)
4666{
4667 struct btrfs_drop_extents_args drop_args = { 0 };
4668 struct btrfs_root *log = inode->root->log_root;
4669 struct btrfs_file_extent_item fi = { 0 };
4670 struct extent_buffer *leaf;
4671 struct btrfs_key key;
4672 u64 extent_offset = em->start - em->orig_start;
4673 u64 block_len;
4674 int ret;
4675
4676 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4677 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4678 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4679 else
4680 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4681
4682 block_len = max(em->block_len, em->orig_block_len);
4683 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4684 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4685 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4686 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4687 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4688 extent_offset);
4689 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4690 }
4691
4692 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4693 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4694 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4695 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4696
4697 ret = log_extent_csums(trans, inode, log, em, ctx);
4698 if (ret)
4699 return ret;
4700
4701 /*
4702 * If this is the first time we are logging the inode in the current
4703 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4704 * because it does a deletion search, which always acquires write locks
4705 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4706 * but also adds significant contention in a log tree, since log trees
4707 * are small, with a root at level 2 or 3 at most, due to their short
4708 * life span.
4709 */
4710 if (ctx->logged_before) {
4711 drop_args.path = path;
4712 drop_args.start = em->start;
4713 drop_args.end = em->start + em->len;
4714 drop_args.replace_extent = true;
4715 drop_args.extent_item_size = sizeof(fi);
4716 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4717 if (ret)
4718 return ret;
4719 }
4720
4721 if (!drop_args.extent_inserted) {
4722 key.objectid = btrfs_ino(inode);
4723 key.type = BTRFS_EXTENT_DATA_KEY;
4724 key.offset = em->start;
4725
4726 ret = btrfs_insert_empty_item(trans, log, path, &key,
4727 sizeof(fi));
4728 if (ret)
4729 return ret;
4730 }
4731 leaf = path->nodes[0];
4732 write_extent_buffer(leaf, &fi,
4733 btrfs_item_ptr_offset(leaf, path->slots[0]),
4734 sizeof(fi));
4735 btrfs_mark_buffer_dirty(leaf);
4736
4737 btrfs_release_path(path);
4738
4739 return ret;
4740}
4741
4742/*
4743 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4744 * lose them after doing a full/fast fsync and replaying the log. We scan the
4745 * subvolume's root instead of iterating the inode's extent map tree because
4746 * otherwise we can log incorrect extent items based on extent map conversion.
4747 * That can happen due to the fact that extent maps are merged when they
4748 * are not in the extent map tree's list of modified extents.
4749 */
4750static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4751 struct btrfs_inode *inode,
4752 struct btrfs_path *path)
4753{
4754 struct btrfs_root *root = inode->root;
4755 struct btrfs_key key;
4756 const u64 i_size = i_size_read(&inode->vfs_inode);
4757 const u64 ino = btrfs_ino(inode);
4758 struct btrfs_path *dst_path = NULL;
4759 bool dropped_extents = false;
4760 u64 truncate_offset = i_size;
4761 struct extent_buffer *leaf;
4762 int slot;
4763 int ins_nr = 0;
4764 int start_slot;
4765 int ret;
4766
4767 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4768 return 0;
4769
4770 key.objectid = ino;
4771 key.type = BTRFS_EXTENT_DATA_KEY;
4772 key.offset = i_size;
4773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4774 if (ret < 0)
4775 goto out;
4776
4777 /*
4778 * We must check if there is a prealloc extent that starts before the
4779 * i_size and crosses the i_size boundary. This is to ensure later we
4780 * truncate down to the end of that extent and not to the i_size, as
4781 * otherwise we end up losing part of the prealloc extent after a log
4782 * replay and with an implicit hole if there is another prealloc extent
4783 * that starts at an offset beyond i_size.
4784 */
4785 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4786 if (ret < 0)
4787 goto out;
4788
4789 if (ret == 0) {
4790 struct btrfs_file_extent_item *ei;
4791
4792 leaf = path->nodes[0];
4793 slot = path->slots[0];
4794 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4795
4796 if (btrfs_file_extent_type(leaf, ei) ==
4797 BTRFS_FILE_EXTENT_PREALLOC) {
4798 u64 extent_end;
4799
4800 btrfs_item_key_to_cpu(leaf, &key, slot);
4801 extent_end = key.offset +
4802 btrfs_file_extent_num_bytes(leaf, ei);
4803
4804 if (extent_end > i_size)
4805 truncate_offset = extent_end;
4806 }
4807 } else {
4808 ret = 0;
4809 }
4810
4811 while (true) {
4812 leaf = path->nodes[0];
4813 slot = path->slots[0];
4814
4815 if (slot >= btrfs_header_nritems(leaf)) {
4816 if (ins_nr > 0) {
4817 ret = copy_items(trans, inode, dst_path, path,
4818 start_slot, ins_nr, 1, 0);
4819 if (ret < 0)
4820 goto out;
4821 ins_nr = 0;
4822 }
4823 ret = btrfs_next_leaf(root, path);
4824 if (ret < 0)
4825 goto out;
4826 if (ret > 0) {
4827 ret = 0;
4828 break;
4829 }
4830 continue;
4831 }
4832
4833 btrfs_item_key_to_cpu(leaf, &key, slot);
4834 if (key.objectid > ino)
4835 break;
4836 if (WARN_ON_ONCE(key.objectid < ino) ||
4837 key.type < BTRFS_EXTENT_DATA_KEY ||
4838 key.offset < i_size) {
4839 path->slots[0]++;
4840 continue;
4841 }
4842 if (!dropped_extents) {
4843 /*
4844 * Avoid logging extent items logged in past fsync calls
4845 * and leading to duplicate keys in the log tree.
4846 */
4847 ret = truncate_inode_items(trans, root->log_root, inode,
4848 truncate_offset,
4849 BTRFS_EXTENT_DATA_KEY);
4850 if (ret)
4851 goto out;
4852 dropped_extents = true;
4853 }
4854 if (ins_nr == 0)
4855 start_slot = slot;
4856 ins_nr++;
4857 path->slots[0]++;
4858 if (!dst_path) {
4859 dst_path = btrfs_alloc_path();
4860 if (!dst_path) {
4861 ret = -ENOMEM;
4862 goto out;
4863 }
4864 }
4865 }
4866 if (ins_nr > 0)
4867 ret = copy_items(trans, inode, dst_path, path,
4868 start_slot, ins_nr, 1, 0);
4869out:
4870 btrfs_release_path(path);
4871 btrfs_free_path(dst_path);
4872 return ret;
4873}
4874
4875static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4876 struct btrfs_inode *inode,
4877 struct btrfs_path *path,
4878 struct btrfs_log_ctx *ctx)
4879{
4880 struct btrfs_ordered_extent *ordered;
4881 struct btrfs_ordered_extent *tmp;
4882 struct extent_map *em, *n;
4883 struct list_head extents;
4884 struct extent_map_tree *tree = &inode->extent_tree;
4885 int ret = 0;
4886 int num = 0;
4887
4888 INIT_LIST_HEAD(&extents);
4889
4890 write_lock(&tree->lock);
4891
4892 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4893 list_del_init(&em->list);
4894 /*
4895 * Just an arbitrary number, this can be really CPU intensive
4896 * once we start getting a lot of extents, and really once we
4897 * have a bunch of extents we just want to commit since it will
4898 * be faster.
4899 */
4900 if (++num > 32768) {
4901 list_del_init(&tree->modified_extents);
4902 ret = -EFBIG;
4903 goto process;
4904 }
4905
4906 if (em->generation < trans->transid)
4907 continue;
4908
4909 /* We log prealloc extents beyond eof later. */
4910 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4911 em->start >= i_size_read(&inode->vfs_inode))
4912 continue;
4913
4914 /* Need a ref to keep it from getting evicted from cache */
4915 refcount_inc(&em->refs);
4916 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4917 list_add_tail(&em->list, &extents);
4918 num++;
4919 }
4920
4921 list_sort(NULL, &extents, extent_cmp);
4922process:
4923 while (!list_empty(&extents)) {
4924 em = list_entry(extents.next, struct extent_map, list);
4925
4926 list_del_init(&em->list);
4927
4928 /*
4929 * If we had an error we just need to delete everybody from our
4930 * private list.
4931 */
4932 if (ret) {
4933 clear_em_logging(tree, em);
4934 free_extent_map(em);
4935 continue;
4936 }
4937
4938 write_unlock(&tree->lock);
4939
4940 ret = log_one_extent(trans, inode, em, path, ctx);
4941 write_lock(&tree->lock);
4942 clear_em_logging(tree, em);
4943 free_extent_map(em);
4944 }
4945 WARN_ON(!list_empty(&extents));
4946 write_unlock(&tree->lock);
4947
4948 if (!ret)
4949 ret = btrfs_log_prealloc_extents(trans, inode, path);
4950 if (ret)
4951 return ret;
4952
4953 /*
4954 * We have logged all extents successfully, now make sure the commit of
4955 * the current transaction waits for the ordered extents to complete
4956 * before it commits and wipes out the log trees, otherwise we would
4957 * lose data if an ordered extents completes after the transaction
4958 * commits and a power failure happens after the transaction commit.
4959 */
4960 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4961 list_del_init(&ordered->log_list);
4962 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4963
4964 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4965 spin_lock_irq(&inode->ordered_tree.lock);
4966 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4967 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4968 atomic_inc(&trans->transaction->pending_ordered);
4969 }
4970 spin_unlock_irq(&inode->ordered_tree.lock);
4971 }
4972 btrfs_put_ordered_extent(ordered);
4973 }
4974
4975 return 0;
4976}
4977
4978static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4979 struct btrfs_path *path, u64 *size_ret)
4980{
4981 struct btrfs_key key;
4982 int ret;
4983
4984 key.objectid = btrfs_ino(inode);
4985 key.type = BTRFS_INODE_ITEM_KEY;
4986 key.offset = 0;
4987
4988 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4989 if (ret < 0) {
4990 return ret;
4991 } else if (ret > 0) {
4992 *size_ret = 0;
4993 } else {
4994 struct btrfs_inode_item *item;
4995
4996 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4997 struct btrfs_inode_item);
4998 *size_ret = btrfs_inode_size(path->nodes[0], item);
4999 /*
5000 * If the in-memory inode's i_size is smaller then the inode
5001 * size stored in the btree, return the inode's i_size, so
5002 * that we get a correct inode size after replaying the log
5003 * when before a power failure we had a shrinking truncate
5004 * followed by addition of a new name (rename / new hard link).
5005 * Otherwise return the inode size from the btree, to avoid
5006 * data loss when replaying a log due to previously doing a
5007 * write that expands the inode's size and logging a new name
5008 * immediately after.
5009 */
5010 if (*size_ret > inode->vfs_inode.i_size)
5011 *size_ret = inode->vfs_inode.i_size;
5012 }
5013
5014 btrfs_release_path(path);
5015 return 0;
5016}
5017
5018/*
5019 * At the moment we always log all xattrs. This is to figure out at log replay
5020 * time which xattrs must have their deletion replayed. If a xattr is missing
5021 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5022 * because if a xattr is deleted, the inode is fsynced and a power failure
5023 * happens, causing the log to be replayed the next time the fs is mounted,
5024 * we want the xattr to not exist anymore (same behaviour as other filesystems
5025 * with a journal, ext3/4, xfs, f2fs, etc).
5026 */
5027static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5028 struct btrfs_inode *inode,
5029 struct btrfs_path *path,
5030 struct btrfs_path *dst_path)
5031{
5032 struct btrfs_root *root = inode->root;
5033 int ret;
5034 struct btrfs_key key;
5035 const u64 ino = btrfs_ino(inode);
5036 int ins_nr = 0;
5037 int start_slot = 0;
5038 bool found_xattrs = false;
5039
5040 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5041 return 0;
5042
5043 key.objectid = ino;
5044 key.type = BTRFS_XATTR_ITEM_KEY;
5045 key.offset = 0;
5046
5047 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5048 if (ret < 0)
5049 return ret;
5050
5051 while (true) {
5052 int slot = path->slots[0];
5053 struct extent_buffer *leaf = path->nodes[0];
5054 int nritems = btrfs_header_nritems(leaf);
5055
5056 if (slot >= nritems) {
5057 if (ins_nr > 0) {
5058 ret = copy_items(trans, inode, dst_path, path,
5059 start_slot, ins_nr, 1, 0);
5060 if (ret < 0)
5061 return ret;
5062 ins_nr = 0;
5063 }
5064 ret = btrfs_next_leaf(root, path);
5065 if (ret < 0)
5066 return ret;
5067 else if (ret > 0)
5068 break;
5069 continue;
5070 }
5071
5072 btrfs_item_key_to_cpu(leaf, &key, slot);
5073 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5074 break;
5075
5076 if (ins_nr == 0)
5077 start_slot = slot;
5078 ins_nr++;
5079 path->slots[0]++;
5080 found_xattrs = true;
5081 cond_resched();
5082 }
5083 if (ins_nr > 0) {
5084 ret = copy_items(trans, inode, dst_path, path,
5085 start_slot, ins_nr, 1, 0);
5086 if (ret < 0)
5087 return ret;
5088 }
5089
5090 if (!found_xattrs)
5091 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5092
5093 return 0;
5094}
5095
5096/*
5097 * When using the NO_HOLES feature if we punched a hole that causes the
5098 * deletion of entire leafs or all the extent items of the first leaf (the one
5099 * that contains the inode item and references) we may end up not processing
5100 * any extents, because there are no leafs with a generation matching the
5101 * current transaction that have extent items for our inode. So we need to find
5102 * if any holes exist and then log them. We also need to log holes after any
5103 * truncate operation that changes the inode's size.
5104 */
5105static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5106 struct btrfs_inode *inode,
5107 struct btrfs_path *path)
5108{
5109 struct btrfs_root *root = inode->root;
5110 struct btrfs_fs_info *fs_info = root->fs_info;
5111 struct btrfs_key key;
5112 const u64 ino = btrfs_ino(inode);
5113 const u64 i_size = i_size_read(&inode->vfs_inode);
5114 u64 prev_extent_end = 0;
5115 int ret;
5116
5117 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5118 return 0;
5119
5120 key.objectid = ino;
5121 key.type = BTRFS_EXTENT_DATA_KEY;
5122 key.offset = 0;
5123
5124 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5125 if (ret < 0)
5126 return ret;
5127
5128 while (true) {
5129 struct extent_buffer *leaf = path->nodes[0];
5130
5131 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5132 ret = btrfs_next_leaf(root, path);
5133 if (ret < 0)
5134 return ret;
5135 if (ret > 0) {
5136 ret = 0;
5137 break;
5138 }
5139 leaf = path->nodes[0];
5140 }
5141
5142 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5143 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5144 break;
5145
5146 /* We have a hole, log it. */
5147 if (prev_extent_end < key.offset) {
5148 const u64 hole_len = key.offset - prev_extent_end;
5149
5150 /*
5151 * Release the path to avoid deadlocks with other code
5152 * paths that search the root while holding locks on
5153 * leafs from the log root.
5154 */
5155 btrfs_release_path(path);
5156 ret = btrfs_insert_hole_extent(trans, root->log_root,
5157 ino, prev_extent_end,
5158 hole_len);
5159 if (ret < 0)
5160 return ret;
5161
5162 /*
5163 * Search for the same key again in the root. Since it's
5164 * an extent item and we are holding the inode lock, the
5165 * key must still exist. If it doesn't just emit warning
5166 * and return an error to fall back to a transaction
5167 * commit.
5168 */
5169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5170 if (ret < 0)
5171 return ret;
5172 if (WARN_ON(ret > 0))
5173 return -ENOENT;
5174 leaf = path->nodes[0];
5175 }
5176
5177 prev_extent_end = btrfs_file_extent_end(path);
5178 path->slots[0]++;
5179 cond_resched();
5180 }
5181
5182 if (prev_extent_end < i_size) {
5183 u64 hole_len;
5184
5185 btrfs_release_path(path);
5186 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5187 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5188 prev_extent_end, hole_len);
5189 if (ret < 0)
5190 return ret;
5191 }
5192
5193 return 0;
5194}
5195
5196/*
5197 * When we are logging a new inode X, check if it doesn't have a reference that
5198 * matches the reference from some other inode Y created in a past transaction
5199 * and that was renamed in the current transaction. If we don't do this, then at
5200 * log replay time we can lose inode Y (and all its files if it's a directory):
5201 *
5202 * mkdir /mnt/x
5203 * echo "hello world" > /mnt/x/foobar
5204 * sync
5205 * mv /mnt/x /mnt/y
5206 * mkdir /mnt/x # or touch /mnt/x
5207 * xfs_io -c fsync /mnt/x
5208 * <power fail>
5209 * mount fs, trigger log replay
5210 *
5211 * After the log replay procedure, we would lose the first directory and all its
5212 * files (file foobar).
5213 * For the case where inode Y is not a directory we simply end up losing it:
5214 *
5215 * echo "123" > /mnt/foo
5216 * sync
5217 * mv /mnt/foo /mnt/bar
5218 * echo "abc" > /mnt/foo
5219 * xfs_io -c fsync /mnt/foo
5220 * <power fail>
5221 *
5222 * We also need this for cases where a snapshot entry is replaced by some other
5223 * entry (file or directory) otherwise we end up with an unreplayable log due to
5224 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5225 * if it were a regular entry:
5226 *
5227 * mkdir /mnt/x
5228 * btrfs subvolume snapshot /mnt /mnt/x/snap
5229 * btrfs subvolume delete /mnt/x/snap
5230 * rmdir /mnt/x
5231 * mkdir /mnt/x
5232 * fsync /mnt/x or fsync some new file inside it
5233 * <power fail>
5234 *
5235 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5236 * the same transaction.
5237 */
5238static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5239 const int slot,
5240 const struct btrfs_key *key,
5241 struct btrfs_inode *inode,
5242 u64 *other_ino, u64 *other_parent)
5243{
5244 int ret;
5245 struct btrfs_path *search_path;
5246 char *name = NULL;
5247 u32 name_len = 0;
5248 u32 item_size = btrfs_item_size(eb, slot);
5249 u32 cur_offset = 0;
5250 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5251
5252 search_path = btrfs_alloc_path();
5253 if (!search_path)
5254 return -ENOMEM;
5255 search_path->search_commit_root = 1;
5256 search_path->skip_locking = 1;
5257
5258 while (cur_offset < item_size) {
5259 u64 parent;
5260 u32 this_name_len;
5261 u32 this_len;
5262 unsigned long name_ptr;
5263 struct btrfs_dir_item *di;
5264 struct fscrypt_str name_str;
5265
5266 if (key->type == BTRFS_INODE_REF_KEY) {
5267 struct btrfs_inode_ref *iref;
5268
5269 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5270 parent = key->offset;
5271 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5272 name_ptr = (unsigned long)(iref + 1);
5273 this_len = sizeof(*iref) + this_name_len;
5274 } else {
5275 struct btrfs_inode_extref *extref;
5276
5277 extref = (struct btrfs_inode_extref *)(ptr +
5278 cur_offset);
5279 parent = btrfs_inode_extref_parent(eb, extref);
5280 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5281 name_ptr = (unsigned long)&extref->name;
5282 this_len = sizeof(*extref) + this_name_len;
5283 }
5284
5285 if (this_name_len > name_len) {
5286 char *new_name;
5287
5288 new_name = krealloc(name, this_name_len, GFP_NOFS);
5289 if (!new_name) {
5290 ret = -ENOMEM;
5291 goto out;
5292 }
5293 name_len = this_name_len;
5294 name = new_name;
5295 }
5296
5297 read_extent_buffer(eb, name, name_ptr, this_name_len);
5298
5299 name_str.name = name;
5300 name_str.len = this_name_len;
5301 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5302 parent, &name_str, 0);
5303 if (di && !IS_ERR(di)) {
5304 struct btrfs_key di_key;
5305
5306 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5307 di, &di_key);
5308 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5309 if (di_key.objectid != key->objectid) {
5310 ret = 1;
5311 *other_ino = di_key.objectid;
5312 *other_parent = parent;
5313 } else {
5314 ret = 0;
5315 }
5316 } else {
5317 ret = -EAGAIN;
5318 }
5319 goto out;
5320 } else if (IS_ERR(di)) {
5321 ret = PTR_ERR(di);
5322 goto out;
5323 }
5324 btrfs_release_path(search_path);
5325
5326 cur_offset += this_len;
5327 }
5328 ret = 0;
5329out:
5330 btrfs_free_path(search_path);
5331 kfree(name);
5332 return ret;
5333}
5334
5335/*
5336 * Check if we need to log an inode. This is used in contexts where while
5337 * logging an inode we need to log another inode (either that it exists or in
5338 * full mode). This is used instead of btrfs_inode_in_log() because the later
5339 * requires the inode to be in the log and have the log transaction committed,
5340 * while here we do not care if the log transaction was already committed - our
5341 * caller will commit the log later - and we want to avoid logging an inode
5342 * multiple times when multiple tasks have joined the same log transaction.
5343 */
5344static bool need_log_inode(const struct btrfs_trans_handle *trans,
5345 const struct btrfs_inode *inode)
5346{
5347 /*
5348 * If a directory was not modified, no dentries added or removed, we can
5349 * and should avoid logging it.
5350 */
5351 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5352 return false;
5353
5354 /*
5355 * If this inode does not have new/updated/deleted xattrs since the last
5356 * time it was logged and is flagged as logged in the current transaction,
5357 * we can skip logging it. As for new/deleted names, those are updated in
5358 * the log by link/unlink/rename operations.
5359 * In case the inode was logged and then evicted and reloaded, its
5360 * logged_trans will be 0, in which case we have to fully log it since
5361 * logged_trans is a transient field, not persisted.
5362 */
5363 if (inode->logged_trans == trans->transid &&
5364 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5365 return false;
5366
5367 return true;
5368}
5369
5370struct btrfs_dir_list {
5371 u64 ino;
5372 struct list_head list;
5373};
5374
5375/*
5376 * Log the inodes of the new dentries of a directory.
5377 * See process_dir_items_leaf() for details about why it is needed.
5378 * This is a recursive operation - if an existing dentry corresponds to a
5379 * directory, that directory's new entries are logged too (same behaviour as
5380 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5381 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5382 * complains about the following circular lock dependency / possible deadlock:
5383 *
5384 * CPU0 CPU1
5385 * ---- ----
5386 * lock(&type->i_mutex_dir_key#3/2);
5387 * lock(sb_internal#2);
5388 * lock(&type->i_mutex_dir_key#3/2);
5389 * lock(&sb->s_type->i_mutex_key#14);
5390 *
5391 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5392 * sb_start_intwrite() in btrfs_start_transaction().
5393 * Not acquiring the VFS lock of the inodes is still safe because:
5394 *
5395 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5396 * that while logging the inode new references (names) are added or removed
5397 * from the inode, leaving the logged inode item with a link count that does
5398 * not match the number of logged inode reference items. This is fine because
5399 * at log replay time we compute the real number of links and correct the
5400 * link count in the inode item (see replay_one_buffer() and
5401 * link_to_fixup_dir());
5402 *
5403 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5404 * while logging the inode's items new index items (key type
5405 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5406 * has a size that doesn't match the sum of the lengths of all the logged
5407 * names - this is ok, not a problem, because at log replay time we set the
5408 * directory's i_size to the correct value (see replay_one_name() and
5409 * overwrite_item()).
5410 */
5411static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5412 struct btrfs_inode *start_inode,
5413 struct btrfs_log_ctx *ctx)
5414{
5415 struct btrfs_root *root = start_inode->root;
5416 struct btrfs_fs_info *fs_info = root->fs_info;
5417 struct btrfs_path *path;
5418 LIST_HEAD(dir_list);
5419 struct btrfs_dir_list *dir_elem;
5420 u64 ino = btrfs_ino(start_inode);
5421 int ret = 0;
5422
5423 /*
5424 * If we are logging a new name, as part of a link or rename operation,
5425 * don't bother logging new dentries, as we just want to log the names
5426 * of an inode and that any new parents exist.
5427 */
5428 if (ctx->logging_new_name)
5429 return 0;
5430
5431 path = btrfs_alloc_path();
5432 if (!path)
5433 return -ENOMEM;
5434
5435 while (true) {
5436 struct extent_buffer *leaf;
5437 struct btrfs_key min_key;
5438 bool continue_curr_inode = true;
5439 int nritems;
5440 int i;
5441
5442 min_key.objectid = ino;
5443 min_key.type = BTRFS_DIR_INDEX_KEY;
5444 min_key.offset = 0;
5445again:
5446 btrfs_release_path(path);
5447 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5448 if (ret < 0) {
5449 break;
5450 } else if (ret > 0) {
5451 ret = 0;
5452 goto next;
5453 }
5454
5455 leaf = path->nodes[0];
5456 nritems = btrfs_header_nritems(leaf);
5457 for (i = path->slots[0]; i < nritems; i++) {
5458 struct btrfs_dir_item *di;
5459 struct btrfs_key di_key;
5460 struct inode *di_inode;
5461 int log_mode = LOG_INODE_EXISTS;
5462 int type;
5463
5464 btrfs_item_key_to_cpu(leaf, &min_key, i);
5465 if (min_key.objectid != ino ||
5466 min_key.type != BTRFS_DIR_INDEX_KEY) {
5467 continue_curr_inode = false;
5468 break;
5469 }
5470
5471 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5472 type = btrfs_dir_ftype(leaf, di);
5473 if (btrfs_dir_transid(leaf, di) < trans->transid)
5474 continue;
5475 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5476 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5477 continue;
5478
5479 btrfs_release_path(path);
5480 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5481 if (IS_ERR(di_inode)) {
5482 ret = PTR_ERR(di_inode);
5483 goto out;
5484 }
5485
5486 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5487 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5488 break;
5489 }
5490
5491 ctx->log_new_dentries = false;
5492 if (type == BTRFS_FT_DIR)
5493 log_mode = LOG_INODE_ALL;
5494 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5495 log_mode, ctx);
5496 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5497 if (ret)
5498 goto out;
5499 if (ctx->log_new_dentries) {
5500 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5501 if (!dir_elem) {
5502 ret = -ENOMEM;
5503 goto out;
5504 }
5505 dir_elem->ino = di_key.objectid;
5506 list_add_tail(&dir_elem->list, &dir_list);
5507 }
5508 break;
5509 }
5510
5511 if (continue_curr_inode && min_key.offset < (u64)-1) {
5512 min_key.offset++;
5513 goto again;
5514 }
5515
5516next:
5517 if (list_empty(&dir_list))
5518 break;
5519
5520 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5521 ino = dir_elem->ino;
5522 list_del(&dir_elem->list);
5523 kfree(dir_elem);
5524 }
5525out:
5526 btrfs_free_path(path);
5527 if (ret) {
5528 struct btrfs_dir_list *next;
5529
5530 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5531 kfree(dir_elem);
5532 }
5533
5534 return ret;
5535}
5536
5537struct btrfs_ino_list {
5538 u64 ino;
5539 u64 parent;
5540 struct list_head list;
5541};
5542
5543static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5544{
5545 struct btrfs_ino_list *curr;
5546 struct btrfs_ino_list *next;
5547
5548 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5549 list_del(&curr->list);
5550 kfree(curr);
5551 }
5552}
5553
5554static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5555 struct btrfs_path *path)
5556{
5557 struct btrfs_key key;
5558 int ret;
5559
5560 key.objectid = ino;
5561 key.type = BTRFS_INODE_ITEM_KEY;
5562 key.offset = 0;
5563
5564 path->search_commit_root = 1;
5565 path->skip_locking = 1;
5566
5567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5568 if (WARN_ON_ONCE(ret > 0)) {
5569 /*
5570 * We have previously found the inode through the commit root
5571 * so this should not happen. If it does, just error out and
5572 * fallback to a transaction commit.
5573 */
5574 ret = -ENOENT;
5575 } else if (ret == 0) {
5576 struct btrfs_inode_item *item;
5577
5578 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5579 struct btrfs_inode_item);
5580 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5581 ret = 1;
5582 }
5583
5584 btrfs_release_path(path);
5585 path->search_commit_root = 0;
5586 path->skip_locking = 0;
5587
5588 return ret;
5589}
5590
5591static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5592 struct btrfs_root *root,
5593 struct btrfs_path *path,
5594 u64 ino, u64 parent,
5595 struct btrfs_log_ctx *ctx)
5596{
5597 struct btrfs_ino_list *ino_elem;
5598 struct inode *inode;
5599
5600 /*
5601 * It's rare to have a lot of conflicting inodes, in practice it is not
5602 * common to have more than 1 or 2. We don't want to collect too many,
5603 * as we could end up logging too many inodes (even if only in
5604 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5605 * commits.
5606 */
5607 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) {
5608 btrfs_set_log_full_commit(trans);
5609 return BTRFS_LOG_FORCE_COMMIT;
5610 }
5611
5612 inode = btrfs_iget(root->fs_info->sb, ino, root);
5613 /*
5614 * If the other inode that had a conflicting dir entry was deleted in
5615 * the current transaction then we either:
5616 *
5617 * 1) Log the parent directory (later after adding it to the list) if
5618 * the inode is a directory. This is because it may be a deleted
5619 * subvolume/snapshot or it may be a regular directory that had
5620 * deleted subvolumes/snapshots (or subdirectories that had them),
5621 * and at the moment we can't deal with dropping subvolumes/snapshots
5622 * during log replay. So we just log the parent, which will result in
5623 * a fallback to a transaction commit if we are dealing with those
5624 * cases (last_unlink_trans will match the current transaction);
5625 *
5626 * 2) Do nothing if it's not a directory. During log replay we simply
5627 * unlink the conflicting dentry from the parent directory and then
5628 * add the dentry for our inode. Like this we can avoid logging the
5629 * parent directory (and maybe fallback to a transaction commit in
5630 * case it has a last_unlink_trans == trans->transid, due to moving
5631 * some inode from it to some other directory).
5632 */
5633 if (IS_ERR(inode)) {
5634 int ret = PTR_ERR(inode);
5635
5636 if (ret != -ENOENT)
5637 return ret;
5638
5639 ret = conflicting_inode_is_dir(root, ino, path);
5640 /* Not a directory or we got an error. */
5641 if (ret <= 0)
5642 return ret;
5643
5644 /* Conflicting inode is a directory, so we'll log its parent. */
5645 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5646 if (!ino_elem)
5647 return -ENOMEM;
5648 ino_elem->ino = ino;
5649 ino_elem->parent = parent;
5650 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5651 ctx->num_conflict_inodes++;
5652
5653 return 0;
5654 }
5655
5656 /*
5657 * If the inode was already logged skip it - otherwise we can hit an
5658 * infinite loop. Example:
5659 *
5660 * From the commit root (previous transaction) we have the following
5661 * inodes:
5662 *
5663 * inode 257 a directory
5664 * inode 258 with references "zz" and "zz_link" on inode 257
5665 * inode 259 with reference "a" on inode 257
5666 *
5667 * And in the current (uncommitted) transaction we have:
5668 *
5669 * inode 257 a directory, unchanged
5670 * inode 258 with references "a" and "a2" on inode 257
5671 * inode 259 with reference "zz_link" on inode 257
5672 * inode 261 with reference "zz" on inode 257
5673 *
5674 * When logging inode 261 the following infinite loop could
5675 * happen if we don't skip already logged inodes:
5676 *
5677 * - we detect inode 258 as a conflicting inode, with inode 261
5678 * on reference "zz", and log it;
5679 *
5680 * - we detect inode 259 as a conflicting inode, with inode 258
5681 * on reference "a", and log it;
5682 *
5683 * - we detect inode 258 as a conflicting inode, with inode 259
5684 * on reference "zz_link", and log it - again! After this we
5685 * repeat the above steps forever.
5686 *
5687 * Here we can use need_log_inode() because we only need to log the
5688 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5689 * so that the log ends up with the new name and without the old name.
5690 */
5691 if (!need_log_inode(trans, BTRFS_I(inode))) {
5692 btrfs_add_delayed_iput(BTRFS_I(inode));
5693 return 0;
5694 }
5695
5696 btrfs_add_delayed_iput(BTRFS_I(inode));
5697
5698 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5699 if (!ino_elem)
5700 return -ENOMEM;
5701 ino_elem->ino = ino;
5702 ino_elem->parent = parent;
5703 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5704 ctx->num_conflict_inodes++;
5705
5706 return 0;
5707}
5708
5709static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5710 struct btrfs_root *root,
5711 struct btrfs_log_ctx *ctx)
5712{
5713 struct btrfs_fs_info *fs_info = root->fs_info;
5714 int ret = 0;
5715
5716 /*
5717 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5718 * otherwise we could have unbounded recursion of btrfs_log_inode()
5719 * calls. This check guarantees we can have only 1 level of recursion.
5720 */
5721 if (ctx->logging_conflict_inodes)
5722 return 0;
5723
5724 ctx->logging_conflict_inodes = true;
5725
5726 /*
5727 * New conflicting inodes may be found and added to the list while we
5728 * are logging a conflicting inode, so keep iterating while the list is
5729 * not empty.
5730 */
5731 while (!list_empty(&ctx->conflict_inodes)) {
5732 struct btrfs_ino_list *curr;
5733 struct inode *inode;
5734 u64 ino;
5735 u64 parent;
5736
5737 curr = list_first_entry(&ctx->conflict_inodes,
5738 struct btrfs_ino_list, list);
5739 ino = curr->ino;
5740 parent = curr->parent;
5741 list_del(&curr->list);
5742 kfree(curr);
5743
5744 inode = btrfs_iget(fs_info->sb, ino, root);
5745 /*
5746 * If the other inode that had a conflicting dir entry was
5747 * deleted in the current transaction, we need to log its parent
5748 * directory. See the comment at add_conflicting_inode().
5749 */
5750 if (IS_ERR(inode)) {
5751 ret = PTR_ERR(inode);
5752 if (ret != -ENOENT)
5753 break;
5754
5755 inode = btrfs_iget(fs_info->sb, parent, root);
5756 if (IS_ERR(inode)) {
5757 ret = PTR_ERR(inode);
5758 break;
5759 }
5760
5761 /*
5762 * Always log the directory, we cannot make this
5763 * conditional on need_log_inode() because the directory
5764 * might have been logged in LOG_INODE_EXISTS mode or
5765 * the dir index of the conflicting inode is not in a
5766 * dir index key range logged for the directory. So we
5767 * must make sure the deletion is recorded.
5768 */
5769 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5770 LOG_INODE_ALL, ctx);
5771 btrfs_add_delayed_iput(BTRFS_I(inode));
5772 if (ret)
5773 break;
5774 continue;
5775 }
5776
5777 /*
5778 * Here we can use need_log_inode() because we only need to log
5779 * the inode in LOG_INODE_EXISTS mode and rename operations
5780 * update the log, so that the log ends up with the new name and
5781 * without the old name.
5782 *
5783 * We did this check at add_conflicting_inode(), but here we do
5784 * it again because if some other task logged the inode after
5785 * that, we can avoid doing it again.
5786 */
5787 if (!need_log_inode(trans, BTRFS_I(inode))) {
5788 btrfs_add_delayed_iput(BTRFS_I(inode));
5789 continue;
5790 }
5791
5792 /*
5793 * We are safe logging the other inode without acquiring its
5794 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5795 * are safe against concurrent renames of the other inode as
5796 * well because during a rename we pin the log and update the
5797 * log with the new name before we unpin it.
5798 */
5799 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5800 btrfs_add_delayed_iput(BTRFS_I(inode));
5801 if (ret)
5802 break;
5803 }
5804
5805 ctx->logging_conflict_inodes = false;
5806 if (ret)
5807 free_conflicting_inodes(ctx);
5808
5809 return ret;
5810}
5811
5812static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5813 struct btrfs_inode *inode,
5814 struct btrfs_key *min_key,
5815 const struct btrfs_key *max_key,
5816 struct btrfs_path *path,
5817 struct btrfs_path *dst_path,
5818 const u64 logged_isize,
5819 const int inode_only,
5820 struct btrfs_log_ctx *ctx,
5821 bool *need_log_inode_item)
5822{
5823 const u64 i_size = i_size_read(&inode->vfs_inode);
5824 struct btrfs_root *root = inode->root;
5825 int ins_start_slot = 0;
5826 int ins_nr = 0;
5827 int ret;
5828
5829 while (1) {
5830 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5831 if (ret < 0)
5832 return ret;
5833 if (ret > 0) {
5834 ret = 0;
5835 break;
5836 }
5837again:
5838 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5839 if (min_key->objectid != max_key->objectid)
5840 break;
5841 if (min_key->type > max_key->type)
5842 break;
5843
5844 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5845 *need_log_inode_item = false;
5846 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5847 min_key->offset >= i_size) {
5848 /*
5849 * Extents at and beyond eof are logged with
5850 * btrfs_log_prealloc_extents().
5851 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5852 * and no keys greater than that, so bail out.
5853 */
5854 break;
5855 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5856 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5857 (inode->generation == trans->transid ||
5858 ctx->logging_conflict_inodes)) {
5859 u64 other_ino = 0;
5860 u64 other_parent = 0;
5861
5862 ret = btrfs_check_ref_name_override(path->nodes[0],
5863 path->slots[0], min_key, inode,
5864 &other_ino, &other_parent);
5865 if (ret < 0) {
5866 return ret;
5867 } else if (ret > 0 &&
5868 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5869 if (ins_nr > 0) {
5870 ins_nr++;
5871 } else {
5872 ins_nr = 1;
5873 ins_start_slot = path->slots[0];
5874 }
5875 ret = copy_items(trans, inode, dst_path, path,
5876 ins_start_slot, ins_nr,
5877 inode_only, logged_isize);
5878 if (ret < 0)
5879 return ret;
5880 ins_nr = 0;
5881
5882 btrfs_release_path(path);
5883 ret = add_conflicting_inode(trans, root, path,
5884 other_ino,
5885 other_parent, ctx);
5886 if (ret)
5887 return ret;
5888 goto next_key;
5889 }
5890 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5891 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5892 if (ins_nr == 0)
5893 goto next_slot;
5894 ret = copy_items(trans, inode, dst_path, path,
5895 ins_start_slot,
5896 ins_nr, inode_only, logged_isize);
5897 if (ret < 0)
5898 return ret;
5899 ins_nr = 0;
5900 goto next_slot;
5901 }
5902
5903 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5904 ins_nr++;
5905 goto next_slot;
5906 } else if (!ins_nr) {
5907 ins_start_slot = path->slots[0];
5908 ins_nr = 1;
5909 goto next_slot;
5910 }
5911
5912 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5913 ins_nr, inode_only, logged_isize);
5914 if (ret < 0)
5915 return ret;
5916 ins_nr = 1;
5917 ins_start_slot = path->slots[0];
5918next_slot:
5919 path->slots[0]++;
5920 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5921 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5922 path->slots[0]);
5923 goto again;
5924 }
5925 if (ins_nr) {
5926 ret = copy_items(trans, inode, dst_path, path,
5927 ins_start_slot, ins_nr, inode_only,
5928 logged_isize);
5929 if (ret < 0)
5930 return ret;
5931 ins_nr = 0;
5932 }
5933 btrfs_release_path(path);
5934next_key:
5935 if (min_key->offset < (u64)-1) {
5936 min_key->offset++;
5937 } else if (min_key->type < max_key->type) {
5938 min_key->type++;
5939 min_key->offset = 0;
5940 } else {
5941 break;
5942 }
5943
5944 /*
5945 * We may process many leaves full of items for our inode, so
5946 * avoid monopolizing a cpu for too long by rescheduling while
5947 * not holding locks on any tree.
