Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
  26#include <linux/kstrtox.h>
  27#include <linux/memblock.h>
  28#include <linux/export.h>
  29#include <linux/mm.h>
  30#include <linux/page-flags.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/edd.h>
  34#include <linux/reboot.h>
  35#include <linux/virtio_anchor.h>
  36#include <linux/stackprotector.h>
  37
  38#include <xen/xen.h>
  39#include <xen/events.h>
  40#include <xen/interface/xen.h>
  41#include <xen/interface/version.h>
  42#include <xen/interface/physdev.h>
  43#include <xen/interface/vcpu.h>
  44#include <xen/interface/memory.h>
  45#include <xen/interface/nmi.h>
  46#include <xen/interface/xen-mca.h>
  47#include <xen/features.h>
  48#include <xen/page.h>
  49#include <xen/hvc-console.h>
  50#include <xen/acpi.h>
  51
  52#include <asm/paravirt.h>
  53#include <asm/apic.h>
  54#include <asm/page.h>
  55#include <asm/xen/pci.h>
  56#include <asm/xen/hypercall.h>
  57#include <asm/xen/hypervisor.h>
  58#include <asm/xen/cpuid.h>
  59#include <asm/fixmap.h>
  60#include <asm/processor.h>
  61#include <asm/proto.h>
  62#include <asm/msr-index.h>
  63#include <asm/traps.h>
  64#include <asm/setup.h>
  65#include <asm/desc.h>
  66#include <asm/pgalloc.h>
  67#include <asm/tlbflush.h>
  68#include <asm/reboot.h>
  69#include <asm/hypervisor.h>
  70#include <asm/mach_traps.h>
 
  71#include <asm/mwait.h>
  72#include <asm/pci_x86.h>
  73#include <asm/cpu.h>
  74#ifdef CONFIG_X86_IOPL_IOPERM
  75#include <asm/io_bitmap.h>
  76#endif
  77
  78#ifdef CONFIG_ACPI
  79#include <linux/acpi.h>
  80#include <asm/acpi.h>
  81#include <acpi/pdc_intel.h>
  82#include <acpi/processor.h>
  83#include <xen/interface/platform.h>
  84#endif
  85
  86#include "xen-ops.h"
  87#include "mmu.h"
  88#include "smp.h"
  89#include "multicalls.h"
  90#include "pmu.h"
  91
  92#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  93
  94void *xen_initial_gdt;
  95
  96static int xen_cpu_up_prepare_pv(unsigned int cpu);
  97static int xen_cpu_dead_pv(unsigned int cpu);
  98
  99struct tls_descs {
 100	struct desc_struct desc[3];
 101};
 102
 
 
 
 
 
 
 
 
 
 
 
 103/*
 104 * Updating the 3 TLS descriptors in the GDT on every task switch is
 105 * surprisingly expensive so we avoid updating them if they haven't
 106 * changed.  Since Xen writes different descriptors than the one
 107 * passed in the update_descriptor hypercall we keep shadow copies to
 108 * compare against.
 109 */
 110static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 111
 112static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
 113
 114static int __init parse_xen_msr_safe(char *str)
 115{
 116	if (str)
 117		return kstrtobool(str, &xen_msr_safe);
 118	return -EINVAL;
 119}
 120early_param("xen_msr_safe", parse_xen_msr_safe);
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122static void __init xen_pv_init_platform(void)
 123{
 124	/* PV guests can't operate virtio devices without grants. */
 125	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
 126		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
 127
 128	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
 129
 130	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 131	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 132
 133	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
 134	xen_vcpu_info_reset(0);
 135
 136	/* pvclock is in shared info area */
 137	xen_init_time_ops();
 
 
 
 
 
 
 
 
 138}
 139
 140static void __init xen_pv_guest_late_init(void)
 141{
 142#ifndef CONFIG_SMP
 143	/* Setup shared vcpu info for non-smp configurations */
 144	xen_setup_vcpu_info_placement();
 145#endif
 146}
 147
 148static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 149static __read_mostly unsigned int cpuid_leaf5_edx_val;
 150
 151static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 152		      unsigned int *cx, unsigned int *dx)
 153{
 154	unsigned maskebx = ~0;
 
 155
 156	/*
 157	 * Mask out inconvenient features, to try and disable as many
 158	 * unsupported kernel subsystems as possible.
 159	 */
 160	switch (*ax) {
 
 
 
 
 
 
 
 161	case CPUID_MWAIT_LEAF:
 162		/* Synthesize the values.. */
 163		*ax = 0;
 164		*bx = 0;
 165		*cx = cpuid_leaf5_ecx_val;
 166		*dx = cpuid_leaf5_edx_val;
 167		return;
 168
 169	case 0xb:
 170		/* Suppress extended topology stuff */
 171		maskebx = 0;
 172		break;
 173	}
 174
 175	asm(XEN_EMULATE_PREFIX "cpuid"
 176		: "=a" (*ax),
 177		  "=b" (*bx),
 178		  "=c" (*cx),
 179		  "=d" (*dx)
 180		: "0" (*ax), "2" (*cx));
 181
 182	*bx &= maskebx;
 
 183}
 184
 185static bool __init xen_check_mwait(void)
 186{
 187#ifdef CONFIG_ACPI
 188	struct xen_platform_op op = {
 189		.cmd			= XENPF_set_processor_pminfo,
 190		.u.set_pminfo.id	= -1,
 191		.u.set_pminfo.type	= XEN_PM_PDC,
 192	};
 193	uint32_t buf[3];
 194	unsigned int ax, bx, cx, dx;
 195	unsigned int mwait_mask;
 196
 197	/* We need to determine whether it is OK to expose the MWAIT
 198	 * capability to the kernel to harvest deeper than C3 states from ACPI
 199	 * _CST using the processor_harvest_xen.c module. For this to work, we
 200	 * need to gather the MWAIT_LEAF values (which the cstate.c code
 201	 * checks against). The hypervisor won't expose the MWAIT flag because
 202	 * it would break backwards compatibility; so we will find out directly
 203	 * from the hardware and hypercall.
 204	 */
 205	if (!xen_initial_domain())
 206		return false;
 207
 208	/*
 209	 * When running under platform earlier than Xen4.2, do not expose
 210	 * mwait, to avoid the risk of loading native acpi pad driver
 211	 */
 212	if (!xen_running_on_version_or_later(4, 2))
 213		return false;
 214
 215	ax = 1;
 216	cx = 0;
 217
 218	native_cpuid(&ax, &bx, &cx, &dx);
 219
 220	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 221		     (1 << (X86_FEATURE_MWAIT % 32));
 222
 223	if ((cx & mwait_mask) != mwait_mask)
 224		return false;
 225
 226	/* We need to emulate the MWAIT_LEAF and for that we need both
 227	 * ecx and edx. The hypercall provides only partial information.
 228	 */
 229
 230	ax = CPUID_MWAIT_LEAF;
 231	bx = 0;
 232	cx = 0;
 233	dx = 0;
 234
 235	native_cpuid(&ax, &bx, &cx, &dx);
 236
 237	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 238	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 239	 */
 240	buf[0] = ACPI_PDC_REVISION_ID;
 241	buf[1] = 1;
 242	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 243
 244	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 245
 246	if ((HYPERVISOR_platform_op(&op) == 0) &&
 247	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 248		cpuid_leaf5_ecx_val = cx;
 249		cpuid_leaf5_edx_val = dx;
 250	}
 251	return true;
 252#else
 253	return false;
 254#endif
 255}
 256
 257static bool __init xen_check_xsave(void)
 258{
 259	unsigned int cx, xsave_mask;
 260
 261	cx = cpuid_ecx(1);
 262
 263	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 264		     (1 << (X86_FEATURE_OSXSAVE % 32));
 265
 266	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 267	return (cx & xsave_mask) == xsave_mask;
 268}
 269
 270static void __init xen_init_capabilities(void)
 271{
 272	setup_force_cpu_cap(X86_FEATURE_XENPV);
 273	setup_clear_cpu_cap(X86_FEATURE_DCA);
 274	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 275	setup_clear_cpu_cap(X86_FEATURE_MTRR);
 276	setup_clear_cpu_cap(X86_FEATURE_ACC);
 277	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 278	setup_clear_cpu_cap(X86_FEATURE_SME);
 
 279
 280	/*
 281	 * Xen PV would need some work to support PCID: CR3 handling as well
 282	 * as xen_flush_tlb_others() would need updating.
 283	 */
 284	setup_clear_cpu_cap(X86_FEATURE_PCID);
 285
 286	if (!xen_initial_domain())
 287		setup_clear_cpu_cap(X86_FEATURE_ACPI);
 288
 289	if (xen_check_mwait())
 290		setup_force_cpu_cap(X86_FEATURE_MWAIT);
 291	else
 292		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 293
 294	if (!xen_check_xsave()) {
 295		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 296		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 297	}
 298}
 299
 300static noinstr void xen_set_debugreg(int reg, unsigned long val)
 301{
 302	HYPERVISOR_set_debugreg(reg, val);
 303}
 304
 305static noinstr unsigned long xen_get_debugreg(int reg)
 306{
 307	return HYPERVISOR_get_debugreg(reg);
 308}
 309
 
 
 
 
 
 
 
 
 
 
 
 310static void xen_end_context_switch(struct task_struct *next)
 311{
 
 
 312	xen_mc_flush();
 313	paravirt_end_context_switch(next);
 
