Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
  26#include <linux/kstrtox.h>
  27#include <linux/memblock.h>
  28#include <linux/export.h>
  29#include <linux/mm.h>
  30#include <linux/page-flags.h>
 
 
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/edd.h>
  34#include <linux/reboot.h>
  35#include <linux/virtio_anchor.h>
  36#include <linux/stackprotector.h>
  37
  38#include <xen/xen.h>
  39#include <xen/events.h>
  40#include <xen/interface/xen.h>
  41#include <xen/interface/version.h>
  42#include <xen/interface/physdev.h>
  43#include <xen/interface/vcpu.h>
  44#include <xen/interface/memory.h>
  45#include <xen/interface/nmi.h>
  46#include <xen/interface/xen-mca.h>
  47#include <xen/features.h>
  48#include <xen/page.h>
  49#include <xen/hvc-console.h>
  50#include <xen/acpi.h>
  51
  52#include <asm/paravirt.h>
  53#include <asm/apic.h>
  54#include <asm/page.h>
  55#include <asm/xen/pci.h>
  56#include <asm/xen/hypercall.h>
  57#include <asm/xen/hypervisor.h>
  58#include <asm/xen/cpuid.h>
  59#include <asm/fixmap.h>
  60#include <asm/processor.h>
  61#include <asm/proto.h>
  62#include <asm/msr-index.h>
  63#include <asm/traps.h>
  64#include <asm/setup.h>
  65#include <asm/desc.h>
  66#include <asm/pgalloc.h>
 
  67#include <asm/tlbflush.h>
  68#include <asm/reboot.h>
 
  69#include <asm/hypervisor.h>
  70#include <asm/mach_traps.h>
  71#include <asm/mwait.h>
  72#include <asm/pci_x86.h>
  73#include <asm/cpu.h>
  74#ifdef CONFIG_X86_IOPL_IOPERM
  75#include <asm/io_bitmap.h>
  76#endif
  77
  78#ifdef CONFIG_ACPI
  79#include <linux/acpi.h>
  80#include <asm/acpi.h>
  81#include <acpi/pdc_intel.h>
  82#include <acpi/processor.h>
  83#include <xen/interface/platform.h>
  84#endif
  85
  86#include "xen-ops.h"
  87#include "mmu.h"
  88#include "smp.h"
  89#include "multicalls.h"
  90#include "pmu.h"
  91
  92#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  93
  94void *xen_initial_gdt;
  95
  96static int xen_cpu_up_prepare_pv(unsigned int cpu);
  97static int xen_cpu_dead_pv(unsigned int cpu);
  98
  99struct tls_descs {
 100	struct desc_struct desc[3];
 101};
 102
 103/*
 104 * Updating the 3 TLS descriptors in the GDT on every task switch is
 105 * surprisingly expensive so we avoid updating them if they haven't
 106 * changed.  Since Xen writes different descriptors than the one
 107 * passed in the update_descriptor hypercall we keep shadow copies to
 108 * compare against.
 109 */
 110static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 111
 112static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
 113
 114static int __init parse_xen_msr_safe(char *str)
 115{
 116	if (str)
 117		return kstrtobool(str, &xen_msr_safe);
 118	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 119}
 120early_param("xen_msr_safe", parse_xen_msr_safe);
 121
 122static void __init xen_pv_init_platform(void)
 123{
 124	/* PV guests can't operate virtio devices without grants. */
 125	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
 126		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
 127
 128	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
 129
 130	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 131	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 132
 133	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
 134	xen_vcpu_info_reset(0);
 135
 136	/* pvclock is in shared info area */
 137	xen_init_time_ops();
 138}
 139
 140static void __init xen_pv_guest_late_init(void)
 141{
 142#ifndef CONFIG_SMP
 143	/* Setup shared vcpu info for non-smp configurations */
 144	xen_setup_vcpu_info_placement();
 145#endif
 146}
 147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 149static __read_mostly unsigned int cpuid_leaf5_edx_val;
 150
 151static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 152		      unsigned int *cx, unsigned int *dx)
 153{
 154	unsigned maskebx = ~0;
 155
 156	/*
 157	 * Mask out inconvenient features, to try and disable as many
 158	 * unsupported kernel subsystems as possible.
 159	 */
 160	switch (*ax) {
 161	case CPUID_MWAIT_LEAF:
 162		/* Synthesize the values.. */
 163		*ax = 0;
 164		*bx = 0;
 165		*cx = cpuid_leaf5_ecx_val;
 166		*dx = cpuid_leaf5_edx_val;
 167		return;
 168
 169	case 0xb:
 170		/* Suppress extended topology stuff */
 171		maskebx = 0;
 172		break;
 173	}
 174
 175	asm(XEN_EMULATE_PREFIX "cpuid"
 176		: "=a" (*ax),
 177		  "=b" (*bx),
 178		  "=c" (*cx),
 179		  "=d" (*dx)
 180		: "0" (*ax), "2" (*cx));
 181
 182	*bx &= maskebx;
 183}
 
 184
 185static bool __init xen_check_mwait(void)
 186{
 187#ifdef CONFIG_ACPI
 188	struct xen_platform_op op = {
 189		.cmd			= XENPF_set_processor_pminfo,
 190		.u.set_pminfo.id	= -1,
 191		.u.set_pminfo.type	= XEN_PM_PDC,
 192	};
 193	uint32_t buf[3];
 194	unsigned int ax, bx, cx, dx;
 195	unsigned int mwait_mask;
 196
 197	/* We need to determine whether it is OK to expose the MWAIT
 198	 * capability to the kernel to harvest deeper than C3 states from ACPI
 199	 * _CST using the processor_harvest_xen.c module. For this to work, we
 200	 * need to gather the MWAIT_LEAF values (which the cstate.c code
 201	 * checks against). The hypervisor won't expose the MWAIT flag because
 202	 * it would break backwards compatibility; so we will find out directly
 203	 * from the hardware and hypercall.
 204	 */
 205	if (!xen_initial_domain())
 206		return false;
 207
 208	/*
 209	 * When running under platform earlier than Xen4.2, do not expose
 210	 * mwait, to avoid the risk of loading native acpi pad driver
 211	 */
 212	if (!xen_running_on_version_or_later(4, 2))
 213		return false;
 214
 215	ax = 1;
 216	cx = 0;
 217
 218	native_cpuid(&ax, &bx, &cx, &dx);
 219
 220	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 221		     (1 << (X86_FEATURE_MWAIT % 32));
 222
 223	if ((cx & mwait_mask) != mwait_mask)
 224		return false;
 225
 226	/* We need to emulate the MWAIT_LEAF and for that we need both
 227	 * ecx and edx. The hypercall provides only partial information.
 228	 */
 229
 230	ax = CPUID_MWAIT_LEAF;
 231	bx = 0;
 232	cx = 0;
 233	dx = 0;
 234
 235	native_cpuid(&ax, &bx, &cx, &dx);
 236
 237	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 238	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 239	 */
 240	buf[0] = ACPI_PDC_REVISION_ID;
 241	buf[1] = 1;
 242	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 243
 244	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 245
 246	if ((HYPERVISOR_platform_op(&op) == 0) &&
 247	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 248		cpuid_leaf5_ecx_val = cx;
 249		cpuid_leaf5_edx_val = dx;
 250	}
 251	return true;
 252#else
 253	return false;
 254#endif
 255}
 256
 257static bool __init xen_check_xsave(void)
 258{
 259	unsigned int cx, xsave_mask;
 260
 261	cx = cpuid_ecx(1);
 262
 263	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 264		     (1 << (X86_FEATURE_OSXSAVE % 32));
 265
 266	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 267	return (cx & xsave_mask) == xsave_mask;
 268}
 269
 270static void __init xen_init_capabilities(void)
 271{
 272	setup_force_cpu_cap(X86_FEATURE_XENPV);
 273	setup_clear_cpu_cap(X86_FEATURE_DCA);
 274	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 275	setup_clear_cpu_cap(X86_FEATURE_MTRR);
 276	setup_clear_cpu_cap(X86_FEATURE_ACC);
 277	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 278	setup_clear_cpu_cap(X86_FEATURE_SME);
 279
 280	/*
 281	 * Xen PV would need some work to support PCID: CR3 handling as well
 282	 * as xen_flush_tlb_others() would need updating.
 283	 */
 284	setup_clear_cpu_cap(X86_FEATURE_PCID);
 285
 286	if (!xen_initial_domain())
 287		setup_clear_cpu_cap(X86_FEATURE_ACPI);
 288
 289	if (xen_check_mwait())
 290		setup_force_cpu_cap(X86_FEATURE_MWAIT);
 291	else
 292		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 293
 294	if (!xen_check_xsave()) {
 295		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 296		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 297	}
 298}
 299
 300static noinstr void xen_set_debugreg(int reg, unsigned long val)
 301{
 302	HYPERVISOR_set_debugreg(reg, val);
 303}
 304
 305static noinstr unsigned long xen_get_debugreg(int reg)
 306{
 307	return HYPERVISOR_get_debugreg(reg);
 308}
 309
 310static void xen_end_context_switch(struct task_struct *next)
 311{
 312	xen_mc_flush();
 313	paravirt_end_context_switch(next);
 314}
 315
 316static unsigned long xen_store_tr(void)
 317{
 318	return 0;
 319}
 320
 321/*
 322 * Set the page permissions for a particular virtual address.  If the
 323 * address is a vmalloc mapping (or other non-linear mapping), then
 324 * find the linear mapping of the page and also set its protections to
 325 * match.
 326 */
 327static void set_aliased_prot(void *v, pgprot_t prot)
 328{
 329	int level;
 330	pte_t *ptep;
 331	pte_t pte;
 332	unsigned long pfn;
 
 333	unsigned char dummy;
 334	void *va;
 335
 336	ptep = lookup_address((unsigned long)v, &level);
 337	BUG_ON(ptep == NULL);
 338
 339	pfn = pte_pfn(*ptep);
 
 
 340	pte = pfn_pte(pfn, prot);
 341
 342	/*
 343	 * Careful: update_va_mapping() will fail if the virtual address
 344	 * we're poking isn't populated in the page tables.  We don't
 345	 * need to worry about the direct map (that's always in the page
 346	 * tables), but we need to be careful about vmap space.  In
 347	 * particular, the top level page table can lazily propagate
 348	 * entries between processes, so if we've switched mms since we
 349	 * vmapped the target in the first place, we might not have the
 350	 * top-level page table entry populated.
 351	 *
 352	 * We disable preemption because we want the same mm active when
 353	 * we probe the target and when we issue the hypercall.  We'll
 354	 * have the same nominal mm, but if we're a kernel thread, lazy
 355	 * mm dropping could change our pgd.
 356	 *
 357	 * Out of an abundance of caution, this uses __get_user() to fault
 358	 * in the target address just in case there's some obscure case
 359	 * in which the target address isn't readable.
 360	 */
 361
 362	preempt_disable();
 363
 364	copy_from_kernel_nofault(&dummy, v, 1);
 365
 366	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 367		BUG();
 368
 369	va = __va(PFN_PHYS(pfn));
 