5948 */
5949 cond_resched();
5950 }
5951 if (ins_nr) {
5952 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5953 ins_nr, inode_only, logged_isize);
5954 if (ret)
5955 return ret;
5956 }
5957
5958 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5959 /*
5960 * Release the path because otherwise we might attempt to double
5961 * lock the same leaf with btrfs_log_prealloc_extents() below.
5962 */
5963 btrfs_release_path(path);
5964 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5965 }
5966
5967 return ret;
5968}
5969
5970static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5971 struct btrfs_root *log,
5972 struct btrfs_path *path,
5973 const struct btrfs_item_batch *batch,
5974 const struct btrfs_delayed_item *first_item)
5975{
5976 const struct btrfs_delayed_item *curr = first_item;
5977 int ret;
5978
5979 ret = btrfs_insert_empty_items(trans, log, path, batch);
5980 if (ret)
5981 return ret;
5982
5983 for (int i = 0; i < batch->nr; i++) {
5984 char *data_ptr;
5985
5986 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5987 write_extent_buffer(path->nodes[0], &curr->data,
5988 (unsigned long)data_ptr, curr->data_len);
5989 curr = list_next_entry(curr, log_list);
5990 path->slots[0]++;
5991 }
5992
5993 btrfs_release_path(path);
5994
5995 return 0;
5996}
5997
5998static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5999 struct btrfs_inode *inode,
6000 struct btrfs_path *path,
6001 const struct list_head *delayed_ins_list,
6002 struct btrfs_log_ctx *ctx)
6003{
6004 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6005 const int max_batch_size = 195;
6006 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6007 const u64 ino = btrfs_ino(inode);
6008 struct btrfs_root *log = inode->root->log_root;
6009 struct btrfs_item_batch batch = {
6010 .nr = 0,
6011 .total_data_size = 0,
6012 };
6013 const struct btrfs_delayed_item *first = NULL;
6014 const struct btrfs_delayed_item *curr;
6015 char *ins_data;
6016 struct btrfs_key *ins_keys;
6017 u32 *ins_sizes;
6018 u64 curr_batch_size = 0;
6019 int batch_idx = 0;
6020 int ret;
6021
6022 /* We are adding dir index items to the log tree. */
6023 lockdep_assert_held(&inode->log_mutex);
6024
6025 /*
6026 * We collect delayed items before copying index keys from the subvolume
6027 * to the log tree. However just after we collected them, they may have
6028 * been flushed (all of them or just some of them), and therefore we
6029 * could have copied them from the subvolume tree to the log tree.
6030 * So find the first delayed item that was not yet logged (they are
6031 * sorted by index number).
6032 */
6033 list_for_each_entry(curr, delayed_ins_list, log_list) {
6034 if (curr->index > inode->last_dir_index_offset) {
6035 first = curr;
6036 break;
6037 }
6038 }
6039
6040 /* Empty list or all delayed items were already logged. */
6041 if (!first)
6042 return 0;
6043
6044 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6045 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6046 if (!ins_data)
6047 return -ENOMEM;
6048 ins_sizes = (u32 *)ins_data;
6049 batch.data_sizes = ins_sizes;
6050 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6051 batch.keys = ins_keys;
6052
6053 curr = first;
6054 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6055 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6056
6057 if (curr_batch_size + curr_size > leaf_data_size ||
6058 batch.nr == max_batch_size) {
6059 ret = insert_delayed_items_batch(trans, log, path,
6060 &batch, first);
6061 if (ret)
6062 goto out;
6063 batch_idx = 0;
6064 batch.nr = 0;
6065 batch.total_data_size = 0;
6066 curr_batch_size = 0;
6067 first = curr;
6068 }
6069
6070 ins_sizes[batch_idx] = curr->data_len;
6071 ins_keys[batch_idx].objectid = ino;
6072 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6073 ins_keys[batch_idx].offset = curr->index;
6074 curr_batch_size += curr_size;
6075 batch.total_data_size += curr->data_len;
6076 batch.nr++;
6077 batch_idx++;
6078 curr = list_next_entry(curr, log_list);
6079 }
6080
6081 ASSERT(batch.nr >= 1);
6082 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6083
6084 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6085 log_list);
6086 inode->last_dir_index_offset = curr->index;
6087out:
6088 kfree(ins_data);
6089
6090 return ret;
6091}
6092
6093static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6094 struct btrfs_inode *inode,
6095 struct btrfs_path *path,
6096 const struct list_head *delayed_del_list,
6097 struct btrfs_log_ctx *ctx)
6098{
6099 const u64 ino = btrfs_ino(inode);
6100 const struct btrfs_delayed_item *curr;
6101
6102 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6103 log_list);
6104
6105 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6106 u64 first_dir_index = curr->index;
6107 u64 last_dir_index;
6108 const struct btrfs_delayed_item *next;
6109 int ret;
6110
6111 /*
6112 * Find a range of consecutive dir index items to delete. Like
6113 * this we log a single dir range item spanning several contiguous
6114 * dir items instead of logging one range item per dir index item.
6115 */
6116 next = list_next_entry(curr, log_list);
6117 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6118 if (next->index != curr->index + 1)
6119 break;
6120 curr = next;
6121 next = list_next_entry(next, log_list);
6122 }
6123
6124 last_dir_index = curr->index;
6125 ASSERT(last_dir_index >= first_dir_index);
6126
6127 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6128 ino, first_dir_index, last_dir_index);
6129 if (ret)
6130 return ret;
6131 curr = list_next_entry(curr, log_list);
6132 }
6133
6134 return 0;
6135}
6136
6137static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6138 struct btrfs_inode *inode,
6139 struct btrfs_path *path,
6140 struct btrfs_log_ctx *ctx,
6141 const struct list_head *delayed_del_list,
6142 const struct btrfs_delayed_item *first,
6143 const struct btrfs_delayed_item **last_ret)
6144{
6145 const struct btrfs_delayed_item *next;
6146 struct extent_buffer *leaf = path->nodes[0];
6147 const int last_slot = btrfs_header_nritems(leaf) - 1;
6148 int slot = path->slots[0] + 1;
6149 const u64 ino = btrfs_ino(inode);
6150
6151 next = list_next_entry(first, log_list);
6152
6153 while (slot < last_slot &&
6154 !list_entry_is_head(next, delayed_del_list, log_list)) {
6155 struct btrfs_key key;
6156
6157 btrfs_item_key_to_cpu(leaf, &key, slot);
6158 if (key.objectid != ino ||
6159 key.type != BTRFS_DIR_INDEX_KEY ||
6160 key.offset != next->index)
6161 break;
6162
6163 slot++;
6164 *last_ret = next;
6165 next = list_next_entry(next, log_list);
6166 }
6167
6168 return btrfs_del_items(trans, inode->root->log_root, path,
6169 path->slots[0], slot - path->slots[0]);
6170}
6171
6172static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6173 struct btrfs_inode *inode,
6174 struct btrfs_path *path,
6175 const struct list_head *delayed_del_list,
6176 struct btrfs_log_ctx *ctx)
6177{
6178 struct btrfs_root *log = inode->root->log_root;
6179 const struct btrfs_delayed_item *curr;
6180 u64 last_range_start;
6181 u64 last_range_end = 0;
6182 struct btrfs_key key;
6183
6184 key.objectid = btrfs_ino(inode);
6185 key.type = BTRFS_DIR_INDEX_KEY;
6186 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6187 log_list);
6188
6189 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6190 const struct btrfs_delayed_item *last = curr;
6191 u64 first_dir_index = curr->index;
6192 u64 last_dir_index;
6193 bool deleted_items = false;
6194 int ret;
6195
6196 key.offset = curr->index;
6197 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6198 if (ret < 0) {
6199 return ret;
6200 } else if (ret == 0) {
6201 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6202 delayed_del_list, curr,
6203 &last);
6204 if (ret)
6205 return ret;
6206 deleted_items = true;
6207 }
6208
6209 btrfs_release_path(path);
6210
6211 /*
6212 * If we deleted items from the leaf, it means we have a range
6213 * item logging their range, so no need to add one or update an
6214 * existing one. Otherwise we have to log a dir range item.
6215 */
6216 if (deleted_items)
6217 goto next_batch;
6218
6219 last_dir_index = last->index;
6220 ASSERT(last_dir_index >= first_dir_index);
6221 /*
6222 * If this range starts right after where the previous one ends,
6223 * then we want to reuse the previous range item and change its
6224 * end offset to the end of this range. This is just to minimize
6225 * leaf space usage, by avoiding adding a new range item.
6226 */
6227 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6228 first_dir_index = last_range_start;
6229
6230 ret = insert_dir_log_key(trans, log, path, key.objectid,
6231 first_dir_index, last_dir_index);
6232 if (ret)
6233 return ret;
6234
6235 last_range_start = first_dir_index;
6236 last_range_end = last_dir_index;
6237next_batch:
6238 curr = list_next_entry(last, log_list);
6239 }
6240
6241 return 0;
6242}
6243
6244static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6245 struct btrfs_inode *inode,
6246 struct btrfs_path *path,
6247 const struct list_head *delayed_del_list,
6248 struct btrfs_log_ctx *ctx)
6249{
6250 /*
6251 * We are deleting dir index items from the log tree or adding range
6252 * items to it.
6253 */
6254 lockdep_assert_held(&inode->log_mutex);
6255
6256 if (list_empty(delayed_del_list))
6257 return 0;
6258
6259 if (ctx->logged_before)
6260 return log_delayed_deletions_incremental(trans, inode, path,
6261 delayed_del_list, ctx);
6262
6263 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6264 ctx);
6265}
6266
6267/*
6268 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6269 * items instead of the subvolume tree.
6270 */
6271static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6272 struct btrfs_inode *inode,
6273 const struct list_head *delayed_ins_list,
6274 struct btrfs_log_ctx *ctx)
6275{
6276 const bool orig_log_new_dentries = ctx->log_new_dentries;
6277 struct btrfs_fs_info *fs_info = trans->fs_info;
6278 struct btrfs_delayed_item *item;
6279 int ret = 0;
6280
6281 /*
6282 * No need for the log mutex, plus to avoid potential deadlocks or
6283 * lockdep annotations due to nesting of delayed inode mutexes and log
6284 * mutexes.
6285 */
6286 lockdep_assert_not_held(&inode->log_mutex);
6287
6288 ASSERT(!ctx->logging_new_delayed_dentries);
6289 ctx->logging_new_delayed_dentries = true;
6290
6291 list_for_each_entry(item, delayed_ins_list, log_list) {
6292 struct btrfs_dir_item *dir_item;
6293 struct inode *di_inode;
6294 struct btrfs_key key;
6295 int log_mode = LOG_INODE_EXISTS;
6296
6297 dir_item = (struct btrfs_dir_item *)item->data;
6298 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6299
6300 if (key.type == BTRFS_ROOT_ITEM_KEY)
6301 continue;
6302
6303 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6304 if (IS_ERR(di_inode)) {
6305 ret = PTR_ERR(di_inode);
6306 break;
6307 }
6308
6309 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6310 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6311 continue;
6312 }
6313
6314 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6315 log_mode = LOG_INODE_ALL;
6316
6317 ctx->log_new_dentries = false;
6318 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6319
6320 if (!ret && ctx->log_new_dentries)
6321 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6322
6323 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6324
6325 if (ret)
6326 break;
6327 }
6328
6329 ctx->log_new_dentries = orig_log_new_dentries;
6330 ctx->logging_new_delayed_dentries = false;
6331
6332 return ret;
6333}
6334
6335/* log a single inode in the tree log.
6336 * At least one parent directory for this inode must exist in the tree
6337 * or be logged already.
6338 *
6339 * Any items from this inode changed by the current transaction are copied
6340 * to the log tree. An extra reference is taken on any extents in this
6341 * file, allowing us to avoid a whole pile of corner cases around logging
6342 * blocks that have been removed from the tree.
6343 *
6344 * See LOG_INODE_ALL and related defines for a description of what inode_only
6345 * does.
6346 *
6347 * This handles both files and directories.
6348 */
6349static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6350 struct btrfs_inode *inode,
6351 int inode_only,
6352 struct btrfs_log_ctx *ctx)
6353{
6354 struct btrfs_path *path;
6355 struct btrfs_path *dst_path;
6356 struct btrfs_key min_key;
6357 struct btrfs_key max_key;
6358 struct btrfs_root *log = inode->root->log_root;
6359 int ret;
6360 bool fast_search = false;
6361 u64 ino = btrfs_ino(inode);
6362 struct extent_map_tree *em_tree = &inode->extent_tree;
6363 u64 logged_isize = 0;
6364 bool need_log_inode_item = true;
6365 bool xattrs_logged = false;
6366 bool inode_item_dropped = true;
6367 bool full_dir_logging = false;
6368 LIST_HEAD(delayed_ins_list);
6369 LIST_HEAD(delayed_del_list);
6370
6371 path = btrfs_alloc_path();
6372 if (!path)
6373 return -ENOMEM;
6374 dst_path = btrfs_alloc_path();
6375 if (!dst_path) {
6376 btrfs_free_path(path);
6377 return -ENOMEM;
6378 }
6379
6380 min_key.objectid = ino;
6381 min_key.type = BTRFS_INODE_ITEM_KEY;
6382 min_key.offset = 0;
6383
6384 max_key.objectid = ino;
6385
6386
6387 /* today the code can only do partial logging of directories */
6388 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6389 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6390 &inode->runtime_flags) &&
6391 inode_only >= LOG_INODE_EXISTS))
6392 max_key.type = BTRFS_XATTR_ITEM_KEY;
6393 else
6394 max_key.type = (u8)-1;
6395 max_key.offset = (u64)-1;
6396
6397 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6398 full_dir_logging = true;
6399
6400 /*
6401 * If we are logging a directory while we are logging dentries of the
6402 * delayed items of some other inode, then we need to flush the delayed
6403 * items of this directory and not log the delayed items directly. This
6404 * is to prevent more than one level of recursion into btrfs_log_inode()
6405 * by having something like this:
6406 *
6407 * $ mkdir -p a/b/c/d/e/f/g/h/...
6408 * $ xfs_io -c "fsync" a
6409 *
6410 * Where all directories in the path did not exist before and are
6411 * created in the current transaction.
6412 * So in such a case we directly log the delayed items of the main
6413 * directory ("a") without flushing them first, while for each of its
6414 * subdirectories we flush their delayed items before logging them.
6415 * This prevents a potential unbounded recursion like this:
6416 *
6417 * btrfs_log_inode()
6418 * log_new_delayed_dentries()
6419 * btrfs_log_inode()
6420 * log_new_delayed_dentries()
6421 * btrfs_log_inode()
6422 * log_new_delayed_dentries()
6423 * (...)
6424 *
6425 * We have thresholds for the maximum number of delayed items to have in
6426 * memory, and once they are hit, the items are flushed asynchronously.
6427 * However the limit is quite high, so lets prevent deep levels of
6428 * recursion to happen by limiting the maximum depth to be 1.
6429 */
6430 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6431 ret = btrfs_commit_inode_delayed_items(trans, inode);
6432 if (ret)
6433 goto out;
6434 }
6435
6436 mutex_lock(&inode->log_mutex);
6437
6438 /*
6439 * For symlinks, we must always log their content, which is stored in an
6440 * inline extent, otherwise we could end up with an empty symlink after
6441 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6442 * one attempts to create an empty symlink).
6443 * We don't need to worry about flushing delalloc, because when we create
6444 * the inline extent when the symlink is created (we never have delalloc
6445 * for symlinks).
6446 */
6447 if (S_ISLNK(inode->vfs_inode.i_mode))
6448 inode_only = LOG_INODE_ALL;
6449
6450 /*
6451 * Before logging the inode item, cache the value returned by
6452 * inode_logged(), because after that we have the need to figure out if
6453 * the inode was previously logged in this transaction.
6454 */
6455 ret = inode_logged(trans, inode, path);
6456 if (ret < 0)
6457 goto out_unlock;
6458 ctx->logged_before = (ret == 1);
6459 ret = 0;
6460
6461 /*
6462 * This is for cases where logging a directory could result in losing a
6463 * a file after replaying the log. For example, if we move a file from a
6464 * directory A to a directory B, then fsync directory A, we have no way
6465 * to known the file was moved from A to B, so logging just A would
6466 * result in losing the file after a log replay.
6467 */
6468 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6469 btrfs_set_log_full_commit(trans);
6470 ret = BTRFS_LOG_FORCE_COMMIT;
6471 goto out_unlock;
6472 }
6473
6474 /*
6475 * a brute force approach to making sure we get the most uptodate
6476 * copies of everything.
6477 */
6478 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6479 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6480 if (ctx->logged_before)
6481 ret = drop_inode_items(trans, log, path, inode,
6482 BTRFS_XATTR_ITEM_KEY);
6483 } else {
6484 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6485 /*
6486 * Make sure the new inode item we write to the log has
6487 * the same isize as the current one (if it exists).
6488 * This is necessary to prevent data loss after log
6489 * replay, and also to prevent doing a wrong expanding
6490 * truncate - for e.g. create file, write 4K into offset
6491 * 0, fsync, write 4K into offset 4096, add hard link,
6492 * fsync some other file (to sync log), power fail - if
6493 * we use the inode's current i_size, after log replay
6494 * we get a 8Kb file, with the last 4Kb extent as a hole
6495 * (zeroes), as if an expanding truncate happened,
6496 * instead of getting a file of 4Kb only.
6497 */
6498 ret = logged_inode_size(log, inode, path, &logged_isize);
6499 if (ret)
6500 goto out_unlock;
6501 }
6502 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6503 &inode->runtime_flags)) {
6504 if (inode_only == LOG_INODE_EXISTS) {
6505 max_key.type = BTRFS_XATTR_ITEM_KEY;
6506 if (ctx->logged_before)
6507 ret = drop_inode_items(trans, log, path,
6508 inode, max_key.type);
6509 } else {
6510 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6511 &inode->runtime_flags);
6512 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6513 &inode->runtime_flags);
6514 if (ctx->logged_before)
6515 ret = truncate_inode_items(trans, log,
6516 inode, 0, 0);
6517 }
6518 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6519 &inode->runtime_flags) ||
6520 inode_only == LOG_INODE_EXISTS) {
6521 if (inode_only == LOG_INODE_ALL)
6522 fast_search = true;
6523 max_key.type = BTRFS_XATTR_ITEM_KEY;
6524 if (ctx->logged_before)
6525 ret = drop_inode_items(trans, log, path, inode,
6526 max_key.type);
6527 } else {
6528 if (inode_only == LOG_INODE_ALL)
6529 fast_search = true;
6530 inode_item_dropped = false;
6531 goto log_extents;
6532 }
6533
6534 }
6535 if (ret)
6536 goto out_unlock;
6537
6538 /*
6539 * If we are logging a directory in full mode, collect the delayed items
6540 * before iterating the subvolume tree, so that we don't miss any new
6541 * dir index items in case they get flushed while or right after we are
6542 * iterating the subvolume tree.
6543 */
6544 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6545 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6546 &delayed_del_list);
6547
6548 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6549 path, dst_path, logged_isize,
6550 inode_only, ctx,
6551 &need_log_inode_item);
6552 if (ret)
6553 goto out_unlock;
6554
6555 btrfs_release_path(path);
6556 btrfs_release_path(dst_path);
6557 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6558 if (ret)
6559 goto out_unlock;
6560 xattrs_logged = true;
6561 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6562 btrfs_release_path(path);
6563 btrfs_release_path(dst_path);
6564 ret = btrfs_log_holes(trans, inode, path);
6565 if (ret)
6566 goto out_unlock;
6567 }
6568log_extents:
6569 btrfs_release_path(path);
6570 btrfs_release_path(dst_path);
6571 if (need_log_inode_item) {
6572 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6573 if (ret)
6574 goto out_unlock;
6575 /*
6576 * If we are doing a fast fsync and the inode was logged before
6577 * in this transaction, we don't need to log the xattrs because
6578 * they were logged before. If xattrs were added, changed or
6579 * deleted since the last time we logged the inode, then we have
6580 * already logged them because the inode had the runtime flag
6581 * BTRFS_INODE_COPY_EVERYTHING set.
6582 */
6583 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6584 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6585 if (ret)
6586 goto out_unlock;
6587 btrfs_release_path(path);
6588 }
6589 }
6590 if (fast_search) {
6591 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6592 if (ret)
6593 goto out_unlock;
6594 } else if (inode_only == LOG_INODE_ALL) {
6595 struct extent_map *em, *n;
6596
6597 write_lock(&em_tree->lock);
6598 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6599 list_del_init(&em->list);
6600 write_unlock(&em_tree->lock);
6601 }
6602
6603 if (full_dir_logging) {
6604 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6605 if (ret)
6606 goto out_unlock;
6607 ret = log_delayed_insertion_items(trans, inode, path,
6608 &delayed_ins_list, ctx);
6609 if (ret)
6610 goto out_unlock;
6611 ret = log_delayed_deletion_items(trans, inode, path,
6612 &delayed_del_list, ctx);
6613 if (ret)
6614 goto out_unlock;
6615 }
6616
6617 spin_lock(&inode->lock);
6618 inode->logged_trans = trans->transid;
6619 /*
6620 * Don't update last_log_commit if we logged that an inode exists.
6621 * We do this for three reasons:
6622 *
6623 * 1) We might have had buffered writes to this inode that were
6624 * flushed and had their ordered extents completed in this
6625 * transaction, but we did not previously log the inode with
6626 * LOG_INODE_ALL. Later the inode was evicted and after that
6627 * it was loaded again and this LOG_INODE_EXISTS log operation
6628 * happened. We must make sure that if an explicit fsync against
6629 * the inode is performed later, it logs the new extents, an
6630 * updated inode item, etc, and syncs the log. The same logic
6631 * applies to direct IO writes instead of buffered writes.
6632 *
6633 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6634 * is logged with an i_size of 0 or whatever value was logged
6635 * before. If later the i_size of the inode is increased by a
6636 * truncate operation, the log is synced through an fsync of
6637 * some other inode and then finally an explicit fsync against
6638 * this inode is made, we must make sure this fsync logs the
6639 * inode with the new i_size, the hole between old i_size and
6640 * the new i_size, and syncs the log.
6641 *
6642 * 3) If we are logging that an ancestor inode exists as part of
6643 * logging a new name from a link or rename operation, don't update
6644 * its last_log_commit - otherwise if an explicit fsync is made
6645 * against an ancestor, the fsync considers the inode in the log
6646 * and doesn't sync the log, resulting in the ancestor missing after
6647 * a power failure unless the log was synced as part of an fsync
6648 * against any other unrelated inode.
6649 */
6650 if (inode_only != LOG_INODE_EXISTS)
6651 inode->last_log_commit = inode->last_sub_trans;
6652 spin_unlock(&inode->lock);
6653
6654 /*
6655 * Reset the last_reflink_trans so that the next fsync does not need to
6656 * go through the slower path when logging extents and their checksums.
6657 */
6658 if (inode_only == LOG_INODE_ALL)
6659 inode->last_reflink_trans = 0;
6660
6661out_unlock:
6662 mutex_unlock(&inode->log_mutex);
6663out:
6664 btrfs_free_path(path);
6665 btrfs_free_path(dst_path);
6666
6667 if (ret)
6668 free_conflicting_inodes(ctx);
6669 else
6670 ret = log_conflicting_inodes(trans, inode->root, ctx);
6671
6672 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6673 if (!ret)
6674 ret = log_new_delayed_dentries(trans, inode,
6675 &delayed_ins_list, ctx);
6676
6677 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6678 &delayed_del_list);
6679 }
6680
6681 return ret;
6682}
6683
6684static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6685 struct btrfs_inode *inode,
6686 struct btrfs_log_ctx *ctx)
6687{
6688 struct btrfs_fs_info *fs_info = trans->fs_info;
6689 int ret;
6690 struct btrfs_path *path;
6691 struct btrfs_key key;
6692 struct btrfs_root *root = inode->root;
6693 const u64 ino = btrfs_ino(inode);
6694
6695 path = btrfs_alloc_path();
6696 if (!path)
6697 return -ENOMEM;
6698 path->skip_locking = 1;
6699 path->search_commit_root = 1;
6700
6701 key.objectid = ino;
6702 key.type = BTRFS_INODE_REF_KEY;
6703 key.offset = 0;
6704 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6705 if (ret < 0)
6706 goto out;
6707
6708 while (true) {
6709 struct extent_buffer *leaf = path->nodes[0];
6710 int slot = path->slots[0];
6711 u32 cur_offset = 0;
6712 u32 item_size;
6713 unsigned long ptr;
6714
6715 if (slot >= btrfs_header_nritems(leaf)) {
6716 ret = btrfs_next_leaf(root, path);
6717 if (ret < 0)
6718 goto out;
6719 else if (ret > 0)
6720 break;
6721 continue;
6722 }
6723
6724 btrfs_item_key_to_cpu(leaf, &key, slot);
6725 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6726 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6727 break;
6728
6729 item_size = btrfs_item_size(leaf, slot);
6730 ptr = btrfs_item_ptr_offset(leaf, slot);
6731 while (cur_offset < item_size) {
6732 struct btrfs_key inode_key;
6733 struct inode *dir_inode;
6734
6735 inode_key.type = BTRFS_INODE_ITEM_KEY;
6736 inode_key.offset = 0;
6737
6738 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6739 struct btrfs_inode_extref *extref;
6740
6741 extref = (struct btrfs_inode_extref *)
6742 (ptr + cur_offset);
6743 inode_key.objectid = btrfs_inode_extref_parent(
6744 leaf, extref);
6745 cur_offset += sizeof(*extref);
6746 cur_offset += btrfs_inode_extref_name_len(leaf,
6747 extref);
6748 } else {
6749 inode_key.objectid = key.offset;
6750 cur_offset = item_size;
6751 }
6752
6753 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6754 root);
6755 /*
6756 * If the parent inode was deleted, return an error to
6757 * fallback to a transaction commit. This is to prevent
6758 * getting an inode that was moved from one parent A to
6759 * a parent B, got its former parent A deleted and then
6760 * it got fsync'ed, from existing at both parents after
6761 * a log replay (and the old parent still existing).
6762 * Example:
6763 *
6764 * mkdir /mnt/A
6765 * mkdir /mnt/B
6766 * touch /mnt/B/bar
6767 * sync
6768 * mv /mnt/B/bar /mnt/A/bar
6769 * mv -T /mnt/A /mnt/B
6770 * fsync /mnt/B/bar
6771 * <power fail>
6772 *
6773 * If we ignore the old parent B which got deleted,
6774 * after a log replay we would have file bar linked
6775 * at both parents and the old parent B would still
6776 * exist.
6777 */
6778 if (IS_ERR(dir_inode)) {
6779 ret = PTR_ERR(dir_inode);
6780 goto out;
6781 }
6782
6783 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6784 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6785 continue;
6786 }
6787
6788 ctx->log_new_dentries = false;
6789 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6790 LOG_INODE_ALL, ctx);
6791 if (!ret && ctx->log_new_dentries)
6792 ret = log_new_dir_dentries(trans,
6793 BTRFS_I(dir_inode), ctx);
6794 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6795 if (ret)
6796 goto out;
6797 }
6798 path->slots[0]++;
6799 }
6800 ret = 0;
6801out:
6802 btrfs_free_path(path);
6803 return ret;
6804}
6805
6806static int log_new_ancestors(struct btrfs_trans_handle *trans,
6807 struct btrfs_root *root,
6808 struct btrfs_path *path,
6809 struct btrfs_log_ctx *ctx)
6810{
6811 struct btrfs_key found_key;
6812
6813 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6814
6815 while (true) {
6816 struct btrfs_fs_info *fs_info = root->fs_info;
6817 struct extent_buffer *leaf = path->nodes[0];
6818 int slot = path->slots[0];
6819 struct btrfs_key search_key;
6820 struct inode *inode;
6821 u64 ino;
6822 int ret = 0;
6823
6824 btrfs_release_path(path);
6825
6826 ino = found_key.offset;
6827
6828 search_key.objectid = found_key.offset;
6829 search_key.type = BTRFS_INODE_ITEM_KEY;
6830 search_key.offset = 0;
6831 inode = btrfs_iget(fs_info->sb, ino, root);
6832 if (IS_ERR(inode))
6833 return PTR_ERR(inode);
6834
6835 if (BTRFS_I(inode)->generation >= trans->transid &&
6836 need_log_inode(trans, BTRFS_I(inode)))
6837 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6838 LOG_INODE_EXISTS, ctx);
6839 btrfs_add_delayed_iput(BTRFS_I(inode));
6840 if (ret)
6841 return ret;
6842
6843 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6844 break;
6845
6846 search_key.type = BTRFS_INODE_REF_KEY;
6847 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6848 if (ret < 0)
6849 return ret;
6850
6851 leaf = path->nodes[0];
6852 slot = path->slots[0];
6853 if (slot >= btrfs_header_nritems(leaf)) {
6854 ret = btrfs_next_leaf(root, path);
6855 if (ret < 0)
6856 return ret;
6857 else if (ret > 0)
6858 return -ENOENT;
6859 leaf = path->nodes[0];
6860 slot = path->slots[0];
6861 }
6862
6863 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6864 if (found_key.objectid != search_key.objectid ||
6865 found_key.type != BTRFS_INODE_REF_KEY)
6866 return -ENOENT;
6867 }
6868 return 0;
6869}
6870
6871static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6872 struct btrfs_inode *inode,
6873 struct dentry *parent,
6874 struct btrfs_log_ctx *ctx)
6875{
6876 struct btrfs_root *root = inode->root;
6877 struct dentry *old_parent = NULL;
6878 struct super_block *sb = inode->vfs_inode.i_sb;
6879 int ret = 0;
6880
6881 while (true) {
6882 if (!parent || d_really_is_negative(parent) ||
6883 sb != parent->d_sb)
6884 break;
6885
6886 inode = BTRFS_I(d_inode(parent));
6887 if (root != inode->root)
6888 break;
6889
6890 if (inode->generation >= trans->transid &&
6891 need_log_inode(trans, inode)) {
6892 ret = btrfs_log_inode(trans, inode,
6893 LOG_INODE_EXISTS, ctx);
6894 if (ret)
6895 break;
6896 }
6897 if (IS_ROOT(parent))
6898 break;
6899
6900 parent = dget_parent(parent);
6901 dput(old_parent);
6902 old_parent = parent;
6903 }
6904 dput(old_parent);
6905
6906 return ret;
6907}
6908
6909static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6910 struct btrfs_inode *inode,
6911 struct dentry *parent,
6912 struct btrfs_log_ctx *ctx)
6913{
6914 struct btrfs_root *root = inode->root;
6915 const u64 ino = btrfs_ino(inode);
6916 struct btrfs_path *path;
6917 struct btrfs_key search_key;
6918 int ret;
6919
6920 /*
6921 * For a single hard link case, go through a fast path that does not
6922 * need to iterate the fs/subvolume tree.
6923 */
6924 if (inode->vfs_inode.i_nlink < 2)
6925 return log_new_ancestors_fast(trans, inode, parent, ctx);
6926
6927 path = btrfs_alloc_path();
6928 if (!path)
6929 return -ENOMEM;
6930
6931 search_key.objectid = ino;
6932 search_key.type = BTRFS_INODE_REF_KEY;
6933 search_key.offset = 0;
6934again:
6935 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6936 if (ret < 0)
6937 goto out;
6938 if (ret == 0)
6939 path->slots[0]++;
6940
6941 while (true) {
6942 struct extent_buffer *leaf = path->nodes[0];
6943 int slot = path->slots[0];
6944 struct btrfs_key found_key;
6945
6946 if (slot >= btrfs_header_nritems(leaf)) {
6947 ret = btrfs_next_leaf(root, path);
6948 if (ret < 0)
6949 goto out;
6950 else if (ret > 0)
6951 break;
6952 continue;
6953 }
6954
6955 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6956 if (found_key.objectid != ino ||
6957 found_key.type > BTRFS_INODE_EXTREF_KEY)
6958 break;
6959
6960 /*
6961 * Don't deal with extended references because they are rare
6962 * cases and too complex to deal with (we would need to keep
6963 * track of which subitem we are processing for each item in
6964 * this loop, etc). So just return some error to fallback to
6965 * a transaction commit.
6966 */
6967 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6968 ret = -EMLINK;
6969 goto out;
6970 }
6971
6972 /*
6973 * Logging ancestors needs to do more searches on the fs/subvol
6974 * tree, so it releases the path as needed to avoid deadlocks.
6975 * Keep track of the last inode ref key and resume from that key
6976 * after logging all new ancestors for the current hard link.
6977 */
6978 memcpy(&search_key, &found_key, sizeof(search_key));
6979
6980 ret = log_new_ancestors(trans, root, path, ctx);
6981 if (ret)
6982 goto out;
6983 btrfs_release_path(path);
6984 goto again;
6985 }
6986 ret = 0;
6987out:
6988 btrfs_free_path(path);
6989 return ret;
6990}
6991
6992/*
6993 * helper function around btrfs_log_inode to make sure newly created
6994 * parent directories also end up in the log. A minimal inode and backref
6995 * only logging is done of any parent directories that are older than
6996 * the last committed transaction
6997 */
6998static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6999 struct btrfs_inode *inode,
7000 struct dentry *parent,
7001 int inode_only,
7002 struct btrfs_log_ctx *ctx)
7003{
7004 struct btrfs_root *root = inode->root;
7005 struct btrfs_fs_info *fs_info = root->fs_info;
7006 int ret = 0;
7007 bool log_dentries = false;
7008
7009 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7010 ret = BTRFS_LOG_FORCE_COMMIT;
7011 goto end_no_trans;
7012 }
7013
7014 if (btrfs_root_refs(&root->root_item) == 0) {
7015 ret = BTRFS_LOG_FORCE_COMMIT;
7016 goto end_no_trans;
7017 }
7018
7019 /*
7020 * Skip already logged inodes or inodes corresponding to tmpfiles
7021 * (since logging them is pointless, a link count of 0 means they
7022 * will never be accessible).
7023 */
7024 if ((btrfs_inode_in_log(inode, trans->transid) &&
7025 list_empty(&ctx->ordered_extents)) ||
7026 inode->vfs_inode.i_nlink == 0) {
7027 ret = BTRFS_NO_LOG_SYNC;
7028 goto end_no_trans;
7029 }
7030
7031 ret = start_log_trans(trans, root, ctx);
7032 if (ret)
7033 goto end_no_trans;
7034
7035 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7036 if (ret)
7037 goto end_trans;
7038
7039 /*
7040 * for regular files, if its inode is already on disk, we don't
7041 * have to worry about the parents at all. This is because
7042 * we can use the last_unlink_trans field to record renames
7043 * and other fun in this file.
7044 */
7045 if (S_ISREG(inode->vfs_inode.i_mode) &&
7046 inode->generation < trans->transid &&
7047 inode->last_unlink_trans < trans->transid) {
7048 ret = 0;
7049 goto end_trans;
7050 }
7051
7052 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7053 log_dentries = true;
7054
7055 /*
7056 * On unlink we must make sure all our current and old parent directory
7057 * inodes are fully logged. This is to prevent leaving dangling
7058 * directory index entries in directories that were our parents but are
7059 * not anymore. Not doing this results in old parent directory being
7060 * impossible to delete after log replay (rmdir will always fail with
7061 * error -ENOTEMPTY).
7062 *
7063 * Example 1:
7064 *
7065 * mkdir testdir
7066 * touch testdir/foo
7067 * ln testdir/foo testdir/bar
7068 * sync
7069 * unlink testdir/bar
7070 * xfs_io -c fsync testdir/foo
7071 * <power failure>
7072 * mount fs, triggers log replay
7073 *
7074 * If we don't log the parent directory (testdir), after log replay the
7075 * directory still has an entry pointing to the file inode using the bar
7076 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7077 * the file inode has a link count of 1.
7078 *
7079 * Example 2:
7080 *
7081 * mkdir testdir
7082 * touch foo
7083 * ln foo testdir/foo2
7084 * ln foo testdir/foo3
7085 * sync
7086 * unlink testdir/foo3
7087 * xfs_io -c fsync foo
7088 * <power failure>
7089 * mount fs, triggers log replay
7090 *
7091 * Similar as the first example, after log replay the parent directory
7092 * testdir still has an entry pointing to the inode file with name foo3
7093 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7094 * and has a link count of 2.
7095 */
7096 if (inode->last_unlink_trans >= trans->transid) {
7097 ret = btrfs_log_all_parents(trans, inode, ctx);
7098 if (ret)
7099 goto end_trans;
7100 }
7101
7102 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7103 if (ret)
7104 goto end_trans;
7105
7106 if (log_dentries)
7107 ret = log_new_dir_dentries(trans, inode, ctx);
7108 else
7109 ret = 0;
7110end_trans:
7111 if (ret < 0) {
7112 btrfs_set_log_full_commit(trans);
7113 ret = BTRFS_LOG_FORCE_COMMIT;
7114 }
7115
7116 if (ret)
7117 btrfs_remove_log_ctx(root, ctx);
7118 btrfs_end_log_trans(root);
7119end_no_trans:
7120 return ret;
7121}
7122
7123/*
7124 * it is not safe to log dentry if the chunk root has added new
7125 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7126 * If this returns 1, you must commit the transaction to safely get your
7127 * data on disk.
7128 */
7129int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7130 struct dentry *dentry,
7131 struct btrfs_log_ctx *ctx)
7132{
7133 struct dentry *parent = dget_parent(dentry);
7134 int ret;
7135
7136 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7137 LOG_INODE_ALL, ctx);
7138 dput(parent);
7139
7140 return ret;
7141}
7142
7143/*
7144 * should be called during mount to recover any replay any log trees
7145 * from the FS
7146 */
7147int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7148{
7149 int ret;
7150 struct btrfs_path *path;
7151 struct btrfs_trans_handle *trans;
7152 struct btrfs_key key;
7153 struct btrfs_key found_key;
7154 struct btrfs_root *log;
7155 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7156 struct walk_control wc = {
7157 .process_func = process_one_buffer,
7158 .stage = LOG_WALK_PIN_ONLY,
7159 };
7160
7161 path = btrfs_alloc_path();
7162 if (!path)
7163 return -ENOMEM;
7164
7165 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7166
7167 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7168 if (IS_ERR(trans)) {
7169 ret = PTR_ERR(trans);
7170 goto error;
7171 }
7172
7173 wc.trans = trans;
7174 wc.pin = 1;
7175
7176 ret = walk_log_tree(trans, log_root_tree, &wc);
7177 if (ret) {
7178 btrfs_abort_transaction(trans, ret);
7179 goto error;
7180 }
7181
7182again:
7183 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7184 key.offset = (u64)-1;
7185 key.type = BTRFS_ROOT_ITEM_KEY;
7186
7187 while (1) {
7188 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7189
7190 if (ret < 0) {
7191 btrfs_abort_transaction(trans, ret);
7192 goto error;
7193 }
7194 if (ret > 0) {
7195 if (path->slots[0] == 0)
7196 break;
7197 path->slots[0]--;
7198 }
7199 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7200 path->slots[0]);
7201 btrfs_release_path(path);
7202 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7203 break;
7204
7205 log = btrfs_read_tree_root(log_root_tree, &found_key);
7206 if (IS_ERR(log)) {
7207 ret = PTR_ERR(log);
7208 btrfs_abort_transaction(trans, ret);
7209 goto error;
7210 }
7211
7212 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7213 true);
7214 if (IS_ERR(wc.replay_dest)) {
7215 ret = PTR_ERR(wc.replay_dest);
7216
7217 /*
7218 * We didn't find the subvol, likely because it was
7219 * deleted. This is ok, simply skip this log and go to
7220 * the next one.