 
 314}
 315
 316static unsigned long xen_store_tr(void)
 317{
 318	return 0;
 319}
 320
 321/*
 322 * Set the page permissions for a particular virtual address.  If the
 323 * address is a vmalloc mapping (or other non-linear mapping), then
 324 * find the linear mapping of the page and also set its protections to
 325 * match.
 326 */
 327static void set_aliased_prot(void *v, pgprot_t prot)
 328{
 329	int level;
 330	pte_t *ptep;
 331	pte_t pte;
 332	unsigned long pfn;
 333	unsigned char dummy;
 334	void *va;
 335
 336	ptep = lookup_address((unsigned long)v, &level);
 337	BUG_ON(ptep == NULL);
 338
 339	pfn = pte_pfn(*ptep);
 340	pte = pfn_pte(pfn, prot);
 341
 342	/*
 343	 * Careful: update_va_mapping() will fail if the virtual address
 344	 * we're poking isn't populated in the page tables.  We don't
 345	 * need to worry about the direct map (that's always in the page
 346	 * tables), but we need to be careful about vmap space.  In
 347	 * particular, the top level page table can lazily propagate
 348	 * entries between processes, so if we've switched mms since we
 349	 * vmapped the target in the first place, we might not have the
 350	 * top-level page table entry populated.
 351	 *
 352	 * We disable preemption because we want the same mm active when
 353	 * we probe the target and when we issue the hypercall.  We'll
 354	 * have the same nominal mm, but if we're a kernel thread, lazy
 355	 * mm dropping could change our pgd.
 356	 *
 357	 * Out of an abundance of caution, this uses __get_user() to fault
 358	 * in the target address just in case there's some obscure case
 359	 * in which the target address isn't readable.
 360	 */
 361
 362	preempt_disable();
 363
 364	copy_from_kernel_nofault(&dummy, v, 1);
 365
 366	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 367		BUG();
 368
 369	va = __va(PFN_PHYS(pfn));
 370
 371	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 372		BUG();
 373
 374	preempt_enable();
 375}
 376
 377static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 378{
 379	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 380	int i;
 381
 382	/*
 383	 * We need to mark the all aliases of the LDT pages RO.  We
 384	 * don't need to call vm_flush_aliases(), though, since that's
 385	 * only responsible for flushing aliases out the TLBs, not the
 386	 * page tables, and Xen will flush the TLB for us if needed.
 387	 *
 388	 * To avoid confusing future readers: none of this is necessary
 389	 * to load the LDT.  The hypervisor only checks this when the
 390	 * LDT is faulted in due to subsequent descriptor access.
 391	 */
 392
 393	for (i = 0; i < entries; i += entries_per_page)
 394		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 395}
 396
 397static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 398{
 399	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 400	int i;
 401
 402	for (i = 0; i < entries; i += entries_per_page)
 403		set_aliased_prot(ldt + i, PAGE_KERNEL);
 404}
 405
 406static void xen_set_ldt(const void *addr, unsigned entries)
 407{
 408	struct mmuext_op *op;
 409	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 410
 411	trace_xen_cpu_set_ldt(addr, entries);
 412
 413	op = mcs.args;
 414	op->cmd = MMUEXT_SET_LDT;
 415	op->arg1.linear_addr = (unsigned long)addr;
 416	op->arg2.nr_ents = entries;
 417
 418	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 419
 420	xen_mc_issue(PARAVIRT_LAZY_CPU);
 421}
 422
 423static void xen_load_gdt(const struct desc_ptr *dtr)
 424{
 425	unsigned long va = dtr->address;
 426	unsigned int size = dtr->size + 1;
 427	unsigned long pfn, mfn;
 428	int level;
 429	pte_t *ptep;
 430	void *virt;
 431
 432	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 433	BUG_ON(size > PAGE_SIZE);
 434	BUG_ON(va & ~PAGE_MASK);
 435
 436	/*
 437	 * The GDT is per-cpu and is in the percpu data area.
 438	 * That can be virtually mapped, so we need to do a
 439	 * page-walk to get the underlying MFN for the
 440	 * hypercall.  The page can also be in the kernel's
 441	 * linear range, so we need to RO that mapping too.
 442	 */
 443	ptep = lookup_address(va, &level);
 444	BUG_ON(ptep == NULL);
 445
 446	pfn = pte_pfn(*ptep);
 447	mfn = pfn_to_mfn(pfn);
 448	virt = __va(PFN_PHYS(pfn));
 449
 450	make_lowmem_page_readonly((void *)va);
 451	make_lowmem_page_readonly(virt);
 452
 453	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 454		BUG();
 455}
 456
 457/*
 458 * load_gdt for early boot, when the gdt is only mapped once
 459 */
 460static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 461{
 462	unsigned long va = dtr->address;
 463	unsigned int size = dtr->size + 1;
 464	unsigned long pfn, mfn;
 465	pte_t pte;
 466
 467	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 468	BUG_ON(size > PAGE_SIZE);
 469	BUG_ON(va & ~PAGE_MASK);
 470
 471	pfn = virt_to_pfn(va);
 472	mfn = pfn_to_mfn(pfn);
 473
 474	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 475
 476	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 477		BUG();
 478
 479	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 480		BUG();
 481}
 482
 483static inline bool desc_equal(const struct desc_struct *d1,
 484			      const struct desc_struct *d2)
 485{
 486	return !memcmp(d1, d2, sizeof(*d1));
 487}
 488
 489static void load_TLS_descriptor(struct thread_struct *t,
 490				unsigned int cpu, unsigned int i)
 491{
 492	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 493	struct desc_struct *gdt;
 494	xmaddr_t maddr;
 495	struct multicall_space mc;
 496
 497	if (desc_equal(shadow, &t->tls_array[i]))
 498		return;
 499
 500	*shadow = t->tls_array[i];
 501
 502	gdt = get_cpu_gdt_rw(cpu);
 503	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 504	mc = __xen_mc_entry(0);
 505
 506	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 507}
 508
 509static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 510{
 511	/*
 512	 * In lazy mode we need to zero %fs, otherwise we may get an
 513	 * exception between the new %fs descriptor being loaded and
 514	 * %fs being effectively cleared at __switch_to().
 515	 */
 516	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
 517		loadsegment(fs, 0);
 518
 519	xen_mc_batch();
 520
 521	load_TLS_descriptor(t, cpu, 0);
 522	load_TLS_descriptor(t, cpu, 1);
 523	load_TLS_descriptor(t, cpu, 2);
 524
 525	xen_mc_issue(PARAVIRT_LAZY_CPU);
 526}
 527
 528static void xen_load_gs_index(unsigned int idx)
 529{
 530	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 531		BUG();
 532}
 533
 534static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 535				const void *ptr)
 536{
 537	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 538	u64 entry = *(u64 *)ptr;
 539
 540	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 541
 542	preempt_disable();
 543
 544	xen_mc_flush();
 545	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 546		BUG();
 547
 548	preempt_enable();
 549}
 550
 551void noist_exc_debug(struct pt_regs *regs);
 552
 553DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
 554{
 555	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
 556	exc_nmi(regs);
 557}
 558
 559DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
 560{
 561	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
 562	exc_double_fault(regs, error_code);
 563}
 564
 565DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
 566{
 567	/*
 568	 * There's no IST on Xen PV, but we still need to dispatch
 569	 * to the correct handler.
 570	 */
 571	if (user_mode(regs))
 572		noist_exc_debug(regs);
 573	else
 574		exc_debug(regs);
 575}
 576
 577DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
 578{
 579	/* This should never happen and there is no way to handle it. */
 580	instrumentation_begin();
 581	pr_err("Unknown trap in Xen PV mode.");
 582	BUG();
 583	instrumentation_end();
 584}
 585
 586#ifdef CONFIG_X86_MCE
 587DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
 588{
 589	/*
 590	 * There's no IST on Xen PV, but we still need to dispatch
 591	 * to the correct handler.
 592	 */
 593	if (user_mode(regs))
 594		noist_exc_machine_check(regs);
 595	else
 596		exc_machine_check(regs);
 597}
 598#endif
 599
 600struct trap_array_entry {
 601	void (*orig)(void);
 602	void (*xen)(void);
 603	bool ist_okay;
 604};
 605
 606#define TRAP_ENTRY(func, ist_ok) {			\
 607	.orig		= asm_##func,			\
 608	.xen		= xen_asm_##func,		\
 609	.ist_okay	= ist_ok }
 610
 611#define TRAP_ENTRY_REDIR(func, ist_ok) {		\
 612	.orig		= asm_##func,			\
 613	.xen		= xen_asm_xenpv_##func,		\
 614	.ist_okay	= ist_ok }
 615
 616static struct trap_array_entry trap_array[] = {
 617	TRAP_ENTRY_REDIR(exc_debug,			true  ),
 618	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
 619#ifdef CONFIG_X86_MCE
 620	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
 621#endif
 622	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
 623	TRAP_ENTRY(exc_int3,				false ),
 624	TRAP_ENTRY(exc_overflow,			false ),
 625#ifdef CONFIG_IA32_EMULATION
 626	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
 627#endif
 628	TRAP_ENTRY(exc_page_fault,			false ),
 629	TRAP_ENTRY(exc_divide_error,			false ),
 630	TRAP_ENTRY(exc_bounds,				false ),
 631	TRAP_ENTRY(exc_invalid_op,			false ),
 632	TRAP_ENTRY(exc_device_not_available,		false ),
 633	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
 634	TRAP_ENTRY(exc_invalid_tss,			false ),
 635	TRAP_ENTRY(exc_segment_not_present,		false ),
 636	TRAP_ENTRY(exc_stack_segment,			false ),
 637	TRAP_ENTRY(exc_general_protection,		false ),
 638	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
 639	TRAP_ENTRY(exc_coprocessor_error,		false ),
 640	TRAP_ENTRY(exc_alignment_check,			false ),
 641	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
 642#ifdef CONFIG_X86_KERNEL_IBT
 643	TRAP_ENTRY(exc_control_protection,		false ),
 644#endif
 645};
 646
 647static bool __ref get_trap_addr(void **addr, unsigned int ist)
 648{
 649	unsigned int nr;
 650	bool ist_okay = false;
 651	bool found = false;
 652
 653	/*
 654	 * Replace trap handler addresses by Xen specific ones.
 655	 * Check for known traps using IST and whitelist them.
 656	 * The debugger ones are the only ones we care about.
 657	 * Xen will handle faults like double_fault, so we should never see
 658	 * them.  Warn if there's an unexpected IST-using fault handler.
 659	 */
 660	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 661		struct trap_array_entry *entry = trap_array + nr;
 662
 663		if (*addr == entry->orig) {
 664			*addr = entry->xen;
 665			ist_okay = entry->ist_okay;
 666			found = true;
 667			break;
 668		}
 669	}
 670
 671	if (nr == ARRAY_SIZE(trap_array) &&
 672	    *addr >= (void *)early_idt_handler_array[0] &&
 673	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 674		nr = (*addr - (void *)early_idt_handler_array[0]) /
 675		     EARLY_IDT_HANDLER_SIZE;
 676		*addr = (void *)xen_early_idt_handler_array[nr];
 677		found = true;
 678	}
 679
 680	if (!found)
 681		*addr = (void *)xen_asm_exc_xen_unknown_trap;
 682
 683	if (WARN_ON(found && ist != 0 && !ist_okay))
 684		return false;
 685
 686	return true;
 687}
 688
 689static int cvt_gate_to_trap(int vector, const gate_desc *val,
 690			    struct trap_info *info)
 691{
 692	unsigned long addr;
 693
 694	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 695		return 0;
 696
 697	info->vector = vector;
 698
 699	addr = gate_offset(val);
 700	if (!get_trap_addr((void **)&addr, val->bits.ist))
 701		return 0;
 702	info->address = addr;
 703
 704	info->cs = gate_segment(val);
 705	info->flags = val->bits.dpl;
 706	/* interrupt gates clear IF */
 707	if (val->bits.type == GATE_INTERRUPT)
 708		info->flags |= 1 << 2;
 709
 710	return 1;
 711}
 712
 713/* Locations of each CPU's IDT */
 714static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 715
 716/* Set an IDT entry.  If the entry is part of the current IDT, then
 717   also update Xen. */
 718static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 719{
 720	unsigned long p = (unsigned long)&dt[entrynum];
 721	unsigned long start, end;
 722
 723	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 724
 725	preempt_disable();
 726
 727	start = __this_cpu_read(idt_desc.address);
 728	end = start + __this_cpu_read(idt_desc.size) + 1;
 729
 730	xen_mc_flush();
 731
 732	native_write_idt_entry(dt, entrynum, g);
 733
 734	if (p >= start && (p + 8) <= end) {
 735		struct trap_info info[2];
 736
 737		info[1].address = 0;
 738
 739		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 740			if (HYPERVISOR_set_trap_table(info))
 741				BUG();
 742	}
 743
 744	preempt_enable();
 745}
 746
 747static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
 748				      struct trap_info *traps, bool full)
 749{
 750	unsigned in, out, count;
 751
 752	count = (desc->size+1) / sizeof(gate_desc);
 753	BUG_ON(count > 256);
 754
 755	for (in = out = 0; in < count; in++) {
 756		gate_desc *entry = (gate_desc *)(desc->address) + in;
 757
 758		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
 759			out++;
 760	}
 761
 762	return out;
 763}
 764
 765void xen_copy_trap_info(struct trap_info *traps)
 766{
 767	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 768
 769	xen_convert_trap_info(desc, traps, true);
 770}
 771
 772/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 773   hold a spinlock to protect the static traps[] array (static because
 774   it avoids allocation, and saves stack space). */
 775static void xen_load_idt(const struct desc_ptr *desc)
 776{
 777	static DEFINE_SPINLOCK(lock);
 778	static struct trap_info traps[257];
 779	static const struct trap_info zero = { };
 780	unsigned out;
 781
 782	trace_xen_cpu_load_idt(desc);
 783
 784	spin_lock(&lock);
 785
 786	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 787
 788	out = xen_convert_trap_info(desc, traps, false);
 789	traps[out] = zero;
 790
 791	xen_mc_flush();
 792	if (HYPERVISOR_set_trap_table(traps))
 793		BUG();
 794
 795	spin_unlock(&lock);
 796}
 797
 798/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 799   they're handled differently. */
 800static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 801				const void *desc, int type)
 802{
 803	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 804
 805	preempt_disable();
 806
 807	switch (type) {
 808	case DESC_LDT:
 809	case DESC_TSS:
 810		/* ignore */
 811		break;
 812
 813	default: {
 814		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 815
 816		xen_mc_flush();
 817		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 818			BUG();
 819	}
 820
 821	}
 822
 823	preempt_enable();
 824}
 825
 826/*
 827 * Version of write_gdt_entry for use at early boot-time needed to
 828 * update an entry as simply as possible.
 829 */
 830static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 831					    const void *desc, int type)
 832{
 833	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 834
 835	switch (type) {
 836	case DESC_LDT:
 837	case DESC_TSS:
 838		/* ignore */
 839		break;
 840
 841	default: {
 842		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 843