 370
 371	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 372		BUG();
 
 
 
 373
 374	preempt_enable();
 375}
 376
 377static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 378{
 379	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 380	int i;
 381
 382	/*
 383	 * We need to mark the all aliases of the LDT pages RO.  We
 384	 * don't need to call vm_flush_aliases(), though, since that's
 385	 * only responsible for flushing aliases out the TLBs, not the
 386	 * page tables, and Xen will flush the TLB for us if needed.
 387	 *
 388	 * To avoid confusing future readers: none of this is necessary
 389	 * to load the LDT.  The hypervisor only checks this when the
 390	 * LDT is faulted in due to subsequent descriptor access.
 391	 */
 392
 393	for (i = 0; i < entries; i += entries_per_page)
 394		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 395}
 396
 397static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 398{
 399	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 400	int i;
 401
 402	for (i = 0; i < entries; i += entries_per_page)
 403		set_aliased_prot(ldt + i, PAGE_KERNEL);
 404}
 405
 406static void xen_set_ldt(const void *addr, unsigned entries)
 407{
 408	struct mmuext_op *op;
 409	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 410
 411	trace_xen_cpu_set_ldt(addr, entries);
 412
 413	op = mcs.args;
 414	op->cmd = MMUEXT_SET_LDT;
 415	op->arg1.linear_addr = (unsigned long)addr;
 416	op->arg2.nr_ents = entries;
 417
 418	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 419
 420	xen_mc_issue(PARAVIRT_LAZY_CPU);
 421}
 422
 423static void xen_load_gdt(const struct desc_ptr *dtr)
 424{
 425	unsigned long va = dtr->address;
 426	unsigned int size = dtr->size + 1;
 427	unsigned long pfn, mfn;
 428	int level;
 429	pte_t *ptep;
 430	void *virt;
 431
 432	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 433	BUG_ON(size > PAGE_SIZE);
 434	BUG_ON(va & ~PAGE_MASK);
 435
 436	/*
 437	 * The GDT is per-cpu and is in the percpu data area.
 438	 * That can be virtually mapped, so we need to do a
 439	 * page-walk to get the underlying MFN for the
 440	 * hypercall.  The page can also be in the kernel's
 441	 * linear range, so we need to RO that mapping too.
 442	 */
 443	ptep = lookup_address(va, &level);
 444	BUG_ON(ptep == NULL);
 445
 446	pfn = pte_pfn(*ptep);
 447	mfn = pfn_to_mfn(pfn);
 448	virt = __va(PFN_PHYS(pfn));
 449
 450	make_lowmem_page_readonly((void *)va);
 451	make_lowmem_page_readonly(virt);
 452
 453	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 454		BUG();
 455}
 456
 457/*
 458 * load_gdt for early boot, when the gdt is only mapped once
 459 */
 460static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 461{
 462	unsigned long va = dtr->address;
 463	unsigned int size = dtr->size + 1;
 464	unsigned long pfn, mfn;
 465	pte_t pte;
 466
 467	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 468	BUG_ON(size > PAGE_SIZE);
 469	BUG_ON(va & ~PAGE_MASK);
 470
 471	pfn = virt_to_pfn(va);
 472	mfn = pfn_to_mfn(pfn);
 473
 474	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 475
 476	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 477		BUG();
 478
 479	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 480		BUG();
 481}
 482
 483static inline bool desc_equal(const struct desc_struct *d1,
 484			      const struct desc_struct *d2)
 485{
 486	return !memcmp(d1, d2, sizeof(*d1));
 487}
 488
 489static void load_TLS_descriptor(struct thread_struct *t,
 490				unsigned int cpu, unsigned int i)
 491{
 492	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 493	struct desc_struct *gdt;
 494	xmaddr_t maddr;
 495	struct multicall_space mc;
 496
 497	if (desc_equal(shadow, &t->tls_array[i]))
 498		return;
 499
 500	*shadow = t->tls_array[i];
 501
 502	gdt = get_cpu_gdt_rw(cpu);
 503	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 504	mc = __xen_mc_entry(0);
 505
 506	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 507}
 508
 509static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 510{
 511	/*
 512	 * In lazy mode we need to zero %fs, otherwise we may get an
 
 
 
 
 
 
 
 
 
 
 
 
 
 513	 * exception between the new %fs descriptor being loaded and
 514	 * %fs being effectively cleared at __switch_to().
 515	 */
 516	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
 
 
 
 517		loadsegment(fs, 0);
 
 
 518
 519	xen_mc_batch();
 520
 521	load_TLS_descriptor(t, cpu, 0);
 522	load_TLS_descriptor(t, cpu, 1);
 523	load_TLS_descriptor(t, cpu, 2);
 524
 525	xen_mc_issue(PARAVIRT_LAZY_CPU);
 526}
 527
 
 528static void xen_load_gs_index(unsigned int idx)
 529{
 530	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 531		BUG();
 532}
 
 533
 534static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 535				const void *ptr)
 536{
 537	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 538	u64 entry = *(u64 *)ptr;
 539
 540	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 541
 542	preempt_disable();
 543
 544	xen_mc_flush();
 545	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 546		BUG();
 547
 548	preempt_enable();
 549}
 550
 551void noist_exc_debug(struct pt_regs *regs);
 552
 553DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
 554{
 555	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
 556	exc_nmi(regs);
 557}
 558
 559DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
 560{
 561	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
 562	exc_double_fault(regs, error_code);
 563}
 564
 565DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
 566{
 567	/*
 568	 * There's no IST on Xen PV, but we still need to dispatch
 569	 * to the correct handler.
 570	 */
 571	if (user_mode(regs))
 572		noist_exc_debug(regs);
 573	else
 574		exc_debug(regs);
 575}
 576
 577DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
 578{
 579	/* This should never happen and there is no way to handle it. */
 580	instrumentation_begin();
 581	pr_err("Unknown trap in Xen PV mode.");
 582	BUG();
 583	instrumentation_end();
 584}
 585
 586#ifdef CONFIG_X86_MCE
 587DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
 588{
 589	/*
 590	 * There's no IST on Xen PV, but we still need to dispatch
 591	 * to the correct handler.
 592	 */
 593	if (user_mode(regs))
 594		noist_exc_machine_check(regs);
 595	else
 596		exc_machine_check(regs);
 597}
 598#endif
 599
 600struct trap_array_entry {
 601	void (*orig)(void);
 602	void (*xen)(void);
 603	bool ist_okay;
 604};
 605
 606#define TRAP_ENTRY(func, ist_ok) {			\
 607	.orig		= asm_##func,			\
 608	.xen		= xen_asm_##func,		\
 609	.ist_okay	= ist_ok }
 610
 611#define TRAP_ENTRY_REDIR(func, ist_ok) {		\
 612	.orig		= asm_##func,			\
 613	.xen		= xen_asm_xenpv_##func,		\
 614	.ist_okay	= ist_ok }
 615
 616static struct trap_array_entry trap_array[] = {
 617	TRAP_ENTRY_REDIR(exc_debug,			true  ),
 618	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
 619#ifdef CONFIG_X86_MCE
 620	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
 621#endif
 622	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
 623	TRAP_ENTRY(exc_int3,				false ),
 624	TRAP_ENTRY(exc_overflow,			false ),
 625#ifdef CONFIG_IA32_EMULATION
 626	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
 627#endif
 628	TRAP_ENTRY(exc_page_fault,			false ),
 629	TRAP_ENTRY(exc_divide_error,			false ),
 630	TRAP_ENTRY(exc_bounds,				false ),
 631	TRAP_ENTRY(exc_invalid_op,			false ),
 632	TRAP_ENTRY(exc_device_not_available,		false ),
 633	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
 634	TRAP_ENTRY(exc_invalid_tss,			false ),
 635	TRAP_ENTRY(exc_segment_not_present,		false ),
 636	TRAP_ENTRY(exc_stack_segment,			false ),
 637	TRAP_ENTRY(exc_general_protection,		false ),
 638	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
 639	TRAP_ENTRY(exc_coprocessor_error,		false ),
 640	TRAP_ENTRY(exc_alignment_check,			false ),
 641	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
 642#ifdef CONFIG_X86_KERNEL_IBT
 643	TRAP_ENTRY(exc_control_protection,		false ),
 644#endif
 645};
 646
 647static bool __ref get_trap_addr(void **addr, unsigned int ist)
 648{
 649	unsigned int nr;
 650	bool ist_okay = false;
 651	bool found = false;
 652
 653	/*
 654	 * Replace trap handler addresses by Xen specific ones.
 655	 * Check for known traps using IST and whitelist them.
 656	 * The debugger ones are the only ones we care about.
 657	 * Xen will handle faults like double_fault, so we should never see
 658	 * them.  Warn if there's an unexpected IST-using fault handler.
 659	 */
 660	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 661		struct trap_array_entry *entry = trap_array + nr;
 662
 663		if (*addr == entry->orig) {
 664			*addr = entry->xen;
 665			ist_okay = entry->ist_okay;
 666			found = true;
 667			break;
 668		}
 669	}
 670
 671	if (nr == ARRAY_SIZE(trap_array) &&
 672	    *addr >= (void *)early_idt_handler_array[0] &&
 673	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 674		nr = (*addr - (void *)early_idt_handler_array[0]) /
 675		     EARLY_IDT_HANDLER_SIZE;
 676		*addr = (void *)xen_early_idt_handler_array[nr];
 677		found = true;
 678	}
 679
 680	if (!found)
 681		*addr = (void *)xen_asm_exc_xen_unknown_trap;
 682
 683	if (WARN_ON(found && ist != 0 && !ist_okay))
 684		return false;
 685
 686	return true;
 687}
 
 688
 689static int cvt_gate_to_trap(int vector, const gate_desc *val,
 690			    struct trap_info *info)
 691{
 692	unsigned long addr;
 693
 694	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 695		return 0;
 696
 697	info->vector = vector;
 698
 699	addr = gate_offset(val);
 
 700	if (!get_trap_addr((void **)&addr, val->bits.ist))
 701		return 0;
 