7221 *
7222 * We need to exclude the root because we can't have
7223 * other log replays overwriting this log as we'll read
7224 * it back in a few more times. This will keep our
7225 * block from being modified, and we'll just bail for
7226 * each subsequent pass.
7227 */
7228 if (ret == -ENOENT)
7229 ret = btrfs_pin_extent_for_log_replay(trans,
7230 log->node->start,
7231 log->node->len);
7232 btrfs_put_root(log);
7233
7234 if (!ret)
7235 goto next;
7236 btrfs_abort_transaction(trans, ret);
7237 goto error;
7238 }
7239
7240 wc.replay_dest->log_root = log;
7241 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7242 if (ret)
7243 /* The loop needs to continue due to the root refs */
7244 btrfs_abort_transaction(trans, ret);
7245 else
7246 ret = walk_log_tree(trans, log, &wc);
7247
7248 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7249 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7250 path);
7251 if (ret)
7252 btrfs_abort_transaction(trans, ret);
7253 }
7254
7255 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7256 struct btrfs_root *root = wc.replay_dest;
7257
7258 btrfs_release_path(path);
7259
7260 /*
7261 * We have just replayed everything, and the highest
7262 * objectid of fs roots probably has changed in case
7263 * some inode_item's got replayed.
7264 *
7265 * root->objectid_mutex is not acquired as log replay
7266 * could only happen during mount.
7267 */
7268 ret = btrfs_init_root_free_objectid(root);
7269 if (ret)
7270 btrfs_abort_transaction(trans, ret);
7271 }
7272
7273 wc.replay_dest->log_root = NULL;
7274 btrfs_put_root(wc.replay_dest);
7275 btrfs_put_root(log);
7276
7277 if (ret)
7278 goto error;
7279next:
7280 if (found_key.offset == 0)
7281 break;
7282 key.offset = found_key.offset - 1;
7283 }
7284 btrfs_release_path(path);
7285
7286 /* step one is to pin it all, step two is to replay just inodes */
7287 if (wc.pin) {
7288 wc.pin = 0;
7289 wc.process_func = replay_one_buffer;
7290 wc.stage = LOG_WALK_REPLAY_INODES;
7291 goto again;
7292 }
7293 /* step three is to replay everything */
7294 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7295 wc.stage++;
7296 goto again;
7297 }
7298
7299 btrfs_free_path(path);
7300
7301 /* step 4: commit the transaction, which also unpins the blocks */
7302 ret = btrfs_commit_transaction(trans);
7303 if (ret)
7304 return ret;
7305
7306 log_root_tree->log_root = NULL;
7307 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7308 btrfs_put_root(log_root_tree);
7309
7310 return 0;
7311error:
7312 if (wc.trans)
7313 btrfs_end_transaction(wc.trans);
7314 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7315 btrfs_free_path(path);
7316 return ret;
7317}
7318
7319/*
7320 * there are some corner cases where we want to force a full
7321 * commit instead of allowing a directory to be logged.
7322 *
7323 * They revolve around files there were unlinked from the directory, and
7324 * this function updates the parent directory so that a full commit is
7325 * properly done if it is fsync'd later after the unlinks are done.
7326 *
7327 * Must be called before the unlink operations (updates to the subvolume tree,
7328 * inodes, etc) are done.
7329 */
7330void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7331 struct btrfs_inode *dir, struct btrfs_inode *inode,
7332 int for_rename)
7333{
7334 /*
7335 * when we're logging a file, if it hasn't been renamed
7336 * or unlinked, and its inode is fully committed on disk,
7337 * we don't have to worry about walking up the directory chain
7338 * to log its parents.
7339 *
7340 * So, we use the last_unlink_trans field to put this transid
7341 * into the file. When the file is logged we check it and
7342 * don't log the parents if the file is fully on disk.
7343 */
7344 mutex_lock(&inode->log_mutex);
7345 inode->last_unlink_trans = trans->transid;
7346 mutex_unlock(&inode->log_mutex);
7347
7348 /*
7349 * if this directory was already logged any new
7350 * names for this file/dir will get recorded
7351 */
7352 if (dir->logged_trans == trans->transid)
7353 return;
7354
7355 /*
7356 * if the inode we're about to unlink was logged,
7357 * the log will be properly updated for any new names
7358 */
7359 if (inode->logged_trans == trans->transid)
7360 return;
7361
7362 /*
7363 * when renaming files across directories, if the directory
7364 * there we're unlinking from gets fsync'd later on, there's
7365 * no way to find the destination directory later and fsync it
7366 * properly. So, we have to be conservative and force commits
7367 * so the new name gets discovered.
7368 */
7369 if (for_rename)
7370 goto record;
7371
7372 /* we can safely do the unlink without any special recording */
7373 return;
7374
7375record:
7376 mutex_lock(&dir->log_mutex);
7377 dir->last_unlink_trans = trans->transid;
7378 mutex_unlock(&dir->log_mutex);
7379}
7380
7381/*
7382 * Make sure that if someone attempts to fsync the parent directory of a deleted
7383 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7384 * that after replaying the log tree of the parent directory's root we will not
7385 * see the snapshot anymore and at log replay time we will not see any log tree
7386 * corresponding to the deleted snapshot's root, which could lead to replaying
7387 * it after replaying the log tree of the parent directory (which would replay
7388 * the snapshot delete operation).
7389 *
7390 * Must be called before the actual snapshot destroy operation (updates to the
7391 * parent root and tree of tree roots trees, etc) are done.
7392 */
7393void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7394 struct btrfs_inode *dir)
7395{
7396 mutex_lock(&dir->log_mutex);
7397 dir->last_unlink_trans = trans->transid;
7398 mutex_unlock(&dir->log_mutex);
7399}
7400
7401/*
7402 * Update the log after adding a new name for an inode.
7403 *
7404 * @trans: Transaction handle.
7405 * @old_dentry: The dentry associated with the old name and the old
7406 * parent directory.
7407 * @old_dir: The inode of the previous parent directory for the case
7408 * of a rename. For a link operation, it must be NULL.
7409 * @old_dir_index: The index number associated with the old name, meaningful
7410 * only for rename operations (when @old_dir is not NULL).
7411 * Ignored for link operations.
7412 * @parent: The dentry associated with the directory under which the
7413 * new name is located.
7414 *
7415 * Call this after adding a new name for an inode, as a result of a link or
7416 * rename operation, and it will properly update the log to reflect the new name.
7417 */
7418void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7419 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7420 u64 old_dir_index, struct dentry *parent)
7421{
7422 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7423 struct btrfs_root *root = inode->root;
7424 struct btrfs_log_ctx ctx;
7425 bool log_pinned = false;
7426 int ret;
7427
7428 /*
7429 * this will force the logging code to walk the dentry chain
7430 * up for the file
7431 */
7432 if (!S_ISDIR(inode->vfs_inode.i_mode))
7433 inode->last_unlink_trans = trans->transid;
7434
7435 /*
7436 * if this inode hasn't been logged and directory we're renaming it
7437 * from hasn't been logged, we don't need to log it
7438 */
7439 ret = inode_logged(trans, inode, NULL);
7440 if (ret < 0) {
7441 goto out;
7442 } else if (ret == 0) {
7443 if (!old_dir)
7444 return;
7445 /*
7446 * If the inode was not logged and we are doing a rename (old_dir is not
7447 * NULL), check if old_dir was logged - if it was not we can return and
7448 * do nothing.
7449 */
7450 ret = inode_logged(trans, old_dir, NULL);
7451 if (ret < 0)
7452 goto out;
7453 else if (ret == 0)
7454 return;
7455 }
7456 ret = 0;
7457
7458 /*
7459 * If we are doing a rename (old_dir is not NULL) from a directory that
7460 * was previously logged, make sure that on log replay we get the old
7461 * dir entry deleted. This is needed because we will also log the new
7462 * name of the renamed inode, so we need to make sure that after log
7463 * replay we don't end up with both the new and old dir entries existing.
7464 */
7465 if (old_dir && old_dir->logged_trans == trans->transid) {
7466 struct btrfs_root *log = old_dir->root->log_root;
7467 struct btrfs_path *path;
7468 struct fscrypt_name fname;
7469
7470 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7471
7472 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7473 &old_dentry->d_name, 0, &fname);
7474 if (ret)
7475 goto out;
7476 /*
7477 * We have two inodes to update in the log, the old directory and
7478 * the inode that got renamed, so we must pin the log to prevent
7479 * anyone from syncing the log until we have updated both inodes
7480 * in the log.
7481 */
7482 ret = join_running_log_trans(root);
7483 /*
7484 * At least one of the inodes was logged before, so this should
7485 * not fail, but if it does, it's not serious, just bail out and
7486 * mark the log for a full commit.
7487 */
7488 if (WARN_ON_ONCE(ret < 0)) {
7489 fscrypt_free_filename(&fname);
7490 goto out;
7491 }
7492
7493 log_pinned = true;
7494
7495 path = btrfs_alloc_path();
7496 if (!path) {
7497 ret = -ENOMEM;
7498 fscrypt_free_filename(&fname);
7499 goto out;
7500 }
7501
7502 /*
7503 * Other concurrent task might be logging the old directory,
7504 * as it can be triggered when logging other inode that had or
7505 * still has a dentry in the old directory. We lock the old
7506 * directory's log_mutex to ensure the deletion of the old
7507 * name is persisted, because during directory logging we
7508 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7509 * the old name's dir index item is in the delayed items, so
7510 * it could be missed by an in progress directory logging.
7511 */
7512 mutex_lock(&old_dir->log_mutex);
7513 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7514 &fname.disk_name, old_dir_index);
7515 if (ret > 0) {
7516 /*
7517 * The dentry does not exist in the log, so record its
7518 * deletion.
7519 */
7520 btrfs_release_path(path);
7521 ret = insert_dir_log_key(trans, log, path,
7522 btrfs_ino(old_dir),
7523 old_dir_index, old_dir_index);
7524 }
7525 mutex_unlock(&old_dir->log_mutex);
7526
7527 btrfs_free_path(path);
7528 fscrypt_free_filename(&fname);
7529 if (ret < 0)
7530 goto out;
7531 }
7532
7533 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7534 ctx.logging_new_name = true;
7535 /*
7536 * We don't care about the return value. If we fail to log the new name
7537 * then we know the next attempt to sync the log will fallback to a full
7538 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7539 * we don't need to worry about getting a log committed that has an
7540 * inconsistent state after a rename operation.
7541 */
7542 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7543 ASSERT(list_empty(&ctx.conflict_inodes));
7544out:
7545 /*
7546 * If an error happened mark the log for a full commit because it's not
7547 * consistent and up to date or we couldn't find out if one of the
7548 * inodes was logged before in this transaction. Do it before unpinning
7549 * the log, to avoid any races with someone else trying to commit it.
7550 */
7551 if (ret < 0)
7552 btrfs_set_log_full_commit(trans);
7553 if (log_pinned)
7554 btrfs_end_log_trans(root);
7555}
7556
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "block-group.h"
20#include "space-info.h"
21#include "inode-item.h"
22#include "fs.h"
23#include "accessors.h"
24#include "extent-tree.h"
25#include "root-tree.h"
26#include "dir-item.h"
27#include "file-item.h"
28#include "file.h"
29#include "orphan.h"
30#include "tree-checker.h"
31
32#define MAX_CONFLICT_INODES 10
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43};
44
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
103
104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116static void wait_log_commit(struct btrfs_root *root, int transid);
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
141/*
142 * start a sub transaction and setup the log tree
143 * this increments the log tree writer count to make the people
144 * syncing the tree wait for us to finish
145 */
146static int start_log_trans(struct btrfs_trans_handle *trans,
147 struct btrfs_root *root,
148 struct btrfs_log_ctx *ctx)
149{
150 struct btrfs_fs_info *fs_info = root->fs_info;
151 struct btrfs_root *tree_root = fs_info->tree_root;
152 const bool zoned = btrfs_is_zoned(fs_info);
153 int ret = 0;
154 bool created = false;
155
156 /*
157 * First check if the log root tree was already created. If not, create
158 * it before locking the root's log_mutex, just to keep lockdep happy.
159 */
160 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 mutex_lock(&tree_root->log_mutex);
162 if (!fs_info->log_root_tree) {
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 if (!ret) {
165 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
166 created = true;
167 }
168 }
169 mutex_unlock(&tree_root->log_mutex);
170 if (ret)
171 return ret;
172 }
173
174 mutex_lock(&root->log_mutex);
175
176again:
177 if (root->log_root) {
178 int index = (root->log_transid + 1) % 2;
179
180 if (btrfs_need_log_full_commit(trans)) {
181 ret = BTRFS_LOG_FORCE_COMMIT;
182 goto out;
183 }
184
185 if (zoned && atomic_read(&root->log_commit[index])) {
186 wait_log_commit(root, root->log_transid - 1);
187 goto again;
188 }
189
190 if (!root->log_start_pid) {
191 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
192 root->log_start_pid = current->pid;
193 } else if (root->log_start_pid != current->pid) {
194 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
195 }
196 } else {
197 /*
198 * This means fs_info->log_root_tree was already created
199 * for some other FS trees. Do the full commit not to mix
200 * nodes from multiple log transactions to do sequential
201 * writing.
202 */
203 if (zoned && !created) {
204 ret = BTRFS_LOG_FORCE_COMMIT;
205 goto out;
206 }
207
208 ret = btrfs_add_log_tree(trans, root);
209 if (ret)
210 goto out;
211
212 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 root->log_start_pid = current->pid;
215 }
216
217 atomic_inc(&root->log_writers);
218 if (!ctx->logging_new_name) {
219 int index = root->log_transid % 2;
220 list_add_tail(&ctx->list, &root->log_ctxs[index]);
221 ctx->log_transid = root->log_transid;
222 }
223
224out:
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
229/*
230 * returns 0 if there was a log transaction running and we were able
231 * to join, or returns -ENOENT if there were not transactions
232 * in progress
233 */
234static int join_running_log_trans(struct btrfs_root *root)
235{
236 const bool zoned = btrfs_is_zoned(root->fs_info);
237 int ret = -ENOENT;
238
239 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 return ret;
241
242 mutex_lock(&root->log_mutex);
243again:
244 if (root->log_root) {
245 int index = (root->log_transid + 1) % 2;
246
247 ret = 0;
248 if (zoned && atomic_read(&root->log_commit[index])) {
249 wait_log_commit(root, root->log_transid - 1);
250 goto again;
251 }
252 atomic_inc(&root->log_writers);
253 }
254 mutex_unlock(&root->log_mutex);
255 return ret;
256}
257
258/*
259 * This either makes the current running log transaction wait
260 * until you call btrfs_end_log_trans() or it makes any future
261 * log transactions wait until you call btrfs_end_log_trans()
262 */
263void btrfs_pin_log_trans(struct btrfs_root *root)
264{
265 atomic_inc(&root->log_writers);
266}
267
268/*
269 * indicate we're done making changes to the log tree
270 * and wake up anyone waiting to do a sync
271 */
272void btrfs_end_log_trans(struct btrfs_root *root)
273{
274 if (atomic_dec_and_test(&root->log_writers)) {
275 /* atomic_dec_and_test implies a barrier */
276 cond_wake_up_nomb(&root->log_writer_wait);
277 }
278}
279
280/*
281 * the walk control struct is used to pass state down the chain when
282 * processing the log tree. The stage field tells us which part
283 * of the log tree processing we are currently doing. The others
284 * are state fields used for that specific part
285 */
286struct walk_control {
287 /* should we free the extent on disk when done? This is used
288 * at transaction commit time while freeing a log tree
289 */
290 int free;
291
292 /* pin only walk, we record which extents on disk belong to the
293 * log trees
294 */
295 int pin;
296
297 /* what stage of the replay code we're currently in */
298 int stage;
299
300 /*
301 * Ignore any items from the inode currently being processed. Needs
302 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 * the LOG_WALK_REPLAY_INODES stage.
304 */
305 bool ignore_cur_inode;
306
307 /* the root we are currently replaying */
308 struct btrfs_root *replay_dest;
309
310 /* the trans handle for the current replay */
311 struct btrfs_trans_handle *trans;
312
313 /* the function that gets used to process blocks we find in the
314 * tree. Note the extent_buffer might not be up to date when it is
315 * passed in, and it must be checked or read if you need the data
316 * inside it
317 */
318 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319 struct walk_control *wc, u64 gen, int level);
320};
321
322/*
323 * process_func used to pin down extents, write them or wait on them
324 */
325static int process_one_buffer(struct btrfs_root *log,
326 struct extent_buffer *eb,
327 struct walk_control *wc, u64 gen, int level)
328{
329 struct btrfs_fs_info *fs_info = log->fs_info;
330 int ret = 0;
331
332 /*
333 * If this fs is mixed then we need to be able to process the leaves to
334 * pin down any logged extents, so we have to read the block.
335 */
336 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337 struct btrfs_tree_parent_check check = {
338 .level = level,
339 .transid = gen
340 };
341
342 ret = btrfs_read_extent_buffer(eb, &check);
343 if (ret)
344 return ret;
345 }
346
347 if (wc->pin) {
348 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
349 if (ret)
350 return ret;
351
352 if (btrfs_buffer_uptodate(eb, gen, 0) &&
353 btrfs_header_level(eb) == 0)
354 ret = btrfs_exclude_logged_extents(eb);
355 }
356 return ret;
357}
358
359/*
360 * Item overwrite used by replay and tree logging. eb, slot and key all refer
361 * to the src data we are copying out.
362 *
363 * root is the tree we are copying into, and path is a scratch
364 * path for use in this function (it should be released on entry and
365 * will be released on exit).
366 *
367 * If the key is already in the destination tree the existing item is
368 * overwritten. If the existing item isn't big enough, it is extended.
369 * If it is too large, it is truncated.
370 *
371 * If the key isn't in the destination yet, a new item is inserted.
372 */
373static int overwrite_item(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct btrfs_path *path,
376 struct extent_buffer *eb, int slot,
377 struct btrfs_key *key)
378{
379 int ret;
380 u32 item_size;
381 u64 saved_i_size = 0;
382 int save_old_i_size = 0;
383 unsigned long src_ptr;
384 unsigned long dst_ptr;
385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386
387 /*
388 * This is only used during log replay, so the root is always from a
389 * fs/subvolume tree. In case we ever need to support a log root, then
390 * we'll have to clone the leaf in the path, release the path and use
391 * the leaf before writing into the log tree. See the comments at
392 * copy_items() for more details.
393 */
394 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
395
396 item_size = btrfs_item_size(eb, slot);
397 src_ptr = btrfs_item_ptr_offset(eb, slot);
398
399 /* Look for the key in the destination tree. */
400 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401 if (ret < 0)
402 return ret;
403
404 if (ret == 0) {
405 char *src_copy;
406 char *dst_copy;
407 u32 dst_size = btrfs_item_size(path->nodes[0],
408 path->slots[0]);
409 if (dst_size != item_size)
410 goto insert;
411
412 if (item_size == 0) {
413 btrfs_release_path(path);
414 return 0;
415 }
416 dst_copy = kmalloc(item_size, GFP_NOFS);
417 src_copy = kmalloc(item_size, GFP_NOFS);
418 if (!dst_copy || !src_copy) {
419 btrfs_release_path(path);
420 kfree(dst_copy);
421 kfree(src_copy);
422 return -ENOMEM;
423 }
424
425 read_extent_buffer(eb, src_copy, src_ptr, item_size);
426
427 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429 item_size);
430 ret = memcmp(dst_copy, src_copy, item_size);
431
432 kfree(dst_copy);
433 kfree(src_copy);
434 /*
435 * they have the same contents, just return, this saves
436 * us from cowing blocks in the destination tree and doing
437 * extra writes that may not have been done by a previous
438 * sync
439 */
440 if (ret == 0) {
441 btrfs_release_path(path);
442 return 0;
443 }
444
445 /*
446 * We need to load the old nbytes into the inode so when we
447 * replay the extents we've logged we get the right nbytes.
448 */
449 if (inode_item) {
450 struct btrfs_inode_item *item;
451 u64 nbytes;
452 u32 mode;
453
454 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 struct btrfs_inode_item);
456 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457 item = btrfs_item_ptr(eb, slot,
458 struct btrfs_inode_item);
459 btrfs_set_inode_nbytes(eb, item, nbytes);
460
461 /*
462 * If this is a directory we need to reset the i_size to
463 * 0 so that we can set it up properly when replaying
464 * the rest of the items in this log.
465 */
466 mode = btrfs_inode_mode(eb, item);
467 if (S_ISDIR(mode))
468 btrfs_set_inode_size(eb, item, 0);
469 }
470 } else if (inode_item) {
471 struct btrfs_inode_item *item;
472 u32 mode;
473
474 /*
475 * New inode, set nbytes to 0 so that the nbytes comes out
476 * properly when we replay the extents.
477 */
478 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 btrfs_set_inode_nbytes(eb, item, 0);
480
481 /*
482 * If this is a directory we need to reset the i_size to 0 so
483 * that we can set it up properly when replaying the rest of
484 * the items in this log.
485 */
486 mode = btrfs_inode_mode(eb, item);
487 if (S_ISDIR(mode))
488 btrfs_set_inode_size(eb, item, 0);
489 }
490insert:
491 btrfs_release_path(path);
492 /* try to insert the key into the destination tree */
493 path->skip_release_on_error = 1;
494 ret = btrfs_insert_empty_item(trans, root, path,
495 key, item_size);
496 path->skip_release_on_error = 0;
497
498 /* make sure any existing item is the correct size */
499 if (ret == -EEXIST || ret == -EOVERFLOW) {
500 u32 found_size;
501 found_size = btrfs_item_size(path->nodes[0],
502 path->slots[0]);
503 if (found_size > item_size)
504 btrfs_truncate_item(trans, path, item_size, 1);
505 else if (found_size < item_size)
506 btrfs_extend_item(trans, path, item_size - found_size);
507 } else if (ret) {
508 return ret;
509 }
510 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 path->slots[0]);
512
513 /* don't overwrite an existing inode if the generation number
514 * was logged as zero. This is done when the tree logging code
515 * is just logging an inode to make sure it exists after recovery.
516 *
517 * Also, don't overwrite i_size on directories during replay.
518 * log replay inserts and removes directory items based on the
519 * state of the tree found in the subvolume, and i_size is modified
520 * as it goes
521 */
522 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 struct btrfs_inode_item *src_item;
524 struct btrfs_inode_item *dst_item;
525
526 src_item = (struct btrfs_inode_item *)src_ptr;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528
529 if (btrfs_inode_generation(eb, src_item) == 0) {
530 struct extent_buffer *dst_eb = path->nodes[0];
531 const u64 ino_size = btrfs_inode_size(eb, src_item);
532
533 /*
534 * For regular files an ino_size == 0 is used only when
535 * logging that an inode exists, as part of a directory
536 * fsync, and the inode wasn't fsynced before. In this
537 * case don't set the size of the inode in the fs/subvol
538 * tree, otherwise we would be throwing valid data away.
539 */
540 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542 ino_size != 0)
543 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
544 goto no_copy;
545 }
546
547 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 save_old_i_size = 1;
550 saved_i_size = btrfs_inode_size(path->nodes[0],
551 dst_item);
552 }
553 }
554
555 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556 src_ptr, item_size);
557
558 if (save_old_i_size) {
559 struct btrfs_inode_item *dst_item;
560 dst_item = (struct btrfs_inode_item *)dst_ptr;
561 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562 }
563
564 /* make sure the generation is filled in */
565 if (key->type == BTRFS_INODE_ITEM_KEY) {
566 struct btrfs_inode_item *dst_item;
567 dst_item = (struct btrfs_inode_item *)dst_ptr;
568 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569 btrfs_set_inode_generation(path->nodes[0], dst_item,
570 trans->transid);
571 }
572 }
573no_copy:
574 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
575 btrfs_release_path(path);
576 return 0;
577}
578
579static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580 struct fscrypt_str *name)
581{
582 char *buf;
583
584 buf = kmalloc(len, GFP_NOFS);
585 if (!buf)
586 return -ENOMEM;
587
588 read_extent_buffer(eb, buf, (unsigned long)start, len);
589 name->name = buf;
590 name->len = len;
591 return 0;
592}
593
594/*
595 * simple helper to read an inode off the disk from a given root
596 * This can only be called for subvolume roots and not for the log
597 */
598static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 u64 objectid)
600{
601 struct inode *inode;
602
603 inode = btrfs_iget(root->fs_info->sb, objectid, root);
604 if (IS_ERR(inode))
605 inode = NULL;
606 return inode;
607}
608
609/* replays a single extent in 'eb' at 'slot' with 'key' into the
610 * subvolume 'root'. path is released on entry and should be released
611 * on exit.
612 *
613 * extents in the log tree have not been allocated out of the extent
614 * tree yet. So, this completes the allocation, taking a reference
615 * as required if the extent already exists or creating a new extent
616 * if it isn't in the extent allocation tree yet.
617 *
618 * The extent is inserted into the file, dropping any existing extents
619 * from the file that overlap the new one.
620 */
621static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root,
623 struct btrfs_path *path,
624 struct extent_buffer *eb, int slot,
625 struct btrfs_key *key)
626{
627 struct btrfs_drop_extents_args drop_args = { 0 };
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 int found_type;
630 u64 extent_end;
631 u64 start = key->offset;
632 u64 nbytes = 0;
633 struct btrfs_file_extent_item *item;
634 struct inode *inode = NULL;
635 unsigned long size;
636 int ret = 0;
637
638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 found_type = btrfs_file_extent_type(eb, item);
640
641 if (found_type == BTRFS_FILE_EXTENT_REG ||
642 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 nbytes = btrfs_file_extent_num_bytes(eb, item);
644 extent_end = start + nbytes;
645
646 /*
647 * We don't add to the inodes nbytes if we are prealloc or a
648 * hole.
649 */
650 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 nbytes = 0;
652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 size = btrfs_file_extent_ram_bytes(eb, item);
654 nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 extent_end = ALIGN(start + size,
656 fs_info->sectorsize);
657 } else {
658 ret = 0;
659 goto out;
660 }
661
662 inode = read_one_inode(root, key->objectid);
663 if (!inode) {
664 ret = -EIO;
665 goto out;
666 }
667
668 /*
669 * first check to see if we already have this extent in the
670 * file. This must be done before the btrfs_drop_extents run
671 * so we don't try to drop this extent.
672 */
673 ret = btrfs_lookup_file_extent(trans, root, path,
674 btrfs_ino(BTRFS_I(inode)), start, 0);
675
676 if (ret == 0 &&
677 (found_type == BTRFS_FILE_EXTENT_REG ||
678 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679 struct btrfs_file_extent_item cmp1;
680 struct btrfs_file_extent_item cmp2;
681 struct btrfs_file_extent_item *existing;
682 struct extent_buffer *leaf;
683
684 leaf = path->nodes[0];
685 existing = btrfs_item_ptr(leaf, path->slots[0],
686 struct btrfs_file_extent_item);
687
688 read_extent_buffer(eb, &cmp1, (unsigned long)item,
689 sizeof(cmp1));
690 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691 sizeof(cmp2));
692
693 /*
694 * we already have a pointer to this exact extent,
695 * we don't have to do anything
696 */
697 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
698 btrfs_release_path(path);
699 goto out;
700 }
701 }
702 btrfs_release_path(path);
703
704 /* drop any overlapping extents */
705 drop_args.start = start;
706 drop_args.end = extent_end;
707 drop_args.drop_cache = true;
708 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
709 if (ret)
710 goto out;
711
712 if (found_type == BTRFS_FILE_EXTENT_REG ||
713 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714 u64 offset;
715 unsigned long dest_offset;
716 struct btrfs_key ins;
717
718 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719 btrfs_fs_incompat(fs_info, NO_HOLES))
720 goto update_inode;
721
722 ret = btrfs_insert_empty_item(trans, root, path, key,
723 sizeof(*item));
724 if (ret)
725 goto out;
726 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 path->slots[0]);
728 copy_extent_buffer(path->nodes[0], eb, dest_offset,
729 (unsigned long)item, sizeof(*item));
730
731 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733 ins.type = BTRFS_EXTENT_ITEM_KEY;
734 offset = key->offset - btrfs_file_extent_offset(eb, item);
735
736 /*
737 * Manually record dirty extent, as here we did a shallow
738 * file extent item copy and skip normal backref update,
739 * but modifying extent tree all by ourselves.
740 * So need to manually record dirty extent for qgroup,
741 * as the owner of the file extent changed from log tree
742 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 */
744 ret = btrfs_qgroup_trace_extent(trans,
745 btrfs_file_extent_disk_bytenr(eb, item),
746 btrfs_file_extent_disk_num_bytes(eb, item));
747 if (ret < 0)
748 goto out;
749
750 if (ins.objectid > 0) {
751 struct btrfs_ref ref = { 0 };
752 u64 csum_start;
753 u64 csum_end;
754 LIST_HEAD(ordered_sums);
755
756 /*
757 * is this extent already allocated in the extent
758 * allocation tree? If so, just add a reference
759 */
760 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
761 ins.offset);
762 if (ret < 0) {
763 goto out;
764 } else if (ret == 0) {
765 btrfs_init_generic_ref(&ref,
766 BTRFS_ADD_DELAYED_REF,
767 ins.objectid, ins.offset, 0,
768 root->root_key.objectid);
769 btrfs_init_data_ref(&ref,
770 root->root_key.objectid,
771 key->objectid, offset, 0, false);
772 ret = btrfs_inc_extent_ref(trans, &ref);
773 if (ret)
774 goto out;
775 } else {
776 /*
777 * insert the extent pointer in the extent
778 * allocation tree
779 */
780 ret = btrfs_alloc_logged_file_extent(trans,
781 root->root_key.objectid,
782 key->objectid, offset, &ins);
783 if (ret)
784 goto out;
785 }
786 btrfs_release_path(path);
787
788 if (btrfs_file_extent_compression(eb, item)) {
789 csum_start = ins.objectid;
790 csum_end = csum_start + ins.offset;
791 } else {
792 csum_start = ins.objectid +
793 btrfs_file_extent_offset(eb, item);
794 csum_end = csum_start +
795 btrfs_file_extent_num_bytes(eb, item);
796 }
797
798 ret = btrfs_lookup_csums_list(root->log_root,
799 csum_start, csum_end - 1,
800 &ordered_sums, 0, false);
801 if (ret)
802 goto out;
803 /*
804 * Now delete all existing cums in the csum root that
805 * cover our range. We do this because we can have an
806 * extent that is completely referenced by one file
807 * extent item and partially referenced by another
808 * file extent item (like after using the clone or
809 * extent_same ioctls). In this case if we end up doing
810 * the replay of the one that partially references the
811 * extent first, and we do not do the csum deletion
812 * below, we can get 2 csum items in the csum tree that
813 * overlap each other. For example, imagine our log has
814 * the two following file extent items:
815 *
816 * key (257 EXTENT_DATA 409600)
817 * extent data disk byte 12845056 nr 102400
818 * extent data offset 20480 nr 20480 ram 102400
819 *
820 * key (257 EXTENT_DATA 819200)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 0 nr 102400 ram 102400
823 *
824 * Where the second one fully references the 100K extent
825 * that starts at disk byte 12845056, and the log tree
826 * has a single csum item that covers the entire range
827 * of the extent:
828 *
829 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
830 *
831 * After the first file extent item is replayed, the
832 * csum tree gets the following csum item:
833 *
834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 *
836 * Which covers the 20K sub-range starting at offset 20K
837 * of our extent. Now when we replay the second file
838 * extent item, if we do not delete existing csum items
839 * that cover any of its blocks, we end up getting two
840 * csum items in our csum tree that overlap each other:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
843 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
844 *
845 * Which is a problem, because after this anyone trying
846 * to lookup up for the checksum of any block of our
847 * extent starting at an offset of 40K or higher, will
848 * end up looking at the second csum item only, which
849 * does not contain the checksum for any block starting
850 * at offset 40K or higher of our extent.
851 */
852 while (!list_empty(&ordered_sums)) {
853 struct btrfs_ordered_sum *sums;
854 struct btrfs_root *csum_root;
855
856 sums = list_entry(ordered_sums.next,
857 struct btrfs_ordered_sum,
858 list);
859 csum_root = btrfs_csum_root(fs_info,
860 sums->logical);
861 if (!ret)
862 ret = btrfs_del_csums(trans, csum_root,
863 sums->logical,
864 sums->len);
865 if (!ret)
866 ret = btrfs_csum_file_blocks(trans,
867 csum_root,
868 sums);
869 list_del(&sums->list);
870 kfree(sums);
871 }
872 if (ret)
873 goto out;
874 } else {
875 btrfs_release_path(path);
876 }
877 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
878 /* inline extents are easy, we just overwrite them */
879 ret = overwrite_item(trans, root, path, eb, slot, key);
880 if (ret)
881 goto out;
882 }
883
884 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
885 extent_end - start);
886 if (ret)
887 goto out;
888
889update_inode:
890 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
891 ret = btrfs_update_inode(trans, BTRFS_I(inode));
892out:
893 iput(inode);
894 return ret;
895}
896
897static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
898 struct btrfs_inode *dir,
899 struct btrfs_inode *inode,
900 const struct fscrypt_str *name)
901{
902 int ret;
903
904 ret = btrfs_unlink_inode(trans, dir, inode, name);
905 if (ret)
906 return ret;
907 /*
908 * Whenever we need to check if a name exists or not, we check the
909 * fs/subvolume tree. So after an unlink we must run delayed items, so
910 * that future checks for a name during log replay see that the name
911 * does not exists anymore.
912 */
913 return btrfs_run_delayed_items(trans);
914}
915
916/*
917 * when cleaning up conflicts between the directory names in the
918 * subvolume, directory names in the log and directory names in the
919 * inode back references, we may have to unlink inodes from directories.
920 *
921 * This is a helper function to do the unlink of a specific directory
922 * item
923 */
924static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
925 struct btrfs_path *path,
926 struct btrfs_inode *dir,
927 struct btrfs_dir_item *di)
928{
929 struct btrfs_root *root = dir->root;
930 struct inode *inode;
931 struct fscrypt_str name;
932 struct extent_buffer *leaf;
933 struct btrfs_key location;
934 int ret;
935
936 leaf = path->nodes[0];
937
938 btrfs_dir_item_key_to_cpu(leaf, di, &location);
939 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
940 if (ret)
941 return -ENOMEM;
942
943 btrfs_release_path(path);
944
945 inode = read_one_inode(root, location.objectid);
946 if (!inode) {
947 ret = -EIO;
948 goto out;
949 }
950
951 ret = link_to_fixup_dir(trans, root, path, location.objectid);
952 if (ret)
953 goto out;
954
955 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
956out:
957 kfree(name.name);
958 iput(inode);
959 return ret;
960}
961
962/*
963 * See if a given name and sequence number found in an inode back reference are
964 * already in a directory and correctly point to this inode.
965 *
966 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
967 * exists.
968 */
969static noinline int inode_in_dir(struct btrfs_root *root,
970 struct btrfs_path *path,
971 u64 dirid, u64 objectid, u64 index,
972 struct fscrypt_str *name)
973{
974 struct btrfs_dir_item *di;
975 struct btrfs_key location;
976 int ret = 0;
977
978 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
979 index, name, 0);
980 if (IS_ERR(di)) {
981 ret = PTR_ERR(di);
982 goto out;
983 } else if (di) {
984 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
985 if (location.objectid != objectid)
986 goto out;
987 } else {
988 goto out;
989 }
990
991 btrfs_release_path(path);
992 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
993 if (IS_ERR(di)) {
994 ret = PTR_ERR(di);
995 goto out;
996 } else if (di) {
997 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
998 if (location.objectid == objectid)
999 ret = 1;
1000 }
1001out:
1002 btrfs_release_path(path);
1003 return ret;
1004}
1005
1006/*
1007 * helper function to check a log tree for a named back reference in
1008 * an inode. This is used to decide if a back reference that is
1009 * found in the subvolume conflicts with what we find in the log.
1010 *
1011 * inode backreferences may have multiple refs in a single item,
1012 * during replay we process one reference at a time, and we don't
1013 * want to delete valid links to a file from the subvolume if that
1014 * link is also in the log.