 844		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 845			dt[entry] = *(struct desc_struct *)desc;
 846	}
 847
 848	}
 849}
 850
 851static void xen_load_sp0(unsigned long sp0)
 852{
 853	struct multicall_space mcs;
 854
 855	mcs = xen_mc_entry(0);
 856	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 857	xen_mc_issue(PARAVIRT_LAZY_CPU);
 858	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 859}
 860
 861#ifdef CONFIG_X86_IOPL_IOPERM
 862static void xen_invalidate_io_bitmap(void)
 863{
 864	struct physdev_set_iobitmap iobitmap = {
 865		.bitmap = NULL,
 866		.nr_ports = 0,
 867	};
 868
 869	native_tss_invalidate_io_bitmap();
 870	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 871}
 872
 873static void xen_update_io_bitmap(void)
 874{
 875	struct physdev_set_iobitmap iobitmap;
 876	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 877
 878	native_tss_update_io_bitmap();
 879
 880	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
 881			  tss->x86_tss.io_bitmap_base;
 882	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
 883		iobitmap.nr_ports = 0;
 884	else
 885		iobitmap.nr_ports = IO_BITMAP_BITS;
 886
 887	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 888}
 889#endif
 890
 891static void xen_io_delay(void)
 892{
 893}
 894
 895static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 896
 897static unsigned long xen_read_cr0(void)
 898{
 899	unsigned long cr0 = this_cpu_read(xen_cr0_value);
 900
 901	if (unlikely(cr0 == 0)) {
 902		cr0 = native_read_cr0();
 903		this_cpu_write(xen_cr0_value, cr0);
 904	}
 905
 906	return cr0;
 907}
 908
 909static void xen_write_cr0(unsigned long cr0)
 910{
 911	struct multicall_space mcs;
 912
 913	this_cpu_write(xen_cr0_value, cr0);
 914
 915	/* Only pay attention to cr0.TS; everything else is
 916	   ignored. */
 917	mcs = xen_mc_entry(0);
 918
 919	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 920
 921	xen_mc_issue(PARAVIRT_LAZY_CPU);
 922}
 923
 924static void xen_write_cr4(unsigned long cr4)
 925{
 926	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 927
 928	native_write_cr4(cr4);
 929}
 930
 931static u64 xen_do_read_msr(unsigned int msr, int *err)
 932{
 933	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
 934
 935	if (pmu_msr_read(msr, &val, err))
 936		return val;
 937
 938	if (err)
 939		val = native_read_msr_safe(msr, err);
 940	else
 941		val = native_read_msr(msr);
 942
 943	switch (msr) {
 944	case MSR_IA32_APICBASE:
 945		val &= ~X2APIC_ENABLE;
 946		break;
 947	}
 948	return val;
 949}
 950
 951static void set_seg(unsigned int which, unsigned int low, unsigned int high,
 952		    int *err)
 953{
 954	u64 base = ((u64)high << 32) | low;
 955
 956	if (HYPERVISOR_set_segment_base(which, base) == 0)
 957		return;
 958
 959	if (err)
 960		*err = -EIO;
 961	else
 962		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
 963}
 964
 965/*
 966 * Support write_msr_safe() and write_msr() semantics.
 967 * With err == NULL write_msr() semantics are selected.
 968 * Supplying an err pointer requires err to be pre-initialized with 0.
 969 */
 970static void xen_do_write_msr(unsigned int msr, unsigned int low,
 971			     unsigned int high, int *err)
 972{
 973	switch (msr) {
 974	case MSR_FS_BASE:
 975		set_seg(SEGBASE_FS, low, high, err);
 976		break;
 977
 978	case MSR_KERNEL_GS_BASE:
 979		set_seg(SEGBASE_GS_USER, low, high, err);
 980		break;
 981
 982	case MSR_GS_BASE:
 983		set_seg(SEGBASE_GS_KERNEL, low, high, err);
 984		break;
 985
 986	case MSR_STAR:
 987	case MSR_CSTAR:
 988	case MSR_LSTAR:
 989	case MSR_SYSCALL_MASK:
 990	case MSR_IA32_SYSENTER_CS:
 991	case MSR_IA32_SYSENTER_ESP:
 992	case MSR_IA32_SYSENTER_EIP:
 993		/* Fast syscall setup is all done in hypercalls, so
 994		   these are all ignored.  Stub them out here to stop
 995		   Xen console noise. */
 996		break;
 997
 998	default:
 999		if (!pmu_msr_write(msr, low, high, err)) {
1000			if (err)
1001				*err = native_write_msr_safe(msr, low, high);
1002			else
1003				native_write_msr(msr, low, high);
1004		}
1005	}
1006}
1007
1008static u64 xen_read_msr_safe(unsigned int msr, int *err)
1009{
1010	return xen_do_read_msr(msr, err);
1011}
1012
1013static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1014			      unsigned int high)
1015{
1016	int err = 0;
1017
1018	xen_do_write_msr(msr, low, high, &err);
1019
1020	return err;
1021}
1022
1023static u64 xen_read_msr(unsigned int msr)
1024{
1025	int err;
1026
1027	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1028}
1029
1030static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1031{
1032	int err;
1033
1034	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1035}
1036
1037/* This is called once we have the cpu_possible_mask */
1038void __init xen_setup_vcpu_info_placement(void)
1039{
1040	int cpu;
1041
1042	for_each_possible_cpu(cpu) {
1043		/* Set up direct vCPU id mapping for PV guests. */
1044		per_cpu(xen_vcpu_id, cpu) = cpu;
1045		xen_vcpu_setup(cpu);
1046	}
1047
1048	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1049	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1050	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1051	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1052}
1053
1054static const struct pv_info xen_info __initconst = {
1055	.extra_user_64bit_cs = FLAT_USER_CS64,
1056	.name = "Xen",
1057};
1058
1059static const typeof(pv_ops) xen_cpu_ops __initconst = {
1060	.cpu = {
1061		.cpuid = xen_cpuid,
1062
1063		.set_debugreg = xen_set_debugreg,
1064		.get_debugreg = xen_get_debugreg,
1065
1066		.read_cr0 = xen_read_cr0,
1067		.write_cr0 = xen_write_cr0,
1068
1069		.write_cr4 = xen_write_cr4,
1070
1071		.wbinvd = native_wbinvd,
1072
1073		.read_msr = xen_read_msr,
1074		.write_msr = xen_write_msr,
1075
1076		.read_msr_safe = xen_read_msr_safe,
1077		.write_msr_safe = xen_write_msr_safe,
1078
1079		.read_pmc = xen_read_pmc,
1080
1081		.load_tr_desc = paravirt_nop,
1082		.set_ldt = xen_set_ldt,
1083		.load_gdt = xen_load_gdt,
1084		.load_idt = xen_load_idt,
1085		.load_tls = xen_load_tls,
1086		.load_gs_index = xen_load_gs_index,
1087
1088		.alloc_ldt = xen_alloc_ldt,
1089		.free_ldt = xen_free_ldt,
1090
1091		.store_tr = xen_store_tr,
1092
1093		.write_ldt_entry = xen_write_ldt_entry,
1094		.write_gdt_entry = xen_write_gdt_entry,
1095		.write_idt_entry = xen_write_idt_entry,
1096		.load_sp0 = xen_load_sp0,
1097
1098#ifdef CONFIG_X86_IOPL_IOPERM
1099		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1100		.update_io_bitmap = xen_update_io_bitmap,
1101#endif
1102		.io_delay = xen_io_delay,
1103
1104		.start_context_switch = paravirt_start_context_switch,
1105		.end_context_switch = xen_end_context_switch,
1106	},
1107};
1108
1109static void xen_restart(char *msg)
1110{
1111	xen_reboot(SHUTDOWN_reboot);
1112}
1113
1114static void xen_machine_halt(void)
1115{
1116	xen_reboot(SHUTDOWN_poweroff);
1117}
1118
1119static void xen_machine_power_off(void)
1120{
1121	do_kernel_power_off();
1122	xen_reboot(SHUTDOWN_poweroff);
1123}
1124
1125static void xen_crash_shutdown(struct pt_regs *regs)
1126{
1127	xen_reboot(SHUTDOWN_crash);
1128}
1129
1130static const struct machine_ops xen_machine_ops __initconst = {
1131	.restart = xen_restart,
1132	.halt = xen_machine_halt,
1133	.power_off = xen_machine_power_off,
1134	.shutdown = xen_machine_halt,
1135	.crash_shutdown = xen_crash_shutdown,
1136	.emergency_restart = xen_emergency_restart,
1137};
1138
1139static unsigned char xen_get_nmi_reason(void)
1140{
1141	unsigned char reason = 0;
1142
1143	/* Construct a value which looks like it came from port 0x61. */
1144	if (test_bit(_XEN_NMIREASON_io_error,
1145		     &HYPERVISOR_shared_info->arch.nmi_reason))
1146		reason |= NMI_REASON_IOCHK;
1147	if (test_bit(_XEN_NMIREASON_pci_serr,
1148		     &HYPERVISOR_shared_info->arch.nmi_reason))
1149		reason |= NMI_REASON_SERR;
1150
1151	return reason;
1152}
1153
1154static void __init xen_boot_params_init_edd(void)
1155{
1156#if IS_ENABLED(CONFIG_EDD)
1157	struct xen_platform_op op;
1158	struct edd_info *edd_info;
1159	u32 *mbr_signature;
1160	unsigned nr;
1161	int ret;
1162
1163	edd_info = boot_params.eddbuf;
1164	mbr_signature = boot_params.edd_mbr_sig_buffer;
1165
1166	op.cmd = XENPF_firmware_info;
1167
1168	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1169	for (nr = 0; nr < EDDMAXNR; nr++) {
1170		struct edd_info *info = edd_info + nr;
1171
1172		op.u.firmware_info.index = nr;
1173		info->params.length = sizeof(info->params);
1174		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1175				     &info->params);
1176		ret = HYPERVISOR_platform_op(&op);
1177		if (ret)
1178			break;
1179
1180#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1181		C(device);
1182		C(version);
1183		C(interface_support);
1184		C(legacy_max_cylinder);
1185		C(legacy_max_head);
1186		C(legacy_sectors_per_track);
1187#undef C
1188	}
1189	boot_params.eddbuf_entries = nr;
1190
1191	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1192	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1193		op.u.firmware_info.index = nr;
1194		ret = HYPERVISOR_platform_op(&op);
1195		if (ret)
1196			break;
1197		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1198	}
1199	boot_params.edd_mbr_sig_buf_entries = nr;
1200#endif
1201}
1202
1203/*
1204 * Set up the GDT and segment registers for -fstack-protector.  Until
1205 * we do this, we have to be careful not to call any stack-protected
1206 * function, which is most of the kernel.
1207 */
1208static void __init xen_setup_gdt(int cpu)
1209{
1210	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1211	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1212
1213	switch_gdt_and_percpu_base(cpu);
1214
1215	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1216	pv_ops.cpu.load_gdt = xen_load_gdt;
1217}
1218
1219static void __init xen_dom0_set_legacy_features(void)
1220{
1221	x86_platform.legacy.rtc = 1;
1222}
1223
1224static void __init xen_domu_set_legacy_features(void)
1225{
1226	x86_platform.legacy.rtc = 0;
1227}
1228
1229extern void early_xen_iret_patch(void);
1230
1231/* First C function to be called on Xen boot */
1232asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1233{
1234	struct physdev_set_iopl set_iopl;
1235	unsigned long initrd_start = 0;
1236	int rc;
1237
1238	if (!si)
1239		return;
1240
1241	clear_bss();
1242
1243	xen_start_info = si;
1244
1245	__text_gen_insn(&early_xen_iret_patch,
1246			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1247			JMP32_INSN_SIZE);
1248
1249	xen_domain_type = XEN_PV_DOMAIN;
1250	xen_start_flags = xen_start_info->flags;
1251
1252	xen_setup_features();
1253
1254	/* Install Xen paravirt ops */
1255	pv_info = xen_info;
1256	pv_ops.cpu = xen_cpu_ops.cpu;
1257	xen_init_irq_ops();
1258
1259	/*
1260	 * Setup xen_vcpu early because it is needed for
1261	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1262	 *
1263	 * Don't do the full vcpu_info placement stuff until we have
1264	 * the cpu_possible_mask and a non-dummy shared_info.
1265	 */
1266	xen_vcpu_info_reset(0);
1267
1268	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1269	x86_platform.realmode_reserve = x86_init_noop;
1270	x86_platform.realmode_init = x86_init_noop;
1271
1272	x86_init.resources.memory_setup = xen_memory_setup;
1273	x86_init.irqs.intr_mode_select	= x86_init_noop;
1274	x86_init.irqs.intr_mode_init	= x86_init_noop;
1275	x86_init.oem.arch_setup = xen_arch_setup;
1276	x86_init.oem.banner = xen_banner;
1277	x86_init.hyper.init_platform = xen_pv_init_platform;
1278	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1279
1280	/*
1281	 * Set up some pagetable state before starting to set any ptes.
1282	 */
1283
1284	xen_setup_machphys_mapping();
1285	xen_init_mmu_ops();
1286
1287	/* Prevent unwanted bits from being set in PTEs. */
1288	__supported_pte_mask &= ~_PAGE_GLOBAL;
1289	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1290
1291	/* Get mfn list */
1292	xen_build_dynamic_phys_to_machine();
1293
1294	/* Work out if we support NX */
1295	get_cpu_cap(&boot_cpu_data);
1296	x86_configure_nx();
1297
1298	/*
1299	 * Set up kernel GDT and segment registers, mainly so that
1300	 * -fstack-protector code can be executed.
1301	 */
1302	xen_setup_gdt(0);
1303
1304	/* Determine virtual and physical address sizes */
1305	get_cpu_address_sizes(&boot_cpu_data);
1306
1307	/* Let's presume PV guests always boot on vCPU with id 0. */
1308	per_cpu(xen_vcpu_id, 0) = 0;
1309
1310	idt_setup_early_handler();
1311
1312	xen_init_capabilities();
1313
1314#ifdef CONFIG_X86_LOCAL_APIC
1315	/*
1316	 * set up the basic apic ops.
1317	 */
1318	xen_init_apic();
1319#endif
1320
1321	machine_ops = xen_machine_ops;
1322
1323	/*
1324	 * The only reliable way to retain the initial address of the
1325	 * percpu gdt_page is to remember it here, so we can go and
1326	 * mark it RW later, when the initial percpu area is freed.
1327	 */
1328	xen_initial_gdt = &per_cpu(gdt_page, 0);
1329
1330	xen_smp_init();
1331
1332#ifdef CONFIG_ACPI_NUMA
1333	/*
1334	 * The pages we from Xen are not related to machine pages, so
1335	 * any NUMA information the kernel tries to get from ACPI will
1336	 * be meaningless.  Prevent it from trying.
1337	 */
1338	disable_srat();
1339#endif
1340	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1341
1342	local_irq_disable();
1343	early_boot_irqs_disabled = true;
1344
1345	xen_raw_console_write("mapping kernel into physical memory\n");
1346	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1347				   xen_start_info->nr_pages);
1348	xen_reserve_special_pages();
1349
1350	/*
1351	 * We used to do this in xen_arch_setup, but that is too late
1352	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1353	 * early_amd_init which pokes 0xcf8 port.
1354	 */
1355	set_iopl.iopl = 1;
1356	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1357	if (rc != 0)
1358		xen_raw_printk("physdev_op failed %d\n", rc);
1359
1360
1361	if (xen_start_info->mod_start) {
1362	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1363		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1364	    else
1365		initrd_start = __pa(xen_start_info->mod_start);
1366	}
1367
1368	/* Poke various useful things into boot_params */
1369	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1370	boot_params.hdr.ramdisk_image = initrd_start;
1371	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1372	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1373	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1374
1375	if (!xen_initial_domain()) {
1376		if (pci_xen)
1377			x86_init.pci.arch_init = pci_xen_init;
1378		x86_platform.set_legacy_features =
1379				xen_domu_set_legacy_features;
1380	} else {
1381		const struct dom0_vga_console_info *info =
1382			(void *)((char *)xen_start_info +
1383				 xen_start_info->console.dom0.info_off);
1384		struct xen_platform_op op = {
1385			.cmd = XENPF_firmware_info,
1386			.interface_version = XENPF_INTERFACE_VERSION,
1387			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1388		};
1389
1390		x86_platform.set_legacy_features =
1391				xen_dom0_set_legacy_features;
1392		xen_init_vga(info, xen_start_info->console.dom0.info_size);
 