 702	info->address = addr;
 703
 704	info->cs = gate_segment(val);
 705	info->flags = val->bits.dpl;
 706	/* interrupt gates clear IF */
 707	if (val->bits.type == GATE_INTERRUPT)
 708		info->flags |= 1 << 2;
 709
 710	return 1;
 711}
 712
 713/* Locations of each CPU's IDT */
 714static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 715
 716/* Set an IDT entry.  If the entry is part of the current IDT, then
 717   also update Xen. */
 718static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 719{
 720	unsigned long p = (unsigned long)&dt[entrynum];
 721	unsigned long start, end;
 722
 723	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 724
 725	preempt_disable();
 726
 727	start = __this_cpu_read(idt_desc.address);
 728	end = start + __this_cpu_read(idt_desc.size) + 1;
 729
 730	xen_mc_flush();
 731
 732	native_write_idt_entry(dt, entrynum, g);
 733
 734	if (p >= start && (p + 8) <= end) {
 735		struct trap_info info[2];
 736
 737		info[1].address = 0;
 738
 739		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 740			if (HYPERVISOR_set_trap_table(info))
 741				BUG();
 742	}
 743
 744	preempt_enable();
 745}
 746
 747static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
 748				      struct trap_info *traps, bool full)
 749{
 750	unsigned in, out, count;
 751
 752	count = (desc->size+1) / sizeof(gate_desc);
 753	BUG_ON(count > 256);
 754
 755	for (in = out = 0; in < count; in++) {
 756		gate_desc *entry = (gate_desc *)(desc->address) + in;
 757
 758		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
 759			out++;
 760	}
 761
 762	return out;
 763}
 764
 765void xen_copy_trap_info(struct trap_info *traps)
 766{
 767	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 768
 769	xen_convert_trap_info(desc, traps, true);
 770}
 771
 772/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 773   hold a spinlock to protect the static traps[] array (static because
 774   it avoids allocation, and saves stack space). */
 775static void xen_load_idt(const struct desc_ptr *desc)
 776{
 777	static DEFINE_SPINLOCK(lock);
 778	static struct trap_info traps[257];
 779	static const struct trap_info zero = { };
 780	unsigned out;
 781
 782	trace_xen_cpu_load_idt(desc);
 783
 784	spin_lock(&lock);
 785
 786	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 787
 788	out = xen_convert_trap_info(desc, traps, false);
 789	traps[out] = zero;
 790
 791	xen_mc_flush();
 792	if (HYPERVISOR_set_trap_table(traps))
 793		BUG();
 794
 795	spin_unlock(&lock);
 796}
 797
 798/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 799   they're handled differently. */
 800static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 801				const void *desc, int type)
 802{
 803	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 804
 805	preempt_disable();
 806
 807	switch (type) {
 808	case DESC_LDT:
 809	case DESC_TSS:
 810		/* ignore */
 811		break;
 812
 813	default: {
 814		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 815
 816		xen_mc_flush();
 817		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 818			BUG();
 819	}
 820
 821	}
 822
 823	preempt_enable();
 824}
 825
 826/*
 827 * Version of write_gdt_entry for use at early boot-time needed to
 828 * update an entry as simply as possible.
 829 */
 830static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 831					    const void *desc, int type)
 832{
 833	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 834
 835	switch (type) {
 836	case DESC_LDT:
 837	case DESC_TSS:
 838		/* ignore */
 839		break;
 840
 841	default: {
 842		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 843
 844		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 845			dt[entry] = *(struct desc_struct *)desc;
 846	}
 847
 848	}
 849}
 850
 851static void xen_load_sp0(unsigned long sp0)
 852{
 853	struct multicall_space mcs;
 854
 855	mcs = xen_mc_entry(0);
 856	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 857	xen_mc_issue(PARAVIRT_LAZY_CPU);
 858	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 859}
 860
 861#ifdef CONFIG_X86_IOPL_IOPERM
 862static void xen_invalidate_io_bitmap(void)
 863{
 864	struct physdev_set_iobitmap iobitmap = {
 865		.bitmap = NULL,
 866		.nr_ports = 0,
 867	};
 868
 869	native_tss_invalidate_io_bitmap();
 870	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 871}
 872
 873static void xen_update_io_bitmap(void)
 874{
 875	struct physdev_set_iobitmap iobitmap;
 876	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 877
 878	native_tss_update_io_bitmap();
 879
 880	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
 881			  tss->x86_tss.io_bitmap_base;
 882	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
 883		iobitmap.nr_ports = 0;
 884	else
 885		iobitmap.nr_ports = IO_BITMAP_BITS;
 886
 887	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 
 
 888}
 889#endif
 890
 891static void xen_io_delay(void)
 892{
 893}
 894
 895static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 896
 897static unsigned long xen_read_cr0(void)
 898{
 899	unsigned long cr0 = this_cpu_read(xen_cr0_value);
 900
 901	if (unlikely(cr0 == 0)) {
 902		cr0 = native_read_cr0();
 903		this_cpu_write(xen_cr0_value, cr0);
 904	}
 905
 906	return cr0;
 907}
 908
 909static void xen_write_cr0(unsigned long cr0)
 910{
 911	struct multicall_space mcs;
 912
 913	this_cpu_write(xen_cr0_value, cr0);
 914
 915	/* Only pay attention to cr0.TS; everything else is
 916	   ignored. */
 917	mcs = xen_mc_entry(0);
 918
 919	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 920
 921	xen_mc_issue(PARAVIRT_LAZY_CPU);
 922}
 923
 924static void xen_write_cr4(unsigned long cr4)
 925{
 926	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 927
 928	native_write_cr4(cr4);
 929}
 930
 931static u64 xen_do_read_msr(unsigned int msr, int *err)
 932{
 933	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
 934
 935	if (pmu_msr_read(msr, &val, err))
 936		return val;
 937
 938	if (err)
 939		val = native_read_msr_safe(msr, err);
 940	else
 941		val = native_read_msr(msr);
 942
 943	switch (msr) {
 944	case MSR_IA32_APICBASE:
 945		val &= ~X2APIC_ENABLE;
 946		break;
 947	}
 948	return val;
 949}
 950
 951static void set_seg(unsigned int which, unsigned int low, unsigned int high,
 952		    int *err)
 953{
 954	u64 base = ((u64)high << 32) | low;
 955
 956	if (HYPERVISOR_set_segment_base(which, base) == 0)
 957		return;
 958
 959	if (err)
 960		*err = -EIO;
 961	else
 962		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
 963}
 964
 965/*
 966 * Support write_msr_safe() and write_msr() semantics.
 967 * With err == NULL write_msr() semantics are selected.
 968 * Supplying an err pointer requires err to be pre-initialized with 0.
 969 */
 970static void xen_do_write_msr(unsigned int msr, unsigned int low,
 971			     unsigned int high, int *err)
 972{
 973	switch (msr) {
 974	case MSR_FS_BASE:
 975		set_seg(SEGBASE_FS, low, high, err);
 976		break;
 977
 978	case MSR_KERNEL_GS_BASE:
 979		set_seg(SEGBASE_GS_USER, low, high, err);
 980		break;
 981
 982	case MSR_GS_BASE:
 983		set_seg(SEGBASE_GS_KERNEL, low, high, err);
 
 
 984		break;
 
 985
 986	case MSR_STAR:
 987	case MSR_CSTAR:
 988	case MSR_LSTAR:
 989	case MSR_SYSCALL_MASK:
 990	case MSR_IA32_SYSENTER_CS:
 991	case MSR_IA32_SYSENTER_ESP:
 992	case MSR_IA32_SYSENTER_EIP:
 993		/* Fast syscall setup is all done in hypercalls, so
 994		   these are all ignored.  Stub them out here to stop
 995		   Xen console noise. */
 996		break;
 997
 998	default:
 999		if (!pmu_msr_write(msr, low, high, err)) {
1000			if (err)
1001				*err = native_write_msr_safe(msr, low, high);
1002			else
1003				native_write_msr(msr, low, high);
1004		}
1005	}
1006}
1007
1008static u64 xen_read_msr_safe(unsigned int msr, int *err)
1009{
1010	return xen_do_read_msr(msr, err);
1011}
1012
1013static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1014			      unsigned int high)
1015{
1016	int err = 0;
1017
1018	xen_do_write_msr(msr, low, high, &err);
1019
1020	return err;
1021}
1022
1023static u64 xen_read_msr(unsigned int msr)
1024{
 
 
 
 
1025	int err;
1026
1027	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1028}
1029
1030static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1031{
1032	int err;
1033
1034	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
 
 
1035}
1036
1037/* This is called once we have the cpu_possible_mask */
1038void __init xen_setup_vcpu_info_placement(void)
1039{
1040	int cpu;
1041
1042	for_each_possible_cpu(cpu) {
1043		/* Set up direct vCPU id mapping for PV guests. */
1044		per_cpu(xen_vcpu_id, cpu) = cpu;
1045		xen_vcpu_setup(cpu);
 
 
 
 
 
 
 
 
 
1046	}
1047
1048	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1049	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1050	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1051	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
 
 
 
 
 
 
 
 
 
 
 
1052}
1053
1054static const struct pv_info xen_info __initconst = {
 
 
 
1055	.extra_user_64bit_cs = FLAT_USER_CS64,
 
1056	.name = "Xen",
1057};
1058
1059static const typeof(pv_ops) xen_cpu_ops __initconst = {
1060	.cpu = {
1061		.cpuid = xen_cpuid,
 
 
1062
1063		.set_debugreg = xen_set_debugreg,
1064		.get_debugreg = xen_get_debugreg,
1065
1066		.read_cr0 = xen_read_cr0,
1067		.write_cr0 = xen_write_cr0,
1068
1069		.write_cr4 = xen_write_cr4,
1070
1071		.wbinvd = native_wbinvd,
 
1072
1073		.read_msr = xen_read_msr,
1074		.write_msr = xen_write_msr,
1075
1076		.read_msr_safe = xen_read_msr_safe,
1077		.write_msr_safe = xen_write_msr_safe,
1078
1079		.read_pmc = xen_read_pmc,
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081		.load_tr_desc = paravirt_nop,
1082		.set_ldt = xen_set_ldt,
1083		.load_gdt = xen_load_gdt,
1084		.load_idt = xen_load_idt,
1085		.load_tls = xen_load_tls,
1086		.load_gs_index = xen_load_gs_index,
1087
1088		.alloc_ldt = xen_alloc_ldt,
1089		.free_ldt = xen_free_ldt,
1090
1091		.store_tr = xen_store_tr,
 
 
 
1092
1093		.write_ldt_entry = xen_write_ldt_entry,
1094		.write_gdt_entry = xen_write_gdt_entry,
1095		.write_idt_entry = xen_write_idt_entry,
1096		.load_sp0 = xen_load_sp0,
1097
1098#ifdef CONFIG_X86_IOPL_IOPERM
1099		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1100		.update_io_bitmap = xen_update_io_bitmap,
1101#endif
1102		.io_delay = xen_io_delay,
1103
1104		.start_context_switch = paravirt_start_context_switch,
1105		.end_context_switch = xen_end_context_switch,
1106	},
1107};
1108
1109static void xen_restart(char *msg)
1110{
1111	xen_reboot(SHUTDOWN_reboot);
1112}
1113
1114static void xen_machine_halt(void)
1115{
1116	xen_reboot(SHUTDOWN_poweroff);
1117}
1118
1119static void xen_machine_power_off(void)
1120{
1121	do_kernel_power_off();
 