1015 */
1016static noinline int backref_in_log(struct btrfs_root *log,
1017 struct btrfs_key *key,
1018 u64 ref_objectid,
1019 const struct fscrypt_str *name)
1020{
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027
1028 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1029 if (ret < 0) {
1030 goto out;
1031 } else if (ret == 1) {
1032 ret = 0;
1033 goto out;
1034 }
1035
1036 if (key->type == BTRFS_INODE_EXTREF_KEY)
1037 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1038 path->slots[0],
1039 ref_objectid, name);
1040 else
1041 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1042 path->slots[0], name);
1043out:
1044 btrfs_free_path(path);
1045 return ret;
1046}
1047
1048static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1049 struct btrfs_root *root,
1050 struct btrfs_path *path,
1051 struct btrfs_root *log_root,
1052 struct btrfs_inode *dir,
1053 struct btrfs_inode *inode,
1054 u64 inode_objectid, u64 parent_objectid,
1055 u64 ref_index, struct fscrypt_str *name)
1056{
1057 int ret;
1058 struct extent_buffer *leaf;
1059 struct btrfs_dir_item *di;
1060 struct btrfs_key search_key;
1061 struct btrfs_inode_extref *extref;
1062
1063again:
1064 /* Search old style refs */
1065 search_key.objectid = inode_objectid;
1066 search_key.type = BTRFS_INODE_REF_KEY;
1067 search_key.offset = parent_objectid;
1068 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1069 if (ret == 0) {
1070 struct btrfs_inode_ref *victim_ref;
1071 unsigned long ptr;
1072 unsigned long ptr_end;
1073
1074 leaf = path->nodes[0];
1075
1076 /* are we trying to overwrite a back ref for the root directory
1077 * if so, just jump out, we're done
1078 */
1079 if (search_key.objectid == search_key.offset)
1080 return 1;
1081
1082 /* check all the names in this back reference to see
1083 * if they are in the log. if so, we allow them to stay
1084 * otherwise they must be unlinked as a conflict
1085 */
1086 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1088 while (ptr < ptr_end) {
1089 struct fscrypt_str victim_name;
1090
1091 victim_ref = (struct btrfs_inode_ref *)ptr;
1092 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1093 btrfs_inode_ref_name_len(leaf, victim_ref),
1094 &victim_name);
1095 if (ret)
1096 return ret;
1097
1098 ret = backref_in_log(log_root, &search_key,
1099 parent_objectid, &victim_name);
1100 if (ret < 0) {
1101 kfree(victim_name.name);
1102 return ret;
1103 } else if (!ret) {
1104 inc_nlink(&inode->vfs_inode);
1105 btrfs_release_path(path);
1106
1107 ret = unlink_inode_for_log_replay(trans, dir, inode,
1108 &victim_name);
1109 kfree(victim_name.name);
1110 if (ret)
1111 return ret;
1112 goto again;
1113 }
1114 kfree(victim_name.name);
1115
1116 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1117 }
1118 }
1119 btrfs_release_path(path);
1120
1121 /* Same search but for extended refs */
1122 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1123 inode_objectid, parent_objectid, 0,
1124 0);
1125 if (IS_ERR(extref)) {
1126 return PTR_ERR(extref);
1127 } else if (extref) {
1128 u32 item_size;
1129 u32 cur_offset = 0;
1130 unsigned long base;
1131 struct inode *victim_parent;
1132
1133 leaf = path->nodes[0];
1134
1135 item_size = btrfs_item_size(leaf, path->slots[0]);
1136 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1137
1138 while (cur_offset < item_size) {
1139 struct fscrypt_str victim_name;
1140
1141 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1142
1143 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1144 goto next;
1145
1146 ret = read_alloc_one_name(leaf, &extref->name,
1147 btrfs_inode_extref_name_len(leaf, extref),
1148 &victim_name);
1149 if (ret)
1150 return ret;
1151
1152 search_key.objectid = inode_objectid;
1153 search_key.type = BTRFS_INODE_EXTREF_KEY;
1154 search_key.offset = btrfs_extref_hash(parent_objectid,
1155 victim_name.name,
1156 victim_name.len);
1157 ret = backref_in_log(log_root, &search_key,
1158 parent_objectid, &victim_name);
1159 if (ret < 0) {
1160 kfree(victim_name.name);
1161 return ret;
1162 } else if (!ret) {
1163 ret = -ENOENT;
1164 victim_parent = read_one_inode(root,
1165 parent_objectid);
1166 if (victim_parent) {
1167 inc_nlink(&inode->vfs_inode);
1168 btrfs_release_path(path);
1169
1170 ret = unlink_inode_for_log_replay(trans,
1171 BTRFS_I(victim_parent),
1172 inode, &victim_name);
1173 }
1174 iput(victim_parent);
1175 kfree(victim_name.name);
1176 if (ret)
1177 return ret;
1178 goto again;
1179 }
1180 kfree(victim_name.name);
1181next:
1182 cur_offset += victim_name.len + sizeof(*extref);
1183 }
1184 }
1185 btrfs_release_path(path);
1186
1187 /* look for a conflicting sequence number */
1188 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1189 ref_index, name, 0);
1190 if (IS_ERR(di)) {
1191 return PTR_ERR(di);
1192 } else if (di) {
1193 ret = drop_one_dir_item(trans, path, dir, di);
1194 if (ret)
1195 return ret;
1196 }
1197 btrfs_release_path(path);
1198
1199 /* look for a conflicting name */
1200 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1201 if (IS_ERR(di)) {
1202 return PTR_ERR(di);
1203 } else if (di) {
1204 ret = drop_one_dir_item(trans, path, dir, di);
1205 if (ret)
1206 return ret;
1207 }
1208 btrfs_release_path(path);
1209
1210 return 0;
1211}
1212
1213static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1214 struct fscrypt_str *name, u64 *index,
1215 u64 *parent_objectid)
1216{
1217 struct btrfs_inode_extref *extref;
1218 int ret;
1219
1220 extref = (struct btrfs_inode_extref *)ref_ptr;
1221
1222 ret = read_alloc_one_name(eb, &extref->name,
1223 btrfs_inode_extref_name_len(eb, extref), name);
1224 if (ret)
1225 return ret;
1226
1227 if (index)
1228 *index = btrfs_inode_extref_index(eb, extref);
1229 if (parent_objectid)
1230 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1231
1232 return 0;
1233}
1234
1235static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1236 struct fscrypt_str *name, u64 *index)
1237{
1238 struct btrfs_inode_ref *ref;
1239 int ret;
1240
1241 ref = (struct btrfs_inode_ref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1244 name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_ref_index(eb, ref);
1250
1251 return 0;
1252}
1253
1254/*
1255 * Take an inode reference item from the log tree and iterate all names from the
1256 * inode reference item in the subvolume tree with the same key (if it exists).
1257 * For any name that is not in the inode reference item from the log tree, do a
1258 * proper unlink of that name (that is, remove its entry from the inode
1259 * reference item and both dir index keys).
1260 */
1261static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 struct btrfs_inode *inode,
1265 struct extent_buffer *log_eb,
1266 int log_slot,
1267 struct btrfs_key *key)
1268{
1269 int ret;
1270 unsigned long ref_ptr;
1271 unsigned long ref_end;
1272 struct extent_buffer *eb;
1273
1274again:
1275 btrfs_release_path(path);
1276 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1277 if (ret > 0) {
1278 ret = 0;
1279 goto out;
1280 }
1281 if (ret < 0)
1282 goto out;
1283
1284 eb = path->nodes[0];
1285 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1286 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1287 while (ref_ptr < ref_end) {
1288 struct fscrypt_str name;
1289 u64 parent_id;
1290
1291 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1292 ret = extref_get_fields(eb, ref_ptr, &name,
1293 NULL, &parent_id);
1294 } else {
1295 parent_id = key->offset;
1296 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1297 }
1298 if (ret)
1299 goto out;
1300
1301 if (key->type == BTRFS_INODE_EXTREF_KEY)
1302 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1303 parent_id, &name);
1304 else
1305 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1306
1307 if (!ret) {
1308 struct inode *dir;
1309
1310 btrfs_release_path(path);
1311 dir = read_one_inode(root, parent_id);
1312 if (!dir) {
1313 ret = -ENOENT;
1314 kfree(name.name);
1315 goto out;
1316 }
1317 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1318 inode, &name);
1319 kfree(name.name);
1320 iput(dir);
1321 if (ret)
1322 goto out;
1323 goto again;
1324 }
1325
1326 kfree(name.name);
1327 ref_ptr += name.len;
1328 if (key->type == BTRFS_INODE_EXTREF_KEY)
1329 ref_ptr += sizeof(struct btrfs_inode_extref);
1330 else
1331 ref_ptr += sizeof(struct btrfs_inode_ref);
1332 }
1333 ret = 0;
1334 out:
1335 btrfs_release_path(path);
1336 return ret;
1337}
1338
1339/*
1340 * replay one inode back reference item found in the log tree.
1341 * eb, slot and key refer to the buffer and key found in the log tree.
1342 * root is the destination we are replaying into, and path is for temp
1343 * use by this function. (it should be released on return).
1344 */
1345static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1346 struct btrfs_root *root,
1347 struct btrfs_root *log,
1348 struct btrfs_path *path,
1349 struct extent_buffer *eb, int slot,
1350 struct btrfs_key *key)
1351{
1352 struct inode *dir = NULL;
1353 struct inode *inode = NULL;
1354 unsigned long ref_ptr;
1355 unsigned long ref_end;
1356 struct fscrypt_str name;
1357 int ret;
1358 int log_ref_ver = 0;
1359 u64 parent_objectid;
1360 u64 inode_objectid;
1361 u64 ref_index = 0;
1362 int ref_struct_size;
1363
1364 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1365 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1366
1367 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1368 struct btrfs_inode_extref *r;
1369
1370 ref_struct_size = sizeof(struct btrfs_inode_extref);
1371 log_ref_ver = 1;
1372 r = (struct btrfs_inode_extref *)ref_ptr;
1373 parent_objectid = btrfs_inode_extref_parent(eb, r);
1374 } else {
1375 ref_struct_size = sizeof(struct btrfs_inode_ref);
1376 parent_objectid = key->offset;
1377 }
1378 inode_objectid = key->objectid;
1379
1380 /*
1381 * it is possible that we didn't log all the parent directories
1382 * for a given inode. If we don't find the dir, just don't
1383 * copy the back ref in. The link count fixup code will take
1384 * care of the rest
1385 */
1386 dir = read_one_inode(root, parent_objectid);
1387 if (!dir) {
1388 ret = -ENOENT;
1389 goto out;
1390 }
1391
1392 inode = read_one_inode(root, inode_objectid);
1393 if (!inode) {
1394 ret = -EIO;
1395 goto out;
1396 }
1397
1398 while (ref_ptr < ref_end) {
1399 if (log_ref_ver) {
1400 ret = extref_get_fields(eb, ref_ptr, &name,
1401 &ref_index, &parent_objectid);
1402 /*
1403 * parent object can change from one array
1404 * item to another.
1405 */
1406 if (!dir)
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 } else {
1413 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1414 }
1415 if (ret)
1416 goto out;
1417
1418 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1419 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1420 if (ret < 0) {
1421 goto out;
1422 } else if (ret == 0) {
1423 /*
1424 * look for a conflicting back reference in the
1425 * metadata. if we find one we have to unlink that name
1426 * of the file before we add our new link. Later on, we
1427 * overwrite any existing back reference, and we don't
1428 * want to create dangling pointers in the directory.
1429 */
1430 ret = __add_inode_ref(trans, root, path, log,
1431 BTRFS_I(dir), BTRFS_I(inode),
1432 inode_objectid, parent_objectid,
1433 ref_index, &name);
1434 if (ret) {
1435 if (ret == 1)
1436 ret = 0;
1437 goto out;
1438 }
1439
1440 /* insert our name */
1441 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1442 &name, 0, ref_index);
1443 if (ret)
1444 goto out;
1445
1446 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1447 if (ret)
1448 goto out;
1449 }
1450 /* Else, ret == 1, we already have a perfect match, we're done. */
1451
1452 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1453 kfree(name.name);
1454 name.name = NULL;
1455 if (log_ref_ver) {
1456 iput(dir);
1457 dir = NULL;
1458 }
1459 }
1460
1461 /*
1462 * Before we overwrite the inode reference item in the subvolume tree
1463 * with the item from the log tree, we must unlink all names from the
1464 * parent directory that are in the subvolume's tree inode reference
1465 * item, otherwise we end up with an inconsistent subvolume tree where
1466 * dir index entries exist for a name but there is no inode reference
1467 * item with the same name.
1468 */
1469 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1470 key);
1471 if (ret)
1472 goto out;
1473
1474 /* finally write the back reference in the inode */
1475 ret = overwrite_item(trans, root, path, eb, slot, key);
1476out:
1477 btrfs_release_path(path);
1478 kfree(name.name);
1479 iput(dir);
1480 iput(inode);
1481 return ret;
1482}
1483
1484static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1485{
1486 int ret = 0;
1487 int name_len;
1488 unsigned int nlink = 0;
1489 u32 item_size;
1490 u32 cur_offset = 0;
1491 u64 inode_objectid = btrfs_ino(inode);
1492 u64 offset = 0;
1493 unsigned long ptr;
1494 struct btrfs_inode_extref *extref;
1495 struct extent_buffer *leaf;
1496
1497 while (1) {
1498 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1499 path, &extref, &offset);
1500 if (ret)
1501 break;
1502
1503 leaf = path->nodes[0];
1504 item_size = btrfs_item_size(leaf, path->slots[0]);
1505 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1506 cur_offset = 0;
1507
1508 while (cur_offset < item_size) {
1509 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1510 name_len = btrfs_inode_extref_name_len(leaf, extref);
1511
1512 nlink++;
1513
1514 cur_offset += name_len + sizeof(*extref);
1515 }
1516
1517 offset++;
1518 btrfs_release_path(path);
1519 }
1520 btrfs_release_path(path);
1521
1522 if (ret < 0 && ret != -ENOENT)
1523 return ret;
1524 return nlink;
1525}
1526
1527static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1528{
1529 int ret;
1530 struct btrfs_key key;
1531 unsigned int nlink = 0;
1532 unsigned long ptr;
1533 unsigned long ptr_end;
1534 int name_len;
1535 u64 ino = btrfs_ino(inode);
1536
1537 key.objectid = ino;
1538 key.type = BTRFS_INODE_REF_KEY;
1539 key.offset = (u64)-1;
1540
1541 while (1) {
1542 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1543 if (ret < 0)
1544 break;
1545 if (ret > 0) {
1546 if (path->slots[0] == 0)
1547 break;
1548 path->slots[0]--;
1549 }
1550process_slot:
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid != ino ||
1554 key.type != BTRFS_INODE_REF_KEY)
1555 break;
1556 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1557 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1558 path->slots[0]);
1559 while (ptr < ptr_end) {
1560 struct btrfs_inode_ref *ref;
1561
1562 ref = (struct btrfs_inode_ref *)ptr;
1563 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1564 ref);
1565 ptr = (unsigned long)(ref + 1) + name_len;
1566 nlink++;
1567 }
1568
1569 if (key.offset == 0)
1570 break;
1571 if (path->slots[0] > 0) {
1572 path->slots[0]--;
1573 goto process_slot;
1574 }
1575 key.offset--;
1576 btrfs_release_path(path);
1577 }
1578 btrfs_release_path(path);
1579
1580 return nlink;
1581}
1582
1583/*
1584 * There are a few corners where the link count of the file can't
1585 * be properly maintained during replay. So, instead of adding
1586 * lots of complexity to the log code, we just scan the backrefs
1587 * for any file that has been through replay.
1588 *
1589 * The scan will update the link count on the inode to reflect the
1590 * number of back refs found. If it goes down to zero, the iput
1591 * will free the inode.
1592 */
1593static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1594 struct inode *inode)
1595{
1596 struct btrfs_root *root = BTRFS_I(inode)->root;
1597 struct btrfs_path *path;
1598 int ret;
1599 u64 nlink = 0;
1600 u64 ino = btrfs_ino(BTRFS_I(inode));
1601
1602 path = btrfs_alloc_path();
1603 if (!path)
1604 return -ENOMEM;
1605
1606 ret = count_inode_refs(BTRFS_I(inode), path);
1607 if (ret < 0)
1608 goto out;
1609
1610 nlink = ret;
1611
1612 ret = count_inode_extrefs(BTRFS_I(inode), path);
1613 if (ret < 0)
1614 goto out;
1615
1616 nlink += ret;
1617
1618 ret = 0;
1619
1620 if (nlink != inode->i_nlink) {
1621 set_nlink(inode, nlink);
1622 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1623 if (ret)
1624 goto out;
1625 }
1626 BTRFS_I(inode)->index_cnt = (u64)-1;
1627
1628 if (inode->i_nlink == 0) {
1629 if (S_ISDIR(inode->i_mode)) {
1630 ret = replay_dir_deletes(trans, root, NULL, path,
1631 ino, 1);
1632 if (ret)
1633 goto out;
1634 }
1635 ret = btrfs_insert_orphan_item(trans, root, ino);
1636 if (ret == -EEXIST)
1637 ret = 0;
1638 }
1639
1640out:
1641 btrfs_free_path(path);
1642 return ret;
1643}
1644
1645static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1646 struct btrfs_root *root,
1647 struct btrfs_path *path)
1648{
1649 int ret;
1650 struct btrfs_key key;
1651 struct inode *inode;
1652
1653 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1654 key.type = BTRFS_ORPHAN_ITEM_KEY;
1655 key.offset = (u64)-1;
1656 while (1) {
1657 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1658 if (ret < 0)
1659 break;
1660
1661 if (ret == 1) {
1662 ret = 0;
1663 if (path->slots[0] == 0)
1664 break;
1665 path->slots[0]--;
1666 }
1667
1668 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1669 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1670 key.type != BTRFS_ORPHAN_ITEM_KEY)
1671 break;
1672
1673 ret = btrfs_del_item(trans, root, path);
1674 if (ret)
1675 break;
1676
1677 btrfs_release_path(path);
1678 inode = read_one_inode(root, key.offset);
1679 if (!inode) {
1680 ret = -EIO;
1681 break;
1682 }
1683
1684 ret = fixup_inode_link_count(trans, inode);
1685 iput(inode);
1686 if (ret)
1687 break;
1688
1689 /*
1690 * fixup on a directory may create new entries,
1691 * make sure we always look for the highset possible
1692 * offset
1693 */
1694 key.offset = (u64)-1;
1695 }
1696 btrfs_release_path(path);
1697 return ret;
1698}
1699
1700
1701/*
1702 * record a given inode in the fixup dir so we can check its link
1703 * count when replay is done. The link count is incremented here
1704 * so the inode won't go away until we check it
1705 */
1706static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1707 struct btrfs_root *root,
1708 struct btrfs_path *path,
1709 u64 objectid)
1710{
1711 struct btrfs_key key;
1712 int ret = 0;
1713 struct inode *inode;
1714
1715 inode = read_one_inode(root, objectid);
1716 if (!inode)
1717 return -EIO;
1718
1719 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1720 key.type = BTRFS_ORPHAN_ITEM_KEY;
1721 key.offset = objectid;
1722
1723 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1724
1725 btrfs_release_path(path);
1726 if (ret == 0) {
1727 if (!inode->i_nlink)
1728 set_nlink(inode, 1);
1729 else
1730 inc_nlink(inode);
1731 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1732 } else if (ret == -EEXIST) {
1733 ret = 0;
1734 }
1735 iput(inode);
1736
1737 return ret;
1738}
1739
1740/*
1741 * when replaying the log for a directory, we only insert names
1742 * for inodes that actually exist. This means an fsync on a directory
1743 * does not implicitly fsync all the new files in it
1744 */
1745static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1746 struct btrfs_root *root,
1747 u64 dirid, u64 index,
1748 const struct fscrypt_str *name,
1749 struct btrfs_key *location)
1750{
1751 struct inode *inode;
1752 struct inode *dir;
1753 int ret;
1754
1755 inode = read_one_inode(root, location->objectid);
1756 if (!inode)
1757 return -ENOENT;
1758
1759 dir = read_one_inode(root, dirid);
1760 if (!dir) {
1761 iput(inode);
1762 return -EIO;
1763 }
1764
1765 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1766 1, index);
1767
1768 /* FIXME, put inode into FIXUP list */
1769
1770 iput(inode);
1771 iput(dir);
1772 return ret;
1773}
1774
1775static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1776 struct btrfs_inode *dir,
1777 struct btrfs_path *path,
1778 struct btrfs_dir_item *dst_di,
1779 const struct btrfs_key *log_key,
1780 u8 log_flags,
1781 bool exists)
1782{
1783 struct btrfs_key found_key;
1784
1785 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1786 /* The existing dentry points to the same inode, don't delete it. */
1787 if (found_key.objectid == log_key->objectid &&
1788 found_key.type == log_key->type &&
1789 found_key.offset == log_key->offset &&
1790 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1791 return 1;
1792
1793 /*
1794 * Don't drop the conflicting directory entry if the inode for the new
1795 * entry doesn't exist.
1796 */
1797 if (!exists)
1798 return 0;
1799
1800 return drop_one_dir_item(trans, path, dir, dst_di);
1801}
1802
1803/*
1804 * take a single entry in a log directory item and replay it into
1805 * the subvolume.
1806 *
1807 * if a conflicting item exists in the subdirectory already,
1808 * the inode it points to is unlinked and put into the link count
1809 * fix up tree.
1810 *
1811 * If a name from the log points to a file or directory that does
1812 * not exist in the FS, it is skipped. fsyncs on directories
1813 * do not force down inodes inside that directory, just changes to the
1814 * names or unlinks in a directory.
1815 *
1816 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1817 * non-existing inode) and 1 if the name was replayed.
1818 */
1819static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 struct extent_buffer *eb,
1823 struct btrfs_dir_item *di,
1824 struct btrfs_key *key)
1825{
1826 struct fscrypt_str name;
1827 struct btrfs_dir_item *dir_dst_di;
1828 struct btrfs_dir_item *index_dst_di;
1829 bool dir_dst_matches = false;
1830 bool index_dst_matches = false;
1831 struct btrfs_key log_key;
1832 struct btrfs_key search_key;
1833 struct inode *dir;
1834 u8 log_flags;
1835 bool exists;
1836 int ret;
1837 bool update_size = true;
1838 bool name_added = false;
1839
1840 dir = read_one_inode(root, key->objectid);
1841 if (!dir)
1842 return -EIO;
1843
1844 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1845 if (ret)
1846 goto out;
1847
1848 log_flags = btrfs_dir_flags(eb, di);
1849 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1850 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1851 btrfs_release_path(path);
1852 if (ret < 0)
1853 goto out;
1854 exists = (ret == 0);
1855 ret = 0;
1856
1857 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1858 &name, 1);
1859 if (IS_ERR(dir_dst_di)) {
1860 ret = PTR_ERR(dir_dst_di);
1861 goto out;
1862 } else if (dir_dst_di) {
1863 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1864 dir_dst_di, &log_key,
1865 log_flags, exists);
1866 if (ret < 0)
1867 goto out;
1868 dir_dst_matches = (ret == 1);
1869 }
1870
1871 btrfs_release_path(path);
1872
1873 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1874 key->objectid, key->offset,
1875 &name, 1);
1876 if (IS_ERR(index_dst_di)) {
1877 ret = PTR_ERR(index_dst_di);
1878 goto out;
1879 } else if (index_dst_di) {
1880 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1881 index_dst_di, &log_key,
1882 log_flags, exists);
1883 if (ret < 0)
1884 goto out;
1885 index_dst_matches = (ret == 1);
1886 }
1887
1888 btrfs_release_path(path);
1889
1890 if (dir_dst_matches && index_dst_matches) {
1891 ret = 0;
1892 update_size = false;
1893 goto out;
1894 }
1895
1896 /*
1897 * Check if the inode reference exists in the log for the given name,
1898 * inode and parent inode
1899 */
1900 search_key.objectid = log_key.objectid;
1901 search_key.type = BTRFS_INODE_REF_KEY;
1902 search_key.offset = key->objectid;
1903 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1904 if (ret < 0) {
1905 goto out;
1906 } else if (ret) {
1907 /* The dentry will be added later. */
1908 ret = 0;
1909 update_size = false;
1910 goto out;
1911 }
1912
1913 search_key.objectid = log_key.objectid;
1914 search_key.type = BTRFS_INODE_EXTREF_KEY;
1915 search_key.offset = key->objectid;
1916 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1917 if (ret < 0) {
1918 goto out;
1919 } else if (ret) {
1920 /* The dentry will be added later. */
1921 ret = 0;
1922 update_size = false;
1923 goto out;
1924 }
1925 btrfs_release_path(path);
1926 ret = insert_one_name(trans, root, key->objectid, key->offset,
1927 &name, &log_key);
1928 if (ret && ret != -ENOENT && ret != -EEXIST)
1929 goto out;
1930 if (!ret)
1931 name_added = true;
1932 update_size = false;
1933 ret = 0;
1934
1935out:
1936 if (!ret && update_size) {
1937 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1938 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1939 }
1940 kfree(name.name);
1941 iput(dir);
1942 if (!ret && name_added)
1943 ret = 1;
1944 return ret;
1945}
1946
1947/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1948static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root,
1950 struct btrfs_path *path,
1951 struct extent_buffer *eb, int slot,
1952 struct btrfs_key *key)
1953{
1954 int ret;
1955 struct btrfs_dir_item *di;
1956
1957 /* We only log dir index keys, which only contain a single dir item. */
1958 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1959
1960 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1961 ret = replay_one_name(trans, root, path, eb, di, key);
1962 if (ret < 0)
1963 return ret;
1964
1965 /*
1966 * If this entry refers to a non-directory (directories can not have a
1967 * link count > 1) and it was added in the transaction that was not
1968 * committed, make sure we fixup the link count of the inode the entry
1969 * points to. Otherwise something like the following would result in a
1970 * directory pointing to an inode with a wrong link that does not account
1971 * for this dir entry:
1972 *
1973 * mkdir testdir
1974 * touch testdir/foo
1975 * touch testdir/bar
1976 * sync
1977 *
1978 * ln testdir/bar testdir/bar_link
1979 * ln testdir/foo testdir/foo_link
1980 * xfs_io -c "fsync" testdir/bar
1981 *
1982 * <power failure>
1983 *
1984 * mount fs, log replay happens
1985 *
1986 * File foo would remain with a link count of 1 when it has two entries
1987 * pointing to it in the directory testdir. This would make it impossible
1988 * to ever delete the parent directory has it would result in stale
1989 * dentries that can never be deleted.
1990 */
1991 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1992 struct btrfs_path *fixup_path;
1993 struct btrfs_key di_key;
1994
1995 fixup_path = btrfs_alloc_path();
1996 if (!fixup_path)
1997 return -ENOMEM;
1998
1999 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2000 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2001 btrfs_free_path(fixup_path);
2002 }
2003
2004 return ret;
2005}
2006
2007/*
2008 * directory replay has two parts. There are the standard directory
2009 * items in the log copied from the subvolume, and range items
2010 * created in the log while the subvolume was logged.
2011 *
2012 * The range items tell us which parts of the key space the log
2013 * is authoritative for. During replay, if a key in the subvolume
2014 * directory is in a logged range item, but not actually in the log
2015 * that means it was deleted from the directory before the fsync
2016 * and should be removed.
2017 */
2018static noinline int find_dir_range(struct btrfs_root *root,
2019 struct btrfs_path *path,
2020 u64 dirid,
2021 u64 *start_ret, u64 *end_ret)
2022{
2023 struct btrfs_key key;
2024 u64 found_end;
2025 struct btrfs_dir_log_item *item;
2026 int ret;
2027 int nritems;
2028
2029 if (*start_ret == (u64)-1)
2030 return 1;
2031
2032 key.objectid = dirid;
2033 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2034 key.offset = *start_ret;
2035
2036 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2037 if (ret < 0)
2038 goto out;
2039 if (ret > 0) {
2040 if (path->slots[0] == 0)
2041 goto out;
2042 path->slots[0]--;
2043 }
2044 if (ret != 0)
2045 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2046
2047 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2048 ret = 1;
2049 goto next;
2050 }
2051 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2052 struct btrfs_dir_log_item);
2053 found_end = btrfs_dir_log_end(path->nodes[0], item);
2054
2055 if (*start_ret >= key.offset && *start_ret <= found_end) {
2056 ret = 0;
2057 *start_ret = key.offset;
2058 *end_ret = found_end;
2059 goto out;
2060 }
2061 ret = 1;
2062next:
2063 /* check the next slot in the tree to see if it is a valid item */
2064 nritems = btrfs_header_nritems(path->nodes[0]);
2065 path->slots[0]++;
2066 if (path->slots[0] >= nritems) {
2067 ret = btrfs_next_leaf(root, path);
2068 if (ret)
2069 goto out;
2070 }
2071
2072 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2073
2074 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2075 ret = 1;
2076 goto out;
2077 }
2078 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2079 struct btrfs_dir_log_item);
2080 found_end = btrfs_dir_log_end(path->nodes[0], item);
2081 *start_ret = key.offset;
2082 *end_ret = found_end;
2083 ret = 0;
2084out:
2085 btrfs_release_path(path);
2086 return ret;
2087}
2088
2089/*
2090 * this looks for a given directory item in the log. If the directory
2091 * item is not in the log, the item is removed and the inode it points
2092 * to is unlinked
2093 */
2094static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *log,
2096 struct btrfs_path *path,
2097 struct btrfs_path *log_path,
2098 struct inode *dir,
2099 struct btrfs_key *dir_key)
2100{
2101 struct btrfs_root *root = BTRFS_I(dir)->root;
2102 int ret;
2103 struct extent_buffer *eb;
2104 int slot;
2105 struct btrfs_dir_item *di;
2106 struct fscrypt_str name;
2107 struct inode *inode = NULL;
2108 struct btrfs_key location;
2109
2110 /*
2111 * Currently we only log dir index keys. Even if we replay a log created
2112 * by an older kernel that logged both dir index and dir item keys, all
2113 * we need to do is process the dir index keys, we (and our caller) can
2114 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2115 */
2116 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2117
2118 eb = path->nodes[0];
2119 slot = path->slots[0];
2120 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2121 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2122 if (ret)
2123 goto out;
2124
2125 if (log) {
2126 struct btrfs_dir_item *log_di;
2127
2128 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2129 dir_key->objectid,
2130 dir_key->offset, &name, 0);
2131 if (IS_ERR(log_di)) {
2132 ret = PTR_ERR(log_di);
2133 goto out;
2134 } else if (log_di) {
2135 /* The dentry exists in the log, we have nothing to do. */
2136 ret = 0;
2137 goto out;
2138 }
2139 }
2140
2141 btrfs_dir_item_key_to_cpu(eb, di, &location);
2142 btrfs_release_path(path);
2143 btrfs_release_path(log_path);
2144 inode = read_one_inode(root, location.objectid);
2145 if (!inode) {
2146 ret = -EIO;
2147 goto out;
2148 }
2149
2150 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2151 if (ret)
2152 goto out;
2153
2154 inc_nlink(inode);
2155 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2156 &name);
2157 /*
2158 * Unlike dir item keys, dir index keys can only have one name (entry) in
2159 * them, as there are no key collisions since each key has a unique offset
2160 * (an index number), so we're done.
2161 */
2162out:
2163 btrfs_release_path(path);
2164 btrfs_release_path(log_path);
2165 kfree(name.name);
2166 iput(inode);
2167 return ret;
2168}
2169
2170static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root,
2172 struct btrfs_root *log,
2173 struct btrfs_path *path,
2174 const u64 ino)
2175{
2176 struct btrfs_key search_key;
2177 struct btrfs_path *log_path;
2178 int i;
2179 int nritems;
2180 int ret;
2181
2182 log_path = btrfs_alloc_path();
2183 if (!log_path)
2184 return -ENOMEM;
2185
2186 search_key.objectid = ino;
2187 search_key.type = BTRFS_XATTR_ITEM_KEY;
2188 search_key.offset = 0;
2189again:
2190 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2191 if (ret < 0)
2192 goto out;
2193process_leaf:
2194 nritems = btrfs_header_nritems(path->nodes[0]);
2195 for (i = path->slots[0]; i < nritems; i++) {
2196 struct btrfs_key key;
2197 struct btrfs_dir_item *di;
2198 struct btrfs_dir_item *log_di;
2199 u32 total_size;
2200 u32 cur;
2201
2202 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2203 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2204 ret = 0;
2205 goto out;
2206 }
2207
2208 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2209 total_size = btrfs_item_size(path->nodes[0], i);
2210 cur = 0;
2211 while (cur < total_size) {
2212 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2213 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2214 u32 this_len = sizeof(*di) + name_len + data_len;
2215 char *name;
2216
2217 name = kmalloc(name_len, GFP_NOFS);
2218 if (!name) {
2219 ret = -ENOMEM;
2220 goto out;
2221 }
2222 read_extent_buffer(path->nodes[0], name,
2223 (unsigned long)(di + 1), name_len);
2224
2225 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2226 name, name_len, 0);
2227 btrfs_release_path(log_path);
2228 if (!log_di) {
2229 /* Doesn't exist in log tree, so delete it. */
2230 btrfs_release_path(path);
2231 di = btrfs_lookup_xattr(trans, root, path, ino,
2232 name, name_len, -1);
2233 kfree(name);
2234 if (IS_ERR(di)) {
2235 ret = PTR_ERR(di);
2236 goto out;
2237 }
2238 ASSERT(di);
2239 ret = btrfs_delete_one_dir_name(trans, root,
2240 path, di);
2241 if (ret)
2242 goto out;
2243 btrfs_release_path(path);
2244 search_key = key;
2245 goto again;
2246 }
2247 kfree(name);
2248 if (IS_ERR(log_di)) {
2249 ret = PTR_ERR(log_di);
2250 goto out;
2251 }
2252 cur += this_len;
2253 di = (struct btrfs_dir_item *)((char *)di + this_len);
2254 }
2255 }
2256 ret = btrfs_next_leaf(root, path);
2257 if (ret > 0)
2258 ret = 0;
2259 else if (ret == 0)
2260 goto process_leaf;
2261out:
2262 btrfs_free_path(log_path);
2263 btrfs_release_path(path);
2264 return ret;
2265}
2266
2267
2268/*
2269 * deletion replay happens before we copy any new directory items
2270 * out of the log or out of backreferences from inodes. It
2271 * scans the log to find ranges of keys that log is authoritative for,
2272 * and then scans the directory to find items in those ranges that are
2273 * not present in the log.
2274 *
2275 * Anything we don't find in the log is unlinked and removed from the
2276 * directory.
2277 */
2278static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2279 struct btrfs_root *root,
2280 struct btrfs_root *log,
2281 struct btrfs_path *path,
2282 u64 dirid, int del_all)
2283{
2284 u64 range_start;
2285 u64 range_end;
2286 int ret = 0;
2287 struct btrfs_key dir_key;
2288 struct btrfs_key found_key;
2289 struct btrfs_path *log_path;
2290 struct inode *dir;
2291
2292 dir_key.objectid = dirid;
2293 dir_key.type = BTRFS_DIR_INDEX_KEY;
2294 log_path = btrfs_alloc_path();
2295 if (!log_path)
2296 return -ENOMEM;
2297
2298 dir = read_one_inode(root, dirid);
2299 /* it isn't an error if the inode isn't there, that can happen
2300 * because we replay the deletes before we copy in the inode item
2301 * from the log
2302 */
2303 if (!dir) {
2304 btrfs_free_path(log_path);
2305 return 0;
2306 }
2307
2308 range_start = 0;
2309 range_end = 0;
2310 while (1) {
2311 if (del_all)
2312 range_end = (u64)-1;
2313 else {
2314 ret = find_dir_range(log, path, dirid,
2315 &range_start, &range_end);
2316 if (ret < 0)
2317 goto out;
2318 else if (ret > 0)
2319 break;
2320 }
2321
2322 dir_key.offset = range_start;
2323 while (1) {
2324 int nritems;
2325 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2326 0, 0);
2327 if (ret < 0)
2328 goto out;
2329
2330 nritems = btrfs_header_nritems(path->nodes[0]);
2331 if (path->slots[0] >= nritems) {
2332 ret = btrfs_next_leaf(root, path);
2333 if (ret == 1)
2334 break;
2335 else if (ret < 0)
2336 goto out;
2337 }
2338 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2339 path->slots[0]);
2340 if (found_key.objectid != dirid ||
2341 found_key.type != dir_key.type) {
2342 ret = 0;
2343 goto out;
2344 }
2345
2346 if (found_key.offset > range_end)
2347 break;
2348
2349 ret = check_item_in_log(trans, log, path,
2350 log_path, dir,
2351 &found_key);
2352 if (ret)
2353 goto out;
2354 if (found_key.offset == (u64)-1)
2355 break;
2356 dir_key.offset = found_key.offset + 1;
2357 }
2358 btrfs_release_path(path);
2359 if (range_end == (u64)-1)
2360 break;
2361 range_start = range_end + 1;
2362 }
2363 ret = 0;
2364out:
2365 btrfs_release_path(path);
2366 btrfs_free_path(log_path);
2367 iput(dir);
2368 return ret;
2369}
2370
2371/*
2372 * the process_func used to replay items from the log tree. This
2373 * gets called in two different stages. The first stage just looks
2374 * for inodes and makes sure they are all copied into the subvolume.
2375 *
2376 * The second stage copies all the other item types from the log into
2377 * the subvolume. The two stage approach is slower, but gets rid of
2378 * lots of complexity around inodes referencing other inodes that exist
2379 * only in the log (references come from either directory items or inode
2380 * back refs).
2381 */
2382static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2383 struct walk_control *wc, u64 gen, int level)
2384{
2385 int nritems;
2386 struct btrfs_tree_parent_check check = {
2387 .transid = gen,
2388 .level = level
2389 };
2390 struct btrfs_path *path;
2391 struct btrfs_root *root = wc->replay_dest;
2392 struct btrfs_key key;
2393 int i;
2394 int ret;
2395
2396 ret = btrfs_read_extent_buffer(eb, &check);
2397 if (ret)
2398 return ret;
2399
2400 level = btrfs_header_level(eb);
2401
2402 if (level != 0)
2403 return 0;
2404
2405 path = btrfs_alloc_path();
2406 if (!path)
2407 return -ENOMEM;
2408
2409 nritems = btrfs_header_nritems(eb);
2410 for (i = 0; i < nritems; i++) {
2411 btrfs_item_key_to_cpu(eb, &key, i);
2412
2413 /* inode keys are done during the first stage */
2414 if (key.type == BTRFS_INODE_ITEM_KEY &&
2415 wc->stage == LOG_WALK_REPLAY_INODES) {
2416 struct btrfs_inode_item *inode_item;
2417 u32 mode;
2418
2419 inode_item = btrfs_item_ptr(eb, i,
2420 struct btrfs_inode_item);
2421 /*
2422 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2423 * and never got linked before the fsync, skip it, as
2424 * replaying it is pointless since it would be deleted
2425 * later. We skip logging tmpfiles, but it's always
2426 * possible we are replaying a log created with a kernel
2427 * that used to log tmpfiles.
2428 */
2429 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2430 wc->ignore_cur_inode = true;
2431 continue;
2432 } else {
2433 wc->ignore_cur_inode = false;
2434 }
2435 ret = replay_xattr_deletes(wc->trans, root, log,
2436 path, key.objectid);
2437 if (ret)
2438 break;
2439 mode = btrfs_inode_mode(eb, inode_item);
2440 if (S_ISDIR(mode)) {
2441 ret = replay_dir_deletes(wc->trans,
2442 root, log, path, key.objectid, 0);
2443 if (ret)
2444 break;
2445 }
2446 ret = overwrite_item(wc->trans, root, path,
2447 eb, i, &key);
2448 if (ret)
2449 break;
2450
2451 /*
2452 * Before replaying extents, truncate the inode to its
2453 * size. We need to do it now and not after log replay
2454 * because before an fsync we can have prealloc extents
2455 * added beyond the inode's i_size. If we did it after,
2456 * through orphan cleanup for example, we would drop
2457 * those prealloc extents just after replaying them.
2458 */
2459 if (S_ISREG(mode)) {
2460 struct btrfs_drop_extents_args drop_args = { 0 };
2461 struct inode *inode;
2462 u64 from;
2463
2464 inode = read_one_inode(root, key.objectid);
2465 if (!inode) {
2466 ret = -EIO;
2467 break;
2468 }
2469 from = ALIGN(i_size_read(inode),
2470 root->fs_info->sectorsize);
2471 drop_args.start = from;
2472 drop_args.end = (u64)-1;
2473 drop_args.drop_cache = true;
2474 ret = btrfs_drop_extents(wc->trans, root,
2475 BTRFS_I(inode),
2476 &drop_args);
2477 if (!ret) {
2478 inode_sub_bytes(inode,
2479 drop_args.bytes_found);
2480 /* Update the inode's nbytes. */
2481 ret = btrfs_update_inode(wc->trans,
2482 BTRFS_I(inode));
2483 }
2484 iput(inode);
2485 if (ret)
2486 break;
2487 }
2488
2489 ret = link_to_fixup_dir(wc->trans, root,
2490 path, key.objectid);
2491 if (ret)
2492 break;
2493 }
2494
2495 if (wc->ignore_cur_inode)
2496 continue;
2497
2498 if (key.type == BTRFS_DIR_INDEX_KEY &&
2499 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2500 ret = replay_one_dir_item(wc->trans, root, path,
2501 eb, i, &key);
2502 if (ret)
2503 break;
2504 }
2505
2506 if (wc->stage < LOG_WALK_REPLAY_ALL)
2507 continue;
2508
2509 /* these keys are simply copied */
2510 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2511 ret = overwrite_item(wc->trans, root, path,
2512 eb, i, &key);
2513 if (ret)
2514 break;
2515 } else if (key.type == BTRFS_INODE_REF_KEY ||
2516 key.type == BTRFS_INODE_EXTREF_KEY) {
2517 ret = add_inode_ref(wc->trans, root, log, path,
2518 eb, i, &key);
2519 if (ret && ret != -ENOENT)
2520 break;
2521 ret = 0;
2522 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2523 ret = replay_one_extent(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527 }
2528 /*
2529 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2530 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2531 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2532 * older kernel with such keys, ignore them.