1393		xen_start_info->console.domU.mfn = 0;
1394		xen_start_info->console.domU.evtchn = 0;
1395
1396		if (HYPERVISOR_platform_op(&op) == 0)
1397			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1398
1399		/* Make sure ACS will be enabled */
1400		pci_request_acs();
1401
1402		xen_acpi_sleep_register();
1403
1404		xen_boot_params_init_edd();
1405
1406#ifdef CONFIG_ACPI
1407		/*
1408		 * Disable selecting "Firmware First mode" for correctable
1409		 * memory errors, as this is the duty of the hypervisor to
1410		 * decide.
1411		 */
1412		acpi_disable_cmcff = 1;
1413#endif
1414	}
1415
1416	xen_add_preferred_consoles();
1417
1418#ifdef CONFIG_PCI
1419	/* PCI BIOS service won't work from a PV guest. */
1420	pci_probe &= ~PCI_PROBE_BIOS;
1421#endif
1422	xen_raw_console_write("about to get started...\n");
1423
1424	/* We need this for printk timestamps */
1425	xen_setup_runstate_info(0);
1426
1427	xen_efi_init(&boot_params);
1428
1429	/* Start the world */
1430	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1431	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1432}
1433
1434static int xen_cpu_up_prepare_pv(unsigned int cpu)
1435{
1436	int rc;
1437
1438	if (per_cpu(xen_vcpu, cpu) == NULL)
1439		return -ENODEV;
1440
1441	xen_setup_timer(cpu);
1442
1443	rc = xen_smp_intr_init(cpu);
1444	if (rc) {
1445		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1446		     cpu, rc);
1447		return rc;
1448	}
1449
1450	rc = xen_smp_intr_init_pv(cpu);
1451	if (rc) {
1452		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1453		     cpu, rc);
1454		return rc;
1455	}
1456
1457	return 0;
1458}
1459
1460static int xen_cpu_dead_pv(unsigned int cpu)
1461{
1462	xen_smp_intr_free(cpu);
1463	xen_smp_intr_free_pv(cpu);
1464
1465	xen_teardown_timer(cpu);
1466
1467	return 0;
1468}
1469
1470static uint32_t __init xen_platform_pv(void)
1471{
1472	if (xen_pv_domain())
1473		return xen_cpuid_base();
1474
1475	return 0;
1476}
1477
1478const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1479	.name                   = "Xen PV",
1480	.detect                 = xen_platform_pv,
1481	.type			= X86_HYPER_XEN_PV,
1482	.runtime.pin_vcpu       = xen_pin_vcpu,
1483	.ignore_nopv		= true,
1484};
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
  26#include <linux/kstrtox.h>
  27#include <linux/memblock.h>
  28#include <linux/export.h>
  29#include <linux/mm.h>
  30#include <linux/page-flags.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/edd.h>
  34#include <linux/reboot.h>
  35#include <linux/virtio_anchor.h>
  36#include <linux/stackprotector.h>
  37
  38#include <xen/xen.h>
  39#include <xen/events.h>
  40#include <xen/interface/xen.h>
  41#include <xen/interface/version.h>
  42#include <xen/interface/physdev.h>
  43#include <xen/interface/vcpu.h>
  44#include <xen/interface/memory.h>
  45#include <xen/interface/nmi.h>
  46#include <xen/interface/xen-mca.h>
  47#include <xen/features.h>
  48#include <xen/page.h>
  49#include <xen/hvc-console.h>
  50#include <xen/acpi.h>
  51
  52#include <asm/paravirt.h>
  53#include <asm/apic.h>
  54#include <asm/page.h>
  55#include <asm/xen/pci.h>
  56#include <asm/xen/hypercall.h>
  57#include <asm/xen/hypervisor.h>
  58#include <asm/xen/cpuid.h>
  59#include <asm/fixmap.h>
  60#include <asm/processor.h>
  61#include <asm/proto.h>
  62#include <asm/msr-index.h>
  63#include <asm/traps.h>
  64#include <asm/setup.h>
  65#include <asm/desc.h>
  66#include <asm/pgalloc.h>
  67#include <asm/tlbflush.h>
  68#include <asm/reboot.h>
  69#include <asm/hypervisor.h>
  70#include <asm/mach_traps.h>
  71#include <asm/mtrr.h>
  72#include <asm/mwait.h>
  73#include <asm/pci_x86.h>
  74#include <asm/cpu.h>
  75#ifdef CONFIG_X86_IOPL_IOPERM
  76#include <asm/io_bitmap.h>
  77#endif
  78
  79#ifdef CONFIG_ACPI
  80#include <linux/acpi.h>
  81#include <asm/acpi.h>
  82#include <acpi/proc_cap_intel.h>
  83#include <acpi/processor.h>
  84#include <xen/interface/platform.h>
  85#endif
  86
  87#include "xen-ops.h"
  88#include "mmu.h"
  89#include "smp.h"
  90#include "multicalls.h"
  91#include "pmu.h"
  92
  93#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  94
  95void *xen_initial_gdt;
  96
  97static int xen_cpu_up_prepare_pv(unsigned int cpu);
  98static int xen_cpu_dead_pv(unsigned int cpu);
  99
 100struct tls_descs {
 101	struct desc_struct desc[3];
 102};
 103
 104DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
 105DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
 106
 107enum xen_lazy_mode xen_get_lazy_mode(void)
 108{
 109	if (in_interrupt())
 110		return XEN_LAZY_NONE;
 111
 112	return this_cpu_read(xen_lazy_mode);
 113}
 114
 115/*
 116 * Updating the 3 TLS descriptors in the GDT on every task switch is
 117 * surprisingly expensive so we avoid updating them if they haven't
 118 * changed.  Since Xen writes different descriptors than the one
 119 * passed in the update_descriptor hypercall we keep shadow copies to
 120 * compare against.
 121 */
 122static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 123
 124static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
 125
 126static int __init parse_xen_msr_safe(char *str)
 127{
 128	if (str)
 129		return kstrtobool(str, &xen_msr_safe);
 130	return -EINVAL;
 131}
 132early_param("xen_msr_safe", parse_xen_msr_safe);
 133
 134/* Get MTRR settings from Xen and put them into mtrr_state. */
 135static void __init xen_set_mtrr_data(void)
 136{
 137#ifdef CONFIG_MTRR
 138	struct xen_platform_op op = {
 139		.cmd = XENPF_read_memtype,
 140		.interface_version = XENPF_INTERFACE_VERSION,
 141	};
 142	unsigned int reg;
 143	unsigned long mask;
 144	uint32_t eax, width;
 145	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
 146
 147	/* Get physical address width (only 64-bit cpus supported). */
 148	width = 36;
 149	eax = cpuid_eax(0x80000000);
 150	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
 151		eax = cpuid_eax(0x80000008);
 152		width = eax & 0xff;
 153	}
 154
 155	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
 156		op.u.read_memtype.reg = reg;
 157		if (HYPERVISOR_platform_op(&op))
 158			break;
 159
 160		/*
 161		 * Only called in dom0, which has all RAM PFNs mapped at
 162		 * RAM MFNs, and all PCI space etc. is identity mapped.
 163		 * This means we can treat MFN == PFN regarding MTRR settings.
 164		 */
 165		var[reg].base_lo = op.u.read_memtype.type;
 166		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
 167		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
 168		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
 169		mask &= (1UL << width) - 1;
 170		if (mask)
 171			mask |= MTRR_PHYSMASK_V;
 172		var[reg].mask_lo = mask;
 173		var[reg].mask_hi = mask >> 32;
 174	}
 175
 176	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
 177	if (reg)
 178		mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
 179#endif
 180}
 181
 182static void __init xen_pv_init_platform(void)
 183{
 184	/* PV guests can't operate virtio devices without grants. */
 185	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
 186		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
 187
 188	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
 189
 190	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 191	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 192
 193	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
 194	xen_vcpu_info_reset(0);
 195
 196	/* pvclock is in shared info area */
 197	xen_init_time_ops();
 198
 199	if (xen_initial_domain())
 200		xen_set_mtrr_data();
 201	else
 202		mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
 203
 204	/* Adjust nr_cpu_ids before "enumeration" happens */
 205	xen_smp_count_cpus();
 206}
 207
 208static void __init xen_pv_guest_late_init(void)
 209{
 210#ifndef CONFIG_SMP
 211	/* Setup shared vcpu info for non-smp configurations */
 212	xen_setup_vcpu_info_placement();
 213#endif
 214}
 215
 216static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 217static __read_mostly unsigned int cpuid_leaf5_edx_val;
 218
 219static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 220		      unsigned int *cx, unsigned int *dx)
 221{
 222	unsigned int maskebx = ~0;
 223	unsigned int or_ebx = 0;
 224
 225	/*
 226	 * Mask out inconvenient features, to try and disable as many
 227	 * unsupported kernel subsystems as possible.
 228	 */
 229	switch (*ax) {
 230	case 0x1:
 231		/* Replace initial APIC ID in bits 24-31 of EBX. */
 232		/* See xen_pv_smp_config() for related topology preparations. */
 233		maskebx = 0x00ffffff;
 234		or_ebx = smp_processor_id() << 24;
 235		break;
 236
 237	case CPUID_MWAIT_LEAF:
 238		/* Synthesize the values.. */
 239		*ax = 0;
 240		*bx = 0;
 241		*cx = cpuid_leaf5_ecx_val;
 242		*dx = cpuid_leaf5_edx_val;
 243		return;
 244
 245	case 0xb:
 246		/* Suppress extended topology stuff */
 247		maskebx = 0;
 248		break;
 249	}
 250
 251	asm(XEN_EMULATE_PREFIX "cpuid"
 252		: "=a" (*ax),
 253		  "=b" (*bx),
 254		  "=c" (*cx),
 255		  "=d" (*dx)
 256		: "0" (*ax), "2" (*cx));
 257
 258	*bx &= maskebx;
 259	*bx |= or_ebx;
 260}
 261
 262static bool __init xen_check_mwait(void)
 263{
 264#ifdef CONFIG_ACPI
 265	struct xen_platform_op op = {
 266		.cmd			= XENPF_set_processor_pminfo,
 267		.u.set_pminfo.id	= -1,
 268		.u.set_pminfo.type	= XEN_PM_PDC,
 269	};
 270	uint32_t buf[3];
 271	unsigned int ax, bx, cx, dx;
 272	unsigned int mwait_mask;
 273
 274	/* We need to determine whether it is OK to expose the MWAIT
 275	 * capability to the kernel to harvest deeper than C3 states from ACPI
 276	 * _CST using the processor_harvest_xen.c module. For this to work, we
 277	 * need to gather the MWAIT_LEAF values (which the cstate.c code
 278	 * checks against). The hypervisor won't expose the MWAIT flag because
 279	 * it would break backwards compatibility; so we will find out directly
 280	 * from the hardware and hypercall.
 281	 */
 282	if (!xen_initial_domain())
 283		return false;
 284
 285	/*
 286	 * When running under platform earlier than Xen4.2, do not expose
 287	 * mwait, to avoid the risk of loading native acpi pad driver
 288	 */
 289	if (!xen_running_on_version_or_later(4, 2))
 290		return false;
 291
 292	ax = 1;
 293	cx = 0;
 294
 295	native_cpuid(&ax, &bx, &cx, &dx);