1122	xen_reboot(SHUTDOWN_poweroff);
1123}
1124
1125static void xen_crash_shutdown(struct pt_regs *regs)
1126{
1127	xen_reboot(SHUTDOWN_crash);
1128}
1129
1130static const struct machine_ops xen_machine_ops __initconst = {
1131	.restart = xen_restart,
1132	.halt = xen_machine_halt,
1133	.power_off = xen_machine_power_off,
1134	.shutdown = xen_machine_halt,
1135	.crash_shutdown = xen_crash_shutdown,
1136	.emergency_restart = xen_emergency_restart,
1137};
1138
1139static unsigned char xen_get_nmi_reason(void)
1140{
1141	unsigned char reason = 0;
1142
1143	/* Construct a value which looks like it came from port 0x61. */
1144	if (test_bit(_XEN_NMIREASON_io_error,
1145		     &HYPERVISOR_shared_info->arch.nmi_reason))
1146		reason |= NMI_REASON_IOCHK;
1147	if (test_bit(_XEN_NMIREASON_pci_serr,
1148		     &HYPERVISOR_shared_info->arch.nmi_reason))
1149		reason |= NMI_REASON_SERR;
1150
1151	return reason;
1152}
1153
1154static void __init xen_boot_params_init_edd(void)
1155{
1156#if IS_ENABLED(CONFIG_EDD)
1157	struct xen_platform_op op;
1158	struct edd_info *edd_info;
1159	u32 *mbr_signature;
1160	unsigned nr;
1161	int ret;
1162
1163	edd_info = boot_params.eddbuf;
1164	mbr_signature = boot_params.edd_mbr_sig_buffer;
1165
1166	op.cmd = XENPF_firmware_info;
1167
1168	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1169	for (nr = 0; nr < EDDMAXNR; nr++) {
1170		struct edd_info *info = edd_info + nr;
1171
1172		op.u.firmware_info.index = nr;
1173		info->params.length = sizeof(info->params);
1174		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1175				     &info->params);
1176		ret = HYPERVISOR_platform_op(&op);
1177		if (ret)
1178			break;
1179
1180#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1181		C(device);
1182		C(version);
1183		C(interface_support);
1184		C(legacy_max_cylinder);
1185		C(legacy_max_head);
1186		C(legacy_sectors_per_track);
1187#undef C
1188	}
1189	boot_params.eddbuf_entries = nr;
1190
1191	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1192	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1193		op.u.firmware_info.index = nr;
1194		ret = HYPERVISOR_platform_op(&op);
1195		if (ret)
1196			break;
1197		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1198	}
1199	boot_params.edd_mbr_sig_buf_entries = nr;
1200#endif
1201}
1202
1203/*
1204 * Set up the GDT and segment registers for -fstack-protector.  Until
1205 * we do this, we have to be careful not to call any stack-protected
1206 * function, which is most of the kernel.
1207 */
1208static void __init xen_setup_gdt(int cpu)
1209{
1210	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1211	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1212
1213	switch_gdt_and_percpu_base(cpu);
 
1214
1215	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1216	pv_ops.cpu.load_gdt = xen_load_gdt;
1217}
1218
1219static void __init xen_dom0_set_legacy_features(void)
1220{
1221	x86_platform.legacy.rtc = 1;
1222}
1223
1224static void __init xen_domu_set_legacy_features(void)
1225{
1226	x86_platform.legacy.rtc = 0;
1227}
1228
1229extern void early_xen_iret_patch(void);
1230
1231/* First C function to be called on Xen boot */
1232asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1233{
1234	struct physdev_set_iopl set_iopl;
1235	unsigned long initrd_start = 0;
1236	int rc;
1237
1238	if (!si)
1239		return;
1240
1241	clear_bss();
1242
1243	xen_start_info = si;
1244
1245	__text_gen_insn(&early_xen_iret_patch,
1246			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1247			JMP32_INSN_SIZE);
1248
1249	xen_domain_type = XEN_PV_DOMAIN;
1250	xen_start_flags = xen_start_info->flags;
1251
1252	xen_setup_features();
1253
1254	/* Install Xen paravirt ops */
1255	pv_info = xen_info;
1256	pv_ops.cpu = xen_cpu_ops.cpu;
 
1257	xen_init_irq_ops();
1258
1259	/*
1260	 * Setup xen_vcpu early because it is needed for
1261	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1262	 *
1263	 * Don't do the full vcpu_info placement stuff until we have
1264	 * the cpu_possible_mask and a non-dummy shared_info.
1265	 */
1266	xen_vcpu_info_reset(0);
1267
1268	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1269	x86_platform.realmode_reserve = x86_init_noop;
1270	x86_platform.realmode_init = x86_init_noop;
1271
1272	x86_init.resources.memory_setup = xen_memory_setup;
1273	x86_init.irqs.intr_mode_select	= x86_init_noop;
1274	x86_init.irqs.intr_mode_init	= x86_init_noop;
1275	x86_init.oem.arch_setup = xen_arch_setup;
1276	x86_init.oem.banner = xen_banner;
1277	x86_init.hyper.init_platform = xen_pv_init_platform;
1278	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1279
1280	/*
1281	 * Set up some pagetable state before starting to set any ptes.
1282	 */
1283
1284	xen_setup_machphys_mapping();
1285	xen_init_mmu_ops();
1286
1287	/* Prevent unwanted bits from being set in PTEs. */
1288	__supported_pte_mask &= ~_PAGE_GLOBAL;
1289	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1290
 
 
 
 
 
 
1291	/* Get mfn list */
1292	xen_build_dynamic_phys_to_machine();
1293
1294	/* Work out if we support NX */
1295	get_cpu_cap(&boot_cpu_data);
1296	x86_configure_nx();
1297
1298	/*
1299	 * Set up kernel GDT and segment registers, mainly so that
1300	 * -fstack-protector code can be executed.
1301	 */
1302	xen_setup_gdt(0);
1303
 
 
 
 
1304	/* Determine virtual and physical address sizes */
1305	get_cpu_address_sizes(&boot_cpu_data);
1306
1307	/* Let's presume PV guests always boot on vCPU with id 0. */
1308	per_cpu(xen_vcpu_id, 0) = 0;
1309
1310	idt_setup_early_handler();
1311
1312	xen_init_capabilities();
1313
1314#ifdef CONFIG_X86_LOCAL_APIC
1315	/*
1316	 * set up the basic apic ops.
1317	 */
1318	xen_init_apic();
1319#endif
1320
 
 
 
 
 
 
 
1321	machine_ops = xen_machine_ops;
1322
1323	/*
1324	 * The only reliable way to retain the initial address of the
1325	 * percpu gdt_page is to remember it here, so we can go and
1326	 * mark it RW later, when the initial percpu area is freed.
1327	 */
1328	xen_initial_gdt = &per_cpu(gdt_page, 0);
1329
1330	xen_smp_init();
1331
1332#ifdef CONFIG_ACPI_NUMA
1333	/*
1334	 * The pages we from Xen are not related to machine pages, so
1335	 * any NUMA information the kernel tries to get from ACPI will
1336	 * be meaningless.  Prevent it from trying.
1337	 */
1338	disable_srat();
1339#endif
1340	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1341
1342	local_irq_disable();
1343	early_boot_irqs_disabled = true;
1344
1345	xen_raw_console_write("mapping kernel into physical memory\n");
1346	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1347				   xen_start_info->nr_pages);
1348	xen_reserve_special_pages();
1349
 
 
 
 
 
 
 
 
 
 
 
 
1350	/*
1351	 * We used to do this in xen_arch_setup, but that is too late
1352	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1353	 * early_amd_init which pokes 0xcf8 port.
1354	 */
1355	set_iopl.iopl = 1;
1356	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1357	if (rc != 0)
1358		xen_raw_printk("physdev_op failed %d\n", rc);
1359
 
 
 
 
 
 
1360
1361	if (xen_start_info->mod_start) {
1362	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1363		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1364	    else
1365		initrd_start = __pa(xen_start_info->mod_start);
1366	}
1367
1368	/* Poke various useful things into boot_params */
1369	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1370	boot_params.hdr.ramdisk_image = initrd_start;
1371	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1372	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1373	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1374
1375	if (!xen_initial_domain()) {
 
1376		if (pci_xen)
1377			x86_init.pci.arch_init = pci_xen_init;
1378		x86_platform.set_legacy_features =
1379				xen_domu_set_legacy_features;
1380	} else {
1381		const struct dom0_vga_console_info *info =
1382			(void *)((char *)xen_start_info +
1383				 xen_start_info->console.dom0.info_off);
1384		struct xen_platform_op op = {
1385			.cmd = XENPF_firmware_info,
1386			.interface_version = XENPF_INTERFACE_VERSION,
1387			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1388		};
1389
1390		x86_platform.set_legacy_features =
1391				xen_dom0_set_legacy_features;
1392		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1393		xen_start_info->console.domU.mfn = 0;
1394		xen_start_info->console.domU.evtchn = 0;
1395
1396		if (HYPERVISOR_platform_op(&op) == 0)
1397			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1398
1399		/* Make sure ACS will be enabled */
1400		pci_request_acs();
1401
1402		xen_acpi_sleep_register();
1403
1404		xen_boot_params_init_edd();
 
 
1405
1406#ifdef CONFIG_ACPI
1407		/*
1408		 * Disable selecting "Firmware First mode" for correctable
1409		 * memory errors, as this is the duty of the hypervisor to
1410		 * decide.
1411		 */
1412		acpi_disable_cmcff = 1;
1413#endif
1414	}
1415
1416	xen_add_preferred_consoles();
 
 
 
 
1417
1418#ifdef CONFIG_PCI
1419	/* PCI BIOS service won't work from a PV guest. */
1420	pci_probe &= ~PCI_PROBE_BIOS;
1421#endif
1422	xen_raw_console_write("about to get started...\n");
1423
1424	/* We need this for printk timestamps */
1425	xen_setup_runstate_info(0);
1426
1427	xen_efi_init(&boot_params);
1428
1429	/* Start the world */
 
 
 
1430	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1431	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
 
1432}
1433
1434static int xen_cpu_up_prepare_pv(unsigned int cpu)
1435{
1436	int rc;
1437
1438	if (per_cpu(xen_vcpu, cpu) == NULL)
1439		return -ENODEV;
1440
1441	xen_setup_timer(cpu);
1442
1443	rc = xen_smp_intr_init(cpu);
1444	if (rc) {
1445		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1446		     cpu, rc);
1447		return rc;
1448	}
1449
1450	rc = xen_smp_intr_init_pv(cpu);
1451	if (rc) {
1452		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1453		     cpu, rc);
1454		return rc;
1455	}
1456
1457	return 0;
1458}
1459
1460static int xen_cpu_dead_pv(unsigned int cpu)
1461{
1462	xen_smp_intr_free(cpu);
1463	xen_smp_intr_free_pv(cpu);
1464
1465	xen_teardown_timer(cpu);
1466
1467	return 0;
1468}
1469
1470static uint32_t __init xen_platform_pv(void)
1471{
1472	if (xen_pv_domain())
1473		return xen_cpuid_base();
1474
1475	return 0;
1476}
1477
1478const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1479	.name                   = "Xen PV",
1480	.detect                 = xen_platform_pv,
1481	.type			= X86_HYPER_XEN_PV,
1482	.runtime.pin_vcpu       = xen_pin_vcpu,
1483	.ignore_nopv		= true,
1484};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
 
