Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "block-group.h"
21#include "space-info.h"
22#include "zoned.h"
23#include "inode-item.h"
24#include "fs.h"
25#include "accessors.h"
26#include "extent-tree.h"
27#include "root-tree.h"
28#include "dir-item.h"
29#include "file-item.h"
30#include "file.h"
31#include "orphan.h"
32#include "tree-checker.h"
33
34#define MAX_CONFLICT_INODES 10
35
36/* magic values for the inode_only field in btrfs_log_inode:
37 *
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 * during log replay
41 */
42enum {
43 LOG_INODE_ALL,
44 LOG_INODE_EXISTS,
45};
46
47/*
48 * directory trouble cases
49 *
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
54 *
55 * mkdir foo/some_dir
56 * normal commit
57 * rename foo/some_dir foo2/some_dir
58 * mkdir foo/some_dir
59 * fsync foo/some_dir/some_file
60 *
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
64 *
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
67 *
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
71 *
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
74 *
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
77 *
78 * mkdir f1/foo
79 * normal commit
80 * rm -rf f1/foo
81 * fsync(f1)
82 *
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
87 * ugly details.
88 */
89
90/*
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
95 *
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
98 */
99enum {
100 LOG_WALK_PIN_ONLY,
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
103 LOG_WALK_REPLAY_ALL,
104};
105
106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 struct btrfs_inode *inode,
108 int inode_only,
109 struct btrfs_log_ctx *ctx);
110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
118static void wait_log_commit(struct btrfs_root *root, int transid);
119
120/*
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
123 *
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
127 *
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
133 *
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
137 *
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
141 */
142
143/*
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
147 */
148static int start_log_trans(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
151{
152 struct btrfs_fs_info *fs_info = root->fs_info;
153 struct btrfs_root *tree_root = fs_info->tree_root;
154 const bool zoned = btrfs_is_zoned(fs_info);
155 int ret = 0;
156 bool created = false;
157
158 /*
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
161 */
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
166 if (!ret) {
167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
168 created = true;
169 }
170 }
171 mutex_unlock(&tree_root->log_mutex);
172 if (ret)
173 return ret;
174 }
175
176 mutex_lock(&root->log_mutex);
177
178again:
179 if (root->log_root) {
180 int index = (root->log_transid + 1) % 2;
181
182 if (btrfs_need_log_full_commit(trans)) {
183 ret = BTRFS_LOG_FORCE_COMMIT;
184 goto out;
185 }
186
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
189 goto again;
190 }
191
192 if (!root->log_start_pid) {
193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194 root->log_start_pid = current->pid;
195 } else if (root->log_start_pid != current->pid) {
196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
197 }
198 } else {
199 /*
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
203 * writing.
204 */
205 if (zoned && !created) {
206 ret = BTRFS_LOG_FORCE_COMMIT;
207 goto out;
208 }
209
210 ret = btrfs_add_log_tree(trans, root);
211 if (ret)
212 goto out;
213
214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
217 }
218
219 atomic_inc(&root->log_writers);
220 if (!ctx->logging_new_name) {
221 int index = root->log_transid % 2;
222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
223 ctx->log_transid = root->log_transid;
224 }
225
226out:
227 mutex_unlock(&root->log_mutex);
228 return ret;
229}
230
231/*
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
234 * in progress
235 */
236static int join_running_log_trans(struct btrfs_root *root)
237{
238 const bool zoned = btrfs_is_zoned(root->fs_info);
239 int ret = -ENOENT;
240
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 return ret;
243
244 mutex_lock(&root->log_mutex);
245again:
246 if (root->log_root) {
247 int index = (root->log_transid + 1) % 2;
248
249 ret = 0;
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
252 goto again;
253 }
254 atomic_inc(&root->log_writers);
255 }
256 mutex_unlock(&root->log_mutex);
257 return ret;
258}
259
260/*
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
264 */
265void btrfs_pin_log_trans(struct btrfs_root *root)
266{
267 atomic_inc(&root->log_writers);
268}
269
270/*
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
273 */
274void btrfs_end_log_trans(struct btrfs_root *root)
275{
276 if (atomic_dec_and_test(&root->log_writers)) {
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
279 }
280}
281
282static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
283{
284 filemap_fdatawait_range(buf->pages[0]->mapping,
285 buf->start, buf->start + buf->len - 1);
286}
287
288/*
289 * the walk control struct is used to pass state down the chain when
290 * processing the log tree. The stage field tells us which part
291 * of the log tree processing we are currently doing. The others
292 * are state fields used for that specific part
293 */
294struct walk_control {
295 /* should we free the extent on disk when done? This is used
296 * at transaction commit time while freeing a log tree
297 */
298 int free;
299
300 /* pin only walk, we record which extents on disk belong to the
301 * log trees
302 */
303 int pin;
304
305 /* what stage of the replay code we're currently in */
306 int stage;
307
308 /*
309 * Ignore any items from the inode currently being processed. Needs
310 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
311 * the LOG_WALK_REPLAY_INODES stage.
312 */
313 bool ignore_cur_inode;
314
315 /* the root we are currently replaying */
316 struct btrfs_root *replay_dest;
317
318 /* the trans handle for the current replay */
319 struct btrfs_trans_handle *trans;
320
321 /* the function that gets used to process blocks we find in the
322 * tree. Note the extent_buffer might not be up to date when it is
323 * passed in, and it must be checked or read if you need the data
324 * inside it
325 */
326 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
327 struct walk_control *wc, u64 gen, int level);
328};
329
330/*
331 * process_func used to pin down extents, write them or wait on them
332 */
333static int process_one_buffer(struct btrfs_root *log,
334 struct extent_buffer *eb,
335 struct walk_control *wc, u64 gen, int level)
336{
337 struct btrfs_fs_info *fs_info = log->fs_info;
338 int ret = 0;
339
340 /*
341 * If this fs is mixed then we need to be able to process the leaves to
342 * pin down any logged extents, so we have to read the block.
343 */
344 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
345 struct btrfs_tree_parent_check check = {
346 .level = level,
347 .transid = gen
348 };
349
350 ret = btrfs_read_extent_buffer(eb, &check);
351 if (ret)
352 return ret;
353 }
354
355 if (wc->pin) {
356 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
357 eb->len);
358 if (ret)
359 return ret;
360
361 if (btrfs_buffer_uptodate(eb, gen, 0) &&
362 btrfs_header_level(eb) == 0)
363 ret = btrfs_exclude_logged_extents(eb);
364 }
365 return ret;
366}
367
368/*
369 * Item overwrite used by replay and tree logging. eb, slot and key all refer
370 * to the src data we are copying out.
371 *
372 * root is the tree we are copying into, and path is a scratch
373 * path for use in this function (it should be released on entry and
374 * will be released on exit).
375 *
376 * If the key is already in the destination tree the existing item is
377 * overwritten. If the existing item isn't big enough, it is extended.
378 * If it is too large, it is truncated.
379 *
380 * If the key isn't in the destination yet, a new item is inserted.
381 */
382static int overwrite_item(struct btrfs_trans_handle *trans,
383 struct btrfs_root *root,
384 struct btrfs_path *path,
385 struct extent_buffer *eb, int slot,
386 struct btrfs_key *key)
387{
388 int ret;
389 u32 item_size;
390 u64 saved_i_size = 0;
391 int save_old_i_size = 0;
392 unsigned long src_ptr;
393 unsigned long dst_ptr;
394 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
395
396 /*
397 * This is only used during log replay, so the root is always from a
398 * fs/subvolume tree. In case we ever need to support a log root, then
399 * we'll have to clone the leaf in the path, release the path and use
400 * the leaf before writing into the log tree. See the comments at
401 * copy_items() for more details.
402 */
403 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
404
405 item_size = btrfs_item_size(eb, slot);
406 src_ptr = btrfs_item_ptr_offset(eb, slot);
407
408 /* Look for the key in the destination tree. */
409 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
410 if (ret < 0)
411 return ret;
412
413 if (ret == 0) {
414 char *src_copy;
415 char *dst_copy;
416 u32 dst_size = btrfs_item_size(path->nodes[0],
417 path->slots[0]);
418 if (dst_size != item_size)
419 goto insert;
420
421 if (item_size == 0) {
422 btrfs_release_path(path);
423 return 0;
424 }
425 dst_copy = kmalloc(item_size, GFP_NOFS);
426 src_copy = kmalloc(item_size, GFP_NOFS);
427 if (!dst_copy || !src_copy) {
428 btrfs_release_path(path);
429 kfree(dst_copy);
430 kfree(src_copy);
431 return -ENOMEM;
432 }
433
434 read_extent_buffer(eb, src_copy, src_ptr, item_size);
435
436 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
437 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
438 item_size);
439 ret = memcmp(dst_copy, src_copy, item_size);
440
441 kfree(dst_copy);
442 kfree(src_copy);
443 /*
444 * they have the same contents, just return, this saves
445 * us from cowing blocks in the destination tree and doing
446 * extra writes that may not have been done by a previous
447 * sync
448 */
449 if (ret == 0) {
450 btrfs_release_path(path);
451 return 0;
452 }
453
454 /*
455 * We need to load the old nbytes into the inode so when we
456 * replay the extents we've logged we get the right nbytes.
457 */
458 if (inode_item) {
459 struct btrfs_inode_item *item;
460 u64 nbytes;
461 u32 mode;
462
463 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
464 struct btrfs_inode_item);
465 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
466 item = btrfs_item_ptr(eb, slot,
467 struct btrfs_inode_item);
468 btrfs_set_inode_nbytes(eb, item, nbytes);
469
470 /*
471 * If this is a directory we need to reset the i_size to
472 * 0 so that we can set it up properly when replaying
473 * the rest of the items in this log.
474 */
475 mode = btrfs_inode_mode(eb, item);
476 if (S_ISDIR(mode))
477 btrfs_set_inode_size(eb, item, 0);
478 }
479 } else if (inode_item) {
480 struct btrfs_inode_item *item;
481 u32 mode;
482
483 /*
484 * New inode, set nbytes to 0 so that the nbytes comes out
485 * properly when we replay the extents.
486 */
487 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
488 btrfs_set_inode_nbytes(eb, item, 0);
489
490 /*
491 * If this is a directory we need to reset the i_size to 0 so
492 * that we can set it up properly when replaying the rest of
493 * the items in this log.
494 */
495 mode = btrfs_inode_mode(eb, item);
496 if (S_ISDIR(mode))
497 btrfs_set_inode_size(eb, item, 0);
498 }
499insert:
500 btrfs_release_path(path);
501 /* try to insert the key into the destination tree */
502 path->skip_release_on_error = 1;
503 ret = btrfs_insert_empty_item(trans, root, path,
504 key, item_size);
505 path->skip_release_on_error = 0;
506
507 /* make sure any existing item is the correct size */
508 if (ret == -EEXIST || ret == -EOVERFLOW) {
509 u32 found_size;
510 found_size = btrfs_item_size(path->nodes[0],
511 path->slots[0]);
512 if (found_size > item_size)
513 btrfs_truncate_item(path, item_size, 1);
514 else if (found_size < item_size)
515 btrfs_extend_item(path, item_size - found_size);
516 } else if (ret) {
517 return ret;
518 }
519 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
520 path->slots[0]);
521
522 /* don't overwrite an existing inode if the generation number
523 * was logged as zero. This is done when the tree logging code
524 * is just logging an inode to make sure it exists after recovery.
525 *
526 * Also, don't overwrite i_size on directories during replay.
527 * log replay inserts and removes directory items based on the
528 * state of the tree found in the subvolume, and i_size is modified
529 * as it goes
530 */
531 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
532 struct btrfs_inode_item *src_item;
533 struct btrfs_inode_item *dst_item;
534
535 src_item = (struct btrfs_inode_item *)src_ptr;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537
538 if (btrfs_inode_generation(eb, src_item) == 0) {
539 struct extent_buffer *dst_eb = path->nodes[0];
540 const u64 ino_size = btrfs_inode_size(eb, src_item);
541
542 /*
543 * For regular files an ino_size == 0 is used only when
544 * logging that an inode exists, as part of a directory
545 * fsync, and the inode wasn't fsynced before. In this
546 * case don't set the size of the inode in the fs/subvol
547 * tree, otherwise we would be throwing valid data away.
548 */
549 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
550 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
551 ino_size != 0)
552 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
553 goto no_copy;
554 }
555
556 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
557 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
558 save_old_i_size = 1;
559 saved_i_size = btrfs_inode_size(path->nodes[0],
560 dst_item);
561 }
562 }
563
564 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
565 src_ptr, item_size);
566
567 if (save_old_i_size) {
568 struct btrfs_inode_item *dst_item;
569 dst_item = (struct btrfs_inode_item *)dst_ptr;
570 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
571 }
572
573 /* make sure the generation is filled in */
574 if (key->type == BTRFS_INODE_ITEM_KEY) {
575 struct btrfs_inode_item *dst_item;
576 dst_item = (struct btrfs_inode_item *)dst_ptr;
577 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
578 btrfs_set_inode_generation(path->nodes[0], dst_item,
579 trans->transid);
580 }
581 }
582no_copy:
583 btrfs_mark_buffer_dirty(path->nodes[0]);
584 btrfs_release_path(path);
585 return 0;
586}
587
588static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
589 struct fscrypt_str *name)
590{
591 char *buf;
592
593 buf = kmalloc(len, GFP_NOFS);
594 if (!buf)
595 return -ENOMEM;
596
597 read_extent_buffer(eb, buf, (unsigned long)start, len);
598 name->name = buf;
599 name->len = len;
600 return 0;
601}
602
603/*
604 * simple helper to read an inode off the disk from a given root
605 * This can only be called for subvolume roots and not for the log
606 */
607static noinline struct inode *read_one_inode(struct btrfs_root *root,
608 u64 objectid)
609{
610 struct inode *inode;
611
612 inode = btrfs_iget(root->fs_info->sb, objectid, root);
613 if (IS_ERR(inode))
614 inode = NULL;
615 return inode;
616}
617
618/* replays a single extent in 'eb' at 'slot' with 'key' into the
619 * subvolume 'root'. path is released on entry and should be released
620 * on exit.
621 *
622 * extents in the log tree have not been allocated out of the extent
623 * tree yet. So, this completes the allocation, taking a reference
624 * as required if the extent already exists or creating a new extent
625 * if it isn't in the extent allocation tree yet.
626 *
627 * The extent is inserted into the file, dropping any existing extents
628 * from the file that overlap the new one.
629 */
630static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path,
633 struct extent_buffer *eb, int slot,
634 struct btrfs_key *key)
635{
636 struct btrfs_drop_extents_args drop_args = { 0 };
637 struct btrfs_fs_info *fs_info = root->fs_info;
638 int found_type;
639 u64 extent_end;
640 u64 start = key->offset;
641 u64 nbytes = 0;
642 struct btrfs_file_extent_item *item;
643 struct inode *inode = NULL;
644 unsigned long size;
645 int ret = 0;
646
647 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 found_type = btrfs_file_extent_type(eb, item);
649
650 if (found_type == BTRFS_FILE_EXTENT_REG ||
651 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 nbytes = btrfs_file_extent_num_bytes(eb, item);
653 extent_end = start + nbytes;
654
655 /*
656 * We don't add to the inodes nbytes if we are prealloc or a
657 * hole.
658 */
659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
660 nbytes = 0;
661 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
662 size = btrfs_file_extent_ram_bytes(eb, item);
663 nbytes = btrfs_file_extent_ram_bytes(eb, item);
664 extent_end = ALIGN(start + size,
665 fs_info->sectorsize);
666 } else {
667 ret = 0;
668 goto out;
669 }
670
671 inode = read_one_inode(root, key->objectid);
672 if (!inode) {
673 ret = -EIO;
674 goto out;
675 }
676
677 /*
678 * first check to see if we already have this extent in the
679 * file. This must be done before the btrfs_drop_extents run
680 * so we don't try to drop this extent.
681 */
682 ret = btrfs_lookup_file_extent(trans, root, path,
683 btrfs_ino(BTRFS_I(inode)), start, 0);
684
685 if (ret == 0 &&
686 (found_type == BTRFS_FILE_EXTENT_REG ||
687 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
688 struct btrfs_file_extent_item cmp1;
689 struct btrfs_file_extent_item cmp2;
690 struct btrfs_file_extent_item *existing;
691 struct extent_buffer *leaf;
692
693 leaf = path->nodes[0];
694 existing = btrfs_item_ptr(leaf, path->slots[0],
695 struct btrfs_file_extent_item);
696
697 read_extent_buffer(eb, &cmp1, (unsigned long)item,
698 sizeof(cmp1));
699 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
700 sizeof(cmp2));
701
702 /*
703 * we already have a pointer to this exact extent,
704 * we don't have to do anything
705 */
706 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
707 btrfs_release_path(path);
708 goto out;
709 }
710 }
711 btrfs_release_path(path);
712
713 /* drop any overlapping extents */
714 drop_args.start = start;
715 drop_args.end = extent_end;
716 drop_args.drop_cache = true;
717 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
718 if (ret)
719 goto out;
720
721 if (found_type == BTRFS_FILE_EXTENT_REG ||
722 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
723 u64 offset;
724 unsigned long dest_offset;
725 struct btrfs_key ins;
726
727 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
728 btrfs_fs_incompat(fs_info, NO_HOLES))
729 goto update_inode;
730
731 ret = btrfs_insert_empty_item(trans, root, path, key,
732 sizeof(*item));
733 if (ret)
734 goto out;
735 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
736 path->slots[0]);
737 copy_extent_buffer(path->nodes[0], eb, dest_offset,
738 (unsigned long)item, sizeof(*item));
739
740 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
741 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
742 ins.type = BTRFS_EXTENT_ITEM_KEY;
743 offset = key->offset - btrfs_file_extent_offset(eb, item);
744
745 /*
746 * Manually record dirty extent, as here we did a shallow
747 * file extent item copy and skip normal backref update,
748 * but modifying extent tree all by ourselves.
749 * So need to manually record dirty extent for qgroup,
750 * as the owner of the file extent changed from log tree
751 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
752 */
753 ret = btrfs_qgroup_trace_extent(trans,
754 btrfs_file_extent_disk_bytenr(eb, item),
755 btrfs_file_extent_disk_num_bytes(eb, item));
756 if (ret < 0)
757 goto out;
758
759 if (ins.objectid > 0) {
760 struct btrfs_ref ref = { 0 };
761 u64 csum_start;
762 u64 csum_end;
763 LIST_HEAD(ordered_sums);
764
765 /*
766 * is this extent already allocated in the extent
767 * allocation tree? If so, just add a reference
768 */
769 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
770 ins.offset);
771 if (ret < 0) {
772 goto out;
773 } else if (ret == 0) {
774 btrfs_init_generic_ref(&ref,
775 BTRFS_ADD_DELAYED_REF,
776 ins.objectid, ins.offset, 0);
777 btrfs_init_data_ref(&ref,
778 root->root_key.objectid,
779 key->objectid, offset, 0, false);
780 ret = btrfs_inc_extent_ref(trans, &ref);
781 if (ret)
782 goto out;
783 } else {
784 /*
785 * insert the extent pointer in the extent
786 * allocation tree
787 */
788 ret = btrfs_alloc_logged_file_extent(trans,
789 root->root_key.objectid,
790 key->objectid, offset, &ins);
791 if (ret)
792 goto out;
793 }
794 btrfs_release_path(path);
795
796 if (btrfs_file_extent_compression(eb, item)) {
797 csum_start = ins.objectid;
798 csum_end = csum_start + ins.offset;
799 } else {
800 csum_start = ins.objectid +
801 btrfs_file_extent_offset(eb, item);
802 csum_end = csum_start +
803 btrfs_file_extent_num_bytes(eb, item);
804 }
805
806 ret = btrfs_lookup_csums_list(root->log_root,
807 csum_start, csum_end - 1,
808 &ordered_sums, 0, false);
809 if (ret)
810 goto out;
811 /*
812 * Now delete all existing cums in the csum root that
813 * cover our range. We do this because we can have an
814 * extent that is completely referenced by one file
815 * extent item and partially referenced by another
816 * file extent item (like after using the clone or
817 * extent_same ioctls). In this case if we end up doing
818 * the replay of the one that partially references the
819 * extent first, and we do not do the csum deletion
820 * below, we can get 2 csum items in the csum tree that
821 * overlap each other. For example, imagine our log has
822 * the two following file extent items:
823 *
824 * key (257 EXTENT_DATA 409600)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 20480 nr 20480 ram 102400
827 *
828 * key (257 EXTENT_DATA 819200)
829 * extent data disk byte 12845056 nr 102400
830 * extent data offset 0 nr 102400 ram 102400
831 *
832 * Where the second one fully references the 100K extent
833 * that starts at disk byte 12845056, and the log tree
834 * has a single csum item that covers the entire range
835 * of the extent:
836 *
837 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
838 *
839 * After the first file extent item is replayed, the
840 * csum tree gets the following csum item:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
843 *
844 * Which covers the 20K sub-range starting at offset 20K
845 * of our extent. Now when we replay the second file
846 * extent item, if we do not delete existing csum items
847 * that cover any of its blocks, we end up getting two
848 * csum items in our csum tree that overlap each other:
849 *
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
852 *
853 * Which is a problem, because after this anyone trying
854 * to lookup up for the checksum of any block of our
855 * extent starting at an offset of 40K or higher, will
856 * end up looking at the second csum item only, which
857 * does not contain the checksum for any block starting
858 * at offset 40K or higher of our extent.
859 */
860 while (!list_empty(&ordered_sums)) {
861 struct btrfs_ordered_sum *sums;
862 struct btrfs_root *csum_root;
863
864 sums = list_entry(ordered_sums.next,
865 struct btrfs_ordered_sum,
866 list);
867 csum_root = btrfs_csum_root(fs_info,
868 sums->bytenr);
869 if (!ret)
870 ret = btrfs_del_csums(trans, csum_root,
871 sums->bytenr,
872 sums->len);
873 if (!ret)
874 ret = btrfs_csum_file_blocks(trans,
875 csum_root,
876 sums);
877 list_del(&sums->list);
878 kfree(sums);
879 }
880 if (ret)
881 goto out;
882 } else {
883 btrfs_release_path(path);
884 }
885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
886 /* inline extents are easy, we just overwrite them */
887 ret = overwrite_item(trans, root, path, eb, slot, key);
888 if (ret)
889 goto out;
890 }
891
892 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
893 extent_end - start);
894 if (ret)
895 goto out;
896
897update_inode:
898 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
899 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
900out:
901 iput(inode);
902 return ret;
903}
904
905static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
906 struct btrfs_inode *dir,
907 struct btrfs_inode *inode,
908 const struct fscrypt_str *name)
909{
910 int ret;
911
912 ret = btrfs_unlink_inode(trans, dir, inode, name);
913 if (ret)
914 return ret;
915 /*
916 * Whenever we need to check if a name exists or not, we check the
917 * fs/subvolume tree. So after an unlink we must run delayed items, so
918 * that future checks for a name during log replay see that the name
919 * does not exists anymore.
920 */
921 return btrfs_run_delayed_items(trans);
922}
923
924/*
925 * when cleaning up conflicts between the directory names in the
926 * subvolume, directory names in the log and directory names in the
927 * inode back references, we may have to unlink inodes from directories.
928 *
929 * This is a helper function to do the unlink of a specific directory
930 * item
931 */
932static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
933 struct btrfs_path *path,
934 struct btrfs_inode *dir,
935 struct btrfs_dir_item *di)
936{
937 struct btrfs_root *root = dir->root;
938 struct inode *inode;
939 struct fscrypt_str name;
940 struct extent_buffer *leaf;
941 struct btrfs_key location;
942 int ret;
943
944 leaf = path->nodes[0];
945
946 btrfs_dir_item_key_to_cpu(leaf, di, &location);
947 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
948 if (ret)
949 return -ENOMEM;
950
951 btrfs_release_path(path);
952
953 inode = read_one_inode(root, location.objectid);
954 if (!inode) {
955 ret = -EIO;
956 goto out;
957 }
958
959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 if (ret)
961 goto out;
962
963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
964out:
965 kfree(name.name);
966 iput(inode);
967 return ret;
968}
969
970/*
971 * See if a given name and sequence number found in an inode back reference are
972 * already in a directory and correctly point to this inode.
973 *
974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
975 * exists.
976 */
977static noinline int inode_in_dir(struct btrfs_root *root,
978 struct btrfs_path *path,
979 u64 dirid, u64 objectid, u64 index,
980 struct fscrypt_str *name)
981{
982 struct btrfs_dir_item *di;
983 struct btrfs_key location;
984 int ret = 0;
985
986 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
987 index, name, 0);
988 if (IS_ERR(di)) {
989 ret = PTR_ERR(di);
990 goto out;
991 } else if (di) {
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid != objectid)
994 goto out;
995 } else {
996 goto out;
997 }
998
999 btrfs_release_path(path);
1000 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid == objectid)
1007 ret = 1;
1008 }
1009out:
1010 btrfs_release_path(path);
1011 return ret;
1012}
1013
1014/*
1015 * helper function to check a log tree for a named back reference in
1016 * an inode. This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1018 *
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1023 */
1024static noinline int backref_in_log(struct btrfs_root *log,
1025 struct btrfs_key *key,
1026 u64 ref_objectid,
1027 const struct fscrypt_str *name)
1028{
1029 struct btrfs_path *path;
1030 int ret;
1031
1032 path = btrfs_alloc_path();
1033 if (!path)
1034 return -ENOMEM;
1035
1036 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1037 if (ret < 0) {
1038 goto out;
1039 } else if (ret == 1) {
1040 ret = 0;
1041 goto out;
1042 }
1043
1044 if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046 path->slots[0],
1047 ref_objectid, name);
1048 else
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050 path->slots[0], name);
1051out:
1052 btrfs_free_path(path);
1053 return ret;
1054}
1055
1056static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1057 struct btrfs_root *root,
1058 struct btrfs_path *path,
1059 struct btrfs_root *log_root,
1060 struct btrfs_inode *dir,
1061 struct btrfs_inode *inode,
1062 u64 inode_objectid, u64 parent_objectid,
1063 u64 ref_index, struct fscrypt_str *name)
1064{
1065 int ret;
1066 struct extent_buffer *leaf;
1067 struct btrfs_dir_item *di;
1068 struct btrfs_key search_key;
1069 struct btrfs_inode_extref *extref;
1070
1071again:
1072 /* Search old style refs */
1073 search_key.objectid = inode_objectid;
1074 search_key.type = BTRFS_INODE_REF_KEY;
1075 search_key.offset = parent_objectid;
1076 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1077 if (ret == 0) {
1078 struct btrfs_inode_ref *victim_ref;
1079 unsigned long ptr;
1080 unsigned long ptr_end;
1081
1082 leaf = path->nodes[0];
1083
1084 /* are we trying to overwrite a back ref for the root directory
1085 * if so, just jump out, we're done
1086 */
1087 if (search_key.objectid == search_key.offset)
1088 return 1;
1089
1090 /* check all the names in this back reference to see
1091 * if they are in the log. if so, we allow them to stay
1092 * otherwise they must be unlinked as a conflict
1093 */
1094 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1095 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1096 while (ptr < ptr_end) {
1097 struct fscrypt_str victim_name;
1098
1099 victim_ref = (struct btrfs_inode_ref *)ptr;
1100 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101 btrfs_inode_ref_name_len(leaf, victim_ref),
1102 &victim_name);
1103 if (ret)
1104 return ret;
1105
1106 ret = backref_in_log(log_root, &search_key,
1107 parent_objectid, &victim_name);
1108 if (ret < 0) {
1109 kfree(victim_name.name);
1110 return ret;
1111 } else if (!ret) {
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1114
1115 ret = unlink_inode_for_log_replay(trans, dir, inode,
1116 &victim_name);
1117 kfree(victim_name.name);
1118 if (ret)
1119 return ret;
1120 goto again;
1121 }
1122 kfree(victim_name.name);
1123
1124 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1125 }
1126 }
1127 btrfs_release_path(path);
1128
1129 /* Same search but for extended refs */
1130 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1131 inode_objectid, parent_objectid, 0,
1132 0);
1133 if (IS_ERR(extref)) {
1134 return PTR_ERR(extref);
1135 } else if (extref) {
1136 u32 item_size;
1137 u32 cur_offset = 0;
1138 unsigned long base;
1139 struct inode *victim_parent;
1140
1141 leaf = path->nodes[0];
1142
1143 item_size = btrfs_item_size(leaf, path->slots[0]);
1144 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1145
1146 while (cur_offset < item_size) {
1147 struct fscrypt_str victim_name;
1148
1149 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1150
1151 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1152 goto next;
1153
1154 ret = read_alloc_one_name(leaf, &extref->name,
1155 btrfs_inode_extref_name_len(leaf, extref),
1156 &victim_name);
1157 if (ret)
1158 return ret;
1159
1160 search_key.objectid = inode_objectid;
1161 search_key.type = BTRFS_INODE_EXTREF_KEY;
1162 search_key.offset = btrfs_extref_hash(parent_objectid,
1163 victim_name.name,
1164 victim_name.len);
1165 ret = backref_in_log(log_root, &search_key,
1166 parent_objectid, &victim_name);
1167 if (ret < 0) {
1168 kfree(victim_name.name);
1169 return ret;
1170 } else if (!ret) {
1171 ret = -ENOENT;
1172 victim_parent = read_one_inode(root,
1173 parent_objectid);
1174 if (victim_parent) {
1175 inc_nlink(&inode->vfs_inode);
1176 btrfs_release_path(path);
1177
1178 ret = unlink_inode_for_log_replay(trans,
1179 BTRFS_I(victim_parent),
1180 inode, &victim_name);
1181 }
1182 iput(victim_parent);
1183 kfree(victim_name.name);
1184 if (ret)
1185 return ret;
1186 goto again;
1187 }
1188 kfree(victim_name.name);
1189next:
1190 cur_offset += victim_name.len + sizeof(*extref);
1191 }
1192 }
1193 btrfs_release_path(path);
1194
1195 /* look for a conflicting sequence number */
1196 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1197 ref_index, name, 0);
1198 if (IS_ERR(di)) {
1199 return PTR_ERR(di);
1200 } else if (di) {
1201 ret = drop_one_dir_item(trans, path, dir, di);
1202 if (ret)
1203 return ret;
1204 }
1205 btrfs_release_path(path);
1206
1207 /* look for a conflicting name */
1208 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1209 if (IS_ERR(di)) {
1210 return PTR_ERR(di);
1211 } else if (di) {
1212 ret = drop_one_dir_item(trans, path, dir, di);
1213 if (ret)
1214 return ret;
1215 }
1216 btrfs_release_path(path);
1217
1218 return 0;
1219}
1220
1221static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1222 struct fscrypt_str *name, u64 *index,
1223 u64 *parent_objectid)
1224{
1225 struct btrfs_inode_extref *extref;
1226 int ret;
1227
1228 extref = (struct btrfs_inode_extref *)ref_ptr;
1229
1230 ret = read_alloc_one_name(eb, &extref->name,
1231 btrfs_inode_extref_name_len(eb, extref), name);
1232 if (ret)
1233 return ret;
1234
1235 if (index)
1236 *index = btrfs_inode_extref_index(eb, extref);
1237 if (parent_objectid)
1238 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1239
1240 return 0;
1241}
1242
1243static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 struct fscrypt_str *name, u64 *index)
1245{
1246 struct btrfs_inode_ref *ref;
1247 int ret;
1248
1249 ref = (struct btrfs_inode_ref *)ref_ptr;
1250
1251 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1252 name);
1253 if (ret)
1254 return ret;
1255
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
1258
1259 return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1295 while (ref_ptr < ref_end) {
1296 struct fscrypt_str name;
1297 u64 parent_id;
1298
1299 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1300 ret = extref_get_fields(eb, ref_ptr, &name,
1301 NULL, &parent_id);
1302 } else {
1303 parent_id = key->offset;
1304 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1305 }
1306 if (ret)
1307 goto out;
1308
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1311 parent_id, &name);
1312 else
1313 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1314
1315 if (!ret) {
1316 struct inode *dir;
1317
1318 btrfs_release_path(path);
1319 dir = read_one_inode(root, parent_id);
1320 if (!dir) {
1321 ret = -ENOENT;
1322 kfree(name.name);
1323 goto out;
1324 }
1325 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1326 inode, &name);
1327 kfree(name.name);
1328 iput(dir);
1329 if (ret)
1330 goto out;
1331 goto again;
1332 }
1333
1334 kfree(name.name);
1335 ref_ptr += name.len;
1336 if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 ref_ptr += sizeof(struct btrfs_inode_extref);
1338 else
1339 ref_ptr += sizeof(struct btrfs_inode_ref);
1340 }
1341 ret = 0;
1342 out:
1343 btrfs_release_path(path);
1344 return ret;
1345}
1346
1347/*
1348 * replay one inode back reference item found in the log tree.
1349 * eb, slot and key refer to the buffer and key found in the log tree.
1350 * root is the destination we are replaying into, and path is for temp
1351 * use by this function. (it should be released on return).
1352 */
1353static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354 struct btrfs_root *root,
1355 struct btrfs_root *log,
1356 struct btrfs_path *path,
1357 struct extent_buffer *eb, int slot,
1358 struct btrfs_key *key)
1359{
1360 struct inode *dir = NULL;
1361 struct inode *inode = NULL;
1362 unsigned long ref_ptr;
1363 unsigned long ref_end;
1364 struct fscrypt_str name;
1365 int ret;
1366 int log_ref_ver = 0;
1367 u64 parent_objectid;
1368 u64 inode_objectid;
1369 u64 ref_index = 0;
1370 int ref_struct_size;
1371
1372 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1373 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1374
1375 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376 struct btrfs_inode_extref *r;
1377
1378 ref_struct_size = sizeof(struct btrfs_inode_extref);
1379 log_ref_ver = 1;
1380 r = (struct btrfs_inode_extref *)ref_ptr;
1381 parent_objectid = btrfs_inode_extref_parent(eb, r);
1382 } else {
1383 ref_struct_size = sizeof(struct btrfs_inode_ref);
1384 parent_objectid = key->offset;
1385 }
1386 inode_objectid = key->objectid;
1387
1388 /*
1389 * it is possible that we didn't log all the parent directories
1390 * for a given inode. If we don't find the dir, just don't
1391 * copy the back ref in. The link count fixup code will take
1392 * care of the rest
1393 */
1394 dir = read_one_inode(root, parent_objectid);
1395 if (!dir) {
1396 ret = -ENOENT;
1397 goto out;
1398 }
1399
1400 inode = read_one_inode(root, inode_objectid);
1401 if (!inode) {
1402 ret = -EIO;
1403 goto out;
1404 }
1405
1406 while (ref_ptr < ref_end) {
1407 if (log_ref_ver) {
1408 ret = extref_get_fields(eb, ref_ptr, &name,
1409 &ref_index, &parent_objectid);
1410 /*
1411 * parent object can change from one array
1412 * item to another.
1413 */
1414 if (!dir)
1415 dir = read_one_inode(root, parent_objectid);
1416 if (!dir) {
1417 ret = -ENOENT;
1418 goto out;
1419 }
1420 } else {
1421 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1422 }
1423 if (ret)
1424 goto out;
1425
1426 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1427 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1428 if (ret < 0) {
1429 goto out;
1430 } else if (ret == 0) {
1431 /*
1432 * look for a conflicting back reference in the
1433 * metadata. if we find one we have to unlink that name
1434 * of the file before we add our new link. Later on, we
1435 * overwrite any existing back reference, and we don't
1436 * want to create dangling pointers in the directory.
1437 */
1438 ret = __add_inode_ref(trans, root, path, log,
1439 BTRFS_I(dir), BTRFS_I(inode),
1440 inode_objectid, parent_objectid,
1441 ref_index, &name);
1442 if (ret) {
1443 if (ret == 1)
1444 ret = 0;
1445 goto out;
1446 }
1447
1448 /* insert our name */
1449 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1450 &name, 0, ref_index);
1451 if (ret)
1452 goto out;
1453
1454 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1455 if (ret)
1456 goto out;
1457 }
1458 /* Else, ret == 1, we already have a perfect match, we're done. */
1459
1460 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1461 kfree(name.name);
1462 name.name = NULL;
1463 if (log_ref_ver) {
1464 iput(dir);
1465 dir = NULL;
1466 }
1467 }
1468
1469 /*
1470 * Before we overwrite the inode reference item in the subvolume tree
1471 * with the item from the log tree, we must unlink all names from the
1472 * parent directory that are in the subvolume's tree inode reference
1473 * item, otherwise we end up with an inconsistent subvolume tree where
1474 * dir index entries exist for a name but there is no inode reference
1475 * item with the same name.
1476 */
1477 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1478 key);
1479 if (ret)
1480 goto out;
1481
1482 /* finally write the back reference in the inode */
1483 ret = overwrite_item(trans, root, path, eb, slot, key);
1484out:
1485 btrfs_release_path(path);
1486 kfree(name.name);
1487 iput(dir);
1488 iput(inode);
1489 return ret;
1490}
1491
1492static int count_inode_extrefs(struct btrfs_root *root,
1493 struct btrfs_inode *inode, struct btrfs_path *path)
1494{
1495 int ret = 0;
1496 int name_len;
1497 unsigned int nlink = 0;
1498 u32 item_size;
1499 u32 cur_offset = 0;
1500 u64 inode_objectid = btrfs_ino(inode);
1501 u64 offset = 0;
1502 unsigned long ptr;
1503 struct btrfs_inode_extref *extref;
1504 struct extent_buffer *leaf;
1505
1506 while (1) {
1507 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1508 &extref, &offset);
1509 if (ret)
1510 break;
1511
1512 leaf = path->nodes[0];
1513 item_size = btrfs_item_size(leaf, path->slots[0]);
1514 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1515 cur_offset = 0;
1516
1517 while (cur_offset < item_size) {
1518 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519 name_len = btrfs_inode_extref_name_len(leaf, extref);
1520
1521 nlink++;
1522
1523 cur_offset += name_len + sizeof(*extref);
1524 }
1525
1526 offset++;
1527 btrfs_release_path(path);
1528 }
1529 btrfs_release_path(path);
1530
1531 if (ret < 0 && ret != -ENOENT)
1532 return ret;
1533 return nlink;
1534}
1535
1536static int count_inode_refs(struct btrfs_root *root,
1537 struct btrfs_inode *inode, struct btrfs_path *path)
1538{
1539 int ret;
1540 struct btrfs_key key;
1541 unsigned int nlink = 0;
1542 unsigned long ptr;
1543 unsigned long ptr_end;
1544 int name_len;
1545 u64 ino = btrfs_ino(inode);
1546
1547 key.objectid = ino;
1548 key.type = BTRFS_INODE_REF_KEY;
1549 key.offset = (u64)-1;
1550
1551 while (1) {
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 if (ret < 0)
1554 break;
1555 if (ret > 0) {
1556 if (path->slots[0] == 0)
1557 break;
1558 path->slots[0]--;
1559 }
1560process_slot:
1561 btrfs_item_key_to_cpu(path->nodes[0], &key,
1562 path->slots[0]);
1563 if (key.objectid != ino ||
1564 key.type != BTRFS_INODE_REF_KEY)
1565 break;
1566 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1567 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1568 path->slots[0]);
1569 while (ptr < ptr_end) {
1570 struct btrfs_inode_ref *ref;
1571
1572 ref = (struct btrfs_inode_ref *)ptr;
1573 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1574 ref);
1575 ptr = (unsigned long)(ref + 1) + name_len;
1576 nlink++;
1577 }
1578
1579 if (key.offset == 0)
1580 break;
1581 if (path->slots[0] > 0) {
1582 path->slots[0]--;
1583 goto process_slot;
1584 }
1585 key.offset--;
1586 btrfs_release_path(path);
1587 }
1588 btrfs_release_path(path);
1589
1590 return nlink;
1591}
1592
1593/*
1594 * There are a few corners where the link count of the file can't
1595 * be properly maintained during replay. So, instead of adding
1596 * lots of complexity to the log code, we just scan the backrefs
1597 * for any file that has been through replay.
1598 *
1599 * The scan will update the link count on the inode to reflect the
1600 * number of back refs found. If it goes down to zero, the iput
1601 * will free the inode.
1602 */
1603static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct inode *inode)
1606{
1607 struct btrfs_path *path;
1608 int ret;
1609 u64 nlink = 0;
1610 u64 ino = btrfs_ino(BTRFS_I(inode));
1611
1612 path = btrfs_alloc_path();
1613 if (!path)
1614 return -ENOMEM;
1615
1616 ret = count_inode_refs(root, BTRFS_I(inode), path);
1617 if (ret < 0)
1618 goto out;
1619
1620 nlink = ret;
1621
1622 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1623 if (ret < 0)
1624 goto out;
1625
1626 nlink += ret;
1627
1628 ret = 0;
1629
1630 if (nlink != inode->i_nlink) {
1631 set_nlink(inode, nlink);
1632 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1633 if (ret)
1634 goto out;
1635 }
1636 BTRFS_I(inode)->index_cnt = (u64)-1;
1637
1638 if (inode->i_nlink == 0) {
1639 if (S_ISDIR(inode->i_mode)) {
1640 ret = replay_dir_deletes(trans, root, NULL, path,
1641 ino, 1);
1642 if (ret)
1643 goto out;
1644 }
1645 ret = btrfs_insert_orphan_item(trans, root, ino);
1646 if (ret == -EEXIST)
1647 ret = 0;
1648 }
1649
1650out:
1651 btrfs_free_path(path);
1652 return ret;
1653}
1654
1655static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_path *path)
1658{
1659 int ret;
1660 struct btrfs_key key;
1661 struct inode *inode;
1662
1663 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664 key.type = BTRFS_ORPHAN_ITEM_KEY;
1665 key.offset = (u64)-1;
1666 while (1) {
1667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668 if (ret < 0)
1669 break;
1670
1671 if (ret == 1) {
1672 ret = 0;
1673 if (path->slots[0] == 0)
1674 break;
1675 path->slots[0]--;
1676 }
1677
1678 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680 key.type != BTRFS_ORPHAN_ITEM_KEY)
1681 break;
1682
1683 ret = btrfs_del_item(trans, root, path);
1684 if (ret)
1685 break;
1686
1687 btrfs_release_path(path);
1688 inode = read_one_inode(root, key.offset);
1689 if (!inode) {
1690 ret = -EIO;
1691 break;
1692 }
1693
1694 ret = fixup_inode_link_count(trans, root, inode);
1695 iput(inode);
1696 if (ret)
1697 break;
1698
1699 /*
1700 * fixup on a directory may create new entries,
1701 * make sure we always look for the highset possible
1702 * offset
1703 */
1704 key.offset = (u64)-1;
1705 }
1706 btrfs_release_path(path);
1707 return ret;
1708}
1709
1710
1711/*
1712 * record a given inode in the fixup dir so we can check its link
1713 * count when replay is done. The link count is incremented here
1714 * so the inode won't go away until we check it
1715 */
1716static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717 struct btrfs_root *root,
1718 struct btrfs_path *path,
1719 u64 objectid)
1720{
1721 struct btrfs_key key;
1722 int ret = 0;
1723 struct inode *inode;
1724
1725 inode = read_one_inode(root, objectid);
1726 if (!inode)
1727 return -EIO;
1728
1729 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1730 key.type = BTRFS_ORPHAN_ITEM_KEY;
1731 key.offset = objectid;
1732
1733 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1734
1735 btrfs_release_path(path);
1736 if (ret == 0) {
1737 if (!inode->i_nlink)
1738 set_nlink(inode, 1);
1739 else
1740 inc_nlink(inode);
1741 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1742 } else if (ret == -EEXIST) {
1743 ret = 0;
1744 }
1745 iput(inode);
1746
1747 return ret;
1748}
1749
1750/*
1751 * when replaying the log for a directory, we only insert names
1752 * for inodes that actually exist. This means an fsync on a directory
1753 * does not implicitly fsync all the new files in it
1754 */
1755static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 u64 dirid, u64 index,
1758 const struct fscrypt_str *name,
1759 struct btrfs_key *location)
1760{
1761 struct inode *inode;
1762 struct inode *dir;
1763 int ret;
1764
1765 inode = read_one_inode(root, location->objectid);
1766 if (!inode)
1767 return -ENOENT;
1768
1769 dir = read_one_inode(root, dirid);
1770 if (!dir) {
1771 iput(inode);
1772 return -EIO;
1773 }
1774
1775 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1776 1, index);
1777
1778 /* FIXME, put inode into FIXUP list */
1779
1780 iput(inode);
1781 iput(dir);
1782 return ret;
1783}
1784
1785static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786 struct btrfs_inode *dir,
1787 struct btrfs_path *path,
1788 struct btrfs_dir_item *dst_di,
1789 const struct btrfs_key *log_key,
1790 u8 log_flags,
1791 bool exists)
1792{
1793 struct btrfs_key found_key;
1794
1795 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796 /* The existing dentry points to the same inode, don't delete it. */
1797 if (found_key.objectid == log_key->objectid &&
1798 found_key.type == log_key->type &&
1799 found_key.offset == log_key->offset &&
1800 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1801 return 1;
1802
1803 /*
1804 * Don't drop the conflicting directory entry if the inode for the new
1805 * entry doesn't exist.
1806 */
1807 if (!exists)
1808 return 0;
1809
1810 return drop_one_dir_item(trans, path, dir, dst_di);
1811}
1812
1813/*
1814 * take a single entry in a log directory item and replay it into
1815 * the subvolume.
1816 *
1817 * if a conflicting item exists in the subdirectory already,
1818 * the inode it points to is unlinked and put into the link count
1819 * fix up tree.
1820 *
1821 * If a name from the log points to a file or directory that does
1822 * not exist in the FS, it is skipped. fsyncs on directories
1823 * do not force down inodes inside that directory, just changes to the
1824 * names or unlinks in a directory.
1825 *
1826 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827 * non-existing inode) and 1 if the name was replayed.
1828 */
1829static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct btrfs_path *path,
1832 struct extent_buffer *eb,
1833 struct btrfs_dir_item *di,
1834 struct btrfs_key *key)
1835{
1836 struct fscrypt_str name;
1837 struct btrfs_dir_item *dir_dst_di;
1838 struct btrfs_dir_item *index_dst_di;
1839 bool dir_dst_matches = false;
1840 bool index_dst_matches = false;
1841 struct btrfs_key log_key;
1842 struct btrfs_key search_key;
1843 struct inode *dir;
1844 u8 log_flags;
1845 bool exists;
1846 int ret;
1847 bool update_size = true;
1848 bool name_added = false;
1849
1850 dir = read_one_inode(root, key->objectid);
1851 if (!dir)
1852 return -EIO;
1853
1854 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1855 if (ret)
1856 goto out;
1857
1858 log_flags = btrfs_dir_flags(eb, di);
1859 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1860 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1861 btrfs_release_path(path);
1862 if (ret < 0)
1863 goto out;
1864 exists = (ret == 0);
1865 ret = 0;
1866
1867 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1868 &name, 1);
1869 if (IS_ERR(dir_dst_di)) {
1870 ret = PTR_ERR(dir_dst_di);
1871 goto out;
1872 } else if (dir_dst_di) {
1873 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1874 dir_dst_di, &log_key,
1875 log_flags, exists);
1876 if (ret < 0)
1877 goto out;
1878 dir_dst_matches = (ret == 1);
1879 }
1880
1881 btrfs_release_path(path);
1882
1883 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884 key->objectid, key->offset,
1885 &name, 1);
1886 if (IS_ERR(index_dst_di)) {
1887 ret = PTR_ERR(index_dst_di);
1888 goto out;
1889 } else if (index_dst_di) {
1890 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891 index_dst_di, &log_key,
1892 log_flags, exists);
1893 if (ret < 0)
1894 goto out;
1895 index_dst_matches = (ret == 1);
1896 }
1897
1898 btrfs_release_path(path);
1899
1900 if (dir_dst_matches && index_dst_matches) {
1901 ret = 0;
1902 update_size = false;
1903 goto out;
1904 }
1905
1906 /*
1907 * Check if the inode reference exists in the log for the given name,
1908 * inode and parent inode
1909 */
1910 search_key.objectid = log_key.objectid;
1911 search_key.type = BTRFS_INODE_REF_KEY;
1912 search_key.offset = key->objectid;
1913 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1914 if (ret < 0) {
1915 goto out;
1916 } else if (ret) {
1917 /* The dentry will be added later. */
1918 ret = 0;
1919 update_size = false;
1920 goto out;
1921 }
1922
1923 search_key.objectid = log_key.objectid;
1924 search_key.type = BTRFS_INODE_EXTREF_KEY;
1925 search_key.offset = key->objectid;
1926 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1927 if (ret < 0) {
1928 goto out;
1929 } else if (ret) {
1930 /* The dentry will be added later. */
1931 ret = 0;
1932 update_size = false;
1933 goto out;
1934 }
1935 btrfs_release_path(path);
1936 ret = insert_one_name(trans, root, key->objectid, key->offset,
1937 &name, &log_key);
1938 if (ret && ret != -ENOENT && ret != -EEXIST)
1939 goto out;
1940 if (!ret)
1941 name_added = true;
1942 update_size = false;
1943 ret = 0;
1944
1945out:
1946 if (!ret && update_size) {
1947 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1948 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1949 }
1950 kfree(name.name);
1951 iput(dir);
1952 if (!ret && name_added)
1953 ret = 1;
1954 return ret;
1955}
1956
1957/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1958static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_path *path,
1961 struct extent_buffer *eb, int slot,
1962 struct btrfs_key *key)
1963{
1964 int ret;
1965 struct btrfs_dir_item *di;
1966
1967 /* We only log dir index keys, which only contain a single dir item. */
1968 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1969
1970 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971 ret = replay_one_name(trans, root, path, eb, di, key);
1972 if (ret < 0)
1973 return ret;
1974
1975 /*
1976 * If this entry refers to a non-directory (directories can not have a
1977 * link count > 1) and it was added in the transaction that was not
1978 * committed, make sure we fixup the link count of the inode the entry
1979 * points to. Otherwise something like the following would result in a
1980 * directory pointing to an inode with a wrong link that does not account
1981 * for this dir entry:
1982 *
1983 * mkdir testdir
1984 * touch testdir/foo
1985 * touch testdir/bar
1986 * sync
1987 *
1988 * ln testdir/bar testdir/bar_link
1989 * ln testdir/foo testdir/foo_link
1990 * xfs_io -c "fsync" testdir/bar
1991 *
1992 * <power failure>
1993 *
1994 * mount fs, log replay happens
1995 *
1996 * File foo would remain with a link count of 1 when it has two entries
1997 * pointing to it in the directory testdir. This would make it impossible
1998 * to ever delete the parent directory has it would result in stale
1999 * dentries that can never be deleted.