 296
 297	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 298		     (1 << (X86_FEATURE_MWAIT % 32));
 299
 300	if ((cx & mwait_mask) != mwait_mask)
 301		return false;
 302
 303	/* We need to emulate the MWAIT_LEAF and for that we need both
 304	 * ecx and edx. The hypercall provides only partial information.
 305	 */
 306
 307	ax = CPUID_MWAIT_LEAF;
 308	bx = 0;
 309	cx = 0;
 310	dx = 0;
 311
 312	native_cpuid(&ax, &bx, &cx, &dx);
 313
 314	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
 315	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 316	 */
 317	buf[0] = ACPI_PDC_REVISION_ID;
 318	buf[1] = 1;
 319	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
 320
 321	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 322
 323	if ((HYPERVISOR_platform_op(&op) == 0) &&
 324	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
 325		cpuid_leaf5_ecx_val = cx;
 326		cpuid_leaf5_edx_val = dx;
 327	}
 328	return true;
 329#else
 330	return false;
 331#endif
 332}
 333
 334static bool __init xen_check_xsave(void)
 335{
 336	unsigned int cx, xsave_mask;
 337
 338	cx = cpuid_ecx(1);
 339
 340	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 341		     (1 << (X86_FEATURE_OSXSAVE % 32));
 342
 343	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 344	return (cx & xsave_mask) == xsave_mask;
 345}
 346
 347static void __init xen_init_capabilities(void)
 348{
 349	setup_force_cpu_cap(X86_FEATURE_XENPV);
 350	setup_clear_cpu_cap(X86_FEATURE_DCA);
 351	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 352	setup_clear_cpu_cap(X86_FEATURE_MTRR);
 353	setup_clear_cpu_cap(X86_FEATURE_ACC);
 354	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 355	setup_clear_cpu_cap(X86_FEATURE_SME);
 356	setup_clear_cpu_cap(X86_FEATURE_LKGS);
 357
 358	/*
 359	 * Xen PV would need some work to support PCID: CR3 handling as well
 360	 * as xen_flush_tlb_others() would need updating.
 361	 */
 362	setup_clear_cpu_cap(X86_FEATURE_PCID);
 363
 364	if (!xen_initial_domain())
 365		setup_clear_cpu_cap(X86_FEATURE_ACPI);
 366
 367	if (xen_check_mwait())
 368		setup_force_cpu_cap(X86_FEATURE_MWAIT);
 369	else
 370		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 371
 372	if (!xen_check_xsave()) {
 373		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 374		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 375	}
 376}
 377
 378static noinstr void xen_set_debugreg(int reg, unsigned long val)
 379{
 380	HYPERVISOR_set_debugreg(reg, val);
 381}
 382
 383static noinstr unsigned long xen_get_debugreg(int reg)
 384{
 385	return HYPERVISOR_get_debugreg(reg);
 386}
 387
 388static void xen_start_context_switch(struct task_struct *prev)
 389{
 390	BUG_ON(preemptible());
 391
 392	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
 393		arch_leave_lazy_mmu_mode();
 394		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
 395	}
 396	enter_lazy(XEN_LAZY_CPU);
 397}
 398
 399static void xen_end_context_switch(struct task_struct *next)
 400{
 401	BUG_ON(preemptible());
 402
 403	xen_mc_flush();
 404	leave_lazy(XEN_LAZY_CPU);
 405	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
 406		arch_enter_lazy_mmu_mode();
 407}
 408
 409static unsigned long xen_store_tr(void)
 410{
 411	return 0;
 412}
 413
 414/*
 415 * Set the page permissions for a particular virtual address.  If the
 416 * address is a vmalloc mapping (or other non-linear mapping), then
 417 * find the linear mapping of the page and also set its protections to
 418 * match.
 419 */
 420static void set_aliased_prot(void *v, pgprot_t prot)
 421{
 422	int level;
 423	pte_t *ptep;
 424	pte_t pte;
 425	unsigned long pfn;
 426	unsigned char dummy;
 427	void *va;
 428
 429	ptep = lookup_address((unsigned long)v, &level);
 430	BUG_ON(ptep == NULL);
 431
 432	pfn = pte_pfn(*ptep);
 433	pte = pfn_pte(pfn, prot);
 434
 435	/*
 436	 * Careful: update_va_mapping() will fail if the virtual address
 437	 * we're poking isn't populated in the page tables.  We don't
 438	 * need to worry about the direct map (that's always in the page
 439	 * tables), but we need to be careful about vmap space.  In
 440	 * particular, the top level page table can lazily propagate
 441	 * entries between processes, so if we've switched mms since we
 442	 * vmapped the target in the first place, we might not have the
 443	 * top-level page table entry populated.
 444	 *
 445	 * We disable preemption because we want the same mm active when
 446	 * we probe the target and when we issue the hypercall.  We'll
 447	 * have the same nominal mm, but if we're a kernel thread, lazy
 448	 * mm dropping could change our pgd.
 449	 *
 450	 * Out of an abundance of caution, this uses __get_user() to fault
 451	 * in the target address just in case there's some obscure case
 452	 * in which the target address isn't readable.
 453	 */
 454
 455	preempt_disable();
 456
 457	copy_from_kernel_nofault(&dummy, v, 1);
 458
 459	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 460		BUG();
 461
 462	va = __va(PFN_PHYS(pfn));
 463
 464	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 465		BUG();
 466
 467	preempt_enable();
 468}
 469
 470static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 471{
 472	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 473	int i;
 474
 475	/*
 476	 * We need to mark the all aliases of the LDT pages RO.  We
 477	 * don't need to call vm_flush_aliases(), though, since that's
 478	 * only responsible for flushing aliases out the TLBs, not the
 479	 * page tables, and Xen will flush the TLB for us if needed.
 480	 *
 481	 * To avoid confusing future readers: none of this is necessary
 482	 * to load the LDT.  The hypervisor only checks this when the
 483	 * LDT is faulted in due to subsequent descriptor access.
 484	 */
 485
 486	for (i = 0; i < entries; i += entries_per_page)
 487		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 488}
 489
 490static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 491{
 492	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 493	int i;
 494
 495	for (i = 0; i < entries; i += entries_per_page)
 496		set_aliased_prot(ldt + i, PAGE_KERNEL);
 497}
 498
 499static void xen_set_ldt(const void *addr, unsigned entries)
 500{
 501	struct mmuext_op *op;
 502	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 503
 504	trace_xen_cpu_set_ldt(addr, entries);
 505
 506	op = mcs.args;
 507	op->cmd = MMUEXT_SET_LDT;
 508	op->arg1.linear_addr = (unsigned long)addr;
 509	op->arg2.nr_ents = entries;
 510
 511	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 512
 513	xen_mc_issue(XEN_LAZY_CPU);
 514}
 515
 516static void xen_load_gdt(const struct desc_ptr *dtr)
 517{
 518	unsigned long va = dtr->address;
 519	unsigned int size = dtr->size + 1;
 520	unsigned long pfn, mfn;
 521	int level;
 522	pte_t *ptep;
 523	void *virt;
 524
 525	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 526	BUG_ON(size > PAGE_SIZE);
 527	BUG_ON(va & ~PAGE_MASK);
 528
 529	/*
 530	 * The GDT is per-cpu and is in the percpu data area.
 531	 * That can be virtually mapped, so we need to do a
 532	 * page-walk to get the underlying MFN for the
 533	 * hypercall.  The page can also be in the kernel's
 534	 * linear range, so we need to RO that mapping too.
 535	 */
 536	ptep = lookup_address(va, &level);
 537	BUG_ON(ptep == NULL);
 538
 539	pfn = pte_pfn(*ptep);
 540	mfn = pfn_to_mfn(pfn);
 541	virt = __va(PFN_PHYS(pfn));
 542
 543	make_lowmem_page_readonly((void *)va);
 544	make_lowmem_page_readonly(virt);
 545
 546	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 547		BUG();
 548}
 549
 550/*
 551 * load_gdt for early boot, when the gdt is only mapped once
 552 */
 553static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 554{
 555	unsigned long va = dtr->address;
 556	unsigned int size = dtr->size + 1;
 557	unsigned long pfn, mfn;
 558	pte_t pte;
 559
 560	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 561	BUG_ON(size > PAGE_SIZE);
 562	BUG_ON(va & ~PAGE_MASK);
 563
 564	pfn = virt_to_pfn((void *)va);
 565	mfn = pfn_to_mfn(pfn);
 566
 567	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 568
 569	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 570		BUG();
 571
 572	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 573		BUG();
 574}
 575
 576static inline bool desc_equal(const struct desc_struct *d1,
 577			      const struct desc_struct *d2)
 578{
 579	return !memcmp(d1, d2, sizeof(*d1));
 580}
 581
 582static void load_TLS_descriptor(struct thread_struct *t,
 583				unsigned int cpu, unsigned int i)
 584{
 585	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 586	struct desc_struct *gdt;
 587	xmaddr_t maddr;
 588	struct multicall_space mc;
 589
 590	if (desc_equal(shadow, &t->tls_array[i]))
 591		return;
 592
 593	*shadow = t->tls_array[i];
 594
 595	gdt = get_cpu_gdt_rw(cpu);
 596	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 597	mc = __xen_mc_entry(0);
 598
 599	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 600}
 601
 602static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 603{
 604	/*
 605	 * In lazy mode we need to zero %fs, otherwise we may get an
 606	 * exception between the new %fs descriptor being loaded and
 607	 * %fs being effectively cleared at __switch_to().
 608	 */
 609	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
 610		loadsegment(fs, 0);
 611
 612	xen_mc_batch();
 613
 614	load_TLS_descriptor(t, cpu, 0);
 615	load_TLS_descriptor(t, cpu, 1);
 616	load_TLS_descriptor(t, cpu, 2);
 617
 618	xen_mc_issue(XEN_LAZY_CPU);
 619}
 620
 621static void xen_load_gs_index(unsigned int idx)
 622{
 623	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 624		BUG();
 625}
 626
 627static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 628				const void *ptr)
 629{
 630	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 631	u64 entry = *(u64 *)ptr;
 632
 633	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 634
 635	preempt_disable();
 636
 637	xen_mc_flush();
 638	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 639		BUG();
 640
 641	preempt_enable();
 642}
 643
 644void noist_exc_debug(struct pt_regs *regs);
 645
 646DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
 647{
 648	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