  26#include <linux/memblock.h>
  27#include <linux/export.h>
  28#include <linux/mm.h>
  29#include <linux/page-flags.h>
  30#include <linux/highmem.h>
  31#include <linux/console.h>
  32#include <linux/pci.h>
  33#include <linux/gfp.h>
  34#include <linux/edd.h>
  35#include <linux/frame.h>
 
 
  36
  37#include <xen/xen.h>
  38#include <xen/events.h>
  39#include <xen/interface/xen.h>
  40#include <xen/interface/version.h>
  41#include <xen/interface/physdev.h>
  42#include <xen/interface/vcpu.h>
  43#include <xen/interface/memory.h>
  44#include <xen/interface/nmi.h>
  45#include <xen/interface/xen-mca.h>
  46#include <xen/features.h>
  47#include <xen/page.h>
  48#include <xen/hvc-console.h>
  49#include <xen/acpi.h>
  50
  51#include <asm/paravirt.h>
  52#include <asm/apic.h>
  53#include <asm/page.h>
  54#include <asm/xen/pci.h>
  55#include <asm/xen/hypercall.h>
  56#include <asm/xen/hypervisor.h>
  57#include <asm/xen/cpuid.h>
  58#include <asm/fixmap.h>
  59#include <asm/processor.h>
  60#include <asm/proto.h>
  61#include <asm/msr-index.h>
  62#include <asm/traps.h>
  63#include <asm/setup.h>
  64#include <asm/desc.h>
  65#include <asm/pgalloc.h>
  66#include <asm/pgtable.h>
  67#include <asm/tlbflush.h>
  68#include <asm/reboot.h>
  69#include <asm/stackprotector.h>
  70#include <asm/hypervisor.h>
  71#include <asm/mach_traps.h>
  72#include <asm/mwait.h>
  73#include <asm/pci_x86.h>
  74#include <asm/cpu.h>
 
 
 
  75
  76#ifdef CONFIG_ACPI
  77#include <linux/acpi.h>
  78#include <asm/acpi.h>
  79#include <acpi/pdc_intel.h>
  80#include <acpi/processor.h>
  81#include <xen/interface/platform.h>
  82#endif
  83
  84#include "xen-ops.h"
  85#include "mmu.h"
  86#include "smp.h"
  87#include "multicalls.h"
  88#include "pmu.h"
  89
  90#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  91
  92void *xen_initial_gdt;
  93
  94static int xen_cpu_up_prepare_pv(unsigned int cpu);
  95static int xen_cpu_dead_pv(unsigned int cpu);
  96
  97struct tls_descs {
  98	struct desc_struct desc[3];
  99};
 100
 101/*
 102 * Updating the 3 TLS descriptors in the GDT on every task switch is
 103 * surprisingly expensive so we avoid updating them if they haven't
 104 * changed.  Since Xen writes different descriptors than the one
 105 * passed in the update_descriptor hypercall we keep shadow copies to
 106 * compare against.
 107 */
 108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 109
 110static void __init xen_banner(void)
 
 
 111{
 112	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 113	struct xen_extraversion extra;
 114	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 115
 116	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
 117	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 118	       version >> 16, version & 0xffff, extra.extraversion,
 119	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 120
 121#ifdef CONFIG_X86_32
 122	pr_warn("WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n"
 123		"Support for running as 32-bit PV-guest under Xen will soon be removed\n"
 124		"from the Linux kernel!\n"
 125		"Please use either a 64-bit kernel or switch to HVM or PVH mode!\n"
 126		"WARNING! WARNING! WARNING! WARNING! WARNING! WARNING! WARNING!\n");
 127#endif
 128}
 
 129
 130static void __init xen_pv_init_platform(void)
 131{
 
 
 
 
 132	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
 133
 134	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 135	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 136
 137	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
 138	xen_vcpu_info_reset(0);
 139
 140	/* pvclock is in shared info area */
 141	xen_init_time_ops();
 142}
 143
 144static void __init xen_pv_guest_late_init(void)
 145{
 146#ifndef CONFIG_SMP
 147	/* Setup shared vcpu info for non-smp configurations */
 148	xen_setup_vcpu_info_placement();
 149#endif
 150}
 151
 152/* Check if running on Xen version (major, minor) or later */
 153bool
 154xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 155{
 156	unsigned int version;
 157
 158	if (!xen_domain())
 159		return false;
 160
 161	version = HYPERVISOR_xen_version(XENVER_version, NULL);
 162	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 163		((version >> 16) > major))
 164		return true;
 165	return false;
 166}
 167
 168static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 169static __read_mostly unsigned int cpuid_leaf5_edx_val;
 170
 171static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 172		      unsigned int *cx, unsigned int *dx)
 173{
 174	unsigned maskebx = ~0;
 175
 176	/*
 177	 * Mask out inconvenient features, to try and disable as many
 178	 * unsupported kernel subsystems as possible.
 179	 */
 180	switch (*ax) {
 181	case CPUID_MWAIT_LEAF:
 182		/* Synthesize the values.. */
 183		*ax = 0;
 184		*bx = 0;
 185		*cx = cpuid_leaf5_ecx_val;
 186		*dx = cpuid_leaf5_edx_val;
 187		return;
 188
 189	case 0xb:
 190		/* Suppress extended topology stuff */
 191		maskebx = 0;
 192		break;
 193	}
 194
 195	asm(XEN_EMULATE_PREFIX "cpuid"
 196		: "=a" (*ax),
 197		  "=b" (*bx),
 198		  "=c" (*cx),
 199		  "=d" (*dx)
 200		: "0" (*ax), "2" (*cx));
 201
 202	*bx &= maskebx;
 203}
 204STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
 205
 206static bool __init xen_check_mwait(void)
 207{
 208#ifdef CONFIG_ACPI
 209	struct xen_platform_op op = {
 210		.cmd			= XENPF_set_processor_pminfo,
 211		.u.set_pminfo.id	= -1,
 212		.u.set_pminfo.type	= XEN_PM_PDC,
 213	};
 214	uint32_t buf[3];
 215	unsigned int ax, bx, cx, dx;
 216	unsigned int mwait_mask;
 217
 218	/* We need to determine whether it is OK to expose the MWAIT
 219	 * capability to the kernel to harvest deeper than C3 states from ACPI
 220	 * _CST using the processor_harvest_xen.c module. For this to work, we
 221	 * need to gather the MWAIT_LEAF values (which the cstate.c code
 222	 * checks against). The hypervisor won't expose the MWAIT flag because
 223	 * it would break backwards compatibility; so we will find out directly
 224	 * from the hardware and hypercall.
 225	 */
 226	if (!xen_initial_domain())
 227		return false;
 228
 229	/*
 230	 * When running under platform earlier than Xen4.2, do not expose
 231	 * mwait, to avoid the risk of loading native acpi pad driver
 232	 */
 233	if (!xen_running_on_version_or_later(4, 2))
 234		return false;
 235
 236	ax = 1;
 237	cx = 0;
 238
 239	native_cpuid(&ax, &bx, &cx, &dx);
 240
 241	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 242		     (1 << (X86_FEATURE_MWAIT % 32));
 243
 244	if ((cx & mwait_mask) != mwait_mask)
 245		return false;
 246
 247	/* We need to emulate the MWAIT_LEAF and for that we need both
 248	 * ecx and edx. The hypercall provides only partial information.
 249	 */
 250
 251	ax = CPUID_MWAIT_LEAF;
 252	bx = 0;
 253	cx = 0;
 254	dx = 0;
 255
 256	native_cpuid(&ax, &bx, &cx, &dx);
 257
 258	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 259	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 260	 */
 261	buf[0] = ACPI_PDC_REVISION_ID;
 262	buf[1] = 1;
 263	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 264
 265	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 266
 267	if ((HYPERVISOR_platform_op(&op) == 0) &&
 268	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 269		cpuid_leaf5_ecx_val = cx;
 270		cpuid_leaf5_edx_val = dx;
 271	}
 272	return true;
 273#else
 274	return false;
 275#endif
 276}
 277
 278static bool __init xen_check_xsave(void)
 279{
 280	unsigned int cx, xsave_mask;
 281
 282	cx = cpuid_ecx(1);
 283
 284	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 285		     (1 << (X86_FEATURE_OSXSAVE % 32));
 286
 287	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 288	return (cx & xsave_mask) == xsave_mask;
 289}
 290
 291static void __init xen_init_capabilities(void)
 292{
 293	setup_force_cpu_cap(X86_FEATURE_XENPV);
 294	setup_clear_cpu_cap(X86_FEATURE_DCA);
 295	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 296	setup_clear_cpu_cap(X86_FEATURE_MTRR);
 297	setup_clear_cpu_cap(X86_FEATURE_ACC);
 298	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 299	setup_clear_cpu_cap(X86_FEATURE_SME);
 300
 301	/*
 302	 * Xen PV would need some work to support PCID: CR3 handling as well
 303	 * as xen_flush_tlb_others() would need updating.
 304	 */
 305	setup_clear_cpu_cap(X86_FEATURE_PCID);
 306
 307	if (!xen_initial_domain())
 308		setup_clear_cpu_cap(X86_FEATURE_ACPI);
 309
 310	if (xen_check_mwait())
 311		setup_force_cpu_cap(X86_FEATURE_MWAIT);
 312	else
 313		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 314
 315	if (!xen_check_xsave()) {
 316		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 317		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 318	}
 319}
 320
 321static void xen_set_debugreg(int reg, unsigned long val)
 322{
 323	HYPERVISOR_set_debugreg(reg, val);
 324}
 325
 326static unsigned long xen_get_debugreg(int reg)
 327{
 328	return HYPERVISOR_get_debugreg(reg);
 329}
 330
 331static void xen_end_context_switch(struct task_struct *next)
 332{
 333	xen_mc_flush();
 334	paravirt_end_context_switch(next);
 335}
 336
 337static unsigned long xen_store_tr(void)
 338{
 339	return 0;
 340}
 341
 342/*
 343 * Set the page permissions for a particular virtual address.  If the
 344 * address is a vmalloc mapping (or other non-linear mapping), then
 345 * find the linear mapping of the page and also set its protections to
 346 * match.
 347 */
 348static void set_aliased_prot(void *v, pgprot_t prot)
 349{
 350	int level;
 351	pte_t *ptep;
 352	pte_t pte;
 353	unsigned long pfn;
 354	struct page *page;
 355	unsigned char dummy;
 