2000 */
2001 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2002 struct btrfs_path *fixup_path;
2003 struct btrfs_key di_key;
2004
2005 fixup_path = btrfs_alloc_path();
2006 if (!fixup_path)
2007 return -ENOMEM;
2008
2009 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011 btrfs_free_path(fixup_path);
2012 }
2013
2014 return ret;
2015}
2016
2017/*
2018 * directory replay has two parts. There are the standard directory
2019 * items in the log copied from the subvolume, and range items
2020 * created in the log while the subvolume was logged.
2021 *
2022 * The range items tell us which parts of the key space the log
2023 * is authoritative for. During replay, if a key in the subvolume
2024 * directory is in a logged range item, but not actually in the log
2025 * that means it was deleted from the directory before the fsync
2026 * and should be removed.
2027 */
2028static noinline int find_dir_range(struct btrfs_root *root,
2029 struct btrfs_path *path,
2030 u64 dirid,
2031 u64 *start_ret, u64 *end_ret)
2032{
2033 struct btrfs_key key;
2034 u64 found_end;
2035 struct btrfs_dir_log_item *item;
2036 int ret;
2037 int nritems;
2038
2039 if (*start_ret == (u64)-1)
2040 return 1;
2041
2042 key.objectid = dirid;
2043 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2044 key.offset = *start_ret;
2045
2046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2047 if (ret < 0)
2048 goto out;
2049 if (ret > 0) {
2050 if (path->slots[0] == 0)
2051 goto out;
2052 path->slots[0]--;
2053 }
2054 if (ret != 0)
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2058 ret = 1;
2059 goto next;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064
2065 if (*start_ret >= key.offset && *start_ret <= found_end) {
2066 ret = 0;
2067 *start_ret = key.offset;
2068 *end_ret = found_end;
2069 goto out;
2070 }
2071 ret = 1;
2072next:
2073 /* check the next slot in the tree to see if it is a valid item */
2074 nritems = btrfs_header_nritems(path->nodes[0]);
2075 path->slots[0]++;
2076 if (path->slots[0] >= nritems) {
2077 ret = btrfs_next_leaf(root, path);
2078 if (ret)
2079 goto out;
2080 }
2081
2082 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2083
2084 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2085 ret = 1;
2086 goto out;
2087 }
2088 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089 struct btrfs_dir_log_item);
2090 found_end = btrfs_dir_log_end(path->nodes[0], item);
2091 *start_ret = key.offset;
2092 *end_ret = found_end;
2093 ret = 0;
2094out:
2095 btrfs_release_path(path);
2096 return ret;
2097}
2098
2099/*
2100 * this looks for a given directory item in the log. If the directory
2101 * item is not in the log, the item is removed and the inode it points
2102 * to is unlinked
2103 */
2104static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *log,
2106 struct btrfs_path *path,
2107 struct btrfs_path *log_path,
2108 struct inode *dir,
2109 struct btrfs_key *dir_key)
2110{
2111 struct btrfs_root *root = BTRFS_I(dir)->root;
2112 int ret;
2113 struct extent_buffer *eb;
2114 int slot;
2115 struct btrfs_dir_item *di;
2116 struct fscrypt_str name;
2117 struct inode *inode = NULL;
2118 struct btrfs_key location;
2119
2120 /*
2121 * Currently we only log dir index keys. Even if we replay a log created
2122 * by an older kernel that logged both dir index and dir item keys, all
2123 * we need to do is process the dir index keys, we (and our caller) can
2124 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2125 */
2126 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2127
2128 eb = path->nodes[0];
2129 slot = path->slots[0];
2130 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2131 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2132 if (ret)
2133 goto out;
2134
2135 if (log) {
2136 struct btrfs_dir_item *log_di;
2137
2138 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2139 dir_key->objectid,
2140 dir_key->offset, &name, 0);
2141 if (IS_ERR(log_di)) {
2142 ret = PTR_ERR(log_di);
2143 goto out;
2144 } else if (log_di) {
2145 /* The dentry exists in the log, we have nothing to do. */
2146 ret = 0;
2147 goto out;
2148 }
2149 }
2150
2151 btrfs_dir_item_key_to_cpu(eb, di, &location);
2152 btrfs_release_path(path);
2153 btrfs_release_path(log_path);
2154 inode = read_one_inode(root, location.objectid);
2155 if (!inode) {
2156 ret = -EIO;
2157 goto out;
2158 }
2159
2160 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2161 if (ret)
2162 goto out;
2163
2164 inc_nlink(inode);
2165 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2166 &name);
2167 /*
2168 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169 * them, as there are no key collisions since each key has a unique offset
2170 * (an index number), so we're done.
2171 */
2172out:
2173 btrfs_release_path(path);
2174 btrfs_release_path(log_path);
2175 kfree(name.name);
2176 iput(inode);
2177 return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size(path->nodes[0], i);
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2293{
2294 u64 range_start;
2295 u64 range_end;
2296 int ret = 0;
2297 struct btrfs_key dir_key;
2298 struct btrfs_key found_key;
2299 struct btrfs_path *log_path;
2300 struct inode *dir;
2301
2302 dir_key.objectid = dirid;
2303 dir_key.type = BTRFS_DIR_INDEX_KEY;
2304 log_path = btrfs_alloc_path();
2305 if (!log_path)
2306 return -ENOMEM;
2307
2308 dir = read_one_inode(root, dirid);
2309 /* it isn't an error if the inode isn't there, that can happen
2310 * because we replay the deletes before we copy in the inode item
2311 * from the log
2312 */
2313 if (!dir) {
2314 btrfs_free_path(log_path);
2315 return 0;
2316 }
2317
2318 range_start = 0;
2319 range_end = 0;
2320 while (1) {
2321 if (del_all)
2322 range_end = (u64)-1;
2323 else {
2324 ret = find_dir_range(log, path, dirid,
2325 &range_start, &range_end);
2326 if (ret < 0)
2327 goto out;
2328 else if (ret > 0)
2329 break;
2330 }
2331
2332 dir_key.offset = range_start;
2333 while (1) {
2334 int nritems;
2335 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 nritems = btrfs_header_nritems(path->nodes[0]);
2341 if (path->slots[0] >= nritems) {
2342 ret = btrfs_next_leaf(root, path);
2343 if (ret == 1)
2344 break;
2345 else if (ret < 0)
2346 goto out;
2347 }
2348 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349 path->slots[0]);
2350 if (found_key.objectid != dirid ||
2351 found_key.type != dir_key.type) {
2352 ret = 0;
2353 goto out;
2354 }
2355
2356 if (found_key.offset > range_end)
2357 break;
2358
2359 ret = check_item_in_log(trans, log, path,
2360 log_path, dir,
2361 &found_key);
2362 if (ret)
2363 goto out;
2364 if (found_key.offset == (u64)-1)
2365 break;
2366 dir_key.offset = found_key.offset + 1;
2367 }
2368 btrfs_release_path(path);
2369 if (range_end == (u64)-1)
2370 break;
2371 range_start = range_end + 1;
2372 }
2373 ret = 0;
2374out:
2375 btrfs_release_path(path);
2376 btrfs_free_path(log_path);
2377 iput(dir);
2378 return ret;
2379}
2380
2381/*
2382 * the process_func used to replay items from the log tree. This
2383 * gets called in two different stages. The first stage just looks
2384 * for inodes and makes sure they are all copied into the subvolume.
2385 *
2386 * The second stage copies all the other item types from the log into
2387 * the subvolume. The two stage approach is slower, but gets rid of
2388 * lots of complexity around inodes referencing other inodes that exist
2389 * only in the log (references come from either directory items or inode
2390 * back refs).
2391 */
2392static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2393 struct walk_control *wc, u64 gen, int level)
2394{
2395 int nritems;
2396 struct btrfs_tree_parent_check check = {
2397 .transid = gen,
2398 .level = level
2399 };
2400 struct btrfs_path *path;
2401 struct btrfs_root *root = wc->replay_dest;
2402 struct btrfs_key key;
2403 int i;
2404 int ret;
2405
2406 ret = btrfs_read_extent_buffer(eb, &check);
2407 if (ret)
2408 return ret;
2409
2410 level = btrfs_header_level(eb);
2411
2412 if (level != 0)
2413 return 0;
2414
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOMEM;
2418
2419 nritems = btrfs_header_nritems(eb);
2420 for (i = 0; i < nritems; i++) {
2421 btrfs_item_key_to_cpu(eb, &key, i);
2422
2423 /* inode keys are done during the first stage */
2424 if (key.type == BTRFS_INODE_ITEM_KEY &&
2425 wc->stage == LOG_WALK_REPLAY_INODES) {
2426 struct btrfs_inode_item *inode_item;
2427 u32 mode;
2428
2429 inode_item = btrfs_item_ptr(eb, i,
2430 struct btrfs_inode_item);
2431 /*
2432 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433 * and never got linked before the fsync, skip it, as
2434 * replaying it is pointless since it would be deleted
2435 * later. We skip logging tmpfiles, but it's always
2436 * possible we are replaying a log created with a kernel
2437 * that used to log tmpfiles.
2438 */
2439 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440 wc->ignore_cur_inode = true;
2441 continue;
2442 } else {
2443 wc->ignore_cur_inode = false;
2444 }
2445 ret = replay_xattr_deletes(wc->trans, root, log,
2446 path, key.objectid);
2447 if (ret)
2448 break;
2449 mode = btrfs_inode_mode(eb, inode_item);
2450 if (S_ISDIR(mode)) {
2451 ret = replay_dir_deletes(wc->trans,
2452 root, log, path, key.objectid, 0);
2453 if (ret)
2454 break;
2455 }
2456 ret = overwrite_item(wc->trans, root, path,
2457 eb, i, &key);
2458 if (ret)
2459 break;
2460
2461 /*
2462 * Before replaying extents, truncate the inode to its
2463 * size. We need to do it now and not after log replay
2464 * because before an fsync we can have prealloc extents
2465 * added beyond the inode's i_size. If we did it after,
2466 * through orphan cleanup for example, we would drop
2467 * those prealloc extents just after replaying them.
2468 */
2469 if (S_ISREG(mode)) {
2470 struct btrfs_drop_extents_args drop_args = { 0 };
2471 struct inode *inode;
2472 u64 from;
2473
2474 inode = read_one_inode(root, key.objectid);
2475 if (!inode) {
2476 ret = -EIO;
2477 break;
2478 }
2479 from = ALIGN(i_size_read(inode),
2480 root->fs_info->sectorsize);
2481 drop_args.start = from;
2482 drop_args.end = (u64)-1;
2483 drop_args.drop_cache = true;
2484 ret = btrfs_drop_extents(wc->trans, root,
2485 BTRFS_I(inode),
2486 &drop_args);
2487 if (!ret) {
2488 inode_sub_bytes(inode,
2489 drop_args.bytes_found);
2490 /* Update the inode's nbytes. */
2491 ret = btrfs_update_inode(wc->trans,
2492 root, BTRFS_I(inode));
2493 }
2494 iput(inode);
2495 if (ret)
2496 break;
2497 }
2498
2499 ret = link_to_fixup_dir(wc->trans, root,
2500 path, key.objectid);
2501 if (ret)
2502 break;
2503 }
2504
2505 if (wc->ignore_cur_inode)
2506 continue;
2507
2508 if (key.type == BTRFS_DIR_INDEX_KEY &&
2509 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510 ret = replay_one_dir_item(wc->trans, root, path,
2511 eb, i, &key);
2512 if (ret)
2513 break;
2514 }
2515
2516 if (wc->stage < LOG_WALK_REPLAY_ALL)
2517 continue;
2518
2519 /* these keys are simply copied */
2520 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521 ret = overwrite_item(wc->trans, root, path,
2522 eb, i, &key);
2523 if (ret)
2524 break;
2525 } else if (key.type == BTRFS_INODE_REF_KEY ||
2526 key.type == BTRFS_INODE_EXTREF_KEY) {
2527 ret = add_inode_ref(wc->trans, root, log, path,
2528 eb, i, &key);
2529 if (ret && ret != -ENOENT)
2530 break;
2531 ret = 0;
2532 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533 ret = replay_one_extent(wc->trans, root, path,
2534 eb, i, &key);
2535 if (ret)
2536 break;
2537 }
2538 /*
2539 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542 * older kernel with such keys, ignore them.
2543 */
2544 }
2545 btrfs_free_path(path);
2546 return ret;
2547}
2548
2549/*
2550 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2551 */
2552static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2553{
2554 struct btrfs_block_group *cache;
2555
2556 cache = btrfs_lookup_block_group(fs_info, start);
2557 if (!cache) {
2558 btrfs_err(fs_info, "unable to find block group for %llu", start);
2559 return;
2560 }
2561
2562 spin_lock(&cache->space_info->lock);
2563 spin_lock(&cache->lock);
2564 cache->reserved -= fs_info->nodesize;
2565 cache->space_info->bytes_reserved -= fs_info->nodesize;
2566 spin_unlock(&cache->lock);
2567 spin_unlock(&cache->space_info->lock);
2568
2569 btrfs_put_block_group(cache);
2570}
2571
2572static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2573 struct btrfs_root *root,
2574 struct btrfs_path *path, int *level,
2575 struct walk_control *wc)
2576{
2577 struct btrfs_fs_info *fs_info = root->fs_info;
2578 u64 bytenr;
2579 u64 ptr_gen;
2580 struct extent_buffer *next;
2581 struct extent_buffer *cur;
2582 u32 blocksize;
2583 int ret = 0;
2584
2585 while (*level > 0) {
2586 struct btrfs_tree_parent_check check = { 0 };
2587
2588 cur = path->nodes[*level];
2589
2590 WARN_ON(btrfs_header_level(cur) != *level);
2591
2592 if (path->slots[*level] >=
2593 btrfs_header_nritems(cur))
2594 break;
2595
2596 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2598 check.transid = ptr_gen;
2599 check.level = *level - 1;
2600 check.has_first_key = true;
2601 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2602 blocksize = fs_info->nodesize;
2603
2604 next = btrfs_find_create_tree_block(fs_info, bytenr,
2605 btrfs_header_owner(cur),
2606 *level - 1);
2607 if (IS_ERR(next))
2608 return PTR_ERR(next);
2609
2610 if (*level == 1) {
2611 ret = wc->process_func(root, next, wc, ptr_gen,
2612 *level - 1);
2613 if (ret) {
2614 free_extent_buffer(next);
2615 return ret;
2616 }
2617
2618 path->slots[*level]++;
2619 if (wc->free) {
2620 ret = btrfs_read_extent_buffer(next, &check);
2621 if (ret) {
2622 free_extent_buffer(next);
2623 return ret;
2624 }
2625
2626 if (trans) {
2627 btrfs_tree_lock(next);
2628 btrfs_clean_tree_block(next);
2629 btrfs_wait_tree_block_writeback(next);
2630 btrfs_tree_unlock(next);
2631 ret = btrfs_pin_reserved_extent(trans,
2632 bytenr, blocksize);
2633 if (ret) {
2634 free_extent_buffer(next);
2635 return ret;
2636 }
2637 btrfs_redirty_list_add(
2638 trans->transaction, next);
2639 } else {
2640 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 clear_extent_buffer_dirty(next);
2642 unaccount_log_buffer(fs_info, bytenr);
2643 }
2644 }
2645 free_extent_buffer(next);
2646 continue;
2647 }
2648 ret = btrfs_read_extent_buffer(next, &check);
2649 if (ret) {
2650 free_extent_buffer(next);
2651 return ret;
2652 }
2653
2654 if (path->nodes[*level-1])
2655 free_extent_buffer(path->nodes[*level-1]);
2656 path->nodes[*level-1] = next;
2657 *level = btrfs_header_level(next);
2658 path->slots[*level] = 0;
2659 cond_resched();
2660 }
2661 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2662
2663 cond_resched();
2664 return 0;
2665}
2666
2667static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2668 struct btrfs_root *root,
2669 struct btrfs_path *path, int *level,
2670 struct walk_control *wc)
2671{
2672 struct btrfs_fs_info *fs_info = root->fs_info;
2673 int i;
2674 int slot;
2675 int ret;
2676
2677 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678 slot = path->slots[i];
2679 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2680 path->slots[i]++;
2681 *level = i;
2682 WARN_ON(*level == 0);
2683 return 0;
2684 } else {
2685 ret = wc->process_func(root, path->nodes[*level], wc,
2686 btrfs_header_generation(path->nodes[*level]),
2687 *level);
2688 if (ret)
2689 return ret;
2690
2691 if (wc->free) {
2692 struct extent_buffer *next;
2693
2694 next = path->nodes[*level];
2695
2696 if (trans) {
2697 btrfs_tree_lock(next);
2698 btrfs_clean_tree_block(next);
2699 btrfs_wait_tree_block_writeback(next);
2700 btrfs_tree_unlock(next);
2701 ret = btrfs_pin_reserved_extent(trans,
2702 path->nodes[*level]->start,
2703 path->nodes[*level]->len);
2704 if (ret)
2705 return ret;
2706 btrfs_redirty_list_add(trans->transaction,
2707 next);
2708 } else {
2709 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710 clear_extent_buffer_dirty(next);
2711
2712 unaccount_log_buffer(fs_info,
2713 path->nodes[*level]->start);
2714 }
2715 }
2716 free_extent_buffer(path->nodes[*level]);
2717 path->nodes[*level] = NULL;
2718 *level = i + 1;
2719 }
2720 }
2721 return 1;
2722}
2723
2724/*
2725 * drop the reference count on the tree rooted at 'snap'. This traverses
2726 * the tree freeing any blocks that have a ref count of zero after being
2727 * decremented.
2728 */
2729static int walk_log_tree(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *log, struct walk_control *wc)
2731{
2732 struct btrfs_fs_info *fs_info = log->fs_info;
2733 int ret = 0;
2734 int wret;
2735 int level;
2736 struct btrfs_path *path;
2737 int orig_level;
2738
2739 path = btrfs_alloc_path();
2740 if (!path)
2741 return -ENOMEM;
2742
2743 level = btrfs_header_level(log->node);
2744 orig_level = level;
2745 path->nodes[level] = log->node;
2746 atomic_inc(&log->node->refs);
2747 path->slots[level] = 0;
2748
2749 while (1) {
2750 wret = walk_down_log_tree(trans, log, path, &level, wc);
2751 if (wret > 0)
2752 break;
2753 if (wret < 0) {
2754 ret = wret;
2755 goto out;
2756 }
2757
2758 wret = walk_up_log_tree(trans, log, path, &level, wc);
2759 if (wret > 0)
2760 break;
2761 if (wret < 0) {
2762 ret = wret;
2763 goto out;
2764 }
2765 }
2766
2767 /* was the root node processed? if not, catch it here */
2768 if (path->nodes[orig_level]) {
2769 ret = wc->process_func(log, path->nodes[orig_level], wc,
2770 btrfs_header_generation(path->nodes[orig_level]),
2771 orig_level);
2772 if (ret)
2773 goto out;
2774 if (wc->free) {
2775 struct extent_buffer *next;
2776
2777 next = path->nodes[orig_level];
2778
2779 if (trans) {
2780 btrfs_tree_lock(next);
2781 btrfs_clean_tree_block(next);
2782 btrfs_wait_tree_block_writeback(next);
2783 btrfs_tree_unlock(next);
2784 ret = btrfs_pin_reserved_extent(trans,
2785 next->start, next->len);
2786 if (ret)
2787 goto out;
2788 btrfs_redirty_list_add(trans->transaction, next);
2789 } else {
2790 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791 clear_extent_buffer_dirty(next);
2792 unaccount_log_buffer(fs_info, next->start);
2793 }
2794 }
2795 }
2796
2797out:
2798 btrfs_free_path(path);
2799 return ret;
2800}
2801
2802/*
2803 * helper function to update the item for a given subvolumes log root
2804 * in the tree of log roots
2805 */
2806static int update_log_root(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *log,
2808 struct btrfs_root_item *root_item)
2809{
2810 struct btrfs_fs_info *fs_info = log->fs_info;
2811 int ret;
2812
2813 if (log->log_transid == 1) {
2814 /* insert root item on the first sync */
2815 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2816 &log->root_key, root_item);
2817 } else {
2818 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2819 &log->root_key, root_item);
2820 }
2821 return ret;
2822}
2823
2824static void wait_log_commit(struct btrfs_root *root, int transid)
2825{
2826 DEFINE_WAIT(wait);
2827 int index = transid % 2;
2828
2829 /*
2830 * we only allow two pending log transactions at a time,
2831 * so we know that if ours is more than 2 older than the
2832 * current transaction, we're done
2833 */
2834 for (;;) {
2835 prepare_to_wait(&root->log_commit_wait[index],
2836 &wait, TASK_UNINTERRUPTIBLE);
2837
2838 if (!(root->log_transid_committed < transid &&
2839 atomic_read(&root->log_commit[index])))
2840 break;
2841
2842 mutex_unlock(&root->log_mutex);
2843 schedule();
2844 mutex_lock(&root->log_mutex);
2845 }
2846 finish_wait(&root->log_commit_wait[index], &wait);
2847}
2848
2849static void wait_for_writer(struct btrfs_root *root)
2850{
2851 DEFINE_WAIT(wait);
2852
2853 for (;;) {
2854 prepare_to_wait(&root->log_writer_wait, &wait,
2855 TASK_UNINTERRUPTIBLE);
2856 if (!atomic_read(&root->log_writers))
2857 break;
2858
2859 mutex_unlock(&root->log_mutex);
2860 schedule();
2861 mutex_lock(&root->log_mutex);
2862 }
2863 finish_wait(&root->log_writer_wait, &wait);
2864}
2865
2866static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867 struct btrfs_log_ctx *ctx)
2868{
2869 mutex_lock(&root->log_mutex);
2870 list_del_init(&ctx->list);
2871 mutex_unlock(&root->log_mutex);
2872}
2873
2874/*
2875 * Invoked in log mutex context, or be sure there is no other task which
2876 * can access the list.
2877 */
2878static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879 int index, int error)
2880{
2881 struct btrfs_log_ctx *ctx;
2882 struct btrfs_log_ctx *safe;
2883
2884 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885 list_del_init(&ctx->list);
2886 ctx->log_ret = error;
2887 }
2888}
2889
2890/*
2891 * btrfs_sync_log does sends a given tree log down to the disk and
2892 * updates the super blocks to record it. When this call is done,
2893 * you know that any inodes previously logged are safely on disk only
2894 * if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904{
2905 int index1;
2906 int index2;
2907 int mark;
2908 int ret;
2909 struct btrfs_fs_info *fs_info = root->fs_info;
2910 struct btrfs_root *log = root->log_root;
2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 struct btrfs_root_item new_root_item;
2913 int log_transid = 0;
2914 struct btrfs_log_ctx root_log_ctx;
2915 struct blk_plug plug;
2916 u64 log_root_start;
2917 u64 log_root_level;
2918
2919 mutex_lock(&root->log_mutex);
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
2927 if (atomic_read(&root->log_commit[index1])) {
2928 wait_log_commit(root, log_transid);
2929 mutex_unlock(&root->log_mutex);
2930 return ctx->log_ret;
2931 }
2932 ASSERT(log_transid == root->log_transid);
2933 atomic_set(&root->log_commit[index1], 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 wait_log_commit(root, log_transid - 1);
2938
2939 while (1) {
2940 int batch = atomic_read(&root->log_batch);
2941 /* when we're on an ssd, just kick the log commit out */
2942 if (!btrfs_test_opt(fs_info, SSD) &&
2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2947 }
2948 wait_for_writer(root);
2949 if (batch == atomic_read(&root->log_batch))
2950 break;
2951 }
2952
2953 /* bail out if we need to do a full commit */
2954 if (btrfs_need_log_full_commit(trans)) {
2955 ret = BTRFS_LOG_FORCE_COMMIT;
2956 mutex_unlock(&root->log_mutex);
2957 goto out;
2958 }
2959
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
2968 blk_start_plug(&plug);
2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
2981 if (ret) {
2982 blk_finish_plug(&plug);
2983 btrfs_set_log_full_commit(trans);
2984 mutex_unlock(&root->log_mutex);
2985 goto out;
2986 }
2987
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
3001 btrfs_set_root_node(&log->root_item, log->node);
3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003
3004 root->log_transid++;
3005 log->log_transid = root->log_transid;
3006 root->log_start_pid = 0;
3007 /*
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
3011 */
3012 mutex_unlock(&root->log_mutex);
3013
3014 if (btrfs_is_zoned(fs_info)) {
3015 mutex_lock(&fs_info->tree_root->log_mutex);
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 if (ret) {
3019 mutex_unlock(&fs_info->tree_root->log_mutex);
3020 blk_finish_plug(&plug);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_info->tree_root->log_mutex);
3025 }
3026
3027 btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, &new_root_item);
3041 if (ret) {
3042 if (!list_empty(&root_log_ctx.list))
3043 list_del_init(&root_log_ctx.list);
3044
3045 blk_finish_plug(&plug);
3046 btrfs_set_log_full_commit(trans);
3047 if (ret != -ENOSPC)
3048 btrfs_err(fs_info,
3049 "failed to update log for root %llu ret %d",
3050 root->root_key.objectid, ret);
3051 btrfs_wait_tree_log_extents(log, mark);
3052 mutex_unlock(&log_root_tree->log_mutex);
3053 goto out;
3054 }
3055
3056 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3057 blk_finish_plug(&plug);
3058 list_del_init(&root_log_ctx.list);
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 ret = root_log_ctx.log_ret;
3061 goto out;
3062 }
3063
3064 index2 = root_log_ctx.log_transid % 2;
3065 if (atomic_read(&log_root_tree->log_commit[index2])) {
3066 blk_finish_plug(&plug);
3067 ret = btrfs_wait_tree_log_extents(log, mark);
3068 wait_log_commit(log_root_tree,
3069 root_log_ctx.log_transid);
3070 mutex_unlock(&log_root_tree->log_mutex);
3071 if (!ret)
3072 ret = root_log_ctx.log_ret;
3073 goto out;
3074 }
3075 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3076 atomic_set(&log_root_tree->log_commit[index2], 1);
3077
3078 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3079 wait_log_commit(log_root_tree,
3080 root_log_ctx.log_transid - 1);
3081 }
3082
3083 /*
3084 * now that we've moved on to the tree of log tree roots,
3085 * check the full commit flag again
3086 */
3087 if (btrfs_need_log_full_commit(trans)) {
3088 blk_finish_plug(&plug);
3089 btrfs_wait_tree_log_extents(log, mark);
3090 mutex_unlock(&log_root_tree->log_mutex);
3091 ret = BTRFS_LOG_FORCE_COMMIT;
3092 goto out_wake_log_root;
3093 }
3094
3095 ret = btrfs_write_marked_extents(fs_info,
3096 &log_root_tree->dirty_log_pages,
3097 EXTENT_DIRTY | EXTENT_NEW);
3098 blk_finish_plug(&plug);
3099 /*
3100 * As described above, -EAGAIN indicates a hole in the extents. We
3101 * cannot wait for these write outs since the waiting cause a
3102 * deadlock. Bail out to the full commit instead.
3103 */
3104 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3105 btrfs_set_log_full_commit(trans);
3106 btrfs_wait_tree_log_extents(log, mark);
3107 mutex_unlock(&log_root_tree->log_mutex);
3108 goto out_wake_log_root;
3109 } else if (ret) {
3110 btrfs_set_log_full_commit(trans);
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 goto out_wake_log_root;
3113 }
3114 ret = btrfs_wait_tree_log_extents(log, mark);
3115 if (!ret)
3116 ret = btrfs_wait_tree_log_extents(log_root_tree,
3117 EXTENT_NEW | EXTENT_DIRTY);
3118 if (ret) {
3119 btrfs_set_log_full_commit(trans);
3120 mutex_unlock(&log_root_tree->log_mutex);
3121 goto out_wake_log_root;
3122 }
3123
3124 log_root_start = log_root_tree->node->start;
3125 log_root_level = btrfs_header_level(log_root_tree->node);
3126 log_root_tree->log_transid++;
3127 mutex_unlock(&log_root_tree->log_mutex);
3128
3129 /*
3130 * Here we are guaranteed that nobody is going to write the superblock
3131 * for the current transaction before us and that neither we do write
3132 * our superblock before the previous transaction finishes its commit
3133 * and writes its superblock, because:
3134 *
3135 * 1) We are holding a handle on the current transaction, so no body
3136 * can commit it until we release the handle;
3137 *
3138 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3139 * if the previous transaction is still committing, and hasn't yet
3140 * written its superblock, we wait for it to do it, because a
3141 * transaction commit acquires the tree_log_mutex when the commit
3142 * begins and releases it only after writing its superblock.
3143 */
3144 mutex_lock(&fs_info->tree_log_mutex);
3145
3146 /*
3147 * The previous transaction writeout phase could have failed, and thus
3148 * marked the fs in an error state. We must not commit here, as we
3149 * could have updated our generation in the super_for_commit and
3150 * writing the super here would result in transid mismatches. If there
3151 * is an error here just bail.
3152 */
3153 if (BTRFS_FS_ERROR(fs_info)) {
3154 ret = -EIO;
3155 btrfs_set_log_full_commit(trans);
3156 btrfs_abort_transaction(trans, ret);
3157 mutex_unlock(&fs_info->tree_log_mutex);
3158 goto out_wake_log_root;
3159 }
3160
3161 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3162 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3163 ret = write_all_supers(fs_info, 1);
3164 mutex_unlock(&fs_info->tree_log_mutex);
3165 if (ret) {
3166 btrfs_set_log_full_commit(trans);
3167 btrfs_abort_transaction(trans, ret);
3168 goto out_wake_log_root;
3169 }
3170
3171 /*
3172 * We know there can only be one task here, since we have not yet set
3173 * root->log_commit[index1] to 0 and any task attempting to sync the
3174 * log must wait for the previous log transaction to commit if it's
3175 * still in progress or wait for the current log transaction commit if
3176 * someone else already started it. We use <= and not < because the
3177 * first log transaction has an ID of 0.
3178 */
3179 ASSERT(root->last_log_commit <= log_transid);
3180 root->last_log_commit = log_transid;
3181
3182out_wake_log_root:
3183 mutex_lock(&log_root_tree->log_mutex);
3184 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3185
3186 log_root_tree->log_transid_committed++;
3187 atomic_set(&log_root_tree->log_commit[index2], 0);
3188 mutex_unlock(&log_root_tree->log_mutex);
3189
3190 /*
3191 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3192 * all the updates above are seen by the woken threads. It might not be
3193 * necessary, but proving that seems to be hard.
3194 */
3195 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3196out:
3197 mutex_lock(&root->log_mutex);
3198 btrfs_remove_all_log_ctxs(root, index1, ret);
3199 root->log_transid_committed++;
3200 atomic_set(&root->log_commit[index1], 0);
3201 mutex_unlock(&root->log_mutex);
3202
3203 /*
3204 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3205 * all the updates above are seen by the woken threads. It might not be
3206 * necessary, but proving that seems to be hard.
3207 */
3208 cond_wake_up(&root->log_commit_wait[index1]);
3209 return ret;
3210}
3211
3212static void free_log_tree(struct btrfs_trans_handle *trans,
3213 struct btrfs_root *log)
3214{
3215 int ret;
3216 struct walk_control wc = {
3217 .free = 1,
3218 .process_func = process_one_buffer
3219 };
3220
3221 if (log->node) {
3222 ret = walk_log_tree(trans, log, &wc);
3223 if (ret) {
3224 /*
3225 * We weren't able to traverse the entire log tree, the
3226 * typical scenario is getting an -EIO when reading an
3227 * extent buffer of the tree, due to a previous writeback
3228 * failure of it.
3229 */
3230 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3231 &log->fs_info->fs_state);
3232
3233 /*
3234 * Some extent buffers of the log tree may still be dirty
3235 * and not yet written back to storage, because we may
3236 * have updates to a log tree without syncing a log tree,
3237 * such as during rename and link operations. So flush
3238 * them out and wait for their writeback to complete, so
3239 * that we properly cleanup their state and pages.
3240 */
3241 btrfs_write_marked_extents(log->fs_info,
3242 &log->dirty_log_pages,
3243 EXTENT_DIRTY | EXTENT_NEW);
3244 btrfs_wait_tree_log_extents(log,
3245 EXTENT_DIRTY | EXTENT_NEW);
3246
3247 if (trans)
3248 btrfs_abort_transaction(trans, ret);
3249 else
3250 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3251 }
3252 }
3253
3254 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3255 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3256 extent_io_tree_release(&log->log_csum_range);
3257
3258 btrfs_put_root(log);
3259}
3260
3261/*
3262 * free all the extents used by the tree log. This should be called
3263 * at commit time of the full transaction
3264 */
3265int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266{
3267 if (root->log_root) {
3268 free_log_tree(trans, root->log_root);
3269 root->log_root = NULL;
3270 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3271 }
3272 return 0;
3273}
3274
3275int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3276 struct btrfs_fs_info *fs_info)
3277{
3278 if (fs_info->log_root_tree) {
3279 free_log_tree(trans, fs_info->log_root_tree);
3280 fs_info->log_root_tree = NULL;
3281 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3282 }
3283 return 0;
3284}
3285
3286/*
3287 * Check if an inode was logged in the current transaction. This correctly deals
3288 * with the case where the inode was logged but has a logged_trans of 0, which
3289 * happens if the inode is evicted and loaded again, as logged_trans is an in
3290 * memory only field (not persisted).
3291 *
3292 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3293 * and < 0 on error.
3294 */
3295static int inode_logged(struct btrfs_trans_handle *trans,
3296 struct btrfs_inode *inode,
3297 struct btrfs_path *path_in)
3298{
3299 struct btrfs_path *path = path_in;
3300 struct btrfs_key key;
3301 int ret;
3302
3303 if (inode->logged_trans == trans->transid)
3304 return 1;
3305
3306 /*
3307 * If logged_trans is not 0, then we know the inode logged was not logged
3308 * in this transaction, so we can return false right away.
3309 */
3310 if (inode->logged_trans > 0)
3311 return 0;
3312
3313 /*
3314 * If no log tree was created for this root in this transaction, then
3315 * the inode can not have been logged in this transaction. In that case
3316 * set logged_trans to anything greater than 0 and less than the current
3317 * transaction's ID, to avoid the search below in a future call in case
3318 * a log tree gets created after this.
3319 */
3320 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3321 inode->logged_trans = trans->transid - 1;
3322 return 0;
3323 }
3324
3325 /*
3326 * We have a log tree and the inode's logged_trans is 0. We can't tell
3327 * for sure if the inode was logged before in this transaction by looking
3328 * only at logged_trans. We could be pessimistic and assume it was, but
3329 * that can lead to unnecessarily logging an inode during rename and link
3330 * operations, and then further updating the log in followup rename and
3331 * link operations, specially if it's a directory, which adds latency
3332 * visible to applications doing a series of rename or link operations.
3333 *
3334 * A logged_trans of 0 here can mean several things:
3335 *
3336 * 1) The inode was never logged since the filesystem was mounted, and may
3337 * or may have not been evicted and loaded again;
3338 *
3339 * 2) The inode was logged in a previous transaction, then evicted and
3340 * then loaded again;
3341 *
3342 * 3) The inode was logged in the current transaction, then evicted and
3343 * then loaded again.
3344 *
3345 * For cases 1) and 2) we don't want to return true, but we need to detect
3346 * case 3) and return true. So we do a search in the log root for the inode
3347 * item.
3348 */
3349 key.objectid = btrfs_ino(inode);
3350 key.type = BTRFS_INODE_ITEM_KEY;
3351 key.offset = 0;
3352
3353 if (!path) {
3354 path = btrfs_alloc_path();
3355 if (!path)
3356 return -ENOMEM;
3357 }
3358
3359 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3360
3361 if (path_in)
3362 btrfs_release_path(path);
3363 else
3364 btrfs_free_path(path);
3365
3366 /*
3367 * Logging an inode always results in logging its inode item. So if we
3368 * did not find the item we know the inode was not logged for sure.
3369 */
3370 if (ret < 0) {
3371 return ret;
3372 } else if (ret > 0) {
3373 /*
3374 * Set logged_trans to a value greater than 0 and less then the
3375 * current transaction to avoid doing the search in future calls.
3376 */
3377 inode->logged_trans = trans->transid - 1;
3378 return 0;
3379 }
3380
3381 /*
3382 * The inode was previously logged and then evicted, set logged_trans to
3383 * the current transacion's ID, to avoid future tree searches as long as
3384 * the inode is not evicted again.
3385 */
3386 inode->logged_trans = trans->transid;
3387
3388 /*
3389 * If it's a directory, then we must set last_dir_index_offset to the
3390 * maximum possible value, so that the next attempt to log the inode does
3391 * not skip checking if dir index keys found in modified subvolume tree
3392 * leaves have been logged before, otherwise it would result in attempts
3393 * to insert duplicate dir index keys in the log tree. This must be done
3394 * because last_dir_index_offset is an in-memory only field, not persisted
3395 * in the inode item or any other on-disk structure, so its value is lost
3396 * once the inode is evicted.
3397 */
3398 if (S_ISDIR(inode->vfs_inode.i_mode))
3399 inode->last_dir_index_offset = (u64)-1;
3400
3401 return 1;
3402}
3403
3404/*
3405 * Delete a directory entry from the log if it exists.
3406 *
3407 * Returns < 0 on error
3408 * 1 if the entry does not exists
3409 * 0 if the entry existed and was successfully deleted
3410 */
3411static int del_logged_dentry(struct btrfs_trans_handle *trans,
3412 struct btrfs_root *log,
3413 struct btrfs_path *path,
3414 u64 dir_ino,
3415 const struct fscrypt_str *name,
3416 u64 index)
3417{
3418 struct btrfs_dir_item *di;
3419
3420 /*
3421 * We only log dir index items of a directory, so we don't need to look
3422 * for dir item keys.
3423 */
3424 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3425 index, name, -1);
3426 if (IS_ERR(di))
3427 return PTR_ERR(di);
3428 else if (!di)
3429 return 1;
3430
3431 /*
3432 * We do not need to update the size field of the directory's
3433 * inode item because on log replay we update the field to reflect
3434 * all existing entries in the directory (see overwrite_item()).
3435 */
3436 return btrfs_delete_one_dir_name(trans, log, path, di);
3437}
3438
3439/*
3440 * If both a file and directory are logged, and unlinks or renames are
3441 * mixed in, we have a few interesting corners:
3442 *
3443 * create file X in dir Y
3444 * link file X to X.link in dir Y
3445 * fsync file X
3446 * unlink file X but leave X.link
3447 * fsync dir Y
3448 *
3449 * After a crash we would expect only X.link to exist. But file X
3450 * didn't get fsync'd again so the log has back refs for X and X.link.
3451 *
3452 * We solve this by removing directory entries and inode backrefs from the
3453 * log when a file that was logged in the current transaction is
3454 * unlinked. Any later fsync will include the updated log entries, and
3455 * we'll be able to reconstruct the proper directory items from backrefs.
3456 *
3457 * This optimizations allows us to avoid relogging the entire inode
3458 * or the entire directory.
3459 */
3460void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3461 struct btrfs_root *root,
3462 const struct fscrypt_str *name,
3463 struct btrfs_inode *dir, u64 index)
3464{
3465 struct btrfs_path *path;
3466 int ret;
3467
3468 ret = inode_logged(trans, dir, NULL);
3469 if (ret == 0)
3470 return;
3471 else if (ret < 0) {
3472 btrfs_set_log_full_commit(trans);
3473 return;
3474 }
3475
3476 ret = join_running_log_trans(root);
3477 if (ret)
3478 return;
3479
3480 mutex_lock(&dir->log_mutex);
3481
3482 path = btrfs_alloc_path();
3483 if (!path) {
3484 ret = -ENOMEM;
3485 goto out_unlock;
3486 }
3487
3488 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3489 name, index);
3490 btrfs_free_path(path);
3491out_unlock:
3492 mutex_unlock(&dir->log_mutex);
3493 if (ret < 0)
3494 btrfs_set_log_full_commit(trans);
3495 btrfs_end_log_trans(root);
3496}
3497
3498/* see comments for btrfs_del_dir_entries_in_log */
3499void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3500 struct btrfs_root *root,
3501 const struct fscrypt_str *name,
3502 struct btrfs_inode *inode, u64 dirid)
3503{
3504 struct btrfs_root *log;
3505 u64 index;
3506 int ret;
3507
3508 ret = inode_logged(trans, inode, NULL);
3509 if (ret == 0)
3510 return;
3511 else if (ret < 0) {
3512 btrfs_set_log_full_commit(trans);
3513 return;
3514 }
3515
3516 ret = join_running_log_trans(root);
3517 if (ret)
3518 return;
3519 log = root->log_root;
3520 mutex_lock(&inode->log_mutex);
3521
3522 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3523 dirid, &index);
3524 mutex_unlock(&inode->log_mutex);
3525 if (ret < 0 && ret != -ENOENT)
3526 btrfs_set_log_full_commit(trans);
3527 btrfs_end_log_trans(root);
3528}
3529
3530/*
3531 * creates a range item in the log for 'dirid'. first_offset and
3532 * last_offset tell us which parts of the key space the log should
3533 * be considered authoritative for.
3534 */
3535static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *log,
3537 struct btrfs_path *path,
3538 u64 dirid,
3539 u64 first_offset, u64 last_offset)
3540{
3541 int ret;
3542 struct btrfs_key key;
3543 struct btrfs_dir_log_item *item;
3544
3545 key.objectid = dirid;
3546 key.offset = first_offset;
3547 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549 /*
3550 * -EEXIST is fine and can happen sporadically when we are logging a
3551 * directory and have concurrent insertions in the subvolume's tree for
3552 * items from other inodes and that result in pushing off some dir items
3553 * from one leaf to another in order to accommodate for the new items.
3554 * This results in logging the same dir index range key.
3555 */
3556 if (ret && ret != -EEXIST)
3557 return ret;
3558
3559 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3560 struct btrfs_dir_log_item);
3561 if (ret == -EEXIST) {
3562 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3563
3564 /*
3565 * btrfs_del_dir_entries_in_log() might have been called during
3566 * an unlink between the initial insertion of this key and the
3567 * current update, or we might be logging a single entry deletion
3568 * during a rename, so set the new last_offset to the max value.
3569 */
3570 last_offset = max(last_offset, curr_end);
3571 }
3572 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3573 btrfs_mark_buffer_dirty(path->nodes[0]);
3574 btrfs_release_path(path);
3575 return 0;
3576}
3577
3578static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3579 struct btrfs_inode *inode,
3580 struct extent_buffer *src,
3581 struct btrfs_path *dst_path,
3582 int start_slot,
3583 int count)
3584{
3585 struct btrfs_root *log = inode->root->log_root;
3586 char *ins_data = NULL;
3587 struct btrfs_item_batch batch;
3588 struct extent_buffer *dst;
3589 unsigned long src_offset;
3590 unsigned long dst_offset;
3591 u64 last_index;
3592 struct btrfs_key key;
3593 u32 item_size;
3594 int ret;
3595 int i;
3596
3597 ASSERT(count > 0);
3598 batch.nr = count;
3599
3600 if (count == 1) {
3601 btrfs_item_key_to_cpu(src, &key, start_slot);
3602 item_size = btrfs_item_size(src, start_slot);
3603 batch.keys = &key;
3604 batch.data_sizes = &item_size;
3605 batch.total_data_size = item_size;
3606 } else {
3607 struct btrfs_key *ins_keys;
3608 u32 *ins_sizes;
3609
3610 ins_data = kmalloc(count * sizeof(u32) +
3611 count * sizeof(struct btrfs_key), GFP_NOFS);
3612 if (!ins_data)
3613 return -ENOMEM;
3614
3615 ins_sizes = (u32 *)ins_data;
3616 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3617 batch.keys = ins_keys;
3618 batch.data_sizes = ins_sizes;
3619 batch.total_data_size = 0;
3620
3621 for (i = 0; i < count; i++) {
3622 const int slot = start_slot + i;
3623
3624 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3625 ins_sizes[i] = btrfs_item_size(src, slot);
3626 batch.total_data_size += ins_sizes[i];
3627 }
3628 }
3629
3630 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3631 if (ret)
3632 goto out;
3633
3634 dst = dst_path->nodes[0];
3635 /*
3636 * Copy all the items in bulk, in a single copy operation. Item data is
3637 * organized such that it's placed at the end of a leaf and from right
3638 * to left. For example, the data for the second item ends at an offset
3639 * that matches the offset where the data for the first item starts, the
3640 * data for the third item ends at an offset that matches the offset
3641 * where the data of the second items starts, and so on.
3642 * Therefore our source and destination start offsets for copy match the
3643 * offsets of the last items (highest slots).
3644 */
3645 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3646 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3647 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3648 btrfs_release_path(dst_path);
3649
3650 last_index = batch.keys[count - 1].offset;
3651 ASSERT(last_index > inode->last_dir_index_offset);
3652
3653 /*
3654 * If for some unexpected reason the last item's index is not greater
3655 * than the last index we logged, warn and return an error to fallback
3656 * to a transaction commit.
3657 */
3658 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3659 ret = -EUCLEAN;
3660 else
3661 inode->last_dir_index_offset = last_index;
3662out:
3663 kfree(ins_data);
3664
3665 return ret;
3666}
3667
3668static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3669 struct btrfs_inode *inode,
3670 struct btrfs_path *path,
3671 struct btrfs_path *dst_path,
3672 struct btrfs_log_ctx *ctx,
3673 u64 *last_old_dentry_offset)
3674{
3675 struct btrfs_root *log = inode->root->log_root;
3676 struct extent_buffer *src;
3677 const int nritems = btrfs_header_nritems(path->nodes[0]);
3678 const u64 ino = btrfs_ino(inode);
3679 bool last_found = false;
3680 int batch_start = 0;
3681 int batch_size = 0;
3682 int i;
3683
3684 /*
3685 * We need to clone the leaf, release the read lock on it, and use the
3686 * clone before modifying the log tree. See the comment at copy_items()
3687 * about why we need to do this.
3688 */
3689 src = btrfs_clone_extent_buffer(path->nodes[0]);
3690 if (!src)
3691 return -ENOMEM;
3692
3693 i = path->slots[0];
3694 btrfs_release_path(path);
3695 path->nodes[0] = src;
3696 path->slots[0] = i;
3697
3698 for (; i < nritems; i++) {
3699 struct btrfs_dir_item *di;
3700 struct btrfs_key key;
3701 int ret;
3702
3703 btrfs_item_key_to_cpu(src, &key, i);
3704
3705 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3706 last_found = true;
3707 break;
3708 }
3709
3710 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3711
3712 /*
3713 * Skip ranges of items that consist only of dir item keys created
3714 * in past transactions. However if we find a gap, we must log a
3715 * dir index range item for that gap, so that index keys in that
3716 * gap are deleted during log replay.
3717 */
3718 if (btrfs_dir_transid(src, di) < trans->transid) {
3719 if (key.offset > *last_old_dentry_offset + 1) {
3720 ret = insert_dir_log_key(trans, log, dst_path,
3721 ino, *last_old_dentry_offset + 1,
3722 key.offset - 1);
3723 if (ret < 0)
3724 return ret;
3725 }
3726
3727 *last_old_dentry_offset = key.offset;
3728 continue;
3729 }
3730
3731 /* If we logged this dir index item before, we can skip it. */
3732 if (key.offset <= inode->last_dir_index_offset)
3733 continue;
3734
3735 /*
3736 * We must make sure that when we log a directory entry, the
3737 * corresponding inode, after log replay, has a matching link
3738 * count. For example:
3739 *
3740 * touch foo
3741 * mkdir mydir
3742 * sync
3743 * ln foo mydir/bar
3744 * xfs_io -c "fsync" mydir
3745 * <crash>
3746 * <mount fs and log replay>
3747 *
3748 * Would result in a fsync log that when replayed, our file inode
3749 * would have a link count of 1, but we get two directory entries
3750 * pointing to the same inode. After removing one of the names,
3751 * it would not be possible to remove the other name, which
3752 * resulted always in stale file handle errors, and would not be
3753 * possible to rmdir the parent directory, since its i_size could
3754 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3755 * resulting in -ENOTEMPTY errors.
3756 */
3757 if (!ctx->log_new_dentries) {
3758 struct btrfs_key di_key;
3759
3760 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3761 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3762 ctx->log_new_dentries = true;
3763 }
3764
3765 if (batch_size == 0)
3766 batch_start = i;
3767 batch_size++;
3768 }
3769
3770 if (batch_size > 0) {
3771 int ret;
3772
3773 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3774 batch_start, batch_size);
3775 if (ret < 0)
3776 return ret;
3777 }
3778
3779 return last_found ? 1 : 0;
3780}
3781
3782/*
3783 * log all the items included in the current transaction for a given
3784 * directory. This also creates the range items in the log tree required
3785 * to replay anything deleted before the fsync
3786 */
3787static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3788 struct btrfs_inode *inode,
3789 struct btrfs_path *path,
3790 struct btrfs_path *dst_path,
3791 struct btrfs_log_ctx *ctx,
3792 u64 min_offset, u64 *last_offset_ret)
3793{
3794 struct btrfs_key min_key;
3795 struct btrfs_root *root = inode->root;
3796 struct btrfs_root *log = root->log_root;
3797 int err = 0;
3798 int ret;
3799 u64 last_old_dentry_offset = min_offset - 1;
3800 u64 last_offset = (u64)-1;
3801 u64 ino = btrfs_ino(inode);
3802
3803 min_key.objectid = ino;
3804 min_key.type = BTRFS_DIR_INDEX_KEY;
3805 min_key.offset = min_offset;
3806
3807 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3808
3809 /*
3810 * we didn't find anything from this transaction, see if there
3811 * is anything at all
3812 */
3813 if (ret != 0 || min_key.objectid != ino ||
3814 min_key.type != BTRFS_DIR_INDEX_KEY) {
3815 min_key.objectid = ino;
3816 min_key.type = BTRFS_DIR_INDEX_KEY;
3817 min_key.offset = (u64)-1;
3818 btrfs_release_path(path);
3819 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3820 if (ret < 0) {
3821 btrfs_release_path(path);
3822 return ret;
3823 }
3824 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3825
3826 /* if ret == 0 there are items for this type,
3827 * create a range to tell us the last key of this type.