2533 */
2534 }
2535 btrfs_free_path(path);
2536 return ret;
2537}
2538
2539/*
2540 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2541 */
2542static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2543{
2544 struct btrfs_block_group *cache;
2545
2546 cache = btrfs_lookup_block_group(fs_info, start);
2547 if (!cache) {
2548 btrfs_err(fs_info, "unable to find block group for %llu", start);
2549 return;
2550 }
2551
2552 spin_lock(&cache->space_info->lock);
2553 spin_lock(&cache->lock);
2554 cache->reserved -= fs_info->nodesize;
2555 cache->space_info->bytes_reserved -= fs_info->nodesize;
2556 spin_unlock(&cache->lock);
2557 spin_unlock(&cache->space_info->lock);
2558
2559 btrfs_put_block_group(cache);
2560}
2561
2562static int clean_log_buffer(struct btrfs_trans_handle *trans,
2563 struct extent_buffer *eb)
2564{
2565 int ret;
2566
2567 btrfs_tree_lock(eb);
2568 btrfs_clear_buffer_dirty(trans, eb);
2569 wait_on_extent_buffer_writeback(eb);
2570 btrfs_tree_unlock(eb);
2571
2572 if (trans) {
2573 ret = btrfs_pin_reserved_extent(trans, eb);
2574 if (ret)
2575 return ret;
2576 } else {
2577 unaccount_log_buffer(eb->fs_info, eb->start);
2578 }
2579
2580 return 0;
2581}
2582
2583static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root,
2585 struct btrfs_path *path, int *level,
2586 struct walk_control *wc)
2587{
2588 struct btrfs_fs_info *fs_info = root->fs_info;
2589 u64 bytenr;
2590 u64 ptr_gen;
2591 struct extent_buffer *next;
2592 struct extent_buffer *cur;
2593 int ret = 0;
2594
2595 while (*level > 0) {
2596 struct btrfs_tree_parent_check check = { 0 };
2597
2598 cur = path->nodes[*level];
2599
2600 WARN_ON(btrfs_header_level(cur) != *level);
2601
2602 if (path->slots[*level] >=
2603 btrfs_header_nritems(cur))
2604 break;
2605
2606 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2607 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2608 check.transid = ptr_gen;
2609 check.level = *level - 1;
2610 check.has_first_key = true;
2611 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2612
2613 next = btrfs_find_create_tree_block(fs_info, bytenr,
2614 btrfs_header_owner(cur),
2615 *level - 1);
2616 if (IS_ERR(next))
2617 return PTR_ERR(next);
2618
2619 if (*level == 1) {
2620 ret = wc->process_func(root, next, wc, ptr_gen,
2621 *level - 1);
2622 if (ret) {
2623 free_extent_buffer(next);
2624 return ret;
2625 }
2626
2627 path->slots[*level]++;
2628 if (wc->free) {
2629 ret = btrfs_read_extent_buffer(next, &check);
2630 if (ret) {
2631 free_extent_buffer(next);
2632 return ret;
2633 }
2634
2635 ret = clean_log_buffer(trans, next);
2636 if (ret) {
2637 free_extent_buffer(next);
2638 return ret;
2639 }
2640 }
2641 free_extent_buffer(next);
2642 continue;
2643 }
2644 ret = btrfs_read_extent_buffer(next, &check);
2645 if (ret) {
2646 free_extent_buffer(next);
2647 return ret;
2648 }
2649
2650 if (path->nodes[*level-1])
2651 free_extent_buffer(path->nodes[*level-1]);
2652 path->nodes[*level-1] = next;
2653 *level = btrfs_header_level(next);
2654 path->slots[*level] = 0;
2655 cond_resched();
2656 }
2657 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2658
2659 cond_resched();
2660 return 0;
2661}
2662
2663static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2664 struct btrfs_root *root,
2665 struct btrfs_path *path, int *level,
2666 struct walk_control *wc)
2667{
2668 int i;
2669 int slot;
2670 int ret;
2671
2672 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2673 slot = path->slots[i];
2674 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2675 path->slots[i]++;
2676 *level = i;
2677 WARN_ON(*level == 0);
2678 return 0;
2679 } else {
2680 ret = wc->process_func(root, path->nodes[*level], wc,
2681 btrfs_header_generation(path->nodes[*level]),
2682 *level);
2683 if (ret)
2684 return ret;
2685
2686 if (wc->free) {
2687 ret = clean_log_buffer(trans, path->nodes[*level]);
2688 if (ret)
2689 return ret;
2690 }
2691 free_extent_buffer(path->nodes[*level]);
2692 path->nodes[*level] = NULL;
2693 *level = i + 1;
2694 }
2695 }
2696 return 1;
2697}
2698
2699/*
2700 * drop the reference count on the tree rooted at 'snap'. This traverses
2701 * the tree freeing any blocks that have a ref count of zero after being
2702 * decremented.
2703 */
2704static int walk_log_tree(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *log, struct walk_control *wc)
2706{
2707 int ret = 0;
2708 int wret;
2709 int level;
2710 struct btrfs_path *path;
2711 int orig_level;
2712
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 return -ENOMEM;
2716
2717 level = btrfs_header_level(log->node);
2718 orig_level = level;
2719 path->nodes[level] = log->node;
2720 atomic_inc(&log->node->refs);
2721 path->slots[level] = 0;
2722
2723 while (1) {
2724 wret = walk_down_log_tree(trans, log, path, &level, wc);
2725 if (wret > 0)
2726 break;
2727 if (wret < 0) {
2728 ret = wret;
2729 goto out;
2730 }
2731
2732 wret = walk_up_log_tree(trans, log, path, &level, wc);
2733 if (wret > 0)
2734 break;
2735 if (wret < 0) {
2736 ret = wret;
2737 goto out;
2738 }
2739 }
2740
2741 /* was the root node processed? if not, catch it here */
2742 if (path->nodes[orig_level]) {
2743 ret = wc->process_func(log, path->nodes[orig_level], wc,
2744 btrfs_header_generation(path->nodes[orig_level]),
2745 orig_level);
2746 if (ret)
2747 goto out;
2748 if (wc->free)
2749 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2750 }
2751
2752out:
2753 btrfs_free_path(path);
2754 return ret;
2755}
2756
2757/*
2758 * helper function to update the item for a given subvolumes log root
2759 * in the tree of log roots
2760 */
2761static int update_log_root(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *log,
2763 struct btrfs_root_item *root_item)
2764{
2765 struct btrfs_fs_info *fs_info = log->fs_info;
2766 int ret;
2767
2768 if (log->log_transid == 1) {
2769 /* insert root item on the first sync */
2770 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2771 &log->root_key, root_item);
2772 } else {
2773 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2774 &log->root_key, root_item);
2775 }
2776 return ret;
2777}
2778
2779static void wait_log_commit(struct btrfs_root *root, int transid)
2780{
2781 DEFINE_WAIT(wait);
2782 int index = transid % 2;
2783
2784 /*
2785 * we only allow two pending log transactions at a time,
2786 * so we know that if ours is more than 2 older than the
2787 * current transaction, we're done
2788 */
2789 for (;;) {
2790 prepare_to_wait(&root->log_commit_wait[index],
2791 &wait, TASK_UNINTERRUPTIBLE);
2792
2793 if (!(root->log_transid_committed < transid &&
2794 atomic_read(&root->log_commit[index])))
2795 break;
2796
2797 mutex_unlock(&root->log_mutex);
2798 schedule();
2799 mutex_lock(&root->log_mutex);
2800 }
2801 finish_wait(&root->log_commit_wait[index], &wait);
2802}
2803
2804static void wait_for_writer(struct btrfs_root *root)
2805{
2806 DEFINE_WAIT(wait);
2807
2808 for (;;) {
2809 prepare_to_wait(&root->log_writer_wait, &wait,
2810 TASK_UNINTERRUPTIBLE);
2811 if (!atomic_read(&root->log_writers))
2812 break;
2813
2814 mutex_unlock(&root->log_mutex);
2815 schedule();
2816 mutex_lock(&root->log_mutex);
2817 }
2818 finish_wait(&root->log_writer_wait, &wait);
2819}
2820
2821void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2822{
2823 ctx->log_ret = 0;
2824 ctx->log_transid = 0;
2825 ctx->log_new_dentries = false;
2826 ctx->logging_new_name = false;
2827 ctx->logging_new_delayed_dentries = false;
2828 ctx->logged_before = false;
2829 ctx->inode = inode;
2830 INIT_LIST_HEAD(&ctx->list);
2831 INIT_LIST_HEAD(&ctx->ordered_extents);
2832 INIT_LIST_HEAD(&ctx->conflict_inodes);
2833 ctx->num_conflict_inodes = 0;
2834 ctx->logging_conflict_inodes = false;
2835 ctx->scratch_eb = NULL;
2836}
2837
2838void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2839{
2840 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2841
2842 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2843 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2844 return;
2845
2846 /*
2847 * Don't care about allocation failure. This is just for optimization,
2848 * if we fail to allocate here, we will try again later if needed.
2849 */
2850 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2851}
2852
2853void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2854{
2855 struct btrfs_ordered_extent *ordered;
2856 struct btrfs_ordered_extent *tmp;
2857
2858 ASSERT(inode_is_locked(ctx->inode));
2859
2860 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2861 list_del_init(&ordered->log_list);
2862 btrfs_put_ordered_extent(ordered);
2863 }
2864}
2865
2866
2867static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2868 struct btrfs_log_ctx *ctx)
2869{
2870 mutex_lock(&root->log_mutex);
2871 list_del_init(&ctx->list);
2872 mutex_unlock(&root->log_mutex);
2873}
2874
2875/*
2876 * Invoked in log mutex context, or be sure there is no other task which
2877 * can access the list.
2878 */
2879static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2880 int index, int error)
2881{
2882 struct btrfs_log_ctx *ctx;
2883 struct btrfs_log_ctx *safe;
2884
2885 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2886 list_del_init(&ctx->list);
2887 ctx->log_ret = error;
2888 }
2889}
2890
2891/*
2892 * Sends a given tree log down to the disk and updates the super blocks to
2893 * record it. When this call is done, you know that any inodes previously
2894 * logged are safely on disk only if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904{
2905 int index1;
2906 int index2;
2907 int mark;
2908 int ret;
2909 struct btrfs_fs_info *fs_info = root->fs_info;
2910 struct btrfs_root *log = root->log_root;
2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 struct btrfs_root_item new_root_item;
2913 int log_transid = 0;
2914 struct btrfs_log_ctx root_log_ctx;
2915 struct blk_plug plug;
2916 u64 log_root_start;
2917 u64 log_root_level;
2918
2919 mutex_lock(&root->log_mutex);
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
2927 if (atomic_read(&root->log_commit[index1])) {
2928 wait_log_commit(root, log_transid);
2929 mutex_unlock(&root->log_mutex);
2930 return ctx->log_ret;
2931 }
2932 ASSERT(log_transid == root->log_transid);
2933 atomic_set(&root->log_commit[index1], 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 wait_log_commit(root, log_transid - 1);
2938
2939 while (1) {
2940 int batch = atomic_read(&root->log_batch);
2941 /* when we're on an ssd, just kick the log commit out */
2942 if (!btrfs_test_opt(fs_info, SSD) &&
2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2947 }
2948 wait_for_writer(root);
2949 if (batch == atomic_read(&root->log_batch))
2950 break;
2951 }
2952
2953 /* bail out if we need to do a full commit */
2954 if (btrfs_need_log_full_commit(trans)) {
2955 ret = BTRFS_LOG_FORCE_COMMIT;
2956 mutex_unlock(&root->log_mutex);
2957 goto out;
2958 }
2959
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
2968 blk_start_plug(&plug);
2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
2981 if (ret) {
2982 blk_finish_plug(&plug);
2983 btrfs_set_log_full_commit(trans);
2984 mutex_unlock(&root->log_mutex);
2985 goto out;
2986 }
2987
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
3001 btrfs_set_root_node(&log->root_item, log->node);
3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003
3004 btrfs_set_root_log_transid(root, root->log_transid + 1);
3005 log->log_transid = root->log_transid;
3006 root->log_start_pid = 0;
3007 /*
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
3011 */
3012 mutex_unlock(&root->log_mutex);
3013
3014 if (btrfs_is_zoned(fs_info)) {
3015 mutex_lock(&fs_info->tree_root->log_mutex);
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 if (ret) {
3019 mutex_unlock(&fs_info->tree_root->log_mutex);
3020 blk_finish_plug(&plug);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_info->tree_root->log_mutex);
3025 }
3026
3027 btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, &new_root_item);
3041 if (ret) {
3042 list_del_init(&root_log_ctx.list);
3043 blk_finish_plug(&plug);
3044 btrfs_set_log_full_commit(trans);
3045 if (ret != -ENOSPC)
3046 btrfs_err(fs_info,
3047 "failed to update log for root %llu ret %d",
3048 root->root_key.objectid, ret);
3049 btrfs_wait_tree_log_extents(log, mark);
3050 mutex_unlock(&log_root_tree->log_mutex);
3051 goto out;
3052 }
3053
3054 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3055 blk_finish_plug(&plug);
3056 list_del_init(&root_log_ctx.list);
3057 mutex_unlock(&log_root_tree->log_mutex);
3058 ret = root_log_ctx.log_ret;
3059 goto out;
3060 }
3061
3062 if (atomic_read(&log_root_tree->log_commit[index2])) {
3063 blk_finish_plug(&plug);
3064 ret = btrfs_wait_tree_log_extents(log, mark);
3065 wait_log_commit(log_root_tree,
3066 root_log_ctx.log_transid);
3067 mutex_unlock(&log_root_tree->log_mutex);
3068 if (!ret)
3069 ret = root_log_ctx.log_ret;
3070 goto out;
3071 }
3072 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3073 atomic_set(&log_root_tree->log_commit[index2], 1);
3074
3075 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3076 wait_log_commit(log_root_tree,
3077 root_log_ctx.log_transid - 1);
3078 }
3079
3080 /*
3081 * now that we've moved on to the tree of log tree roots,
3082 * check the full commit flag again
3083 */
3084 if (btrfs_need_log_full_commit(trans)) {
3085 blk_finish_plug(&plug);
3086 btrfs_wait_tree_log_extents(log, mark);
3087 mutex_unlock(&log_root_tree->log_mutex);
3088 ret = BTRFS_LOG_FORCE_COMMIT;
3089 goto out_wake_log_root;
3090 }
3091
3092 ret = btrfs_write_marked_extents(fs_info,
3093 &log_root_tree->dirty_log_pages,
3094 EXTENT_DIRTY | EXTENT_NEW);
3095 blk_finish_plug(&plug);
3096 /*
3097 * As described above, -EAGAIN indicates a hole in the extents. We
3098 * cannot wait for these write outs since the waiting cause a
3099 * deadlock. Bail out to the full commit instead.
3100 */
3101 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3102 btrfs_set_log_full_commit(trans);
3103 btrfs_wait_tree_log_extents(log, mark);
3104 mutex_unlock(&log_root_tree->log_mutex);
3105 goto out_wake_log_root;
3106 } else if (ret) {
3107 btrfs_set_log_full_commit(trans);
3108 mutex_unlock(&log_root_tree->log_mutex);
3109 goto out_wake_log_root;
3110 }
3111 ret = btrfs_wait_tree_log_extents(log, mark);
3112 if (!ret)
3113 ret = btrfs_wait_tree_log_extents(log_root_tree,
3114 EXTENT_NEW | EXTENT_DIRTY);
3115 if (ret) {
3116 btrfs_set_log_full_commit(trans);
3117 mutex_unlock(&log_root_tree->log_mutex);
3118 goto out_wake_log_root;
3119 }
3120
3121 log_root_start = log_root_tree->node->start;
3122 log_root_level = btrfs_header_level(log_root_tree->node);
3123 log_root_tree->log_transid++;
3124 mutex_unlock(&log_root_tree->log_mutex);
3125
3126 /*
3127 * Here we are guaranteed that nobody is going to write the superblock
3128 * for the current transaction before us and that neither we do write
3129 * our superblock before the previous transaction finishes its commit
3130 * and writes its superblock, because:
3131 *
3132 * 1) We are holding a handle on the current transaction, so no body
3133 * can commit it until we release the handle;
3134 *
3135 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3136 * if the previous transaction is still committing, and hasn't yet
3137 * written its superblock, we wait for it to do it, because a
3138 * transaction commit acquires the tree_log_mutex when the commit
3139 * begins and releases it only after writing its superblock.
3140 */
3141 mutex_lock(&fs_info->tree_log_mutex);
3142
3143 /*
3144 * The previous transaction writeout phase could have failed, and thus
3145 * marked the fs in an error state. We must not commit here, as we
3146 * could have updated our generation in the super_for_commit and
3147 * writing the super here would result in transid mismatches. If there
3148 * is an error here just bail.
3149 */
3150 if (BTRFS_FS_ERROR(fs_info)) {
3151 ret = -EIO;
3152 btrfs_set_log_full_commit(trans);
3153 btrfs_abort_transaction(trans, ret);
3154 mutex_unlock(&fs_info->tree_log_mutex);
3155 goto out_wake_log_root;
3156 }
3157
3158 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3159 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3160 ret = write_all_supers(fs_info, 1);
3161 mutex_unlock(&fs_info->tree_log_mutex);
3162 if (ret) {
3163 btrfs_set_log_full_commit(trans);
3164 btrfs_abort_transaction(trans, ret);
3165 goto out_wake_log_root;
3166 }
3167
3168 /*
3169 * We know there can only be one task here, since we have not yet set
3170 * root->log_commit[index1] to 0 and any task attempting to sync the
3171 * log must wait for the previous log transaction to commit if it's
3172 * still in progress or wait for the current log transaction commit if
3173 * someone else already started it. We use <= and not < because the
3174 * first log transaction has an ID of 0.
3175 */
3176 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3177 btrfs_set_root_last_log_commit(root, log_transid);
3178
3179out_wake_log_root:
3180 mutex_lock(&log_root_tree->log_mutex);
3181 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3182
3183 log_root_tree->log_transid_committed++;
3184 atomic_set(&log_root_tree->log_commit[index2], 0);
3185 mutex_unlock(&log_root_tree->log_mutex);
3186
3187 /*
3188 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3189 * all the updates above are seen by the woken threads. It might not be
3190 * necessary, but proving that seems to be hard.
3191 */
3192 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3193out:
3194 mutex_lock(&root->log_mutex);
3195 btrfs_remove_all_log_ctxs(root, index1, ret);
3196 root->log_transid_committed++;
3197 atomic_set(&root->log_commit[index1], 0);
3198 mutex_unlock(&root->log_mutex);
3199
3200 /*
3201 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3202 * all the updates above are seen by the woken threads. It might not be
3203 * necessary, but proving that seems to be hard.
3204 */
3205 cond_wake_up(&root->log_commit_wait[index1]);
3206 return ret;
3207}
3208
3209static void free_log_tree(struct btrfs_trans_handle *trans,
3210 struct btrfs_root *log)
3211{
3212 int ret;
3213 struct walk_control wc = {
3214 .free = 1,
3215 .process_func = process_one_buffer
3216 };
3217
3218 if (log->node) {
3219 ret = walk_log_tree(trans, log, &wc);
3220 if (ret) {
3221 /*
3222 * We weren't able to traverse the entire log tree, the
3223 * typical scenario is getting an -EIO when reading an
3224 * extent buffer of the tree, due to a previous writeback
3225 * failure of it.
3226 */
3227 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3228 &log->fs_info->fs_state);
3229
3230 /*
3231 * Some extent buffers of the log tree may still be dirty
3232 * and not yet written back to storage, because we may
3233 * have updates to a log tree without syncing a log tree,
3234 * such as during rename and link operations. So flush
3235 * them out and wait for their writeback to complete, so
3236 * that we properly cleanup their state and pages.
3237 */
3238 btrfs_write_marked_extents(log->fs_info,
3239 &log->dirty_log_pages,
3240 EXTENT_DIRTY | EXTENT_NEW);
3241 btrfs_wait_tree_log_extents(log,
3242 EXTENT_DIRTY | EXTENT_NEW);
3243
3244 if (trans)
3245 btrfs_abort_transaction(trans, ret);
3246 else
3247 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3248 }
3249 }
3250
3251 extent_io_tree_release(&log->dirty_log_pages);
3252 extent_io_tree_release(&log->log_csum_range);
3253
3254 btrfs_put_root(log);
3255}
3256
3257/*
3258 * free all the extents used by the tree log. This should be called
3259 * at commit time of the full transaction
3260 */
3261int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3262{
3263 if (root->log_root) {
3264 free_log_tree(trans, root->log_root);
3265 root->log_root = NULL;
3266 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3267 }
3268 return 0;
3269}
3270
3271int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3272 struct btrfs_fs_info *fs_info)
3273{
3274 if (fs_info->log_root_tree) {
3275 free_log_tree(trans, fs_info->log_root_tree);
3276 fs_info->log_root_tree = NULL;
3277 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3278 }
3279 return 0;
3280}
3281
3282/*
3283 * Check if an inode was logged in the current transaction. This correctly deals
3284 * with the case where the inode was logged but has a logged_trans of 0, which
3285 * happens if the inode is evicted and loaded again, as logged_trans is an in
3286 * memory only field (not persisted).
3287 *
3288 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3289 * and < 0 on error.
3290 */
3291static int inode_logged(const struct btrfs_trans_handle *trans,
3292 struct btrfs_inode *inode,
3293 struct btrfs_path *path_in)
3294{
3295 struct btrfs_path *path = path_in;
3296 struct btrfs_key key;
3297 int ret;
3298
3299 if (inode->logged_trans == trans->transid)
3300 return 1;
3301
3302 /*
3303 * If logged_trans is not 0, then we know the inode logged was not logged
3304 * in this transaction, so we can return false right away.
3305 */
3306 if (inode->logged_trans > 0)
3307 return 0;
3308
3309 /*
3310 * If no log tree was created for this root in this transaction, then
3311 * the inode can not have been logged in this transaction. In that case
3312 * set logged_trans to anything greater than 0 and less than the current
3313 * transaction's ID, to avoid the search below in a future call in case
3314 * a log tree gets created after this.
3315 */
3316 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3317 inode->logged_trans = trans->transid - 1;
3318 return 0;
3319 }
3320
3321 /*
3322 * We have a log tree and the inode's logged_trans is 0. We can't tell
3323 * for sure if the inode was logged before in this transaction by looking
3324 * only at logged_trans. We could be pessimistic and assume it was, but
3325 * that can lead to unnecessarily logging an inode during rename and link
3326 * operations, and then further updating the log in followup rename and
3327 * link operations, specially if it's a directory, which adds latency
3328 * visible to applications doing a series of rename or link operations.
3329 *
3330 * A logged_trans of 0 here can mean several things:
3331 *
3332 * 1) The inode was never logged since the filesystem was mounted, and may
3333 * or may have not been evicted and loaded again;
3334 *
3335 * 2) The inode was logged in a previous transaction, then evicted and
3336 * then loaded again;
3337 *
3338 * 3) The inode was logged in the current transaction, then evicted and
3339 * then loaded again.
3340 *
3341 * For cases 1) and 2) we don't want to return true, but we need to detect
3342 * case 3) and return true. So we do a search in the log root for the inode
3343 * item.
3344 */
3345 key.objectid = btrfs_ino(inode);
3346 key.type = BTRFS_INODE_ITEM_KEY;
3347 key.offset = 0;
3348
3349 if (!path) {
3350 path = btrfs_alloc_path();
3351 if (!path)
3352 return -ENOMEM;
3353 }
3354
3355 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3356
3357 if (path_in)
3358 btrfs_release_path(path);
3359 else
3360 btrfs_free_path(path);
3361
3362 /*
3363 * Logging an inode always results in logging its inode item. So if we
3364 * did not find the item we know the inode was not logged for sure.
3365 */
3366 if (ret < 0) {
3367 return ret;
3368 } else if (ret > 0) {
3369 /*
3370 * Set logged_trans to a value greater than 0 and less then the
3371 * current transaction to avoid doing the search in future calls.
3372 */
3373 inode->logged_trans = trans->transid - 1;
3374 return 0;
3375 }
3376
3377 /*
3378 * The inode was previously logged and then evicted, set logged_trans to
3379 * the current transacion's ID, to avoid future tree searches as long as
3380 * the inode is not evicted again.
3381 */
3382 inode->logged_trans = trans->transid;
3383
3384 /*
3385 * If it's a directory, then we must set last_dir_index_offset to the
3386 * maximum possible value, so that the next attempt to log the inode does
3387 * not skip checking if dir index keys found in modified subvolume tree
3388 * leaves have been logged before, otherwise it would result in attempts
3389 * to insert duplicate dir index keys in the log tree. This must be done
3390 * because last_dir_index_offset is an in-memory only field, not persisted
3391 * in the inode item or any other on-disk structure, so its value is lost
3392 * once the inode is evicted.
3393 */
3394 if (S_ISDIR(inode->vfs_inode.i_mode))
3395 inode->last_dir_index_offset = (u64)-1;
3396
3397 return 1;
3398}
3399
3400/*
3401 * Delete a directory entry from the log if it exists.
3402 *
3403 * Returns < 0 on error
3404 * 1 if the entry does not exists
3405 * 0 if the entry existed and was successfully deleted
3406 */
3407static int del_logged_dentry(struct btrfs_trans_handle *trans,
3408 struct btrfs_root *log,
3409 struct btrfs_path *path,
3410 u64 dir_ino,
3411 const struct fscrypt_str *name,
3412 u64 index)
3413{
3414 struct btrfs_dir_item *di;
3415
3416 /*
3417 * We only log dir index items of a directory, so we don't need to look
3418 * for dir item keys.
3419 */
3420 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3421 index, name, -1);
3422 if (IS_ERR(di))
3423 return PTR_ERR(di);
3424 else if (!di)
3425 return 1;
3426
3427 /*
3428 * We do not need to update the size field of the directory's
3429 * inode item because on log replay we update the field to reflect
3430 * all existing entries in the directory (see overwrite_item()).
3431 */
3432 return btrfs_delete_one_dir_name(trans, log, path, di);
3433}
3434
3435/*
3436 * If both a file and directory are logged, and unlinks or renames are
3437 * mixed in, we have a few interesting corners:
3438 *
3439 * create file X in dir Y
3440 * link file X to X.link in dir Y
3441 * fsync file X
3442 * unlink file X but leave X.link
3443 * fsync dir Y
3444 *
3445 * After a crash we would expect only X.link to exist. But file X
3446 * didn't get fsync'd again so the log has back refs for X and X.link.
3447 *
3448 * We solve this by removing directory entries and inode backrefs from the
3449 * log when a file that was logged in the current transaction is
3450 * unlinked. Any later fsync will include the updated log entries, and
3451 * we'll be able to reconstruct the proper directory items from backrefs.
3452 *
3453 * This optimizations allows us to avoid relogging the entire inode
3454 * or the entire directory.
3455 */
3456void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *root,
3458 const struct fscrypt_str *name,
3459 struct btrfs_inode *dir, u64 index)
3460{
3461 struct btrfs_path *path;
3462 int ret;
3463
3464 ret = inode_logged(trans, dir, NULL);
3465 if (ret == 0)
3466 return;
3467 else if (ret < 0) {
3468 btrfs_set_log_full_commit(trans);
3469 return;
3470 }
3471
3472 ret = join_running_log_trans(root);
3473 if (ret)
3474 return;
3475
3476 mutex_lock(&dir->log_mutex);
3477
3478 path = btrfs_alloc_path();
3479 if (!path) {
3480 ret = -ENOMEM;
3481 goto out_unlock;
3482 }
3483
3484 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3485 name, index);
3486 btrfs_free_path(path);
3487out_unlock:
3488 mutex_unlock(&dir->log_mutex);
3489 if (ret < 0)
3490 btrfs_set_log_full_commit(trans);
3491 btrfs_end_log_trans(root);
3492}
3493
3494/* see comments for btrfs_del_dir_entries_in_log */
3495void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3496 struct btrfs_root *root,
3497 const struct fscrypt_str *name,
3498 struct btrfs_inode *inode, u64 dirid)
3499{
3500 struct btrfs_root *log;
3501 u64 index;
3502 int ret;
3503
3504 ret = inode_logged(trans, inode, NULL);
3505 if (ret == 0)
3506 return;
3507 else if (ret < 0) {
3508 btrfs_set_log_full_commit(trans);
3509 return;
3510 }
3511
3512 ret = join_running_log_trans(root);
3513 if (ret)
3514 return;
3515 log = root->log_root;
3516 mutex_lock(&inode->log_mutex);
3517
3518 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3519 dirid, &index);
3520 mutex_unlock(&inode->log_mutex);
3521 if (ret < 0 && ret != -ENOENT)
3522 btrfs_set_log_full_commit(trans);
3523 btrfs_end_log_trans(root);
3524}
3525
3526/*
3527 * creates a range item in the log for 'dirid'. first_offset and
3528 * last_offset tell us which parts of the key space the log should
3529 * be considered authoritative for.
3530 */
3531static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *log,
3533 struct btrfs_path *path,
3534 u64 dirid,
3535 u64 first_offset, u64 last_offset)
3536{
3537 int ret;
3538 struct btrfs_key key;
3539 struct btrfs_dir_log_item *item;
3540
3541 key.objectid = dirid;
3542 key.offset = first_offset;
3543 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3544 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3545 /*
3546 * -EEXIST is fine and can happen sporadically when we are logging a
3547 * directory and have concurrent insertions in the subvolume's tree for
3548 * items from other inodes and that result in pushing off some dir items
3549 * from one leaf to another in order to accommodate for the new items.
3550 * This results in logging the same dir index range key.
3551 */
3552 if (ret && ret != -EEXIST)
3553 return ret;
3554
3555 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3556 struct btrfs_dir_log_item);
3557 if (ret == -EEXIST) {
3558 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3559
3560 /*
3561 * btrfs_del_dir_entries_in_log() might have been called during
3562 * an unlink between the initial insertion of this key and the
3563 * current update, or we might be logging a single entry deletion
3564 * during a rename, so set the new last_offset to the max value.
3565 */
3566 last_offset = max(last_offset, curr_end);
3567 }
3568 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3569 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3570 btrfs_release_path(path);
3571 return 0;
3572}
3573
3574static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3575 struct btrfs_inode *inode,
3576 struct extent_buffer *src,
3577 struct btrfs_path *dst_path,
3578 int start_slot,
3579 int count)
3580{
3581 struct btrfs_root *log = inode->root->log_root;
3582 char *ins_data = NULL;
3583 struct btrfs_item_batch batch;
3584 struct extent_buffer *dst;
3585 unsigned long src_offset;
3586 unsigned long dst_offset;
3587 u64 last_index;
3588 struct btrfs_key key;
3589 u32 item_size;
3590 int ret;
3591 int i;
3592
3593 ASSERT(count > 0);
3594 batch.nr = count;
3595
3596 if (count == 1) {
3597 btrfs_item_key_to_cpu(src, &key, start_slot);
3598 item_size = btrfs_item_size(src, start_slot);
3599 batch.keys = &key;
3600 batch.data_sizes = &item_size;
3601 batch.total_data_size = item_size;
3602 } else {
3603 struct btrfs_key *ins_keys;
3604 u32 *ins_sizes;
3605
3606 ins_data = kmalloc(count * sizeof(u32) +
3607 count * sizeof(struct btrfs_key), GFP_NOFS);
3608 if (!ins_data)
3609 return -ENOMEM;
3610
3611 ins_sizes = (u32 *)ins_data;
3612 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3613 batch.keys = ins_keys;
3614 batch.data_sizes = ins_sizes;
3615 batch.total_data_size = 0;
3616
3617 for (i = 0; i < count; i++) {
3618 const int slot = start_slot + i;
3619
3620 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3621 ins_sizes[i] = btrfs_item_size(src, slot);
3622 batch.total_data_size += ins_sizes[i];
3623 }
3624 }
3625
3626 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3627 if (ret)
3628 goto out;
3629
3630 dst = dst_path->nodes[0];
3631 /*
3632 * Copy all the items in bulk, in a single copy operation. Item data is
3633 * organized such that it's placed at the end of a leaf and from right
3634 * to left. For example, the data for the second item ends at an offset
3635 * that matches the offset where the data for the first item starts, the
3636 * data for the third item ends at an offset that matches the offset
3637 * where the data of the second items starts, and so on.
3638 * Therefore our source and destination start offsets for copy match the
3639 * offsets of the last items (highest slots).
3640 */
3641 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3642 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3643 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3644 btrfs_release_path(dst_path);
3645
3646 last_index = batch.keys[count - 1].offset;
3647 ASSERT(last_index > inode->last_dir_index_offset);
3648
3649 /*
3650 * If for some unexpected reason the last item's index is not greater
3651 * than the last index we logged, warn and force a transaction commit.
3652 */
3653 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3654 ret = BTRFS_LOG_FORCE_COMMIT;
3655 else
3656 inode->last_dir_index_offset = last_index;
3657
3658 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3659 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3660out:
3661 kfree(ins_data);
3662
3663 return ret;
3664}
3665
3666static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3667{
3668 const int slot = path->slots[0];
3669
3670 if (ctx->scratch_eb) {
3671 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3672 } else {
3673 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3674 if (!ctx->scratch_eb)
3675 return -ENOMEM;
3676 }
3677
3678 btrfs_release_path(path);
3679 path->nodes[0] = ctx->scratch_eb;
3680 path->slots[0] = slot;
3681 /*
3682 * Add extra ref to scratch eb so that it is not freed when callers
3683 * release the path, so we can reuse it later if needed.
3684 */
3685 atomic_inc(&ctx->scratch_eb->refs);
3686
3687 return 0;
3688}
3689
3690static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3691 struct btrfs_inode *inode,
3692 struct btrfs_path *path,
3693 struct btrfs_path *dst_path,
3694 struct btrfs_log_ctx *ctx,
3695 u64 *last_old_dentry_offset)
3696{
3697 struct btrfs_root *log = inode->root->log_root;
3698 struct extent_buffer *src;
3699 const int nritems = btrfs_header_nritems(path->nodes[0]);
3700 const u64 ino = btrfs_ino(inode);
3701 bool last_found = false;
3702 int batch_start = 0;
3703 int batch_size = 0;
3704 int ret;
3705
3706 /*
3707 * We need to clone the leaf, release the read lock on it, and use the
3708 * clone before modifying the log tree. See the comment at copy_items()
3709 * about why we need to do this.
3710 */
3711 ret = clone_leaf(path, ctx);
3712 if (ret < 0)
3713 return ret;
3714
3715 src = path->nodes[0];
3716
3717 for (int i = path->slots[0]; i < nritems; i++) {
3718 struct btrfs_dir_item *di;
3719 struct btrfs_key key;
3720 int ret;
3721
3722 btrfs_item_key_to_cpu(src, &key, i);
3723
3724 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3725 last_found = true;
3726 break;
3727 }
3728
3729 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3730
3731 /*
3732 * Skip ranges of items that consist only of dir item keys created
3733 * in past transactions. However if we find a gap, we must log a
3734 * dir index range item for that gap, so that index keys in that
3735 * gap are deleted during log replay.
3736 */
3737 if (btrfs_dir_transid(src, di) < trans->transid) {
3738 if (key.offset > *last_old_dentry_offset + 1) {
3739 ret = insert_dir_log_key(trans, log, dst_path,
3740 ino, *last_old_dentry_offset + 1,
3741 key.offset - 1);
3742 if (ret < 0)
3743 return ret;
3744 }
3745
3746 *last_old_dentry_offset = key.offset;
3747 continue;
3748 }
3749
3750 /* If we logged this dir index item before, we can skip it. */
3751 if (key.offset <= inode->last_dir_index_offset)
3752 continue;
3753
3754 /*
3755 * We must make sure that when we log a directory entry, the
3756 * corresponding inode, after log replay, has a matching link
3757 * count. For example:
3758 *
3759 * touch foo
3760 * mkdir mydir
3761 * sync
3762 * ln foo mydir/bar
3763 * xfs_io -c "fsync" mydir
3764 * <crash>
3765 * <mount fs and log replay>
3766 *
3767 * Would result in a fsync log that when replayed, our file inode
3768 * would have a link count of 1, but we get two directory entries
3769 * pointing to the same inode. After removing one of the names,
3770 * it would not be possible to remove the other name, which
3771 * resulted always in stale file handle errors, and would not be
3772 * possible to rmdir the parent directory, since its i_size could
3773 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3774 * resulting in -ENOTEMPTY errors.
3775 */
3776 if (!ctx->log_new_dentries) {
3777 struct btrfs_key di_key;
3778
3779 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3780 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3781 ctx->log_new_dentries = true;
3782 }
3783
3784 if (batch_size == 0)
3785 batch_start = i;
3786 batch_size++;
3787 }
3788
3789 if (batch_size > 0) {
3790 int ret;
3791
3792 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3793 batch_start, batch_size);
3794 if (ret < 0)
3795 return ret;
3796 }
3797
3798 return last_found ? 1 : 0;
3799}
3800
3801/*
3802 * log all the items included in the current transaction for a given
3803 * directory. This also creates the range items in the log tree required
3804 * to replay anything deleted before the fsync
3805 */
3806static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3807 struct btrfs_inode *inode,
3808 struct btrfs_path *path,
3809 struct btrfs_path *dst_path,
3810 struct btrfs_log_ctx *ctx,
3811 u64 min_offset, u64 *last_offset_ret)
3812{
3813 struct btrfs_key min_key;
3814 struct btrfs_root *root = inode->root;
3815 struct btrfs_root *log = root->log_root;
3816 int ret;
3817 u64 last_old_dentry_offset = min_offset - 1;
3818 u64 last_offset = (u64)-1;
3819 u64 ino = btrfs_ino(inode);
3820
3821 min_key.objectid = ino;
3822 min_key.type = BTRFS_DIR_INDEX_KEY;
3823 min_key.offset = min_offset;
3824
3825 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3826
3827 /*
3828 * we didn't find anything from this transaction, see if there
3829 * is anything at all
3830 */
3831 if (ret != 0 || min_key.objectid != ino ||
3832 min_key.type != BTRFS_DIR_INDEX_KEY) {
3833 min_key.objectid = ino;
3834 min_key.type = BTRFS_DIR_INDEX_KEY;
3835 min_key.offset = (u64)-1;
3836 btrfs_release_path(path);
3837 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3838 if (ret < 0) {
3839 btrfs_release_path(path);
3840 return ret;
3841 }
3842 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3843
3844 /* if ret == 0 there are items for this type,
3845 * create a range to tell us the last key of this type.