 356
 357	ptep = lookup_address((unsigned long)v, &level);
 358	BUG_ON(ptep == NULL);
 359
 360	pfn = pte_pfn(*ptep);
 361	page = pfn_to_page(pfn);
 362
 363	pte = pfn_pte(pfn, prot);
 364
 365	/*
 366	 * Careful: update_va_mapping() will fail if the virtual address
 367	 * we're poking isn't populated in the page tables.  We don't
 368	 * need to worry about the direct map (that's always in the page
 369	 * tables), but we need to be careful about vmap space.  In
 370	 * particular, the top level page table can lazily propagate
 371	 * entries between processes, so if we've switched mms since we
 372	 * vmapped the target in the first place, we might not have the
 373	 * top-level page table entry populated.
 374	 *
 375	 * We disable preemption because we want the same mm active when
 376	 * we probe the target and when we issue the hypercall.  We'll
 377	 * have the same nominal mm, but if we're a kernel thread, lazy
 378	 * mm dropping could change our pgd.
 379	 *
 380	 * Out of an abundance of caution, this uses __get_user() to fault
 381	 * in the target address just in case there's some obscure case
 382	 * in which the target address isn't readable.
 383	 */
 384
 385	preempt_disable();
 386
 387	probe_kernel_read(&dummy, v, 1);
 388
 389	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 390		BUG();
 391
 392	if (!PageHighMem(page)) {
 393		void *av = __va(PFN_PHYS(pfn));
 394
 395		if (av != v)
 396			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 397				BUG();
 398	} else
 399		kmap_flush_unused();
 400
 401	preempt_enable();
 402}
 403
 404static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 405{
 406	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 407	int i;
 408
 409	/*
 410	 * We need to mark the all aliases of the LDT pages RO.  We
 411	 * don't need to call vm_flush_aliases(), though, since that's
 412	 * only responsible for flushing aliases out the TLBs, not the
 413	 * page tables, and Xen will flush the TLB for us if needed.
 414	 *
 415	 * To avoid confusing future readers: none of this is necessary
 416	 * to load the LDT.  The hypervisor only checks this when the
 417	 * LDT is faulted in due to subsequent descriptor access.
 418	 */
 419
 420	for (i = 0; i < entries; i += entries_per_page)
 421		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 422}
 423
 424static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 425{
 426	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 427	int i;
 428
 429	for (i = 0; i < entries; i += entries_per_page)
 430		set_aliased_prot(ldt + i, PAGE_KERNEL);
 431}
 432
 433static void xen_set_ldt(const void *addr, unsigned entries)
 434{
 435	struct mmuext_op *op;
 436	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 437
 438	trace_xen_cpu_set_ldt(addr, entries);
 439
 440	op = mcs.args;
 441	op->cmd = MMUEXT_SET_LDT;
 442	op->arg1.linear_addr = (unsigned long)addr;
 443	op->arg2.nr_ents = entries;
 444
 445	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 446
 447	xen_mc_issue(PARAVIRT_LAZY_CPU);
 448}
 449
 450static void xen_load_gdt(const struct desc_ptr *dtr)
 451{
 452	unsigned long va = dtr->address;
 453	unsigned int size = dtr->size + 1;
 454	unsigned long pfn, mfn;
 455	int level;
 456	pte_t *ptep;
 457	void *virt;
 458
 459	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 460	BUG_ON(size > PAGE_SIZE);
 461	BUG_ON(va & ~PAGE_MASK);
 462
 463	/*
 464	 * The GDT is per-cpu and is in the percpu data area.
 465	 * That can be virtually mapped, so we need to do a
 466	 * page-walk to get the underlying MFN for the
 467	 * hypercall.  The page can also be in the kernel's
 468	 * linear range, so we need to RO that mapping too.
 469	 */
 470	ptep = lookup_address(va, &level);
 471	BUG_ON(ptep == NULL);
 472
 473	pfn = pte_pfn(*ptep);
 474	mfn = pfn_to_mfn(pfn);
 475	virt = __va(PFN_PHYS(pfn));
 476
 477	make_lowmem_page_readonly((void *)va);
 478	make_lowmem_page_readonly(virt);
 479
 480	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 481		BUG();
 482}
 483
 484/*
 485 * load_gdt for early boot, when the gdt is only mapped once
 486 */
 487static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 488{
 489	unsigned long va = dtr->address;
 490	unsigned int size = dtr->size + 1;
 491	unsigned long pfn, mfn;
 492	pte_t pte;
 493
 494	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 495	BUG_ON(size > PAGE_SIZE);
 496	BUG_ON(va & ~PAGE_MASK);
 497
 498	pfn = virt_to_pfn(va);
 499	mfn = pfn_to_mfn(pfn);
 500
 501	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 502
 503	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 504		BUG();
 505
 506	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 507		BUG();
 508}
 509
 510static inline bool desc_equal(const struct desc_struct *d1,
 511			      const struct desc_struct *d2)
 512{
 513	return !memcmp(d1, d2, sizeof(*d1));
 514}
 515
 516static void load_TLS_descriptor(struct thread_struct *t,
 517				unsigned int cpu, unsigned int i)
 518{
 519	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 520	struct desc_struct *gdt;
 521	xmaddr_t maddr;
 522	struct multicall_space mc;
 523
 524	if (desc_equal(shadow, &t->tls_array[i]))
 525		return;
 526
 527	*shadow = t->tls_array[i];
 528
 529	gdt = get_cpu_gdt_rw(cpu);
 530	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 531	mc = __xen_mc_entry(0);
 532
 533	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 534}
 535
 536static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 537{
 538	/*
 539	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
 540	 * and lazy gs handling is enabled, it means we're in a
 541	 * context switch, and %gs has just been saved.  This means we
 542	 * can zero it out to prevent faults on exit from the
 543	 * hypervisor if the next process has no %gs.  Either way, it
 544	 * has been saved, and the new value will get loaded properly.
 545	 * This will go away as soon as Xen has been modified to not
 546	 * save/restore %gs for normal hypercalls.
 547	 *
 548	 * On x86_64, this hack is not used for %gs, because gs points
 549	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
 550	 * must not zero %gs on x86_64
 551	 *
 552	 * For x86_64, we need to zero %fs, otherwise we may get an
 553	 * exception between the new %fs descriptor being loaded and
 554	 * %fs being effectively cleared at __switch_to().
 555	 */
 556	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 557#ifdef CONFIG_X86_32
 558		lazy_load_gs(0);
 559#else
 560		loadsegment(fs, 0);
 561#endif
 562	}
 563
 564	xen_mc_batch();
 565
 566	load_TLS_descriptor(t, cpu, 0);
 567	load_TLS_descriptor(t, cpu, 1);
 568	load_TLS_descriptor(t, cpu, 2);
 569
 570	xen_mc_issue(PARAVIRT_LAZY_CPU);
 571}
 572
 573#ifdef CONFIG_X86_64
 574static void xen_load_gs_index(unsigned int idx)
 575{
 576	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 577		BUG();
 578}
 579#endif
 580
 581static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 582				const void *ptr)
 583{
 584	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 585	u64 entry = *(u64 *)ptr;
 586
 587	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 588
 589	preempt_disable();
 590
 591	xen_mc_flush();
 592	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 593		BUG();
 594
 595	preempt_enable();
 596}
 597
 598#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599struct trap_array_entry {
 600	void (*orig)(void);
 601	void (*xen)(void);
 602	bool ist_okay;
 603};
 604
 
 
 
 
 
 
 
 
 
 
 605static struct trap_array_entry trap_array[] = {
 606	{ debug,                       xen_xendebug,                    true },
 607	{ double_fault,                xen_double_fault,                true },
 608#ifdef CONFIG_X86_MCE
 609	{ machine_check,               xen_machine_check,               true },
 610#endif
 611	{ nmi,                         xen_xennmi,                      true },
 612	{ int3,                        xen_int3,                        false },
 613	{ overflow,                    xen_overflow,                    false },
 614#ifdef CONFIG_IA32_EMULATION
 615	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
 616#endif
 617	{ page_fault,                  xen_page_fault,                  false },
 618	{ divide_error,                xen_divide_error,                false },
 619	{ bounds,                      xen_bounds,                      false },
 620	{ invalid_op,                  xen_invalid_op,                  false },
 621	{ device_not_available,        xen_device_not_available,        false },
 622	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
 623	{ invalid_TSS,                 xen_invalid_TSS,                 false },
 624	{ segment_not_present,         xen_segment_not_present,         false },
 625	{ stack_segment,               xen_stack_segment,               false },
 626	{ general_protection,          xen_general_protection,          false },
 627	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
 628	{ coprocessor_error,           xen_coprocessor_error,           false },
 629	{ alignment_check,             xen_alignment_check,             false },
 630	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
 
 
 
 631};
 632
 633static bool __ref get_trap_addr(void **addr, unsigned int ist)
 634{
 635	unsigned int nr;
 636	bool ist_okay = false;
 
 637
 638	/*
 639	 * Replace trap handler addresses by Xen specific ones.
 640	 * Check for known traps using IST and whitelist them.
 641	 * The debugger ones are the only ones we care about.
 642	 * Xen will handle faults like double_fault, * so we should never see
 643	 * them.  Warn if there's an unexpected IST-using fault handler.
 644	 */
 645	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 646		struct trap_array_entry *entry = trap_array + nr;
 647
 648		if (*addr == entry->orig) {
 649			*addr = entry->xen;
 650			ist_okay = entry->ist_okay;
 
 651			break;
 652		}
 653	}
 654
 655	if (nr == ARRAY_SIZE(trap_array) &&
 656	    *addr >= (void *)early_idt_handler_array[0] &&
 657	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 658		nr = (*addr - (void *)early_idt_handler_array[0]) /
 659		     EARLY_IDT_HANDLER_SIZE;
 660		*addr = (void *)xen_early_idt_handler_array[nr];
 
 661	}
 662
 663	if (WARN_ON(ist != 0 && !ist_okay))
 
 
 
 664		return false;
 665
 666	return true;
 667}
 668#endif
 669
 670static int cvt_gate_to_trap(int vector, const gate_desc *val,
 671			    struct trap_info *info)
 672{
 673	unsigned long addr;
 674
 675	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 676		return 0;
 677
 678	info->vector = vector;
 679
 680	addr = gate_offset(val);
 681#ifdef CONFIG_X86_64
 682	if (!get_trap_addr((void **)&addr, val->bits.ist))
 683		return 0;
 684#endif	/* CONFIG_X86_64 */
 685	info->address = addr;
 686
 687	info->cs = gate_segment(val);
 688	info->flags = val->bits.dpl;
 689	/* interrupt gates clear IF */
 690	if (val->bits.type == GATE_INTERRUPT)
 691		info->flags |= 1 << 2;
 692
 693	return 1;
 694}
 695
 696/* Locations of each CPU's IDT */
 697static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 698
 699/* Set an IDT entry.  If the entry is part of the current IDT, then
 700   also update Xen. */
 701static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 702{
 703	unsigned long p = (unsigned long)&dt[entrynum];
 704	unsigned long start, end;
 705
 706	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 707
 708	preempt_disable();
 709
 710	start = __this_cpu_read(idt_desc.address);
 711	end = start + __this_cpu_read(idt_desc.size) + 1;
 712
 713	xen_mc_flush();
 714
 715	native_write_idt_entry(dt, entrynum, g);
 716
 717	if (p >= start && (p + 8) <= end) {
 718		struct trap_info info[2];
 719
 720		info[1].address = 0;
 721
 722		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 723			if (HYPERVISOR_set_trap_table(info))
 724				BUG();
 725	}
 726
 727	preempt_enable();
 728}
 729
 730static void xen_convert_trap_info(const struct desc_ptr *desc,
 731				  struct trap_info *traps)
 732{
 733	unsigned in, out, count;
 734
 735	count = (desc->size+1) / sizeof(gate_desc);
 736	BUG_ON(count > 256);
 737
 738	for (in = out = 0; in < count; in++) {
 739		gate_desc *entry = (gate_desc *)(desc->address) + in;
 740
 741		if (cvt_gate_to_trap(in, entry, &traps[out]))
 742			out++;
 743	}
 744	traps[out].address = 0;
 