 649	exc_nmi(regs);
 650}
 651
 652DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
 653{
 654	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
 655	exc_double_fault(regs, error_code);
 656}
 657
 658DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
 659{
 660	/*
 661	 * There's no IST on Xen PV, but we still need to dispatch
 662	 * to the correct handler.
 663	 */
 664	if (user_mode(regs))
 665		noist_exc_debug(regs);
 666	else
 667		exc_debug(regs);
 668}
 669
 670DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
 671{
 672	/* This should never happen and there is no way to handle it. */
 673	instrumentation_begin();
 674	pr_err("Unknown trap in Xen PV mode.");
 675	BUG();
 676	instrumentation_end();
 677}
 678
 679#ifdef CONFIG_X86_MCE
 680DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
 681{
 682	/*
 683	 * There's no IST on Xen PV, but we still need to dispatch
 684	 * to the correct handler.
 685	 */
 686	if (user_mode(regs))
 687		noist_exc_machine_check(regs);
 688	else
 689		exc_machine_check(regs);
 690}
 691#endif
 692
 693struct trap_array_entry {
 694	void (*orig)(void);
 695	void (*xen)(void);
 696	bool ist_okay;
 697};
 698
 699#define TRAP_ENTRY(func, ist_ok) {			\
 700	.orig		= asm_##func,			\
 701	.xen		= xen_asm_##func,		\
 702	.ist_okay	= ist_ok }
 703
 704#define TRAP_ENTRY_REDIR(func, ist_ok) {		\
 705	.orig		= asm_##func,			\
 706	.xen		= xen_asm_xenpv_##func,		\
 707	.ist_okay	= ist_ok }
 708
 709static struct trap_array_entry trap_array[] = {
 710	TRAP_ENTRY_REDIR(exc_debug,			true  ),
 711	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
 712#ifdef CONFIG_X86_MCE
 713	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
 714#endif
 715	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
 716	TRAP_ENTRY(exc_int3,				false ),
 717	TRAP_ENTRY(exc_overflow,			false ),
 718#ifdef CONFIG_IA32_EMULATION
 719	TRAP_ENTRY(int80_emulation,			false ),
 720#endif
 721	TRAP_ENTRY(exc_page_fault,			false ),
 722	TRAP_ENTRY(exc_divide_error,			false ),
 723	TRAP_ENTRY(exc_bounds,				false ),
 724	TRAP_ENTRY(exc_invalid_op,			false ),
 725	TRAP_ENTRY(exc_device_not_available,		false ),
 726	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
 727	TRAP_ENTRY(exc_invalid_tss,			false ),
 728	TRAP_ENTRY(exc_segment_not_present,		false ),
 729	TRAP_ENTRY(exc_stack_segment,			false ),
 730	TRAP_ENTRY(exc_general_protection,		false ),
 731	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
 732	TRAP_ENTRY(exc_coprocessor_error,		false ),
 733	TRAP_ENTRY(exc_alignment_check,			false ),
 734	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
 735#ifdef CONFIG_X86_CET
 736	TRAP_ENTRY(exc_control_protection,		false ),
 737#endif
 738};
 739
 740static bool __ref get_trap_addr(void **addr, unsigned int ist)
 741{
 742	unsigned int nr;
 743	bool ist_okay = false;
 744	bool found = false;
 745
 746	/*
 747	 * Replace trap handler addresses by Xen specific ones.
 748	 * Check for known traps using IST and whitelist them.
 749	 * The debugger ones are the only ones we care about.
 750	 * Xen will handle faults like double_fault, so we should never see
 751	 * them.  Warn if there's an unexpected IST-using fault handler.
 752	 */
 753	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 754		struct trap_array_entry *entry = trap_array + nr;
 755
 756		if (*addr == entry->orig) {
 757			*addr = entry->xen;
 758			ist_okay = entry->ist_okay;
 759			found = true;
 760			break;
 761		}
 762	}
 763
 764	if (nr == ARRAY_SIZE(trap_array) &&
 765	    *addr >= (void *)early_idt_handler_array[0] &&
 766	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 767		nr = (*addr - (void *)early_idt_handler_array[0]) /
 768		     EARLY_IDT_HANDLER_SIZE;
 769		*addr = (void *)xen_early_idt_handler_array[nr];
 770		found = true;
 771	}
 772
 773	if (!found)
 774		*addr = (void *)xen_asm_exc_xen_unknown_trap;
 775
 776	if (WARN_ON(found && ist != 0 && !ist_okay))
 777		return false;
 778
 779	return true;
 780}
 781
 782static int cvt_gate_to_trap(int vector, const gate_desc *val,
 783			    struct trap_info *info)
 784{
 785	unsigned long addr;
 786
 787	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 788		return 0;
 789
 790	info->vector = vector;
 791
 792	addr = gate_offset(val);
 793	if (!get_trap_addr((void **)&addr, val->bits.ist))
 794		return 0;
 795	info->address = addr;
 796
 797	info->cs = gate_segment(val);
 798	info->flags = val->bits.dpl;
 799	/* interrupt gates clear IF */
 800	if (val->bits.type == GATE_INTERRUPT)
 801		info->flags |= 1 << 2;
 802
 803	return 1;
 804}
 805
 806/* Locations of each CPU's IDT */
 807static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 808
 809/* Set an IDT entry.  If the entry is part of the current IDT, then
 810   also update Xen. */
 811static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 812{
 813	unsigned long p = (unsigned long)&dt[entrynum];
 814	unsigned long start, end;
 815
 816	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 817
 818	preempt_disable();
 819
 820	start = __this_cpu_read(idt_desc.address);
 821	end = start + __this_cpu_read(idt_desc.size) + 1;
 822
 823	xen_mc_flush();
 824
 825	native_write_idt_entry(dt, entrynum, g);
 826
 827	if (p >= start && (p + 8) <= end) {
 828		struct trap_info info[2];
 829
 830		info[1].address = 0;
 831
 832		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 833			if (HYPERVISOR_set_trap_table(info))
 834				BUG();
 835	}
 836
 837	preempt_enable();
 838}
 839
 840static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
 841				      struct trap_info *traps, bool full)
 842{
 843	unsigned in, out, count;
 844
 845	count = (desc->size+1) / sizeof(gate_desc);
 846	BUG_ON(count > 256);
 847
 848	for (in = out = 0; in < count; in++) {
 849		gate_desc *entry = (gate_desc *)(desc->address) + in;
 850
 851		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
 852			out++;
 853	}
 854
 855	return out;
 856}
 857
 858void xen_copy_trap_info(struct trap_info *traps)
 859{
 860	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 861
 862	xen_convert_trap_info(desc, traps, true);
 863}
 864
 865/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 866   hold a spinlock to protect the static traps[] array (static because
 867   it avoids allocation, and saves stack space). */
 868static void xen_load_idt(const struct desc_ptr *desc)
 869{
 870	static DEFINE_SPINLOCK(lock);
 871	static struct trap_info traps[257];
 872	static const struct trap_info zero = { };
 873	unsigned out;
 874
 875	trace_xen_cpu_load_idt(desc);
 876
 877	spin_lock(&lock);
 878
 879	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 880
 881	out = xen_convert_trap_info(desc, traps, false);
 882	traps[out] = zero;
 883
 884	xen_mc_flush();
 885	if (HYPERVISOR_set_trap_table(traps))
 886		BUG();
 887
 888	spin_unlock(&lock);
 889}
 890
 891/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 892   they're handled differently. */
 893static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 894				const void *desc, int type)
 895{
 896	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 897
 898	preempt_disable();
 899
 900	switch (type) {
 901	case DESC_LDT:
 902	case DESC_TSS:
 903		/* ignore */
 904		break;
 905
 906	default: {
 907		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 908
 909		xen_mc_flush();
 910		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 911			BUG();
 912	}
 913
 914	}
 915
 916	preempt_enable();
 917}
 918
 919/*
 920 * Version of write_gdt_entry for use at early boot-time needed to
 921 * update an entry as simply as possible.
 922 */
 923static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 924					    const void *desc, int type)
 925{
 926	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 927
 928	switch (type) {
 929	case DESC_LDT:
 930	case DESC_TSS:
 931		/* ignore */
 932		break;
 933
 934	default: {
 935		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 936
 937		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 938			dt[entry] = *(struct desc_struct *)desc;
 939	}
 940
 941	}
 942}
 943
 944static void xen_load_sp0(unsigned long sp0)
 945{
 946	struct multicall_space mcs;
 947
 948	mcs = xen_mc_entry(0);
 949	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 950	xen_mc_issue(XEN_LAZY_CPU);
 951	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 952}
 953
 954#ifdef CONFIG_X86_IOPL_IOPERM
 955static void xen_invalidate_io_bitmap(void)
 956{
 957	struct physdev_set_iobitmap iobitmap = {
 958		.bitmap = NULL,
 959		.nr_ports = 0,
 960	};
 961
 962	native_tss_invalidate_io_bitmap();
 963	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 964}
 965
 966static void xen_update_io_bitmap(void)
 967{
 968	struct physdev_set_iobitmap iobitmap;
 969	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 970
 971	native_tss_update_io_bitmap();
 972
 973	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
 974			  tss->x86_tss.io_bitmap_base;
 975	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
 976		iobitmap.nr_ports = 0;
 977	else
 978		iobitmap.nr_ports = IO_BITMAP_BITS;
 979
 980	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 981}
 982#endif
 983
 984static void xen_io_delay(void)
 985{
 986}
 987
 988static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 989
 990static unsigned long xen_read_cr0(void)
 991{
 992	unsigned long cr0 = this_cpu_read(xen_cr0_value);
 993
 994	if (unlikely(cr0 == 0)) {
 995		cr0 = native_read_cr0();
 996		this_cpu_write(xen_cr0_value, cr0);
 997	}
 998
 999	return cr0;
1000}
1001
1002static void xen_write_cr0(unsigned long cr0)
1003{
1004	struct multicall_space mcs;
1005
1006	this_cpu_write(xen_cr0_value, cr0);
1007
1008	/* Only pay attention to cr0.TS; everything else is
1009	   ignored. */
1010	mcs = xen_mc_entry(0);
1011
1012	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1013
1014	xen_mc_issue(XEN_LAZY_CPU);
1015}
1016
1017static void xen_write_cr4(unsigned long cr4)
1018{
1019	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1020
1021	native_write_cr4(cr4);
1022}
1023
1024static u64 xen_do_read_msr(unsigned int msr, int *err)
1025{
1026	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