3828 * otherwise, there are no items in this directory after
3829 * *min_offset, and we create a range to indicate that.
3830 */
3831 if (ret == 0) {
3832 struct btrfs_key tmp;
3833
3834 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3835 path->slots[0]);
3836 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3837 last_old_dentry_offset = tmp.offset;
3838 } else if (ret < 0) {
3839 err = ret;
3840 }
3841
3842 goto done;
3843 }
3844
3845 /* go backward to find any previous key */
3846 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3847 if (ret == 0) {
3848 struct btrfs_key tmp;
3849
3850 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3851 /*
3852 * The dir index key before the first one we found that needs to
3853 * be logged might be in a previous leaf, and there might be a
3854 * gap between these keys, meaning that we had deletions that
3855 * happened. So the key range item we log (key type
3856 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3857 * previous key's offset plus 1, so that those deletes are replayed.
3858 */
3859 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3860 last_old_dentry_offset = tmp.offset;
3861 } else if (ret < 0) {
3862 err = ret;
3863 goto done;
3864 }
3865
3866 btrfs_release_path(path);
3867
3868 /*
3869 * Find the first key from this transaction again or the one we were at
3870 * in the loop below in case we had to reschedule. We may be logging the
3871 * directory without holding its VFS lock, which happen when logging new
3872 * dentries (through log_new_dir_dentries()) or in some cases when we
3873 * need to log the parent directory of an inode. This means a dir index
3874 * key might be deleted from the inode's root, and therefore we may not
3875 * find it anymore. If we can't find it, just move to the next key. We
3876 * can not bail out and ignore, because if we do that we will simply
3877 * not log dir index keys that come after the one that was just deleted
3878 * and we can end up logging a dir index range that ends at (u64)-1
3879 * (@last_offset is initialized to that), resulting in removing dir
3880 * entries we should not remove at log replay time.
3881 */
3882search:
3883 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3884 if (ret > 0)
3885 ret = btrfs_next_item(root, path);
3886 if (ret < 0)
3887 err = ret;
3888 /* If ret is 1, there are no more keys in the inode's root. */
3889 if (ret != 0)
3890 goto done;
3891
3892 /*
3893 * we have a block from this transaction, log every item in it
3894 * from our directory
3895 */
3896 while (1) {
3897 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3898 &last_old_dentry_offset);
3899 if (ret != 0) {
3900 if (ret < 0)
3901 err = ret;
3902 goto done;
3903 }
3904 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3905
3906 /*
3907 * look ahead to the next item and see if it is also
3908 * from this directory and from this transaction
3909 */
3910 ret = btrfs_next_leaf(root, path);
3911 if (ret) {
3912 if (ret == 1)
3913 last_offset = (u64)-1;
3914 else
3915 err = ret;
3916 goto done;
3917 }
3918 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3919 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3920 last_offset = (u64)-1;
3921 goto done;
3922 }
3923 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3924 /*
3925 * The next leaf was not changed in the current transaction
3926 * and has at least one dir index key.
3927 * We check for the next key because there might have been
3928 * one or more deletions between the last key we logged and
3929 * that next key. So the key range item we log (key type
3930 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3931 * offset minus 1, so that those deletes are replayed.
3932 */
3933 last_offset = min_key.offset - 1;
3934 goto done;
3935 }
3936 if (need_resched()) {
3937 btrfs_release_path(path);
3938 cond_resched();
3939 goto search;
3940 }
3941 }
3942done:
3943 btrfs_release_path(path);
3944 btrfs_release_path(dst_path);
3945
3946 if (err == 0) {
3947 *last_offset_ret = last_offset;
3948 /*
3949 * In case the leaf was changed in the current transaction but
3950 * all its dir items are from a past transaction, the last item
3951 * in the leaf is a dir item and there's no gap between that last
3952 * dir item and the first one on the next leaf (which did not
3953 * change in the current transaction), then we don't need to log
3954 * a range, last_old_dentry_offset is == to last_offset.
3955 */
3956 ASSERT(last_old_dentry_offset <= last_offset);
3957 if (last_old_dentry_offset < last_offset) {
3958 ret = insert_dir_log_key(trans, log, path, ino,
3959 last_old_dentry_offset + 1,
3960 last_offset);
3961 if (ret)
3962 err = ret;
3963 }
3964 }
3965 return err;
3966}
3967
3968/*
3969 * If the inode was logged before and it was evicted, then its
3970 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3971 * key offset. If that's the case, search for it and update the inode. This
3972 * is to avoid lookups in the log tree every time we try to insert a dir index
3973 * key from a leaf changed in the current transaction, and to allow us to always
3974 * do batch insertions of dir index keys.
3975 */
3976static int update_last_dir_index_offset(struct btrfs_inode *inode,
3977 struct btrfs_path *path,
3978 const struct btrfs_log_ctx *ctx)
3979{
3980 const u64 ino = btrfs_ino(inode);
3981 struct btrfs_key key;
3982 int ret;
3983
3984 lockdep_assert_held(&inode->log_mutex);
3985
3986 if (inode->last_dir_index_offset != (u64)-1)
3987 return 0;
3988
3989 if (!ctx->logged_before) {
3990 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3991 return 0;
3992 }
3993
3994 key.objectid = ino;
3995 key.type = BTRFS_DIR_INDEX_KEY;
3996 key.offset = (u64)-1;
3997
3998 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3999 /*
4000 * An error happened or we actually have an index key with an offset
4001 * value of (u64)-1. Bail out, we're done.
4002 */
4003 if (ret <= 0)
4004 goto out;
4005
4006 ret = 0;
4007 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4008
4009 /*
4010 * No dir index items, bail out and leave last_dir_index_offset with
4011 * the value right before the first valid index value.
4012 */
4013 if (path->slots[0] == 0)
4014 goto out;
4015
4016 /*
4017 * btrfs_search_slot() left us at one slot beyond the slot with the last
4018 * index key, or beyond the last key of the directory that is not an
4019 * index key. If we have an index key before, set last_dir_index_offset
4020 * to its offset value, otherwise leave it with a value right before the
4021 * first valid index value, as it means we have an empty directory.
4022 */
4023 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4024 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4025 inode->last_dir_index_offset = key.offset;
4026
4027out:
4028 btrfs_release_path(path);
4029
4030 return ret;
4031}
4032
4033/*
4034 * logging directories is very similar to logging inodes, We find all the items
4035 * from the current transaction and write them to the log.
4036 *
4037 * The recovery code scans the directory in the subvolume, and if it finds a
4038 * key in the range logged that is not present in the log tree, then it means
4039 * that dir entry was unlinked during the transaction.
4040 *
4041 * In order for that scan to work, we must include one key smaller than
4042 * the smallest logged by this transaction and one key larger than the largest
4043 * key logged by this transaction.
4044 */
4045static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4046 struct btrfs_inode *inode,
4047 struct btrfs_path *path,
4048 struct btrfs_path *dst_path,
4049 struct btrfs_log_ctx *ctx)
4050{
4051 u64 min_key;
4052 u64 max_key;
4053 int ret;
4054
4055 ret = update_last_dir_index_offset(inode, path, ctx);
4056 if (ret)
4057 return ret;
4058
4059 min_key = BTRFS_DIR_START_INDEX;
4060 max_key = 0;
4061
4062 while (1) {
4063 ret = log_dir_items(trans, inode, path, dst_path,
4064 ctx, min_key, &max_key);
4065 if (ret)
4066 return ret;
4067 if (max_key == (u64)-1)
4068 break;
4069 min_key = max_key + 1;
4070 }
4071
4072 return 0;
4073}
4074
4075/*
4076 * a helper function to drop items from the log before we relog an
4077 * inode. max_key_type indicates the highest item type to remove.
4078 * This cannot be run for file data extents because it does not
4079 * free the extents they point to.
4080 */
4081static int drop_inode_items(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *log,
4083 struct btrfs_path *path,
4084 struct btrfs_inode *inode,
4085 int max_key_type)
4086{
4087 int ret;
4088 struct btrfs_key key;
4089 struct btrfs_key found_key;
4090 int start_slot;
4091
4092 key.objectid = btrfs_ino(inode);
4093 key.type = max_key_type;
4094 key.offset = (u64)-1;
4095
4096 while (1) {
4097 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4098 BUG_ON(ret == 0); /* Logic error */
4099 if (ret < 0)
4100 break;
4101
4102 if (path->slots[0] == 0)
4103 break;
4104
4105 path->slots[0]--;
4106 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4107 path->slots[0]);
4108
4109 if (found_key.objectid != key.objectid)
4110 break;
4111
4112 found_key.offset = 0;
4113 found_key.type = 0;
4114 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4115 if (ret < 0)
4116 break;
4117
4118 ret = btrfs_del_items(trans, log, path, start_slot,
4119 path->slots[0] - start_slot + 1);
4120 /*
4121 * If start slot isn't 0 then we don't need to re-search, we've
4122 * found the last guy with the objectid in this tree.
4123 */
4124 if (ret || start_slot != 0)
4125 break;
4126 btrfs_release_path(path);
4127 }
4128 btrfs_release_path(path);
4129 if (ret > 0)
4130 ret = 0;
4131 return ret;
4132}
4133
4134static int truncate_inode_items(struct btrfs_trans_handle *trans,
4135 struct btrfs_root *log_root,
4136 struct btrfs_inode *inode,
4137 u64 new_size, u32 min_type)
4138{
4139 struct btrfs_truncate_control control = {
4140 .new_size = new_size,
4141 .ino = btrfs_ino(inode),
4142 .min_type = min_type,
4143 .skip_ref_updates = true,
4144 };
4145
4146 return btrfs_truncate_inode_items(trans, log_root, &control);
4147}
4148
4149static void fill_inode_item(struct btrfs_trans_handle *trans,
4150 struct extent_buffer *leaf,
4151 struct btrfs_inode_item *item,
4152 struct inode *inode, int log_inode_only,
4153 u64 logged_isize)
4154{
4155 struct btrfs_map_token token;
4156 u64 flags;
4157
4158 btrfs_init_map_token(&token, leaf);
4159
4160 if (log_inode_only) {
4161 /* set the generation to zero so the recover code
4162 * can tell the difference between an logging
4163 * just to say 'this inode exists' and a logging
4164 * to say 'update this inode with these values'
4165 */
4166 btrfs_set_token_inode_generation(&token, item, 0);
4167 btrfs_set_token_inode_size(&token, item, logged_isize);
4168 } else {
4169 btrfs_set_token_inode_generation(&token, item,
4170 BTRFS_I(inode)->generation);
4171 btrfs_set_token_inode_size(&token, item, inode->i_size);
4172 }
4173
4174 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4175 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4176 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4177 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4178
4179 btrfs_set_token_timespec_sec(&token, &item->atime,
4180 inode->i_atime.tv_sec);
4181 btrfs_set_token_timespec_nsec(&token, &item->atime,
4182 inode->i_atime.tv_nsec);
4183
4184 btrfs_set_token_timespec_sec(&token, &item->mtime,
4185 inode->i_mtime.tv_sec);
4186 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4187 inode->i_mtime.tv_nsec);
4188
4189 btrfs_set_token_timespec_sec(&token, &item->ctime,
4190 inode->i_ctime.tv_sec);
4191 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4192 inode->i_ctime.tv_nsec);
4193
4194 /*
4195 * We do not need to set the nbytes field, in fact during a fast fsync
4196 * its value may not even be correct, since a fast fsync does not wait
4197 * for ordered extent completion, which is where we update nbytes, it
4198 * only waits for writeback to complete. During log replay as we find
4199 * file extent items and replay them, we adjust the nbytes field of the
4200 * inode item in subvolume tree as needed (see overwrite_item()).
4201 */
4202
4203 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4204 btrfs_set_token_inode_transid(&token, item, trans->transid);
4205 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4206 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4207 BTRFS_I(inode)->ro_flags);
4208 btrfs_set_token_inode_flags(&token, item, flags);
4209 btrfs_set_token_inode_block_group(&token, item, 0);
4210}
4211
4212static int log_inode_item(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *log, struct btrfs_path *path,
4214 struct btrfs_inode *inode, bool inode_item_dropped)
4215{
4216 struct btrfs_inode_item *inode_item;
4217 int ret;
4218
4219 /*
4220 * If we are doing a fast fsync and the inode was logged before in the
4221 * current transaction, then we know the inode was previously logged and
4222 * it exists in the log tree. For performance reasons, in this case use
4223 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4224 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4225 * contention in case there are concurrent fsyncs for other inodes of the
4226 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4227 * already exists can also result in unnecessarily splitting a leaf.
4228 */
4229 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4230 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4231 ASSERT(ret <= 0);
4232 if (ret > 0)
4233 ret = -ENOENT;
4234 } else {
4235 /*
4236 * This means it is the first fsync in the current transaction,
4237 * so the inode item is not in the log and we need to insert it.
4238 * We can never get -EEXIST because we are only called for a fast
4239 * fsync and in case an inode eviction happens after the inode was
4240 * logged before in the current transaction, when we load again
4241 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4242 * flags and set ->logged_trans to 0.
4243 */
4244 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4245 sizeof(*inode_item));
4246 ASSERT(ret != -EEXIST);
4247 }
4248 if (ret)
4249 return ret;
4250 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4251 struct btrfs_inode_item);
4252 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4253 0, 0);
4254 btrfs_release_path(path);
4255 return 0;
4256}
4257
4258static int log_csums(struct btrfs_trans_handle *trans,
4259 struct btrfs_inode *inode,
4260 struct btrfs_root *log_root,
4261 struct btrfs_ordered_sum *sums)
4262{
4263 const u64 lock_end = sums->bytenr + sums->len - 1;
4264 struct extent_state *cached_state = NULL;
4265 int ret;
4266
4267 /*
4268 * If this inode was not used for reflink operations in the current
4269 * transaction with new extents, then do the fast path, no need to
4270 * worry about logging checksum items with overlapping ranges.
4271 */
4272 if (inode->last_reflink_trans < trans->transid)
4273 return btrfs_csum_file_blocks(trans, log_root, sums);
4274
4275 /*
4276 * Serialize logging for checksums. This is to avoid racing with the
4277 * same checksum being logged by another task that is logging another
4278 * file which happens to refer to the same extent as well. Such races
4279 * can leave checksum items in the log with overlapping ranges.
4280 */
4281 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4282 &cached_state);
4283 if (ret)
4284 return ret;
4285 /*
4286 * Due to extent cloning, we might have logged a csum item that covers a
4287 * subrange of a cloned extent, and later we can end up logging a csum
4288 * item for a larger subrange of the same extent or the entire range.
4289 * This would leave csum items in the log tree that cover the same range
4290 * and break the searches for checksums in the log tree, resulting in
4291 * some checksums missing in the fs/subvolume tree. So just delete (or
4292 * trim and adjust) any existing csum items in the log for this range.
4293 */
4294 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4295 if (!ret)
4296 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4297
4298 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4299 &cached_state);
4300
4301 return ret;
4302}
4303
4304static noinline int copy_items(struct btrfs_trans_handle *trans,
4305 struct btrfs_inode *inode,
4306 struct btrfs_path *dst_path,
4307 struct btrfs_path *src_path,
4308 int start_slot, int nr, int inode_only,
4309 u64 logged_isize)
4310{
4311 struct btrfs_root *log = inode->root->log_root;
4312 struct btrfs_file_extent_item *extent;
4313 struct extent_buffer *src;
4314 int ret = 0;
4315 struct btrfs_key *ins_keys;
4316 u32 *ins_sizes;
4317 struct btrfs_item_batch batch;
4318 char *ins_data;
4319 int i;
4320 int dst_index;
4321 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4322 const u64 i_size = i_size_read(&inode->vfs_inode);
4323
4324 /*
4325 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4326 * use the clone. This is because otherwise we would be changing the log
4327 * tree, to insert items from the subvolume tree or insert csum items,
4328 * while holding a read lock on a leaf from the subvolume tree, which
4329 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4330 *
4331 * 1) Modifying the log tree triggers an extent buffer allocation while
4332 * holding a write lock on a parent extent buffer from the log tree.
4333 * Allocating the pages for an extent buffer, or the extent buffer
4334 * struct, can trigger inode eviction and finally the inode eviction
4335 * will trigger a release/remove of a delayed node, which requires
4336 * taking the delayed node's mutex;
4337 *
4338 * 2) Allocating a metadata extent for a log tree can trigger the async
4339 * reclaim thread and make us wait for it to release enough space and
4340 * unblock our reservation ticket. The reclaim thread can start
4341 * flushing delayed items, and that in turn results in the need to
4342 * lock delayed node mutexes and in the need to write lock extent
4343 * buffers of a subvolume tree - all this while holding a write lock
4344 * on the parent extent buffer in the log tree.
4345 *
4346 * So one task in scenario 1) running in parallel with another task in
4347 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4348 * node mutex while having a read lock on a leaf from the subvolume,
4349 * while the other is holding the delayed node's mutex and wants to
4350 * write lock the same subvolume leaf for flushing delayed items.
4351 */
4352 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4353 if (!src)
4354 return -ENOMEM;
4355
4356 i = src_path->slots[0];
4357 btrfs_release_path(src_path);
4358 src_path->nodes[0] = src;
4359 src_path->slots[0] = i;
4360
4361 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4362 nr * sizeof(u32), GFP_NOFS);
4363 if (!ins_data)
4364 return -ENOMEM;
4365
4366 ins_sizes = (u32 *)ins_data;
4367 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4368 batch.keys = ins_keys;
4369 batch.data_sizes = ins_sizes;
4370 batch.total_data_size = 0;
4371 batch.nr = 0;
4372
4373 dst_index = 0;
4374 for (i = 0; i < nr; i++) {
4375 const int src_slot = start_slot + i;
4376 struct btrfs_root *csum_root;
4377 struct btrfs_ordered_sum *sums;
4378 struct btrfs_ordered_sum *sums_next;
4379 LIST_HEAD(ordered_sums);
4380 u64 disk_bytenr;
4381 u64 disk_num_bytes;
4382 u64 extent_offset;
4383 u64 extent_num_bytes;
4384 bool is_old_extent;
4385
4386 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4387
4388 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4389 goto add_to_batch;
4390
4391 extent = btrfs_item_ptr(src, src_slot,
4392 struct btrfs_file_extent_item);
4393
4394 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4395 trans->transid);
4396
4397 /*
4398 * Don't copy extents from past generations. That would make us
4399 * log a lot more metadata for common cases like doing only a
4400 * few random writes into a file and then fsync it for the first
4401 * time or after the full sync flag is set on the inode. We can
4402 * get leaves full of extent items, most of which are from past
4403 * generations, so we can skip them - as long as the inode has
4404 * not been the target of a reflink operation in this transaction,
4405 * as in that case it might have had file extent items with old
4406 * generations copied into it. We also must always log prealloc
4407 * extents that start at or beyond eof, otherwise we would lose
4408 * them on log replay.
4409 */
4410 if (is_old_extent &&
4411 ins_keys[dst_index].offset < i_size &&
4412 inode->last_reflink_trans < trans->transid)
4413 continue;
4414
4415 if (skip_csum)
4416 goto add_to_batch;
4417
4418 /* Only regular extents have checksums. */
4419 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4420 goto add_to_batch;
4421
4422 /*
4423 * If it's an extent created in a past transaction, then its
4424 * checksums are already accessible from the committed csum tree,
4425 * no need to log them.
4426 */
4427 if (is_old_extent)
4428 goto add_to_batch;
4429
4430 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4431 /* If it's an explicit hole, there are no checksums. */
4432 if (disk_bytenr == 0)
4433 goto add_to_batch;
4434
4435 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4436
4437 if (btrfs_file_extent_compression(src, extent)) {
4438 extent_offset = 0;
4439 extent_num_bytes = disk_num_bytes;
4440 } else {
4441 extent_offset = btrfs_file_extent_offset(src, extent);
4442 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4443 }
4444
4445 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4446 disk_bytenr += extent_offset;
4447 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4448 disk_bytenr + extent_num_bytes - 1,
4449 &ordered_sums, 0, false);
4450 if (ret)
4451 goto out;
4452
4453 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4454 if (!ret)
4455 ret = log_csums(trans, inode, log, sums);
4456 list_del(&sums->list);
4457 kfree(sums);
4458 }
4459 if (ret)
4460 goto out;
4461
4462add_to_batch:
4463 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4464 batch.total_data_size += ins_sizes[dst_index];
4465 batch.nr++;
4466 dst_index++;
4467 }
4468
4469 /*
4470 * We have a leaf full of old extent items that don't need to be logged,
4471 * so we don't need to do anything.
4472 */
4473 if (batch.nr == 0)
4474 goto out;
4475
4476 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4477 if (ret)
4478 goto out;
4479
4480 dst_index = 0;
4481 for (i = 0; i < nr; i++) {
4482 const int src_slot = start_slot + i;
4483 const int dst_slot = dst_path->slots[0] + dst_index;
4484 struct btrfs_key key;
4485 unsigned long src_offset;
4486 unsigned long dst_offset;
4487
4488 /*
4489 * We're done, all the remaining items in the source leaf
4490 * correspond to old file extent items.
4491 */
4492 if (dst_index >= batch.nr)
4493 break;
4494
4495 btrfs_item_key_to_cpu(src, &key, src_slot);
4496
4497 if (key.type != BTRFS_EXTENT_DATA_KEY)
4498 goto copy_item;
4499
4500 extent = btrfs_item_ptr(src, src_slot,
4501 struct btrfs_file_extent_item);
4502
4503 /* See the comment in the previous loop, same logic. */
4504 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4505 key.offset < i_size &&
4506 inode->last_reflink_trans < trans->transid)
4507 continue;
4508
4509copy_item:
4510 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4511 src_offset = btrfs_item_ptr_offset(src, src_slot);
4512
4513 if (key.type == BTRFS_INODE_ITEM_KEY) {
4514 struct btrfs_inode_item *inode_item;
4515
4516 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4517 struct btrfs_inode_item);
4518 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4519 &inode->vfs_inode,
4520 inode_only == LOG_INODE_EXISTS,
4521 logged_isize);
4522 } else {
4523 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4524 src_offset, ins_sizes[dst_index]);
4525 }
4526
4527 dst_index++;
4528 }
4529
4530 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4531 btrfs_release_path(dst_path);
4532out:
4533 kfree(ins_data);
4534
4535 return ret;
4536}
4537
4538static int extent_cmp(void *priv, const struct list_head *a,
4539 const struct list_head *b)
4540{
4541 const struct extent_map *em1, *em2;
4542
4543 em1 = list_entry(a, struct extent_map, list);
4544 em2 = list_entry(b, struct extent_map, list);
4545
4546 if (em1->start < em2->start)
4547 return -1;
4548 else if (em1->start > em2->start)
4549 return 1;
4550 return 0;
4551}
4552
4553static int log_extent_csums(struct btrfs_trans_handle *trans,
4554 struct btrfs_inode *inode,
4555 struct btrfs_root *log_root,
4556 const struct extent_map *em,
4557 struct btrfs_log_ctx *ctx)
4558{
4559 struct btrfs_ordered_extent *ordered;
4560 struct btrfs_root *csum_root;
4561 u64 csum_offset;
4562 u64 csum_len;
4563 u64 mod_start = em->mod_start;
4564 u64 mod_len = em->mod_len;
4565 LIST_HEAD(ordered_sums);
4566 int ret = 0;
4567
4568 if (inode->flags & BTRFS_INODE_NODATASUM ||
4569 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4570 em->block_start == EXTENT_MAP_HOLE)
4571 return 0;
4572
4573 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4574 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4575 const u64 mod_end = mod_start + mod_len;
4576 struct btrfs_ordered_sum *sums;
4577
4578 if (mod_len == 0)
4579 break;
4580
4581 if (ordered_end <= mod_start)
4582 continue;
4583 if (mod_end <= ordered->file_offset)
4584 break;
4585
4586 /*
4587 * We are going to copy all the csums on this ordered extent, so
4588 * go ahead and adjust mod_start and mod_len in case this ordered
4589 * extent has already been logged.
4590 */
4591 if (ordered->file_offset > mod_start) {
4592 if (ordered_end >= mod_end)
4593 mod_len = ordered->file_offset - mod_start;
4594 /*
4595 * If we have this case
4596 *
4597 * |--------- logged extent ---------|
4598 * |----- ordered extent ----|
4599 *
4600 * Just don't mess with mod_start and mod_len, we'll
4601 * just end up logging more csums than we need and it
4602 * will be ok.
4603 */
4604 } else {
4605 if (ordered_end < mod_end) {
4606 mod_len = mod_end - ordered_end;
4607 mod_start = ordered_end;
4608 } else {
4609 mod_len = 0;
4610 }
4611 }
4612
4613 /*
4614 * To keep us from looping for the above case of an ordered
4615 * extent that falls inside of the logged extent.
4616 */
4617 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4618 continue;
4619
4620 list_for_each_entry(sums, &ordered->list, list) {
4621 ret = log_csums(trans, inode, log_root, sums);
4622 if (ret)
4623 return ret;
4624 }
4625 }
4626
4627 /* We're done, found all csums in the ordered extents. */
4628 if (mod_len == 0)
4629 return 0;
4630
4631 /* If we're compressed we have to save the entire range of csums. */
4632 if (em->compress_type) {
4633 csum_offset = 0;
4634 csum_len = max(em->block_len, em->orig_block_len);
4635 } else {
4636 csum_offset = mod_start - em->start;
4637 csum_len = mod_len;
4638 }
4639
4640 /* block start is already adjusted for the file extent offset. */
4641 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4642 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4643 em->block_start + csum_offset +
4644 csum_len - 1, &ordered_sums, 0, false);
4645 if (ret)
4646 return ret;
4647
4648 while (!list_empty(&ordered_sums)) {
4649 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4650 struct btrfs_ordered_sum,
4651 list);
4652 if (!ret)
4653 ret = log_csums(trans, inode, log_root, sums);
4654 list_del(&sums->list);
4655 kfree(sums);
4656 }
4657
4658 return ret;
4659}
4660
4661static int log_one_extent(struct btrfs_trans_handle *trans,
4662 struct btrfs_inode *inode,
4663 const struct extent_map *em,
4664 struct btrfs_path *path,
4665 struct btrfs_log_ctx *ctx)
4666{
4667 struct btrfs_drop_extents_args drop_args = { 0 };
4668 struct btrfs_root *log = inode->root->log_root;
4669 struct btrfs_file_extent_item fi = { 0 };
4670 struct extent_buffer *leaf;
4671 struct btrfs_key key;
4672 u64 extent_offset = em->start - em->orig_start;
4673 u64 block_len;
4674 int ret;
4675
4676 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4677 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4678 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4679 else
4680 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4681
4682 block_len = max(em->block_len, em->orig_block_len);
4683 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4684 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4685 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4686 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4687 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4688 extent_offset);
4689 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4690 }
4691
4692 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4693 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4694 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4695 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4696
4697 ret = log_extent_csums(trans, inode, log, em, ctx);
4698 if (ret)
4699 return ret;
4700
4701 /*
4702 * If this is the first time we are logging the inode in the current
4703 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4704 * because it does a deletion search, which always acquires write locks
4705 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4706 * but also adds significant contention in a log tree, since log trees
4707 * are small, with a root at level 2 or 3 at most, due to their short
4708 * life span.
4709 */
4710 if (ctx->logged_before) {
4711 drop_args.path = path;
4712 drop_args.start = em->start;
4713 drop_args.end = em->start + em->len;
4714 drop_args.replace_extent = true;
4715 drop_args.extent_item_size = sizeof(fi);
4716 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4717 if (ret)
4718 return ret;
4719 }
4720
4721 if (!drop_args.extent_inserted) {
4722 key.objectid = btrfs_ino(inode);
4723 key.type = BTRFS_EXTENT_DATA_KEY;
4724 key.offset = em->start;
4725
4726 ret = btrfs_insert_empty_item(trans, log, path, &key,
4727 sizeof(fi));
4728 if (ret)
4729 return ret;
4730 }
4731 leaf = path->nodes[0];
4732 write_extent_buffer(leaf, &fi,
4733 btrfs_item_ptr_offset(leaf, path->slots[0]),
4734 sizeof(fi));
4735 btrfs_mark_buffer_dirty(leaf);
4736
4737 btrfs_release_path(path);
4738
4739 return ret;
4740}
4741
4742/*
4743 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4744 * lose them after doing a full/fast fsync and replaying the log. We scan the
4745 * subvolume's root instead of iterating the inode's extent map tree because
4746 * otherwise we can log incorrect extent items based on extent map conversion.
4747 * That can happen due to the fact that extent maps are merged when they
4748 * are not in the extent map tree's list of modified extents.
4749 */
4750static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4751 struct btrfs_inode *inode,
4752 struct btrfs_path *path)
4753{
4754 struct btrfs_root *root = inode->root;
4755 struct btrfs_key key;
4756 const u64 i_size = i_size_read(&inode->vfs_inode);
4757 const u64 ino = btrfs_ino(inode);
4758 struct btrfs_path *dst_path = NULL;
4759 bool dropped_extents = false;
4760 u64 truncate_offset = i_size;
4761 struct extent_buffer *leaf;
4762 int slot;
4763 int ins_nr = 0;
4764 int start_slot;
4765 int ret;
4766
4767 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4768 return 0;
4769
4770 key.objectid = ino;
4771 key.type = BTRFS_EXTENT_DATA_KEY;
4772 key.offset = i_size;
4773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4774 if (ret < 0)
4775 goto out;
4776
4777 /*
4778 * We must check if there is a prealloc extent that starts before the
4779 * i_size and crosses the i_size boundary. This is to ensure later we
4780 * truncate down to the end of that extent and not to the i_size, as
4781 * otherwise we end up losing part of the prealloc extent after a log
4782 * replay and with an implicit hole if there is another prealloc extent
4783 * that starts at an offset beyond i_size.
4784 */
4785 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4786 if (ret < 0)
4787 goto out;
4788
4789 if (ret == 0) {
4790 struct btrfs_file_extent_item *ei;
4791
4792 leaf = path->nodes[0];
4793 slot = path->slots[0];
4794 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4795
4796 if (btrfs_file_extent_type(leaf, ei) ==
4797 BTRFS_FILE_EXTENT_PREALLOC) {
4798 u64 extent_end;
4799
4800 btrfs_item_key_to_cpu(leaf, &key, slot);
4801 extent_end = key.offset +
4802 btrfs_file_extent_num_bytes(leaf, ei);
4803
4804 if (extent_end > i_size)
4805 truncate_offset = extent_end;
4806 }
4807 } else {
4808 ret = 0;
4809 }
4810
4811 while (true) {
4812 leaf = path->nodes[0];
4813 slot = path->slots[0];
4814
4815 if (slot >= btrfs_header_nritems(leaf)) {
4816 if (ins_nr > 0) {
4817 ret = copy_items(trans, inode, dst_path, path,
4818 start_slot, ins_nr, 1, 0);
4819 if (ret < 0)
4820 goto out;
4821 ins_nr = 0;
4822 }
4823 ret = btrfs_next_leaf(root, path);
4824 if (ret < 0)
4825 goto out;
4826 if (ret > 0) {
4827 ret = 0;
4828 break;
4829 }
4830 continue;
4831 }
4832
4833 btrfs_item_key_to_cpu(leaf, &key, slot);
4834 if (key.objectid > ino)
4835 break;
4836 if (WARN_ON_ONCE(key.objectid < ino) ||
4837 key.type < BTRFS_EXTENT_DATA_KEY ||
4838 key.offset < i_size) {
4839 path->slots[0]++;
4840 continue;
4841 }
4842 if (!dropped_extents) {
4843 /*
4844 * Avoid logging extent items logged in past fsync calls
4845 * and leading to duplicate keys in the log tree.
4846 */
4847 ret = truncate_inode_items(trans, root->log_root, inode,
4848 truncate_offset,
4849 BTRFS_EXTENT_DATA_KEY);
4850 if (ret)
4851 goto out;
4852 dropped_extents = true;
4853 }
4854 if (ins_nr == 0)
4855 start_slot = slot;
4856 ins_nr++;
4857 path->slots[0]++;
4858 if (!dst_path) {
4859 dst_path = btrfs_alloc_path();
4860 if (!dst_path) {
4861 ret = -ENOMEM;
4862 goto out;
4863 }
4864 }
4865 }
4866 if (ins_nr > 0)
4867 ret = copy_items(trans, inode, dst_path, path,
4868 start_slot, ins_nr, 1, 0);
4869out:
4870 btrfs_release_path(path);
4871 btrfs_free_path(dst_path);
4872 return ret;
4873}
4874
4875static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4876 struct btrfs_inode *inode,
4877 struct btrfs_path *path,
4878 struct btrfs_log_ctx *ctx)
4879{
4880 struct btrfs_ordered_extent *ordered;
4881 struct btrfs_ordered_extent *tmp;
4882 struct extent_map *em, *n;
4883 struct list_head extents;
4884 struct extent_map_tree *tree = &inode->extent_tree;
4885 int ret = 0;
4886 int num = 0;
4887
4888 INIT_LIST_HEAD(&extents);
4889
4890 write_lock(&tree->lock);
4891
4892 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4893 list_del_init(&em->list);
4894 /*
4895 * Just an arbitrary number, this can be really CPU intensive
4896 * once we start getting a lot of extents, and really once we
4897 * have a bunch of extents we just want to commit since it will
4898 * be faster.
4899 */
4900 if (++num > 32768) {
4901 list_del_init(&tree->modified_extents);
4902 ret = -EFBIG;
4903 goto process;
4904 }
4905
4906 if (em->generation < trans->transid)
4907 continue;
4908
4909 /* We log prealloc extents beyond eof later. */
4910 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4911 em->start >= i_size_read(&inode->vfs_inode))
4912 continue;
4913
4914 /* Need a ref to keep it from getting evicted from cache */
4915 refcount_inc(&em->refs);
4916 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4917 list_add_tail(&em->list, &extents);
4918 num++;
4919 }
4920
4921 list_sort(NULL, &extents, extent_cmp);
4922process:
4923 while (!list_empty(&extents)) {
4924 em = list_entry(extents.next, struct extent_map, list);
4925
4926 list_del_init(&em->list);
4927
4928 /*
4929 * If we had an error we just need to delete everybody from our
4930 * private list.
4931 */
4932 if (ret) {
4933 clear_em_logging(tree, em);
4934 free_extent_map(em);
4935 continue;
4936 }
4937
4938 write_unlock(&tree->lock);
4939
4940 ret = log_one_extent(trans, inode, em, path, ctx);
4941 write_lock(&tree->lock);
4942 clear_em_logging(tree, em);
4943 free_extent_map(em);
4944 }
4945 WARN_ON(!list_empty(&extents));
4946 write_unlock(&tree->lock);
4947
4948 if (!ret)
4949 ret = btrfs_log_prealloc_extents(trans, inode, path);
4950 if (ret)
4951 return ret;
4952
4953 /*
4954 * We have logged all extents successfully, now make sure the commit of
4955 * the current transaction waits for the ordered extents to complete
4956 * before it commits and wipes out the log trees, otherwise we would
4957 * lose data if an ordered extents completes after the transaction
4958 * commits and a power failure happens after the transaction commit.
4959 */
4960 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4961 list_del_init(&ordered->log_list);
4962 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4963
4964 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4965 spin_lock_irq(&inode->ordered_tree.lock);
4966 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4967 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4968 atomic_inc(&trans->transaction->pending_ordered);
4969 }
4970 spin_unlock_irq(&inode->ordered_tree.lock);
4971 }
4972 btrfs_put_ordered_extent(ordered);
4973 }
4974
4975 return 0;
4976}
4977
4978static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4979 struct btrfs_path *path, u64 *size_ret)
4980{
4981 struct btrfs_key key;
4982 int ret;
4983
4984 key.objectid = btrfs_ino(inode);
4985 key.type = BTRFS_INODE_ITEM_KEY;
4986 key.offset = 0;
4987
4988 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4989 if (ret < 0) {
4990 return ret;
4991 } else if (ret > 0) {
4992 *size_ret = 0;
4993 } else {
4994 struct btrfs_inode_item *item;
4995
4996 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4997 struct btrfs_inode_item);
4998 *size_ret = btrfs_inode_size(path->nodes[0], item);
4999 /*
5000 * If the in-memory inode's i_size is smaller then the inode
5001 * size stored in the btree, return the inode's i_size, so
5002 * that we get a correct inode size after replaying the log
5003 * when before a power failure we had a shrinking truncate
5004 * followed by addition of a new name (rename / new hard link).
5005 * Otherwise return the inode size from the btree, to avoid
5006 * data loss when replaying a log due to previously doing a
5007 * write that expands the inode's size and logging a new name
5008 * immediately after.
5009 */
5010 if (*size_ret > inode->vfs_inode.i_size)
5011 *size_ret = inode->vfs_inode.i_size;
5012 }
5013
5014 btrfs_release_path(path);
5015 return 0;
5016}
5017
5018/*
5019 * At the moment we always log all xattrs. This is to figure out at log replay
5020 * time which xattrs must have their deletion replayed. If a xattr is missing
5021 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5022 * because if a xattr is deleted, the inode is fsynced and a power failure
5023 * happens, causing the log to be replayed the next time the fs is mounted,
5024 * we want the xattr to not exist anymore (same behaviour as other filesystems
5025 * with a journal, ext3/4, xfs, f2fs, etc).
5026 */
5027static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5028 struct btrfs_inode *inode,
5029 struct btrfs_path *path,
5030 struct btrfs_path *dst_path)
5031{
5032 struct btrfs_root *root = inode->root;
5033 int ret;
5034 struct btrfs_key key;
5035 const u64 ino = btrfs_ino(inode);
5036 int ins_nr = 0;
5037 int start_slot = 0;
5038 bool found_xattrs = false;
5039
5040 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5041 return 0;
5042
5043 key.objectid = ino;
5044 key.type = BTRFS_XATTR_ITEM_KEY;
5045 key.offset = 0;
5046
5047 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5048 if (ret < 0)
5049 return ret;
5050
5051 while (true) {
5052 int slot = path->slots[0];
5053 struct extent_buffer *leaf = path->nodes[0];
5054 int nritems = btrfs_header_nritems(leaf);
5055
5056 if (slot >= nritems) {
5057 if (ins_nr > 0) {
5058 ret = copy_items(trans, inode, dst_path, path,
5059 start_slot, ins_nr, 1, 0);
5060 if (ret < 0)
5061 return ret;
5062 ins_nr = 0;
5063 }
5064 ret = btrfs_next_leaf(root, path);
5065 if (ret < 0)
5066 return ret;
5067 else if (ret > 0)
5068 break;
5069 continue;
5070 }
5071
5072 btrfs_item_key_to_cpu(leaf, &key, slot);
5073 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5074 break;
5075
5076 if (ins_nr == 0)
5077 start_slot = slot;
5078 ins_nr++;
5079 path->slots[0]++;
5080 found_xattrs = true;
5081 cond_resched();
5082 }
5083 if (ins_nr > 0) {
5084 ret = copy_items(trans, inode, dst_path, path,
5085 start_slot, ins_nr, 1, 0);
5086 if (ret < 0)
5087 return ret;
5088 }
5089
5090 if (!found_xattrs)
5091 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5092
5093 return 0;
5094}
5095
5096/*
5097 * When using the NO_HOLES feature if we punched a hole that causes the
5098 * deletion of entire leafs or all the extent items of the first leaf (the one
5099 * that contains the inode item and references) we may end up not processing
5100 * any extents, because there are no leafs with a generation matching the
5101 * current transaction that have extent items for our inode. So we need to find
5102 * if any holes exist and then log them. We also need to log holes after any
5103 * truncate operation that changes the inode's size.
5104 */
5105static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5106 struct btrfs_inode *inode,
5107 struct btrfs_path *path)
5108{
5109 struct btrfs_root *root = inode->root;
5110 struct btrfs_fs_info *fs_info = root->fs_info;
5111 struct btrfs_key key;
5112 const u64 ino = btrfs_ino(inode);
5113 const u64 i_size = i_size_read(&inode->vfs_inode);
5114 u64 prev_extent_end = 0;
5115 int ret;
5116
5117 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5118 return 0;
5119
5120 key.objectid = ino;
5121 key.type = BTRFS_EXTENT_DATA_KEY;
5122 key.offset = 0;
5123
5124 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5125 if (ret < 0)
5126 return ret;
5127
5128 while (true) {
5129 struct extent_buffer *leaf = path->nodes[0];
5130
5131 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5132 ret = btrfs_next_leaf(root, path);
5133 if (ret < 0)
5134 return ret;
5135 if (ret > 0) {
5136 ret = 0;
5137 break;
5138 }
5139 leaf = path->nodes[0];
5140 }
5141
5142 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5143 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5144 break;
5145
5146 /* We have a hole, log it. */
5147 if (prev_extent_end < key.offset) {
5148 const u64 hole_len = key.offset - prev_extent_end;
5149
5150 /*
5151 * Release the path to avoid deadlocks with other code
5152 * paths that search the root while holding locks on
5153 * leafs from the log root.
5154 */
5155 btrfs_release_path(path);
5156 ret = btrfs_insert_hole_extent(trans, root->log_root,
5157 ino, prev_extent_end,
5158 hole_len);
5159 if (ret < 0)
5160 return ret;
5161
5162 /*
5163 * Search for the same key again in the root. Since it's
5164 * an extent item and we are holding the inode lock, the
5165 * key must still exist. If it doesn't just emit warning
5166 * and return an error to fall back to a transaction
5167 * commit.
5168 */
5169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5170 if (ret < 0)
5171 return ret;
5172 if (WARN_ON(ret > 0))
5173 return -ENOENT;
5174 leaf = path->nodes[0];
5175 }
5176
5177 prev_extent_end = btrfs_file_extent_end(path);
5178 path->slots[0]++;
5179 cond_resched();
5180 }
5181
5182 if (prev_extent_end < i_size) {
5183 u64 hole_len;
5184
5185 btrfs_release_path(path);
5186 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5187 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5188 prev_extent_end, hole_len);
5189 if (ret < 0)
5190 return ret;
5191 }
5192
5193 return 0;
5194}
5195
5196/*
5197 * When we are logging a new inode X, check if it doesn't have a reference that
5198 * matches the reference from some other inode Y created in a past transaction
5199 * and that was renamed in the current transaction. If we don't do this, then at
5200 * log replay time we can lose inode Y (and all its files if it's a directory):
5201 *
5202 * mkdir /mnt/x
5203 * echo "hello world" > /mnt/x/foobar
5204 * sync
5205 * mv /mnt/x /mnt/y
5206 * mkdir /mnt/x # or touch /mnt/x
5207 * xfs_io -c fsync /mnt/x
5208 * <power fail>
5209 * mount fs, trigger log replay
5210 *
5211 * After the log replay procedure, we would lose the first directory and all its
5212 * files (file foobar).
5213 * For the case where inode Y is not a directory we simply end up losing it:
5214 *
5215 * echo "123" > /mnt/foo
5216 * sync
5217 * mv /mnt/foo /mnt/bar
5218 * echo "abc" > /mnt/foo
5219 * xfs_io -c fsync /mnt/foo
5220 * <power fail>
5221 *
5222 * We also need this for cases where a snapshot entry is replaced by some other
5223 * entry (file or directory) otherwise we end up with an unreplayable log due to
5224 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5225 * if it were a regular entry:
5226 *
5227 * mkdir /mnt/x
5228 * btrfs subvolume snapshot /mnt /mnt/x/snap
5229 * btrfs subvolume delete /mnt/x/snap
5230 * rmdir /mnt/x
5231 * mkdir /mnt/x
5232 * fsync /mnt/x or fsync some new file inside it
5233 * <power fail>
5234 *
5235 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5236 * the same transaction.
5237 */
5238static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5239 const int slot,
5240 const struct btrfs_key *key,
5241 struct btrfs_inode *inode,
5242 u64 *other_ino, u64 *other_parent)
5243{
5244 int ret;
5245 struct btrfs_path *search_path;
5246 char *name = NULL;
5247 u32 name_len = 0;
5248 u32 item_size = btrfs_item_size(eb, slot);
5249 u32 cur_offset = 0;
5250 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5251
5252 search_path = btrfs_alloc_path();
5253 if (!search_path)
5254 return -ENOMEM;
5255 search_path->search_commit_root = 1;
5256 search_path->skip_locking = 1;
5257
5258 while (cur_offset < item_size) {
5259 u64 parent;
5260 u32 this_name_len;
5261 u32 this_len;
5262 unsigned long name_ptr;
5263 struct btrfs_dir_item *di;
5264 struct fscrypt_str name_str;
5265
5266 if (key->type == BTRFS_INODE_REF_KEY) {
5267 struct btrfs_inode_ref *iref;
5268
5269 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5270 parent = key->offset;
5271 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5272 name_ptr = (unsigned long)(iref + 1);
5273 this_len = sizeof(*iref) + this_name_len;
5274 } else {
5275 struct btrfs_inode_extref *extref;
5276
5277 extref = (struct btrfs_inode_extref *)(ptr +
5278 cur_offset);
5279 parent = btrfs_inode_extref_parent(eb, extref);
5280 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5281 name_ptr = (unsigned long)&extref->name;
5282 this_len = sizeof(*extref) + this_name_len;
5283 }
5284
5285 if (this_name_len > name_len) {
5286 char *new_name;
5287
5288 new_name = krealloc(name, this_name_len, GFP_NOFS);
5289 if (!new_name) {
5290 ret = -ENOMEM;
5291 goto out;
5292 }
5293 name_len = this_name_len;
5294 name = new_name;
5295 }
5296
5297 read_extent_buffer(eb, name, name_ptr, this_name_len);
5298
5299 name_str.name = name;
5300 name_str.len = this_name_len;
5301 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5302 parent, &name_str, 0);
5303 if (di && !IS_ERR(di)) {
5304 struct btrfs_key di_key;
5305
5306 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5307 di, &di_key);
5308 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5309 if (di_key.objectid != key->objectid) {
5310 ret = 1;
5311 *other_ino = di_key.objectid;
5312 *other_parent = parent;
5313 } else {
5314 ret = 0;
5315 }
5316 } else {
5317 ret = -EAGAIN;
5318 }
5319 goto out;
5320 } else if (IS_ERR(di)) {
5321 ret = PTR_ERR(di);
5322 goto out;
5323 }
5324 btrfs_release_path(search_path);
5325
5326 cur_offset += this_len;
5327 }
5328 ret = 0;
5329out:
5330 btrfs_free_path(search_path);
5331 kfree(name);
5332 return ret;
5333}
5334
5335/*
5336 * Check if we need to log an inode. This is used in contexts where while
5337 * logging an inode we need to log another inode (either that it exists or in
5338 * full mode). This is used instead of btrfs_inode_in_log() because the later
5339 * requires the inode to be in the log and have the log transaction committed,
5340 * while here we do not care if the log transaction was already committed - our
5341 * caller will commit the log later - and we want to avoid logging an inode
5342 * multiple times when multiple tasks have joined the same log transaction.
5343 */
5344static bool need_log_inode(const struct btrfs_trans_handle *trans,
5345 const struct btrfs_inode *inode)
5346{
5347 /*
5348 * If a directory was not modified, no dentries added or removed, we can
5349 * and should avoid logging it.
5350 */
5351 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5352 return false;
5353
5354 /*
5355 * If this inode does not have new/updated/deleted xattrs since the last
5356 * time it was logged and is flagged as logged in the current transaction,
5357 * we can skip logging it. As for new/deleted names, those are updated in
5358 * the log by link/unlink/rename operations.
5359 * In case the inode was logged and then evicted and reloaded, its
5360 * logged_trans will be 0, in which case we have to fully log it since
5361 * logged_trans is a transient field, not persisted.
5362 */
5363 if (inode->logged_trans == trans->transid &&
5364 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5365 return false;
5366
5367 return true;
5368}
5369
5370struct btrfs_dir_list {
5371 u64 ino;
5372 struct list_head list;
5373};
5374
5375/*
5376 * Log the inodes of the new dentries of a directory.
5377 * See process_dir_items_leaf() for details about why it is needed.
5378 * This is a recursive operation - if an existing dentry corresponds to a
5379 * directory, that directory's new entries are logged too (same behaviour as
5380 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5381 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5382 * complains about the following circular lock dependency / possible deadlock:
5383 *
5384 * CPU0 CPU1
5385 * ---- ----
5386 * lock(&type->i_mutex_dir_key#3/2);
5387 * lock(sb_internal#2);
5388 * lock(&type->i_mutex_dir_key#3/2);
5389 * lock(&sb->s_type->i_mutex_key#14);
5390 *
5391 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5392 * sb_start_intwrite() in btrfs_start_transaction().
5393 * Not acquiring the VFS lock of the inodes is still safe because:
5394 *
5395 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5396 * that while logging the inode new references (names) are added or removed
5397 * from the inode, leaving the logged inode item with a link count that does
5398 * not match the number of logged inode reference items. This is fine because
5399 * at log replay time we compute the real number of links and correct the
5400 * link count in the inode item (see replay_one_buffer() and
5401 * link_to_fixup_dir());
5402 *
5403 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5404 * while logging the inode's items new index items (key type
5405 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5406 * has a size that doesn't match the sum of the lengths of all the logged
5407 * names - this is ok, not a problem, because at log replay time we set the
5408 * directory's i_size to the correct value (see replay_one_name() and
5409 * overwrite_item()).