3846 * otherwise, there are no items in this directory after
3847 * *min_offset, and we create a range to indicate that.
3848 */
3849 if (ret == 0) {
3850 struct btrfs_key tmp;
3851
3852 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3853 path->slots[0]);
3854 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3855 last_old_dentry_offset = tmp.offset;
3856 } else if (ret > 0) {
3857 ret = 0;
3858 }
3859
3860 goto done;
3861 }
3862
3863 /* go backward to find any previous key */
3864 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865 if (ret == 0) {
3866 struct btrfs_key tmp;
3867
3868 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3869 /*
3870 * The dir index key before the first one we found that needs to
3871 * be logged might be in a previous leaf, and there might be a
3872 * gap between these keys, meaning that we had deletions that
3873 * happened. So the key range item we log (key type
3874 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3875 * previous key's offset plus 1, so that those deletes are replayed.
3876 */
3877 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3878 last_old_dentry_offset = tmp.offset;
3879 } else if (ret < 0) {
3880 goto done;
3881 }
3882
3883 btrfs_release_path(path);
3884
3885 /*
3886 * Find the first key from this transaction again or the one we were at
3887 * in the loop below in case we had to reschedule. We may be logging the
3888 * directory without holding its VFS lock, which happen when logging new
3889 * dentries (through log_new_dir_dentries()) or in some cases when we
3890 * need to log the parent directory of an inode. This means a dir index
3891 * key might be deleted from the inode's root, and therefore we may not
3892 * find it anymore. If we can't find it, just move to the next key. We
3893 * can not bail out and ignore, because if we do that we will simply
3894 * not log dir index keys that come after the one that was just deleted
3895 * and we can end up logging a dir index range that ends at (u64)-1
3896 * (@last_offset is initialized to that), resulting in removing dir
3897 * entries we should not remove at log replay time.
3898 */
3899search:
3900 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3901 if (ret > 0) {
3902 ret = btrfs_next_item(root, path);
3903 if (ret > 0) {
3904 /* There are no more keys in the inode's root. */
3905 ret = 0;
3906 goto done;
3907 }
3908 }
3909 if (ret < 0)
3910 goto done;
3911
3912 /*
3913 * we have a block from this transaction, log every item in it
3914 * from our directory
3915 */
3916 while (1) {
3917 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3918 &last_old_dentry_offset);
3919 if (ret != 0) {
3920 if (ret > 0)
3921 ret = 0;
3922 goto done;
3923 }
3924 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3925
3926 /*
3927 * look ahead to the next item and see if it is also
3928 * from this directory and from this transaction
3929 */
3930 ret = btrfs_next_leaf(root, path);
3931 if (ret) {
3932 if (ret == 1) {
3933 last_offset = (u64)-1;
3934 ret = 0;
3935 }
3936 goto done;
3937 }
3938 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3939 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3940 last_offset = (u64)-1;
3941 goto done;
3942 }
3943 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3944 /*
3945 * The next leaf was not changed in the current transaction
3946 * and has at least one dir index key.
3947 * We check for the next key because there might have been
3948 * one or more deletions between the last key we logged and
3949 * that next key. So the key range item we log (key type
3950 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3951 * offset minus 1, so that those deletes are replayed.
3952 */
3953 last_offset = min_key.offset - 1;
3954 goto done;
3955 }
3956 if (need_resched()) {
3957 btrfs_release_path(path);
3958 cond_resched();
3959 goto search;
3960 }
3961 }
3962done:
3963 btrfs_release_path(path);
3964 btrfs_release_path(dst_path);
3965
3966 if (ret == 0) {
3967 *last_offset_ret = last_offset;
3968 /*
3969 * In case the leaf was changed in the current transaction but
3970 * all its dir items are from a past transaction, the last item
3971 * in the leaf is a dir item and there's no gap between that last
3972 * dir item and the first one on the next leaf (which did not
3973 * change in the current transaction), then we don't need to log
3974 * a range, last_old_dentry_offset is == to last_offset.
3975 */
3976 ASSERT(last_old_dentry_offset <= last_offset);
3977 if (last_old_dentry_offset < last_offset)
3978 ret = insert_dir_log_key(trans, log, path, ino,
3979 last_old_dentry_offset + 1,
3980 last_offset);
3981 }
3982
3983 return ret;
3984}
3985
3986/*
3987 * If the inode was logged before and it was evicted, then its
3988 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3989 * key offset. If that's the case, search for it and update the inode. This
3990 * is to avoid lookups in the log tree every time we try to insert a dir index
3991 * key from a leaf changed in the current transaction, and to allow us to always
3992 * do batch insertions of dir index keys.
3993 */
3994static int update_last_dir_index_offset(struct btrfs_inode *inode,
3995 struct btrfs_path *path,
3996 const struct btrfs_log_ctx *ctx)
3997{
3998 const u64 ino = btrfs_ino(inode);
3999 struct btrfs_key key;
4000 int ret;
4001
4002 lockdep_assert_held(&inode->log_mutex);
4003
4004 if (inode->last_dir_index_offset != (u64)-1)
4005 return 0;
4006
4007 if (!ctx->logged_before) {
4008 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4009 return 0;
4010 }
4011
4012 key.objectid = ino;
4013 key.type = BTRFS_DIR_INDEX_KEY;
4014 key.offset = (u64)-1;
4015
4016 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4017 /*
4018 * An error happened or we actually have an index key with an offset
4019 * value of (u64)-1. Bail out, we're done.
4020 */
4021 if (ret <= 0)
4022 goto out;
4023
4024 ret = 0;
4025 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4026
4027 /*
4028 * No dir index items, bail out and leave last_dir_index_offset with
4029 * the value right before the first valid index value.
4030 */
4031 if (path->slots[0] == 0)
4032 goto out;
4033
4034 /*
4035 * btrfs_search_slot() left us at one slot beyond the slot with the last
4036 * index key, or beyond the last key of the directory that is not an
4037 * index key. If we have an index key before, set last_dir_index_offset
4038 * to its offset value, otherwise leave it with a value right before the
4039 * first valid index value, as it means we have an empty directory.
4040 */
4041 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4042 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4043 inode->last_dir_index_offset = key.offset;
4044
4045out:
4046 btrfs_release_path(path);
4047
4048 return ret;
4049}
4050
4051/*
4052 * logging directories is very similar to logging inodes, We find all the items
4053 * from the current transaction and write them to the log.
4054 *
4055 * The recovery code scans the directory in the subvolume, and if it finds a
4056 * key in the range logged that is not present in the log tree, then it means
4057 * that dir entry was unlinked during the transaction.
4058 *
4059 * In order for that scan to work, we must include one key smaller than
4060 * the smallest logged by this transaction and one key larger than the largest
4061 * key logged by this transaction.
4062 */
4063static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4064 struct btrfs_inode *inode,
4065 struct btrfs_path *path,
4066 struct btrfs_path *dst_path,
4067 struct btrfs_log_ctx *ctx)
4068{
4069 u64 min_key;
4070 u64 max_key;
4071 int ret;
4072
4073 ret = update_last_dir_index_offset(inode, path, ctx);
4074 if (ret)
4075 return ret;
4076
4077 min_key = BTRFS_DIR_START_INDEX;
4078 max_key = 0;
4079
4080 while (1) {
4081 ret = log_dir_items(trans, inode, path, dst_path,
4082 ctx, min_key, &max_key);
4083 if (ret)
4084 return ret;
4085 if (max_key == (u64)-1)
4086 break;
4087 min_key = max_key + 1;
4088 }
4089
4090 return 0;
4091}
4092
4093/*
4094 * a helper function to drop items from the log before we relog an
4095 * inode. max_key_type indicates the highest item type to remove.
4096 * This cannot be run for file data extents because it does not
4097 * free the extents they point to.
4098 */
4099static int drop_inode_items(struct btrfs_trans_handle *trans,
4100 struct btrfs_root *log,
4101 struct btrfs_path *path,
4102 struct btrfs_inode *inode,
4103 int max_key_type)
4104{
4105 int ret;
4106 struct btrfs_key key;
4107 struct btrfs_key found_key;
4108 int start_slot;
4109
4110 key.objectid = btrfs_ino(inode);
4111 key.type = max_key_type;
4112 key.offset = (u64)-1;
4113
4114 while (1) {
4115 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4116 if (ret < 0) {
4117 break;
4118 } else if (ret > 0) {
4119 if (path->slots[0] == 0)
4120 break;
4121 path->slots[0]--;
4122 }
4123
4124 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4125 path->slots[0]);
4126
4127 if (found_key.objectid != key.objectid)
4128 break;
4129
4130 found_key.offset = 0;
4131 found_key.type = 0;
4132 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4133 if (ret < 0)
4134 break;
4135
4136 ret = btrfs_del_items(trans, log, path, start_slot,
4137 path->slots[0] - start_slot + 1);
4138 /*
4139 * If start slot isn't 0 then we don't need to re-search, we've
4140 * found the last guy with the objectid in this tree.
4141 */
4142 if (ret || start_slot != 0)
4143 break;
4144 btrfs_release_path(path);
4145 }
4146 btrfs_release_path(path);
4147 if (ret > 0)
4148 ret = 0;
4149 return ret;
4150}
4151
4152static int truncate_inode_items(struct btrfs_trans_handle *trans,
4153 struct btrfs_root *log_root,
4154 struct btrfs_inode *inode,
4155 u64 new_size, u32 min_type)
4156{
4157 struct btrfs_truncate_control control = {
4158 .new_size = new_size,
4159 .ino = btrfs_ino(inode),
4160 .min_type = min_type,
4161 .skip_ref_updates = true,
4162 };
4163
4164 return btrfs_truncate_inode_items(trans, log_root, &control);
4165}
4166
4167static void fill_inode_item(struct btrfs_trans_handle *trans,
4168 struct extent_buffer *leaf,
4169 struct btrfs_inode_item *item,
4170 struct inode *inode, int log_inode_only,
4171 u64 logged_isize)
4172{
4173 struct btrfs_map_token token;
4174 u64 flags;
4175
4176 btrfs_init_map_token(&token, leaf);
4177
4178 if (log_inode_only) {
4179 /* set the generation to zero so the recover code
4180 * can tell the difference between an logging
4181 * just to say 'this inode exists' and a logging
4182 * to say 'update this inode with these values'
4183 */
4184 btrfs_set_token_inode_generation(&token, item, 0);
4185 btrfs_set_token_inode_size(&token, item, logged_isize);
4186 } else {
4187 btrfs_set_token_inode_generation(&token, item,
4188 BTRFS_I(inode)->generation);
4189 btrfs_set_token_inode_size(&token, item, inode->i_size);
4190 }
4191
4192 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4193 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4194 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4195 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4196
4197 btrfs_set_token_timespec_sec(&token, &item->atime,
4198 inode_get_atime_sec(inode));
4199 btrfs_set_token_timespec_nsec(&token, &item->atime,
4200 inode_get_atime_nsec(inode));
4201
4202 btrfs_set_token_timespec_sec(&token, &item->mtime,
4203 inode_get_mtime_sec(inode));
4204 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4205 inode_get_mtime_nsec(inode));
4206
4207 btrfs_set_token_timespec_sec(&token, &item->ctime,
4208 inode_get_ctime_sec(inode));
4209 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4210 inode_get_ctime_nsec(inode));
4211
4212 /*
4213 * We do not need to set the nbytes field, in fact during a fast fsync
4214 * its value may not even be correct, since a fast fsync does not wait
4215 * for ordered extent completion, which is where we update nbytes, it
4216 * only waits for writeback to complete. During log replay as we find
4217 * file extent items and replay them, we adjust the nbytes field of the
4218 * inode item in subvolume tree as needed (see overwrite_item()).
4219 */
4220
4221 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4222 btrfs_set_token_inode_transid(&token, item, trans->transid);
4223 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4224 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4225 BTRFS_I(inode)->ro_flags);
4226 btrfs_set_token_inode_flags(&token, item, flags);
4227 btrfs_set_token_inode_block_group(&token, item, 0);
4228}
4229
4230static int log_inode_item(struct btrfs_trans_handle *trans,
4231 struct btrfs_root *log, struct btrfs_path *path,
4232 struct btrfs_inode *inode, bool inode_item_dropped)
4233{
4234 struct btrfs_inode_item *inode_item;
4235 int ret;
4236
4237 /*
4238 * If we are doing a fast fsync and the inode was logged before in the
4239 * current transaction, then we know the inode was previously logged and
4240 * it exists in the log tree. For performance reasons, in this case use
4241 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4242 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4243 * contention in case there are concurrent fsyncs for other inodes of the
4244 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4245 * already exists can also result in unnecessarily splitting a leaf.
4246 */
4247 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4248 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4249 ASSERT(ret <= 0);
4250 if (ret > 0)
4251 ret = -ENOENT;
4252 } else {
4253 /*
4254 * This means it is the first fsync in the current transaction,
4255 * so the inode item is not in the log and we need to insert it.
4256 * We can never get -EEXIST because we are only called for a fast
4257 * fsync and in case an inode eviction happens after the inode was
4258 * logged before in the current transaction, when we load again
4259 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4260 * flags and set ->logged_trans to 0.
4261 */
4262 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4263 sizeof(*inode_item));
4264 ASSERT(ret != -EEXIST);
4265 }
4266 if (ret)
4267 return ret;
4268 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4269 struct btrfs_inode_item);
4270 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4271 0, 0);
4272 btrfs_release_path(path);
4273 return 0;
4274}
4275
4276static int log_csums(struct btrfs_trans_handle *trans,
4277 struct btrfs_inode *inode,
4278 struct btrfs_root *log_root,
4279 struct btrfs_ordered_sum *sums)
4280{
4281 const u64 lock_end = sums->logical + sums->len - 1;
4282 struct extent_state *cached_state = NULL;
4283 int ret;
4284
4285 /*
4286 * If this inode was not used for reflink operations in the current
4287 * transaction with new extents, then do the fast path, no need to
4288 * worry about logging checksum items with overlapping ranges.
4289 */
4290 if (inode->last_reflink_trans < trans->transid)
4291 return btrfs_csum_file_blocks(trans, log_root, sums);
4292
4293 /*
4294 * Serialize logging for checksums. This is to avoid racing with the
4295 * same checksum being logged by another task that is logging another
4296 * file which happens to refer to the same extent as well. Such races
4297 * can leave checksum items in the log with overlapping ranges.
4298 */
4299 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4300 &cached_state);
4301 if (ret)
4302 return ret;
4303 /*
4304 * Due to extent cloning, we might have logged a csum item that covers a
4305 * subrange of a cloned extent, and later we can end up logging a csum
4306 * item for a larger subrange of the same extent or the entire range.
4307 * This would leave csum items in the log tree that cover the same range
4308 * and break the searches for checksums in the log tree, resulting in
4309 * some checksums missing in the fs/subvolume tree. So just delete (or
4310 * trim and adjust) any existing csum items in the log for this range.
4311 */
4312 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4313 if (!ret)
4314 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4315
4316 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4317 &cached_state);
4318
4319 return ret;
4320}
4321
4322static noinline int copy_items(struct btrfs_trans_handle *trans,
4323 struct btrfs_inode *inode,
4324 struct btrfs_path *dst_path,
4325 struct btrfs_path *src_path,
4326 int start_slot, int nr, int inode_only,
4327 u64 logged_isize, struct btrfs_log_ctx *ctx)
4328{
4329 struct btrfs_root *log = inode->root->log_root;
4330 struct btrfs_file_extent_item *extent;
4331 struct extent_buffer *src;
4332 int ret;
4333 struct btrfs_key *ins_keys;
4334 u32 *ins_sizes;
4335 struct btrfs_item_batch batch;
4336 char *ins_data;
4337 int dst_index;
4338 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4339 const u64 i_size = i_size_read(&inode->vfs_inode);
4340
4341 /*
4342 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4343 * use the clone. This is because otherwise we would be changing the log
4344 * tree, to insert items from the subvolume tree or insert csum items,
4345 * while holding a read lock on a leaf from the subvolume tree, which
4346 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4347 *
4348 * 1) Modifying the log tree triggers an extent buffer allocation while
4349 * holding a write lock on a parent extent buffer from the log tree.
4350 * Allocating the pages for an extent buffer, or the extent buffer
4351 * struct, can trigger inode eviction and finally the inode eviction
4352 * will trigger a release/remove of a delayed node, which requires
4353 * taking the delayed node's mutex;
4354 *
4355 * 2) Allocating a metadata extent for a log tree can trigger the async
4356 * reclaim thread and make us wait for it to release enough space and
4357 * unblock our reservation ticket. The reclaim thread can start
4358 * flushing delayed items, and that in turn results in the need to
4359 * lock delayed node mutexes and in the need to write lock extent
4360 * buffers of a subvolume tree - all this while holding a write lock
4361 * on the parent extent buffer in the log tree.
4362 *
4363 * So one task in scenario 1) running in parallel with another task in
4364 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4365 * node mutex while having a read lock on a leaf from the subvolume,
4366 * while the other is holding the delayed node's mutex and wants to
4367 * write lock the same subvolume leaf for flushing delayed items.
4368 */
4369 ret = clone_leaf(src_path, ctx);
4370 if (ret < 0)
4371 return ret;
4372
4373 src = src_path->nodes[0];
4374
4375 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4376 nr * sizeof(u32), GFP_NOFS);
4377 if (!ins_data)
4378 return -ENOMEM;
4379
4380 ins_sizes = (u32 *)ins_data;
4381 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4382 batch.keys = ins_keys;
4383 batch.data_sizes = ins_sizes;
4384 batch.total_data_size = 0;
4385 batch.nr = 0;
4386
4387 dst_index = 0;
4388 for (int i = 0; i < nr; i++) {
4389 const int src_slot = start_slot + i;
4390 struct btrfs_root *csum_root;
4391 struct btrfs_ordered_sum *sums;
4392 struct btrfs_ordered_sum *sums_next;
4393 LIST_HEAD(ordered_sums);
4394 u64 disk_bytenr;
4395 u64 disk_num_bytes;
4396 u64 extent_offset;
4397 u64 extent_num_bytes;
4398 bool is_old_extent;
4399
4400 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4401
4402 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4403 goto add_to_batch;
4404
4405 extent = btrfs_item_ptr(src, src_slot,
4406 struct btrfs_file_extent_item);
4407
4408 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4409 trans->transid);
4410
4411 /*
4412 * Don't copy extents from past generations. That would make us
4413 * log a lot more metadata for common cases like doing only a
4414 * few random writes into a file and then fsync it for the first
4415 * time or after the full sync flag is set on the inode. We can
4416 * get leaves full of extent items, most of which are from past
4417 * generations, so we can skip them - as long as the inode has
4418 * not been the target of a reflink operation in this transaction,
4419 * as in that case it might have had file extent items with old
4420 * generations copied into it. We also must always log prealloc
4421 * extents that start at or beyond eof, otherwise we would lose
4422 * them on log replay.
4423 */
4424 if (is_old_extent &&
4425 ins_keys[dst_index].offset < i_size &&
4426 inode->last_reflink_trans < trans->transid)
4427 continue;
4428
4429 if (skip_csum)
4430 goto add_to_batch;
4431
4432 /* Only regular extents have checksums. */
4433 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4434 goto add_to_batch;
4435
4436 /*
4437 * If it's an extent created in a past transaction, then its
4438 * checksums are already accessible from the committed csum tree,
4439 * no need to log them.
4440 */
4441 if (is_old_extent)
4442 goto add_to_batch;
4443
4444 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4445 /* If it's an explicit hole, there are no checksums. */
4446 if (disk_bytenr == 0)
4447 goto add_to_batch;
4448
4449 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4450
4451 if (btrfs_file_extent_compression(src, extent)) {
4452 extent_offset = 0;
4453 extent_num_bytes = disk_num_bytes;
4454 } else {
4455 extent_offset = btrfs_file_extent_offset(src, extent);
4456 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4457 }
4458
4459 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4460 disk_bytenr += extent_offset;
4461 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4462 disk_bytenr + extent_num_bytes - 1,
4463 &ordered_sums, 0, false);
4464 if (ret)
4465 goto out;
4466
4467 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4468 if (!ret)
4469 ret = log_csums(trans, inode, log, sums);
4470 list_del(&sums->list);
4471 kfree(sums);
4472 }
4473 if (ret)
4474 goto out;
4475
4476add_to_batch:
4477 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4478 batch.total_data_size += ins_sizes[dst_index];
4479 batch.nr++;
4480 dst_index++;
4481 }
4482
4483 /*
4484 * We have a leaf full of old extent items that don't need to be logged,
4485 * so we don't need to do anything.
4486 */
4487 if (batch.nr == 0)
4488 goto out;
4489
4490 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4491 if (ret)
4492 goto out;
4493
4494 dst_index = 0;
4495 for (int i = 0; i < nr; i++) {
4496 const int src_slot = start_slot + i;
4497 const int dst_slot = dst_path->slots[0] + dst_index;
4498 struct btrfs_key key;
4499 unsigned long src_offset;
4500 unsigned long dst_offset;
4501
4502 /*
4503 * We're done, all the remaining items in the source leaf
4504 * correspond to old file extent items.
4505 */
4506 if (dst_index >= batch.nr)
4507 break;
4508
4509 btrfs_item_key_to_cpu(src, &key, src_slot);
4510
4511 if (key.type != BTRFS_EXTENT_DATA_KEY)
4512 goto copy_item;
4513
4514 extent = btrfs_item_ptr(src, src_slot,
4515 struct btrfs_file_extent_item);
4516
4517 /* See the comment in the previous loop, same logic. */
4518 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4519 key.offset < i_size &&
4520 inode->last_reflink_trans < trans->transid)
4521 continue;
4522
4523copy_item:
4524 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4525 src_offset = btrfs_item_ptr_offset(src, src_slot);
4526
4527 if (key.type == BTRFS_INODE_ITEM_KEY) {
4528 struct btrfs_inode_item *inode_item;
4529
4530 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4531 struct btrfs_inode_item);
4532 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4533 &inode->vfs_inode,
4534 inode_only == LOG_INODE_EXISTS,
4535 logged_isize);
4536 } else {
4537 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4538 src_offset, ins_sizes[dst_index]);
4539 }
4540
4541 dst_index++;
4542 }
4543
4544 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4545 btrfs_release_path(dst_path);
4546out:
4547 kfree(ins_data);
4548
4549 return ret;
4550}
4551
4552static int extent_cmp(void *priv, const struct list_head *a,
4553 const struct list_head *b)
4554{
4555 const struct extent_map *em1, *em2;
4556
4557 em1 = list_entry(a, struct extent_map, list);
4558 em2 = list_entry(b, struct extent_map, list);
4559
4560 if (em1->start < em2->start)
4561 return -1;
4562 else if (em1->start > em2->start)
4563 return 1;
4564 return 0;
4565}
4566
4567static int log_extent_csums(struct btrfs_trans_handle *trans,
4568 struct btrfs_inode *inode,
4569 struct btrfs_root *log_root,
4570 const struct extent_map *em,
4571 struct btrfs_log_ctx *ctx)
4572{
4573 struct btrfs_ordered_extent *ordered;
4574 struct btrfs_root *csum_root;
4575 u64 csum_offset;
4576 u64 csum_len;
4577 u64 mod_start = em->mod_start;
4578 u64 mod_len = em->mod_len;
4579 LIST_HEAD(ordered_sums);
4580 int ret = 0;
4581
4582 if (inode->flags & BTRFS_INODE_NODATASUM ||
4583 (em->flags & EXTENT_FLAG_PREALLOC) ||
4584 em->block_start == EXTENT_MAP_HOLE)
4585 return 0;
4586
4587 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4588 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4589 const u64 mod_end = mod_start + mod_len;
4590 struct btrfs_ordered_sum *sums;
4591
4592 if (mod_len == 0)
4593 break;
4594
4595 if (ordered_end <= mod_start)
4596 continue;
4597 if (mod_end <= ordered->file_offset)
4598 break;
4599
4600 /*
4601 * We are going to copy all the csums on this ordered extent, so
4602 * go ahead and adjust mod_start and mod_len in case this ordered
4603 * extent has already been logged.
4604 */
4605 if (ordered->file_offset > mod_start) {
4606 if (ordered_end >= mod_end)
4607 mod_len = ordered->file_offset - mod_start;
4608 /*
4609 * If we have this case
4610 *
4611 * |--------- logged extent ---------|
4612 * |----- ordered extent ----|
4613 *
4614 * Just don't mess with mod_start and mod_len, we'll
4615 * just end up logging more csums than we need and it
4616 * will be ok.
4617 */
4618 } else {
4619 if (ordered_end < mod_end) {
4620 mod_len = mod_end - ordered_end;
4621 mod_start = ordered_end;
4622 } else {
4623 mod_len = 0;
4624 }
4625 }
4626
4627 /*
4628 * To keep us from looping for the above case of an ordered
4629 * extent that falls inside of the logged extent.
4630 */
4631 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4632 continue;
4633
4634 list_for_each_entry(sums, &ordered->list, list) {
4635 ret = log_csums(trans, inode, log_root, sums);
4636 if (ret)
4637 return ret;
4638 }
4639 }
4640
4641 /* We're done, found all csums in the ordered extents. */
4642 if (mod_len == 0)
4643 return 0;
4644
4645 /* If we're compressed we have to save the entire range of csums. */
4646 if (extent_map_is_compressed(em)) {
4647 csum_offset = 0;
4648 csum_len = max(em->block_len, em->orig_block_len);
4649 } else {
4650 csum_offset = mod_start - em->start;
4651 csum_len = mod_len;
4652 }
4653
4654 /* block start is already adjusted for the file extent offset. */
4655 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4656 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4657 em->block_start + csum_offset +
4658 csum_len - 1, &ordered_sums, 0, false);
4659 if (ret)
4660 return ret;
4661
4662 while (!list_empty(&ordered_sums)) {
4663 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4664 struct btrfs_ordered_sum,
4665 list);
4666 if (!ret)
4667 ret = log_csums(trans, inode, log_root, sums);
4668 list_del(&sums->list);
4669 kfree(sums);
4670 }
4671
4672 return ret;
4673}
4674
4675static int log_one_extent(struct btrfs_trans_handle *trans,
4676 struct btrfs_inode *inode,
4677 const struct extent_map *em,
4678 struct btrfs_path *path,
4679 struct btrfs_log_ctx *ctx)
4680{
4681 struct btrfs_drop_extents_args drop_args = { 0 };
4682 struct btrfs_root *log = inode->root->log_root;
4683 struct btrfs_file_extent_item fi = { 0 };
4684 struct extent_buffer *leaf;
4685 struct btrfs_key key;
4686 enum btrfs_compression_type compress_type;
4687 u64 extent_offset = em->start - em->orig_start;
4688 u64 block_len;
4689 int ret;
4690
4691 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4692 if (em->flags & EXTENT_FLAG_PREALLOC)
4693 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4694 else
4695 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4696
4697 block_len = max(em->block_len, em->orig_block_len);
4698 compress_type = extent_map_compression(em);
4699 if (compress_type != BTRFS_COMPRESS_NONE) {
4700 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4701 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4702 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4703 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4704 extent_offset);
4705 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706 }
4707
4708 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4709 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4710 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4711 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4712
4713 ret = log_extent_csums(trans, inode, log, em, ctx);
4714 if (ret)
4715 return ret;
4716
4717 /*
4718 * If this is the first time we are logging the inode in the current
4719 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4720 * because it does a deletion search, which always acquires write locks
4721 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4722 * but also adds significant contention in a log tree, since log trees
4723 * are small, with a root at level 2 or 3 at most, due to their short
4724 * life span.
4725 */
4726 if (ctx->logged_before) {
4727 drop_args.path = path;
4728 drop_args.start = em->start;
4729 drop_args.end = em->start + em->len;
4730 drop_args.replace_extent = true;
4731 drop_args.extent_item_size = sizeof(fi);
4732 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4733 if (ret)
4734 return ret;
4735 }
4736
4737 if (!drop_args.extent_inserted) {
4738 key.objectid = btrfs_ino(inode);
4739 key.type = BTRFS_EXTENT_DATA_KEY;
4740 key.offset = em->start;
4741
4742 ret = btrfs_insert_empty_item(trans, log, path, &key,
4743 sizeof(fi));
4744 if (ret)
4745 return ret;
4746 }
4747 leaf = path->nodes[0];
4748 write_extent_buffer(leaf, &fi,
4749 btrfs_item_ptr_offset(leaf, path->slots[0]),
4750 sizeof(fi));
4751 btrfs_mark_buffer_dirty(trans, leaf);
4752
4753 btrfs_release_path(path);
4754
4755 return ret;
4756}
4757
4758/*
4759 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4760 * lose them after doing a full/fast fsync and replaying the log. We scan the
4761 * subvolume's root instead of iterating the inode's extent map tree because
4762 * otherwise we can log incorrect extent items based on extent map conversion.
4763 * That can happen due to the fact that extent maps are merged when they
4764 * are not in the extent map tree's list of modified extents.
4765 */
4766static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4767 struct btrfs_inode *inode,
4768 struct btrfs_path *path,
4769 struct btrfs_log_ctx *ctx)
4770{
4771 struct btrfs_root *root = inode->root;
4772 struct btrfs_key key;
4773 const u64 i_size = i_size_read(&inode->vfs_inode);
4774 const u64 ino = btrfs_ino(inode);
4775 struct btrfs_path *dst_path = NULL;
4776 bool dropped_extents = false;
4777 u64 truncate_offset = i_size;
4778 struct extent_buffer *leaf;
4779 int slot;
4780 int ins_nr = 0;
4781 int start_slot = 0;
4782 int ret;
4783
4784 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4785 return 0;
4786
4787 key.objectid = ino;
4788 key.type = BTRFS_EXTENT_DATA_KEY;
4789 key.offset = i_size;
4790 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4791 if (ret < 0)
4792 goto out;
4793
4794 /*
4795 * We must check if there is a prealloc extent that starts before the
4796 * i_size and crosses the i_size boundary. This is to ensure later we
4797 * truncate down to the end of that extent and not to the i_size, as
4798 * otherwise we end up losing part of the prealloc extent after a log
4799 * replay and with an implicit hole if there is another prealloc extent
4800 * that starts at an offset beyond i_size.
4801 */
4802 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4803 if (ret < 0)
4804 goto out;
4805
4806 if (ret == 0) {
4807 struct btrfs_file_extent_item *ei;
4808
4809 leaf = path->nodes[0];
4810 slot = path->slots[0];
4811 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4812
4813 if (btrfs_file_extent_type(leaf, ei) ==
4814 BTRFS_FILE_EXTENT_PREALLOC) {
4815 u64 extent_end;
4816
4817 btrfs_item_key_to_cpu(leaf, &key, slot);
4818 extent_end = key.offset +
4819 btrfs_file_extent_num_bytes(leaf, ei);
4820
4821 if (extent_end > i_size)
4822 truncate_offset = extent_end;
4823 }
4824 } else {
4825 ret = 0;
4826 }
4827
4828 while (true) {
4829 leaf = path->nodes[0];
4830 slot = path->slots[0];
4831
4832 if (slot >= btrfs_header_nritems(leaf)) {
4833 if (ins_nr > 0) {
4834 ret = copy_items(trans, inode, dst_path, path,
4835 start_slot, ins_nr, 1, 0, ctx);
4836 if (ret < 0)
4837 goto out;
4838 ins_nr = 0;
4839 }
4840 ret = btrfs_next_leaf(root, path);
4841 if (ret < 0)
4842 goto out;
4843 if (ret > 0) {
4844 ret = 0;
4845 break;
4846 }
4847 continue;
4848 }
4849
4850 btrfs_item_key_to_cpu(leaf, &key, slot);
4851 if (key.objectid > ino)
4852 break;
4853 if (WARN_ON_ONCE(key.objectid < ino) ||
4854 key.type < BTRFS_EXTENT_DATA_KEY ||
4855 key.offset < i_size) {
4856 path->slots[0]++;
4857 continue;
4858 }
4859 if (!dropped_extents) {
4860 /*
4861 * Avoid logging extent items logged in past fsync calls
4862 * and leading to duplicate keys in the log tree.
4863 */
4864 ret = truncate_inode_items(trans, root->log_root, inode,
4865 truncate_offset,
4866 BTRFS_EXTENT_DATA_KEY);
4867 if (ret)
4868 goto out;
4869 dropped_extents = true;
4870 }
4871 if (ins_nr == 0)
4872 start_slot = slot;
4873 ins_nr++;
4874 path->slots[0]++;
4875 if (!dst_path) {
4876 dst_path = btrfs_alloc_path();
4877 if (!dst_path) {
4878 ret = -ENOMEM;
4879 goto out;
4880 }
4881 }
4882 }
4883 if (ins_nr > 0)
4884 ret = copy_items(trans, inode, dst_path, path,
4885 start_slot, ins_nr, 1, 0, ctx);
4886out:
4887 btrfs_release_path(path);
4888 btrfs_free_path(dst_path);
4889 return ret;
4890}
4891
4892static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4893 struct btrfs_inode *inode,
4894 struct btrfs_path *path,
4895 struct btrfs_log_ctx *ctx)
4896{
4897 struct btrfs_ordered_extent *ordered;
4898 struct btrfs_ordered_extent *tmp;
4899 struct extent_map *em, *n;
4900 LIST_HEAD(extents);
4901 struct extent_map_tree *tree = &inode->extent_tree;
4902 int ret = 0;
4903 int num = 0;
4904
4905 write_lock(&tree->lock);
4906
4907 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4908 list_del_init(&em->list);
4909 /*
4910 * Just an arbitrary number, this can be really CPU intensive
4911 * once we start getting a lot of extents, and really once we
4912 * have a bunch of extents we just want to commit since it will
4913 * be faster.
4914 */
4915 if (++num > 32768) {
4916 list_del_init(&tree->modified_extents);
4917 ret = -EFBIG;
4918 goto process;
4919 }
4920
4921 if (em->generation < trans->transid)
4922 continue;
4923
4924 /* We log prealloc extents beyond eof later. */
4925 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4926 em->start >= i_size_read(&inode->vfs_inode))
4927 continue;
4928
4929 /* Need a ref to keep it from getting evicted from cache */
4930 refcount_inc(&em->refs);
4931 em->flags |= EXTENT_FLAG_LOGGING;
4932 list_add_tail(&em->list, &extents);
4933 num++;
4934 }
4935
4936 list_sort(NULL, &extents, extent_cmp);
4937process:
4938 while (!list_empty(&extents)) {
4939 em = list_entry(extents.next, struct extent_map, list);
4940
4941 list_del_init(&em->list);
4942
4943 /*
4944 * If we had an error we just need to delete everybody from our
4945 * private list.
4946 */
4947 if (ret) {
4948 clear_em_logging(tree, em);
4949 free_extent_map(em);
4950 continue;
4951 }
4952
4953 write_unlock(&tree->lock);
4954
4955 ret = log_one_extent(trans, inode, em, path, ctx);
4956 write_lock(&tree->lock);
4957 clear_em_logging(tree, em);
4958 free_extent_map(em);
4959 }
4960 WARN_ON(!list_empty(&extents));
4961 write_unlock(&tree->lock);
4962
4963 if (!ret)
4964 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4965 if (ret)
4966 return ret;
4967
4968 /*
4969 * We have logged all extents successfully, now make sure the commit of
4970 * the current transaction waits for the ordered extents to complete
4971 * before it commits and wipes out the log trees, otherwise we would
4972 * lose data if an ordered extents completes after the transaction
4973 * commits and a power failure happens after the transaction commit.
4974 */
4975 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4976 list_del_init(&ordered->log_list);
4977 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4978
4979 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4980 spin_lock_irq(&inode->ordered_tree_lock);
4981 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4982 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4983 atomic_inc(&trans->transaction->pending_ordered);
4984 }
4985 spin_unlock_irq(&inode->ordered_tree_lock);
4986 }
4987 btrfs_put_ordered_extent(ordered);
4988 }
4989
4990 return 0;
4991}
4992
4993static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4994 struct btrfs_path *path, u64 *size_ret)
4995{
4996 struct btrfs_key key;
4997 int ret;
4998
4999 key.objectid = btrfs_ino(inode);
5000 key.type = BTRFS_INODE_ITEM_KEY;
5001 key.offset = 0;
5002
5003 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5004 if (ret < 0) {
5005 return ret;
5006 } else if (ret > 0) {
5007 *size_ret = 0;
5008 } else {
5009 struct btrfs_inode_item *item;
5010
5011 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5012 struct btrfs_inode_item);
5013 *size_ret = btrfs_inode_size(path->nodes[0], item);
5014 /*
5015 * If the in-memory inode's i_size is smaller then the inode
5016 * size stored in the btree, return the inode's i_size, so
5017 * that we get a correct inode size after replaying the log
5018 * when before a power failure we had a shrinking truncate
5019 * followed by addition of a new name (rename / new hard link).
5020 * Otherwise return the inode size from the btree, to avoid
5021 * data loss when replaying a log due to previously doing a
5022 * write that expands the inode's size and logging a new name
5023 * immediately after.
5024 */
5025 if (*size_ret > inode->vfs_inode.i_size)
5026 *size_ret = inode->vfs_inode.i_size;
5027 }
5028
5029 btrfs_release_path(path);
5030 return 0;
5031}
5032
5033/*
5034 * At the moment we always log all xattrs. This is to figure out at log replay
5035 * time which xattrs must have their deletion replayed. If a xattr is missing
5036 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5037 * because if a xattr is deleted, the inode is fsynced and a power failure
5038 * happens, causing the log to be replayed the next time the fs is mounted,
5039 * we want the xattr to not exist anymore (same behaviour as other filesystems
5040 * with a journal, ext3/4, xfs, f2fs, etc).
5041 */
5042static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5043 struct btrfs_inode *inode,
5044 struct btrfs_path *path,
5045 struct btrfs_path *dst_path,
5046 struct btrfs_log_ctx *ctx)
5047{
5048 struct btrfs_root *root = inode->root;
5049 int ret;
5050 struct btrfs_key key;
5051 const u64 ino = btrfs_ino(inode);
5052 int ins_nr = 0;
5053 int start_slot = 0;
5054 bool found_xattrs = false;
5055
5056 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5057 return 0;
5058
5059 key.objectid = ino;
5060 key.type = BTRFS_XATTR_ITEM_KEY;
5061 key.offset = 0;
5062
5063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5064 if (ret < 0)
5065 return ret;
5066
5067 while (true) {
5068 int slot = path->slots[0];
5069 struct extent_buffer *leaf = path->nodes[0];
5070 int nritems = btrfs_header_nritems(leaf);
5071
5072 if (slot >= nritems) {
5073 if (ins_nr > 0) {
5074 ret = copy_items(trans, inode, dst_path, path,
5075 start_slot, ins_nr, 1, 0, ctx);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 ret = btrfs_next_leaf(root, path);
5081 if (ret < 0)
5082 return ret;
5083 else if (ret > 0)
5084 break;
5085 continue;
5086 }
5087
5088 btrfs_item_key_to_cpu(leaf, &key, slot);
5089 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5090 break;
5091
5092 if (ins_nr == 0)
5093 start_slot = slot;
5094 ins_nr++;
5095 path->slots[0]++;
5096 found_xattrs = true;
5097 cond_resched();
5098 }
5099 if (ins_nr > 0) {
5100 ret = copy_items(trans, inode, dst_path, path,
5101 start_slot, ins_nr, 1, 0, ctx);
5102 if (ret < 0)
5103 return ret;
5104 }
5105
5106 if (!found_xattrs)
5107 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5108
5109 return 0;
5110}
5111
5112/*
5113 * When using the NO_HOLES feature if we punched a hole that causes the
5114 * deletion of entire leafs or all the extent items of the first leaf (the one
5115 * that contains the inode item and references) we may end up not processing
5116 * any extents, because there are no leafs with a generation matching the
5117 * current transaction that have extent items for our inode. So we need to find
5118 * if any holes exist and then log them. We also need to log holes after any
5119 * truncate operation that changes the inode's size.