1027
1028	if (pmu_msr_read(msr, &val, err))
1029		return val;
1030
1031	if (err)
1032		val = native_read_msr_safe(msr, err);
1033	else
1034		val = native_read_msr(msr);
1035
1036	switch (msr) {
1037	case MSR_IA32_APICBASE:
1038		val &= ~X2APIC_ENABLE;
1039		break;
1040	}
1041	return val;
1042}
1043
1044static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1045		    int *err)
1046{
1047	u64 base = ((u64)high << 32) | low;
1048
1049	if (HYPERVISOR_set_segment_base(which, base) == 0)
1050		return;
1051
1052	if (err)
1053		*err = -EIO;
1054	else
1055		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1056}
1057
1058/*
1059 * Support write_msr_safe() and write_msr() semantics.
1060 * With err == NULL write_msr() semantics are selected.
1061 * Supplying an err pointer requires err to be pre-initialized with 0.
1062 */
1063static void xen_do_write_msr(unsigned int msr, unsigned int low,
1064			     unsigned int high, int *err)
1065{
1066	switch (msr) {
1067	case MSR_FS_BASE:
1068		set_seg(SEGBASE_FS, low, high, err);
1069		break;
1070
1071	case MSR_KERNEL_GS_BASE:
1072		set_seg(SEGBASE_GS_USER, low, high, err);
1073		break;
1074
1075	case MSR_GS_BASE:
1076		set_seg(SEGBASE_GS_KERNEL, low, high, err);
1077		break;
1078
1079	case MSR_STAR:
1080	case MSR_CSTAR:
1081	case MSR_LSTAR:
1082	case MSR_SYSCALL_MASK:
1083	case MSR_IA32_SYSENTER_CS:
1084	case MSR_IA32_SYSENTER_ESP:
1085	case MSR_IA32_SYSENTER_EIP:
1086		/* Fast syscall setup is all done in hypercalls, so
1087		   these are all ignored.  Stub them out here to stop
1088		   Xen console noise. */
1089		break;
1090
1091	default:
1092		if (!pmu_msr_write(msr, low, high, err)) {
1093			if (err)
1094				*err = native_write_msr_safe(msr, low, high);
1095			else
1096				native_write_msr(msr, low, high);
1097		}
1098	}
1099}
1100
1101static u64 xen_read_msr_safe(unsigned int msr, int *err)
1102{
1103	return xen_do_read_msr(msr, err);
1104}
1105
1106static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1107			      unsigned int high)
1108{
1109	int err = 0;
1110
1111	xen_do_write_msr(msr, low, high, &err);
1112
1113	return err;
1114}
1115
1116static u64 xen_read_msr(unsigned int msr)
1117{
1118	int err;
1119
1120	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1121}
1122
1123static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1124{
1125	int err;
1126
1127	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1128}
1129
1130/* This is called once we have the cpu_possible_mask */
1131void __init xen_setup_vcpu_info_placement(void)
1132{
1133	int cpu;
1134
1135	for_each_possible_cpu(cpu) {
1136		/* Set up direct vCPU id mapping for PV guests. */
1137		per_cpu(xen_vcpu_id, cpu) = cpu;
1138		xen_vcpu_setup(cpu);
1139	}
1140
1141	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1142	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1143	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1144	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1145}
1146
1147static const struct pv_info xen_info __initconst = {
1148	.extra_user_64bit_cs = FLAT_USER_CS64,
1149	.name = "Xen",
1150};
1151
1152static const typeof(pv_ops) xen_cpu_ops __initconst = {
1153	.cpu = {
1154		.cpuid = xen_cpuid,
1155
1156		.set_debugreg = xen_set_debugreg,
1157		.get_debugreg = xen_get_debugreg,
1158
1159		.read_cr0 = xen_read_cr0,
1160		.write_cr0 = xen_write_cr0,
1161
1162		.write_cr4 = xen_write_cr4,
1163
1164		.wbinvd = pv_native_wbinvd,
1165
1166		.read_msr = xen_read_msr,
1167		.write_msr = xen_write_msr,
1168
1169		.read_msr_safe = xen_read_msr_safe,
1170		.write_msr_safe = xen_write_msr_safe,
1171
1172		.read_pmc = xen_read_pmc,
1173
1174		.load_tr_desc = paravirt_nop,
1175		.set_ldt = xen_set_ldt,
1176		.load_gdt = xen_load_gdt,
1177		.load_idt = xen_load_idt,
1178		.load_tls = xen_load_tls,
1179		.load_gs_index = xen_load_gs_index,
1180
1181		.alloc_ldt = xen_alloc_ldt,
1182		.free_ldt = xen_free_ldt,
1183
1184		.store_tr = xen_store_tr,
1185
1186		.write_ldt_entry = xen_write_ldt_entry,
1187		.write_gdt_entry = xen_write_gdt_entry,
1188		.write_idt_entry = xen_write_idt_entry,
1189		.load_sp0 = xen_load_sp0,
1190
1191#ifdef CONFIG_X86_IOPL_IOPERM
1192		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1193		.update_io_bitmap = xen_update_io_bitmap,
1194#endif
1195		.io_delay = xen_io_delay,
1196
1197		.start_context_switch = xen_start_context_switch,
1198		.end_context_switch = xen_end_context_switch,
1199	},
1200};
1201
1202static void xen_restart(char *msg)
1203{
1204	xen_reboot(SHUTDOWN_reboot);
1205}
1206
1207static void xen_machine_halt(void)
1208{
1209	xen_reboot(SHUTDOWN_poweroff);
1210}
1211
1212static void xen_machine_power_off(void)
1213{
1214	do_kernel_power_off();
1215	xen_reboot(SHUTDOWN_poweroff);
1216}
1217
1218static void xen_crash_shutdown(struct pt_regs *regs)
1219{
1220	xen_reboot(SHUTDOWN_crash);
1221}
1222
1223static const struct machine_ops xen_machine_ops __initconst = {
1224	.restart = xen_restart,
1225	.halt = xen_machine_halt,
1226	.power_off = xen_machine_power_off,
1227	.shutdown = xen_machine_halt,
1228	.crash_shutdown = xen_crash_shutdown,
1229	.emergency_restart = xen_emergency_restart,
1230};
1231
1232static unsigned char xen_get_nmi_reason(void)
1233{
1234	unsigned char reason = 0;
1235
1236	/* Construct a value which looks like it came from port 0x61. */
1237	if (test_bit(_XEN_NMIREASON_io_error,
1238		     &HYPERVISOR_shared_info->arch.nmi_reason))
1239		reason |= NMI_REASON_IOCHK;
1240	if (test_bit(_XEN_NMIREASON_pci_serr,
1241		     &HYPERVISOR_shared_info->arch.nmi_reason))
1242		reason |= NMI_REASON_SERR;
1243
1244	return reason;
1245}
1246
1247static void __init xen_boot_params_init_edd(void)
1248{
1249#if IS_ENABLED(CONFIG_EDD)
1250	struct xen_platform_op op;
1251	struct edd_info *edd_info;
1252	u32 *mbr_signature;
1253	unsigned nr;
1254	int ret;
1255
1256	edd_info = boot_params.eddbuf;
1257	mbr_signature = boot_params.edd_mbr_sig_buffer;
1258
1259	op.cmd = XENPF_firmware_info;
1260
1261	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1262	for (nr = 0; nr < EDDMAXNR; nr++) {
1263		struct edd_info *info = edd_info + nr;
1264
1265		op.u.firmware_info.index = nr;
1266		info->params.length = sizeof(info->params);
1267		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1268				     &info->params);
1269		ret = HYPERVISOR_platform_op(&op);
1270		if (ret)
1271			break;
1272
1273#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1274		C(device);
1275		C(version);
1276		C(interface_support);
1277		C(legacy_max_cylinder);
1278		C(legacy_max_head);
1279		C(legacy_sectors_per_track);
1280#undef C
1281	}
1282	boot_params.eddbuf_entries = nr;
1283
1284	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1285	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1286		op.u.firmware_info.index = nr;
1287		ret = HYPERVISOR_platform_op(&op);
1288		if (ret)
1289			break;
1290		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1291	}
1292	boot_params.edd_mbr_sig_buf_entries = nr;
1293#endif
1294}
1295
1296/*
1297 * Set up the GDT and segment registers for -fstack-protector.  Until
1298 * we do this, we have to be careful not to call any stack-protected
1299 * function, which is most of the kernel.
1300 */
1301static void __init xen_setup_gdt(int cpu)
1302{
1303	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1304	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1305
1306	switch_gdt_and_percpu_base(cpu);
1307
1308	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1309	pv_ops.cpu.load_gdt = xen_load_gdt;
1310}
1311
1312static void __init xen_dom0_set_legacy_features(void)
1313{
1314	x86_platform.legacy.rtc = 1;
1315}
1316
1317static void __init xen_domu_set_legacy_features(void)
1318{
1319	x86_platform.legacy.rtc = 0;
1320}
1321
1322extern void early_xen_iret_patch(void);
1323
1324/* First C function to be called on Xen boot */
1325asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1326{
1327	struct physdev_set_iopl set_iopl;
1328	unsigned long initrd_start = 0;
1329	int rc;
1330
1331	if (!si)
1332		return;
1333
1334	clear_bss();
1335
1336	xen_start_info = si;
1337
1338	__text_gen_insn(&early_xen_iret_patch,
1339			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1340			JMP32_INSN_SIZE);
1341
1342	xen_domain_type = XEN_PV_DOMAIN;
1343	xen_start_flags = xen_start_info->flags;
1344
1345	xen_setup_features();
1346
1347	/* Install Xen paravirt ops */
1348	pv_info = xen_info;
1349	pv_ops.cpu = xen_cpu_ops.cpu;
1350	xen_init_irq_ops();
1351
1352	/*
1353	 * Setup xen_vcpu early because it is needed for
1354	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1355	 *
1356	 * Don't do the full vcpu_info placement stuff until we have
1357	 * the cpu_possible_mask and a non-dummy shared_info.
1358	 */
1359	xen_vcpu_info_reset(0);
1360
1361	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1362	x86_platform.realmode_reserve = x86_init_noop;
1363	x86_platform.realmode_init = x86_init_noop;
1364
1365	x86_init.resources.memory_setup = xen_memory_setup;
1366	x86_init.irqs.intr_mode_select	= x86_init_noop;
1367	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
1368	x86_init.oem.arch_setup = xen_arch_setup;
1369	x86_init.oem.banner = xen_banner;
1370	x86_init.hyper.init_platform = xen_pv_init_platform;
1371	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1372
1373	/*
1374	 * Set up some pagetable state before starting to set any ptes.
1375	 */
1376
1377	xen_setup_machphys_mapping();
1378	xen_init_mmu_ops();
1379
1380	/* Prevent unwanted bits from being set in PTEs. */
1381	__supported_pte_mask &= ~_PAGE_GLOBAL;
1382	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1383
1384	/* Get mfn list */
1385	xen_build_dynamic_phys_to_machine();
1386
1387	/* Work out if we support NX */
1388	get_cpu_cap(&boot_cpu_data);
1389	x86_configure_nx();
1390
1391	/*
1392	 * Set up kernel GDT and segment registers, mainly so that
1393	 * -fstack-protector code can be executed.
1394	 */
1395	xen_setup_gdt(0);
1396
1397	/* Determine virtual and physical address sizes */
1398	get_cpu_address_sizes(&boot_cpu_data);
1399
1400	/* Let's presume PV guests always boot on vCPU with id 0. */
1401	per_cpu(xen_vcpu_id, 0) = 0;
1402
1403	idt_setup_early_handler();
1404
1405	xen_init_capabilities();
1406
 