5410 */
5411static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5412 struct btrfs_inode *start_inode,
5413 struct btrfs_log_ctx *ctx)
5414{
5415 struct btrfs_root *root = start_inode->root;
5416 struct btrfs_fs_info *fs_info = root->fs_info;
5417 struct btrfs_path *path;
5418 LIST_HEAD(dir_list);
5419 struct btrfs_dir_list *dir_elem;
5420 u64 ino = btrfs_ino(start_inode);
5421 int ret = 0;
5422
5423 /*
5424 * If we are logging a new name, as part of a link or rename operation,
5425 * don't bother logging new dentries, as we just want to log the names
5426 * of an inode and that any new parents exist.
5427 */
5428 if (ctx->logging_new_name)
5429 return 0;
5430
5431 path = btrfs_alloc_path();
5432 if (!path)
5433 return -ENOMEM;
5434
5435 while (true) {
5436 struct extent_buffer *leaf;
5437 struct btrfs_key min_key;
5438 bool continue_curr_inode = true;
5439 int nritems;
5440 int i;
5441
5442 min_key.objectid = ino;
5443 min_key.type = BTRFS_DIR_INDEX_KEY;
5444 min_key.offset = 0;
5445again:
5446 btrfs_release_path(path);
5447 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5448 if (ret < 0) {
5449 break;
5450 } else if (ret > 0) {
5451 ret = 0;
5452 goto next;
5453 }
5454
5455 leaf = path->nodes[0];
5456 nritems = btrfs_header_nritems(leaf);
5457 for (i = path->slots[0]; i < nritems; i++) {
5458 struct btrfs_dir_item *di;
5459 struct btrfs_key di_key;
5460 struct inode *di_inode;
5461 int log_mode = LOG_INODE_EXISTS;
5462 int type;
5463
5464 btrfs_item_key_to_cpu(leaf, &min_key, i);
5465 if (min_key.objectid != ino ||
5466 min_key.type != BTRFS_DIR_INDEX_KEY) {
5467 continue_curr_inode = false;
5468 break;
5469 }
5470
5471 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5472 type = btrfs_dir_ftype(leaf, di);
5473 if (btrfs_dir_transid(leaf, di) < trans->transid)
5474 continue;
5475 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5476 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5477 continue;
5478
5479 btrfs_release_path(path);
5480 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5481 if (IS_ERR(di_inode)) {
5482 ret = PTR_ERR(di_inode);
5483 goto out;
5484 }
5485
5486 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5487 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5488 break;
5489 }
5490
5491 ctx->log_new_dentries = false;
5492 if (type == BTRFS_FT_DIR)
5493 log_mode = LOG_INODE_ALL;
5494 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5495 log_mode, ctx);
5496 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5497 if (ret)
5498 goto out;
5499 if (ctx->log_new_dentries) {
5500 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5501 if (!dir_elem) {
5502 ret = -ENOMEM;
5503 goto out;
5504 }
5505 dir_elem->ino = di_key.objectid;
5506 list_add_tail(&dir_elem->list, &dir_list);
5507 }
5508 break;
5509 }
5510
5511 if (continue_curr_inode && min_key.offset < (u64)-1) {
5512 min_key.offset++;
5513 goto again;
5514 }
5515
5516next:
5517 if (list_empty(&dir_list))
5518 break;
5519
5520 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5521 ino = dir_elem->ino;
5522 list_del(&dir_elem->list);
5523 kfree(dir_elem);
5524 }
5525out:
5526 btrfs_free_path(path);
5527 if (ret) {
5528 struct btrfs_dir_list *next;
5529
5530 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5531 kfree(dir_elem);
5532 }
5533
5534 return ret;
5535}
5536
5537struct btrfs_ino_list {
5538 u64 ino;
5539 u64 parent;
5540 struct list_head list;
5541};
5542
5543static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5544{
5545 struct btrfs_ino_list *curr;
5546 struct btrfs_ino_list *next;
5547
5548 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5549 list_del(&curr->list);
5550 kfree(curr);
5551 }
5552}
5553
5554static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5555 struct btrfs_path *path)
5556{
5557 struct btrfs_key key;
5558 int ret;
5559
5560 key.objectid = ino;
5561 key.type = BTRFS_INODE_ITEM_KEY;
5562 key.offset = 0;
5563
5564 path->search_commit_root = 1;
5565 path->skip_locking = 1;
5566
5567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5568 if (WARN_ON_ONCE(ret > 0)) {
5569 /*
5570 * We have previously found the inode through the commit root
5571 * so this should not happen. If it does, just error out and
5572 * fallback to a transaction commit.
5573 */
5574 ret = -ENOENT;
5575 } else if (ret == 0) {
5576 struct btrfs_inode_item *item;
5577
5578 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5579 struct btrfs_inode_item);
5580 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5581 ret = 1;
5582 }
5583
5584 btrfs_release_path(path);
5585 path->search_commit_root = 0;
5586 path->skip_locking = 0;
5587
5588 return ret;
5589}
5590
5591static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5592 struct btrfs_root *root,
5593 struct btrfs_path *path,
5594 u64 ino, u64 parent,
5595 struct btrfs_log_ctx *ctx)
5596{
5597 struct btrfs_ino_list *ino_elem;
5598 struct inode *inode;
5599
5600 /*
5601 * It's rare to have a lot of conflicting inodes, in practice it is not
5602 * common to have more than 1 or 2. We don't want to collect too many,
5603 * as we could end up logging too many inodes (even if only in
5604 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5605 * commits.
5606 */
5607 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) {
5608 btrfs_set_log_full_commit(trans);
5609 return BTRFS_LOG_FORCE_COMMIT;
5610 }
5611
5612 inode = btrfs_iget(root->fs_info->sb, ino, root);
5613 /*
5614 * If the other inode that had a conflicting dir entry was deleted in
5615 * the current transaction then we either:
5616 *
5617 * 1) Log the parent directory (later after adding it to the list) if
5618 * the inode is a directory. This is because it may be a deleted
5619 * subvolume/snapshot or it may be a regular directory that had
5620 * deleted subvolumes/snapshots (or subdirectories that had them),
5621 * and at the moment we can't deal with dropping subvolumes/snapshots
5622 * during log replay. So we just log the parent, which will result in
5623 * a fallback to a transaction commit if we are dealing with those
5624 * cases (last_unlink_trans will match the current transaction);
5625 *
5626 * 2) Do nothing if it's not a directory. During log replay we simply
5627 * unlink the conflicting dentry from the parent directory and then
5628 * add the dentry for our inode. Like this we can avoid logging the
5629 * parent directory (and maybe fallback to a transaction commit in
5630 * case it has a last_unlink_trans == trans->transid, due to moving
5631 * some inode from it to some other directory).
5632 */
5633 if (IS_ERR(inode)) {
5634 int ret = PTR_ERR(inode);
5635
5636 if (ret != -ENOENT)
5637 return ret;
5638
5639 ret = conflicting_inode_is_dir(root, ino, path);
5640 /* Not a directory or we got an error. */
5641 if (ret <= 0)
5642 return ret;
5643
5644 /* Conflicting inode is a directory, so we'll log its parent. */
5645 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5646 if (!ino_elem)
5647 return -ENOMEM;
5648 ino_elem->ino = ino;
5649 ino_elem->parent = parent;
5650 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5651 ctx->num_conflict_inodes++;
5652
5653 return 0;
5654 }
5655
5656 /*
5657 * If the inode was already logged skip it - otherwise we can hit an
5658 * infinite loop. Example:
5659 *
5660 * From the commit root (previous transaction) we have the following
5661 * inodes:
5662 *
5663 * inode 257 a directory
5664 * inode 258 with references "zz" and "zz_link" on inode 257
5665 * inode 259 with reference "a" on inode 257
5666 *
5667 * And in the current (uncommitted) transaction we have:
5668 *
5669 * inode 257 a directory, unchanged
5670 * inode 258 with references "a" and "a2" on inode 257
5671 * inode 259 with reference "zz_link" on inode 257
5672 * inode 261 with reference "zz" on inode 257
5673 *
5674 * When logging inode 261 the following infinite loop could
5675 * happen if we don't skip already logged inodes:
5676 *
5677 * - we detect inode 258 as a conflicting inode, with inode 261
5678 * on reference "zz", and log it;
5679 *
5680 * - we detect inode 259 as a conflicting inode, with inode 258
5681 * on reference "a", and log it;
5682 *
5683 * - we detect inode 258 as a conflicting inode, with inode 259
5684 * on reference "zz_link", and log it - again! After this we
5685 * repeat the above steps forever.
5686 *
5687 * Here we can use need_log_inode() because we only need to log the
5688 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5689 * so that the log ends up with the new name and without the old name.
5690 */
5691 if (!need_log_inode(trans, BTRFS_I(inode))) {
5692 btrfs_add_delayed_iput(BTRFS_I(inode));
5693 return 0;
5694 }
5695
5696 btrfs_add_delayed_iput(BTRFS_I(inode));
5697
5698 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5699 if (!ino_elem)
5700 return -ENOMEM;
5701 ino_elem->ino = ino;
5702 ino_elem->parent = parent;
5703 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5704 ctx->num_conflict_inodes++;
5705
5706 return 0;
5707}
5708
5709static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5710 struct btrfs_root *root,
5711 struct btrfs_log_ctx *ctx)
5712{
5713 struct btrfs_fs_info *fs_info = root->fs_info;
5714 int ret = 0;
5715
5716 /*
5717 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5718 * otherwise we could have unbounded recursion of btrfs_log_inode()
5719 * calls. This check guarantees we can have only 1 level of recursion.
5720 */
5721 if (ctx->logging_conflict_inodes)
5722 return 0;
5723
5724 ctx->logging_conflict_inodes = true;
5725
5726 /*
5727 * New conflicting inodes may be found and added to the list while we
5728 * are logging a conflicting inode, so keep iterating while the list is
5729 * not empty.
5730 */
5731 while (!list_empty(&ctx->conflict_inodes)) {
5732 struct btrfs_ino_list *curr;
5733 struct inode *inode;
5734 u64 ino;
5735 u64 parent;
5736
5737 curr = list_first_entry(&ctx->conflict_inodes,
5738 struct btrfs_ino_list, list);
5739 ino = curr->ino;
5740 parent = curr->parent;
5741 list_del(&curr->list);
5742 kfree(curr);
5743
5744 inode = btrfs_iget(fs_info->sb, ino, root);
5745 /*
5746 * If the other inode that had a conflicting dir entry was
5747 * deleted in the current transaction, we need to log its parent
5748 * directory. See the comment at add_conflicting_inode().
5749 */
5750 if (IS_ERR(inode)) {
5751 ret = PTR_ERR(inode);
5752 if (ret != -ENOENT)
5753 break;
5754
5755 inode = btrfs_iget(fs_info->sb, parent, root);
5756 if (IS_ERR(inode)) {
5757 ret = PTR_ERR(inode);
5758 break;
5759 }
5760
5761 /*
5762 * Always log the directory, we cannot make this
5763 * conditional on need_log_inode() because the directory
5764 * might have been logged in LOG_INODE_EXISTS mode or
5765 * the dir index of the conflicting inode is not in a
5766 * dir index key range logged for the directory. So we
5767 * must make sure the deletion is recorded.
5768 */
5769 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5770 LOG_INODE_ALL, ctx);
5771 btrfs_add_delayed_iput(BTRFS_I(inode));
5772 if (ret)
5773 break;
5774 continue;
5775 }
5776
5777 /*
5778 * Here we can use need_log_inode() because we only need to log
5779 * the inode in LOG_INODE_EXISTS mode and rename operations
5780 * update the log, so that the log ends up with the new name and
5781 * without the old name.
5782 *
5783 * We did this check at add_conflicting_inode(), but here we do
5784 * it again because if some other task logged the inode after
5785 * that, we can avoid doing it again.
5786 */
5787 if (!need_log_inode(trans, BTRFS_I(inode))) {
5788 btrfs_add_delayed_iput(BTRFS_I(inode));
5789 continue;
5790 }
5791
5792 /*
5793 * We are safe logging the other inode without acquiring its
5794 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5795 * are safe against concurrent renames of the other inode as
5796 * well because during a rename we pin the log and update the
5797 * log with the new name before we unpin it.
5798 */
5799 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5800 btrfs_add_delayed_iput(BTRFS_I(inode));
5801 if (ret)
5802 break;
5803 }
5804
5805 ctx->logging_conflict_inodes = false;
5806 if (ret)
5807 free_conflicting_inodes(ctx);
5808
5809 return ret;
5810}
5811
5812static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5813 struct btrfs_inode *inode,
5814 struct btrfs_key *min_key,
5815 const struct btrfs_key *max_key,
5816 struct btrfs_path *path,
5817 struct btrfs_path *dst_path,
5818 const u64 logged_isize,
5819 const int inode_only,
5820 struct btrfs_log_ctx *ctx,
5821 bool *need_log_inode_item)
5822{
5823 const u64 i_size = i_size_read(&inode->vfs_inode);
5824 struct btrfs_root *root = inode->root;
5825 int ins_start_slot = 0;
5826 int ins_nr = 0;
5827 int ret;
5828
5829 while (1) {
5830 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5831 if (ret < 0)
5832 return ret;
5833 if (ret > 0) {
5834 ret = 0;
5835 break;
5836 }
5837again:
5838 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5839 if (min_key->objectid != max_key->objectid)
5840 break;
5841 if (min_key->type > max_key->type)
5842 break;
5843
5844 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5845 *need_log_inode_item = false;
5846 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5847 min_key->offset >= i_size) {
5848 /*
5849 * Extents at and beyond eof are logged with
5850 * btrfs_log_prealloc_extents().
5851 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5852 * and no keys greater than that, so bail out.
5853 */
5854 break;
5855 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5856 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5857 (inode->generation == trans->transid ||
5858 ctx->logging_conflict_inodes)) {
5859 u64 other_ino = 0;
5860 u64 other_parent = 0;
5861
5862 ret = btrfs_check_ref_name_override(path->nodes[0],
5863 path->slots[0], min_key, inode,
5864 &other_ino, &other_parent);
5865 if (ret < 0) {
5866 return ret;
5867 } else if (ret > 0 &&
5868 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5869 if (ins_nr > 0) {
5870 ins_nr++;
5871 } else {
5872 ins_nr = 1;
5873 ins_start_slot = path->slots[0];
5874 }
5875 ret = copy_items(trans, inode, dst_path, path,
5876 ins_start_slot, ins_nr,
5877 inode_only, logged_isize);
5878 if (ret < 0)
5879 return ret;
5880 ins_nr = 0;
5881
5882 btrfs_release_path(path);
5883 ret = add_conflicting_inode(trans, root, path,
5884 other_ino,
5885 other_parent, ctx);
5886 if (ret)
5887 return ret;
5888 goto next_key;
5889 }
5890 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5891 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5892 if (ins_nr == 0)
5893 goto next_slot;
5894 ret = copy_items(trans, inode, dst_path, path,
5895 ins_start_slot,
5896 ins_nr, inode_only, logged_isize);
5897 if (ret < 0)
5898 return ret;
5899 ins_nr = 0;
5900 goto next_slot;
5901 }
5902
5903 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5904 ins_nr++;
5905 goto next_slot;
5906 } else if (!ins_nr) {
5907 ins_start_slot = path->slots[0];
5908 ins_nr = 1;
5909 goto next_slot;
5910 }
5911
5912 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5913 ins_nr, inode_only, logged_isize);
5914 if (ret < 0)
5915 return ret;
5916 ins_nr = 1;
5917 ins_start_slot = path->slots[0];
5918next_slot:
5919 path->slots[0]++;
5920 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5921 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5922 path->slots[0]);
5923 goto again;
5924 }
5925 if (ins_nr) {
5926 ret = copy_items(trans, inode, dst_path, path,
5927 ins_start_slot, ins_nr, inode_only,
5928 logged_isize);
5929 if (ret < 0)
5930 return ret;
5931 ins_nr = 0;
5932 }
5933 btrfs_release_path(path);
5934next_key:
5935 if (min_key->offset < (u64)-1) {
5936 min_key->offset++;
5937 } else if (min_key->type < max_key->type) {
5938 min_key->type++;
5939 min_key->offset = 0;
5940 } else {
5941 break;
5942 }
5943
5944 /*
5945 * We may process many leaves full of items for our inode, so
5946 * avoid monopolizing a cpu for too long by rescheduling while
5947 * not holding locks on any tree.
5948 */
5949 cond_resched();
5950 }
5951 if (ins_nr) {
5952 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5953 ins_nr, inode_only, logged_isize);
5954 if (ret)
5955 return ret;
5956 }
5957
5958 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5959 /*
5960 * Release the path because otherwise we might attempt to double
5961 * lock the same leaf with btrfs_log_prealloc_extents() below.
5962 */
5963 btrfs_release_path(path);
5964 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5965 }
5966
5967 return ret;
5968}
5969
5970static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5971 struct btrfs_root *log,
5972 struct btrfs_path *path,
5973 const struct btrfs_item_batch *batch,
5974 const struct btrfs_delayed_item *first_item)
5975{
5976 const struct btrfs_delayed_item *curr = first_item;
5977 int ret;
5978
5979 ret = btrfs_insert_empty_items(trans, log, path, batch);
5980 if (ret)
5981 return ret;
5982
5983 for (int i = 0; i < batch->nr; i++) {
5984 char *data_ptr;
5985
5986 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5987 write_extent_buffer(path->nodes[0], &curr->data,
5988 (unsigned long)data_ptr, curr->data_len);
5989 curr = list_next_entry(curr, log_list);
5990 path->slots[0]++;
5991 }
5992
5993 btrfs_release_path(path);
5994
5995 return 0;
5996}
5997
5998static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5999 struct btrfs_inode *inode,
6000 struct btrfs_path *path,
6001 const struct list_head *delayed_ins_list,
6002 struct btrfs_log_ctx *ctx)
6003{
6004 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6005 const int max_batch_size = 195;
6006 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6007 const u64 ino = btrfs_ino(inode);
6008 struct btrfs_root *log = inode->root->log_root;
6009 struct btrfs_item_batch batch = {
6010 .nr = 0,
6011 .total_data_size = 0,
6012 };
6013 const struct btrfs_delayed_item *first = NULL;
6014 const struct btrfs_delayed_item *curr;
6015 char *ins_data;
6016 struct btrfs_key *ins_keys;
6017 u32 *ins_sizes;
6018 u64 curr_batch_size = 0;
6019 int batch_idx = 0;
6020 int ret;
6021
6022 /* We are adding dir index items to the log tree. */
6023 lockdep_assert_held(&inode->log_mutex);
6024
6025 /*
6026 * We collect delayed items before copying index keys from the subvolume
6027 * to the log tree. However just after we collected them, they may have
6028 * been flushed (all of them or just some of them), and therefore we
6029 * could have copied them from the subvolume tree to the log tree.
6030 * So find the first delayed item that was not yet logged (they are
6031 * sorted by index number).
6032 */
6033 list_for_each_entry(curr, delayed_ins_list, log_list) {
6034 if (curr->index > inode->last_dir_index_offset) {
6035 first = curr;
6036 break;
6037 }
6038 }
6039
6040 /* Empty list or all delayed items were already logged. */
6041 if (!first)
6042 return 0;
6043
6044 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6045 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6046 if (!ins_data)
6047 return -ENOMEM;
6048 ins_sizes = (u32 *)ins_data;
6049 batch.data_sizes = ins_sizes;
6050 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6051 batch.keys = ins_keys;
6052
6053 curr = first;
6054 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6055 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6056
6057 if (curr_batch_size + curr_size > leaf_data_size ||
6058 batch.nr == max_batch_size) {
6059 ret = insert_delayed_items_batch(trans, log, path,
6060 &batch, first);
6061 if (ret)
6062 goto out;
6063 batch_idx = 0;
6064 batch.nr = 0;
6065 batch.total_data_size = 0;
6066 curr_batch_size = 0;
6067 first = curr;
6068 }
6069
6070 ins_sizes[batch_idx] = curr->data_len;
6071 ins_keys[batch_idx].objectid = ino;
6072 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6073 ins_keys[batch_idx].offset = curr->index;
6074 curr_batch_size += curr_size;
6075 batch.total_data_size += curr->data_len;
6076 batch.nr++;
6077 batch_idx++;
6078 curr = list_next_entry(curr, log_list);
6079 }
6080
6081 ASSERT(batch.nr >= 1);
6082 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6083
6084 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6085 log_list);
6086 inode->last_dir_index_offset = curr->index;
6087out:
6088 kfree(ins_data);
6089
6090 return ret;
6091}
6092
6093static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6094 struct btrfs_inode *inode,
6095 struct btrfs_path *path,
6096 const struct list_head *delayed_del_list,
6097 struct btrfs_log_ctx *ctx)
6098{
6099 const u64 ino = btrfs_ino(inode);
6100 const struct btrfs_delayed_item *curr;
6101
6102 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6103 log_list);
6104
6105 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6106 u64 first_dir_index = curr->index;
6107 u64 last_dir_index;
6108 const struct btrfs_delayed_item *next;
6109 int ret;
6110
6111 /*
6112 * Find a range of consecutive dir index items to delete. Like
6113 * this we log a single dir range item spanning several contiguous
6114 * dir items instead of logging one range item per dir index item.
6115 */
6116 next = list_next_entry(curr, log_list);
6117 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6118 if (next->index != curr->index + 1)
6119 break;
6120 curr = next;
6121 next = list_next_entry(next, log_list);
6122 }
6123
6124 last_dir_index = curr->index;
6125 ASSERT(last_dir_index >= first_dir_index);
6126
6127 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6128 ino, first_dir_index, last_dir_index);
6129 if (ret)
6130 return ret;
6131 curr = list_next_entry(curr, log_list);
6132 }
6133
6134 return 0;
6135}
6136
6137static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6138 struct btrfs_inode *inode,
6139 struct btrfs_path *path,
6140 struct btrfs_log_ctx *ctx,
6141 const struct list_head *delayed_del_list,
6142 const struct btrfs_delayed_item *first,
6143 const struct btrfs_delayed_item **last_ret)
6144{
6145 const struct btrfs_delayed_item *next;
6146 struct extent_buffer *leaf = path->nodes[0];
6147 const int last_slot = btrfs_header_nritems(leaf) - 1;
6148 int slot = path->slots[0] + 1;
6149 const u64 ino = btrfs_ino(inode);
6150
6151 next = list_next_entry(first, log_list);
6152
6153 while (slot < last_slot &&
6154 !list_entry_is_head(next, delayed_del_list, log_list)) {
6155 struct btrfs_key key;
6156
6157 btrfs_item_key_to_cpu(leaf, &key, slot);
6158 if (key.objectid != ino ||
6159 key.type != BTRFS_DIR_INDEX_KEY ||
6160 key.offset != next->index)
6161 break;
6162
6163 slot++;
6164 *last_ret = next;
6165 next = list_next_entry(next, log_list);
6166 }
6167
6168 return btrfs_del_items(trans, inode->root->log_root, path,
6169 path->slots[0], slot - path->slots[0]);
6170}
6171
6172static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6173 struct btrfs_inode *inode,
6174 struct btrfs_path *path,
6175 const struct list_head *delayed_del_list,
6176 struct btrfs_log_ctx *ctx)
6177{
6178 struct btrfs_root *log = inode->root->log_root;
6179 const struct btrfs_delayed_item *curr;
6180 u64 last_range_start;
6181 u64 last_range_end = 0;
6182 struct btrfs_key key;
6183
6184 key.objectid = btrfs_ino(inode);
6185 key.type = BTRFS_DIR_INDEX_KEY;
6186 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6187 log_list);
6188
6189 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6190 const struct btrfs_delayed_item *last = curr;
6191 u64 first_dir_index = curr->index;
6192 u64 last_dir_index;
6193 bool deleted_items = false;
6194 int ret;
6195
6196 key.offset = curr->index;
6197 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6198 if (ret < 0) {
6199 return ret;
6200 } else if (ret == 0) {
6201 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6202 delayed_del_list, curr,
6203 &last);
6204 if (ret)
6205 return ret;
6206 deleted_items = true;
6207 }
6208
6209 btrfs_release_path(path);
6210
6211 /*
6212 * If we deleted items from the leaf, it means we have a range
6213 * item logging their range, so no need to add one or update an
6214 * existing one. Otherwise we have to log a dir range item.
6215 */
6216 if (deleted_items)
6217 goto next_batch;
6218
6219 last_dir_index = last->index;
6220 ASSERT(last_dir_index >= first_dir_index);
6221 /*
6222 * If this range starts right after where the previous one ends,
6223 * then we want to reuse the previous range item and change its
6224 * end offset to the end of this range. This is just to minimize
6225 * leaf space usage, by avoiding adding a new range item.
6226 */
6227 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6228 first_dir_index = last_range_start;
6229
6230 ret = insert_dir_log_key(trans, log, path, key.objectid,
6231 first_dir_index, last_dir_index);
6232 if (ret)
6233 return ret;
6234
6235 last_range_start = first_dir_index;
6236 last_range_end = last_dir_index;
6237next_batch:
6238 curr = list_next_entry(last, log_list);
6239 }
6240
6241 return 0;
6242}
6243
6244static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6245 struct btrfs_inode *inode,
6246 struct btrfs_path *path,
6247 const struct list_head *delayed_del_list,
6248 struct btrfs_log_ctx *ctx)
6249{
6250 /*
6251 * We are deleting dir index items from the log tree or adding range
6252 * items to it.
6253 */
6254 lockdep_assert_held(&inode->log_mutex);
6255
6256 if (list_empty(delayed_del_list))
6257 return 0;
6258
6259 if (ctx->logged_before)
6260 return log_delayed_deletions_incremental(trans, inode, path,
6261 delayed_del_list, ctx);
6262
6263 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6264 ctx);
6265}
6266
6267/*
6268 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6269 * items instead of the subvolume tree.
6270 */
6271static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6272 struct btrfs_inode *inode,
6273 const struct list_head *delayed_ins_list,
6274 struct btrfs_log_ctx *ctx)
6275{
6276 const bool orig_log_new_dentries = ctx->log_new_dentries;
6277 struct btrfs_fs_info *fs_info = trans->fs_info;
6278 struct btrfs_delayed_item *item;
6279 int ret = 0;
6280
6281 /*
6282 * No need for the log mutex, plus to avoid potential deadlocks or
6283 * lockdep annotations due to nesting of delayed inode mutexes and log
6284 * mutexes.
6285 */
6286 lockdep_assert_not_held(&inode->log_mutex);
6287
6288 ASSERT(!ctx->logging_new_delayed_dentries);
6289 ctx->logging_new_delayed_dentries = true;
6290
6291 list_for_each_entry(item, delayed_ins_list, log_list) {
6292 struct btrfs_dir_item *dir_item;
6293 struct inode *di_inode;
6294 struct btrfs_key key;
6295 int log_mode = LOG_INODE_EXISTS;
6296
6297 dir_item = (struct btrfs_dir_item *)item->data;
6298 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6299
6300 if (key.type == BTRFS_ROOT_ITEM_KEY)
6301 continue;
6302
6303 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6304 if (IS_ERR(di_inode)) {
6305 ret = PTR_ERR(di_inode);
6306 break;
6307 }
6308
6309 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6310 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6311 continue;
6312 }
6313
6314 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6315 log_mode = LOG_INODE_ALL;
6316
6317 ctx->log_new_dentries = false;
6318 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6319
6320 if (!ret && ctx->log_new_dentries)
6321 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6322
6323 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6324
6325 if (ret)
6326 break;
6327 }
6328
6329 ctx->log_new_dentries = orig_log_new_dentries;
6330 ctx->logging_new_delayed_dentries = false;
6331
6332 return ret;
6333}
6334
6335/* log a single inode in the tree log.
6336 * At least one parent directory for this inode must exist in the tree
6337 * or be logged already.
6338 *
6339 * Any items from this inode changed by the current transaction are copied
6340 * to the log tree. An extra reference is taken on any extents in this
6341 * file, allowing us to avoid a whole pile of corner cases around logging
6342 * blocks that have been removed from the tree.
6343 *
6344 * See LOG_INODE_ALL and related defines for a description of what inode_only
6345 * does.
6346 *
6347 * This handles both files and directories.
6348 */
6349static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6350 struct btrfs_inode *inode,
6351 int inode_only,
6352 struct btrfs_log_ctx *ctx)
6353{
6354 struct btrfs_path *path;
6355 struct btrfs_path *dst_path;
6356 struct btrfs_key min_key;
6357 struct btrfs_key max_key;
6358 struct btrfs_root *log = inode->root->log_root;
6359 int ret;
6360 bool fast_search = false;
6361 u64 ino = btrfs_ino(inode);
6362 struct extent_map_tree *em_tree = &inode->extent_tree;
6363 u64 logged_isize = 0;
6364 bool need_log_inode_item = true;
6365 bool xattrs_logged = false;
6366 bool inode_item_dropped = true;
6367 bool full_dir_logging = false;
6368 LIST_HEAD(delayed_ins_list);
6369 LIST_HEAD(delayed_del_list);
6370
6371 path = btrfs_alloc_path();
6372 if (!path)
6373 return -ENOMEM;
6374 dst_path = btrfs_alloc_path();
6375 if (!dst_path) {
6376 btrfs_free_path(path);
6377 return -ENOMEM;
6378 }
6379
6380 min_key.objectid = ino;
6381 min_key.type = BTRFS_INODE_ITEM_KEY;
6382 min_key.offset = 0;
6383
6384 max_key.objectid = ino;
6385
6386
6387 /* today the code can only do partial logging of directories */
6388 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6389 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6390 &inode->runtime_flags) &&
6391 inode_only >= LOG_INODE_EXISTS))
6392 max_key.type = BTRFS_XATTR_ITEM_KEY;
6393 else
6394 max_key.type = (u8)-1;
6395 max_key.offset = (u64)-1;
6396
6397 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6398 full_dir_logging = true;
6399
6400 /*
6401 * If we are logging a directory while we are logging dentries of the
6402 * delayed items of some other inode, then we need to flush the delayed
6403 * items of this directory and not log the delayed items directly. This
6404 * is to prevent more than one level of recursion into btrfs_log_inode()
6405 * by having something like this:
6406 *
6407 * $ mkdir -p a/b/c/d/e/f/g/h/...
6408 * $ xfs_io -c "fsync" a
6409 *
6410 * Where all directories in the path did not exist before and are
6411 * created in the current transaction.
6412 * So in such a case we directly log the delayed items of the main
6413 * directory ("a") without flushing them first, while for each of its
6414 * subdirectories we flush their delayed items before logging them.
6415 * This prevents a potential unbounded recursion like this:
6416 *
6417 * btrfs_log_inode()
6418 * log_new_delayed_dentries()
6419 * btrfs_log_inode()
6420 * log_new_delayed_dentries()
6421 * btrfs_log_inode()
6422 * log_new_delayed_dentries()
6423 * (...)
6424 *
6425 * We have thresholds for the maximum number of delayed items to have in
6426 * memory, and once they are hit, the items are flushed asynchronously.
6427 * However the limit is quite high, so lets prevent deep levels of
6428 * recursion to happen by limiting the maximum depth to be 1.
6429 */
6430 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6431 ret = btrfs_commit_inode_delayed_items(trans, inode);
6432 if (ret)
6433 goto out;
6434 }
6435
6436 mutex_lock(&inode->log_mutex);
6437
6438 /*
6439 * For symlinks, we must always log their content, which is stored in an
6440 * inline extent, otherwise we could end up with an empty symlink after
6441 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6442 * one attempts to create an empty symlink).
6443 * We don't need to worry about flushing delalloc, because when we create
6444 * the inline extent when the symlink is created (we never have delalloc
6445 * for symlinks).
6446 */
6447 if (S_ISLNK(inode->vfs_inode.i_mode))
6448 inode_only = LOG_INODE_ALL;
6449
6450 /*
6451 * Before logging the inode item, cache the value returned by
6452 * inode_logged(), because after that we have the need to figure out if
6453 * the inode was previously logged in this transaction.
6454 */
6455 ret = inode_logged(trans, inode, path);
6456 if (ret < 0)
6457 goto out_unlock;
6458 ctx->logged_before = (ret == 1);
6459 ret = 0;
6460
6461 /*
6462 * This is for cases where logging a directory could result in losing a
6463 * a file after replaying the log. For example, if we move a file from a
6464 * directory A to a directory B, then fsync directory A, we have no way
6465 * to known the file was moved from A to B, so logging just A would
6466 * result in losing the file after a log replay.
6467 */
6468 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6469 btrfs_set_log_full_commit(trans);
6470 ret = BTRFS_LOG_FORCE_COMMIT;
6471 goto out_unlock;
6472 }
6473
6474 /*
6475 * a brute force approach to making sure we get the most uptodate
6476 * copies of everything.
6477 */
6478 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6479 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6480 if (ctx->logged_before)
6481 ret = drop_inode_items(trans, log, path, inode,
6482 BTRFS_XATTR_ITEM_KEY);
6483 } else {
6484 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6485 /*
6486 * Make sure the new inode item we write to the log has
6487 * the same isize as the current one (if it exists).
6488 * This is necessary to prevent data loss after log
6489 * replay, and also to prevent doing a wrong expanding
6490 * truncate - for e.g. create file, write 4K into offset
6491 * 0, fsync, write 4K into offset 4096, add hard link,
6492 * fsync some other file (to sync log), power fail - if
6493 * we use the inode's current i_size, after log replay
6494 * we get a 8Kb file, with the last 4Kb extent as a hole
6495 * (zeroes), as if an expanding truncate happened,
6496 * instead of getting a file of 4Kb only.
6497 */
6498 ret = logged_inode_size(log, inode, path, &logged_isize);
6499 if (ret)
6500 goto out_unlock;
6501 }
6502 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6503 &inode->runtime_flags)) {
6504 if (inode_only == LOG_INODE_EXISTS) {
6505 max_key.type = BTRFS_XATTR_ITEM_KEY;
6506 if (ctx->logged_before)
6507 ret = drop_inode_items(trans, log, path,
6508 inode, max_key.type);
6509 } else {
6510 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6511 &inode->runtime_flags);
6512 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6513 &inode->runtime_flags);
6514 if (ctx->logged_before)
6515 ret = truncate_inode_items(trans, log,
6516 inode, 0, 0);
6517 }
6518 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6519 &inode->runtime_flags) ||
6520 inode_only == LOG_INODE_EXISTS) {
6521 if (inode_only == LOG_INODE_ALL)
6522 fast_search = true;
6523 max_key.type = BTRFS_XATTR_ITEM_KEY;
6524 if (ctx->logged_before)
6525 ret = drop_inode_items(trans, log, path, inode,
6526 max_key.type);
6527 } else {
6528 if (inode_only == LOG_INODE_ALL)
6529 fast_search = true;
6530 inode_item_dropped = false;
6531 goto log_extents;
6532 }
6533
6534 }
6535 if (ret)
6536 goto out_unlock;
6537
6538 /*
6539 * If we are logging a directory in full mode, collect the delayed items
6540 * before iterating the subvolume tree, so that we don't miss any new
6541 * dir index items in case they get flushed while or right after we are
6542 * iterating the subvolume tree.
6543 */
6544 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6545 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6546 &delayed_del_list);
6547
6548 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6549 path, dst_path, logged_isize,
6550 inode_only, ctx,
6551 &need_log_inode_item);
6552 if (ret)
6553 goto out_unlock;
6554
6555 btrfs_release_path(path);
6556 btrfs_release_path(dst_path);
6557 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6558 if (ret)
6559 goto out_unlock;
6560 xattrs_logged = true;
6561 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6562 btrfs_release_path(path);
6563 btrfs_release_path(dst_path);
6564 ret = btrfs_log_holes(trans, inode, path);
6565 if (ret)
6566 goto out_unlock;
6567 }
6568log_extents:
6569 btrfs_release_path(path);
6570 btrfs_release_path(dst_path);
6571 if (need_log_inode_item) {
6572 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6573 if (ret)
6574 goto out_unlock;
6575 /*
6576 * If we are doing a fast fsync and the inode was logged before
6577 * in this transaction, we don't need to log the xattrs because
6578 * they were logged before. If xattrs were added, changed or
6579 * deleted since the last time we logged the inode, then we have
6580 * already logged them because the inode had the runtime flag
6581 * BTRFS_INODE_COPY_EVERYTHING set.
6582 */
6583 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6584 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6585 if (ret)
6586 goto out_unlock;
6587 btrfs_release_path(path);
6588 }
6589 }
6590 if (fast_search) {
6591 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6592 if (ret)
6593 goto out_unlock;
6594 } else if (inode_only == LOG_INODE_ALL) {
6595 struct extent_map *em, *n;
6596
6597 write_lock(&em_tree->lock);
6598 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6599 list_del_init(&em->list);
6600 write_unlock(&em_tree->lock);
6601 }
6602
6603 if (full_dir_logging) {
6604 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6605 if (ret)
6606 goto out_unlock;
6607 ret = log_delayed_insertion_items(trans, inode, path,
6608 &delayed_ins_list, ctx);
6609 if (ret)
6610 goto out_unlock;
6611 ret = log_delayed_deletion_items(trans, inode, path,
6612 &delayed_del_list, ctx);
6613 if (ret)
6614 goto out_unlock;
6615 }
6616
6617 spin_lock(&inode->lock);
6618 inode->logged_trans = trans->transid;
6619 /*
6620 * Don't update last_log_commit if we logged that an inode exists.
6621 * We do this for three reasons:
6622 *
6623 * 1) We might have had buffered writes to this inode that were
6624 * flushed and had their ordered extents completed in this
6625 * transaction, but we did not previously log the inode with
6626 * LOG_INODE_ALL. Later the inode was evicted and after that
6627 * it was loaded again and this LOG_INODE_EXISTS log operation
6628 * happened. We must make sure that if an explicit fsync against
6629 * the inode is performed later, it logs the new extents, an
6630 * updated inode item, etc, and syncs the log. The same logic
6631 * applies to direct IO writes instead of buffered writes.
6632 *
6633 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6634 * is logged with an i_size of 0 or whatever value was logged
6635 * before. If later the i_size of the inode is increased by a
6636 * truncate operation, the log is synced through an fsync of
6637 * some other inode and then finally an explicit fsync against
6638 * this inode is made, we must make sure this fsync logs the
6639 * inode with the new i_size, the hole between old i_size and
6640 * the new i_size, and syncs the log.
6641 *
6642 * 3) If we are logging that an ancestor inode exists as part of
6643 * logging a new name from a link or rename operation, don't update
6644 * its last_log_commit - otherwise if an explicit fsync is made
6645 * against an ancestor, the fsync considers the inode in the log
6646 * and doesn't sync the log, resulting in the ancestor missing after
6647 * a power failure unless the log was synced as part of an fsync
6648 * against any other unrelated inode.
6649 */
6650 if (inode_only != LOG_INODE_EXISTS)
6651 inode->last_log_commit = inode->last_sub_trans;
6652 spin_unlock(&inode->lock);
6653
6654 /*
6655 * Reset the last_reflink_trans so that the next fsync does not need to
6656 * go through the slower path when logging extents and their checksums.
6657 */
6658 if (inode_only == LOG_INODE_ALL)
6659 inode->last_reflink_trans = 0;
6660
6661out_unlock:
6662 mutex_unlock(&inode->log_mutex);
6663out:
6664 btrfs_free_path(path);
6665 btrfs_free_path(dst_path);
6666
6667 if (ret)
6668 free_conflicting_inodes(ctx);
6669 else
6670 ret = log_conflicting_inodes(trans, inode->root, ctx);
6671
6672 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6673 if (!ret)
6674 ret = log_new_delayed_dentries(trans, inode,
6675 &delayed_ins_list, ctx);
6676
6677 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6678 &delayed_del_list);
6679 }
6680
6681 return ret;
6682}
6683
6684static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6685 struct btrfs_inode *inode,
6686 struct btrfs_log_ctx *ctx)
6687{
6688 struct btrfs_fs_info *fs_info = trans->fs_info;
6689 int ret;
6690 struct btrfs_path *path;
6691 struct btrfs_key key;
6692 struct btrfs_root *root = inode->root;
6693 const u64 ino = btrfs_ino(inode);
6694
6695 path = btrfs_alloc_path();
6696 if (!path)
6697 return -ENOMEM;
6698 path->skip_locking = 1;
6699 path->search_commit_root = 1;
6700
6701 key.objectid = ino;
6702 key.type = BTRFS_INODE_REF_KEY;
6703 key.offset = 0;
6704 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6705 if (ret < 0)
6706 goto out;
6707
6708 while (true) {
6709 struct extent_buffer *leaf = path->nodes[0];
6710 int slot = path->slots[0];
6711 u32 cur_offset = 0;
6712 u32 item_size;
6713 unsigned long ptr;
6714
6715 if (slot >= btrfs_header_nritems(leaf)) {
6716 ret = btrfs_next_leaf(root, path);
6717 if (ret < 0)
6718 goto out;
6719 else if (ret > 0)
6720 break;
6721 continue;
6722 }
6723
6724 btrfs_item_key_to_cpu(leaf, &key, slot);
6725 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6726 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6727 break;
6728
6729 item_size = btrfs_item_size(leaf, slot);
6730 ptr = btrfs_item_ptr_offset(leaf, slot);
6731 while (cur_offset < item_size) {
6732 struct btrfs_key inode_key;
6733 struct inode *dir_inode;
6734
6735 inode_key.type = BTRFS_INODE_ITEM_KEY;
6736 inode_key.offset = 0;
6737
6738 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6739 struct btrfs_inode_extref *extref;
6740
6741 extref = (struct btrfs_inode_extref *)
6742 (ptr + cur_offset);
6743 inode_key.objectid = btrfs_inode_extref_parent(
6744 leaf, extref);
6745 cur_offset += sizeof(*extref);
6746 cur_offset += btrfs_inode_extref_name_len(leaf,
6747 extref);
6748 } else {
6749 inode_key.objectid = key.offset;
6750 cur_offset = item_size;
6751 }
6752
6753 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6754 root);
6755 /*
6756 * If the parent inode was deleted, return an error to
6757 * fallback to a transaction commit. This is to prevent
6758 * getting an inode that was moved from one parent A to
6759 * a parent B, got its former parent A deleted and then
6760 * it got fsync'ed, from existing at both parents after
6761 * a log replay (and the old parent still existing).
6762 * Example:
6763 *
6764 * mkdir /mnt/A
6765 * mkdir /mnt/B
6766 * touch /mnt/B/bar
6767 * sync
6768 * mv /mnt/B/bar /mnt/A/bar
6769 * mv -T /mnt/A /mnt/B
6770 * fsync /mnt/B/bar
6771 * <power fail>
6772 *
6773 * If we ignore the old parent B which got deleted,
6774 * after a log replay we would have file bar linked
6775 * at both parents and the old parent B would still
6776 * exist.
6777 */
6778 if (IS_ERR(dir_inode)) {
6779 ret = PTR_ERR(dir_inode);
6780 goto out;
6781 }
6782
6783 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6784 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6785 continue;
6786 }
6787
6788 ctx->log_new_dentries = false;
6789 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6790 LOG_INODE_ALL, ctx);
6791 if (!ret && ctx->log_new_dentries)
6792 ret = log_new_dir_dentries(trans,
6793 BTRFS_I(dir_inode), ctx);
6794 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6795 if (ret)
6796 goto out;
6797 }
6798 path->slots[0]++;
6799 }
6800 ret = 0;
6801out:
6802 btrfs_free_path(path);
6803 return ret;
6804}
6805
6806static int log_new_ancestors(struct btrfs_trans_handle *trans,
6807 struct btrfs_root *root,
6808 struct btrfs_path *path,
6809 struct btrfs_log_ctx *ctx)
6810{
6811 struct btrfs_key found_key;
6812
6813 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6814
6815 while (true) {
6816 struct btrfs_fs_info *fs_info = root->fs_info;
6817 struct extent_buffer *leaf = path->nodes[0];
6818 int slot = path->slots[0];
6819 struct btrfs_key search_key;
6820 struct inode *inode;
6821 u64 ino;
6822 int ret = 0;
6823
6824 btrfs_release_path(path);
6825
6826 ino = found_key.offset;
6827
6828 search_key.objectid = found_key.offset;
6829 search_key.type = BTRFS_INODE_ITEM_KEY;
6830 search_key.offset = 0;
6831 inode = btrfs_iget(fs_info->sb, ino, root);
6832 if (IS_ERR(inode))
6833 return PTR_ERR(inode);
6834
6835 if (BTRFS_I(inode)->generation >= trans->transid &&
6836 need_log_inode(trans, BTRFS_I(inode)))
6837 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6838 LOG_INODE_EXISTS, ctx);
6839 btrfs_add_delayed_iput(BTRFS_I(inode));
6840 if (ret)
6841 return ret;
6842
6843 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6844 break;
6845
6846 search_key.type = BTRFS_INODE_REF_KEY;
6847 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6848 if (ret < 0)
6849 return ret;
6850
6851 leaf = path->nodes[0];
6852 slot = path->slots[0];
6853 if (slot >= btrfs_header_nritems(leaf)) {
6854 ret = btrfs_next_leaf(root, path);
6855 if (ret < 0)
6856 return ret;
6857 else if (ret > 0)
6858 return -ENOENT;
6859 leaf = path->nodes[0];
6860 slot = path->slots[0];
6861 }
6862
6863 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6864 if (found_key.objectid != search_key.objectid ||
6865 found_key.type != BTRFS_INODE_REF_KEY)
6866 return -ENOENT;
6867 }
6868 return 0;
6869}
6870
6871static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6872 struct btrfs_inode *inode,
6873 struct dentry *parent,
6874 struct btrfs_log_ctx *ctx)
6875{
6876 struct btrfs_root *root = inode->root;
6877 struct dentry *old_parent = NULL;
6878 struct super_block *sb = inode->vfs_inode.i_sb;
6879 int ret = 0;
6880
6881 while (true) {
6882 if (!parent || d_really_is_negative(parent) ||
6883 sb != parent->d_sb)
6884 break;
6885
6886 inode = BTRFS_I(d_inode(parent));
6887 if (root != inode->root)
6888 break;
6889
6890 if (inode->generation >= trans->transid &&
6891 need_log_inode(trans, inode)) {
6892 ret = btrfs_log_inode(trans, inode,
6893 LOG_INODE_EXISTS, ctx);
6894 if (ret)
6895 break;
6896 }
6897 if (IS_ROOT(parent))
6898 break;
6899
6900 parent = dget_parent(parent);
6901 dput(old_parent);
6902 old_parent = parent;
6903 }
6904 dput(old_parent);
6905
6906 return ret;
6907}
6908
6909static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6910 struct btrfs_inode *inode,
6911 struct dentry *parent,
6912 struct btrfs_log_ctx *ctx)
6913{
6914 struct btrfs_root *root = inode->root;
6915 const u64 ino = btrfs_ino(inode);
6916 struct btrfs_path *path;
6917 struct btrfs_key search_key;
6918 int ret;
6919
6920 /*
6921 * For a single hard link case, go through a fast path that does not
6922 * need to iterate the fs/subvolume tree.
6923 */
6924 if (inode->vfs_inode.i_nlink < 2)
6925 return log_new_ancestors_fast(trans, inode, parent, ctx);
6926
6927 path = btrfs_alloc_path();
6928 if (!path)
6929 return -ENOMEM;
6930
6931 search_key.objectid = ino;
6932 search_key.type = BTRFS_INODE_REF_KEY;
6933 search_key.offset = 0;
6934again:
6935 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6936 if (ret < 0)
6937 goto out;
6938 if (ret == 0)
6939 path->slots[0]++;
6940
6941 while (true) {
6942 struct extent_buffer *leaf = path->nodes[0];
6943 int slot = path->slots[0];
6944 struct btrfs_key found_key;
6945
6946 if (slot >= btrfs_header_nritems(leaf)) {
6947 ret = btrfs_next_leaf(root, path);
6948 if (ret < 0)
6949 goto out;
6950 else if (ret > 0)
6951 break;
6952 continue;
6953 }
6954
6955 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6956 if (found_key.objectid != ino ||
6957 found_key.type > BTRFS_INODE_EXTREF_KEY)
6958 break;
6959
6960 /*
6961 * Don't deal with extended references because they are rare
6962 * cases and too complex to deal with (we would need to keep
6963 * track of which subitem we are processing for each item in
6964 * this loop, etc). So just return some error to fallback to
6965 * a transaction commit.
6966 */
6967 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6968 ret = -EMLINK;
6969 goto out;
6970 }
6971
6972 /*
6973 * Logging ancestors needs to do more searches on the fs/subvol
6974 * tree, so it releases the path as needed to avoid deadlocks.
6975 * Keep track of the last inode ref key and resume from that key
6976 * after logging all new ancestors for the current hard link.
6977 */
6978 memcpy(&search_key, &found_key, sizeof(search_key));
6979
6980 ret = log_new_ancestors(trans, root, path, ctx);
6981 if (ret)
6982 goto out;
6983 btrfs_release_path(path);
6984 goto again;
6985 }
6986 ret = 0;
6987out:
6988 btrfs_free_path(path);
6989 return ret;
6990}
6991
6992/*
6993 * helper function around btrfs_log_inode to make sure newly created
6994 * parent directories also end up in the log. A minimal inode and backref
6995 * only logging is done of any parent directories that are older than
6996 * the last committed transaction
6997 */
6998static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6999 struct btrfs_inode *inode,
7000 struct dentry *parent,
7001 int inode_only,
7002 struct btrfs_log_ctx *ctx)
7003{
7004 struct btrfs_root *root = inode->root;
7005 struct btrfs_fs_info *fs_info = root->fs_info;
7006 int ret = 0;
7007 bool log_dentries = false;
7008
7009 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7010 ret = BTRFS_LOG_FORCE_COMMIT;
7011 goto end_no_trans;
7012 }
7013
7014 if (btrfs_root_refs(&root->root_item) == 0) {
7015 ret = BTRFS_LOG_FORCE_COMMIT;
7016 goto end_no_trans;
7017 }
7018
7019 /*
7020 * Skip already logged inodes or inodes corresponding to tmpfiles
7021 * (since logging them is pointless, a link count of 0 means they
7022 * will never be accessible).