 745}
 746
 747void xen_copy_trap_info(struct trap_info *traps)
 748{
 749	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 750
 751	xen_convert_trap_info(desc, traps);
 752}
 753
 754/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 755   hold a spinlock to protect the static traps[] array (static because
 756   it avoids allocation, and saves stack space). */
 757static void xen_load_idt(const struct desc_ptr *desc)
 758{
 759	static DEFINE_SPINLOCK(lock);
 760	static struct trap_info traps[257];
 
 
 761
 762	trace_xen_cpu_load_idt(desc);
 763
 764	spin_lock(&lock);
 765
 766	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 767
 768	xen_convert_trap_info(desc, traps);
 
 769
 770	xen_mc_flush();
 771	if (HYPERVISOR_set_trap_table(traps))
 772		BUG();
 773
 774	spin_unlock(&lock);
 775}
 776
 777/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 778   they're handled differently. */
 779static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 780				const void *desc, int type)
 781{
 782	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 783
 784	preempt_disable();
 785
 786	switch (type) {
 787	case DESC_LDT:
 788	case DESC_TSS:
 789		/* ignore */
 790		break;
 791
 792	default: {
 793		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 794
 795		xen_mc_flush();
 796		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 797			BUG();
 798	}
 799
 800	}
 801
 802	preempt_enable();
 803}
 804
 805/*
 806 * Version of write_gdt_entry for use at early boot-time needed to
 807 * update an entry as simply as possible.
 808 */
 809static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 810					    const void *desc, int type)
 811{
 812	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 813
 814	switch (type) {
 815	case DESC_LDT:
 816	case DESC_TSS:
 817		/* ignore */
 818		break;
 819
 820	default: {
 821		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 822
 823		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 824			dt[entry] = *(struct desc_struct *)desc;
 825	}
 826
 827	}
 828}
 829
 830static void xen_load_sp0(unsigned long sp0)
 831{
 832	struct multicall_space mcs;
 833
 834	mcs = xen_mc_entry(0);
 835	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 836	xen_mc_issue(PARAVIRT_LAZY_CPU);
 837	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 838}
 839
 840void xen_set_iopl_mask(unsigned mask)
 
 
 
 
 
 
 
 
 
 
 
 
 841{
 842	struct physdev_set_iopl set_iopl;
 
 
 
 
 
 
 
 
 
 
 843
 844	/* Force the change at ring 0. */
 845	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 846	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 847}
 
 848
 849static void xen_io_delay(void)
 850{
 851}
 852
 853static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 854
 855static unsigned long xen_read_cr0(void)
 856{
 857	unsigned long cr0 = this_cpu_read(xen_cr0_value);
 858
 859	if (unlikely(cr0 == 0)) {
 860		cr0 = native_read_cr0();
 861		this_cpu_write(xen_cr0_value, cr0);
 862	}
 863
 864	return cr0;
 865}
 866
 867static void xen_write_cr0(unsigned long cr0)
 868{
 869	struct multicall_space mcs;
 870
 871	this_cpu_write(xen_cr0_value, cr0);
 872
 873	/* Only pay attention to cr0.TS; everything else is
 874	   ignored. */
 875	mcs = xen_mc_entry(0);
 876
 877	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 878
 879	xen_mc_issue(PARAVIRT_LAZY_CPU);
 880}
 881
 882static void xen_write_cr4(unsigned long cr4)
 883{
 884	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 885
 886	native_write_cr4(cr4);
 887}
 888
 889static u64 xen_read_msr_safe(unsigned int msr, int *err)
 890{
 891	u64 val;
 892
 893	if (pmu_msr_read(msr, &val, err))
 894		return val;
 895
 896	val = native_read_msr_safe(msr, err);
 
 
 
 
 897	switch (msr) {
 898	case MSR_IA32_APICBASE:
 899		val &= ~X2APIC_ENABLE;
 900		break;
 901	}
 902	return val;
 903}
 904
 905static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 
 906{
 907	int ret;
 
 
 
 908
 909	ret = 0;
 
 
 
 
 910
 
 
 
 
 
 
 
 
 911	switch (msr) {
 912#ifdef CONFIG_X86_64
 913		unsigned which;
 914		u64 base;
 915
 916	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
 917	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
 918	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
 919
 920	set:
 921		base = ((u64)high << 32) | low;
 922		if (HYPERVISOR_set_segment_base(which, base) != 0)
 923			ret = -EIO;
 924		break;
 925#endif
 926
 927	case MSR_STAR:
 928	case MSR_CSTAR:
 929	case MSR_LSTAR:
 930	case MSR_SYSCALL_MASK:
 931	case MSR_IA32_SYSENTER_CS:
 932	case MSR_IA32_SYSENTER_ESP:
 933	case MSR_IA32_SYSENTER_EIP:
 934		/* Fast syscall setup is all done in hypercalls, so
 935		   these are all ignored.  Stub them out here to stop
 936		   Xen console noise. */
 937		break;
 938
 939	default:
 940		if (!pmu_msr_write(msr, low, high, &ret))
 941			ret = native_write_msr_safe(msr, low, high);
 
 
 
 
 942	}
 
 943
 944	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 945}
 946
 947static u64 xen_read_msr(unsigned int msr)
 948{
 949	/*
 950	 * This will silently swallow a #GP from RDMSR.  It may be worth
 951	 * changing that.
 952	 */
 953	int err;
 954
 955	return xen_read_msr_safe(msr, &err);
 956}
 957
 958static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
 959{
 960	/*
 961	 * This will silently swallow a #GP from WRMSR.  It may be worth
 962	 * changing that.
 963	 */
 964	xen_write_msr_safe(msr, low, high);
 965}
 966
 967/* This is called once we have the cpu_possible_mask */
 968void __init xen_setup_vcpu_info_placement(void)
 969{
 970	int cpu;
 971
 972	for_each_possible_cpu(cpu) {
 973		/* Set up direct vCPU id mapping for PV guests. */
 974		per_cpu(xen_vcpu_id, cpu) = cpu;
 975
 976		/*
 977		 * xen_vcpu_setup(cpu) can fail  -- in which case it
 978		 * falls back to the shared_info version for cpus
 979		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
 980		 *
 981		 * xen_cpu_up_prepare_pv() handles the rest by failing
 982		 * them in hotplug.
 983		 */
 984		(void) xen_vcpu_setup(cpu);
 985	}
 986
 987	/*
 988	 * xen_vcpu_setup managed to place the vcpu_info within the
 989	 * percpu area for all cpus, so make use of it.
 990	 */
 991	if (xen_have_vcpu_info_placement) {
 992		pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
 993		pv_ops.irq.restore_fl =
 994			__PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
 995		pv_ops.irq.irq_disable =
 996			__PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
 997		pv_ops.irq.irq_enable =
 998			__PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
 999		pv_ops.mmu.read_cr2 =
1000			__PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1001	}
1002}
1003
1004static const struct pv_info xen_info __initconst = {
1005	.shared_kernel_pmd = 0,
1006
1007#ifdef CONFIG_X86_64
1008	.extra_user_64bit_cs = FLAT_USER_CS64,
1009#endif
1010	.name = "Xen",
1011};
1012
1013static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1014	.cpuid = xen_cpuid,
1015
1016	.set_debugreg = xen_set_debugreg,
1017	.get_debugreg = xen_get_debugreg,
1018
1019	.read_cr0 = xen_read_cr0,
1020	.write_cr0 = xen_write_cr0,
1021
1022	.write_cr4 = xen_write_cr4,
 
1023
1024	.wbinvd = native_wbinvd,
1025
1026	.read_msr = xen_read_msr,
1027	.write_msr = xen_write_msr,
1028
1029	.read_msr_safe = xen_read_msr_safe,
1030	.write_msr_safe = xen_write_msr_safe,
1031
1032	.read_pmc = xen_read_pmc,
 
1033
1034	.iret = xen_iret,
1035#ifdef CONFIG_X86_64
1036	.usergs_sysret64 = xen_sysret64,
1037#endif
1038
1039	.load_tr_desc = paravirt_nop,
1040	.set_ldt = xen_set_ldt,
1041	.load_gdt = xen_load_gdt,
1042	.load_idt = xen_load_idt,
1043	.load_tls = xen_load_tls,
1044#ifdef CONFIG_X86_64
1045	.load_gs_index = xen_load_gs_index,
1046#endif
1047
1048	.alloc_ldt = xen_alloc_ldt,
1049	.free_ldt = xen_free_ldt,
 
 
 
 
1050
1051	.store_tr = xen_store_tr,
 
1052
1053	.write_ldt_entry = xen_write_ldt_entry,
1054	.write_gdt_entry = xen_write_gdt_entry,
1055	.write_idt_entry = xen_write_idt_entry,
1056	.load_sp0 = xen_load_sp0,
1057
1058	.set_iopl_mask = xen_set_iopl_mask,
1059	.io_delay = xen_io_delay,
 
 
1060
1061	/* Xen takes care of %gs when switching to usermode for us */
1062	.swapgs = paravirt_nop,
 
 
 
1063
1064	.start_context_switch = paravirt_start_context_switch,
1065	.end_context_switch = xen_end_context_switch,
 