5120 */
5121static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5122 struct btrfs_inode *inode,
5123 struct btrfs_path *path)
5124{
5125 struct btrfs_root *root = inode->root;
5126 struct btrfs_fs_info *fs_info = root->fs_info;
5127 struct btrfs_key key;
5128 const u64 ino = btrfs_ino(inode);
5129 const u64 i_size = i_size_read(&inode->vfs_inode);
5130 u64 prev_extent_end = 0;
5131 int ret;
5132
5133 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5134 return 0;
5135
5136 key.objectid = ino;
5137 key.type = BTRFS_EXTENT_DATA_KEY;
5138 key.offset = 0;
5139
5140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5141 if (ret < 0)
5142 return ret;
5143
5144 while (true) {
5145 struct extent_buffer *leaf = path->nodes[0];
5146
5147 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5148 ret = btrfs_next_leaf(root, path);
5149 if (ret < 0)
5150 return ret;
5151 if (ret > 0) {
5152 ret = 0;
5153 break;
5154 }
5155 leaf = path->nodes[0];
5156 }
5157
5158 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5159 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5160 break;
5161
5162 /* We have a hole, log it. */
5163 if (prev_extent_end < key.offset) {
5164 const u64 hole_len = key.offset - prev_extent_end;
5165
5166 /*
5167 * Release the path to avoid deadlocks with other code
5168 * paths that search the root while holding locks on
5169 * leafs from the log root.
5170 */
5171 btrfs_release_path(path);
5172 ret = btrfs_insert_hole_extent(trans, root->log_root,
5173 ino, prev_extent_end,
5174 hole_len);
5175 if (ret < 0)
5176 return ret;
5177
5178 /*
5179 * Search for the same key again in the root. Since it's
5180 * an extent item and we are holding the inode lock, the
5181 * key must still exist. If it doesn't just emit warning
5182 * and return an error to fall back to a transaction
5183 * commit.
5184 */
5185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5186 if (ret < 0)
5187 return ret;
5188 if (WARN_ON(ret > 0))
5189 return -ENOENT;
5190 leaf = path->nodes[0];
5191 }
5192
5193 prev_extent_end = btrfs_file_extent_end(path);
5194 path->slots[0]++;
5195 cond_resched();
5196 }
5197
5198 if (prev_extent_end < i_size) {
5199 u64 hole_len;
5200
5201 btrfs_release_path(path);
5202 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5203 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5204 prev_extent_end, hole_len);
5205 if (ret < 0)
5206 return ret;
5207 }
5208
5209 return 0;
5210}
5211
5212/*
5213 * When we are logging a new inode X, check if it doesn't have a reference that
5214 * matches the reference from some other inode Y created in a past transaction
5215 * and that was renamed in the current transaction. If we don't do this, then at
5216 * log replay time we can lose inode Y (and all its files if it's a directory):
5217 *
5218 * mkdir /mnt/x
5219 * echo "hello world" > /mnt/x/foobar
5220 * sync
5221 * mv /mnt/x /mnt/y
5222 * mkdir /mnt/x # or touch /mnt/x
5223 * xfs_io -c fsync /mnt/x
5224 * <power fail>
5225 * mount fs, trigger log replay
5226 *
5227 * After the log replay procedure, we would lose the first directory and all its
5228 * files (file foobar).
5229 * For the case where inode Y is not a directory we simply end up losing it:
5230 *
5231 * echo "123" > /mnt/foo
5232 * sync
5233 * mv /mnt/foo /mnt/bar
5234 * echo "abc" > /mnt/foo
5235 * xfs_io -c fsync /mnt/foo
5236 * <power fail>
5237 *
5238 * We also need this for cases where a snapshot entry is replaced by some other
5239 * entry (file or directory) otherwise we end up with an unreplayable log due to
5240 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5241 * if it were a regular entry:
5242 *
5243 * mkdir /mnt/x
5244 * btrfs subvolume snapshot /mnt /mnt/x/snap
5245 * btrfs subvolume delete /mnt/x/snap
5246 * rmdir /mnt/x
5247 * mkdir /mnt/x
5248 * fsync /mnt/x or fsync some new file inside it
5249 * <power fail>
5250 *
5251 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5252 * the same transaction.
5253 */
5254static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5255 const int slot,
5256 const struct btrfs_key *key,
5257 struct btrfs_inode *inode,
5258 u64 *other_ino, u64 *other_parent)
5259{
5260 int ret;
5261 struct btrfs_path *search_path;
5262 char *name = NULL;
5263 u32 name_len = 0;
5264 u32 item_size = btrfs_item_size(eb, slot);
5265 u32 cur_offset = 0;
5266 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5267
5268 search_path = btrfs_alloc_path();
5269 if (!search_path)
5270 return -ENOMEM;
5271 search_path->search_commit_root = 1;
5272 search_path->skip_locking = 1;
5273
5274 while (cur_offset < item_size) {
5275 u64 parent;
5276 u32 this_name_len;
5277 u32 this_len;
5278 unsigned long name_ptr;
5279 struct btrfs_dir_item *di;
5280 struct fscrypt_str name_str;
5281
5282 if (key->type == BTRFS_INODE_REF_KEY) {
5283 struct btrfs_inode_ref *iref;
5284
5285 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5286 parent = key->offset;
5287 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5288 name_ptr = (unsigned long)(iref + 1);
5289 this_len = sizeof(*iref) + this_name_len;
5290 } else {
5291 struct btrfs_inode_extref *extref;
5292
5293 extref = (struct btrfs_inode_extref *)(ptr +
5294 cur_offset);
5295 parent = btrfs_inode_extref_parent(eb, extref);
5296 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5297 name_ptr = (unsigned long)&extref->name;
5298 this_len = sizeof(*extref) + this_name_len;
5299 }
5300
5301 if (this_name_len > name_len) {
5302 char *new_name;
5303
5304 new_name = krealloc(name, this_name_len, GFP_NOFS);
5305 if (!new_name) {
5306 ret = -ENOMEM;
5307 goto out;
5308 }
5309 name_len = this_name_len;
5310 name = new_name;
5311 }
5312
5313 read_extent_buffer(eb, name, name_ptr, this_name_len);
5314
5315 name_str.name = name;
5316 name_str.len = this_name_len;
5317 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5318 parent, &name_str, 0);
5319 if (di && !IS_ERR(di)) {
5320 struct btrfs_key di_key;
5321
5322 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5323 di, &di_key);
5324 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5325 if (di_key.objectid != key->objectid) {
5326 ret = 1;
5327 *other_ino = di_key.objectid;
5328 *other_parent = parent;
5329 } else {
5330 ret = 0;
5331 }
5332 } else {
5333 ret = -EAGAIN;
5334 }
5335 goto out;
5336 } else if (IS_ERR(di)) {
5337 ret = PTR_ERR(di);
5338 goto out;
5339 }
5340 btrfs_release_path(search_path);
5341
5342 cur_offset += this_len;
5343 }
5344 ret = 0;
5345out:
5346 btrfs_free_path(search_path);
5347 kfree(name);
5348 return ret;
5349}
5350
5351/*
5352 * Check if we need to log an inode. This is used in contexts where while
5353 * logging an inode we need to log another inode (either that it exists or in
5354 * full mode). This is used instead of btrfs_inode_in_log() because the later
5355 * requires the inode to be in the log and have the log transaction committed,
5356 * while here we do not care if the log transaction was already committed - our
5357 * caller will commit the log later - and we want to avoid logging an inode
5358 * multiple times when multiple tasks have joined the same log transaction.
5359 */
5360static bool need_log_inode(const struct btrfs_trans_handle *trans,
5361 struct btrfs_inode *inode)
5362{
5363 /*
5364 * If a directory was not modified, no dentries added or removed, we can
5365 * and should avoid logging it.
5366 */
5367 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5368 return false;
5369
5370 /*
5371 * If this inode does not have new/updated/deleted xattrs since the last
5372 * time it was logged and is flagged as logged in the current transaction,
5373 * we can skip logging it. As for new/deleted names, those are updated in
5374 * the log by link/unlink/rename operations.
5375 * In case the inode was logged and then evicted and reloaded, its
5376 * logged_trans will be 0, in which case we have to fully log it since
5377 * logged_trans is a transient field, not persisted.
5378 */
5379 if (inode_logged(trans, inode, NULL) == 1 &&
5380 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5381 return false;
5382
5383 return true;
5384}
5385
5386struct btrfs_dir_list {
5387 u64 ino;
5388 struct list_head list;
5389};
5390
5391/*
5392 * Log the inodes of the new dentries of a directory.
5393 * See process_dir_items_leaf() for details about why it is needed.
5394 * This is a recursive operation - if an existing dentry corresponds to a
5395 * directory, that directory's new entries are logged too (same behaviour as
5396 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5397 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5398 * complains about the following circular lock dependency / possible deadlock:
5399 *
5400 * CPU0 CPU1
5401 * ---- ----
5402 * lock(&type->i_mutex_dir_key#3/2);
5403 * lock(sb_internal#2);
5404 * lock(&type->i_mutex_dir_key#3/2);
5405 * lock(&sb->s_type->i_mutex_key#14);
5406 *
5407 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5408 * sb_start_intwrite() in btrfs_start_transaction().
5409 * Not acquiring the VFS lock of the inodes is still safe because:
5410 *
5411 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5412 * that while logging the inode new references (names) are added or removed
5413 * from the inode, leaving the logged inode item with a link count that does
5414 * not match the number of logged inode reference items. This is fine because
5415 * at log replay time we compute the real number of links and correct the
5416 * link count in the inode item (see replay_one_buffer() and
5417 * link_to_fixup_dir());
5418 *
5419 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5420 * while logging the inode's items new index items (key type
5421 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5422 * has a size that doesn't match the sum of the lengths of all the logged
5423 * names - this is ok, not a problem, because at log replay time we set the
5424 * directory's i_size to the correct value (see replay_one_name() and
5425 * overwrite_item()).
5426 */
5427static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5428 struct btrfs_inode *start_inode,
5429 struct btrfs_log_ctx *ctx)
5430{
5431 struct btrfs_root *root = start_inode->root;
5432 struct btrfs_fs_info *fs_info = root->fs_info;
5433 struct btrfs_path *path;
5434 LIST_HEAD(dir_list);
5435 struct btrfs_dir_list *dir_elem;
5436 u64 ino = btrfs_ino(start_inode);
5437 struct btrfs_inode *curr_inode = start_inode;
5438 int ret = 0;
5439
5440 /*
5441 * If we are logging a new name, as part of a link or rename operation,
5442 * don't bother logging new dentries, as we just want to log the names
5443 * of an inode and that any new parents exist.
5444 */
5445 if (ctx->logging_new_name)
5446 return 0;
5447
5448 path = btrfs_alloc_path();
5449 if (!path)
5450 return -ENOMEM;
5451
5452 /* Pairs with btrfs_add_delayed_iput below. */
5453 ihold(&curr_inode->vfs_inode);
5454
5455 while (true) {
5456 struct inode *vfs_inode;
5457 struct btrfs_key key;
5458 struct btrfs_key found_key;
5459 u64 next_index;
5460 bool continue_curr_inode = true;
5461 int iter_ret;
5462
5463 key.objectid = ino;
5464 key.type = BTRFS_DIR_INDEX_KEY;
5465 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5466 next_index = key.offset;
5467again:
5468 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5469 struct extent_buffer *leaf = path->nodes[0];
5470 struct btrfs_dir_item *di;
5471 struct btrfs_key di_key;
5472 struct inode *di_inode;
5473 int log_mode = LOG_INODE_EXISTS;
5474 int type;
5475
5476 if (found_key.objectid != ino ||
5477 found_key.type != BTRFS_DIR_INDEX_KEY) {
5478 continue_curr_inode = false;
5479 break;
5480 }
5481
5482 next_index = found_key.offset + 1;
5483
5484 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5485 type = btrfs_dir_ftype(leaf, di);
5486 if (btrfs_dir_transid(leaf, di) < trans->transid)
5487 continue;
5488 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5489 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5490 continue;
5491
5492 btrfs_release_path(path);
5493 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5494 if (IS_ERR(di_inode)) {
5495 ret = PTR_ERR(di_inode);
5496 goto out;
5497 }
5498
5499 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5500 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5501 break;
5502 }
5503
5504 ctx->log_new_dentries = false;
5505 if (type == BTRFS_FT_DIR)
5506 log_mode = LOG_INODE_ALL;
5507 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5508 log_mode, ctx);
5509 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5510 if (ret)
5511 goto out;
5512 if (ctx->log_new_dentries) {
5513 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5514 if (!dir_elem) {
5515 ret = -ENOMEM;
5516 goto out;
5517 }
5518 dir_elem->ino = di_key.objectid;
5519 list_add_tail(&dir_elem->list, &dir_list);
5520 }
5521 break;
5522 }
5523
5524 btrfs_release_path(path);
5525
5526 if (iter_ret < 0) {
5527 ret = iter_ret;
5528 goto out;
5529 } else if (iter_ret > 0) {
5530 continue_curr_inode = false;
5531 } else {
5532 key = found_key;
5533 }
5534
5535 if (continue_curr_inode && key.offset < (u64)-1) {
5536 key.offset++;
5537 goto again;
5538 }
5539
5540 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5541
5542 if (list_empty(&dir_list))
5543 break;
5544
5545 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5546 ino = dir_elem->ino;
5547 list_del(&dir_elem->list);
5548 kfree(dir_elem);
5549
5550 btrfs_add_delayed_iput(curr_inode);
5551 curr_inode = NULL;
5552
5553 vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5554 if (IS_ERR(vfs_inode)) {
5555 ret = PTR_ERR(vfs_inode);
5556 break;
5557 }
5558 curr_inode = BTRFS_I(vfs_inode);
5559 }
5560out:
5561 btrfs_free_path(path);
5562 if (curr_inode)
5563 btrfs_add_delayed_iput(curr_inode);
5564
5565 if (ret) {
5566 struct btrfs_dir_list *next;
5567
5568 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5569 kfree(dir_elem);
5570 }
5571
5572 return ret;
5573}
5574
5575struct btrfs_ino_list {
5576 u64 ino;
5577 u64 parent;
5578 struct list_head list;
5579};
5580
5581static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5582{
5583 struct btrfs_ino_list *curr;
5584 struct btrfs_ino_list *next;
5585
5586 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5587 list_del(&curr->list);
5588 kfree(curr);
5589 }
5590}
5591
5592static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5593 struct btrfs_path *path)
5594{
5595 struct btrfs_key key;
5596 int ret;
5597
5598 key.objectid = ino;
5599 key.type = BTRFS_INODE_ITEM_KEY;
5600 key.offset = 0;
5601
5602 path->search_commit_root = 1;
5603 path->skip_locking = 1;
5604
5605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5606 if (WARN_ON_ONCE(ret > 0)) {
5607 /*
5608 * We have previously found the inode through the commit root
5609 * so this should not happen. If it does, just error out and
5610 * fallback to a transaction commit.
5611 */
5612 ret = -ENOENT;
5613 } else if (ret == 0) {
5614 struct btrfs_inode_item *item;
5615
5616 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5617 struct btrfs_inode_item);
5618 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5619 ret = 1;
5620 }
5621
5622 btrfs_release_path(path);
5623 path->search_commit_root = 0;
5624 path->skip_locking = 0;
5625
5626 return ret;
5627}
5628
5629static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5630 struct btrfs_root *root,
5631 struct btrfs_path *path,
5632 u64 ino, u64 parent,
5633 struct btrfs_log_ctx *ctx)
5634{
5635 struct btrfs_ino_list *ino_elem;
5636 struct inode *inode;
5637
5638 /*
5639 * It's rare to have a lot of conflicting inodes, in practice it is not
5640 * common to have more than 1 or 2. We don't want to collect too many,
5641 * as we could end up logging too many inodes (even if only in
5642 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5643 * commits.
5644 */
5645 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5646 return BTRFS_LOG_FORCE_COMMIT;
5647
5648 inode = btrfs_iget(root->fs_info->sb, ino, root);
5649 /*
5650 * If the other inode that had a conflicting dir entry was deleted in
5651 * the current transaction then we either:
5652 *
5653 * 1) Log the parent directory (later after adding it to the list) if
5654 * the inode is a directory. This is because it may be a deleted
5655 * subvolume/snapshot or it may be a regular directory that had
5656 * deleted subvolumes/snapshots (or subdirectories that had them),
5657 * and at the moment we can't deal with dropping subvolumes/snapshots
5658 * during log replay. So we just log the parent, which will result in
5659 * a fallback to a transaction commit if we are dealing with those
5660 * cases (last_unlink_trans will match the current transaction);
5661 *
5662 * 2) Do nothing if it's not a directory. During log replay we simply
5663 * unlink the conflicting dentry from the parent directory and then
5664 * add the dentry for our inode. Like this we can avoid logging the
5665 * parent directory (and maybe fallback to a transaction commit in
5666 * case it has a last_unlink_trans == trans->transid, due to moving
5667 * some inode from it to some other directory).
5668 */
5669 if (IS_ERR(inode)) {
5670 int ret = PTR_ERR(inode);
5671
5672 if (ret != -ENOENT)
5673 return ret;
5674
5675 ret = conflicting_inode_is_dir(root, ino, path);
5676 /* Not a directory or we got an error. */
5677 if (ret <= 0)
5678 return ret;
5679
5680 /* Conflicting inode is a directory, so we'll log its parent. */
5681 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5682 if (!ino_elem)
5683 return -ENOMEM;
5684 ino_elem->ino = ino;
5685 ino_elem->parent = parent;
5686 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5687 ctx->num_conflict_inodes++;
5688
5689 return 0;
5690 }
5691
5692 /*
5693 * If the inode was already logged skip it - otherwise we can hit an
5694 * infinite loop. Example:
5695 *
5696 * From the commit root (previous transaction) we have the following
5697 * inodes:
5698 *
5699 * inode 257 a directory
5700 * inode 258 with references "zz" and "zz_link" on inode 257
5701 * inode 259 with reference "a" on inode 257
5702 *
5703 * And in the current (uncommitted) transaction we have:
5704 *
5705 * inode 257 a directory, unchanged
5706 * inode 258 with references "a" and "a2" on inode 257
5707 * inode 259 with reference "zz_link" on inode 257
5708 * inode 261 with reference "zz" on inode 257
5709 *
5710 * When logging inode 261 the following infinite loop could
5711 * happen if we don't skip already logged inodes:
5712 *
5713 * - we detect inode 258 as a conflicting inode, with inode 261
5714 * on reference "zz", and log it;
5715 *
5716 * - we detect inode 259 as a conflicting inode, with inode 258
5717 * on reference "a", and log it;
5718 *
5719 * - we detect inode 258 as a conflicting inode, with inode 259
5720 * on reference "zz_link", and log it - again! After this we
5721 * repeat the above steps forever.
5722 *
5723 * Here we can use need_log_inode() because we only need to log the
5724 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5725 * so that the log ends up with the new name and without the old name.
5726 */
5727 if (!need_log_inode(trans, BTRFS_I(inode))) {
5728 btrfs_add_delayed_iput(BTRFS_I(inode));
5729 return 0;
5730 }
5731
5732 btrfs_add_delayed_iput(BTRFS_I(inode));
5733
5734 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5735 if (!ino_elem)
5736 return -ENOMEM;
5737 ino_elem->ino = ino;
5738 ino_elem->parent = parent;
5739 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5740 ctx->num_conflict_inodes++;
5741
5742 return 0;
5743}
5744
5745static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5746 struct btrfs_root *root,
5747 struct btrfs_log_ctx *ctx)
5748{
5749 struct btrfs_fs_info *fs_info = root->fs_info;
5750 int ret = 0;
5751
5752 /*
5753 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5754 * otherwise we could have unbounded recursion of btrfs_log_inode()
5755 * calls. This check guarantees we can have only 1 level of recursion.
5756 */
5757 if (ctx->logging_conflict_inodes)
5758 return 0;
5759
5760 ctx->logging_conflict_inodes = true;
5761
5762 /*
5763 * New conflicting inodes may be found and added to the list while we
5764 * are logging a conflicting inode, so keep iterating while the list is
5765 * not empty.
5766 */
5767 while (!list_empty(&ctx->conflict_inodes)) {
5768 struct btrfs_ino_list *curr;
5769 struct inode *inode;
5770 u64 ino;
5771 u64 parent;
5772
5773 curr = list_first_entry(&ctx->conflict_inodes,
5774 struct btrfs_ino_list, list);
5775 ino = curr->ino;
5776 parent = curr->parent;
5777 list_del(&curr->list);
5778 kfree(curr);
5779
5780 inode = btrfs_iget(fs_info->sb, ino, root);
5781 /*
5782 * If the other inode that had a conflicting dir entry was
5783 * deleted in the current transaction, we need to log its parent
5784 * directory. See the comment at add_conflicting_inode().
5785 */
5786 if (IS_ERR(inode)) {
5787 ret = PTR_ERR(inode);
5788 if (ret != -ENOENT)
5789 break;
5790
5791 inode = btrfs_iget(fs_info->sb, parent, root);
5792 if (IS_ERR(inode)) {
5793 ret = PTR_ERR(inode);
5794 break;
5795 }
5796
5797 /*
5798 * Always log the directory, we cannot make this
5799 * conditional on need_log_inode() because the directory
5800 * might have been logged in LOG_INODE_EXISTS mode or
5801 * the dir index of the conflicting inode is not in a
5802 * dir index key range logged for the directory. So we
5803 * must make sure the deletion is recorded.
5804 */
5805 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5806 LOG_INODE_ALL, ctx);
5807 btrfs_add_delayed_iput(BTRFS_I(inode));
5808 if (ret)
5809 break;
5810 continue;
5811 }
5812
5813 /*
5814 * Here we can use need_log_inode() because we only need to log
5815 * the inode in LOG_INODE_EXISTS mode and rename operations
5816 * update the log, so that the log ends up with the new name and
5817 * without the old name.
5818 *
5819 * We did this check at add_conflicting_inode(), but here we do
5820 * it again because if some other task logged the inode after
5821 * that, we can avoid doing it again.
5822 */
5823 if (!need_log_inode(trans, BTRFS_I(inode))) {
5824 btrfs_add_delayed_iput(BTRFS_I(inode));
5825 continue;
5826 }
5827
5828 /*
5829 * We are safe logging the other inode without acquiring its
5830 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5831 * are safe against concurrent renames of the other inode as
5832 * well because during a rename we pin the log and update the
5833 * log with the new name before we unpin it.
5834 */
5835 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5836 btrfs_add_delayed_iput(BTRFS_I(inode));
5837 if (ret)
5838 break;
5839 }
5840
5841 ctx->logging_conflict_inodes = false;
5842 if (ret)
5843 free_conflicting_inodes(ctx);
5844
5845 return ret;
5846}
5847
5848static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5849 struct btrfs_inode *inode,
5850 struct btrfs_key *min_key,
5851 const struct btrfs_key *max_key,
5852 struct btrfs_path *path,
5853 struct btrfs_path *dst_path,
5854 const u64 logged_isize,
5855 const int inode_only,
5856 struct btrfs_log_ctx *ctx,
5857 bool *need_log_inode_item)
5858{
5859 const u64 i_size = i_size_read(&inode->vfs_inode);
5860 struct btrfs_root *root = inode->root;
5861 int ins_start_slot = 0;
5862 int ins_nr = 0;
5863 int ret;
5864
5865 while (1) {
5866 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5867 if (ret < 0)
5868 return ret;
5869 if (ret > 0) {
5870 ret = 0;
5871 break;
5872 }
5873again:
5874 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5875 if (min_key->objectid != max_key->objectid)
5876 break;
5877 if (min_key->type > max_key->type)
5878 break;
5879
5880 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5881 *need_log_inode_item = false;
5882 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5883 min_key->offset >= i_size) {
5884 /*
5885 * Extents at and beyond eof are logged with
5886 * btrfs_log_prealloc_extents().
5887 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5888 * and no keys greater than that, so bail out.
5889 */
5890 break;
5891 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5892 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5893 (inode->generation == trans->transid ||
5894 ctx->logging_conflict_inodes)) {
5895 u64 other_ino = 0;
5896 u64 other_parent = 0;
5897
5898 ret = btrfs_check_ref_name_override(path->nodes[0],
5899 path->slots[0], min_key, inode,
5900 &other_ino, &other_parent);
5901 if (ret < 0) {
5902 return ret;
5903 } else if (ret > 0 &&
5904 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5905 if (ins_nr > 0) {
5906 ins_nr++;
5907 } else {
5908 ins_nr = 1;
5909 ins_start_slot = path->slots[0];
5910 }
5911 ret = copy_items(trans, inode, dst_path, path,
5912 ins_start_slot, ins_nr,
5913 inode_only, logged_isize, ctx);
5914 if (ret < 0)
5915 return ret;
5916 ins_nr = 0;
5917
5918 btrfs_release_path(path);
5919 ret = add_conflicting_inode(trans, root, path,
5920 other_ino,
5921 other_parent, ctx);
5922 if (ret)
5923 return ret;
5924 goto next_key;
5925 }
5926 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5927 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5928 if (ins_nr == 0)
5929 goto next_slot;
5930 ret = copy_items(trans, inode, dst_path, path,
5931 ins_start_slot,
5932 ins_nr, inode_only, logged_isize, ctx);
5933 if (ret < 0)
5934 return ret;
5935 ins_nr = 0;
5936 goto next_slot;
5937 }
5938
5939 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5940 ins_nr++;
5941 goto next_slot;
5942 } else if (!ins_nr) {
5943 ins_start_slot = path->slots[0];
5944 ins_nr = 1;
5945 goto next_slot;
5946 }
5947
5948 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5949 ins_nr, inode_only, logged_isize, ctx);
5950 if (ret < 0)
5951 return ret;
5952 ins_nr = 1;
5953 ins_start_slot = path->slots[0];
5954next_slot:
5955 path->slots[0]++;
5956 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5957 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5958 path->slots[0]);
5959 goto again;
5960 }
5961 if (ins_nr) {
5962 ret = copy_items(trans, inode, dst_path, path,
5963 ins_start_slot, ins_nr, inode_only,
5964 logged_isize, ctx);
5965 if (ret < 0)
5966 return ret;
5967 ins_nr = 0;
5968 }
5969 btrfs_release_path(path);
5970next_key:
5971 if (min_key->offset < (u64)-1) {
5972 min_key->offset++;
5973 } else if (min_key->type < max_key->type) {
5974 min_key->type++;
5975 min_key->offset = 0;
5976 } else {
5977 break;
5978 }
5979
5980 /*
5981 * We may process many leaves full of items for our inode, so
5982 * avoid monopolizing a cpu for too long by rescheduling while
5983 * not holding locks on any tree.
5984 */
5985 cond_resched();
5986 }
5987 if (ins_nr) {
5988 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5989 ins_nr, inode_only, logged_isize, ctx);
5990 if (ret)
5991 return ret;
5992 }
5993
5994 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5995 /*
5996 * Release the path because otherwise we might attempt to double
5997 * lock the same leaf with btrfs_log_prealloc_extents() below.
5998 */
5999 btrfs_release_path(path);
6000 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6001 }
6002
6003 return ret;
6004}
6005
6006static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6007 struct btrfs_root *log,
6008 struct btrfs_path *path,
6009 const struct btrfs_item_batch *batch,
6010 const struct btrfs_delayed_item *first_item)
6011{
6012 const struct btrfs_delayed_item *curr = first_item;
6013 int ret;
6014
6015 ret = btrfs_insert_empty_items(trans, log, path, batch);
6016 if (ret)
6017 return ret;
6018
6019 for (int i = 0; i < batch->nr; i++) {
6020 char *data_ptr;
6021
6022 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6023 write_extent_buffer(path->nodes[0], &curr->data,
6024 (unsigned long)data_ptr, curr->data_len);
6025 curr = list_next_entry(curr, log_list);
6026 path->slots[0]++;
6027 }
6028
6029 btrfs_release_path(path);
6030
6031 return 0;
6032}
6033
6034static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6035 struct btrfs_inode *inode,
6036 struct btrfs_path *path,
6037 const struct list_head *delayed_ins_list,
6038 struct btrfs_log_ctx *ctx)
6039{
6040 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6041 const int max_batch_size = 195;
6042 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6043 const u64 ino = btrfs_ino(inode);
6044 struct btrfs_root *log = inode->root->log_root;
6045 struct btrfs_item_batch batch = {
6046 .nr = 0,
6047 .total_data_size = 0,
6048 };
6049 const struct btrfs_delayed_item *first = NULL;
6050 const struct btrfs_delayed_item *curr;
6051 char *ins_data;
6052 struct btrfs_key *ins_keys;
6053 u32 *ins_sizes;
6054 u64 curr_batch_size = 0;
6055 int batch_idx = 0;
6056 int ret;
6057
6058 /* We are adding dir index items to the log tree. */
6059 lockdep_assert_held(&inode->log_mutex);
6060
6061 /*
6062 * We collect delayed items before copying index keys from the subvolume
6063 * to the log tree. However just after we collected them, they may have
6064 * been flushed (all of them or just some of them), and therefore we
6065 * could have copied them from the subvolume tree to the log tree.
6066 * So find the first delayed item that was not yet logged (they are
6067 * sorted by index number).
6068 */
6069 list_for_each_entry(curr, delayed_ins_list, log_list) {
6070 if (curr->index > inode->last_dir_index_offset) {
6071 first = curr;
6072 break;
6073 }
6074 }
6075
6076 /* Empty list or all delayed items were already logged. */
6077 if (!first)
6078 return 0;
6079
6080 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6081 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6082 if (!ins_data)
6083 return -ENOMEM;
6084 ins_sizes = (u32 *)ins_data;
6085 batch.data_sizes = ins_sizes;
6086 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6087 batch.keys = ins_keys;
6088
6089 curr = first;
6090 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6091 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6092
6093 if (curr_batch_size + curr_size > leaf_data_size ||
6094 batch.nr == max_batch_size) {
6095 ret = insert_delayed_items_batch(trans, log, path,
6096 &batch, first);
6097 if (ret)
6098 goto out;
6099 batch_idx = 0;
6100 batch.nr = 0;
6101 batch.total_data_size = 0;
6102 curr_batch_size = 0;
6103 first = curr;
6104 }
6105
6106 ins_sizes[batch_idx] = curr->data_len;
6107 ins_keys[batch_idx].objectid = ino;
6108 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6109 ins_keys[batch_idx].offset = curr->index;
6110 curr_batch_size += curr_size;
6111 batch.total_data_size += curr->data_len;
6112 batch.nr++;
6113 batch_idx++;
6114 curr = list_next_entry(curr, log_list);
6115 }
6116
6117 ASSERT(batch.nr >= 1);
6118 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6119
6120 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6121 log_list);
6122 inode->last_dir_index_offset = curr->index;
6123out:
6124 kfree(ins_data);
6125
6126 return ret;
6127}
6128
6129static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6130 struct btrfs_inode *inode,
6131 struct btrfs_path *path,
6132 const struct list_head *delayed_del_list,
6133 struct btrfs_log_ctx *ctx)
6134{
6135 const u64 ino = btrfs_ino(inode);
6136 const struct btrfs_delayed_item *curr;
6137
6138 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6139 log_list);
6140
6141 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6142 u64 first_dir_index = curr->index;
6143 u64 last_dir_index;
6144 const struct btrfs_delayed_item *next;
6145 int ret;
6146
6147 /*
6148 * Find a range of consecutive dir index items to delete. Like
6149 * this we log a single dir range item spanning several contiguous
6150 * dir items instead of logging one range item per dir index item.
6151 */
6152 next = list_next_entry(curr, log_list);
6153 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6154 if (next->index != curr->index + 1)
6155 break;
6156 curr = next;
6157 next = list_next_entry(next, log_list);
6158 }
6159
6160 last_dir_index = curr->index;
6161 ASSERT(last_dir_index >= first_dir_index);
6162
6163 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6164 ino, first_dir_index, last_dir_index);
6165 if (ret)
6166 return ret;
6167 curr = list_next_entry(curr, log_list);
6168 }
6169
6170 return 0;
6171}
6172
6173static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6174 struct btrfs_inode *inode,
6175 struct btrfs_path *path,
6176 struct btrfs_log_ctx *ctx,
6177 const struct list_head *delayed_del_list,
6178 const struct btrfs_delayed_item *first,
6179 const struct btrfs_delayed_item **last_ret)
6180{
6181 const struct btrfs_delayed_item *next;
6182 struct extent_buffer *leaf = path->nodes[0];
6183 const int last_slot = btrfs_header_nritems(leaf) - 1;
6184 int slot = path->slots[0] + 1;
6185 const u64 ino = btrfs_ino(inode);
6186
6187 next = list_next_entry(first, log_list);
6188
6189 while (slot < last_slot &&
6190 !list_entry_is_head(next, delayed_del_list, log_list)) {
6191 struct btrfs_key key;
6192
6193 btrfs_item_key_to_cpu(leaf, &key, slot);
6194 if (key.objectid != ino ||
6195 key.type != BTRFS_DIR_INDEX_KEY ||
6196 key.offset != next->index)
6197 break;
6198
6199 slot++;
6200 *last_ret = next;
6201 next = list_next_entry(next, log_list);
6202 }
6203
6204 return btrfs_del_items(trans, inode->root->log_root, path,
6205 path->slots[0], slot - path->slots[0]);
6206}
6207
6208static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6209 struct btrfs_inode *inode,
6210 struct btrfs_path *path,
6211 const struct list_head *delayed_del_list,
6212 struct btrfs_log_ctx *ctx)
6213{
6214 struct btrfs_root *log = inode->root->log_root;
6215 const struct btrfs_delayed_item *curr;
6216 u64 last_range_start = 0;
6217 u64 last_range_end = 0;
6218 struct btrfs_key key;
6219
6220 key.objectid = btrfs_ino(inode);
6221 key.type = BTRFS_DIR_INDEX_KEY;
6222 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6223 log_list);
6224
6225 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6226 const struct btrfs_delayed_item *last = curr;
6227 u64 first_dir_index = curr->index;
6228 u64 last_dir_index;
6229 bool deleted_items = false;
6230 int ret;
6231
6232 key.offset = curr->index;
6233 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6234 if (ret < 0) {
6235 return ret;
6236 } else if (ret == 0) {
6237 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6238 delayed_del_list, curr,
6239 &last);
6240 if (ret)
6241 return ret;
6242 deleted_items = true;
6243 }
6244
6245 btrfs_release_path(path);
6246
6247 /*
6248 * If we deleted items from the leaf, it means we have a range
6249 * item logging their range, so no need to add one or update an
6250 * existing one. Otherwise we have to log a dir range item.
6251 */
6252 if (deleted_items)
6253 goto next_batch;
6254
6255 last_dir_index = last->index;
6256 ASSERT(last_dir_index >= first_dir_index);
6257 /*
6258 * If this range starts right after where the previous one ends,
6259 * then we want to reuse the previous range item and change its
6260 * end offset to the end of this range. This is just to minimize
6261 * leaf space usage, by avoiding adding a new range item.
6262 */
6263 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6264 first_dir_index = last_range_start;
6265
6266 ret = insert_dir_log_key(trans, log, path, key.objectid,
6267 first_dir_index, last_dir_index);
6268 if (ret)
6269 return ret;
6270
6271 last_range_start = first_dir_index;
6272 last_range_end = last_dir_index;
6273next_batch:
6274 curr = list_next_entry(last, log_list);
6275 }
6276
6277 return 0;
6278}
6279
6280static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6281 struct btrfs_inode *inode,
6282 struct btrfs_path *path,
6283 const struct list_head *delayed_del_list,
6284 struct btrfs_log_ctx *ctx)
6285{
6286 /*
6287 * We are deleting dir index items from the log tree or adding range
6288 * items to it.
6289 */
6290 lockdep_assert_held(&inode->log_mutex);
6291
6292 if (list_empty(delayed_del_list))
6293 return 0;
6294
6295 if (ctx->logged_before)
6296 return log_delayed_deletions_incremental(trans, inode, path,
6297 delayed_del_list, ctx);
6298
6299 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6300 ctx);
6301}
6302
6303/*
6304 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6305 * items instead of the subvolume tree.
6306 */
6307static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6308 struct btrfs_inode *inode,
6309 const struct list_head *delayed_ins_list,
6310 struct btrfs_log_ctx *ctx)
6311{
6312 const bool orig_log_new_dentries = ctx->log_new_dentries;
6313 struct btrfs_fs_info *fs_info = trans->fs_info;
6314 struct btrfs_delayed_item *item;
6315 int ret = 0;
6316
6317 /*
6318 * No need for the log mutex, plus to avoid potential deadlocks or
6319 * lockdep annotations due to nesting of delayed inode mutexes and log
6320 * mutexes.
6321 */
6322 lockdep_assert_not_held(&inode->log_mutex);
6323
6324 ASSERT(!ctx->logging_new_delayed_dentries);
6325 ctx->logging_new_delayed_dentries = true;
6326
6327 list_for_each_entry(item, delayed_ins_list, log_list) {
6328 struct btrfs_dir_item *dir_item;
6329 struct inode *di_inode;
6330 struct btrfs_key key;
6331 int log_mode = LOG_INODE_EXISTS;
6332
6333 dir_item = (struct btrfs_dir_item *)item->data;
6334 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6335
6336 if (key.type == BTRFS_ROOT_ITEM_KEY)
6337 continue;
6338
6339 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6340 if (IS_ERR(di_inode)) {
6341 ret = PTR_ERR(di_inode);
6342 break;
6343 }
6344
6345 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6346 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6347 continue;
6348 }
6349
6350 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6351 log_mode = LOG_INODE_ALL;
6352
6353 ctx->log_new_dentries = false;
6354 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6355
6356 if (!ret && ctx->log_new_dentries)
6357 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6358
6359 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6360
6361 if (ret)
6362 break;
6363 }
6364
6365 ctx->log_new_dentries = orig_log_new_dentries;
6366 ctx->logging_new_delayed_dentries = false;
6367
6368 return ret;
6369}
6370
6371/* log a single inode in the tree log.
6372 * At least one parent directory for this inode must exist in the tree
6373 * or be logged already.