7023 */
7024 if ((btrfs_inode_in_log(inode, trans->transid) &&
7025 list_empty(&ctx->ordered_extents)) ||
7026 inode->vfs_inode.i_nlink == 0) {
7027 ret = BTRFS_NO_LOG_SYNC;
7028 goto end_no_trans;
7029 }
7030
7031 ret = start_log_trans(trans, root, ctx);
7032 if (ret)
7033 goto end_no_trans;
7034
7035 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7036 if (ret)
7037 goto end_trans;
7038
7039 /*
7040 * for regular files, if its inode is already on disk, we don't
7041 * have to worry about the parents at all. This is because
7042 * we can use the last_unlink_trans field to record renames
7043 * and other fun in this file.
7044 */
7045 if (S_ISREG(inode->vfs_inode.i_mode) &&
7046 inode->generation < trans->transid &&
7047 inode->last_unlink_trans < trans->transid) {
7048 ret = 0;
7049 goto end_trans;
7050 }
7051
7052 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7053 log_dentries = true;
7054
7055 /*
7056 * On unlink we must make sure all our current and old parent directory
7057 * inodes are fully logged. This is to prevent leaving dangling
7058 * directory index entries in directories that were our parents but are
7059 * not anymore. Not doing this results in old parent directory being
7060 * impossible to delete after log replay (rmdir will always fail with
7061 * error -ENOTEMPTY).
7062 *
7063 * Example 1:
7064 *
7065 * mkdir testdir
7066 * touch testdir/foo
7067 * ln testdir/foo testdir/bar
7068 * sync
7069 * unlink testdir/bar
7070 * xfs_io -c fsync testdir/foo
7071 * <power failure>
7072 * mount fs, triggers log replay
7073 *
7074 * If we don't log the parent directory (testdir), after log replay the
7075 * directory still has an entry pointing to the file inode using the bar
7076 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7077 * the file inode has a link count of 1.
7078 *
7079 * Example 2:
7080 *
7081 * mkdir testdir
7082 * touch foo
7083 * ln foo testdir/foo2
7084 * ln foo testdir/foo3
7085 * sync
7086 * unlink testdir/foo3
7087 * xfs_io -c fsync foo
7088 * <power failure>
7089 * mount fs, triggers log replay
7090 *
7091 * Similar as the first example, after log replay the parent directory
7092 * testdir still has an entry pointing to the inode file with name foo3
7093 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7094 * and has a link count of 2.
7095 */
7096 if (inode->last_unlink_trans >= trans->transid) {
7097 ret = btrfs_log_all_parents(trans, inode, ctx);
7098 if (ret)
7099 goto end_trans;
7100 }
7101
7102 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7103 if (ret)
7104 goto end_trans;
7105
7106 if (log_dentries)
7107 ret = log_new_dir_dentries(trans, inode, ctx);
7108 else
7109 ret = 0;
7110end_trans:
7111 if (ret < 0) {
7112 btrfs_set_log_full_commit(trans);
7113 ret = BTRFS_LOG_FORCE_COMMIT;
7114 }
7115
7116 if (ret)
7117 btrfs_remove_log_ctx(root, ctx);
7118 btrfs_end_log_trans(root);
7119end_no_trans:
7120 return ret;
7121}
7122
7123/*
7124 * it is not safe to log dentry if the chunk root has added new
7125 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7126 * If this returns 1, you must commit the transaction to safely get your
7127 * data on disk.
7128 */
7129int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7130 struct dentry *dentry,
7131 struct btrfs_log_ctx *ctx)
7132{
7133 struct dentry *parent = dget_parent(dentry);
7134 int ret;
7135
7136 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7137 LOG_INODE_ALL, ctx);
7138 dput(parent);
7139
7140 return ret;
7141}
7142
7143/*
7144 * should be called during mount to recover any replay any log trees
7145 * from the FS
7146 */
7147int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7148{
7149 int ret;
7150 struct btrfs_path *path;
7151 struct btrfs_trans_handle *trans;
7152 struct btrfs_key key;
7153 struct btrfs_key found_key;
7154 struct btrfs_root *log;
7155 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7156 struct walk_control wc = {
7157 .process_func = process_one_buffer,
7158 .stage = LOG_WALK_PIN_ONLY,
7159 };
7160
7161 path = btrfs_alloc_path();
7162 if (!path)
7163 return -ENOMEM;
7164
7165 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7166
7167 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7168 if (IS_ERR(trans)) {
7169 ret = PTR_ERR(trans);
7170 goto error;
7171 }
7172
7173 wc.trans = trans;
7174 wc.pin = 1;
7175
7176 ret = walk_log_tree(trans, log_root_tree, &wc);
7177 if (ret) {
7178 btrfs_abort_transaction(trans, ret);
7179 goto error;
7180 }
7181
7182again:
7183 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7184 key.offset = (u64)-1;
7185 key.type = BTRFS_ROOT_ITEM_KEY;
7186
7187 while (1) {
7188 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7189
7190 if (ret < 0) {
7191 btrfs_abort_transaction(trans, ret);
7192 goto error;
7193 }
7194 if (ret > 0) {
7195 if (path->slots[0] == 0)
7196 break;
7197 path->slots[0]--;
7198 }
7199 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7200 path->slots[0]);
7201 btrfs_release_path(path);
7202 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7203 break;
7204
7205 log = btrfs_read_tree_root(log_root_tree, &found_key);
7206 if (IS_ERR(log)) {
7207 ret = PTR_ERR(log);
7208 btrfs_abort_transaction(trans, ret);
7209 goto error;
7210 }
7211
7212 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7213 true);
7214 if (IS_ERR(wc.replay_dest)) {
7215 ret = PTR_ERR(wc.replay_dest);
7216
7217 /*
7218 * We didn't find the subvol, likely because it was
7219 * deleted. This is ok, simply skip this log and go to
7220 * the next one.
7221 *
7222 * We need to exclude the root because we can't have
7223 * other log replays overwriting this log as we'll read
7224 * it back in a few more times. This will keep our
7225 * block from being modified, and we'll just bail for
7226 * each subsequent pass.
7227 */
7228 if (ret == -ENOENT)
7229 ret = btrfs_pin_extent_for_log_replay(trans,
7230 log->node->start,
7231 log->node->len);
7232 btrfs_put_root(log);
7233
7234 if (!ret)
7235 goto next;
7236 btrfs_abort_transaction(trans, ret);
7237 goto error;
7238 }
7239
7240 wc.replay_dest->log_root = log;
7241 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7242 if (ret)
7243 /* The loop needs to continue due to the root refs */
7244 btrfs_abort_transaction(trans, ret);
7245 else
7246 ret = walk_log_tree(trans, log, &wc);
7247
7248 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7249 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7250 path);
7251 if (ret)
7252 btrfs_abort_transaction(trans, ret);
7253 }
7254
7255 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7256 struct btrfs_root *root = wc.replay_dest;
7257
7258 btrfs_release_path(path);
7259
7260 /*
7261 * We have just replayed everything, and the highest
7262 * objectid of fs roots probably has changed in case
7263 * some inode_item's got replayed.
7264 *
7265 * root->objectid_mutex is not acquired as log replay
7266 * could only happen during mount.
7267 */
7268 ret = btrfs_init_root_free_objectid(root);
7269 if (ret)
7270 btrfs_abort_transaction(trans, ret);
7271 }
7272
7273 wc.replay_dest->log_root = NULL;
7274 btrfs_put_root(wc.replay_dest);
7275 btrfs_put_root(log);
7276
7277 if (ret)
7278 goto error;
7279next:
7280 if (found_key.offset == 0)
7281 break;
7282 key.offset = found_key.offset - 1;
7283 }
7284 btrfs_release_path(path);
7285
7286 /* step one is to pin it all, step two is to replay just inodes */
7287 if (wc.pin) {
7288 wc.pin = 0;
7289 wc.process_func = replay_one_buffer;
7290 wc.stage = LOG_WALK_REPLAY_INODES;
7291 goto again;
7292 }
7293 /* step three is to replay everything */
7294 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7295 wc.stage++;
7296 goto again;
7297 }
7298
7299 btrfs_free_path(path);
7300
7301 /* step 4: commit the transaction, which also unpins the blocks */
7302 ret = btrfs_commit_transaction(trans);
7303 if (ret)
7304 return ret;
7305
7306 log_root_tree->log_root = NULL;
7307 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7308 btrfs_put_root(log_root_tree);
7309
7310 return 0;
7311error:
7312 if (wc.trans)
7313 btrfs_end_transaction(wc.trans);
7314 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7315 btrfs_free_path(path);
7316 return ret;
7317}
7318
7319/*
7320 * there are some corner cases where we want to force a full
7321 * commit instead of allowing a directory to be logged.
7322 *
7323 * They revolve around files there were unlinked from the directory, and
7324 * this function updates the parent directory so that a full commit is
7325 * properly done if it is fsync'd later after the unlinks are done.
7326 *
7327 * Must be called before the unlink operations (updates to the subvolume tree,
7328 * inodes, etc) are done.
7329 */
7330void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7331 struct btrfs_inode *dir, struct btrfs_inode *inode,
7332 int for_rename)
7333{
7334 /*
7335 * when we're logging a file, if it hasn't been renamed
7336 * or unlinked, and its inode is fully committed on disk,
7337 * we don't have to worry about walking up the directory chain
7338 * to log its parents.
7339 *
7340 * So, we use the last_unlink_trans field to put this transid
7341 * into the file. When the file is logged we check it and
7342 * don't log the parents if the file is fully on disk.
7343 */
7344 mutex_lock(&inode->log_mutex);
7345 inode->last_unlink_trans = trans->transid;
7346 mutex_unlock(&inode->log_mutex);
7347
7348 /*
7349 * if this directory was already logged any new
7350 * names for this file/dir will get recorded
7351 */
7352 if (dir->logged_trans == trans->transid)
7353 return;
7354
7355 /*
7356 * if the inode we're about to unlink was logged,
7357 * the log will be properly updated for any new names
7358 */
7359 if (inode->logged_trans == trans->transid)
7360 return;
7361
7362 /*
7363 * when renaming files across directories, if the directory
7364 * there we're unlinking from gets fsync'd later on, there's
7365 * no way to find the destination directory later and fsync it
7366 * properly. So, we have to be conservative and force commits
7367 * so the new name gets discovered.
7368 */
7369 if (for_rename)
7370 goto record;
7371
7372 /* we can safely do the unlink without any special recording */
7373 return;
7374
7375record:
7376 mutex_lock(&dir->log_mutex);
7377 dir->last_unlink_trans = trans->transid;
7378 mutex_unlock(&dir->log_mutex);
7379}
7380
7381/*
7382 * Make sure that if someone attempts to fsync the parent directory of a deleted
7383 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7384 * that after replaying the log tree of the parent directory's root we will not
7385 * see the snapshot anymore and at log replay time we will not see any log tree
7386 * corresponding to the deleted snapshot's root, which could lead to replaying
7387 * it after replaying the log tree of the parent directory (which would replay
7388 * the snapshot delete operation).
7389 *
7390 * Must be called before the actual snapshot destroy operation (updates to the
7391 * parent root and tree of tree roots trees, etc) are done.
7392 */
7393void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7394 struct btrfs_inode *dir)
7395{
7396 mutex_lock(&dir->log_mutex);
7397 dir->last_unlink_trans = trans->transid;
7398 mutex_unlock(&dir->log_mutex);
7399}
7400
7401/*
7402 * Update the log after adding a new name for an inode.
7403 *
7404 * @trans: Transaction handle.
7405 * @old_dentry: The dentry associated with the old name and the old
7406 * parent directory.
7407 * @old_dir: The inode of the previous parent directory for the case
7408 * of a rename. For a link operation, it must be NULL.
7409 * @old_dir_index: The index number associated with the old name, meaningful
7410 * only for rename operations (when @old_dir is not NULL).
7411 * Ignored for link operations.
7412 * @parent: The dentry associated with the directory under which the
7413 * new name is located.
7414 *
7415 * Call this after adding a new name for an inode, as a result of a link or
7416 * rename operation, and it will properly update the log to reflect the new name.
7417 */
7418void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7419 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7420 u64 old_dir_index, struct dentry *parent)
7421{
7422 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7423 struct btrfs_root *root = inode->root;
7424 struct btrfs_log_ctx ctx;
7425 bool log_pinned = false;
7426 int ret;
7427
7428 /*
7429 * this will force the logging code to walk the dentry chain
7430 * up for the file
7431 */
7432 if (!S_ISDIR(inode->vfs_inode.i_mode))
7433 inode->last_unlink_trans = trans->transid;
7434
7435 /*
7436 * if this inode hasn't been logged and directory we're renaming it
7437 * from hasn't been logged, we don't need to log it
7438 */
7439 ret = inode_logged(trans, inode, NULL);
7440 if (ret < 0) {
7441 goto out;
7442 } else if (ret == 0) {
7443 if (!old_dir)
7444 return;
7445 /*
7446 * If the inode was not logged and we are doing a rename (old_dir is not
7447 * NULL), check if old_dir was logged - if it was not we can return and
7448 * do nothing.
7449 */
7450 ret = inode_logged(trans, old_dir, NULL);
7451 if (ret < 0)
7452 goto out;
7453 else if (ret == 0)
7454 return;
7455 }
7456 ret = 0;
7457
7458 /*
7459 * If we are doing a rename (old_dir is not NULL) from a directory that
7460 * was previously logged, make sure that on log replay we get the old
7461 * dir entry deleted. This is needed because we will also log the new
7462 * name of the renamed inode, so we need to make sure that after log
7463 * replay we don't end up with both the new and old dir entries existing.
7464 */
7465 if (old_dir && old_dir->logged_trans == trans->transid) {
7466 struct btrfs_root *log = old_dir->root->log_root;
7467 struct btrfs_path *path;
7468 struct fscrypt_name fname;
7469
7470 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7471
7472 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7473 &old_dentry->d_name, 0, &fname);
7474 if (ret)
7475 goto out;
7476 /*
7477 * We have two inodes to update in the log, the old directory and
7478 * the inode that got renamed, so we must pin the log to prevent
7479 * anyone from syncing the log until we have updated both inodes
7480 * in the log.
7481 */
7482 ret = join_running_log_trans(root);
7483 /*
7484 * At least one of the inodes was logged before, so this should
7485 * not fail, but if it does, it's not serious, just bail out and
7486 * mark the log for a full commit.
7487 */
7488 if (WARN_ON_ONCE(ret < 0)) {
7489 fscrypt_free_filename(&fname);
7490 goto out;
7491 }
7492
7493 log_pinned = true;
7494
7495 path = btrfs_alloc_path();
7496 if (!path) {
7497 ret = -ENOMEM;
7498 fscrypt_free_filename(&fname);
7499 goto out;
7500 }
7501
7502 /*
7503 * Other concurrent task might be logging the old directory,
7504 * as it can be triggered when logging other inode that had or
7505 * still has a dentry in the old directory. We lock the old
7506 * directory's log_mutex to ensure the deletion of the old
7507 * name is persisted, because during directory logging we
7508 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7509 * the old name's dir index item is in the delayed items, so
7510 * it could be missed by an in progress directory logging.
7511 */
7512 mutex_lock(&old_dir->log_mutex);
7513 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7514 &fname.disk_name, old_dir_index);
7515 if (ret > 0) {
7516 /*
7517 * The dentry does not exist in the log, so record its
7518 * deletion.
7519 */
7520 btrfs_release_path(path);
7521 ret = insert_dir_log_key(trans, log, path,
7522 btrfs_ino(old_dir),
7523 old_dir_index, old_dir_index);
7524 }
7525 mutex_unlock(&old_dir->log_mutex);
7526
7527 btrfs_free_path(path);
7528 fscrypt_free_filename(&fname);
7529 if (ret < 0)
7530 goto out;
7531 }
7532
7533 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7534 ctx.logging_new_name = true;
7535 /*
7536 * We don't care about the return value. If we fail to log the new name
7537 * then we know the next attempt to sync the log will fallback to a full
7538 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7539 * we don't need to worry about getting a log committed that has an
7540 * inconsistent state after a rename operation.
7541 */
7542 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7543 ASSERT(list_empty(&ctx.conflict_inodes));
7544out:
7545 /*
7546 * If an error happened mark the log for a full commit because it's not
7547 * consistent and up to date or we couldn't find out if one of the
7548 * inodes was logged before in this transaction. Do it before unpinning
7549 * the log, to avoid any races with someone else trying to commit it.
7550 */
7551 if (ret < 0)
7552 btrfs_set_log_full_commit(trans);
7553 if (log_pinned)
7554 btrfs_end_log_trans(root);
7555}
7556
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "block-group.h"
21#include "space-info.h"
22#include "zoned.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 struct btrfs_log_ctx *ctx);
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108static void wait_log_commit(struct btrfs_root *root, int transid);
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
141{
142 struct btrfs_fs_info *fs_info = root->fs_info;
143 struct btrfs_root *tree_root = fs_info->tree_root;
144 const bool zoned = btrfs_is_zoned(fs_info);
145 int ret = 0;
146 bool created = false;
147
148 /*
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
151 */
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 if (!ret) {
157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 created = true;
159 }
160 }
161 mutex_unlock(&tree_root->log_mutex);
162 if (ret)
163 return ret;
164 }
165
166 mutex_lock(&root->log_mutex);
167
168again:
169 if (root->log_root) {
170 int index = (root->log_transid + 1) % 2;
171
172 if (btrfs_need_log_full_commit(trans)) {
173 ret = -EAGAIN;
174 goto out;
175 }
176
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
179 goto again;
180 }
181
182 if (!root->log_start_pid) {
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 } else if (root->log_start_pid != current->pid) {
186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 }
188 } else {
189 /*
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
193 * writing.
194 */
195 if (zoned && !created) {
196 ret = -EAGAIN;
197 goto out;
198 }
199
200 ret = btrfs_add_log_tree(trans, root);
201 if (ret)
202 goto out;
203
204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
207 }
208
209 atomic_inc(&root->log_writers);
210 if (ctx && !ctx->logging_new_name) {
211 int index = root->log_transid % 2;
212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 ctx->log_transid = root->log_transid;
214 }
215
216out:
217 mutex_unlock(&root->log_mutex);
218 return ret;
219}
220
221/*
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
224 * in progress
225 */
226static int join_running_log_trans(struct btrfs_root *root)
227{
228 const bool zoned = btrfs_is_zoned(root->fs_info);
229 int ret = -ENOENT;
230
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 return ret;
233
234 mutex_lock(&root->log_mutex);
235again:
236 if (root->log_root) {
237 int index = (root->log_transid + 1) % 2;
238
239 ret = 0;
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
242 goto again;
243 }
244 atomic_inc(&root->log_writers);
245 }
246 mutex_unlock(&root->log_mutex);
247 return ret;
248}
249
250/*
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
254 */
255void btrfs_pin_log_trans(struct btrfs_root *root)
256{
257 atomic_inc(&root->log_writers);
258}
259
260/*
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
263 */
264void btrfs_end_log_trans(struct btrfs_root *root)
265{
266 if (atomic_dec_and_test(&root->log_writers)) {
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
269 }
270}
271
272static int btrfs_write_tree_block(struct extent_buffer *buf)
273{
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
276}
277
278static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279{
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
282}
283
284/*
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
289 */
290struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
293 */
294 int free;
295
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
298 */
299 int write;
300
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
303 */
304 int wait;
305
306 /* pin only walk, we record which extents on disk belong to the
307 * log trees
308 */
309 int pin;
310
311 /* what stage of the replay code we're currently in */
312 int stage;
313
314 /*
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
318 */
319 bool ignore_cur_inode;
320
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
323
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
326
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
330 * inside it
331 */
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 struct walk_control *wc, u64 gen, int level);
334};
335
336/*
337 * process_func used to pin down extents, write them or wait on them
338 */
339static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
341 struct walk_control *wc, u64 gen, int level)
342{
343 struct btrfs_fs_info *fs_info = log->fs_info;
344 int ret = 0;
345
346 /*
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
349 */
350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 ret = btrfs_read_buffer(eb, gen, level, NULL);
352 if (ret)
353 return ret;
354 }
355
356 if (wc->pin)
357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 eb->len);
359
360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 if (wc->pin && btrfs_header_level(eb) == 0)
362 ret = btrfs_exclude_logged_extents(eb);
363 if (wc->write)
364 btrfs_write_tree_block(eb);
365 if (wc->wait)
366 btrfs_wait_tree_block_writeback(eb);
367 }
368 return ret;
369}
370
371/*
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
374 *
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
378 *
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
382 *
383 * If the key isn't in the destination yet, a new item is inserted.
384 */
385static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
390{
391 int ret;
392 u32 item_size;
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 overwrite_root = 1;
402
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
405
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 if (ret < 0)
409 return ret;
410
411 if (ret == 0) {
412 char *src_copy;
413 char *dst_copy;
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 path->slots[0]);
416 if (dst_size != item_size)
417 goto insert;
418
419 if (item_size == 0) {
420 btrfs_release_path(path);
421 return 0;
422 }
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
425 if (!dst_copy || !src_copy) {
426 btrfs_release_path(path);
427 kfree(dst_copy);
428 kfree(src_copy);
429 return -ENOMEM;
430 }
431
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
433
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 item_size);
437 ret = memcmp(dst_copy, src_copy, item_size);
438
439 kfree(dst_copy);
440 kfree(src_copy);
441 /*
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
445 * sync
446 */
447 if (ret == 0) {
448 btrfs_release_path(path);
449 return 0;
450 }
451
452 /*
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
455 */
456 if (inode_item) {
457 struct btrfs_inode_item *item;
458 u64 nbytes;
459 u32 mode;
460
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
467
468 /*
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
472 */
473 mode = btrfs_inode_mode(eb, item);
474 if (S_ISDIR(mode))
475 btrfs_set_inode_size(eb, item, 0);
476 }
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
479 u32 mode;
480
481 /*
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
484 */
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
487
488 /*
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
492 */
493 mode = btrfs_inode_mode(eb, item);
494 if (S_ISDIR(mode))
495 btrfs_set_inode_size(eb, item, 0);
496 }
497insert:
498 btrfs_release_path(path);
499 /* try to insert the key into the destination tree */
500 path->skip_release_on_error = 1;
501 ret = btrfs_insert_empty_item(trans, root, path,
502 key, item_size);
503 path->skip_release_on_error = 0;
504
505 /* make sure any existing item is the correct size */
506 if (ret == -EEXIST || ret == -EOVERFLOW) {
507 u32 found_size;
508 found_size = btrfs_item_size_nr(path->nodes[0],
509 path->slots[0]);
510 if (found_size > item_size)
511 btrfs_truncate_item(path, item_size, 1);
512 else if (found_size < item_size)
513 btrfs_extend_item(path, item_size - found_size);
514 } else if (ret) {
515 return ret;
516 }
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 path->slots[0]);
519
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
523 *
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
527 * as it goes
528 */
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
532
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
538 const u64 ino_size = btrfs_inode_size(eb, src_item);
539
540 /*
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
546 */
547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 ino_size != 0)
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 goto no_copy;
552 }
553
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 save_old_i_size = 1;
558 saved_i_size = btrfs_inode_size(path->nodes[0],
559 dst_item);
560 }
561 }
562
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 src_ptr, item_size);
565
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 }
571
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
578 trans->transid);
579 }
580 }
581no_copy:
582 btrfs_mark_buffer_dirty(path->nodes[0]);
583 btrfs_release_path(path);
584 return 0;
585}
586
587/*
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
590 */
591static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 u64 objectid)
593{
594 struct inode *inode;
595
596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 if (IS_ERR(inode))
598 inode = NULL;
599 return inode;
600}
601
602/* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
604 * on exit.
605 *
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
610 *
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
613 */
614static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
619{
620 struct btrfs_drop_extents_args drop_args = { 0 };
621 struct btrfs_fs_info *fs_info = root->fs_info;
622 int found_type;
623 u64 extent_end;
624 u64 start = key->offset;
625 u64 nbytes = 0;
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
628 unsigned long size;
629 int ret = 0;
630
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
633
634 if (found_type == BTRFS_FILE_EXTENT_REG ||
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
638
639 /*
640 * We don't add to the inodes nbytes if we are prealloc or a
641 * hole.
642 */
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 nbytes = 0;
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 size = btrfs_file_extent_ram_bytes(eb, item);
647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 extent_end = ALIGN(start + size,
649 fs_info->sectorsize);
650 } else {
651 ret = 0;
652 goto out;
653 }
654
655 inode = read_one_inode(root, key->objectid);
656 if (!inode) {
657 ret = -EIO;
658 goto out;
659 }
660
661 /*
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
665 */
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
668
669 if (ret == 0 &&
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
676
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
680
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 sizeof(cmp1));
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 sizeof(cmp2));
685
686 /*
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
689 */
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 btrfs_release_path(path);
692 goto out;
693 }
694 }
695 btrfs_release_path(path);
696
697 /* drop any overlapping extents */
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 if (ret)
703 goto out;
704
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 u64 offset;
708 unsigned long dest_offset;
709 struct btrfs_key ins;
710
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
713 goto update_inode;
714
715 ret = btrfs_insert_empty_item(trans, root, path, key,
716 sizeof(*item));
717 if (ret)
718 goto out;
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 path->slots[0]);
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
723
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
727 offset = key->offset - btrfs_file_extent_offset(eb, item);
728
729 /*
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 */
737 ret = btrfs_qgroup_trace_extent(trans,
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
740 GFP_NOFS);
741 if (ret < 0)
742 goto out;
743
744 if (ins.objectid > 0) {
745 struct btrfs_ref ref = { 0 };
746 u64 csum_start;
747 u64 csum_end;
748 LIST_HEAD(ordered_sums);
749
750 /*
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
753 */
754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 ins.offset);
756 if (ret < 0) {
757 goto out;
758 } else if (ret == 0) {
759 btrfs_init_generic_ref(&ref,
760 BTRFS_ADD_DELAYED_REF,
761 ins.objectid, ins.offset, 0);
762 btrfs_init_data_ref(&ref,
763 root->root_key.objectid,
764 key->objectid, offset);
765 ret = btrfs_inc_extent_ref(trans, &ref);
766 if (ret)
767 goto out;
768 } else {
769 /*
770 * insert the extent pointer in the extent
771 * allocation tree
772 */
773 ret = btrfs_alloc_logged_file_extent(trans,
774 root->root_key.objectid,
775 key->objectid, offset, &ins);
776 if (ret)
777 goto out;
778 }
779 btrfs_release_path(path);
780
781 if (btrfs_file_extent_compression(eb, item)) {
782 csum_start = ins.objectid;
783 csum_end = csum_start + ins.offset;
784 } else {
785 csum_start = ins.objectid +
786 btrfs_file_extent_offset(eb, item);
787 csum_end = csum_start +
788 btrfs_file_extent_num_bytes(eb, item);
789 }
790
791 ret = btrfs_lookup_csums_range(root->log_root,
792 csum_start, csum_end - 1,
793 &ordered_sums, 0);
794 if (ret)
795 goto out;
796 /*
797 * Now delete all existing cums in the csum root that
798 * cover our range. We do this because we can have an
799 * extent that is completely referenced by one file
800 * extent item and partially referenced by another
801 * file extent item (like after using the clone or
802 * extent_same ioctls). In this case if we end up doing
803 * the replay of the one that partially references the
804 * extent first, and we do not do the csum deletion
805 * below, we can get 2 csum items in the csum tree that
806 * overlap each other. For example, imagine our log has
807 * the two following file extent items:
808 *
809 * key (257 EXTENT_DATA 409600)
810 * extent data disk byte 12845056 nr 102400
811 * extent data offset 20480 nr 20480 ram 102400
812 *
813 * key (257 EXTENT_DATA 819200)
814 * extent data disk byte 12845056 nr 102400
815 * extent data offset 0 nr 102400 ram 102400
816 *
817 * Where the second one fully references the 100K extent
818 * that starts at disk byte 12845056, and the log tree
819 * has a single csum item that covers the entire range
820 * of the extent:
821 *
822 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
823 *
824 * After the first file extent item is replayed, the
825 * csum tree gets the following csum item:
826 *
827 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
828 *
829 * Which covers the 20K sub-range starting at offset 20K
830 * of our extent. Now when we replay the second file
831 * extent item, if we do not delete existing csum items
832 * that cover any of its blocks, we end up getting two
833 * csum items in our csum tree that overlap each other:
834 *
835 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 *
838 * Which is a problem, because after this anyone trying
839 * to lookup up for the checksum of any block of our
840 * extent starting at an offset of 40K or higher, will
841 * end up looking at the second csum item only, which
842 * does not contain the checksum for any block starting
843 * at offset 40K or higher of our extent.
844 */
845 while (!list_empty(&ordered_sums)) {
846 struct btrfs_ordered_sum *sums;
847 sums = list_entry(ordered_sums.next,
848 struct btrfs_ordered_sum,
849 list);
850 if (!ret)
851 ret = btrfs_del_csums(trans,
852 fs_info->csum_root,
853 sums->bytenr,
854 sums->len);
855 if (!ret)
856 ret = btrfs_csum_file_blocks(trans,
857 fs_info->csum_root, sums);
858 list_del(&sums->list);
859 kfree(sums);
860 }
861 if (ret)
862 goto out;
863 } else {
864 btrfs_release_path(path);
865 }
866 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 /* inline extents are easy, we just overwrite them */
868 ret = overwrite_item(trans, root, path, eb, slot, key);
869 if (ret)
870 goto out;
871 }
872
873 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
874 extent_end - start);
875 if (ret)
876 goto out;
877
878update_inode:
879 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
881out:
882 if (inode)
883 iput(inode);
884 return ret;
885}
886
887/*
888 * when cleaning up conflicts between the directory names in the
889 * subvolume, directory names in the log and directory names in the
890 * inode back references, we may have to unlink inodes from directories.
891 *
892 * This is a helper function to do the unlink of a specific directory
893 * item
894 */
895static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct btrfs_path *path,
898 struct btrfs_inode *dir,
899 struct btrfs_dir_item *di)
900{
901 struct inode *inode;
902 char *name;
903 int name_len;
904 struct extent_buffer *leaf;
905 struct btrfs_key location;
906 int ret;
907
908 leaf = path->nodes[0];
909
910 btrfs_dir_item_key_to_cpu(leaf, di, &location);
911 name_len = btrfs_dir_name_len(leaf, di);
912 name = kmalloc(name_len, GFP_NOFS);
913 if (!name)
914 return -ENOMEM;
915
916 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
917 btrfs_release_path(path);
918
919 inode = read_one_inode(root, location.objectid);
920 if (!inode) {
921 ret = -EIO;
922 goto out;
923 }
924
925 ret = link_to_fixup_dir(trans, root, path, location.objectid);
926 if (ret)
927 goto out;
928
929 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
930 name_len);
931 if (ret)
932 goto out;
933 else
934 ret = btrfs_run_delayed_items(trans);
935out:
936 kfree(name);
937 iput(inode);
938 return ret;
939}
940
941/*
942 * See if a given name and sequence number found in an inode back reference are
943 * already in a directory and correctly point to this inode.
944 *
945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
946 * exists.
947 */
948static noinline int inode_in_dir(struct btrfs_root *root,
949 struct btrfs_path *path,
950 u64 dirid, u64 objectid, u64 index,
951 const char *name, int name_len)
952{
953 struct btrfs_dir_item *di;
954 struct btrfs_key location;
955 int ret = 0;
956
957 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
958 index, name, name_len, 0);
959 if (IS_ERR(di)) {
960 if (PTR_ERR(di) != -ENOENT)
961 ret = PTR_ERR(di);
962 goto out;
963 } else if (di) {
964 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
965 if (location.objectid != objectid)
966 goto out;
967 } else {
968 goto out;
969 }
970
971 btrfs_release_path(path);
972 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
973 if (IS_ERR(di)) {
974 ret = PTR_ERR(di);
975 goto out;
976 } else if (di) {
977 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
978 if (location.objectid == objectid)
979 ret = 1;
980 }
981out:
982 btrfs_release_path(path);
983 return ret;
984}
985
986/*
987 * helper function to check a log tree for a named back reference in
988 * an inode. This is used to decide if a back reference that is
989 * found in the subvolume conflicts with what we find in the log.
990 *
991 * inode backreferences may have multiple refs in a single item,
992 * during replay we process one reference at a time, and we don't
993 * want to delete valid links to a file from the subvolume if that
994 * link is also in the log.
995 */
996static noinline int backref_in_log(struct btrfs_root *log,
997 struct btrfs_key *key,
998 u64 ref_objectid,
999 const char *name, int namelen)
1000{
1001 struct btrfs_path *path;
1002 int ret;
1003
1004 path = btrfs_alloc_path();
1005 if (!path)
1006 return -ENOMEM;
1007
1008 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1009 if (ret < 0) {
1010 goto out;
1011 } else if (ret == 1) {
1012 ret = 0;
1013 goto out;
1014 }
1015
1016 if (key->type == BTRFS_INODE_EXTREF_KEY)
1017 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1018 path->slots[0],
1019 ref_objectid,
1020 name, namelen);
1021 else
1022 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1023 path->slots[0],
1024 name, namelen);
1025out:
1026 btrfs_free_path(path);
1027 return ret;
1028}
1029
1030static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 struct btrfs_root *log_root,
1034 struct btrfs_inode *dir,
1035 struct btrfs_inode *inode,
1036 u64 inode_objectid, u64 parent_objectid,
1037 u64 ref_index, char *name, int namelen,
1038 int *search_done)
1039{
1040 int ret;
1041 char *victim_name;
1042 int victim_name_len;
1043 struct extent_buffer *leaf;
1044 struct btrfs_dir_item *di;
1045 struct btrfs_key search_key;
1046 struct btrfs_inode_extref *extref;
1047
1048again:
1049 /* Search old style refs */
1050 search_key.objectid = inode_objectid;
1051 search_key.type = BTRFS_INODE_REF_KEY;
1052 search_key.offset = parent_objectid;
1053 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1054 if (ret == 0) {
1055 struct btrfs_inode_ref *victim_ref;
1056 unsigned long ptr;
1057 unsigned long ptr_end;
1058
1059 leaf = path->nodes[0];
1060
1061 /* are we trying to overwrite a back ref for the root directory
1062 * if so, just jump out, we're done
1063 */
1064 if (search_key.objectid == search_key.offset)
1065 return 1;
1066
1067 /* check all the names in this back reference to see
1068 * if they are in the log. if so, we allow them to stay
1069 * otherwise they must be unlinked as a conflict
1070 */
1071 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1072 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1073 while (ptr < ptr_end) {
1074 victim_ref = (struct btrfs_inode_ref *)ptr;
1075 victim_name_len = btrfs_inode_ref_name_len(leaf,
1076 victim_ref);
1077 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1078 if (!victim_name)
1079 return -ENOMEM;
1080
1081 read_extent_buffer(leaf, victim_name,
1082 (unsigned long)(victim_ref + 1),
1083 victim_name_len);
1084
1085 ret = backref_in_log(log_root, &search_key,
1086 parent_objectid, victim_name,
1087 victim_name_len);
1088 if (ret < 0) {
1089 kfree(victim_name);
1090 return ret;
1091 } else if (!ret) {
1092 inc_nlink(&inode->vfs_inode);
1093 btrfs_release_path(path);
1094
1095 ret = btrfs_unlink_inode(trans, root, dir, inode,
1096 victim_name, victim_name_len);
1097 kfree(victim_name);
1098 if (ret)
1099 return ret;
1100 ret = btrfs_run_delayed_items(trans);
1101 if (ret)
1102 return ret;
1103 *search_done = 1;
1104 goto again;
1105 }
1106 kfree(victim_name);
1107
1108 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1109 }
1110
1111 /*
1112 * NOTE: we have searched root tree and checked the
1113 * corresponding ref, it does not need to check again.
1114 */
1115 *search_done = 1;
1116 }
1117 btrfs_release_path(path);
1118
1119 /* Same search but for extended refs */
1120 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1121 inode_objectid, parent_objectid, 0,
1122 0);
1123 if (!IS_ERR_OR_NULL(extref)) {
1124 u32 item_size;
1125 u32 cur_offset = 0;
1126 unsigned long base;
1127 struct inode *victim_parent;
1128
1129 leaf = path->nodes[0];
1130
1131 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1132 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1133
1134 while (cur_offset < item_size) {
1135 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1136
1137 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1138
1139 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1140 goto next;
1141
1142 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1143 if (!victim_name)
1144 return -ENOMEM;
1145 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1146 victim_name_len);
1147
1148 search_key.objectid = inode_objectid;
1149 search_key.type = BTRFS_INODE_EXTREF_KEY;
1150 search_key.offset = btrfs_extref_hash(parent_objectid,
1151 victim_name,
1152 victim_name_len);
1153 ret = backref_in_log(log_root, &search_key,
1154 parent_objectid, victim_name,
1155 victim_name_len);
1156 if (ret < 0) {
1157 return ret;
1158 } else if (!ret) {
1159 ret = -ENOENT;
1160 victim_parent = read_one_inode(root,
1161 parent_objectid);
1162 if (victim_parent) {
1163 inc_nlink(&inode->vfs_inode);
1164 btrfs_release_path(path);
1165
1166 ret = btrfs_unlink_inode(trans, root,
1167 BTRFS_I(victim_parent),
1168 inode,
1169 victim_name,
1170 victim_name_len);
1171 if (!ret)
1172 ret = btrfs_run_delayed_items(
1173 trans);
1174 }
1175 iput(victim_parent);
1176 kfree(victim_name);
1177 if (ret)
1178 return ret;
1179 *search_done = 1;
1180 goto again;
1181 }
1182 kfree(victim_name);
1183next:
1184 cur_offset += victim_name_len + sizeof(*extref);
1185 }
1186 *search_done = 1;
1187 }
1188 btrfs_release_path(path);
1189
1190 /* look for a conflicting sequence number */
1191 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1192 ref_index, name, namelen, 0);
1193 if (IS_ERR(di)) {
1194 if (PTR_ERR(di) != -ENOENT)
1195 return PTR_ERR(di);
1196 } else if (di) {
1197 ret = drop_one_dir_item(trans, root, path, dir, di);
1198 if (ret)
1199 return ret;
1200 }
1201 btrfs_release_path(path);
1202
1203 /* look for a conflicting name */
1204 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1205 name, namelen, 0);
1206 if (IS_ERR(di)) {
1207 return PTR_ERR(di);
1208 } else if (di) {
1209 ret = drop_one_dir_item(trans, root, path, dir, di);
1210 if (ret)
1211 return ret;
1212 }
1213 btrfs_release_path(path);
1214
1215 return 0;
1216}
1217
1218static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1219 u32 *namelen, char **name, u64 *index,
1220 u64 *parent_objectid)
1221{
1222 struct btrfs_inode_extref *extref;
1223
1224 extref = (struct btrfs_inode_extref *)ref_ptr;
1225
1226 *namelen = btrfs_inode_extref_name_len(eb, extref);
1227 *name = kmalloc(*namelen, GFP_NOFS);
1228 if (*name == NULL)
1229 return -ENOMEM;
1230
1231 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1232 *namelen);
1233
1234 if (index)
1235 *index = btrfs_inode_extref_index(eb, extref);
1236 if (parent_objectid)
1237 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1238
1239 return 0;
1240}
1241
1242static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 u32 *namelen, char **name, u64 *index)
1244{
1245 struct btrfs_inode_ref *ref;
1246
1247 ref = (struct btrfs_inode_ref *)ref_ptr;
1248
1249 *namelen = btrfs_inode_ref_name_len(eb, ref);
1250 *name = kmalloc(*namelen, GFP_NOFS);
1251 if (*name == NULL)
1252 return -ENOMEM;
1253
1254 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1255
1256 if (index)
1257 *index = btrfs_inode_ref_index(eb, ref);
1258
1259 return 0;
1260}
1261
1262/*
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1268 */
1269static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1274 int log_slot,
1275 struct btrfs_key *key)
1276{
1277 int ret;
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1281
1282again:
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 if (ret > 0) {
1286 ret = 0;
1287 goto out;
1288 }
1289 if (ret < 0)
1290 goto out;
1291
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1295 while (ref_ptr < ref_end) {
1296 char *name = NULL;
1297 int namelen;
1298 u64 parent_id;
1299
1300 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1301 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1302 NULL, &parent_id);
1303 } else {
1304 parent_id = key->offset;
1305 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1306 NULL);
1307 }
1308 if (ret)
1309 goto out;
1310
1311 if (key->type == BTRFS_INODE_EXTREF_KEY)
1312 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313 parent_id, name,
1314 namelen);
1315 else
1316 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1317 name, namelen);
1318
1319 if (!ret) {
1320 struct inode *dir;
1321
1322 btrfs_release_path(path);
1323 dir = read_one_inode(root, parent_id);
1324 if (!dir) {
1325 ret = -ENOENT;
1326 kfree(name);
1327 goto out;
1328 }
1329 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1330 inode, name, namelen);
1331 kfree(name);
1332 iput(dir);
1333 if (ret)
1334 goto out;
1335 goto again;
1336 }
1337
1338 kfree(name);
1339 ref_ptr += namelen;
1340 if (key->type == BTRFS_INODE_EXTREF_KEY)
1341 ref_ptr += sizeof(struct btrfs_inode_extref);
1342 else
1343 ref_ptr += sizeof(struct btrfs_inode_ref);
1344 }
1345 ret = 0;
1346 out:
1347 btrfs_release_path(path);
1348 return ret;
1349}
1350
1351static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1352 const u8 ref_type, const char *name,
1353 const int namelen)
1354{
1355 struct btrfs_key key;
1356 struct btrfs_path *path;
1357 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1358 int ret;
1359
1360 path = btrfs_alloc_path();
1361 if (!path)
1362 return -ENOMEM;
1363
1364 key.objectid = btrfs_ino(BTRFS_I(inode));
1365 key.type = ref_type;
1366 if (key.type == BTRFS_INODE_REF_KEY)
1367 key.offset = parent_id;
1368 else
1369 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1370
1371 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1372 if (ret < 0)
1373 goto out;
1374 if (ret > 0) {
1375 ret = 0;
1376 goto out;
1377 }
1378 if (key.type == BTRFS_INODE_EXTREF_KEY)
1379 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1380 path->slots[0], parent_id, name, namelen);
1381 else
1382 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1383 name, namelen);
1384
1385out:
1386 btrfs_free_path(path);
1387 return ret;
1388}
1389
1390static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1391 struct inode *dir, struct inode *inode, const char *name,
1392 int namelen, u64 ref_index)
1393{
1394 struct btrfs_dir_item *dir_item;
1395 struct btrfs_key key;
1396 struct btrfs_path *path;
1397 struct inode *other_inode = NULL;
1398 int ret;
1399
1400 path = btrfs_alloc_path();
1401 if (!path)
1402 return -ENOMEM;
1403
1404 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1405 btrfs_ino(BTRFS_I(dir)),
1406 name, namelen, 0);
1407 if (!dir_item) {
1408 btrfs_release_path(path);
1409 goto add_link;
1410 } else if (IS_ERR(dir_item)) {
1411 ret = PTR_ERR(dir_item);
1412 goto out;
1413 }
1414
1415 /*
1416 * Our inode's dentry collides with the dentry of another inode which is
1417 * in the log but not yet processed since it has a higher inode number.
1418 * So delete that other dentry.
1419 */
1420 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1421 btrfs_release_path(path);
1422 other_inode = read_one_inode(root, key.objectid);
1423 if (!other_inode) {
1424 ret = -ENOENT;
1425 goto out;
1426 }
1427 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1428 name, namelen);
1429 if (ret)
1430 goto out;
1431 /*
1432 * If we dropped the link count to 0, bump it so that later the iput()
1433 * on the inode will not free it. We will fixup the link count later.
1434 */
1435 if (other_inode->i_nlink == 0)
1436 inc_nlink(other_inode);
1437
1438 ret = btrfs_run_delayed_items(trans);
1439 if (ret)
1440 goto out;
1441add_link:
1442 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1443 name, namelen, 0, ref_index);
1444out:
1445 iput(other_inode);
1446 btrfs_free_path(path);
1447
1448 return ret;
1449}
1450
1451/*
1452 * replay one inode back reference item found in the log tree.
1453 * eb, slot and key refer to the buffer and key found in the log tree.
1454 * root is the destination we are replaying into, and path is for temp
1455 * use by this function. (it should be released on return).
1456 */
1457static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_root *log,
1460 struct btrfs_path *path,
1461 struct extent_buffer *eb, int slot,
1462 struct btrfs_key *key)
1463{
1464 struct inode *dir = NULL;
1465 struct inode *inode = NULL;
1466 unsigned long ref_ptr;
1467 unsigned long ref_end;
1468 char *name = NULL;
1469 int namelen;
1470 int ret;
1471 int search_done = 0;
1472 int log_ref_ver = 0;
1473 u64 parent_objectid;
1474 u64 inode_objectid;
1475 u64 ref_index = 0;
1476 int ref_struct_size;
1477
1478 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1479 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1480
1481 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1482 struct btrfs_inode_extref *r;
1483
1484 ref_struct_size = sizeof(struct btrfs_inode_extref);
1485 log_ref_ver = 1;
1486 r = (struct btrfs_inode_extref *)ref_ptr;
1487 parent_objectid = btrfs_inode_extref_parent(eb, r);
1488 } else {
1489 ref_struct_size = sizeof(struct btrfs_inode_ref);
1490 parent_objectid = key->offset;
1491 }
1492 inode_objectid = key->objectid;
1493
1494 /*
1495 * it is possible that we didn't log all the parent directories
1496 * for a given inode. If we don't find the dir, just don't
1497 * copy the back ref in. The link count fixup code will take
1498 * care of the rest
1499 */
1500 dir = read_one_inode(root, parent_objectid);
1501 if (!dir) {
1502 ret = -ENOENT;
1503 goto out;
1504 }
1505
1506 inode = read_one_inode(root, inode_objectid);
1507 if (!inode) {
1508 ret = -EIO;
1509 goto out;
1510 }
1511
1512 while (ref_ptr < ref_end) {
1513 if (log_ref_ver) {
1514 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1515 &ref_index, &parent_objectid);
1516 /*
1517 * parent object can change from one array
1518 * item to another.
1519 */
1520 if (!dir)
1521 dir = read_one_inode(root, parent_objectid);
1522 if (!dir) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526 } else {
1527 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1528 &ref_index);
1529 }
1530 if (ret)
1531 goto out;
1532
1533 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1534 btrfs_ino(BTRFS_I(inode)), ref_index,
1535 name, namelen);
1536 if (ret < 0) {
1537 goto out;
1538 } else if (ret == 0) {
1539 /*
1540 * look for a conflicting back reference in the
1541 * metadata. if we find one we have to unlink that name
1542 * of the file before we add our new link. Later on, we
1543 * overwrite any existing back reference, and we don't
1544 * want to create dangling pointers in the directory.
1545 */
1546
1547 if (!search_done) {
1548 ret = __add_inode_ref(trans, root, path, log,
1549 BTRFS_I(dir),
1550 BTRFS_I(inode),
1551 inode_objectid,
1552 parent_objectid,
1553 ref_index, name, namelen,
1554 &search_done);
1555 if (ret) {
1556 if (ret == 1)
1557 ret = 0;
1558 goto out;
1559 }
1560 }
1561
1562 /*
1563 * If a reference item already exists for this inode
1564 * with the same parent and name, but different index,
1565 * drop it and the corresponding directory index entries
1566 * from the parent before adding the new reference item
1567 * and dir index entries, otherwise we would fail with
1568 * -EEXIST returned from btrfs_add_link() below.
1569 */
1570 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1571 name, namelen);
1572 if (ret > 0) {
1573 ret = btrfs_unlink_inode(trans, root,
1574 BTRFS_I(dir),
1575 BTRFS_I(inode),
1576 name, namelen);
1577 /*
1578 * If we dropped the link count to 0, bump it so
1579 * that later the iput() on the inode will not
1580 * free it. We will fixup the link count later.
1581 */
1582 if (!ret && inode->i_nlink == 0)
1583 inc_nlink(inode);
1584 }
1585 if (ret < 0)
1586 goto out;
1587
1588 /* insert our name */
1589 ret = add_link(trans, root, dir, inode, name, namelen,
1590 ref_index);
1591 if (ret)
1592 goto out;
1593
1594 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1595 if (ret)
1596 goto out;
1597 }
1598 /* Else, ret == 1, we already have a perfect match, we're done. */
1599
1600 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1601 kfree(name);
1602 name = NULL;
1603 if (log_ref_ver) {
1604 iput(dir);
1605 dir = NULL;
1606 }
1607 }
1608
1609 /*
1610 * Before we overwrite the inode reference item in the subvolume tree
1611 * with the item from the log tree, we must unlink all names from the
1612 * parent directory that are in the subvolume's tree inode reference
1613 * item, otherwise we end up with an inconsistent subvolume tree where
1614 * dir index entries exist for a name but there is no inode reference
1615 * item with the same name.