1066};
1067
1068static void xen_restart(char *msg)
1069{
1070	xen_reboot(SHUTDOWN_reboot);
1071}
1072
1073static void xen_machine_halt(void)
1074{
1075	xen_reboot(SHUTDOWN_poweroff);
1076}
1077
1078static void xen_machine_power_off(void)
1079{
1080	if (pm_power_off)
1081		pm_power_off();
1082	xen_reboot(SHUTDOWN_poweroff);
1083}
1084
1085static void xen_crash_shutdown(struct pt_regs *regs)
1086{
1087	xen_reboot(SHUTDOWN_crash);
1088}
1089
1090static const struct machine_ops xen_machine_ops __initconst = {
1091	.restart = xen_restart,
1092	.halt = xen_machine_halt,
1093	.power_off = xen_machine_power_off,
1094	.shutdown = xen_machine_halt,
1095	.crash_shutdown = xen_crash_shutdown,
1096	.emergency_restart = xen_emergency_restart,
1097};
1098
1099static unsigned char xen_get_nmi_reason(void)
1100{
1101	unsigned char reason = 0;
1102
1103	/* Construct a value which looks like it came from port 0x61. */
1104	if (test_bit(_XEN_NMIREASON_io_error,
1105		     &HYPERVISOR_shared_info->arch.nmi_reason))
1106		reason |= NMI_REASON_IOCHK;
1107	if (test_bit(_XEN_NMIREASON_pci_serr,
1108		     &HYPERVISOR_shared_info->arch.nmi_reason))
1109		reason |= NMI_REASON_SERR;
1110
1111	return reason;
1112}
1113
1114static void __init xen_boot_params_init_edd(void)
1115{
1116#if IS_ENABLED(CONFIG_EDD)
1117	struct xen_platform_op op;
1118	struct edd_info *edd_info;
1119	u32 *mbr_signature;
1120	unsigned nr;
1121	int ret;
1122
1123	edd_info = boot_params.eddbuf;
1124	mbr_signature = boot_params.edd_mbr_sig_buffer;
1125
1126	op.cmd = XENPF_firmware_info;
1127
1128	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1129	for (nr = 0; nr < EDDMAXNR; nr++) {
1130		struct edd_info *info = edd_info + nr;
1131
1132		op.u.firmware_info.index = nr;
1133		info->params.length = sizeof(info->params);
1134		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1135				     &info->params);
1136		ret = HYPERVISOR_platform_op(&op);
1137		if (ret)
1138			break;
1139
1140#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1141		C(device);
1142		C(version);
1143		C(interface_support);
1144		C(legacy_max_cylinder);
1145		C(legacy_max_head);
1146		C(legacy_sectors_per_track);
1147#undef C
1148	}
1149	boot_params.eddbuf_entries = nr;
1150
1151	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1152	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1153		op.u.firmware_info.index = nr;
1154		ret = HYPERVISOR_platform_op(&op);
1155		if (ret)
1156			break;
1157		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1158	}
1159	boot_params.edd_mbr_sig_buf_entries = nr;
1160#endif
1161}
1162
1163/*
1164 * Set up the GDT and segment registers for -fstack-protector.  Until
1165 * we do this, we have to be careful not to call any stack-protected
1166 * function, which is most of the kernel.
1167 */
1168static void __init xen_setup_gdt(int cpu)
1169{
1170	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1171	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1172
1173	setup_stack_canary_segment(cpu);
1174	switch_to_new_gdt(cpu);
1175
1176	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1177	pv_ops.cpu.load_gdt = xen_load_gdt;
1178}
1179
1180static void __init xen_dom0_set_legacy_features(void)
1181{
1182	x86_platform.legacy.rtc = 1;
1183}
1184
 
 
 
 
 
 
 
1185/* First C function to be called on Xen boot */
1186asmlinkage __visible void __init xen_start_kernel(void)
1187{
1188	struct physdev_set_iopl set_iopl;
1189	unsigned long initrd_start = 0;
1190	int rc;
1191
1192	if (!xen_start_info)
1193		return;
1194
 
 
 
 
 
 
 
 
1195	xen_domain_type = XEN_PV_DOMAIN;
1196	xen_start_flags = xen_start_info->flags;
1197
1198	xen_setup_features();
1199
1200	/* Install Xen paravirt ops */
1201	pv_info = xen_info;
1202	pv_ops.init.patch = paravirt_patch_default;
1203	pv_ops.cpu = xen_cpu_ops;
1204	xen_init_irq_ops();
1205
1206	/*
1207	 * Setup xen_vcpu early because it is needed for
1208	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1209	 *
1210	 * Don't do the full vcpu_info placement stuff until we have
1211	 * the cpu_possible_mask and a non-dummy shared_info.
1212	 */
1213	xen_vcpu_info_reset(0);
1214
1215	x86_platform.get_nmi_reason = xen_get_nmi_reason;
 
 
1216
1217	x86_init.resources.memory_setup = xen_memory_setup;
 
1218	x86_init.irqs.intr_mode_init	= x86_init_noop;
1219	x86_init.oem.arch_setup = xen_arch_setup;
1220	x86_init.oem.banner = xen_banner;
1221	x86_init.hyper.init_platform = xen_pv_init_platform;
1222	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1223
1224	/*
1225	 * Set up some pagetable state before starting to set any ptes.
1226	 */
1227
1228	xen_setup_machphys_mapping();
1229	xen_init_mmu_ops();
1230
1231	/* Prevent unwanted bits from being set in PTEs. */
1232	__supported_pte_mask &= ~_PAGE_GLOBAL;
1233	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1234
1235	/*
1236	 * Prevent page tables from being allocated in highmem, even
1237	 * if CONFIG_HIGHPTE is enabled.
1238	 */
1239	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1240
1241	/* Get mfn list */
1242	xen_build_dynamic_phys_to_machine();
1243
 
 
 
 
1244	/*
1245	 * Set up kernel GDT and segment registers, mainly so that
1246	 * -fstack-protector code can be executed.
1247	 */
1248	xen_setup_gdt(0);
1249
1250	/* Work out if we support NX */
1251	get_cpu_cap(&boot_cpu_data);
1252	x86_configure_nx();
1253
1254	/* Determine virtual and physical address sizes */
1255	get_cpu_address_sizes(&boot_cpu_data);
1256
1257	/* Let's presume PV guests always boot on vCPU with id 0. */
1258	per_cpu(xen_vcpu_id, 0) = 0;
1259
1260	idt_setup_early_handler();
1261
1262	xen_init_capabilities();
1263
1264#ifdef CONFIG_X86_LOCAL_APIC
1265	/*
1266	 * set up the basic apic ops.
1267	 */
1268	xen_init_apic();
1269#endif
1270
1271	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1272		pv_ops.mmu.ptep_modify_prot_start =
1273			xen_ptep_modify_prot_start;
1274		pv_ops.mmu.ptep_modify_prot_commit =
1275			xen_ptep_modify_prot_commit;
1276	}
1277
1278	machine_ops = xen_machine_ops;
1279
1280	/*
1281	 * The only reliable way to retain the initial address of the
1282	 * percpu gdt_page is to remember it here, so we can go and
1283	 * mark it RW later, when the initial percpu area is freed.
1284	 */
1285	xen_initial_gdt = &per_cpu(gdt_page, 0);
1286
1287	xen_smp_init();
1288
1289#ifdef CONFIG_ACPI_NUMA
1290	/*
1291	 * The pages we from Xen are not related to machine pages, so
1292	 * any NUMA information the kernel tries to get from ACPI will
1293	 * be meaningless.  Prevent it from trying.
1294	 */
1295	acpi_numa = -1;
1296#endif
1297	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1298
1299	local_irq_disable();
1300	early_boot_irqs_disabled = true;
1301
1302	xen_raw_console_write("mapping kernel into physical memory\n");
1303	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1304				   xen_start_info->nr_pages);
1305	xen_reserve_special_pages();
1306
1307	/* keep using Xen gdt for now; no urgent need to change it */
1308
1309#ifdef CONFIG_X86_32
1310	pv_info.kernel_rpl = 1;
1311	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1312		pv_info.kernel_rpl = 0;
1313#else
1314	pv_info.kernel_rpl = 0;
1315#endif
1316	/* set the limit of our address space */
1317	xen_reserve_top();
1318
1319	/*
1320	 * We used to do this in xen_arch_setup, but that is too late
1321	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1322	 * early_amd_init which pokes 0xcf8 port.
1323	 */
1324	set_iopl.iopl = 1;
1325	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1326	if (rc != 0)
1327		xen_raw_printk("physdev_op failed %d\n", rc);
1328
1329#ifdef CONFIG_X86_32
1330	/* set up basic CPUID stuff */
1331	cpu_detect(&new_cpu_data);
1332	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1333	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1334#endif
1335
1336	if (xen_start_info->mod_start) {
1337	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1338		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1339	    else
1340		initrd_start = __pa(xen_start_info->mod_start);
1341	}
1342
1343	/* Poke various useful things into boot_params */
1344	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1345	boot_params.hdr.ramdisk_image = initrd_start;
1346	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1347	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1348	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1349
1350	if (!xen_initial_domain()) {
1351		add_preferred_console("xenboot", 0, NULL);
1352		if (pci_xen)
1353			x86_init.pci.arch_init = pci_xen_init;
 
 
1354	} else {
1355		const struct dom0_vga_console_info *info =
1356			(void *)((char *)xen_start_info +
1357				 xen_start_info->console.dom0.info_off);
1358		struct xen_platform_op op = {
1359			.cmd = XENPF_firmware_info,
1360			.interface_version = XENPF_INTERFACE_VERSION,
1361			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1362		};
1363
1364		x86_platform.set_legacy_features =
1365				xen_dom0_set_legacy_features;
1366		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1367		xen_start_info->console.domU.mfn = 0;
1368		xen_start_info->console.domU.evtchn = 0;
1369
1370		if (HYPERVISOR_platform_op(&op) == 0)
1371			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1372
1373		/* Make sure ACS will be enabled */
1374		pci_request_acs();
1375
1376		xen_acpi_sleep_register();
1377
1378		/* Avoid searching for BIOS MP tables */
1379		x86_init.mpparse.find_smp_config = x86_init_noop;
1380		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1381
1382		xen_boot_params_init_edd();
 
 
 
 
 
 
 
1383	}
1384
1385	if (!boot_params.screen_info.orig_video_isVGA)
1386		add_preferred_console("tty", 0, NULL);
1387	add_preferred_console("hvc", 0, NULL);
1388	if (boot_params.screen_info.orig_video_isVGA)
1389		add_preferred_console("tty", 0, NULL);
1390
1391#ifdef CONFIG_PCI
1392	/* PCI BIOS service won't work from a PV guest. */
1393	pci_probe &= ~PCI_PROBE_BIOS;
1394#endif
1395	xen_raw_console_write("about to get started...\n");
1396
1397	/* We need this for printk timestamps */
1398	xen_setup_runstate_info(0);
1399
1400	xen_efi_init(&boot_params);
1401
1402	/* Start the world */
1403#ifdef CONFIG_X86_32
1404	i386_start_kernel();
1405#else
1406	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1407	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1408#endif
1409}
1410
1411static int xen_cpu_up_prepare_pv(unsigned int cpu)
1412{
1413	int rc;
1414
1415	if (per_cpu(xen_vcpu, cpu) == NULL)
1416		return -ENODEV;
1417
1418	xen_setup_timer(cpu);
1419
1420	rc = xen_smp_intr_init(cpu);
1421	if (rc) {
1422		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1423		     cpu, rc);
1424		return rc;
1425	}
1426
1427	rc = xen_smp_intr_init_pv(cpu);
1428	if (rc) {
1429		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1430		     cpu, rc);
1431		return rc;
1432	}
1433
1434	return 0;
1435}
1436
1437static int xen_cpu_dead_pv(unsigned int cpu)
1438{
1439	xen_smp_intr_free(cpu);
1440	xen_smp_intr_free_pv(cpu);
1441
1442	xen_teardown_timer(cpu);
1443
1444	return 0;
1445}
1446
1447static uint32_t __init xen_platform_pv(void)
1448{
1449	if (xen_pv_domain())
1450		return xen_cpuid_base();
1451
1452	return 0;
1453}
1454
1455const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1456	.name                   = "Xen PV",
1457	.detect                 = xen_platform_pv,
1458	.type			= X86_HYPER_XEN_PV,
1459	.runtime.pin_vcpu       = xen_pin_vcpu,
1460	.ignore_nopv		= true,
1461};