6374 *
6375 * Any items from this inode changed by the current transaction are copied
6376 * to the log tree. An extra reference is taken on any extents in this
6377 * file, allowing us to avoid a whole pile of corner cases around logging
6378 * blocks that have been removed from the tree.
6379 *
6380 * See LOG_INODE_ALL and related defines for a description of what inode_only
6381 * does.
6382 *
6383 * This handles both files and directories.
6384 */
6385static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6386 struct btrfs_inode *inode,
6387 int inode_only,
6388 struct btrfs_log_ctx *ctx)
6389{
6390 struct btrfs_path *path;
6391 struct btrfs_path *dst_path;
6392 struct btrfs_key min_key;
6393 struct btrfs_key max_key;
6394 struct btrfs_root *log = inode->root->log_root;
6395 int ret;
6396 bool fast_search = false;
6397 u64 ino = btrfs_ino(inode);
6398 struct extent_map_tree *em_tree = &inode->extent_tree;
6399 u64 logged_isize = 0;
6400 bool need_log_inode_item = true;
6401 bool xattrs_logged = false;
6402 bool inode_item_dropped = true;
6403 bool full_dir_logging = false;
6404 LIST_HEAD(delayed_ins_list);
6405 LIST_HEAD(delayed_del_list);
6406
6407 path = btrfs_alloc_path();
6408 if (!path)
6409 return -ENOMEM;
6410 dst_path = btrfs_alloc_path();
6411 if (!dst_path) {
6412 btrfs_free_path(path);
6413 return -ENOMEM;
6414 }
6415
6416 min_key.objectid = ino;
6417 min_key.type = BTRFS_INODE_ITEM_KEY;
6418 min_key.offset = 0;
6419
6420 max_key.objectid = ino;
6421
6422
6423 /* today the code can only do partial logging of directories */
6424 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6425 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6426 &inode->runtime_flags) &&
6427 inode_only >= LOG_INODE_EXISTS))
6428 max_key.type = BTRFS_XATTR_ITEM_KEY;
6429 else
6430 max_key.type = (u8)-1;
6431 max_key.offset = (u64)-1;
6432
6433 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6434 full_dir_logging = true;
6435
6436 /*
6437 * If we are logging a directory while we are logging dentries of the
6438 * delayed items of some other inode, then we need to flush the delayed
6439 * items of this directory and not log the delayed items directly. This
6440 * is to prevent more than one level of recursion into btrfs_log_inode()
6441 * by having something like this:
6442 *
6443 * $ mkdir -p a/b/c/d/e/f/g/h/...
6444 * $ xfs_io -c "fsync" a
6445 *
6446 * Where all directories in the path did not exist before and are
6447 * created in the current transaction.
6448 * So in such a case we directly log the delayed items of the main
6449 * directory ("a") without flushing them first, while for each of its
6450 * subdirectories we flush their delayed items before logging them.
6451 * This prevents a potential unbounded recursion like this:
6452 *
6453 * btrfs_log_inode()
6454 * log_new_delayed_dentries()
6455 * btrfs_log_inode()
6456 * log_new_delayed_dentries()
6457 * btrfs_log_inode()
6458 * log_new_delayed_dentries()
6459 * (...)
6460 *
6461 * We have thresholds for the maximum number of delayed items to have in
6462 * memory, and once they are hit, the items are flushed asynchronously.
6463 * However the limit is quite high, so lets prevent deep levels of
6464 * recursion to happen by limiting the maximum depth to be 1.
6465 */
6466 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6467 ret = btrfs_commit_inode_delayed_items(trans, inode);
6468 if (ret)
6469 goto out;
6470 }
6471
6472 mutex_lock(&inode->log_mutex);
6473
6474 /*
6475 * For symlinks, we must always log their content, which is stored in an
6476 * inline extent, otherwise we could end up with an empty symlink after
6477 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6478 * one attempts to create an empty symlink).
6479 * We don't need to worry about flushing delalloc, because when we create
6480 * the inline extent when the symlink is created (we never have delalloc
6481 * for symlinks).
6482 */
6483 if (S_ISLNK(inode->vfs_inode.i_mode))
6484 inode_only = LOG_INODE_ALL;
6485
6486 /*
6487 * Before logging the inode item, cache the value returned by
6488 * inode_logged(), because after that we have the need to figure out if
6489 * the inode was previously logged in this transaction.
6490 */
6491 ret = inode_logged(trans, inode, path);
6492 if (ret < 0)
6493 goto out_unlock;
6494 ctx->logged_before = (ret == 1);
6495 ret = 0;
6496
6497 /*
6498 * This is for cases where logging a directory could result in losing a
6499 * a file after replaying the log. For example, if we move a file from a
6500 * directory A to a directory B, then fsync directory A, we have no way
6501 * to known the file was moved from A to B, so logging just A would
6502 * result in losing the file after a log replay.
6503 */
6504 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6505 ret = BTRFS_LOG_FORCE_COMMIT;
6506 goto out_unlock;
6507 }
6508
6509 /*
6510 * a brute force approach to making sure we get the most uptodate
6511 * copies of everything.
6512 */
6513 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6514 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6515 if (ctx->logged_before)
6516 ret = drop_inode_items(trans, log, path, inode,
6517 BTRFS_XATTR_ITEM_KEY);
6518 } else {
6519 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6520 /*
6521 * Make sure the new inode item we write to the log has
6522 * the same isize as the current one (if it exists).
6523 * This is necessary to prevent data loss after log
6524 * replay, and also to prevent doing a wrong expanding
6525 * truncate - for e.g. create file, write 4K into offset
6526 * 0, fsync, write 4K into offset 4096, add hard link,
6527 * fsync some other file (to sync log), power fail - if
6528 * we use the inode's current i_size, after log replay
6529 * we get a 8Kb file, with the last 4Kb extent as a hole
6530 * (zeroes), as if an expanding truncate happened,
6531 * instead of getting a file of 4Kb only.
6532 */
6533 ret = logged_inode_size(log, inode, path, &logged_isize);
6534 if (ret)
6535 goto out_unlock;
6536 }
6537 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6538 &inode->runtime_flags)) {
6539 if (inode_only == LOG_INODE_EXISTS) {
6540 max_key.type = BTRFS_XATTR_ITEM_KEY;
6541 if (ctx->logged_before)
6542 ret = drop_inode_items(trans, log, path,
6543 inode, max_key.type);
6544 } else {
6545 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6546 &inode->runtime_flags);
6547 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6548 &inode->runtime_flags);
6549 if (ctx->logged_before)
6550 ret = truncate_inode_items(trans, log,
6551 inode, 0, 0);
6552 }
6553 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6554 &inode->runtime_flags) ||
6555 inode_only == LOG_INODE_EXISTS) {
6556 if (inode_only == LOG_INODE_ALL)
6557 fast_search = true;
6558 max_key.type = BTRFS_XATTR_ITEM_KEY;
6559 if (ctx->logged_before)
6560 ret = drop_inode_items(trans, log, path, inode,
6561 max_key.type);
6562 } else {
6563 if (inode_only == LOG_INODE_ALL)
6564 fast_search = true;
6565 inode_item_dropped = false;
6566 goto log_extents;
6567 }
6568
6569 }
6570 if (ret)
6571 goto out_unlock;
6572
6573 /*
6574 * If we are logging a directory in full mode, collect the delayed items
6575 * before iterating the subvolume tree, so that we don't miss any new
6576 * dir index items in case they get flushed while or right after we are
6577 * iterating the subvolume tree.
6578 */
6579 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6580 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6581 &delayed_del_list);
6582
6583 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6584 path, dst_path, logged_isize,
6585 inode_only, ctx,
6586 &need_log_inode_item);
6587 if (ret)
6588 goto out_unlock;
6589
6590 btrfs_release_path(path);
6591 btrfs_release_path(dst_path);
6592 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6593 if (ret)
6594 goto out_unlock;
6595 xattrs_logged = true;
6596 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6597 btrfs_release_path(path);
6598 btrfs_release_path(dst_path);
6599 ret = btrfs_log_holes(trans, inode, path);
6600 if (ret)
6601 goto out_unlock;
6602 }
6603log_extents:
6604 btrfs_release_path(path);
6605 btrfs_release_path(dst_path);
6606 if (need_log_inode_item) {
6607 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6608 if (ret)
6609 goto out_unlock;
6610 /*
6611 * If we are doing a fast fsync and the inode was logged before
6612 * in this transaction, we don't need to log the xattrs because
6613 * they were logged before. If xattrs were added, changed or
6614 * deleted since the last time we logged the inode, then we have
6615 * already logged them because the inode had the runtime flag
6616 * BTRFS_INODE_COPY_EVERYTHING set.
6617 */
6618 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6619 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6620 if (ret)
6621 goto out_unlock;
6622 btrfs_release_path(path);
6623 }
6624 }
6625 if (fast_search) {
6626 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6627 if (ret)
6628 goto out_unlock;
6629 } else if (inode_only == LOG_INODE_ALL) {
6630 struct extent_map *em, *n;
6631
6632 write_lock(&em_tree->lock);
6633 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6634 list_del_init(&em->list);
6635 write_unlock(&em_tree->lock);
6636 }
6637
6638 if (full_dir_logging) {
6639 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6640 if (ret)
6641 goto out_unlock;
6642 ret = log_delayed_insertion_items(trans, inode, path,
6643 &delayed_ins_list, ctx);
6644 if (ret)
6645 goto out_unlock;
6646 ret = log_delayed_deletion_items(trans, inode, path,
6647 &delayed_del_list, ctx);
6648 if (ret)
6649 goto out_unlock;
6650 }
6651
6652 spin_lock(&inode->lock);
6653 inode->logged_trans = trans->transid;
6654 /*
6655 * Don't update last_log_commit if we logged that an inode exists.
6656 * We do this for three reasons:
6657 *
6658 * 1) We might have had buffered writes to this inode that were
6659 * flushed and had their ordered extents completed in this
6660 * transaction, but we did not previously log the inode with
6661 * LOG_INODE_ALL. Later the inode was evicted and after that
6662 * it was loaded again and this LOG_INODE_EXISTS log operation
6663 * happened. We must make sure that if an explicit fsync against
6664 * the inode is performed later, it logs the new extents, an
6665 * updated inode item, etc, and syncs the log. The same logic
6666 * applies to direct IO writes instead of buffered writes.
6667 *
6668 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6669 * is logged with an i_size of 0 or whatever value was logged
6670 * before. If later the i_size of the inode is increased by a
6671 * truncate operation, the log is synced through an fsync of
6672 * some other inode and then finally an explicit fsync against
6673 * this inode is made, we must make sure this fsync logs the
6674 * inode with the new i_size, the hole between old i_size and
6675 * the new i_size, and syncs the log.
6676 *
6677 * 3) If we are logging that an ancestor inode exists as part of
6678 * logging a new name from a link or rename operation, don't update
6679 * its last_log_commit - otherwise if an explicit fsync is made
6680 * against an ancestor, the fsync considers the inode in the log
6681 * and doesn't sync the log, resulting in the ancestor missing after
6682 * a power failure unless the log was synced as part of an fsync
6683 * against any other unrelated inode.
6684 */
6685 if (inode_only != LOG_INODE_EXISTS)
6686 inode->last_log_commit = inode->last_sub_trans;
6687 spin_unlock(&inode->lock);
6688
6689 /*
6690 * Reset the last_reflink_trans so that the next fsync does not need to
6691 * go through the slower path when logging extents and their checksums.
6692 */
6693 if (inode_only == LOG_INODE_ALL)
6694 inode->last_reflink_trans = 0;
6695
6696out_unlock:
6697 mutex_unlock(&inode->log_mutex);
6698out:
6699 btrfs_free_path(path);
6700 btrfs_free_path(dst_path);
6701
6702 if (ret)
6703 free_conflicting_inodes(ctx);
6704 else
6705 ret = log_conflicting_inodes(trans, inode->root, ctx);
6706
6707 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6708 if (!ret)
6709 ret = log_new_delayed_dentries(trans, inode,
6710 &delayed_ins_list, ctx);
6711
6712 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6713 &delayed_del_list);
6714 }
6715
6716 return ret;
6717}
6718
6719static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6720 struct btrfs_inode *inode,
6721 struct btrfs_log_ctx *ctx)
6722{
6723 struct btrfs_fs_info *fs_info = trans->fs_info;
6724 int ret;
6725 struct btrfs_path *path;
6726 struct btrfs_key key;
6727 struct btrfs_root *root = inode->root;
6728 const u64 ino = btrfs_ino(inode);
6729
6730 path = btrfs_alloc_path();
6731 if (!path)
6732 return -ENOMEM;
6733 path->skip_locking = 1;
6734 path->search_commit_root = 1;
6735
6736 key.objectid = ino;
6737 key.type = BTRFS_INODE_REF_KEY;
6738 key.offset = 0;
6739 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6740 if (ret < 0)
6741 goto out;
6742
6743 while (true) {
6744 struct extent_buffer *leaf = path->nodes[0];
6745 int slot = path->slots[0];
6746 u32 cur_offset = 0;
6747 u32 item_size;
6748 unsigned long ptr;
6749
6750 if (slot >= btrfs_header_nritems(leaf)) {
6751 ret = btrfs_next_leaf(root, path);
6752 if (ret < 0)
6753 goto out;
6754 else if (ret > 0)
6755 break;
6756 continue;
6757 }
6758
6759 btrfs_item_key_to_cpu(leaf, &key, slot);
6760 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6761 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6762 break;
6763
6764 item_size = btrfs_item_size(leaf, slot);
6765 ptr = btrfs_item_ptr_offset(leaf, slot);
6766 while (cur_offset < item_size) {
6767 struct btrfs_key inode_key;
6768 struct inode *dir_inode;
6769
6770 inode_key.type = BTRFS_INODE_ITEM_KEY;
6771 inode_key.offset = 0;
6772
6773 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6774 struct btrfs_inode_extref *extref;
6775
6776 extref = (struct btrfs_inode_extref *)
6777 (ptr + cur_offset);
6778 inode_key.objectid = btrfs_inode_extref_parent(
6779 leaf, extref);
6780 cur_offset += sizeof(*extref);
6781 cur_offset += btrfs_inode_extref_name_len(leaf,
6782 extref);
6783 } else {
6784 inode_key.objectid = key.offset;
6785 cur_offset = item_size;
6786 }
6787
6788 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6789 root);
6790 /*
6791 * If the parent inode was deleted, return an error to
6792 * fallback to a transaction commit. This is to prevent
6793 * getting an inode that was moved from one parent A to
6794 * a parent B, got its former parent A deleted and then
6795 * it got fsync'ed, from existing at both parents after
6796 * a log replay (and the old parent still existing).
6797 * Example:
6798 *
6799 * mkdir /mnt/A
6800 * mkdir /mnt/B
6801 * touch /mnt/B/bar
6802 * sync
6803 * mv /mnt/B/bar /mnt/A/bar
6804 * mv -T /mnt/A /mnt/B
6805 * fsync /mnt/B/bar
6806 * <power fail>
6807 *
6808 * If we ignore the old parent B which got deleted,
6809 * after a log replay we would have file bar linked
6810 * at both parents and the old parent B would still
6811 * exist.
6812 */
6813 if (IS_ERR(dir_inode)) {
6814 ret = PTR_ERR(dir_inode);
6815 goto out;
6816 }
6817
6818 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6819 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6820 continue;
6821 }
6822
6823 ctx->log_new_dentries = false;
6824 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6825 LOG_INODE_ALL, ctx);
6826 if (!ret && ctx->log_new_dentries)
6827 ret = log_new_dir_dentries(trans,
6828 BTRFS_I(dir_inode), ctx);
6829 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6830 if (ret)
6831 goto out;
6832 }
6833 path->slots[0]++;
6834 }
6835 ret = 0;
6836out:
6837 btrfs_free_path(path);
6838 return ret;
6839}
6840
6841static int log_new_ancestors(struct btrfs_trans_handle *trans,
6842 struct btrfs_root *root,
6843 struct btrfs_path *path,
6844 struct btrfs_log_ctx *ctx)
6845{
6846 struct btrfs_key found_key;
6847
6848 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6849
6850 while (true) {
6851 struct btrfs_fs_info *fs_info = root->fs_info;
6852 struct extent_buffer *leaf;
6853 int slot;
6854 struct btrfs_key search_key;
6855 struct inode *inode;
6856 u64 ino;
6857 int ret = 0;
6858
6859 btrfs_release_path(path);
6860
6861 ino = found_key.offset;
6862
6863 search_key.objectid = found_key.offset;
6864 search_key.type = BTRFS_INODE_ITEM_KEY;
6865 search_key.offset = 0;
6866 inode = btrfs_iget(fs_info->sb, ino, root);
6867 if (IS_ERR(inode))
6868 return PTR_ERR(inode);
6869
6870 if (BTRFS_I(inode)->generation >= trans->transid &&
6871 need_log_inode(trans, BTRFS_I(inode)))
6872 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6873 LOG_INODE_EXISTS, ctx);
6874 btrfs_add_delayed_iput(BTRFS_I(inode));
6875 if (ret)
6876 return ret;
6877
6878 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6879 break;
6880
6881 search_key.type = BTRFS_INODE_REF_KEY;
6882 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6883 if (ret < 0)
6884 return ret;
6885
6886 leaf = path->nodes[0];
6887 slot = path->slots[0];
6888 if (slot >= btrfs_header_nritems(leaf)) {
6889 ret = btrfs_next_leaf(root, path);
6890 if (ret < 0)
6891 return ret;
6892 else if (ret > 0)
6893 return -ENOENT;
6894 leaf = path->nodes[0];
6895 slot = path->slots[0];
6896 }
6897
6898 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6899 if (found_key.objectid != search_key.objectid ||
6900 found_key.type != BTRFS_INODE_REF_KEY)
6901 return -ENOENT;
6902 }
6903 return 0;
6904}
6905
6906static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6907 struct btrfs_inode *inode,
6908 struct dentry *parent,
6909 struct btrfs_log_ctx *ctx)
6910{
6911 struct btrfs_root *root = inode->root;
6912 struct dentry *old_parent = NULL;
6913 struct super_block *sb = inode->vfs_inode.i_sb;
6914 int ret = 0;
6915
6916 while (true) {
6917 if (!parent || d_really_is_negative(parent) ||
6918 sb != parent->d_sb)
6919 break;
6920
6921 inode = BTRFS_I(d_inode(parent));
6922 if (root != inode->root)
6923 break;
6924
6925 if (inode->generation >= trans->transid &&
6926 need_log_inode(trans, inode)) {
6927 ret = btrfs_log_inode(trans, inode,
6928 LOG_INODE_EXISTS, ctx);
6929 if (ret)
6930 break;
6931 }
6932 if (IS_ROOT(parent))
6933 break;
6934
6935 parent = dget_parent(parent);
6936 dput(old_parent);
6937 old_parent = parent;
6938 }
6939 dput(old_parent);
6940
6941 return ret;
6942}
6943
6944static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6945 struct btrfs_inode *inode,
6946 struct dentry *parent,
6947 struct btrfs_log_ctx *ctx)
6948{
6949 struct btrfs_root *root = inode->root;
6950 const u64 ino = btrfs_ino(inode);
6951 struct btrfs_path *path;
6952 struct btrfs_key search_key;
6953 int ret;
6954
6955 /*
6956 * For a single hard link case, go through a fast path that does not
6957 * need to iterate the fs/subvolume tree.
6958 */
6959 if (inode->vfs_inode.i_nlink < 2)
6960 return log_new_ancestors_fast(trans, inode, parent, ctx);
6961
6962 path = btrfs_alloc_path();
6963 if (!path)
6964 return -ENOMEM;
6965
6966 search_key.objectid = ino;
6967 search_key.type = BTRFS_INODE_REF_KEY;
6968 search_key.offset = 0;
6969again:
6970 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6971 if (ret < 0)
6972 goto out;
6973 if (ret == 0)
6974 path->slots[0]++;
6975
6976 while (true) {
6977 struct extent_buffer *leaf = path->nodes[0];
6978 int slot = path->slots[0];
6979 struct btrfs_key found_key;
6980
6981 if (slot >= btrfs_header_nritems(leaf)) {
6982 ret = btrfs_next_leaf(root, path);
6983 if (ret < 0)
6984 goto out;
6985 else if (ret > 0)
6986 break;
6987 continue;
6988 }
6989
6990 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6991 if (found_key.objectid != ino ||
6992 found_key.type > BTRFS_INODE_EXTREF_KEY)
6993 break;
6994
6995 /*
6996 * Don't deal with extended references because they are rare
6997 * cases and too complex to deal with (we would need to keep
6998 * track of which subitem we are processing for each item in
6999 * this loop, etc). So just return some error to fallback to
7000 * a transaction commit.
7001 */
7002 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7003 ret = -EMLINK;
7004 goto out;
7005 }
7006
7007 /*
7008 * Logging ancestors needs to do more searches on the fs/subvol
7009 * tree, so it releases the path as needed to avoid deadlocks.
7010 * Keep track of the last inode ref key and resume from that key
7011 * after logging all new ancestors for the current hard link.
7012 */
7013 memcpy(&search_key, &found_key, sizeof(search_key));
7014
7015 ret = log_new_ancestors(trans, root, path, ctx);
7016 if (ret)
7017 goto out;
7018 btrfs_release_path(path);
7019 goto again;
7020 }
7021 ret = 0;
7022out:
7023 btrfs_free_path(path);
7024 return ret;
7025}
7026
7027/*
7028 * helper function around btrfs_log_inode to make sure newly created
7029 * parent directories also end up in the log. A minimal inode and backref
7030 * only logging is done of any parent directories that are older than
7031 * the last committed transaction
7032 */
7033static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7034 struct btrfs_inode *inode,
7035 struct dentry *parent,
7036 int inode_only,
7037 struct btrfs_log_ctx *ctx)
7038{
7039 struct btrfs_root *root = inode->root;
7040 struct btrfs_fs_info *fs_info = root->fs_info;
7041 int ret = 0;
7042 bool log_dentries = false;
7043
7044 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7045 ret = BTRFS_LOG_FORCE_COMMIT;
7046 goto end_no_trans;
7047 }
7048
7049 if (btrfs_root_refs(&root->root_item) == 0) {
7050 ret = BTRFS_LOG_FORCE_COMMIT;
7051 goto end_no_trans;
7052 }
7053
7054 /*
7055 * Skip already logged inodes or inodes corresponding to tmpfiles
7056 * (since logging them is pointless, a link count of 0 means they
7057 * will never be accessible).
7058 */
7059 if ((btrfs_inode_in_log(inode, trans->transid) &&
7060 list_empty(&ctx->ordered_extents)) ||
7061 inode->vfs_inode.i_nlink == 0) {
7062 ret = BTRFS_NO_LOG_SYNC;
7063 goto end_no_trans;
7064 }
7065
7066 ret = start_log_trans(trans, root, ctx);
7067 if (ret)
7068 goto end_no_trans;
7069
7070 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7071 if (ret)
7072 goto end_trans;
7073
7074 /*
7075 * for regular files, if its inode is already on disk, we don't
7076 * have to worry about the parents at all. This is because
7077 * we can use the last_unlink_trans field to record renames
7078 * and other fun in this file.
7079 */
7080 if (S_ISREG(inode->vfs_inode.i_mode) &&
7081 inode->generation < trans->transid &&
7082 inode->last_unlink_trans < trans->transid) {
7083 ret = 0;
7084 goto end_trans;
7085 }
7086
7087 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7088 log_dentries = true;
7089
7090 /*
7091 * On unlink we must make sure all our current and old parent directory
7092 * inodes are fully logged. This is to prevent leaving dangling
7093 * directory index entries in directories that were our parents but are
7094 * not anymore. Not doing this results in old parent directory being
7095 * impossible to delete after log replay (rmdir will always fail with
7096 * error -ENOTEMPTY).
7097 *
7098 * Example 1:
7099 *
7100 * mkdir testdir
7101 * touch testdir/foo
7102 * ln testdir/foo testdir/bar
7103 * sync
7104 * unlink testdir/bar
7105 * xfs_io -c fsync testdir/foo
7106 * <power failure>
7107 * mount fs, triggers log replay
7108 *
7109 * If we don't log the parent directory (testdir), after log replay the
7110 * directory still has an entry pointing to the file inode using the bar
7111 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7112 * the file inode has a link count of 1.
7113 *
7114 * Example 2:
7115 *
7116 * mkdir testdir
7117 * touch foo
7118 * ln foo testdir/foo2
7119 * ln foo testdir/foo3
7120 * sync
7121 * unlink testdir/foo3
7122 * xfs_io -c fsync foo
7123 * <power failure>
7124 * mount fs, triggers log replay
7125 *
7126 * Similar as the first example, after log replay the parent directory
7127 * testdir still has an entry pointing to the inode file with name foo3
7128 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7129 * and has a link count of 2.
7130 */
7131 if (inode->last_unlink_trans >= trans->transid) {
7132 ret = btrfs_log_all_parents(trans, inode, ctx);
7133 if (ret)
7134 goto end_trans;
7135 }
7136
7137 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7138 if (ret)
7139 goto end_trans;
7140
7141 if (log_dentries)
7142 ret = log_new_dir_dentries(trans, inode, ctx);
7143 else
7144 ret = 0;
7145end_trans:
7146 if (ret < 0) {
7147 btrfs_set_log_full_commit(trans);
7148 ret = BTRFS_LOG_FORCE_COMMIT;
7149 }
7150
7151 if (ret)
7152 btrfs_remove_log_ctx(root, ctx);
7153 btrfs_end_log_trans(root);
7154end_no_trans:
7155 return ret;
7156}
7157
7158/*
7159 * it is not safe to log dentry if the chunk root has added new
7160 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7161 * If this returns 1, you must commit the transaction to safely get your
7162 * data on disk.
7163 */
7164int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7165 struct dentry *dentry,
7166 struct btrfs_log_ctx *ctx)
7167{
7168 struct dentry *parent = dget_parent(dentry);
7169 int ret;
7170
7171 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7172 LOG_INODE_ALL, ctx);
7173 dput(parent);
7174
7175 return ret;
7176}
7177
7178/*
7179 * should be called during mount to recover any replay any log trees
7180 * from the FS
7181 */
7182int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7183{
7184 int ret;
7185 struct btrfs_path *path;
7186 struct btrfs_trans_handle *trans;
7187 struct btrfs_key key;
7188 struct btrfs_key found_key;
7189 struct btrfs_root *log;
7190 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7191 struct walk_control wc = {
7192 .process_func = process_one_buffer,
7193 .stage = LOG_WALK_PIN_ONLY,
7194 };
7195
7196 path = btrfs_alloc_path();
7197 if (!path)
7198 return -ENOMEM;
7199
7200 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7201
7202 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7203 if (IS_ERR(trans)) {
7204 ret = PTR_ERR(trans);
7205 goto error;
7206 }
7207
7208 wc.trans = trans;
7209 wc.pin = 1;
7210
7211 ret = walk_log_tree(trans, log_root_tree, &wc);
7212 if (ret) {
7213 btrfs_abort_transaction(trans, ret);
7214 goto error;
7215 }
7216
7217again:
7218 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7219 key.offset = (u64)-1;
7220 key.type = BTRFS_ROOT_ITEM_KEY;
7221
7222 while (1) {
7223 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7224
7225 if (ret < 0) {
7226 btrfs_abort_transaction(trans, ret);
7227 goto error;
7228 }
7229 if (ret > 0) {
7230 if (path->slots[0] == 0)
7231 break;
7232 path->slots[0]--;
7233 }
7234 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7235 path->slots[0]);
7236 btrfs_release_path(path);
7237 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7238 break;
7239
7240 log = btrfs_read_tree_root(log_root_tree, &found_key);
7241 if (IS_ERR(log)) {
7242 ret = PTR_ERR(log);
7243 btrfs_abort_transaction(trans, ret);
7244 goto error;
7245 }
7246
7247 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7248 true);
7249 if (IS_ERR(wc.replay_dest)) {
7250 ret = PTR_ERR(wc.replay_dest);
7251
7252 /*
7253 * We didn't find the subvol, likely because it was
7254 * deleted. This is ok, simply skip this log and go to
7255 * the next one.
7256 *
7257 * We need to exclude the root because we can't have
7258 * other log replays overwriting this log as we'll read
7259 * it back in a few more times. This will keep our
7260 * block from being modified, and we'll just bail for
7261 * each subsequent pass.
7262 */
7263 if (ret == -ENOENT)
7264 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7265 btrfs_put_root(log);
7266
7267 if (!ret)
7268 goto next;
7269 btrfs_abort_transaction(trans, ret);
7270 goto error;
7271 }
7272
7273 wc.replay_dest->log_root = log;
7274 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7275 if (ret)
7276 /* The loop needs to continue due to the root refs */
7277 btrfs_abort_transaction(trans, ret);
7278 else
7279 ret = walk_log_tree(trans, log, &wc);
7280
7281 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7282 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7283 path);
7284 if (ret)
7285 btrfs_abort_transaction(trans, ret);
7286 }
7287
7288 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7289 struct btrfs_root *root = wc.replay_dest;
7290
7291 btrfs_release_path(path);
7292
7293 /*
7294 * We have just replayed everything, and the highest
7295 * objectid of fs roots probably has changed in case
7296 * some inode_item's got replayed.
7297 *
7298 * root->objectid_mutex is not acquired as log replay
7299 * could only happen during mount.
7300 */
7301 ret = btrfs_init_root_free_objectid(root);
7302 if (ret)
7303 btrfs_abort_transaction(trans, ret);
7304 }
7305
7306 wc.replay_dest->log_root = NULL;
7307 btrfs_put_root(wc.replay_dest);
7308 btrfs_put_root(log);
7309
7310 if (ret)
7311 goto error;
7312next:
7313 if (found_key.offset == 0)
7314 break;
7315 key.offset = found_key.offset - 1;
7316 }
7317 btrfs_release_path(path);
7318
7319 /* step one is to pin it all, step two is to replay just inodes */
7320 if (wc.pin) {
7321 wc.pin = 0;
7322 wc.process_func = replay_one_buffer;
7323 wc.stage = LOG_WALK_REPLAY_INODES;
7324 goto again;
7325 }
7326 /* step three is to replay everything */
7327 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7328 wc.stage++;
7329 goto again;
7330 }
7331
7332 btrfs_free_path(path);
7333
7334 /* step 4: commit the transaction, which also unpins the blocks */
7335 ret = btrfs_commit_transaction(trans);
7336 if (ret)
7337 return ret;
7338
7339 log_root_tree->log_root = NULL;
7340 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7341 btrfs_put_root(log_root_tree);
7342
7343 return 0;
7344error:
7345 if (wc.trans)
7346 btrfs_end_transaction(wc.trans);
7347 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7348 btrfs_free_path(path);
7349 return ret;
7350}
7351
7352/*
7353 * there are some corner cases where we want to force a full
7354 * commit instead of allowing a directory to be logged.
7355 *
7356 * They revolve around files there were unlinked from the directory, and
7357 * this function updates the parent directory so that a full commit is
7358 * properly done if it is fsync'd later after the unlinks are done.
7359 *
7360 * Must be called before the unlink operations (updates to the subvolume tree,
7361 * inodes, etc) are done.
7362 */
7363void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7364 struct btrfs_inode *dir, struct btrfs_inode *inode,
7365 bool for_rename)
7366{
7367 /*
7368 * when we're logging a file, if it hasn't been renamed
7369 * or unlinked, and its inode is fully committed on disk,
7370 * we don't have to worry about walking up the directory chain
7371 * to log its parents.
7372 *
7373 * So, we use the last_unlink_trans field to put this transid
7374 * into the file. When the file is logged we check it and
7375 * don't log the parents if the file is fully on disk.
7376 */
7377 mutex_lock(&inode->log_mutex);
7378 inode->last_unlink_trans = trans->transid;
7379 mutex_unlock(&inode->log_mutex);
7380
7381 if (!for_rename)
7382 return;
7383
7384 /*
7385 * If this directory was already logged, any new names will be logged
7386 * with btrfs_log_new_name() and old names will be deleted from the log
7387 * tree with btrfs_del_dir_entries_in_log() or with
7388 * btrfs_del_inode_ref_in_log().
7389 */
7390 if (inode_logged(trans, dir, NULL) == 1)
7391 return;
7392
7393 /*
7394 * If the inode we're about to unlink was logged before, the log will be
7395 * properly updated with the new name with btrfs_log_new_name() and the
7396 * old name removed with btrfs_del_dir_entries_in_log() or with
7397 * btrfs_del_inode_ref_in_log().
7398 */
7399 if (inode_logged(trans, inode, NULL) == 1)
7400 return;
7401
7402 /*
7403 * when renaming files across directories, if the directory
7404 * there we're unlinking from gets fsync'd later on, there's
7405 * no way to find the destination directory later and fsync it
7406 * properly. So, we have to be conservative and force commits
7407 * so the new name gets discovered.
7408 */
7409 mutex_lock(&dir->log_mutex);
7410 dir->last_unlink_trans = trans->transid;
7411 mutex_unlock(&dir->log_mutex);
7412}
7413
7414/*
7415 * Make sure that if someone attempts to fsync the parent directory of a deleted
7416 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7417 * that after replaying the log tree of the parent directory's root we will not
7418 * see the snapshot anymore and at log replay time we will not see any log tree
7419 * corresponding to the deleted snapshot's root, which could lead to replaying
7420 * it after replaying the log tree of the parent directory (which would replay
7421 * the snapshot delete operation).
7422 *
7423 * Must be called before the actual snapshot destroy operation (updates to the
7424 * parent root and tree of tree roots trees, etc) are done.
7425 */
7426void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7427 struct btrfs_inode *dir)
7428{
7429 mutex_lock(&dir->log_mutex);
7430 dir->last_unlink_trans = trans->transid;
7431 mutex_unlock(&dir->log_mutex);
7432}
7433
7434/*
7435 * Update the log after adding a new name for an inode.
7436 *
7437 * @trans: Transaction handle.
7438 * @old_dentry: The dentry associated with the old name and the old
7439 * parent directory.
7440 * @old_dir: The inode of the previous parent directory for the case
7441 * of a rename. For a link operation, it must be NULL.
7442 * @old_dir_index: The index number associated with the old name, meaningful
7443 * only for rename operations (when @old_dir is not NULL).
7444 * Ignored for link operations.
7445 * @parent: The dentry associated with the directory under which the
7446 * new name is located.
7447 *
7448 * Call this after adding a new name for an inode, as a result of a link or
7449 * rename operation, and it will properly update the log to reflect the new name.
7450 */
7451void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7452 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7453 u64 old_dir_index, struct dentry *parent)
7454{
7455 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7456 struct btrfs_root *root = inode->root;
7457 struct btrfs_log_ctx ctx;
7458 bool log_pinned = false;
7459 int ret;
7460
7461 /*
7462 * this will force the logging code to walk the dentry chain
7463 * up for the file
7464 */
7465 if (!S_ISDIR(inode->vfs_inode.i_mode))
7466 inode->last_unlink_trans = trans->transid;
7467
7468 /*
7469 * if this inode hasn't been logged and directory we're renaming it
7470 * from hasn't been logged, we don't need to log it
7471 */
7472 ret = inode_logged(trans, inode, NULL);
7473 if (ret < 0) {
7474 goto out;
7475 } else if (ret == 0) {
7476 if (!old_dir)
7477 return;
7478 /*
7479 * If the inode was not logged and we are doing a rename (old_dir is not
7480 * NULL), check if old_dir was logged - if it was not we can return and
7481 * do nothing.
7482 */
7483 ret = inode_logged(trans, old_dir, NULL);
7484 if (ret < 0)
7485 goto out;
7486 else if (ret == 0)
7487 return;
7488 }
7489 ret = 0;
7490
7491 /*
7492 * If we are doing a rename (old_dir is not NULL) from a directory that
7493 * was previously logged, make sure that on log replay we get the old
7494 * dir entry deleted. This is needed because we will also log the new
7495 * name of the renamed inode, so we need to make sure that after log
7496 * replay we don't end up with both the new and old dir entries existing.
7497 */
7498 if (old_dir && old_dir->logged_trans == trans->transid) {
7499 struct btrfs_root *log = old_dir->root->log_root;
7500 struct btrfs_path *path;
7501 struct fscrypt_name fname;
7502
7503 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7504
7505 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7506 &old_dentry->d_name, 0, &fname);
7507 if (ret)
7508 goto out;
7509 /*
7510 * We have two inodes to update in the log, the old directory and
7511 * the inode that got renamed, so we must pin the log to prevent
7512 * anyone from syncing the log until we have updated both inodes
7513 * in the log.
7514 */
7515 ret = join_running_log_trans(root);
7516 /*
7517 * At least one of the inodes was logged before, so this should
7518 * not fail, but if it does, it's not serious, just bail out and
7519 * mark the log for a full commit.
7520 */
7521 if (WARN_ON_ONCE(ret < 0)) {
7522 fscrypt_free_filename(&fname);
7523 goto out;
7524 }
7525
7526 log_pinned = true;
7527
7528 path = btrfs_alloc_path();
7529 if (!path) {
7530 ret = -ENOMEM;
7531 fscrypt_free_filename(&fname);
7532 goto out;
7533 }
7534
7535 /*
7536 * Other concurrent task might be logging the old directory,
7537 * as it can be triggered when logging other inode that had or
7538 * still has a dentry in the old directory. We lock the old
7539 * directory's log_mutex to ensure the deletion of the old
7540 * name is persisted, because during directory logging we
7541 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7542 * the old name's dir index item is in the delayed items, so
7543 * it could be missed by an in progress directory logging.
7544 */
7545 mutex_lock(&old_dir->log_mutex);
7546 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7547 &fname.disk_name, old_dir_index);
7548 if (ret > 0) {
7549 /*
7550 * The dentry does not exist in the log, so record its
7551 * deletion.
7552 */
7553 btrfs_release_path(path);
7554 ret = insert_dir_log_key(trans, log, path,
7555 btrfs_ino(old_dir),
7556 old_dir_index, old_dir_index);
7557 }
7558 mutex_unlock(&old_dir->log_mutex);
7559
7560 btrfs_free_path(path);
7561 fscrypt_free_filename(&fname);
7562 if (ret < 0)
7563 goto out;
7564 }
7565
7566 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7567 ctx.logging_new_name = true;
7568 btrfs_init_log_ctx_scratch_eb(&ctx);
7569 /*
7570 * We don't care about the return value. If we fail to log the new name
7571 * then we know the next attempt to sync the log will fallback to a full
7572 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7573 * we don't need to worry about getting a log committed that has an
7574 * inconsistent state after a rename operation.
7575 */
7576 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7577 free_extent_buffer(ctx.scratch_eb);
7578 ASSERT(list_empty(&ctx.conflict_inodes));
7579out:
7580 /*
7581 * If an error happened mark the log for a full commit because it's not
7582 * consistent and up to date or we couldn't find out if one of the
7583 * inodes was logged before in this transaction. Do it before unpinning
7584 * the log, to avoid any races with someone else trying to commit it.
7585 */
7586 if (ret < 0)
7587 btrfs_set_log_full_commit(trans);
7588 if (log_pinned)
7589 btrfs_end_log_trans(root);
7590}
7591