1616 */
1617 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1618 key);
1619 if (ret)
1620 goto out;
1621
1622 /* finally write the back reference in the inode */
1623 ret = overwrite_item(trans, root, path, eb, slot, key);
1624out:
1625 btrfs_release_path(path);
1626 kfree(name);
1627 iput(dir);
1628 iput(inode);
1629 return ret;
1630}
1631
1632static int count_inode_extrefs(struct btrfs_root *root,
1633 struct btrfs_inode *inode, struct btrfs_path *path)
1634{
1635 int ret = 0;
1636 int name_len;
1637 unsigned int nlink = 0;
1638 u32 item_size;
1639 u32 cur_offset = 0;
1640 u64 inode_objectid = btrfs_ino(inode);
1641 u64 offset = 0;
1642 unsigned long ptr;
1643 struct btrfs_inode_extref *extref;
1644 struct extent_buffer *leaf;
1645
1646 while (1) {
1647 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1648 &extref, &offset);
1649 if (ret)
1650 break;
1651
1652 leaf = path->nodes[0];
1653 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655 cur_offset = 0;
1656
1657 while (cur_offset < item_size) {
1658 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1659 name_len = btrfs_inode_extref_name_len(leaf, extref);
1660
1661 nlink++;
1662
1663 cur_offset += name_len + sizeof(*extref);
1664 }
1665
1666 offset++;
1667 btrfs_release_path(path);
1668 }
1669 btrfs_release_path(path);
1670
1671 if (ret < 0 && ret != -ENOENT)
1672 return ret;
1673 return nlink;
1674}
1675
1676static int count_inode_refs(struct btrfs_root *root,
1677 struct btrfs_inode *inode, struct btrfs_path *path)
1678{
1679 int ret;
1680 struct btrfs_key key;
1681 unsigned int nlink = 0;
1682 unsigned long ptr;
1683 unsigned long ptr_end;
1684 int name_len;
1685 u64 ino = btrfs_ino(inode);
1686
1687 key.objectid = ino;
1688 key.type = BTRFS_INODE_REF_KEY;
1689 key.offset = (u64)-1;
1690
1691 while (1) {
1692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1693 if (ret < 0)
1694 break;
1695 if (ret > 0) {
1696 if (path->slots[0] == 0)
1697 break;
1698 path->slots[0]--;
1699 }
1700process_slot:
1701 btrfs_item_key_to_cpu(path->nodes[0], &key,
1702 path->slots[0]);
1703 if (key.objectid != ino ||
1704 key.type != BTRFS_INODE_REF_KEY)
1705 break;
1706 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1707 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1708 path->slots[0]);
1709 while (ptr < ptr_end) {
1710 struct btrfs_inode_ref *ref;
1711
1712 ref = (struct btrfs_inode_ref *)ptr;
1713 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1714 ref);
1715 ptr = (unsigned long)(ref + 1) + name_len;
1716 nlink++;
1717 }
1718
1719 if (key.offset == 0)
1720 break;
1721 if (path->slots[0] > 0) {
1722 path->slots[0]--;
1723 goto process_slot;
1724 }
1725 key.offset--;
1726 btrfs_release_path(path);
1727 }
1728 btrfs_release_path(path);
1729
1730 return nlink;
1731}
1732
1733/*
1734 * There are a few corners where the link count of the file can't
1735 * be properly maintained during replay. So, instead of adding
1736 * lots of complexity to the log code, we just scan the backrefs
1737 * for any file that has been through replay.
1738 *
1739 * The scan will update the link count on the inode to reflect the
1740 * number of back refs found. If it goes down to zero, the iput
1741 * will free the inode.
1742 */
1743static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1744 struct btrfs_root *root,
1745 struct inode *inode)
1746{
1747 struct btrfs_path *path;
1748 int ret;
1749 u64 nlink = 0;
1750 u64 ino = btrfs_ino(BTRFS_I(inode));
1751
1752 path = btrfs_alloc_path();
1753 if (!path)
1754 return -ENOMEM;
1755
1756 ret = count_inode_refs(root, BTRFS_I(inode), path);
1757 if (ret < 0)
1758 goto out;
1759
1760 nlink = ret;
1761
1762 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1763 if (ret < 0)
1764 goto out;
1765
1766 nlink += ret;
1767
1768 ret = 0;
1769
1770 if (nlink != inode->i_nlink) {
1771 set_nlink(inode, nlink);
1772 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1773 if (ret)
1774 goto out;
1775 }
1776 BTRFS_I(inode)->index_cnt = (u64)-1;
1777
1778 if (inode->i_nlink == 0) {
1779 if (S_ISDIR(inode->i_mode)) {
1780 ret = replay_dir_deletes(trans, root, NULL, path,
1781 ino, 1);
1782 if (ret)
1783 goto out;
1784 }
1785 ret = btrfs_insert_orphan_item(trans, root, ino);
1786 if (ret == -EEXIST)
1787 ret = 0;
1788 }
1789
1790out:
1791 btrfs_free_path(path);
1792 return ret;
1793}
1794
1795static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 struct btrfs_path *path)
1798{
1799 int ret;
1800 struct btrfs_key key;
1801 struct inode *inode;
1802
1803 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1804 key.type = BTRFS_ORPHAN_ITEM_KEY;
1805 key.offset = (u64)-1;
1806 while (1) {
1807 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1808 if (ret < 0)
1809 break;
1810
1811 if (ret == 1) {
1812 ret = 0;
1813 if (path->slots[0] == 0)
1814 break;
1815 path->slots[0]--;
1816 }
1817
1818 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1820 key.type != BTRFS_ORPHAN_ITEM_KEY)
1821 break;
1822
1823 ret = btrfs_del_item(trans, root, path);
1824 if (ret)
1825 break;
1826
1827 btrfs_release_path(path);
1828 inode = read_one_inode(root, key.offset);
1829 if (!inode) {
1830 ret = -EIO;
1831 break;
1832 }
1833
1834 ret = fixup_inode_link_count(trans, root, inode);
1835 iput(inode);
1836 if (ret)
1837 break;
1838
1839 /*
1840 * fixup on a directory may create new entries,
1841 * make sure we always look for the highset possible
1842 * offset
1843 */
1844 key.offset = (u64)-1;
1845 }
1846 btrfs_release_path(path);
1847 return ret;
1848}
1849
1850
1851/*
1852 * record a given inode in the fixup dir so we can check its link
1853 * count when replay is done. The link count is incremented here
1854 * so the inode won't go away until we check it
1855 */
1856static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1857 struct btrfs_root *root,
1858 struct btrfs_path *path,
1859 u64 objectid)
1860{
1861 struct btrfs_key key;
1862 int ret = 0;
1863 struct inode *inode;
1864
1865 inode = read_one_inode(root, objectid);
1866 if (!inode)
1867 return -EIO;
1868
1869 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1870 key.type = BTRFS_ORPHAN_ITEM_KEY;
1871 key.offset = objectid;
1872
1873 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1874
1875 btrfs_release_path(path);
1876 if (ret == 0) {
1877 if (!inode->i_nlink)
1878 set_nlink(inode, 1);
1879 else
1880 inc_nlink(inode);
1881 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1882 } else if (ret == -EEXIST) {
1883 ret = 0;
1884 }
1885 iput(inode);
1886
1887 return ret;
1888}
1889
1890/*
1891 * when replaying the log for a directory, we only insert names
1892 * for inodes that actually exist. This means an fsync on a directory
1893 * does not implicitly fsync all the new files in it
1894 */
1895static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root,
1897 u64 dirid, u64 index,
1898 char *name, int name_len,
1899 struct btrfs_key *location)
1900{
1901 struct inode *inode;
1902 struct inode *dir;
1903 int ret;
1904
1905 inode = read_one_inode(root, location->objectid);
1906 if (!inode)
1907 return -ENOENT;
1908
1909 dir = read_one_inode(root, dirid);
1910 if (!dir) {
1911 iput(inode);
1912 return -EIO;
1913 }
1914
1915 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1916 name_len, 1, index);
1917
1918 /* FIXME, put inode into FIXUP list */
1919
1920 iput(inode);
1921 iput(dir);
1922 return ret;
1923}
1924
1925/*
1926 * take a single entry in a log directory item and replay it into
1927 * the subvolume.
1928 *
1929 * if a conflicting item exists in the subdirectory already,
1930 * the inode it points to is unlinked and put into the link count
1931 * fix up tree.
1932 *
1933 * If a name from the log points to a file or directory that does
1934 * not exist in the FS, it is skipped. fsyncs on directories
1935 * do not force down inodes inside that directory, just changes to the
1936 * names or unlinks in a directory.
1937 *
1938 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1939 * non-existing inode) and 1 if the name was replayed.
1940 */
1941static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 struct btrfs_path *path,
1944 struct extent_buffer *eb,
1945 struct btrfs_dir_item *di,
1946 struct btrfs_key *key)
1947{
1948 char *name;
1949 int name_len;
1950 struct btrfs_dir_item *dst_di;
1951 struct btrfs_key found_key;
1952 struct btrfs_key log_key;
1953 struct inode *dir;
1954 u8 log_type;
1955 bool exists;
1956 int ret;
1957 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1958 bool name_added = false;
1959
1960 dir = read_one_inode(root, key->objectid);
1961 if (!dir)
1962 return -EIO;
1963
1964 name_len = btrfs_dir_name_len(eb, di);
1965 name = kmalloc(name_len, GFP_NOFS);
1966 if (!name) {
1967 ret = -ENOMEM;
1968 goto out;
1969 }
1970
1971 log_type = btrfs_dir_type(eb, di);
1972 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1973 name_len);
1974
1975 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1976 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1977 btrfs_release_path(path);
1978 if (ret < 0)
1979 goto out;
1980 exists = (ret == 0);
1981 ret = 0;
1982
1983 if (key->type == BTRFS_DIR_ITEM_KEY) {
1984 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1985 name, name_len, 1);
1986 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1987 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1988 key->objectid,
1989 key->offset, name,
1990 name_len, 1);
1991 } else {
1992 /* Corruption */
1993 ret = -EINVAL;
1994 goto out;
1995 }
1996
1997 if (dst_di == ERR_PTR(-ENOENT))
1998 dst_di = NULL;
1999
2000 if (IS_ERR(dst_di)) {
2001 ret = PTR_ERR(dst_di);
2002 goto out;
2003 } else if (!dst_di) {
2004 /* we need a sequence number to insert, so we only
2005 * do inserts for the BTRFS_DIR_INDEX_KEY types
2006 */
2007 if (key->type != BTRFS_DIR_INDEX_KEY)
2008 goto out;
2009 goto insert;
2010 }
2011
2012 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2013 /* the existing item matches the logged item */
2014 if (found_key.objectid == log_key.objectid &&
2015 found_key.type == log_key.type &&
2016 found_key.offset == log_key.offset &&
2017 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2018 update_size = false;
2019 goto out;
2020 }
2021
2022 /*
2023 * don't drop the conflicting directory entry if the inode
2024 * for the new entry doesn't exist
2025 */
2026 if (!exists)
2027 goto out;
2028
2029 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2030 if (ret)
2031 goto out;
2032
2033 if (key->type == BTRFS_DIR_INDEX_KEY)
2034 goto insert;
2035out:
2036 btrfs_release_path(path);
2037 if (!ret && update_size) {
2038 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2039 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2040 }
2041 kfree(name);
2042 iput(dir);
2043 if (!ret && name_added)
2044 ret = 1;
2045 return ret;
2046
2047insert:
2048 /*
2049 * Check if the inode reference exists in the log for the given name,
2050 * inode and parent inode
2051 */
2052 found_key.objectid = log_key.objectid;
2053 found_key.type = BTRFS_INODE_REF_KEY;
2054 found_key.offset = key->objectid;
2055 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2056 if (ret < 0) {
2057 goto out;
2058 } else if (ret) {
2059 /* The dentry will be added later. */
2060 ret = 0;
2061 update_size = false;
2062 goto out;
2063 }
2064
2065 found_key.objectid = log_key.objectid;
2066 found_key.type = BTRFS_INODE_EXTREF_KEY;
2067 found_key.offset = key->objectid;
2068 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2069 name_len);
2070 if (ret < 0) {
2071 goto out;
2072 } else if (ret) {
2073 /* The dentry will be added later. */
2074 ret = 0;
2075 update_size = false;
2076 goto out;
2077 }
2078 btrfs_release_path(path);
2079 ret = insert_one_name(trans, root, key->objectid, key->offset,
2080 name, name_len, &log_key);
2081 if (ret && ret != -ENOENT && ret != -EEXIST)
2082 goto out;
2083 if (!ret)
2084 name_added = true;
2085 update_size = false;
2086 ret = 0;
2087 goto out;
2088}
2089
2090/*
2091 * find all the names in a directory item and reconcile them into
2092 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2093 * one name in a directory item, but the same code gets used for
2094 * both directory index types
2095 */
2096static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 struct btrfs_path *path,
2099 struct extent_buffer *eb, int slot,
2100 struct btrfs_key *key)
2101{
2102 int ret = 0;
2103 u32 item_size = btrfs_item_size_nr(eb, slot);
2104 struct btrfs_dir_item *di;
2105 int name_len;
2106 unsigned long ptr;
2107 unsigned long ptr_end;
2108 struct btrfs_path *fixup_path = NULL;
2109
2110 ptr = btrfs_item_ptr_offset(eb, slot);
2111 ptr_end = ptr + item_size;
2112 while (ptr < ptr_end) {
2113 di = (struct btrfs_dir_item *)ptr;
2114 name_len = btrfs_dir_name_len(eb, di);
2115 ret = replay_one_name(trans, root, path, eb, di, key);
2116 if (ret < 0)
2117 break;
2118 ptr = (unsigned long)(di + 1);
2119 ptr += name_len;
2120
2121 /*
2122 * If this entry refers to a non-directory (directories can not
2123 * have a link count > 1) and it was added in the transaction
2124 * that was not committed, make sure we fixup the link count of
2125 * the inode it the entry points to. Otherwise something like
2126 * the following would result in a directory pointing to an
2127 * inode with a wrong link that does not account for this dir
2128 * entry:
2129 *
2130 * mkdir testdir
2131 * touch testdir/foo
2132 * touch testdir/bar
2133 * sync
2134 *
2135 * ln testdir/bar testdir/bar_link
2136 * ln testdir/foo testdir/foo_link
2137 * xfs_io -c "fsync" testdir/bar
2138 *
2139 * <power failure>
2140 *
2141 * mount fs, log replay happens
2142 *
2143 * File foo would remain with a link count of 1 when it has two
2144 * entries pointing to it in the directory testdir. This would
2145 * make it impossible to ever delete the parent directory has
2146 * it would result in stale dentries that can never be deleted.
2147 */
2148 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2149 struct btrfs_key di_key;
2150
2151 if (!fixup_path) {
2152 fixup_path = btrfs_alloc_path();
2153 if (!fixup_path) {
2154 ret = -ENOMEM;
2155 break;
2156 }
2157 }
2158
2159 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2160 ret = link_to_fixup_dir(trans, root, fixup_path,
2161 di_key.objectid);
2162 if (ret)
2163 break;
2164 }
2165 ret = 0;
2166 }
2167 btrfs_free_path(fixup_path);
2168 return ret;
2169}
2170
2171/*
2172 * directory replay has two parts. There are the standard directory
2173 * items in the log copied from the subvolume, and range items
2174 * created in the log while the subvolume was logged.
2175 *
2176 * The range items tell us which parts of the key space the log
2177 * is authoritative for. During replay, if a key in the subvolume
2178 * directory is in a logged range item, but not actually in the log
2179 * that means it was deleted from the directory before the fsync
2180 * and should be removed.
2181 */
2182static noinline int find_dir_range(struct btrfs_root *root,
2183 struct btrfs_path *path,
2184 u64 dirid, int key_type,
2185 u64 *start_ret, u64 *end_ret)
2186{
2187 struct btrfs_key key;
2188 u64 found_end;
2189 struct btrfs_dir_log_item *item;
2190 int ret;
2191 int nritems;
2192
2193 if (*start_ret == (u64)-1)
2194 return 1;
2195
2196 key.objectid = dirid;
2197 key.type = key_type;
2198 key.offset = *start_ret;
2199
2200 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203 if (ret > 0) {
2204 if (path->slots[0] == 0)
2205 goto out;
2206 path->slots[0]--;
2207 }
2208 if (ret != 0)
2209 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2210
2211 if (key.type != key_type || key.objectid != dirid) {
2212 ret = 1;
2213 goto next;
2214 }
2215 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2216 struct btrfs_dir_log_item);
2217 found_end = btrfs_dir_log_end(path->nodes[0], item);
2218
2219 if (*start_ret >= key.offset && *start_ret <= found_end) {
2220 ret = 0;
2221 *start_ret = key.offset;
2222 *end_ret = found_end;
2223 goto out;
2224 }
2225 ret = 1;
2226next:
2227 /* check the next slot in the tree to see if it is a valid item */
2228 nritems = btrfs_header_nritems(path->nodes[0]);
2229 path->slots[0]++;
2230 if (path->slots[0] >= nritems) {
2231 ret = btrfs_next_leaf(root, path);
2232 if (ret)
2233 goto out;
2234 }
2235
2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237
2238 if (key.type != key_type || key.objectid != dirid) {
2239 ret = 1;
2240 goto out;
2241 }
2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 struct btrfs_dir_log_item);
2244 found_end = btrfs_dir_log_end(path->nodes[0], item);
2245 *start_ret = key.offset;
2246 *end_ret = found_end;
2247 ret = 0;
2248out:
2249 btrfs_release_path(path);
2250 return ret;
2251}
2252
2253/*
2254 * this looks for a given directory item in the log. If the directory
2255 * item is not in the log, the item is removed and the inode it points
2256 * to is unlinked
2257 */
2258static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2259 struct btrfs_root *root,
2260 struct btrfs_root *log,
2261 struct btrfs_path *path,
2262 struct btrfs_path *log_path,
2263 struct inode *dir,
2264 struct btrfs_key *dir_key)
2265{
2266 int ret;
2267 struct extent_buffer *eb;
2268 int slot;
2269 u32 item_size;
2270 struct btrfs_dir_item *di;
2271 struct btrfs_dir_item *log_di;
2272 int name_len;
2273 unsigned long ptr;
2274 unsigned long ptr_end;
2275 char *name;
2276 struct inode *inode;
2277 struct btrfs_key location;
2278
2279again:
2280 eb = path->nodes[0];
2281 slot = path->slots[0];
2282 item_size = btrfs_item_size_nr(eb, slot);
2283 ptr = btrfs_item_ptr_offset(eb, slot);
2284 ptr_end = ptr + item_size;
2285 while (ptr < ptr_end) {
2286 di = (struct btrfs_dir_item *)ptr;
2287 name_len = btrfs_dir_name_len(eb, di);
2288 name = kmalloc(name_len, GFP_NOFS);
2289 if (!name) {
2290 ret = -ENOMEM;
2291 goto out;
2292 }
2293 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2294 name_len);
2295 log_di = NULL;
2296 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2297 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2298 dir_key->objectid,
2299 name, name_len, 0);
2300 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2301 log_di = btrfs_lookup_dir_index_item(trans, log,
2302 log_path,
2303 dir_key->objectid,
2304 dir_key->offset,
2305 name, name_len, 0);
2306 }
2307 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2308 btrfs_dir_item_key_to_cpu(eb, di, &location);
2309 btrfs_release_path(path);
2310 btrfs_release_path(log_path);
2311 inode = read_one_inode(root, location.objectid);
2312 if (!inode) {
2313 kfree(name);
2314 return -EIO;
2315 }
2316
2317 ret = link_to_fixup_dir(trans, root,
2318 path, location.objectid);
2319 if (ret) {
2320 kfree(name);
2321 iput(inode);
2322 goto out;
2323 }
2324
2325 inc_nlink(inode);
2326 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2327 BTRFS_I(inode), name, name_len);
2328 if (!ret)
2329 ret = btrfs_run_delayed_items(trans);
2330 kfree(name);
2331 iput(inode);
2332 if (ret)
2333 goto out;
2334
2335 /* there might still be more names under this key
2336 * check and repeat if required
2337 */
2338 ret = btrfs_search_slot(NULL, root, dir_key, path,
2339 0, 0);
2340 if (ret == 0)
2341 goto again;
2342 ret = 0;
2343 goto out;
2344 } else if (IS_ERR(log_di)) {
2345 kfree(name);
2346 return PTR_ERR(log_di);
2347 }
2348 btrfs_release_path(log_path);
2349 kfree(name);
2350
2351 ptr = (unsigned long)(di + 1);
2352 ptr += name_len;
2353 }
2354 ret = 0;
2355out:
2356 btrfs_release_path(path);
2357 btrfs_release_path(log_path);
2358 return ret;
2359}
2360
2361static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root,
2363 struct btrfs_root *log,
2364 struct btrfs_path *path,
2365 const u64 ino)
2366{
2367 struct btrfs_key search_key;
2368 struct btrfs_path *log_path;
2369 int i;
2370 int nritems;
2371 int ret;
2372
2373 log_path = btrfs_alloc_path();
2374 if (!log_path)
2375 return -ENOMEM;
2376
2377 search_key.objectid = ino;
2378 search_key.type = BTRFS_XATTR_ITEM_KEY;
2379 search_key.offset = 0;
2380again:
2381 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2382 if (ret < 0)
2383 goto out;
2384process_leaf:
2385 nritems = btrfs_header_nritems(path->nodes[0]);
2386 for (i = path->slots[0]; i < nritems; i++) {
2387 struct btrfs_key key;
2388 struct btrfs_dir_item *di;
2389 struct btrfs_dir_item *log_di;
2390 u32 total_size;
2391 u32 cur;
2392
2393 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2394 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2395 ret = 0;
2396 goto out;
2397 }
2398
2399 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2400 total_size = btrfs_item_size_nr(path->nodes[0], i);
2401 cur = 0;
2402 while (cur < total_size) {
2403 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2404 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2405 u32 this_len = sizeof(*di) + name_len + data_len;
2406 char *name;
2407
2408 name = kmalloc(name_len, GFP_NOFS);
2409 if (!name) {
2410 ret = -ENOMEM;
2411 goto out;
2412 }
2413 read_extent_buffer(path->nodes[0], name,
2414 (unsigned long)(di + 1), name_len);
2415
2416 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2417 name, name_len, 0);
2418 btrfs_release_path(log_path);
2419 if (!log_di) {
2420 /* Doesn't exist in log tree, so delete it. */
2421 btrfs_release_path(path);
2422 di = btrfs_lookup_xattr(trans, root, path, ino,
2423 name, name_len, -1);
2424 kfree(name);
2425 if (IS_ERR(di)) {
2426 ret = PTR_ERR(di);
2427 goto out;
2428 }
2429 ASSERT(di);
2430 ret = btrfs_delete_one_dir_name(trans, root,
2431 path, di);
2432 if (ret)
2433 goto out;
2434 btrfs_release_path(path);
2435 search_key = key;
2436 goto again;
2437 }
2438 kfree(name);
2439 if (IS_ERR(log_di)) {
2440 ret = PTR_ERR(log_di);
2441 goto out;
2442 }
2443 cur += this_len;
2444 di = (struct btrfs_dir_item *)((char *)di + this_len);
2445 }
2446 }
2447 ret = btrfs_next_leaf(root, path);
2448 if (ret > 0)
2449 ret = 0;
2450 else if (ret == 0)
2451 goto process_leaf;
2452out:
2453 btrfs_free_path(log_path);
2454 btrfs_release_path(path);
2455 return ret;
2456}
2457
2458
2459/*
2460 * deletion replay happens before we copy any new directory items
2461 * out of the log or out of backreferences from inodes. It
2462 * scans the log to find ranges of keys that log is authoritative for,
2463 * and then scans the directory to find items in those ranges that are
2464 * not present in the log.
2465 *
2466 * Anything we don't find in the log is unlinked and removed from the
2467 * directory.
2468 */
2469static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 struct btrfs_root *log,
2472 struct btrfs_path *path,
2473 u64 dirid, int del_all)
2474{
2475 u64 range_start;
2476 u64 range_end;
2477 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2478 int ret = 0;
2479 struct btrfs_key dir_key;
2480 struct btrfs_key found_key;
2481 struct btrfs_path *log_path;
2482 struct inode *dir;
2483
2484 dir_key.objectid = dirid;
2485 dir_key.type = BTRFS_DIR_ITEM_KEY;
2486 log_path = btrfs_alloc_path();
2487 if (!log_path)
2488 return -ENOMEM;
2489
2490 dir = read_one_inode(root, dirid);
2491 /* it isn't an error if the inode isn't there, that can happen
2492 * because we replay the deletes before we copy in the inode item
2493 * from the log
2494 */
2495 if (!dir) {
2496 btrfs_free_path(log_path);
2497 return 0;
2498 }
2499again:
2500 range_start = 0;
2501 range_end = 0;
2502 while (1) {
2503 if (del_all)
2504 range_end = (u64)-1;
2505 else {
2506 ret = find_dir_range(log, path, dirid, key_type,
2507 &range_start, &range_end);
2508 if (ret != 0)
2509 break;
2510 }
2511
2512 dir_key.offset = range_start;
2513 while (1) {
2514 int nritems;
2515 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2516 0, 0);
2517 if (ret < 0)
2518 goto out;
2519
2520 nritems = btrfs_header_nritems(path->nodes[0]);
2521 if (path->slots[0] >= nritems) {
2522 ret = btrfs_next_leaf(root, path);
2523 if (ret == 1)
2524 break;
2525 else if (ret < 0)
2526 goto out;
2527 }
2528 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2529 path->slots[0]);
2530 if (found_key.objectid != dirid ||
2531 found_key.type != dir_key.type)
2532 goto next_type;
2533
2534 if (found_key.offset > range_end)
2535 break;
2536
2537 ret = check_item_in_log(trans, root, log, path,
2538 log_path, dir,
2539 &found_key);
2540 if (ret)
2541 goto out;
2542 if (found_key.offset == (u64)-1)
2543 break;
2544 dir_key.offset = found_key.offset + 1;
2545 }
2546 btrfs_release_path(path);
2547 if (range_end == (u64)-1)
2548 break;
2549 range_start = range_end + 1;
2550 }
2551
2552next_type:
2553 ret = 0;
2554 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2555 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2556 dir_key.type = BTRFS_DIR_INDEX_KEY;
2557 btrfs_release_path(path);
2558 goto again;
2559 }
2560out:
2561 btrfs_release_path(path);
2562 btrfs_free_path(log_path);
2563 iput(dir);
2564 return ret;
2565}
2566
2567/*
2568 * the process_func used to replay items from the log tree. This
2569 * gets called in two different stages. The first stage just looks
2570 * for inodes and makes sure they are all copied into the subvolume.
2571 *
2572 * The second stage copies all the other item types from the log into
2573 * the subvolume. The two stage approach is slower, but gets rid of
2574 * lots of complexity around inodes referencing other inodes that exist
2575 * only in the log (references come from either directory items or inode
2576 * back refs).
2577 */
2578static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2579 struct walk_control *wc, u64 gen, int level)
2580{
2581 int nritems;
2582 struct btrfs_path *path;
2583 struct btrfs_root *root = wc->replay_dest;
2584 struct btrfs_key key;
2585 int i;
2586 int ret;
2587
2588 ret = btrfs_read_buffer(eb, gen, level, NULL);
2589 if (ret)
2590 return ret;
2591
2592 level = btrfs_header_level(eb);
2593
2594 if (level != 0)
2595 return 0;
2596
2597 path = btrfs_alloc_path();
2598 if (!path)
2599 return -ENOMEM;
2600
2601 nritems = btrfs_header_nritems(eb);
2602 for (i = 0; i < nritems; i++) {
2603 btrfs_item_key_to_cpu(eb, &key, i);
2604
2605 /* inode keys are done during the first stage */
2606 if (key.type == BTRFS_INODE_ITEM_KEY &&
2607 wc->stage == LOG_WALK_REPLAY_INODES) {
2608 struct btrfs_inode_item *inode_item;
2609 u32 mode;
2610
2611 inode_item = btrfs_item_ptr(eb, i,
2612 struct btrfs_inode_item);
2613 /*
2614 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2615 * and never got linked before the fsync, skip it, as
2616 * replaying it is pointless since it would be deleted
2617 * later. We skip logging tmpfiles, but it's always
2618 * possible we are replaying a log created with a kernel
2619 * that used to log tmpfiles.
2620 */
2621 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2622 wc->ignore_cur_inode = true;
2623 continue;
2624 } else {
2625 wc->ignore_cur_inode = false;
2626 }
2627 ret = replay_xattr_deletes(wc->trans, root, log,
2628 path, key.objectid);
2629 if (ret)
2630 break;
2631 mode = btrfs_inode_mode(eb, inode_item);
2632 if (S_ISDIR(mode)) {
2633 ret = replay_dir_deletes(wc->trans,
2634 root, log, path, key.objectid, 0);
2635 if (ret)
2636 break;
2637 }
2638 ret = overwrite_item(wc->trans, root, path,
2639 eb, i, &key);
2640 if (ret)
2641 break;
2642
2643 /*
2644 * Before replaying extents, truncate the inode to its
2645 * size. We need to do it now and not after log replay
2646 * because before an fsync we can have prealloc extents
2647 * added beyond the inode's i_size. If we did it after,
2648 * through orphan cleanup for example, we would drop
2649 * those prealloc extents just after replaying them.
2650 */
2651 if (S_ISREG(mode)) {
2652 struct btrfs_drop_extents_args drop_args = { 0 };
2653 struct inode *inode;
2654 u64 from;
2655
2656 inode = read_one_inode(root, key.objectid);
2657 if (!inode) {
2658 ret = -EIO;
2659 break;
2660 }
2661 from = ALIGN(i_size_read(inode),
2662 root->fs_info->sectorsize);
2663 drop_args.start = from;
2664 drop_args.end = (u64)-1;
2665 drop_args.drop_cache = true;
2666 ret = btrfs_drop_extents(wc->trans, root,
2667 BTRFS_I(inode),
2668 &drop_args);
2669 if (!ret) {
2670 inode_sub_bytes(inode,
2671 drop_args.bytes_found);
2672 /* Update the inode's nbytes. */
2673 ret = btrfs_update_inode(wc->trans,
2674 root, BTRFS_I(inode));
2675 }
2676 iput(inode);
2677 if (ret)
2678 break;
2679 }
2680
2681 ret = link_to_fixup_dir(wc->trans, root,
2682 path, key.objectid);
2683 if (ret)
2684 break;
2685 }
2686
2687 if (wc->ignore_cur_inode)
2688 continue;
2689
2690 if (key.type == BTRFS_DIR_INDEX_KEY &&
2691 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2692 ret = replay_one_dir_item(wc->trans, root, path,
2693 eb, i, &key);
2694 if (ret)
2695 break;
2696 }
2697
2698 if (wc->stage < LOG_WALK_REPLAY_ALL)
2699 continue;
2700
2701 /* these keys are simply copied */
2702 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2703 ret = overwrite_item(wc->trans, root, path,
2704 eb, i, &key);
2705 if (ret)
2706 break;
2707 } else if (key.type == BTRFS_INODE_REF_KEY ||
2708 key.type == BTRFS_INODE_EXTREF_KEY) {
2709 ret = add_inode_ref(wc->trans, root, log, path,
2710 eb, i, &key);
2711 if (ret && ret != -ENOENT)
2712 break;
2713 ret = 0;
2714 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2715 ret = replay_one_extent(wc->trans, root, path,
2716 eb, i, &key);
2717 if (ret)
2718 break;
2719 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2720 ret = replay_one_dir_item(wc->trans, root, path,
2721 eb, i, &key);
2722 if (ret)
2723 break;
2724 }
2725 }
2726 btrfs_free_path(path);
2727 return ret;
2728}
2729
2730/*
2731 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2732 */
2733static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2734{
2735 struct btrfs_block_group *cache;
2736
2737 cache = btrfs_lookup_block_group(fs_info, start);
2738 if (!cache) {
2739 btrfs_err(fs_info, "unable to find block group for %llu", start);
2740 return;
2741 }
2742
2743 spin_lock(&cache->space_info->lock);
2744 spin_lock(&cache->lock);
2745 cache->reserved -= fs_info->nodesize;
2746 cache->space_info->bytes_reserved -= fs_info->nodesize;
2747 spin_unlock(&cache->lock);
2748 spin_unlock(&cache->space_info->lock);
2749
2750 btrfs_put_block_group(cache);
2751}
2752
2753static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root,
2755 struct btrfs_path *path, int *level,
2756 struct walk_control *wc)
2757{
2758 struct btrfs_fs_info *fs_info = root->fs_info;
2759 u64 bytenr;
2760 u64 ptr_gen;
2761 struct extent_buffer *next;
2762 struct extent_buffer *cur;
2763 u32 blocksize;
2764 int ret = 0;
2765
2766 while (*level > 0) {
2767 struct btrfs_key first_key;
2768
2769 cur = path->nodes[*level];
2770
2771 WARN_ON(btrfs_header_level(cur) != *level);
2772
2773 if (path->slots[*level] >=
2774 btrfs_header_nritems(cur))
2775 break;
2776
2777 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2778 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2779 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2780 blocksize = fs_info->nodesize;
2781
2782 next = btrfs_find_create_tree_block(fs_info, bytenr,
2783 btrfs_header_owner(cur),
2784 *level - 1);
2785 if (IS_ERR(next))
2786 return PTR_ERR(next);
2787
2788 if (*level == 1) {
2789 ret = wc->process_func(root, next, wc, ptr_gen,
2790 *level - 1);
2791 if (ret) {
2792 free_extent_buffer(next);
2793 return ret;
2794 }
2795
2796 path->slots[*level]++;
2797 if (wc->free) {
2798 ret = btrfs_read_buffer(next, ptr_gen,
2799 *level - 1, &first_key);
2800 if (ret) {
2801 free_extent_buffer(next);
2802 return ret;
2803 }
2804
2805 if (trans) {
2806 btrfs_tree_lock(next);
2807 btrfs_clean_tree_block(next);
2808 btrfs_wait_tree_block_writeback(next);
2809 btrfs_tree_unlock(next);
2810 ret = btrfs_pin_reserved_extent(trans,
2811 bytenr, blocksize);
2812 if (ret) {
2813 free_extent_buffer(next);
2814 return ret;
2815 }
2816 btrfs_redirty_list_add(
2817 trans->transaction, next);
2818 } else {
2819 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2820 clear_extent_buffer_dirty(next);
2821 unaccount_log_buffer(fs_info, bytenr);
2822 }
2823 }
2824 free_extent_buffer(next);
2825 continue;
2826 }
2827 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2828 if (ret) {
2829 free_extent_buffer(next);
2830 return ret;
2831 }
2832
2833 if (path->nodes[*level-1])
2834 free_extent_buffer(path->nodes[*level-1]);
2835 path->nodes[*level-1] = next;
2836 *level = btrfs_header_level(next);
2837 path->slots[*level] = 0;
2838 cond_resched();
2839 }
2840 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2841
2842 cond_resched();
2843 return 0;
2844}
2845
2846static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2847 struct btrfs_root *root,
2848 struct btrfs_path *path, int *level,
2849 struct walk_control *wc)
2850{
2851 struct btrfs_fs_info *fs_info = root->fs_info;
2852 int i;
2853 int slot;
2854 int ret;
2855
2856 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2857 slot = path->slots[i];
2858 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2859 path->slots[i]++;
2860 *level = i;
2861 WARN_ON(*level == 0);
2862 return 0;
2863 } else {
2864 ret = wc->process_func(root, path->nodes[*level], wc,
2865 btrfs_header_generation(path->nodes[*level]),
2866 *level);
2867 if (ret)
2868 return ret;
2869
2870 if (wc->free) {
2871 struct extent_buffer *next;
2872
2873 next = path->nodes[*level];
2874
2875 if (trans) {
2876 btrfs_tree_lock(next);
2877 btrfs_clean_tree_block(next);
2878 btrfs_wait_tree_block_writeback(next);
2879 btrfs_tree_unlock(next);
2880 ret = btrfs_pin_reserved_extent(trans,
2881 path->nodes[*level]->start,
2882 path->nodes[*level]->len);
2883 if (ret)
2884 return ret;
2885 } else {
2886 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2887 clear_extent_buffer_dirty(next);
2888
2889 unaccount_log_buffer(fs_info,
2890 path->nodes[*level]->start);
2891 }
2892 }
2893 free_extent_buffer(path->nodes[*level]);
2894 path->nodes[*level] = NULL;
2895 *level = i + 1;
2896 }
2897 }
2898 return 1;
2899}
2900
2901/*
2902 * drop the reference count on the tree rooted at 'snap'. This traverses
2903 * the tree freeing any blocks that have a ref count of zero after being
2904 * decremented.
2905 */
2906static int walk_log_tree(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *log, struct walk_control *wc)
2908{
2909 struct btrfs_fs_info *fs_info = log->fs_info;
2910 int ret = 0;
2911 int wret;
2912 int level;
2913 struct btrfs_path *path;
2914 int orig_level;
2915
2916 path = btrfs_alloc_path();
2917 if (!path)
2918 return -ENOMEM;
2919
2920 level = btrfs_header_level(log->node);
2921 orig_level = level;
2922 path->nodes[level] = log->node;
2923 atomic_inc(&log->node->refs);
2924 path->slots[level] = 0;
2925
2926 while (1) {
2927 wret = walk_down_log_tree(trans, log, path, &level, wc);
2928 if (wret > 0)
2929 break;
2930 if (wret < 0) {
2931 ret = wret;
2932 goto out;
2933 }
2934
2935 wret = walk_up_log_tree(trans, log, path, &level, wc);
2936 if (wret > 0)
2937 break;
2938 if (wret < 0) {
2939 ret = wret;
2940 goto out;
2941 }
2942 }
2943
2944 /* was the root node processed? if not, catch it here */
2945 if (path->nodes[orig_level]) {
2946 ret = wc->process_func(log, path->nodes[orig_level], wc,
2947 btrfs_header_generation(path->nodes[orig_level]),
2948 orig_level);
2949 if (ret)
2950 goto out;
2951 if (wc->free) {
2952 struct extent_buffer *next;
2953
2954 next = path->nodes[orig_level];
2955
2956 if (trans) {
2957 btrfs_tree_lock(next);
2958 btrfs_clean_tree_block(next);
2959 btrfs_wait_tree_block_writeback(next);
2960 btrfs_tree_unlock(next);
2961 ret = btrfs_pin_reserved_extent(trans,
2962 next->start, next->len);
2963 if (ret)
2964 goto out;
2965 } else {
2966 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2967 clear_extent_buffer_dirty(next);
2968 unaccount_log_buffer(fs_info, next->start);
2969 }
2970 }
2971 }
2972
2973out:
2974 btrfs_free_path(path);
2975 return ret;
2976}
2977
2978/*
2979 * helper function to update the item for a given subvolumes log root
2980 * in the tree of log roots
2981 */
2982static int update_log_root(struct btrfs_trans_handle *trans,
2983 struct btrfs_root *log,
2984 struct btrfs_root_item *root_item)
2985{
2986 struct btrfs_fs_info *fs_info = log->fs_info;
2987 int ret;
2988
2989 if (log->log_transid == 1) {
2990 /* insert root item on the first sync */
2991 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2992 &log->root_key, root_item);
2993 } else {
2994 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2995 &log->root_key, root_item);
2996 }
2997 return ret;
2998}
2999
3000static void wait_log_commit(struct btrfs_root *root, int transid)
3001{
3002 DEFINE_WAIT(wait);
3003 int index = transid % 2;
3004
3005 /*
3006 * we only allow two pending log transactions at a time,
3007 * so we know that if ours is more than 2 older than the
3008 * current transaction, we're done
3009 */
3010 for (;;) {
3011 prepare_to_wait(&root->log_commit_wait[index],
3012 &wait, TASK_UNINTERRUPTIBLE);
3013
3014 if (!(root->log_transid_committed < transid &&
3015 atomic_read(&root->log_commit[index])))
3016 break;
3017
3018 mutex_unlock(&root->log_mutex);
3019 schedule();
3020 mutex_lock(&root->log_mutex);
3021 }
3022 finish_wait(&root->log_commit_wait[index], &wait);
3023}
3024
3025static void wait_for_writer(struct btrfs_root *root)
3026{
3027 DEFINE_WAIT(wait);
3028
3029 for (;;) {
3030 prepare_to_wait(&root->log_writer_wait, &wait,
3031 TASK_UNINTERRUPTIBLE);
3032 if (!atomic_read(&root->log_writers))
3033 break;
3034
3035 mutex_unlock(&root->log_mutex);
3036 schedule();
3037 mutex_lock(&root->log_mutex);
3038 }
3039 finish_wait(&root->log_writer_wait, &wait);
3040}
3041
3042static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3043 struct btrfs_log_ctx *ctx)
3044{
3045 if (!ctx)
3046 return;
3047
3048 mutex_lock(&root->log_mutex);
3049 list_del_init(&ctx->list);
3050 mutex_unlock(&root->log_mutex);
3051}
3052
3053/*
3054 * Invoked in log mutex context, or be sure there is no other task which
3055 * can access the list.
3056 */
3057static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3058 int index, int error)
3059{
3060 struct btrfs_log_ctx *ctx;
3061 struct btrfs_log_ctx *safe;
3062
3063 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3064 list_del_init(&ctx->list);
3065 ctx->log_ret = error;
3066 }
3067
3068 INIT_LIST_HEAD(&root->log_ctxs[index]);
3069}
3070
3071/*
3072 * btrfs_sync_log does sends a given tree log down to the disk and
3073 * updates the super blocks to record it. When this call is done,
3074 * you know that any inodes previously logged are safely on disk only
3075 * if it returns 0.
3076 *
3077 * Any other return value means you need to call btrfs_commit_transaction.
3078 * Some of the edge cases for fsyncing directories that have had unlinks
3079 * or renames done in the past mean that sometimes the only safe
3080 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3081 * that has happened.
3082 */
3083int btrfs_sync_log(struct btrfs_trans_handle *trans,
3084 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3085{
3086 int index1;
3087 int index2;
3088 int mark;
3089 int ret;
3090 struct btrfs_fs_info *fs_info = root->fs_info;
3091 struct btrfs_root *log = root->log_root;
3092 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3093 struct btrfs_root_item new_root_item;
3094 int log_transid = 0;
3095 struct btrfs_log_ctx root_log_ctx;
3096 struct blk_plug plug;
3097 u64 log_root_start;
3098 u64 log_root_level;
3099
3100 mutex_lock(&root->log_mutex);
3101 log_transid = ctx->log_transid;
3102 if (root->log_transid_committed >= log_transid) {
3103 mutex_unlock(&root->log_mutex);
3104 return ctx->log_ret;
3105 }
3106
3107 index1 = log_transid % 2;
3108 if (atomic_read(&root->log_commit[index1])) {
3109 wait_log_commit(root, log_transid);
3110 mutex_unlock(&root->log_mutex);
3111 return ctx->log_ret;
3112 }
3113 ASSERT(log_transid == root->log_transid);
3114 atomic_set(&root->log_commit[index1], 1);
3115
3116 /* wait for previous tree log sync to complete */
3117 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3118 wait_log_commit(root, log_transid - 1);
3119
3120 while (1) {
3121 int batch = atomic_read(&root->log_batch);
3122 /* when we're on an ssd, just kick the log commit out */
3123 if (!btrfs_test_opt(fs_info, SSD) &&
3124 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3125 mutex_unlock(&root->log_mutex);
3126 schedule_timeout_uninterruptible(1);
3127 mutex_lock(&root->log_mutex);
3128 }
3129 wait_for_writer(root);
3130 if (batch == atomic_read(&root->log_batch))
3131 break;
3132 }
3133
3134 /* bail out if we need to do a full commit */
3135 if (btrfs_need_log_full_commit(trans)) {
3136 ret = -EAGAIN;
3137 mutex_unlock(&root->log_mutex);
3138 goto out;
3139 }
3140
3141 if (log_transid % 2 == 0)
3142 mark = EXTENT_DIRTY;
3143 else
3144 mark = EXTENT_NEW;
3145
3146 /* we start IO on all the marked extents here, but we don't actually
3147 * wait for them until later.
3148 */
3149 blk_start_plug(&plug);
3150 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3151 /*
3152 * -EAGAIN happens when someone, e.g., a concurrent transaction
3153 * commit, writes a dirty extent in this tree-log commit. This
3154 * concurrent write will create a hole writing out the extents,
3155 * and we cannot proceed on a zoned filesystem, requiring
3156 * sequential writing. While we can bail out to a full commit
3157 * here, but we can continue hoping the concurrent writing fills
3158 * the hole.
3159 */
3160 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3161 ret = 0;
3162 if (ret) {
3163 blk_finish_plug(&plug);
3164 btrfs_abort_transaction(trans, ret);
3165 btrfs_set_log_full_commit(trans);
3166 mutex_unlock(&root->log_mutex);
3167 goto out;
3168 }
3169
3170 /*
3171 * We _must_ update under the root->log_mutex in order to make sure we
3172 * have a consistent view of the log root we are trying to commit at
3173 * this moment.
3174 *
3175 * We _must_ copy this into a local copy, because we are not holding the
3176 * log_root_tree->log_mutex yet. This is important because when we
3177 * commit the log_root_tree we must have a consistent view of the
3178 * log_root_tree when we update the super block to point at the
3179 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3180 * with the commit and possibly point at the new block which we may not
3181 * have written out.
3182 */
3183 btrfs_set_root_node(&log->root_item, log->node);
3184 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3185
3186 root->log_transid++;
3187 log->log_transid = root->log_transid;
3188 root->log_start_pid = 0;
3189 /*
3190 * IO has been started, blocks of the log tree have WRITTEN flag set
3191 * in their headers. new modifications of the log will be written to
3192 * new positions. so it's safe to allow log writers to go in.
3193 */
3194 mutex_unlock(&root->log_mutex);
3195
3196 if (btrfs_is_zoned(fs_info)) {
3197 mutex_lock(&fs_info->tree_root->log_mutex);
3198 if (!log_root_tree->node) {
3199 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3200 if (ret) {
3201 mutex_unlock(&fs_info->tree_root->log_mutex);
3202 goto out;
3203 }
3204 }
3205 mutex_unlock(&fs_info->tree_root->log_mutex);
3206 }
3207
3208 btrfs_init_log_ctx(&root_log_ctx, NULL);
3209
3210 mutex_lock(&log_root_tree->log_mutex);
3211
3212 index2 = log_root_tree->log_transid % 2;
3213 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3214 root_log_ctx.log_transid = log_root_tree->log_transid;
3215
3216 /*
3217 * Now we are safe to update the log_root_tree because we're under the
3218 * log_mutex, and we're a current writer so we're holding the commit
3219 * open until we drop the log_mutex.
3220 */
3221 ret = update_log_root(trans, log, &new_root_item);
3222 if (ret) {
3223 if (!list_empty(&root_log_ctx.list))
3224 list_del_init(&root_log_ctx.list);
3225
3226 blk_finish_plug(&plug);
3227 btrfs_set_log_full_commit(trans);
3228
3229 if (ret != -ENOSPC) {
3230 btrfs_abort_transaction(trans, ret);
3231 mutex_unlock(&log_root_tree->log_mutex);
3232 goto out;
3233 }
3234 btrfs_wait_tree_log_extents(log, mark);
3235 mutex_unlock(&log_root_tree->log_mutex);
3236 ret = -EAGAIN;
3237 goto out;
3238 }
3239
3240 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3241 blk_finish_plug(&plug);
3242 list_del_init(&root_log_ctx.list);
3243 mutex_unlock(&log_root_tree->log_mutex);
3244 ret = root_log_ctx.log_ret;
3245 goto out;
3246 }
3247
3248 index2 = root_log_ctx.log_transid % 2;
3249 if (atomic_read(&log_root_tree->log_commit[index2])) {
3250 blk_finish_plug(&plug);
3251 ret = btrfs_wait_tree_log_extents(log, mark);
3252 wait_log_commit(log_root_tree,
3253 root_log_ctx.log_transid);
3254 mutex_unlock(&log_root_tree->log_mutex);
3255 if (!ret)
3256 ret = root_log_ctx.log_ret;
3257 goto out;
3258 }
3259 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3260 atomic_set(&log_root_tree->log_commit[index2], 1);
3261
3262 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3263 wait_log_commit(log_root_tree,
3264 root_log_ctx.log_transid - 1);
3265 }
3266
3267 /*
3268 * now that we've moved on to the tree of log tree roots,
3269 * check the full commit flag again
3270 */
3271 if (btrfs_need_log_full_commit(trans)) {
3272 blk_finish_plug(&plug);
3273 btrfs_wait_tree_log_extents(log, mark);
3274 mutex_unlock(&log_root_tree->log_mutex);
3275 ret = -EAGAIN;
3276 goto out_wake_log_root;
3277 }
3278
3279 ret = btrfs_write_marked_extents(fs_info,
3280 &log_root_tree->dirty_log_pages,
3281 EXTENT_DIRTY | EXTENT_NEW);
3282 blk_finish_plug(&plug);
3283 /*
3284 * As described above, -EAGAIN indicates a hole in the extents. We
3285 * cannot wait for these write outs since the waiting cause a
3286 * deadlock. Bail out to the full commit instead.
3287 */
3288 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3289 btrfs_set_log_full_commit(trans);
3290 btrfs_wait_tree_log_extents(log, mark);
3291 mutex_unlock(&log_root_tree->log_mutex);
3292 goto out_wake_log_root;
3293 } else if (ret) {
3294 btrfs_set_log_full_commit(trans);
3295 btrfs_abort_transaction(trans, ret);
3296 mutex_unlock(&log_root_tree->log_mutex);
3297 goto out_wake_log_root;
3298 }
3299 ret = btrfs_wait_tree_log_extents(log, mark);
3300 if (!ret)
3301 ret = btrfs_wait_tree_log_extents(log_root_tree,
3302 EXTENT_NEW | EXTENT_DIRTY);
3303 if (ret) {
3304 btrfs_set_log_full_commit(trans);
3305 mutex_unlock(&log_root_tree->log_mutex);
3306 goto out_wake_log_root;
3307 }
3308
3309 log_root_start = log_root_tree->node->start;
3310 log_root_level = btrfs_header_level(log_root_tree->node);
3311 log_root_tree->log_transid++;
3312 mutex_unlock(&log_root_tree->log_mutex);
3313
3314 /*
3315 * Here we are guaranteed that nobody is going to write the superblock
3316 * for the current transaction before us and that neither we do write
3317 * our superblock before the previous transaction finishes its commit
3318 * and writes its superblock, because:
3319 *
3320 * 1) We are holding a handle on the current transaction, so no body
3321 * can commit it until we release the handle;
3322 *
3323 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3324 * if the previous transaction is still committing, and hasn't yet
3325 * written its superblock, we wait for it to do it, because a
3326 * transaction commit acquires the tree_log_mutex when the commit
3327 * begins and releases it only after writing its superblock.