1407	/*
1408	 * set up the basic apic ops.
1409	 */
1410	xen_init_apic();
 
1411
1412	machine_ops = xen_machine_ops;
1413
1414	/*
1415	 * The only reliable way to retain the initial address of the
1416	 * percpu gdt_page is to remember it here, so we can go and
1417	 * mark it RW later, when the initial percpu area is freed.
1418	 */
1419	xen_initial_gdt = &per_cpu(gdt_page, 0);
1420
1421	xen_smp_init();
1422
1423#ifdef CONFIG_ACPI_NUMA
1424	/*
1425	 * The pages we from Xen are not related to machine pages, so
1426	 * any NUMA information the kernel tries to get from ACPI will
1427	 * be meaningless.  Prevent it from trying.
1428	 */
1429	disable_srat();
1430#endif
1431	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1432
1433	local_irq_disable();
1434	early_boot_irqs_disabled = true;
1435
1436	xen_raw_console_write("mapping kernel into physical memory\n");
1437	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1438				   xen_start_info->nr_pages);
1439	xen_reserve_special_pages();
1440
1441	/*
1442	 * We used to do this in xen_arch_setup, but that is too late
1443	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1444	 * early_amd_init which pokes 0xcf8 port.
1445	 */
1446	set_iopl.iopl = 1;
1447	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1448	if (rc != 0)
1449		xen_raw_printk("physdev_op failed %d\n", rc);
1450
1451
1452	if (xen_start_info->mod_start) {
1453	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1454		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1455	    else
1456		initrd_start = __pa(xen_start_info->mod_start);
1457	}
1458
1459	/* Poke various useful things into boot_params */
1460	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1461	boot_params.hdr.ramdisk_image = initrd_start;
1462	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1463	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1464	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1465
1466	if (!xen_initial_domain()) {
1467		if (pci_xen)
1468			x86_init.pci.arch_init = pci_xen_init;
1469		x86_platform.set_legacy_features =
1470				xen_domu_set_legacy_features;
1471	} else {
1472		const struct dom0_vga_console_info *info =
1473			(void *)((char *)xen_start_info +
1474				 xen_start_info->console.dom0.info_off);
1475		struct xen_platform_op op = {
1476			.cmd = XENPF_firmware_info,
1477			.interface_version = XENPF_INTERFACE_VERSION,
1478			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1479		};
1480
1481		x86_platform.set_legacy_features =
1482				xen_dom0_set_legacy_features;
1483		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1484			     &boot_params.screen_info);
1485		xen_start_info->console.domU.mfn = 0;
1486		xen_start_info->console.domU.evtchn = 0;
1487
1488		if (HYPERVISOR_platform_op(&op) == 0)
1489			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1490
1491		/* Make sure ACS will be enabled */
1492		pci_request_acs();
1493
1494		xen_acpi_sleep_register();
1495
1496		xen_boot_params_init_edd();
1497
1498#ifdef CONFIG_ACPI
1499		/*
1500		 * Disable selecting "Firmware First mode" for correctable
1501		 * memory errors, as this is the duty of the hypervisor to
1502		 * decide.
1503		 */
1504		acpi_disable_cmcff = 1;
1505#endif
1506	}
1507
1508	xen_add_preferred_consoles();
1509
1510#ifdef CONFIG_PCI
1511	/* PCI BIOS service won't work from a PV guest. */
1512	pci_probe &= ~PCI_PROBE_BIOS;
1513#endif
1514	xen_raw_console_write("about to get started...\n");
1515
1516	/* We need this for printk timestamps */
1517	xen_setup_runstate_info(0);
1518
1519	xen_efi_init(&boot_params);
1520
1521	/* Start the world */
1522	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1523	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1524}
1525
1526static int xen_cpu_up_prepare_pv(unsigned int cpu)
1527{
1528	int rc;
1529
1530	if (per_cpu(xen_vcpu, cpu) == NULL)
1531		return -ENODEV;
1532
1533	xen_setup_timer(cpu);
1534
1535	rc = xen_smp_intr_init(cpu);
1536	if (rc) {
1537		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1538		     cpu, rc);
1539		return rc;
1540	}
1541
1542	rc = xen_smp_intr_init_pv(cpu);
1543	if (rc) {
1544		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1545		     cpu, rc);
1546		return rc;
1547	}
1548
1549	return 0;
1550}
1551
1552static int xen_cpu_dead_pv(unsigned int cpu)
1553{
1554	xen_smp_intr_free(cpu);
1555	xen_smp_intr_free_pv(cpu);
1556
1557	xen_teardown_timer(cpu);
1558
1559	return 0;
1560}
1561
1562static uint32_t __init xen_platform_pv(void)
1563{
1564	if (xen_pv_domain())
1565		return xen_cpuid_base();
1566
1567	return 0;
1568}
1569
1570const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1571	.name                   = "Xen PV",
1572	.detect                 = xen_platform_pv,
1573	.type			= X86_HYPER_XEN_PV,
1574	.runtime.pin_vcpu       = xen_pin_vcpu,
1575	.ignore_nopv		= true,
1576};