3328 */
3329 mutex_lock(&fs_info->tree_log_mutex);
3330
3331 /*
3332 * The previous transaction writeout phase could have failed, and thus
3333 * marked the fs in an error state. We must not commit here, as we
3334 * could have updated our generation in the super_for_commit and
3335 * writing the super here would result in transid mismatches. If there
3336 * is an error here just bail.
3337 */
3338 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3339 ret = -EIO;
3340 btrfs_set_log_full_commit(trans);
3341 btrfs_abort_transaction(trans, ret);
3342 mutex_unlock(&fs_info->tree_log_mutex);
3343 goto out_wake_log_root;
3344 }
3345
3346 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3347 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3348 ret = write_all_supers(fs_info, 1);
3349 mutex_unlock(&fs_info->tree_log_mutex);
3350 if (ret) {
3351 btrfs_set_log_full_commit(trans);
3352 btrfs_abort_transaction(trans, ret);
3353 goto out_wake_log_root;
3354 }
3355
3356 mutex_lock(&root->log_mutex);
3357 if (root->last_log_commit < log_transid)
3358 root->last_log_commit = log_transid;
3359 mutex_unlock(&root->log_mutex);
3360
3361out_wake_log_root:
3362 mutex_lock(&log_root_tree->log_mutex);
3363 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3364
3365 log_root_tree->log_transid_committed++;
3366 atomic_set(&log_root_tree->log_commit[index2], 0);
3367 mutex_unlock(&log_root_tree->log_mutex);
3368
3369 /*
3370 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3371 * all the updates above are seen by the woken threads. It might not be
3372 * necessary, but proving that seems to be hard.
3373 */
3374 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3375out:
3376 mutex_lock(&root->log_mutex);
3377 btrfs_remove_all_log_ctxs(root, index1, ret);
3378 root->log_transid_committed++;
3379 atomic_set(&root->log_commit[index1], 0);
3380 mutex_unlock(&root->log_mutex);
3381
3382 /*
3383 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3384 * all the updates above are seen by the woken threads. It might not be
3385 * necessary, but proving that seems to be hard.
3386 */
3387 cond_wake_up(&root->log_commit_wait[index1]);
3388 return ret;
3389}
3390
3391static void free_log_tree(struct btrfs_trans_handle *trans,
3392 struct btrfs_root *log)
3393{
3394 int ret;
3395 struct walk_control wc = {
3396 .free = 1,
3397 .process_func = process_one_buffer
3398 };
3399
3400 if (log->node) {
3401 ret = walk_log_tree(trans, log, &wc);
3402 if (ret) {
3403 if (trans)
3404 btrfs_abort_transaction(trans, ret);
3405 else
3406 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3407 }
3408 }
3409
3410 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3411 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3412 extent_io_tree_release(&log->log_csum_range);
3413
3414 if (trans && log->node)
3415 btrfs_redirty_list_add(trans->transaction, log->node);
3416 btrfs_put_root(log);
3417}
3418
3419/*
3420 * free all the extents used by the tree log. This should be called
3421 * at commit time of the full transaction
3422 */
3423int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3424{
3425 if (root->log_root) {
3426 free_log_tree(trans, root->log_root);
3427 root->log_root = NULL;
3428 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3429 }
3430 return 0;
3431}
3432
3433int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3434 struct btrfs_fs_info *fs_info)
3435{
3436 if (fs_info->log_root_tree) {
3437 free_log_tree(trans, fs_info->log_root_tree);
3438 fs_info->log_root_tree = NULL;
3439 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3440 }
3441 return 0;
3442}
3443
3444/*
3445 * Check if an inode was logged in the current transaction. We can't always rely
3446 * on an inode's logged_trans value, because it's an in-memory only field and
3447 * therefore not persisted. This means that its value is lost if the inode gets
3448 * evicted and loaded again from disk (in which case it has a value of 0, and
3449 * certainly it is smaller then any possible transaction ID), when that happens
3450 * the full_sync flag is set in the inode's runtime flags, so on that case we
3451 * assume eviction happened and ignore the logged_trans value, assuming the
3452 * worst case, that the inode was logged before in the current transaction.
3453 */
3454static bool inode_logged(struct btrfs_trans_handle *trans,
3455 struct btrfs_inode *inode)
3456{
3457 if (inode->logged_trans == trans->transid)
3458 return true;
3459
3460 if (inode->last_trans == trans->transid &&
3461 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3462 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3463 return true;
3464
3465 return false;
3466}
3467
3468/*
3469 * If both a file and directory are logged, and unlinks or renames are
3470 * mixed in, we have a few interesting corners:
3471 *
3472 * create file X in dir Y
3473 * link file X to X.link in dir Y
3474 * fsync file X
3475 * unlink file X but leave X.link
3476 * fsync dir Y
3477 *
3478 * After a crash we would expect only X.link to exist. But file X
3479 * didn't get fsync'd again so the log has back refs for X and X.link.
3480 *
3481 * We solve this by removing directory entries and inode backrefs from the
3482 * log when a file that was logged in the current transaction is
3483 * unlinked. Any later fsync will include the updated log entries, and
3484 * we'll be able to reconstruct the proper directory items from backrefs.
3485 *
3486 * This optimizations allows us to avoid relogging the entire inode
3487 * or the entire directory.
3488 */
3489int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 const char *name, int name_len,
3492 struct btrfs_inode *dir, u64 index)
3493{
3494 struct btrfs_root *log;
3495 struct btrfs_dir_item *di;
3496 struct btrfs_path *path;
3497 int ret;
3498 int err = 0;
3499 u64 dir_ino = btrfs_ino(dir);
3500
3501 if (!inode_logged(trans, dir))
3502 return 0;
3503
3504 ret = join_running_log_trans(root);
3505 if (ret)
3506 return 0;
3507
3508 mutex_lock(&dir->log_mutex);
3509
3510 log = root->log_root;
3511 path = btrfs_alloc_path();
3512 if (!path) {
3513 err = -ENOMEM;
3514 goto out_unlock;
3515 }
3516
3517 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3518 name, name_len, -1);
3519 if (IS_ERR(di)) {
3520 err = PTR_ERR(di);
3521 goto fail;
3522 }
3523 if (di) {
3524 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3525 if (ret) {
3526 err = ret;
3527 goto fail;
3528 }
3529 }
3530 btrfs_release_path(path);
3531 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3532 index, name, name_len, -1);
3533 if (IS_ERR(di)) {
3534 err = PTR_ERR(di);
3535 goto fail;
3536 }
3537 if (di) {
3538 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3539 if (ret) {
3540 err = ret;
3541 goto fail;
3542 }
3543 }
3544
3545 /*
3546 * We do not need to update the size field of the directory's inode item
3547 * because on log replay we update the field to reflect all existing
3548 * entries in the directory (see overwrite_item()).
3549 */
3550fail:
3551 btrfs_free_path(path);
3552out_unlock:
3553 mutex_unlock(&dir->log_mutex);
3554 if (err == -ENOSPC) {
3555 btrfs_set_log_full_commit(trans);
3556 err = 0;
3557 } else if (err < 0 && err != -ENOENT) {
3558 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3559 btrfs_abort_transaction(trans, err);
3560 }
3561
3562 btrfs_end_log_trans(root);
3563
3564 return err;
3565}
3566
3567/* see comments for btrfs_del_dir_entries_in_log */
3568int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3569 struct btrfs_root *root,
3570 const char *name, int name_len,
3571 struct btrfs_inode *inode, u64 dirid)
3572{
3573 struct btrfs_root *log;
3574 u64 index;
3575 int ret;
3576
3577 if (!inode_logged(trans, inode))
3578 return 0;
3579
3580 ret = join_running_log_trans(root);
3581 if (ret)
3582 return 0;
3583 log = root->log_root;
3584 mutex_lock(&inode->log_mutex);
3585
3586 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3587 dirid, &index);
3588 mutex_unlock(&inode->log_mutex);
3589 if (ret == -ENOSPC) {
3590 btrfs_set_log_full_commit(trans);
3591 ret = 0;
3592 } else if (ret < 0 && ret != -ENOENT)
3593 btrfs_abort_transaction(trans, ret);
3594 btrfs_end_log_trans(root);
3595
3596 return ret;
3597}
3598
3599/*
3600 * creates a range item in the log for 'dirid'. first_offset and
3601 * last_offset tell us which parts of the key space the log should
3602 * be considered authoritative for.
3603 */
3604static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *log,
3606 struct btrfs_path *path,
3607 int key_type, u64 dirid,
3608 u64 first_offset, u64 last_offset)
3609{
3610 int ret;
3611 struct btrfs_key key;
3612 struct btrfs_dir_log_item *item;
3613
3614 key.objectid = dirid;
3615 key.offset = first_offset;
3616 if (key_type == BTRFS_DIR_ITEM_KEY)
3617 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3618 else
3619 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3620 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3621 if (ret)
3622 return ret;
3623
3624 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3625 struct btrfs_dir_log_item);
3626 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3627 btrfs_mark_buffer_dirty(path->nodes[0]);
3628 btrfs_release_path(path);
3629 return 0;
3630}
3631
3632/*
3633 * log all the items included in the current transaction for a given
3634 * directory. This also creates the range items in the log tree required
3635 * to replay anything deleted before the fsync
3636 */
3637static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3638 struct btrfs_root *root, struct btrfs_inode *inode,
3639 struct btrfs_path *path,
3640 struct btrfs_path *dst_path, int key_type,
3641 struct btrfs_log_ctx *ctx,
3642 u64 min_offset, u64 *last_offset_ret)
3643{
3644 struct btrfs_key min_key;
3645 struct btrfs_root *log = root->log_root;
3646 struct extent_buffer *src;
3647 int err = 0;
3648 int ret;
3649 int i;
3650 int nritems;
3651 u64 first_offset = min_offset;
3652 u64 last_offset = (u64)-1;
3653 u64 ino = btrfs_ino(inode);
3654
3655 log = root->log_root;
3656
3657 min_key.objectid = ino;
3658 min_key.type = key_type;
3659 min_key.offset = min_offset;
3660
3661 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3662
3663 /*
3664 * we didn't find anything from this transaction, see if there
3665 * is anything at all
3666 */
3667 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3668 min_key.objectid = ino;
3669 min_key.type = key_type;
3670 min_key.offset = (u64)-1;
3671 btrfs_release_path(path);
3672 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3673 if (ret < 0) {
3674 btrfs_release_path(path);
3675 return ret;
3676 }
3677 ret = btrfs_previous_item(root, path, ino, key_type);
3678
3679 /* if ret == 0 there are items for this type,
3680 * create a range to tell us the last key of this type.
3681 * otherwise, there are no items in this directory after
3682 * *min_offset, and we create a range to indicate that.
3683 */
3684 if (ret == 0) {
3685 struct btrfs_key tmp;
3686 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3687 path->slots[0]);
3688 if (key_type == tmp.type)
3689 first_offset = max(min_offset, tmp.offset) + 1;
3690 }
3691 goto done;
3692 }
3693
3694 /* go backward to find any previous key */
3695 ret = btrfs_previous_item(root, path, ino, key_type);
3696 if (ret == 0) {
3697 struct btrfs_key tmp;
3698 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3699 if (key_type == tmp.type) {
3700 first_offset = tmp.offset;
3701 ret = overwrite_item(trans, log, dst_path,
3702 path->nodes[0], path->slots[0],
3703 &tmp);
3704 if (ret) {
3705 err = ret;
3706 goto done;
3707 }
3708 }
3709 }
3710 btrfs_release_path(path);
3711
3712 /*
3713 * Find the first key from this transaction again. See the note for
3714 * log_new_dir_dentries, if we're logging a directory recursively we
3715 * won't be holding its i_mutex, which means we can modify the directory
3716 * while we're logging it. If we remove an entry between our first
3717 * search and this search we'll not find the key again and can just
3718 * bail.
3719 */
3720search:
3721 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3722 if (ret != 0)
3723 goto done;
3724
3725 /*
3726 * we have a block from this transaction, log every item in it
3727 * from our directory
3728 */
3729 while (1) {
3730 struct btrfs_key tmp;
3731 src = path->nodes[0];
3732 nritems = btrfs_header_nritems(src);
3733 for (i = path->slots[0]; i < nritems; i++) {
3734 struct btrfs_dir_item *di;
3735
3736 btrfs_item_key_to_cpu(src, &min_key, i);
3737
3738 if (min_key.objectid != ino || min_key.type != key_type)
3739 goto done;
3740
3741 if (need_resched()) {
3742 btrfs_release_path(path);
3743 cond_resched();
3744 goto search;
3745 }
3746
3747 ret = overwrite_item(trans, log, dst_path, src, i,
3748 &min_key);
3749 if (ret) {
3750 err = ret;
3751 goto done;
3752 }
3753
3754 /*
3755 * We must make sure that when we log a directory entry,
3756 * the corresponding inode, after log replay, has a
3757 * matching link count. For example:
3758 *
3759 * touch foo
3760 * mkdir mydir
3761 * sync
3762 * ln foo mydir/bar
3763 * xfs_io -c "fsync" mydir
3764 * <crash>
3765 * <mount fs and log replay>
3766 *
3767 * Would result in a fsync log that when replayed, our
3768 * file inode would have a link count of 1, but we get
3769 * two directory entries pointing to the same inode.
3770 * After removing one of the names, it would not be
3771 * possible to remove the other name, which resulted
3772 * always in stale file handle errors, and would not
3773 * be possible to rmdir the parent directory, since
3774 * its i_size could never decrement to the value
3775 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3776 */
3777 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3778 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3779 if (ctx &&
3780 (btrfs_dir_transid(src, di) == trans->transid ||
3781 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3782 tmp.type != BTRFS_ROOT_ITEM_KEY)
3783 ctx->log_new_dentries = true;
3784 }
3785 path->slots[0] = nritems;
3786
3787 /*
3788 * look ahead to the next item and see if it is also
3789 * from this directory and from this transaction
3790 */
3791 ret = btrfs_next_leaf(root, path);
3792 if (ret) {
3793 if (ret == 1)
3794 last_offset = (u64)-1;
3795 else
3796 err = ret;
3797 goto done;
3798 }
3799 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3800 if (tmp.objectid != ino || tmp.type != key_type) {
3801 last_offset = (u64)-1;
3802 goto done;
3803 }
3804 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3805 ret = overwrite_item(trans, log, dst_path,
3806 path->nodes[0], path->slots[0],
3807 &tmp);
3808 if (ret)
3809 err = ret;
3810 else
3811 last_offset = tmp.offset;
3812 goto done;
3813 }
3814 }
3815done:
3816 btrfs_release_path(path);
3817 btrfs_release_path(dst_path);
3818
3819 if (err == 0) {
3820 *last_offset_ret = last_offset;
3821 /*
3822 * insert the log range keys to indicate where the log
3823 * is valid
3824 */
3825 ret = insert_dir_log_key(trans, log, path, key_type,
3826 ino, first_offset, last_offset);
3827 if (ret)
3828 err = ret;
3829 }
3830 return err;
3831}
3832
3833/*
3834 * logging directories is very similar to logging inodes, We find all the items
3835 * from the current transaction and write them to the log.
3836 *
3837 * The recovery code scans the directory in the subvolume, and if it finds a
3838 * key in the range logged that is not present in the log tree, then it means
3839 * that dir entry was unlinked during the transaction.
3840 *
3841 * In order for that scan to work, we must include one key smaller than
3842 * the smallest logged by this transaction and one key larger than the largest
3843 * key logged by this transaction.
3844 */
3845static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3846 struct btrfs_root *root, struct btrfs_inode *inode,
3847 struct btrfs_path *path,
3848 struct btrfs_path *dst_path,
3849 struct btrfs_log_ctx *ctx)
3850{
3851 u64 min_key;
3852 u64 max_key;
3853 int ret;
3854 int key_type = BTRFS_DIR_ITEM_KEY;
3855
3856again:
3857 min_key = 0;
3858 max_key = 0;
3859 while (1) {
3860 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3861 ctx, min_key, &max_key);
3862 if (ret)
3863 return ret;
3864 if (max_key == (u64)-1)
3865 break;
3866 min_key = max_key + 1;
3867 }
3868
3869 if (key_type == BTRFS_DIR_ITEM_KEY) {
3870 key_type = BTRFS_DIR_INDEX_KEY;
3871 goto again;
3872 }
3873 return 0;
3874}
3875
3876/*
3877 * a helper function to drop items from the log before we relog an
3878 * inode. max_key_type indicates the highest item type to remove.
3879 * This cannot be run for file data extents because it does not
3880 * free the extents they point to.
3881 */
3882static int drop_objectid_items(struct btrfs_trans_handle *trans,
3883 struct btrfs_root *log,
3884 struct btrfs_path *path,
3885 u64 objectid, int max_key_type)
3886{
3887 int ret;
3888 struct btrfs_key key;
3889 struct btrfs_key found_key;
3890 int start_slot;
3891
3892 key.objectid = objectid;
3893 key.type = max_key_type;
3894 key.offset = (u64)-1;
3895
3896 while (1) {
3897 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3898 BUG_ON(ret == 0); /* Logic error */
3899 if (ret < 0)
3900 break;
3901
3902 if (path->slots[0] == 0)
3903 break;
3904
3905 path->slots[0]--;
3906 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3907 path->slots[0]);
3908
3909 if (found_key.objectid != objectid)
3910 break;
3911
3912 found_key.offset = 0;
3913 found_key.type = 0;
3914 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3915 if (ret < 0)
3916 break;
3917
3918 ret = btrfs_del_items(trans, log, path, start_slot,
3919 path->slots[0] - start_slot + 1);
3920 /*
3921 * If start slot isn't 0 then we don't need to re-search, we've
3922 * found the last guy with the objectid in this tree.
3923 */
3924 if (ret || start_slot != 0)
3925 break;
3926 btrfs_release_path(path);
3927 }
3928 btrfs_release_path(path);
3929 if (ret > 0)
3930 ret = 0;
3931 return ret;
3932}
3933
3934static void fill_inode_item(struct btrfs_trans_handle *trans,
3935 struct extent_buffer *leaf,
3936 struct btrfs_inode_item *item,
3937 struct inode *inode, int log_inode_only,
3938 u64 logged_isize)
3939{
3940 struct btrfs_map_token token;
3941
3942 btrfs_init_map_token(&token, leaf);
3943
3944 if (log_inode_only) {
3945 /* set the generation to zero so the recover code
3946 * can tell the difference between an logging
3947 * just to say 'this inode exists' and a logging
3948 * to say 'update this inode with these values'
3949 */
3950 btrfs_set_token_inode_generation(&token, item, 0);
3951 btrfs_set_token_inode_size(&token, item, logged_isize);
3952 } else {
3953 btrfs_set_token_inode_generation(&token, item,
3954 BTRFS_I(inode)->generation);
3955 btrfs_set_token_inode_size(&token, item, inode->i_size);
3956 }
3957
3958 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3959 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3960 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3961 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3962
3963 btrfs_set_token_timespec_sec(&token, &item->atime,
3964 inode->i_atime.tv_sec);
3965 btrfs_set_token_timespec_nsec(&token, &item->atime,
3966 inode->i_atime.tv_nsec);
3967
3968 btrfs_set_token_timespec_sec(&token, &item->mtime,
3969 inode->i_mtime.tv_sec);
3970 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3971 inode->i_mtime.tv_nsec);
3972
3973 btrfs_set_token_timespec_sec(&token, &item->ctime,
3974 inode->i_ctime.tv_sec);
3975 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3976 inode->i_ctime.tv_nsec);
3977
3978 /*
3979 * We do not need to set the nbytes field, in fact during a fast fsync
3980 * its value may not even be correct, since a fast fsync does not wait
3981 * for ordered extent completion, which is where we update nbytes, it
3982 * only waits for writeback to complete. During log replay as we find
3983 * file extent items and replay them, we adjust the nbytes field of the
3984 * inode item in subvolume tree as needed (see overwrite_item()).
3985 */
3986
3987 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3988 btrfs_set_token_inode_transid(&token, item, trans->transid);
3989 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3990 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3991 btrfs_set_token_inode_block_group(&token, item, 0);
3992}
3993
3994static int log_inode_item(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *log, struct btrfs_path *path,
3996 struct btrfs_inode *inode)
3997{
3998 struct btrfs_inode_item *inode_item;
3999 int ret;
4000
4001 ret = btrfs_insert_empty_item(trans, log, path,
4002 &inode->location, sizeof(*inode_item));
4003 if (ret && ret != -EEXIST)
4004 return ret;
4005 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4006 struct btrfs_inode_item);
4007 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4008 0, 0);
4009 btrfs_release_path(path);
4010 return 0;
4011}
4012
4013static int log_csums(struct btrfs_trans_handle *trans,
4014 struct btrfs_inode *inode,
4015 struct btrfs_root *log_root,
4016 struct btrfs_ordered_sum *sums)
4017{
4018 const u64 lock_end = sums->bytenr + sums->len - 1;
4019 struct extent_state *cached_state = NULL;
4020 int ret;
4021
4022 /*
4023 * If this inode was not used for reflink operations in the current
4024 * transaction with new extents, then do the fast path, no need to
4025 * worry about logging checksum items with overlapping ranges.
4026 */
4027 if (inode->last_reflink_trans < trans->transid)
4028 return btrfs_csum_file_blocks(trans, log_root, sums);
4029
4030 /*
4031 * Serialize logging for checksums. This is to avoid racing with the
4032 * same checksum being logged by another task that is logging another
4033 * file which happens to refer to the same extent as well. Such races
4034 * can leave checksum items in the log with overlapping ranges.
4035 */
4036 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4037 lock_end, &cached_state);
4038 if (ret)
4039 return ret;
4040 /*
4041 * Due to extent cloning, we might have logged a csum item that covers a
4042 * subrange of a cloned extent, and later we can end up logging a csum
4043 * item for a larger subrange of the same extent or the entire range.
4044 * This would leave csum items in the log tree that cover the same range
4045 * and break the searches for checksums in the log tree, resulting in
4046 * some checksums missing in the fs/subvolume tree. So just delete (or
4047 * trim and adjust) any existing csum items in the log for this range.
4048 */
4049 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4050 if (!ret)
4051 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4052
4053 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4054 &cached_state);
4055
4056 return ret;
4057}
4058
4059static noinline int copy_items(struct btrfs_trans_handle *trans,
4060 struct btrfs_inode *inode,
4061 struct btrfs_path *dst_path,
4062 struct btrfs_path *src_path,
4063 int start_slot, int nr, int inode_only,
4064 u64 logged_isize)
4065{
4066 struct btrfs_fs_info *fs_info = trans->fs_info;
4067 unsigned long src_offset;
4068 unsigned long dst_offset;
4069 struct btrfs_root *log = inode->root->log_root;
4070 struct btrfs_file_extent_item *extent;
4071 struct btrfs_inode_item *inode_item;
4072 struct extent_buffer *src = src_path->nodes[0];
4073 int ret;
4074 struct btrfs_key *ins_keys;
4075 u32 *ins_sizes;
4076 char *ins_data;
4077 int i;
4078 struct list_head ordered_sums;
4079 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4080
4081 INIT_LIST_HEAD(&ordered_sums);
4082
4083 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4084 nr * sizeof(u32), GFP_NOFS);
4085 if (!ins_data)
4086 return -ENOMEM;
4087
4088 ins_sizes = (u32 *)ins_data;
4089 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4090
4091 for (i = 0; i < nr; i++) {
4092 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4093 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4094 }
4095 ret = btrfs_insert_empty_items(trans, log, dst_path,
4096 ins_keys, ins_sizes, nr);
4097 if (ret) {
4098 kfree(ins_data);
4099 return ret;
4100 }
4101
4102 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4103 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4104 dst_path->slots[0]);
4105
4106 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4107
4108 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4109 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4110 dst_path->slots[0],
4111 struct btrfs_inode_item);
4112 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4113 &inode->vfs_inode,
4114 inode_only == LOG_INODE_EXISTS,
4115 logged_isize);
4116 } else {
4117 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4118 src_offset, ins_sizes[i]);
4119 }
4120
4121 /* take a reference on file data extents so that truncates
4122 * or deletes of this inode don't have to relog the inode
4123 * again
4124 */
4125 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4126 !skip_csum) {
4127 int found_type;
4128 extent = btrfs_item_ptr(src, start_slot + i,
4129 struct btrfs_file_extent_item);
4130
4131 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4132 continue;
4133
4134 found_type = btrfs_file_extent_type(src, extent);
4135 if (found_type == BTRFS_FILE_EXTENT_REG) {
4136 u64 ds, dl, cs, cl;
4137 ds = btrfs_file_extent_disk_bytenr(src,
4138 extent);
4139 /* ds == 0 is a hole */
4140 if (ds == 0)
4141 continue;
4142
4143 dl = btrfs_file_extent_disk_num_bytes(src,
4144 extent);
4145 cs = btrfs_file_extent_offset(src, extent);
4146 cl = btrfs_file_extent_num_bytes(src,
4147 extent);
4148 if (btrfs_file_extent_compression(src,
4149 extent)) {
4150 cs = 0;
4151 cl = dl;
4152 }
4153
4154 ret = btrfs_lookup_csums_range(
4155 fs_info->csum_root,
4156 ds + cs, ds + cs + cl - 1,
4157 &ordered_sums, 0);
4158 if (ret)
4159 break;
4160 }
4161 }
4162 }
4163
4164 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4165 btrfs_release_path(dst_path);
4166 kfree(ins_data);
4167
4168 /*
4169 * we have to do this after the loop above to avoid changing the
4170 * log tree while trying to change the log tree.
4171 */
4172 while (!list_empty(&ordered_sums)) {
4173 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174 struct btrfs_ordered_sum,
4175 list);
4176 if (!ret)
4177 ret = log_csums(trans, inode, log, sums);
4178 list_del(&sums->list);
4179 kfree(sums);
4180 }
4181
4182 return ret;
4183}
4184
4185static int extent_cmp(void *priv, const struct list_head *a,
4186 const struct list_head *b)
4187{
4188 struct extent_map *em1, *em2;
4189
4190 em1 = list_entry(a, struct extent_map, list);
4191 em2 = list_entry(b, struct extent_map, list);
4192
4193 if (em1->start < em2->start)
4194 return -1;
4195 else if (em1->start > em2->start)
4196 return 1;
4197 return 0;
4198}
4199
4200static int log_extent_csums(struct btrfs_trans_handle *trans,
4201 struct btrfs_inode *inode,
4202 struct btrfs_root *log_root,
4203 const struct extent_map *em,
4204 struct btrfs_log_ctx *ctx)
4205{
4206 struct btrfs_ordered_extent *ordered;
4207 u64 csum_offset;
4208 u64 csum_len;
4209 u64 mod_start = em->mod_start;
4210 u64 mod_len = em->mod_len;
4211 LIST_HEAD(ordered_sums);
4212 int ret = 0;
4213
4214 if (inode->flags & BTRFS_INODE_NODATASUM ||
4215 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4216 em->block_start == EXTENT_MAP_HOLE)
4217 return 0;
4218
4219 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4220 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4221 const u64 mod_end = mod_start + mod_len;
4222 struct btrfs_ordered_sum *sums;
4223
4224 if (mod_len == 0)
4225 break;
4226
4227 if (ordered_end <= mod_start)
4228 continue;
4229 if (mod_end <= ordered->file_offset)
4230 break;
4231
4232 /*
4233 * We are going to copy all the csums on this ordered extent, so
4234 * go ahead and adjust mod_start and mod_len in case this ordered
4235 * extent has already been logged.
4236 */
4237 if (ordered->file_offset > mod_start) {
4238 if (ordered_end >= mod_end)
4239 mod_len = ordered->file_offset - mod_start;
4240 /*
4241 * If we have this case
4242 *
4243 * |--------- logged extent ---------|
4244 * |----- ordered extent ----|
4245 *
4246 * Just don't mess with mod_start and mod_len, we'll
4247 * just end up logging more csums than we need and it
4248 * will be ok.
4249 */
4250 } else {
4251 if (ordered_end < mod_end) {
4252 mod_len = mod_end - ordered_end;
4253 mod_start = ordered_end;
4254 } else {
4255 mod_len = 0;
4256 }
4257 }
4258
4259 /*
4260 * To keep us from looping for the above case of an ordered
4261 * extent that falls inside of the logged extent.
4262 */
4263 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4264 continue;
4265
4266 list_for_each_entry(sums, &ordered->list, list) {
4267 ret = log_csums(trans, inode, log_root, sums);
4268 if (ret)
4269 return ret;
4270 }
4271 }
4272
4273 /* We're done, found all csums in the ordered extents. */
4274 if (mod_len == 0)
4275 return 0;
4276
4277 /* If we're compressed we have to save the entire range of csums. */
4278 if (em->compress_type) {
4279 csum_offset = 0;
4280 csum_len = max(em->block_len, em->orig_block_len);
4281 } else {
4282 csum_offset = mod_start - em->start;
4283 csum_len = mod_len;
4284 }
4285
4286 /* block start is already adjusted for the file extent offset. */
4287 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4288 em->block_start + csum_offset,
4289 em->block_start + csum_offset +
4290 csum_len - 1, &ordered_sums, 0);
4291 if (ret)
4292 return ret;
4293
4294 while (!list_empty(&ordered_sums)) {
4295 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4296 struct btrfs_ordered_sum,
4297 list);
4298 if (!ret)
4299 ret = log_csums(trans, inode, log_root, sums);
4300 list_del(&sums->list);
4301 kfree(sums);
4302 }
4303
4304 return ret;
4305}
4306
4307static int log_one_extent(struct btrfs_trans_handle *trans,
4308 struct btrfs_inode *inode, struct btrfs_root *root,
4309 const struct extent_map *em,
4310 struct btrfs_path *path,
4311 struct btrfs_log_ctx *ctx)
4312{
4313 struct btrfs_drop_extents_args drop_args = { 0 };
4314 struct btrfs_root *log = root->log_root;
4315 struct btrfs_file_extent_item *fi;
4316 struct extent_buffer *leaf;
4317 struct btrfs_map_token token;
4318 struct btrfs_key key;
4319 u64 extent_offset = em->start - em->orig_start;
4320 u64 block_len;
4321 int ret;
4322
4323 ret = log_extent_csums(trans, inode, log, em, ctx);
4324 if (ret)
4325 return ret;
4326
4327 drop_args.path = path;
4328 drop_args.start = em->start;
4329 drop_args.end = em->start + em->len;
4330 drop_args.replace_extent = true;
4331 drop_args.extent_item_size = sizeof(*fi);
4332 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4333 if (ret)
4334 return ret;
4335
4336 if (!drop_args.extent_inserted) {
4337 key.objectid = btrfs_ino(inode);
4338 key.type = BTRFS_EXTENT_DATA_KEY;
4339 key.offset = em->start;
4340
4341 ret = btrfs_insert_empty_item(trans, log, path, &key,
4342 sizeof(*fi));
4343 if (ret)
4344 return ret;
4345 }
4346 leaf = path->nodes[0];
4347 btrfs_init_map_token(&token, leaf);
4348 fi = btrfs_item_ptr(leaf, path->slots[0],
4349 struct btrfs_file_extent_item);
4350
4351 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4352 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4353 btrfs_set_token_file_extent_type(&token, fi,
4354 BTRFS_FILE_EXTENT_PREALLOC);
4355 else
4356 btrfs_set_token_file_extent_type(&token, fi,
4357 BTRFS_FILE_EXTENT_REG);
4358
4359 block_len = max(em->block_len, em->orig_block_len);
4360 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4361 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4362 em->block_start);
4363 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4364 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4365 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4366 em->block_start -
4367 extent_offset);
4368 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4369 } else {
4370 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4371 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4372 }
4373
4374 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4375 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4376 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4377 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4378 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4379 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4380 btrfs_mark_buffer_dirty(leaf);
4381
4382 btrfs_release_path(path);
4383
4384 return ret;
4385}
4386
4387/*
4388 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4389 * lose them after doing a fast fsync and replaying the log. We scan the
4390 * subvolume's root instead of iterating the inode's extent map tree because
4391 * otherwise we can log incorrect extent items based on extent map conversion.
4392 * That can happen due to the fact that extent maps are merged when they
4393 * are not in the extent map tree's list of modified extents.
4394 */
4395static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4396 struct btrfs_inode *inode,
4397 struct btrfs_path *path)
4398{
4399 struct btrfs_root *root = inode->root;
4400 struct btrfs_key key;
4401 const u64 i_size = i_size_read(&inode->vfs_inode);
4402 const u64 ino = btrfs_ino(inode);
4403 struct btrfs_path *dst_path = NULL;
4404 bool dropped_extents = false;
4405 u64 truncate_offset = i_size;
4406 struct extent_buffer *leaf;
4407 int slot;
4408 int ins_nr = 0;
4409 int start_slot;
4410 int ret;
4411
4412 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4413 return 0;
4414
4415 key.objectid = ino;
4416 key.type = BTRFS_EXTENT_DATA_KEY;
4417 key.offset = i_size;
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 if (ret < 0)
4420 goto out;
4421
4422 /*
4423 * We must check if there is a prealloc extent that starts before the
4424 * i_size and crosses the i_size boundary. This is to ensure later we
4425 * truncate down to the end of that extent and not to the i_size, as
4426 * otherwise we end up losing part of the prealloc extent after a log
4427 * replay and with an implicit hole if there is another prealloc extent
4428 * that starts at an offset beyond i_size.
4429 */
4430 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4431 if (ret < 0)
4432 goto out;
4433
4434 if (ret == 0) {
4435 struct btrfs_file_extent_item *ei;
4436
4437 leaf = path->nodes[0];
4438 slot = path->slots[0];
4439 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4440
4441 if (btrfs_file_extent_type(leaf, ei) ==
4442 BTRFS_FILE_EXTENT_PREALLOC) {
4443 u64 extent_end;
4444
4445 btrfs_item_key_to_cpu(leaf, &key, slot);
4446 extent_end = key.offset +
4447 btrfs_file_extent_num_bytes(leaf, ei);
4448
4449 if (extent_end > i_size)
4450 truncate_offset = extent_end;
4451 }
4452 } else {
4453 ret = 0;
4454 }
4455
4456 while (true) {
4457 leaf = path->nodes[0];
4458 slot = path->slots[0];
4459
4460 if (slot >= btrfs_header_nritems(leaf)) {
4461 if (ins_nr > 0) {
4462 ret = copy_items(trans, inode, dst_path, path,
4463 start_slot, ins_nr, 1, 0);
4464 if (ret < 0)
4465 goto out;
4466 ins_nr = 0;
4467 }
4468 ret = btrfs_next_leaf(root, path);
4469 if (ret < 0)
4470 goto out;
4471 if (ret > 0) {
4472 ret = 0;
4473 break;
4474 }
4475 continue;
4476 }
4477
4478 btrfs_item_key_to_cpu(leaf, &key, slot);
4479 if (key.objectid > ino)
4480 break;
4481 if (WARN_ON_ONCE(key.objectid < ino) ||
4482 key.type < BTRFS_EXTENT_DATA_KEY ||
4483 key.offset < i_size) {
4484 path->slots[0]++;
4485 continue;
4486 }
4487 if (!dropped_extents) {
4488 /*
4489 * Avoid logging extent items logged in past fsync calls
4490 * and leading to duplicate keys in the log tree.
4491 */
4492 do {
4493 ret = btrfs_truncate_inode_items(trans,
4494 root->log_root,
4495 inode, truncate_offset,
4496 BTRFS_EXTENT_DATA_KEY,
4497 NULL);
4498 } while (ret == -EAGAIN);
4499 if (ret)
4500 goto out;
4501 dropped_extents = true;
4502 }
4503 if (ins_nr == 0)
4504 start_slot = slot;
4505 ins_nr++;
4506 path->slots[0]++;
4507 if (!dst_path) {
4508 dst_path = btrfs_alloc_path();
4509 if (!dst_path) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513 }
4514 }
4515 if (ins_nr > 0)
4516 ret = copy_items(trans, inode, dst_path, path,
4517 start_slot, ins_nr, 1, 0);
4518out:
4519 btrfs_release_path(path);
4520 btrfs_free_path(dst_path);
4521 return ret;
4522}
4523
4524static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4525 struct btrfs_root *root,
4526 struct btrfs_inode *inode,
4527 struct btrfs_path *path,
4528 struct btrfs_log_ctx *ctx)
4529{
4530 struct btrfs_ordered_extent *ordered;
4531 struct btrfs_ordered_extent *tmp;
4532 struct extent_map *em, *n;
4533 struct list_head extents;
4534 struct extent_map_tree *tree = &inode->extent_tree;
4535 int ret = 0;
4536 int num = 0;
4537
4538 INIT_LIST_HEAD(&extents);
4539
4540 write_lock(&tree->lock);
4541
4542 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4543 list_del_init(&em->list);
4544 /*
4545 * Just an arbitrary number, this can be really CPU intensive
4546 * once we start getting a lot of extents, and really once we
4547 * have a bunch of extents we just want to commit since it will
4548 * be faster.
4549 */
4550 if (++num > 32768) {
4551 list_del_init(&tree->modified_extents);
4552 ret = -EFBIG;
4553 goto process;
4554 }
4555
4556 if (em->generation < trans->transid)
4557 continue;
4558
4559 /* We log prealloc extents beyond eof later. */
4560 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4561 em->start >= i_size_read(&inode->vfs_inode))
4562 continue;
4563
4564 /* Need a ref to keep it from getting evicted from cache */
4565 refcount_inc(&em->refs);
4566 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4567 list_add_tail(&em->list, &extents);
4568 num++;
4569 }
4570
4571 list_sort(NULL, &extents, extent_cmp);
4572process:
4573 while (!list_empty(&extents)) {
4574 em = list_entry(extents.next, struct extent_map, list);
4575
4576 list_del_init(&em->list);
4577
4578 /*
4579 * If we had an error we just need to delete everybody from our
4580 * private list.
4581 */
4582 if (ret) {
4583 clear_em_logging(tree, em);
4584 free_extent_map(em);
4585 continue;
4586 }
4587
4588 write_unlock(&tree->lock);
4589
4590 ret = log_one_extent(trans, inode, root, em, path, ctx);
4591 write_lock(&tree->lock);
4592 clear_em_logging(tree, em);
4593 free_extent_map(em);
4594 }
4595 WARN_ON(!list_empty(&extents));
4596 write_unlock(&tree->lock);
4597
4598 btrfs_release_path(path);
4599 if (!ret)
4600 ret = btrfs_log_prealloc_extents(trans, inode, path);
4601 if (ret)
4602 return ret;
4603
4604 /*
4605 * We have logged all extents successfully, now make sure the commit of
4606 * the current transaction waits for the ordered extents to complete
4607 * before it commits and wipes out the log trees, otherwise we would
4608 * lose data if an ordered extents completes after the transaction
4609 * commits and a power failure happens after the transaction commit.
4610 */
4611 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4612 list_del_init(&ordered->log_list);
4613 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4614
4615 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4616 spin_lock_irq(&inode->ordered_tree.lock);
4617 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4618 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4619 atomic_inc(&trans->transaction->pending_ordered);
4620 }
4621 spin_unlock_irq(&inode->ordered_tree.lock);
4622 }
4623 btrfs_put_ordered_extent(ordered);
4624 }
4625
4626 return 0;
4627}
4628
4629static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4630 struct btrfs_path *path, u64 *size_ret)
4631{
4632 struct btrfs_key key;
4633 int ret;
4634
4635 key.objectid = btrfs_ino(inode);
4636 key.type = BTRFS_INODE_ITEM_KEY;
4637 key.offset = 0;
4638
4639 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4640 if (ret < 0) {
4641 return ret;
4642 } else if (ret > 0) {
4643 *size_ret = 0;
4644 } else {
4645 struct btrfs_inode_item *item;
4646
4647 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4648 struct btrfs_inode_item);
4649 *size_ret = btrfs_inode_size(path->nodes[0], item);
4650 /*
4651 * If the in-memory inode's i_size is smaller then the inode
4652 * size stored in the btree, return the inode's i_size, so
4653 * that we get a correct inode size after replaying the log
4654 * when before a power failure we had a shrinking truncate
4655 * followed by addition of a new name (rename / new hard link).
4656 * Otherwise return the inode size from the btree, to avoid
4657 * data loss when replaying a log due to previously doing a
4658 * write that expands the inode's size and logging a new name
4659 * immediately after.
4660 */
4661 if (*size_ret > inode->vfs_inode.i_size)
4662 *size_ret = inode->vfs_inode.i_size;
4663 }
4664
4665 btrfs_release_path(path);
4666 return 0;
4667}
4668
4669/*
4670 * At the moment we always log all xattrs. This is to figure out at log replay
4671 * time which xattrs must have their deletion replayed. If a xattr is missing
4672 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4673 * because if a xattr is deleted, the inode is fsynced and a power failure
4674 * happens, causing the log to be replayed the next time the fs is mounted,
4675 * we want the xattr to not exist anymore (same behaviour as other filesystems
4676 * with a journal, ext3/4, xfs, f2fs, etc).
4677 */
4678static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4679 struct btrfs_root *root,
4680 struct btrfs_inode *inode,
4681 struct btrfs_path *path,
4682 struct btrfs_path *dst_path)
4683{
4684 int ret;
4685 struct btrfs_key key;
4686 const u64 ino = btrfs_ino(inode);
4687 int ins_nr = 0;
4688 int start_slot = 0;
4689 bool found_xattrs = false;
4690
4691 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4692 return 0;
4693
4694 key.objectid = ino;
4695 key.type = BTRFS_XATTR_ITEM_KEY;
4696 key.offset = 0;
4697
4698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699 if (ret < 0)
4700 return ret;
4701
4702 while (true) {
4703 int slot = path->slots[0];
4704 struct extent_buffer *leaf = path->nodes[0];
4705 int nritems = btrfs_header_nritems(leaf);
4706
4707 if (slot >= nritems) {
4708 if (ins_nr > 0) {
4709 ret = copy_items(trans, inode, dst_path, path,
4710 start_slot, ins_nr, 1, 0);
4711 if (ret < 0)
4712 return ret;
4713 ins_nr = 0;
4714 }
4715 ret = btrfs_next_leaf(root, path);
4716 if (ret < 0)
4717 return ret;
4718 else if (ret > 0)
4719 break;
4720 continue;
4721 }
4722
4723 btrfs_item_key_to_cpu(leaf, &key, slot);
4724 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4725 break;
4726
4727 if (ins_nr == 0)
4728 start_slot = slot;
4729 ins_nr++;
4730 path->slots[0]++;
4731 found_xattrs = true;
4732 cond_resched();
4733 }
4734 if (ins_nr > 0) {
4735 ret = copy_items(trans, inode, dst_path, path,
4736 start_slot, ins_nr, 1, 0);
4737 if (ret < 0)
4738 return ret;
4739 }
4740
4741 if (!found_xattrs)
4742 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4743
4744 return 0;
4745}
4746
4747/*
4748 * When using the NO_HOLES feature if we punched a hole that causes the
4749 * deletion of entire leafs or all the extent items of the first leaf (the one
4750 * that contains the inode item and references) we may end up not processing
4751 * any extents, because there are no leafs with a generation matching the
4752 * current transaction that have extent items for our inode. So we need to find
4753 * if any holes exist and then log them. We also need to log holes after any
4754 * truncate operation that changes the inode's size.
4755 */
4756static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4757 struct btrfs_root *root,
4758 struct btrfs_inode *inode,
4759 struct btrfs_path *path)
4760{
4761 struct btrfs_fs_info *fs_info = root->fs_info;
4762 struct btrfs_key key;
4763 const u64 ino = btrfs_ino(inode);
4764 const u64 i_size = i_size_read(&inode->vfs_inode);
4765 u64 prev_extent_end = 0;
4766 int ret;
4767
4768 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4769 return 0;
4770
4771 key.objectid = ino;
4772 key.type = BTRFS_EXTENT_DATA_KEY;
4773 key.offset = 0;
4774
4775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4776 if (ret < 0)
4777 return ret;
4778
4779 while (true) {
4780 struct extent_buffer *leaf = path->nodes[0];
4781
4782 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4783 ret = btrfs_next_leaf(root, path);
4784 if (ret < 0)
4785 return ret;
4786 if (ret > 0) {
4787 ret = 0;
4788 break;
4789 }
4790 leaf = path->nodes[0];
4791 }
4792
4793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4794 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4795 break;
4796
4797 /* We have a hole, log it. */
4798 if (prev_extent_end < key.offset) {
4799 const u64 hole_len = key.offset - prev_extent_end;
4800
4801 /*
4802 * Release the path to avoid deadlocks with other code
4803 * paths that search the root while holding locks on
4804 * leafs from the log root.
4805 */
4806 btrfs_release_path(path);
4807 ret = btrfs_insert_file_extent(trans, root->log_root,
4808 ino, prev_extent_end, 0,
4809 0, hole_len, 0, hole_len,
4810 0, 0, 0);
4811 if (ret < 0)
4812 return ret;
4813
4814 /*
4815 * Search for the same key again in the root. Since it's
4816 * an extent item and we are holding the inode lock, the
4817 * key must still exist. If it doesn't just emit warning
4818 * and return an error to fall back to a transaction
4819 * commit.
4820 */
4821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822 if (ret < 0)
4823 return ret;
4824 if (WARN_ON(ret > 0))
4825 return -ENOENT;
4826 leaf = path->nodes[0];
4827 }
4828
4829 prev_extent_end = btrfs_file_extent_end(path);
4830 path->slots[0]++;
4831 cond_resched();
4832 }
4833
4834 if (prev_extent_end < i_size) {
4835 u64 hole_len;
4836
4837 btrfs_release_path(path);
4838 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4839 ret = btrfs_insert_file_extent(trans, root->log_root,
4840 ino, prev_extent_end, 0, 0,
4841 hole_len, 0, hole_len,
4842 0, 0, 0);
4843 if (ret < 0)
4844 return ret;
4845 }
4846
4847 return 0;
4848}
4849
4850/*
4851 * When we are logging a new inode X, check if it doesn't have a reference that
4852 * matches the reference from some other inode Y created in a past transaction
4853 * and that was renamed in the current transaction. If we don't do this, then at
4854 * log replay time we can lose inode Y (and all its files if it's a directory):
4855 *
4856 * mkdir /mnt/x
4857 * echo "hello world" > /mnt/x/foobar
4858 * sync
4859 * mv /mnt/x /mnt/y
4860 * mkdir /mnt/x # or touch /mnt/x
4861 * xfs_io -c fsync /mnt/x
4862 * <power fail>
4863 * mount fs, trigger log replay
4864 *
4865 * After the log replay procedure, we would lose the first directory and all its
4866 * files (file foobar).
4867 * For the case where inode Y is not a directory we simply end up losing it:
4868 *
4869 * echo "123" > /mnt/foo
4870 * sync
4871 * mv /mnt/foo /mnt/bar
4872 * echo "abc" > /mnt/foo
4873 * xfs_io -c fsync /mnt/foo
4874 * <power fail>
4875 *
4876 * We also need this for cases where a snapshot entry is replaced by some other
4877 * entry (file or directory) otherwise we end up with an unreplayable log due to
4878 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4879 * if it were a regular entry:
4880 *
4881 * mkdir /mnt/x
4882 * btrfs subvolume snapshot /mnt /mnt/x/snap
4883 * btrfs subvolume delete /mnt/x/snap
4884 * rmdir /mnt/x
4885 * mkdir /mnt/x
4886 * fsync /mnt/x or fsync some new file inside it
4887 * <power fail>
4888 *
4889 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4890 * the same transaction.
4891 */
4892static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4893 const int slot,
4894 const struct btrfs_key *key,
4895 struct btrfs_inode *inode,
4896 u64 *other_ino, u64 *other_parent)
4897{
4898 int ret;
4899 struct btrfs_path *search_path;
4900 char *name = NULL;
4901 u32 name_len = 0;
4902 u32 item_size = btrfs_item_size_nr(eb, slot);
4903 u32 cur_offset = 0;
4904 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4905
4906 search_path = btrfs_alloc_path();
4907 if (!search_path)
4908 return -ENOMEM;
4909 search_path->search_commit_root = 1;
4910 search_path->skip_locking = 1;
4911
4912 while (cur_offset < item_size) {
4913 u64 parent;
4914 u32 this_name_len;
4915 u32 this_len;
4916 unsigned long name_ptr;
4917 struct btrfs_dir_item *di;
4918
4919 if (key->type == BTRFS_INODE_REF_KEY) {
4920 struct btrfs_inode_ref *iref;
4921
4922 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4923 parent = key->offset;
4924 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4925 name_ptr = (unsigned long)(iref + 1);
4926 this_len = sizeof(*iref) + this_name_len;
4927 } else {
4928 struct btrfs_inode_extref *extref;
4929
4930 extref = (struct btrfs_inode_extref *)(ptr +
4931 cur_offset);
4932 parent = btrfs_inode_extref_parent(eb, extref);
4933 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4934 name_ptr = (unsigned long)&extref->name;
4935 this_len = sizeof(*extref) + this_name_len;
4936 }
4937
4938 if (this_name_len > name_len) {
4939 char *new_name;
4940
4941 new_name = krealloc(name, this_name_len, GFP_NOFS);
4942 if (!new_name) {
4943 ret = -ENOMEM;
4944 goto out;
4945 }
4946 name_len = this_name_len;
4947 name = new_name;
4948 }
4949
4950 read_extent_buffer(eb, name, name_ptr, this_name_len);
4951 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4952 parent, name, this_name_len, 0);
4953 if (di && !IS_ERR(di)) {
4954 struct btrfs_key di_key;
4955
4956 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4957 di, &di_key);
4958 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4959 if (di_key.objectid != key->objectid) {
4960 ret = 1;
4961 *other_ino = di_key.objectid;
4962 *other_parent = parent;
4963 } else {
4964 ret = 0;
4965 }
4966 } else {
4967 ret = -EAGAIN;
4968 }
4969 goto out;
4970 } else if (IS_ERR(di)) {
4971 ret = PTR_ERR(di);
4972 goto out;
4973 }
4974 btrfs_release_path(search_path);
4975
4976 cur_offset += this_len;
4977 }
4978 ret = 0;
4979out:
4980 btrfs_free_path(search_path);
4981 kfree(name);
4982 return ret;
4983}
4984
4985struct btrfs_ino_list {
4986 u64 ino;
4987 u64 parent;
4988 struct list_head list;
4989};
4990
4991static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4992 struct btrfs_root *root,
4993 struct btrfs_path *path,
4994 struct btrfs_log_ctx *ctx,
4995 u64 ino, u64 parent)
4996{
4997 struct btrfs_ino_list *ino_elem;
4998 LIST_HEAD(inode_list);
4999 int ret = 0;
5000
5001 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5002 if (!ino_elem)
5003 return -ENOMEM;
5004 ino_elem->ino = ino;
5005 ino_elem->parent = parent;
5006 list_add_tail(&ino_elem->list, &inode_list);
5007
5008 while (!list_empty(&inode_list)) {
5009 struct btrfs_fs_info *fs_info = root->fs_info;
5010 struct btrfs_key key;
5011 struct inode *inode;
5012
5013 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5014 list);
5015 ino = ino_elem->ino;
5016 parent = ino_elem->parent;
5017 list_del(&ino_elem->list);
5018 kfree(ino_elem);
5019 if (ret)
5020 continue;
5021
5022 btrfs_release_path(path);
5023
5024 inode = btrfs_iget(fs_info->sb, ino, root);
5025 /*
5026 * If the other inode that had a conflicting dir entry was
5027 * deleted in the current transaction, we need to log its parent
5028 * directory.
5029 */
5030 if (IS_ERR(inode)) {
5031 ret = PTR_ERR(inode);
5032 if (ret == -ENOENT) {
5033 inode = btrfs_iget(fs_info->sb, parent, root);
5034 if (IS_ERR(inode)) {
5035 ret = PTR_ERR(inode);
5036 } else {
5037 ret = btrfs_log_inode(trans, root,
5038 BTRFS_I(inode),
5039 LOG_OTHER_INODE_ALL,
5040 ctx);
5041 btrfs_add_delayed_iput(inode);
5042 }
5043 }
5044 continue;
5045 }
5046 /*
5047 * If the inode was already logged skip it - otherwise we can
5048 * hit an infinite loop. Example:
5049 *
5050 * From the commit root (previous transaction) we have the
5051 * following inodes:
5052 *
5053 * inode 257 a directory
5054 * inode 258 with references "zz" and "zz_link" on inode 257
5055 * inode 259 with reference "a" on inode 257
5056 *
5057 * And in the current (uncommitted) transaction we have:
5058 *
5059 * inode 257 a directory, unchanged
5060 * inode 258 with references "a" and "a2" on inode 257
5061 * inode 259 with reference "zz_link" on inode 257
5062 * inode 261 with reference "zz" on inode 257
5063 *
5064 * When logging inode 261 the following infinite loop could
5065 * happen if we don't skip already logged inodes:
5066 *
5067 * - we detect inode 258 as a conflicting inode, with inode 261
5068 * on reference "zz", and log it;
5069 *
5070 * - we detect inode 259 as a conflicting inode, with inode 258
5071 * on reference "a", and log it;
5072 *
5073 * - we detect inode 258 as a conflicting inode, with inode 259
5074 * on reference "zz_link", and log it - again! After this we
5075 * repeat the above steps forever.
5076 */
5077 spin_lock(&BTRFS_I(inode)->lock);
5078 /*
5079 * Check the inode's logged_trans only instead of
5080 * btrfs_inode_in_log(). This is because the last_log_commit of
5081 * the inode is not updated when we only log that it exists and
5082 * it has the full sync bit set (see btrfs_log_inode()).
5083 */
5084 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5085 spin_unlock(&BTRFS_I(inode)->lock);
5086 btrfs_add_delayed_iput(inode);
5087 continue;
5088 }
5089 spin_unlock(&BTRFS_I(inode)->lock);
5090 /*
5091 * We are safe logging the other inode without acquiring its
5092 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5093 * are safe against concurrent renames of the other inode as
5094 * well because during a rename we pin the log and update the
5095 * log with the new name before we unpin it.
5096 */
5097 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5098 LOG_OTHER_INODE, ctx);
5099 if (ret) {
5100 btrfs_add_delayed_iput(inode);
5101 continue;
5102 }
5103
5104 key.objectid = ino;
5105 key.type = BTRFS_INODE_REF_KEY;
5106 key.offset = 0;
5107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108 if (ret < 0) {
5109 btrfs_add_delayed_iput(inode);
5110 continue;
5111 }
5112
5113 while (true) {
5114 struct extent_buffer *leaf = path->nodes[0];
5115 int slot = path->slots[0];
5116 u64 other_ino = 0;
5117 u64 other_parent = 0;
5118
5119 if (slot >= btrfs_header_nritems(leaf)) {
5120 ret = btrfs_next_leaf(root, path);
5121 if (ret < 0) {
5122 break;
5123 } else if (ret > 0) {
5124 ret = 0;
5125 break;
5126 }
5127 continue;
5128 }
5129
5130 btrfs_item_key_to_cpu(leaf, &key, slot);
5131 if (key.objectid != ino ||
5132 (key.type != BTRFS_INODE_REF_KEY &&
5133 key.type != BTRFS_INODE_EXTREF_KEY)) {
5134 ret = 0;
5135 break;
5136 }
5137
5138 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5139 BTRFS_I(inode), &other_ino,
5140 &other_parent);
5141 if (ret < 0)
5142 break;
5143 if (ret > 0) {
5144 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5145 if (!ino_elem) {
5146 ret = -ENOMEM;
5147 break;
5148 }
5149 ino_elem->ino = other_ino;
5150 ino_elem->parent = other_parent;
5151 list_add_tail(&ino_elem->list, &inode_list);
5152 ret = 0;
5153 }
5154 path->slots[0]++;
5155 }
5156 btrfs_add_delayed_iput(inode);
5157 }
5158
5159 return ret;
5160}
5161
5162static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5163 struct btrfs_inode *inode,
5164 struct btrfs_key *min_key,
5165 const struct btrfs_key *max_key,
5166 struct btrfs_path *path,
5167 struct btrfs_path *dst_path,
5168 const u64 logged_isize,
5169 const bool recursive_logging,
5170 const int inode_only,
5171 struct btrfs_log_ctx *ctx,
5172 bool *need_log_inode_item)
5173{
5174 struct btrfs_root *root = inode->root;
5175 int ins_start_slot = 0;
5176 int ins_nr = 0;
5177 int ret;
5178
5179 while (1) {
5180 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5181 if (ret < 0)
5182 return ret;
5183 if (ret > 0) {
5184 ret = 0;
5185 break;
5186 }
5187again:
5188 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5189 if (min_key->objectid != max_key->objectid)
5190 break;
5191 if (min_key->type > max_key->type)
5192 break;
5193
5194 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5195 *need_log_inode_item = false;
5196
5197 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5198 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5199 inode->generation == trans->transid &&
5200 !recursive_logging) {
5201 u64 other_ino = 0;
5202 u64 other_parent = 0;
5203
5204 ret = btrfs_check_ref_name_override(path->nodes[0],
5205 path->slots[0], min_key, inode,
5206 &other_ino, &other_parent);
5207 if (ret < 0) {
5208 return ret;
5209 } else if (ret > 0 && ctx &&
5210 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5211 if (ins_nr > 0) {
5212 ins_nr++;
5213 } else {
5214 ins_nr = 1;
5215 ins_start_slot = path->slots[0];
5216 }
5217 ret = copy_items(trans, inode, dst_path, path,
5218 ins_start_slot, ins_nr,
5219 inode_only, logged_isize);
5220 if (ret < 0)
5221 return ret;
5222 ins_nr = 0;
5223
5224 ret = log_conflicting_inodes(trans, root, path,
5225 ctx, other_ino, other_parent);
5226 if (ret)
5227 return ret;
5228 btrfs_release_path(path);
5229 goto next_key;
5230 }
5231 }
5232
5233 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5234 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5235 if (ins_nr == 0)
5236 goto next_slot;
5237 ret = copy_items(trans, inode, dst_path, path,
5238 ins_start_slot,
5239 ins_nr, inode_only, logged_isize);
5240 if (ret < 0)
5241 return ret;
5242 ins_nr = 0;
5243 goto next_slot;
5244 }
5245
5246 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5247 ins_nr++;
5248 goto next_slot;
5249 } else if (!ins_nr) {
5250 ins_start_slot = path->slots[0];
5251 ins_nr = 1;
5252 goto next_slot;
5253 }
5254
5255 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5256 ins_nr, inode_only, logged_isize);
5257 if (ret < 0)
5258 return ret;
5259 ins_nr = 1;
5260 ins_start_slot = path->slots[0];
5261next_slot:
5262 path->slots[0]++;
5263 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5264 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5265 path->slots[0]);
5266 goto again;
5267 }
5268 if (ins_nr) {
5269 ret = copy_items(trans, inode, dst_path, path,
5270 ins_start_slot, ins_nr, inode_only,
5271 logged_isize);
5272 if (ret < 0)
5273 return ret;
5274 ins_nr = 0;
5275 }
5276 btrfs_release_path(path);
5277next_key:
5278 if (min_key->offset < (u64)-1) {
5279 min_key->offset++;
5280 } else if (min_key->type < max_key->type) {
5281 min_key->type++;
5282 min_key->offset = 0;
5283 } else {
5284 break;
5285 }
5286 }
5287 if (ins_nr)
5288 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5289 ins_nr, inode_only, logged_isize);
5290
5291 return ret;
5292}
5293
5294/* log a single inode in the tree log.
5295 * At least one parent directory for this inode must exist in the tree
5296 * or be logged already.
5297 *
5298 * Any items from this inode changed by the current transaction are copied
5299 * to the log tree. An extra reference is taken on any extents in this
5300 * file, allowing us to avoid a whole pile of corner cases around logging
5301 * blocks that have been removed from the tree.
5302 *
5303 * See LOG_INODE_ALL and related defines for a description of what inode_only
5304 * does.
5305 *
5306 * This handles both files and directories.
5307 */
5308static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5309 struct btrfs_root *root, struct btrfs_inode *inode,
5310 int inode_only,
5311 struct btrfs_log_ctx *ctx)
5312{
5313 struct btrfs_path *path;
5314 struct btrfs_path *dst_path;
5315 struct btrfs_key min_key;
5316 struct btrfs_key max_key;
5317 struct btrfs_root *log = root->log_root;
5318 int err = 0;
5319 int ret = 0;
5320 bool fast_search = false;
5321 u64 ino = btrfs_ino(inode);
5322 struct extent_map_tree *em_tree = &inode->extent_tree;
5323 u64 logged_isize = 0;
5324 bool need_log_inode_item = true;
5325 bool xattrs_logged = false;
5326 bool recursive_logging = false;
5327
5328 path = btrfs_alloc_path();
5329 if (!path)
5330 return -ENOMEM;
5331 dst_path = btrfs_alloc_path();
5332 if (!dst_path) {
5333 btrfs_free_path(path);
5334 return -ENOMEM;
5335 }
5336
5337 min_key.objectid = ino;
5338 min_key.type = BTRFS_INODE_ITEM_KEY;
5339 min_key.offset = 0;
5340
5341 max_key.objectid = ino;
5342
5343
5344 /* today the code can only do partial logging of directories */
5345 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5346 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5347 &inode->runtime_flags) &&
5348 inode_only >= LOG_INODE_EXISTS))
5349 max_key.type = BTRFS_XATTR_ITEM_KEY;
5350 else
5351 max_key.type = (u8)-1;
5352 max_key.offset = (u64)-1;
5353
5354 /*
5355 * Only run delayed items if we are a directory. We want to make sure
5356 * all directory indexes hit the fs/subvolume tree so we can find them
5357 * and figure out which index ranges have to be logged.
5358 *
5359 * Otherwise commit the delayed inode only if the full sync flag is set,
5360 * as we want to make sure an up to date version is in the subvolume
5361 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5362 * it to the log tree. For a non full sync, we always log the inode item
5363 * based on the in-memory struct btrfs_inode which is always up to date.
5364 */
5365 if (S_ISDIR(inode->vfs_inode.i_mode))
5366 ret = btrfs_commit_inode_delayed_items(trans, inode);
5367 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5368 ret = btrfs_commit_inode_delayed_inode(inode);
5369
5370 if (ret) {
5371 btrfs_free_path(path);
5372 btrfs_free_path(dst_path);
5373 return ret;
5374 }
5375
5376 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5377 recursive_logging = true;
5378 if (inode_only == LOG_OTHER_INODE)
5379 inode_only = LOG_INODE_EXISTS;
5380 else
5381 inode_only = LOG_INODE_ALL;
5382 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5383 } else {
5384 mutex_lock(&inode->log_mutex);
5385 }
5386
5387 /*
5388 * This is for cases where logging a directory could result in losing a
5389 * a file after replaying the log. For example, if we move a file from a
5390 * directory A to a directory B, then fsync directory A, we have no way
5391 * to known the file was moved from A to B, so logging just A would
5392 * result in losing the file after a log replay.
5393 */
5394 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5395 inode_only == LOG_INODE_ALL &&
5396 inode->last_unlink_trans >= trans->transid) {
5397 btrfs_set_log_full_commit(trans);
5398 err = 1;
5399 goto out_unlock;
5400 }
5401
5402 /*
5403 * a brute force approach to making sure we get the most uptodate
5404 * copies of everything.
5405 */
5406 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5407 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5408
5409 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5410 if (inode_only == LOG_INODE_EXISTS)
5411 max_key_type = BTRFS_XATTR_ITEM_KEY;
5412 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5413 } else {
5414 if (inode_only == LOG_INODE_EXISTS) {
5415 /*
5416 * Make sure the new inode item we write to the log has
5417 * the same isize as the current one (if it exists).
5418 * This is necessary to prevent data loss after log
5419 * replay, and also to prevent doing a wrong expanding
5420 * truncate - for e.g. create file, write 4K into offset
5421 * 0, fsync, write 4K into offset 4096, add hard link,
5422 * fsync some other file (to sync log), power fail - if
5423 * we use the inode's current i_size, after log replay
5424 * we get a 8Kb file, with the last 4Kb extent as a hole
5425 * (zeroes), as if an expanding truncate happened,
5426 * instead of getting a file of 4Kb only.
5427 */
5428 err = logged_inode_size(log, inode, path, &logged_isize);
5429 if (err)
5430 goto out_unlock;
5431 }
5432 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5433 &inode->runtime_flags)) {
5434 if (inode_only == LOG_INODE_EXISTS) {
5435 max_key.type = BTRFS_XATTR_ITEM_KEY;
5436 ret = drop_objectid_items(trans, log, path, ino,
5437 max_key.type);
5438 } else {
5439 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5440 &inode->runtime_flags);
5441 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5442 &inode->runtime_flags);
5443 while(1) {
5444 ret = btrfs_truncate_inode_items(trans,
5445 log, inode, 0, 0, NULL);
5446 if (ret != -EAGAIN)
5447 break;
5448 }
5449 }
5450 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5451 &inode->runtime_flags) ||
5452 inode_only == LOG_INODE_EXISTS) {
5453 if (inode_only == LOG_INODE_ALL)
5454 fast_search = true;
5455 max_key.type = BTRFS_XATTR_ITEM_KEY;
5456 ret = drop_objectid_items(trans, log, path, ino,
5457 max_key.type);
5458 } else {
5459 if (inode_only == LOG_INODE_ALL)
5460 fast_search = true;
5461 goto log_extents;
5462 }
5463
5464 }
5465 if (ret) {
5466 err = ret;
5467 goto out_unlock;
5468 }
5469
5470 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5471 path, dst_path, logged_isize,
5472 recursive_logging, inode_only, ctx,
5473 &need_log_inode_item);
5474 if (err)
5475 goto out_unlock;
5476
5477 btrfs_release_path(path);
5478 btrfs_release_path(dst_path);
5479 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5480 if (err)
5481 goto out_unlock;
5482 xattrs_logged = true;
5483 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5484 btrfs_release_path(path);
5485 btrfs_release_path(dst_path);
5486 err = btrfs_log_holes(trans, root, inode, path);
5487 if (err)
5488 goto out_unlock;
5489 }
5490log_extents:
5491 btrfs_release_path(path);
5492 btrfs_release_path(dst_path);
5493 if (need_log_inode_item) {
5494 err = log_inode_item(trans, log, dst_path, inode);
5495 if (err)
5496 goto out_unlock;
5497 /*
5498 * If we are doing a fast fsync and the inode was logged before
5499 * in this transaction, we don't need to log the xattrs because
5500 * they were logged before. If xattrs were added, changed or
5501 * deleted since the last time we logged the inode, then we have
5502 * already logged them because the inode had the runtime flag
5503 * BTRFS_INODE_COPY_EVERYTHING set.
5504 */
5505 if (!xattrs_logged && inode->logged_trans < trans->transid) {
5506 err = btrfs_log_all_xattrs(trans, root, inode, path,
5507 dst_path);
5508 if (err)
5509 goto out_unlock;
5510 btrfs_release_path(path);
5511 }
5512 }
5513 if (fast_search) {
5514 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5515 ctx);
5516 if (ret) {
5517 err = ret;
5518 goto out_unlock;
5519 }
5520 } else if (inode_only == LOG_INODE_ALL) {
5521 struct extent_map *em, *n;
5522
5523 write_lock(&em_tree->lock);
5524 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5525 list_del_init(&em->list);
5526 write_unlock(&em_tree->lock);
5527 }
5528
5529 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5530 ret = log_directory_changes(trans, root, inode, path, dst_path,
5531 ctx);
5532 if (ret) {
5533 err = ret;
5534 goto out_unlock;
5535 }
5536 }
5537
5538 /*
5539 * If we are logging that an ancestor inode exists as part of logging a
5540 * new name from a link or rename operation, don't mark the inode as
5541 * logged - otherwise if an explicit fsync is made against an ancestor,
5542 * the fsync considers the inode in the log and doesn't sync the log,
5543 * resulting in the ancestor missing after a power failure unless the
5544 * log was synced as part of an fsync against any other unrelated inode.
5545 * So keep it simple for this case and just don't flag the ancestors as
5546 * logged.
5547 */
5548 if (!ctx ||
5549 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5550 &inode->vfs_inode != ctx->inode)) {
5551 spin_lock(&inode->lock);
5552 inode->logged_trans = trans->transid;
5553 /*
5554 * Don't update last_log_commit if we logged that an inode exists.
5555 * We do this for two reasons:
5556 *
5557 * 1) We might have had buffered writes to this inode that were
5558 * flushed and had their ordered extents completed in this
5559 * transaction, but we did not previously log the inode with
5560 * LOG_INODE_ALL. Later the inode was evicted and after that
5561 * it was loaded again and this LOG_INODE_EXISTS log operation
5562 * happened. We must make sure that if an explicit fsync against
5563 * the inode is performed later, it logs the new extents, an
5564 * updated inode item, etc, and syncs the log. The same logic
5565 * applies to direct IO writes instead of buffered writes.
5566 *
5567 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5568 * is logged with an i_size of 0 or whatever value was logged
5569 * before. If later the i_size of the inode is increased by a
5570 * truncate operation, the log is synced through an fsync of
5571 * some other inode and then finally an explicit fsync against
5572 * this inode is made, we must make sure this fsync logs the
5573 * inode with the new i_size, the hole between old i_size and
5574 * the new i_size, and syncs the log.
5575 */
5576 if (inode_only != LOG_INODE_EXISTS)
5577 inode->last_log_commit = inode->last_sub_trans;
5578 spin_unlock(&inode->lock);
5579 }
5580out_unlock:
5581 mutex_unlock(&inode->log_mutex);
5582
5583 btrfs_free_path(path);
5584 btrfs_free_path(dst_path);
5585 return err;
5586}
5587
5588/*
5589 * Check if we need to log an inode. This is used in contexts where while
5590 * logging an inode we need to log another inode (either that it exists or in
5591 * full mode). This is used instead of btrfs_inode_in_log() because the later
5592 * requires the inode to be in the log and have the log transaction committed,
5593 * while here we do not care if the log transaction was already committed - our
5594 * caller will commit the log later - and we want to avoid logging an inode
5595 * multiple times when multiple tasks have joined the same log transaction.
5596 */
5597static bool need_log_inode(struct btrfs_trans_handle *trans,
5598 struct btrfs_inode *inode)
5599{
5600 /*
5601 * If this inode does not have new/updated/deleted xattrs since the last
5602 * time it was logged and is flagged as logged in the current transaction,
5603 * we can skip logging it. As for new/deleted names, those are updated in
5604 * the log by link/unlink/rename operations.
5605 * In case the inode was logged and then evicted and reloaded, its
5606 * logged_trans will be 0, in which case we have to fully log it since
5607 * logged_trans is a transient field, not persisted.
5608 */
5609 if (inode->logged_trans == trans->transid &&
5610 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5611 return false;
5612
5613 return true;
5614}
5615
5616struct btrfs_dir_list {
5617 u64 ino;
5618 struct list_head list;
5619};
5620
5621/*
5622 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5623 * details about the why it is needed.
5624 * This is a recursive operation - if an existing dentry corresponds to a
5625 * directory, that directory's new entries are logged too (same behaviour as
5626 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5627 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5628 * complains about the following circular lock dependency / possible deadlock:
5629 *
5630 * CPU0 CPU1
5631 * ---- ----
5632 * lock(&type->i_mutex_dir_key#3/2);
5633 * lock(sb_internal#2);
5634 * lock(&type->i_mutex_dir_key#3/2);
5635 * lock(&sb->s_type->i_mutex_key#14);
5636 *
5637 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5638 * sb_start_intwrite() in btrfs_start_transaction().
5639 * Not locking i_mutex of the inodes is still safe because:
5640 *
5641 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5642 * that while logging the inode new references (names) are added or removed
5643 * from the inode, leaving the logged inode item with a link count that does
5644 * not match the number of logged inode reference items. This is fine because
5645 * at log replay time we compute the real number of links and correct the
5646 * link count in the inode item (see replay_one_buffer() and
5647 * link_to_fixup_dir());
5648 *
5649 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5650 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5651 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5652 * has a size that doesn't match the sum of the lengths of all the logged
5653 * names. This does not result in a problem because if a dir_item key is
5654 * logged but its matching dir_index key is not logged, at log replay time we
5655 * don't use it to replay the respective name (see replay_one_name()). On the
5656 * other hand if only the dir_index key ends up being logged, the respective
5657 * name is added to the fs/subvol tree with both the dir_item and dir_index
5658 * keys created (see replay_one_name()).
5659 * The directory's inode item with a wrong i_size is not a problem as well,
5660 * since we don't use it at log replay time to set the i_size in the inode
5661 * item of the fs/subvol tree (see overwrite_item()).
5662 */
5663static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5664 struct btrfs_root *root,
5665 struct btrfs_inode *start_inode,
5666 struct btrfs_log_ctx *ctx)
5667{
5668 struct btrfs_fs_info *fs_info = root->fs_info;
5669 struct btrfs_root *log = root->log_root;
5670 struct btrfs_path *path;
5671 LIST_HEAD(dir_list);
5672 struct btrfs_dir_list *dir_elem;
5673 int ret = 0;
5674
5675 path = btrfs_alloc_path();
5676 if (!path)
5677 return -ENOMEM;
5678
5679 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5680 if (!dir_elem) {
5681 btrfs_free_path(path);
5682 return -ENOMEM;
5683 }
5684 dir_elem->ino = btrfs_ino(start_inode);
5685 list_add_tail(&dir_elem->list, &dir_list);
5686
5687 while (!list_empty(&dir_list)) {
5688 struct extent_buffer *leaf;
5689 struct btrfs_key min_key;
5690 int nritems;
5691 int i;
5692
5693 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5694 list);
5695 if (ret)
5696 goto next_dir_inode;
5697
5698 min_key.objectid = dir_elem->ino;
5699 min_key.type = BTRFS_DIR_ITEM_KEY;
5700 min_key.offset = 0;
5701again:
5702 btrfs_release_path(path);
5703 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5704 if (ret < 0) {
5705 goto next_dir_inode;
5706 } else if (ret > 0) {
5707 ret = 0;
5708 goto next_dir_inode;
5709 }
5710
5711process_leaf:
5712 leaf = path->nodes[0];
5713 nritems = btrfs_header_nritems(leaf);
5714 for (i = path->slots[0]; i < nritems; i++) {
5715 struct btrfs_dir_item *di;
5716 struct btrfs_key di_key;
5717 struct inode *di_inode;
5718 struct btrfs_dir_list *new_dir_elem;
5719 int log_mode = LOG_INODE_EXISTS;
5720 int type;
5721
5722 btrfs_item_key_to_cpu(leaf, &min_key, i);
5723 if (min_key.objectid != dir_elem->ino ||
5724 min_key.type != BTRFS_DIR_ITEM_KEY)
5725 goto next_dir_inode;
5726
5727 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5728 type = btrfs_dir_type(leaf, di);
5729 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5730 type != BTRFS_FT_DIR)
5731 continue;
5732 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5733 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5734 continue;
5735
5736 btrfs_release_path(path);
5737 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5738 if (IS_ERR(di_inode)) {
5739 ret = PTR_ERR(di_inode);
5740 goto next_dir_inode;
5741 }
5742
5743 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5744 btrfs_add_delayed_iput(di_inode);
5745 break;
5746 }
5747
5748 ctx->log_new_dentries = false;
5749 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5750 log_mode = LOG_INODE_ALL;
5751 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5752 log_mode, ctx);
5753 btrfs_add_delayed_iput(di_inode);
5754 if (ret)
5755 goto next_dir_inode;
5756 if (ctx->log_new_dentries) {
5757 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5758 GFP_NOFS);
5759 if (!new_dir_elem) {
5760 ret = -ENOMEM;
5761 goto next_dir_inode;
5762 }
5763 new_dir_elem->ino = di_key.objectid;
5764 list_add_tail(&new_dir_elem->list, &dir_list);
5765 }
5766 break;
5767 }
5768 if (i == nritems) {
5769 ret = btrfs_next_leaf(log, path);
5770 if (ret < 0) {
5771 goto next_dir_inode;
5772 } else if (ret > 0) {
5773 ret = 0;
5774 goto next_dir_inode;
5775 }
5776 goto process_leaf;
5777 }
5778 if (min_key.offset < (u64)-1) {
5779 min_key.offset++;
5780 goto again;
5781 }
5782next_dir_inode:
5783 list_del(&dir_elem->list);
5784 kfree(dir_elem);
5785 }
5786
5787 btrfs_free_path(path);
5788 return ret;
5789}
5790
5791static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5792 struct btrfs_inode *inode,
5793 struct btrfs_log_ctx *ctx)
5794{
5795 struct btrfs_fs_info *fs_info = trans->fs_info;
5796 int ret;
5797 struct btrfs_path *path;
5798 struct btrfs_key key;
5799 struct btrfs_root *root = inode->root;
5800 const u64 ino = btrfs_ino(inode);
5801
5802 path = btrfs_alloc_path();
5803 if (!path)
5804 return -ENOMEM;
5805 path->skip_locking = 1;
5806 path->search_commit_root = 1;
5807
5808 key.objectid = ino;
5809 key.type = BTRFS_INODE_REF_KEY;
5810 key.offset = 0;
5811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5812 if (ret < 0)
5813 goto out;
5814
5815 while (true) {
5816 struct extent_buffer *leaf = path->nodes[0];
5817 int slot = path->slots[0];
5818 u32 cur_offset = 0;
5819 u32 item_size;
5820 unsigned long ptr;
5821
5822 if (slot >= btrfs_header_nritems(leaf)) {
5823 ret = btrfs_next_leaf(root, path);
5824 if (ret < 0)
5825 goto out;
5826 else if (ret > 0)
5827 break;
5828 continue;
5829 }
5830
5831 btrfs_item_key_to_cpu(leaf, &key, slot);
5832 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5833 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5834 break;
5835
5836 item_size = btrfs_item_size_nr(leaf, slot);
5837 ptr = btrfs_item_ptr_offset(leaf, slot);
5838 while (cur_offset < item_size) {
5839 struct btrfs_key inode_key;
5840 struct inode *dir_inode;
5841
5842 inode_key.type = BTRFS_INODE_ITEM_KEY;
5843 inode_key.offset = 0;
5844
5845 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5846 struct btrfs_inode_extref *extref;
5847
5848 extref = (struct btrfs_inode_extref *)
5849 (ptr + cur_offset);
5850 inode_key.objectid = btrfs_inode_extref_parent(
5851 leaf, extref);
5852 cur_offset += sizeof(*extref);
5853 cur_offset += btrfs_inode_extref_name_len(leaf,
5854 extref);
5855 } else {
5856 inode_key.objectid = key.offset;
5857 cur_offset = item_size;
5858 }
5859
5860 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5861 root);
5862 /*
5863 * If the parent inode was deleted, return an error to
5864 * fallback to a transaction commit. This is to prevent
5865 * getting an inode that was moved from one parent A to
5866 * a parent B, got its former parent A deleted and then
5867 * it got fsync'ed, from existing at both parents after
5868 * a log replay (and the old parent still existing).
5869 * Example:
5870 *
5871 * mkdir /mnt/A
5872 * mkdir /mnt/B
5873 * touch /mnt/B/bar
5874 * sync
5875 * mv /mnt/B/bar /mnt/A/bar
5876 * mv -T /mnt/A /mnt/B
5877 * fsync /mnt/B/bar
5878 * <power fail>
5879 *
5880 * If we ignore the old parent B which got deleted,
5881 * after a log replay we would have file bar linked
5882 * at both parents and the old parent B would still
5883 * exist.
5884 */
5885 if (IS_ERR(dir_inode)) {
5886 ret = PTR_ERR(dir_inode);
5887 goto out;
5888 }
5889
5890 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5891 btrfs_add_delayed_iput(dir_inode);
5892 continue;
5893 }
5894
5895 if (ctx)
5896 ctx->log_new_dentries = false;
5897 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5898 LOG_INODE_ALL, ctx);
5899 if (!ret && ctx && ctx->log_new_dentries)
5900 ret = log_new_dir_dentries(trans, root,
5901 BTRFS_I(dir_inode), ctx);
5902 btrfs_add_delayed_iput(dir_inode);
5903 if (ret)
5904 goto out;
5905 }
5906 path->slots[0]++;
5907 }
5908 ret = 0;
5909out:
5910 btrfs_free_path(path);
5911 return ret;
5912}
5913
5914static int log_new_ancestors(struct btrfs_trans_handle *trans,
5915 struct btrfs_root *root,
5916 struct btrfs_path *path,
5917 struct btrfs_log_ctx *ctx)
5918{
5919 struct btrfs_key found_key;
5920
5921 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5922
5923 while (true) {
5924 struct btrfs_fs_info *fs_info = root->fs_info;
5925 struct extent_buffer *leaf = path->nodes[0];
5926 int slot = path->slots[0];
5927 struct btrfs_key search_key;
5928 struct inode *inode;
5929 u64 ino;
5930 int ret = 0;
5931
5932 btrfs_release_path(path);
5933
5934 ino = found_key.offset;
5935
5936 search_key.objectid = found_key.offset;
5937 search_key.type = BTRFS_INODE_ITEM_KEY;
5938 search_key.offset = 0;
5939 inode = btrfs_iget(fs_info->sb, ino, root);
5940 if (IS_ERR(inode))
5941 return PTR_ERR(inode);
5942
5943 if (BTRFS_I(inode)->generation >= trans->transid &&
5944 need_log_inode(trans, BTRFS_I(inode)))
5945 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5946 LOG_INODE_EXISTS, ctx);
5947 btrfs_add_delayed_iput(inode);
5948 if (ret)
5949 return ret;
5950
5951 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5952 break;
5953
5954 search_key.type = BTRFS_INODE_REF_KEY;
5955 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5956 if (ret < 0)
5957 return ret;
5958
5959 leaf = path->nodes[0];
5960 slot = path->slots[0];
5961 if (slot >= btrfs_header_nritems(leaf)) {
5962 ret = btrfs_next_leaf(root, path);
5963 if (ret < 0)
5964 return ret;
5965 else if (ret > 0)
5966 return -ENOENT;
5967 leaf = path->nodes[0];
5968 slot = path->slots[0];
5969 }
5970
5971 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5972 if (found_key.objectid != search_key.objectid ||
5973 found_key.type != BTRFS_INODE_REF_KEY)
5974 return -ENOENT;
5975 }
5976 return 0;
5977}
5978
5979static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5980 struct btrfs_inode *inode,
5981 struct dentry *parent,
5982 struct btrfs_log_ctx *ctx)
5983{
5984 struct btrfs_root *root = inode->root;
5985 struct dentry *old_parent = NULL;
5986 struct super_block *sb = inode->vfs_inode.i_sb;
5987 int ret = 0;
5988
5989 while (true) {
5990 if (!parent || d_really_is_negative(parent) ||
5991 sb != parent->d_sb)
5992 break;
5993
5994 inode = BTRFS_I(d_inode(parent));
5995 if (root != inode->root)
5996 break;
5997
5998 if (inode->generation >= trans->transid &&
5999 need_log_inode(trans, inode)) {
6000 ret = btrfs_log_inode(trans, root, inode,
6001 LOG_INODE_EXISTS, ctx);
6002 if (ret)
6003 break;
6004 }
6005 if (IS_ROOT(parent))
6006 break;
6007
6008 parent = dget_parent(parent);
6009 dput(old_parent);
6010 old_parent = parent;
6011 }
6012 dput(old_parent);
6013
6014 return ret;
6015}
6016
6017static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6018 struct btrfs_inode *inode,
6019 struct dentry *parent,
6020 struct btrfs_log_ctx *ctx)
6021{
6022 struct btrfs_root *root = inode->root;
6023 const u64 ino = btrfs_ino(inode);
6024 struct btrfs_path *path;
6025 struct btrfs_key search_key;
6026 int ret;
6027
6028 /*
6029 * For a single hard link case, go through a fast path that does not
6030 * need to iterate the fs/subvolume tree.
6031 */
6032 if (inode->vfs_inode.i_nlink < 2)
6033 return log_new_ancestors_fast(trans, inode, parent, ctx);
6034
6035 path = btrfs_alloc_path();
6036 if (!path)
6037 return -ENOMEM;
6038
6039 search_key.objectid = ino;
6040 search_key.type = BTRFS_INODE_REF_KEY;
6041 search_key.offset = 0;
6042again:
6043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6044 if (ret < 0)
6045 goto out;
6046 if (ret == 0)
6047 path->slots[0]++;
6048
6049 while (true) {
6050 struct extent_buffer *leaf = path->nodes[0];
6051 int slot = path->slots[0];
6052 struct btrfs_key found_key;
6053
6054 if (slot >= btrfs_header_nritems(leaf)) {
6055 ret = btrfs_next_leaf(root, path);
6056 if (ret < 0)
6057 goto out;
6058 else if (ret > 0)
6059 break;
6060 continue;
6061 }
6062
6063 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6064 if (found_key.objectid != ino ||
6065 found_key.type > BTRFS_INODE_EXTREF_KEY)
6066 break;
6067
6068 /*
6069 * Don't deal with extended references because they are rare
6070 * cases and too complex to deal with (we would need to keep
6071 * track of which subitem we are processing for each item in
6072 * this loop, etc). So just return some error to fallback to
6073 * a transaction commit.
6074 */
6075 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6076 ret = -EMLINK;
6077 goto out;
6078 }
6079
6080 /*
6081 * Logging ancestors needs to do more searches on the fs/subvol
6082 * tree, so it releases the path as needed to avoid deadlocks.
6083 * Keep track of the last inode ref key and resume from that key
6084 * after logging all new ancestors for the current hard link.
6085 */
6086 memcpy(&search_key, &found_key, sizeof(search_key));
6087
6088 ret = log_new_ancestors(trans, root, path, ctx);
6089 if (ret)
6090 goto out;
6091 btrfs_release_path(path);
6092 goto again;
6093 }
6094 ret = 0;
6095out:
6096 btrfs_free_path(path);
6097 return ret;
6098}
6099
6100/*
6101 * helper function around btrfs_log_inode to make sure newly created
6102 * parent directories also end up in the log. A minimal inode and backref
6103 * only logging is done of any parent directories that are older than
6104 * the last committed transaction
6105 */
6106static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6107 struct btrfs_inode *inode,
6108 struct dentry *parent,
6109 int inode_only,
6110 struct btrfs_log_ctx *ctx)
6111{
6112 struct btrfs_root *root = inode->root;
6113 struct btrfs_fs_info *fs_info = root->fs_info;
6114 int ret = 0;
6115 bool log_dentries = false;
6116
6117 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6118 ret = 1;
6119 goto end_no_trans;
6120 }
6121
6122 if (btrfs_root_refs(&root->root_item) == 0) {
6123 ret = 1;
6124 goto end_no_trans;
6125 }
6126
6127 /*
6128 * Skip already logged inodes or inodes corresponding to tmpfiles
6129 * (since logging them is pointless, a link count of 0 means they
6130 * will never be accessible).
6131 */
6132 if ((btrfs_inode_in_log(inode, trans->transid) &&
6133 list_empty(&ctx->ordered_extents)) ||
6134 inode->vfs_inode.i_nlink == 0) {
6135 ret = BTRFS_NO_LOG_SYNC;
6136 goto end_no_trans;
6137 }
6138
6139 ret = start_log_trans(trans, root, ctx);
6140 if (ret)
6141 goto end_no_trans;
6142
6143 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6144 if (ret)
6145 goto end_trans;
6146
6147 /*
6148 * for regular files, if its inode is already on disk, we don't
6149 * have to worry about the parents at all. This is because
6150 * we can use the last_unlink_trans field to record renames
6151 * and other fun in this file.
6152 */
6153 if (S_ISREG(inode->vfs_inode.i_mode) &&
6154 inode->generation < trans->transid &&
6155 inode->last_unlink_trans < trans->transid) {
6156 ret = 0;
6157 goto end_trans;
6158 }
6159
6160 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6161 log_dentries = true;
6162
6163 /*
6164 * On unlink we must make sure all our current and old parent directory
6165 * inodes are fully logged. This is to prevent leaving dangling
6166 * directory index entries in directories that were our parents but are
6167 * not anymore. Not doing this results in old parent directory being
6168 * impossible to delete after log replay (rmdir will always fail with
6169 * error -ENOTEMPTY).
6170 *
6171 * Example 1:
6172 *
6173 * mkdir testdir
6174 * touch testdir/foo
6175 * ln testdir/foo testdir/bar
6176 * sync
6177 * unlink testdir/bar
6178 * xfs_io -c fsync testdir/foo
6179 * <power failure>
6180 * mount fs, triggers log replay
6181 *
6182 * If we don't log the parent directory (testdir), after log replay the
6183 * directory still has an entry pointing to the file inode using the bar
6184 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6185 * the file inode has a link count of 1.
6186 *
6187 * Example 2:
6188 *
6189 * mkdir testdir
6190 * touch foo
6191 * ln foo testdir/foo2
6192 * ln foo testdir/foo3
6193 * sync
6194 * unlink testdir/foo3
6195 * xfs_io -c fsync foo
6196 * <power failure>
6197 * mount fs, triggers log replay
6198 *
6199 * Similar as the first example, after log replay the parent directory
6200 * testdir still has an entry pointing to the inode file with name foo3
6201 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6202 * and has a link count of 2.
6203 */
6204 if (inode->last_unlink_trans >= trans->transid) {
6205 ret = btrfs_log_all_parents(trans, inode, ctx);
6206 if (ret)
6207 goto end_trans;
6208 }
6209
6210 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6211 if (ret)
6212 goto end_trans;
6213
6214 if (log_dentries)
6215 ret = log_new_dir_dentries(trans, root, inode, ctx);
6216 else
6217 ret = 0;
6218end_trans:
6219 if (ret < 0) {
6220 btrfs_set_log_full_commit(trans);
6221 ret = 1;
6222 }
6223
6224 if (ret)
6225 btrfs_remove_log_ctx(root, ctx);
6226 btrfs_end_log_trans(root);
6227end_no_trans:
6228 return ret;
6229}
6230
6231/*
6232 * it is not safe to log dentry if the chunk root has added new
6233 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6234 * If this returns 1, you must commit the transaction to safely get your
6235 * data on disk.
6236 */
6237int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6238 struct dentry *dentry,
6239 struct btrfs_log_ctx *ctx)
6240{
6241 struct dentry *parent = dget_parent(dentry);
6242 int ret;
6243
6244 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6245 LOG_INODE_ALL, ctx);
6246 dput(parent);
6247
6248 return ret;
6249}
6250
6251/*
6252 * should be called during mount to recover any replay any log trees
6253 * from the FS
6254 */
6255int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6256{
6257 int ret;
6258 struct btrfs_path *path;
6259 struct btrfs_trans_handle *trans;
6260 struct btrfs_key key;
6261 struct btrfs_key found_key;
6262 struct btrfs_root *log;
6263 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6264 struct walk_control wc = {
6265 .process_func = process_one_buffer,
6266 .stage = LOG_WALK_PIN_ONLY,
6267 };
6268
6269 path = btrfs_alloc_path();
6270 if (!path)
6271 return -ENOMEM;
6272
6273 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6274
6275 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6276 if (IS_ERR(trans)) {
6277 ret = PTR_ERR(trans);
6278 goto error;
6279 }
6280
6281 wc.trans = trans;
6282 wc.pin = 1;
6283
6284 ret = walk_log_tree(trans, log_root_tree, &wc);
6285 if (ret) {
6286 btrfs_handle_fs_error(fs_info, ret,
6287 "Failed to pin buffers while recovering log root tree.");
6288 goto error;
6289 }
6290
6291again:
6292 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6293 key.offset = (u64)-1;
6294 key.type = BTRFS_ROOT_ITEM_KEY;
6295
6296 while (1) {
6297 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6298
6299 if (ret < 0) {
6300 btrfs_handle_fs_error(fs_info, ret,
6301 "Couldn't find tree log root.");
6302 goto error;
6303 }
6304 if (ret > 0) {
6305 if (path->slots[0] == 0)
6306 break;
6307 path->slots[0]--;
6308 }
6309 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6310 path->slots[0]);
6311 btrfs_release_path(path);
6312 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6313 break;
6314
6315 log = btrfs_read_tree_root(log_root_tree, &found_key);
6316 if (IS_ERR(log)) {
6317 ret = PTR_ERR(log);
6318 btrfs_handle_fs_error(fs_info, ret,
6319 "Couldn't read tree log root.");
6320 goto error;
6321 }
6322
6323 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6324 true);
6325 if (IS_ERR(wc.replay_dest)) {
6326 ret = PTR_ERR(wc.replay_dest);
6327
6328 /*
6329 * We didn't find the subvol, likely because it was
6330 * deleted. This is ok, simply skip this log and go to
6331 * the next one.
6332 *
6333 * We need to exclude the root because we can't have
6334 * other log replays overwriting this log as we'll read
6335 * it back in a few more times. This will keep our
6336 * block from being modified, and we'll just bail for
6337 * each subsequent pass.
6338 */
6339 if (ret == -ENOENT)
6340 ret = btrfs_pin_extent_for_log_replay(trans,
6341 log->node->start,
6342 log->node->len);
6343 btrfs_put_root(log);
6344
6345 if (!ret)
6346 goto next;
6347 btrfs_handle_fs_error(fs_info, ret,
6348 "Couldn't read target root for tree log recovery.");
6349 goto error;
6350 }
6351
6352 wc.replay_dest->log_root = log;
6353 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6354 if (ret)
6355 /* The loop needs to continue due to the root refs */
6356 btrfs_handle_fs_error(fs_info, ret,
6357 "failed to record the log root in transaction");
6358 else
6359 ret = walk_log_tree(trans, log, &wc);
6360
6361 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6362 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6363 path);
6364 }
6365
6366 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6367 struct btrfs_root *root = wc.replay_dest;
6368
6369 btrfs_release_path(path);
6370
6371 /*
6372 * We have just replayed everything, and the highest
6373 * objectid of fs roots probably has changed in case
6374 * some inode_item's got replayed.
6375 *
6376 * root->objectid_mutex is not acquired as log replay
6377 * could only happen during mount.
6378 */
6379 ret = btrfs_init_root_free_objectid(root);
6380 }
6381
6382 wc.replay_dest->log_root = NULL;
6383 btrfs_put_root(wc.replay_dest);
6384 btrfs_put_root(log);
6385
6386 if (ret)
6387 goto error;
6388next:
6389 if (found_key.offset == 0)
6390 break;
6391 key.offset = found_key.offset - 1;
6392 }
6393 btrfs_release_path(path);
6394
6395 /* step one is to pin it all, step two is to replay just inodes */
6396 if (wc.pin) {
6397 wc.pin = 0;
6398 wc.process_func = replay_one_buffer;
6399 wc.stage = LOG_WALK_REPLAY_INODES;
6400 goto again;
6401 }
6402 /* step three is to replay everything */
6403 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6404 wc.stage++;
6405 goto again;
6406 }
6407
6408 btrfs_free_path(path);
6409
6410 /* step 4: commit the transaction, which also unpins the blocks */
6411 ret = btrfs_commit_transaction(trans);
6412 if (ret)
6413 return ret;
6414
6415 log_root_tree->log_root = NULL;
6416 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6417 btrfs_put_root(log_root_tree);
6418
6419 return 0;
6420error:
6421 if (wc.trans)
6422 btrfs_end_transaction(wc.trans);
6423 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6424 btrfs_free_path(path);
6425 return ret;
6426}
6427
6428/*
6429 * there are some corner cases where we want to force a full
6430 * commit instead of allowing a directory to be logged.
6431 *
6432 * They revolve around files there were unlinked from the directory, and
6433 * this function updates the parent directory so that a full commit is
6434 * properly done if it is fsync'd later after the unlinks are done.
6435 *
6436 * Must be called before the unlink operations (updates to the subvolume tree,
6437 * inodes, etc) are done.
6438 */
6439void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6440 struct btrfs_inode *dir, struct btrfs_inode *inode,
6441 int for_rename)
6442{
6443 /*
6444 * when we're logging a file, if it hasn't been renamed
6445 * or unlinked, and its inode is fully committed on disk,
6446 * we don't have to worry about walking up the directory chain
6447 * to log its parents.
6448 *
6449 * So, we use the last_unlink_trans field to put this transid
6450 * into the file. When the file is logged we check it and
6451 * don't log the parents if the file is fully on disk.
6452 */
6453 mutex_lock(&inode->log_mutex);
6454 inode->last_unlink_trans = trans->transid;
6455 mutex_unlock(&inode->log_mutex);
6456
6457 /*
6458 * if this directory was already logged any new
6459 * names for this file/dir will get recorded
6460 */
6461 if (dir->logged_trans == trans->transid)
6462 return;
6463
6464 /*
6465 * if the inode we're about to unlink was logged,
6466 * the log will be properly updated for any new names
6467 */
6468 if (inode->logged_trans == trans->transid)
6469 return;
6470
6471 /*
6472 * when renaming files across directories, if the directory
6473 * there we're unlinking from gets fsync'd later on, there's
6474 * no way to find the destination directory later and fsync it
6475 * properly. So, we have to be conservative and force commits
6476 * so the new name gets discovered.
6477 */
6478 if (for_rename)
6479 goto record;
6480
6481 /* we can safely do the unlink without any special recording */
6482 return;
6483
6484record:
6485 mutex_lock(&dir->log_mutex);
6486 dir->last_unlink_trans = trans->transid;
6487 mutex_unlock(&dir->log_mutex);
6488}
6489
6490/*
6491 * Make sure that if someone attempts to fsync the parent directory of a deleted
6492 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6493 * that after replaying the log tree of the parent directory's root we will not
6494 * see the snapshot anymore and at log replay time we will not see any log tree
6495 * corresponding to the deleted snapshot's root, which could lead to replaying
6496 * it after replaying the log tree of the parent directory (which would replay
6497 * the snapshot delete operation).
6498 *
6499 * Must be called before the actual snapshot destroy operation (updates to the
6500 * parent root and tree of tree roots trees, etc) are done.
6501 */
6502void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6503 struct btrfs_inode *dir)
6504{
6505 mutex_lock(&dir->log_mutex);
6506 dir->last_unlink_trans = trans->transid;
6507 mutex_unlock(&dir->log_mutex);
6508}
6509
6510/*
6511 * Call this after adding a new name for a file and it will properly
6512 * update the log to reflect the new name.
6513 */
6514void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6515 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6516 struct dentry *parent)
6517{
6518 struct btrfs_log_ctx ctx;
6519
6520 /*
6521 * this will force the logging code to walk the dentry chain
6522 * up for the file
6523 */
6524 if (!S_ISDIR(inode->vfs_inode.i_mode))
6525 inode->last_unlink_trans = trans->transid;
6526
6527 /*
6528 * if this inode hasn't been logged and directory we're renaming it
6529 * from hasn't been logged, we don't need to log it
6530 */
6531 if (!inode_logged(trans, inode) &&
6532 (!old_dir || !inode_logged(trans, old_dir)))
6533 return;
6534
6535 /*
6536 * If we are doing a rename (old_dir is not NULL) from a directory that
6537 * was previously logged, make sure the next log attempt on the directory
6538 * is not skipped and logs the inode again. This is because the log may
6539 * not currently be authoritative for a range including the old
6540 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6541 * sure after a log replay we do not end up with both the new and old
6542 * dentries around (in case the inode is a directory we would have a
6543 * directory with two hard links and 2 inode references for different
6544 * parents). The next log attempt of old_dir will happen at
6545 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6546 * below, because we have previously set inode->last_unlink_trans to the
6547 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6548 * case inode is a directory.
6549 */
6550 if (old_dir)
6551 old_dir->logged_trans = 0;
6552
6553 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6554 ctx.logging_new_name = true;
6555 /*
6556 * We don't care about the return value. If we fail to log the new name
6557 * then we know the next attempt to sync the log will fallback to a full
6558 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6559 * we don't need to worry about getting a log committed that has an
6560 * inconsistent state after a rename operation.
6561 */
6562 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6563}
6564