Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI (Extensible Firmware Interface) support functions
  4 * Based on Extensible Firmware Interface Specification version 1.0
  5 *
  6 * Copyright (C) 1999 VA Linux Systems
  7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *	Stephane Eranian <eranian@hpl.hp.com>
 11 * Copyright (C) 2005-2008 Intel Co.
 12 *	Fenghua Yu <fenghua.yu@intel.com>
 13 *	Bibo Mao <bibo.mao@intel.com>
 14 *	Chandramouli Narayanan <mouli@linux.intel.com>
 15 *	Huang Ying <ying.huang@intel.com>
 16 * Copyright (C) 2013 SuSE Labs
 17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
 18 *
 19 * Copied from efi_32.c to eliminate the duplicated code between EFI
 20 * 32/64 support code. --ying 2007-10-26
 21 *
 22 * All EFI Runtime Services are not implemented yet as EFI only
 23 * supports physical mode addressing on SoftSDV. This is to be fixed
 24 * in a future version.  --drummond 1999-07-20
 25 *
 26 * Implemented EFI runtime services and virtual mode calls.  --davidm
 27 *
 28 * Goutham Rao: <goutham.rao@intel.com>
 29 *	Skip non-WB memory and ignore empty memory ranges.
 30 */
 31
 32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/efi.h>
 37#include <linux/efi-bgrt.h>
 38#include <linux/export.h>
 39#include <linux/memblock.h>
 40#include <linux/slab.h>
 41#include <linux/spinlock.h>
 42#include <linux/uaccess.h>
 43#include <linux/time.h>
 44#include <linux/io.h>
 45#include <linux/reboot.h>
 46#include <linux/bcd.h>
 47
 48#include <asm/setup.h>
 49#include <asm/efi.h>
 50#include <asm/e820/api.h>
 51#include <asm/time.h>
 52#include <asm/tlbflush.h>
 53#include <asm/x86_init.h>
 54#include <asm/uv/uv.h>
 55
 56static unsigned long efi_systab_phys __initdata;
 57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
 58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
 59static unsigned long efi_runtime, efi_nr_tables;
 60
 61unsigned long efi_fw_vendor, efi_config_table;
 62
 63static const efi_config_table_type_t arch_tables[] __initconst = {
 64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
 65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
 66#ifdef CONFIG_X86_UV
 67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
 68#endif
 69	{},
 70};
 71
 72static const unsigned long * const efi_tables[] = {
 73	&efi.acpi,
 74	&efi.acpi20,
 75	&efi.smbios,
 76	&efi.smbios3,
 77	&uga_phys,
 78#ifdef CONFIG_X86_UV
 79	&uv_systab_phys,
 80#endif
 81	&efi_fw_vendor,
 82	&efi_runtime,
 83	&efi_config_table,
 84	&efi.esrt,
 85	&prop_phys,
 86	&efi_mem_attr_table,
 87#ifdef CONFIG_EFI_RCI2_TABLE
 88	&rci2_table_phys,
 89#endif
 90	&efi.tpm_log,
 91	&efi.tpm_final_log,
 92	&efi_rng_seed,
 93#ifdef CONFIG_LOAD_UEFI_KEYS
 94	&efi.mokvar_table,
 95#endif
 96#ifdef CONFIG_EFI_COCO_SECRET
 97	&efi.coco_secret,
 98#endif
 
 
 
 99};
100
101u64 efi_setup;		/* efi setup_data physical address */
102
103static int add_efi_memmap __initdata;
104static int __init setup_add_efi_memmap(char *arg)
105{
106	add_efi_memmap = 1;
107	return 0;
108}
109early_param("add_efi_memmap", setup_add_efi_memmap);
110
111/*
112 * Tell the kernel about the EFI memory map.  This might include
113 * more than the max 128 entries that can fit in the passed in e820
114 * legacy (zeropage) memory map, but the kernel's e820 table can hold
115 * E820_MAX_ENTRIES.
116 */
117
118static void __init do_add_efi_memmap(void)
119{
120	efi_memory_desc_t *md;
121
122	if (!efi_enabled(EFI_MEMMAP))
123		return;
124
125	for_each_efi_memory_desc(md) {
126		unsigned long long start = md->phys_addr;
127		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128		int e820_type;
129
130		switch (md->type) {
131		case EFI_LOADER_CODE:
132		case EFI_LOADER_DATA:
133		case EFI_BOOT_SERVICES_CODE:
134		case EFI_BOOT_SERVICES_DATA:
135		case EFI_CONVENTIONAL_MEMORY:
136			if (efi_soft_reserve_enabled()
137			    && (md->attribute & EFI_MEMORY_SP))
138				e820_type = E820_TYPE_SOFT_RESERVED;
139			else if (md->attribute & EFI_MEMORY_WB)
140				e820_type = E820_TYPE_RAM;
141			else
142				e820_type = E820_TYPE_RESERVED;
143			break;
144		case EFI_ACPI_RECLAIM_MEMORY:
145			e820_type = E820_TYPE_ACPI;
146			break;
147		case EFI_ACPI_MEMORY_NVS:
148			e820_type = E820_TYPE_NVS;
149			break;
150		case EFI_UNUSABLE_MEMORY:
151			e820_type = E820_TYPE_UNUSABLE;
152			break;
153		case EFI_PERSISTENT_MEMORY:
154			e820_type = E820_TYPE_PMEM;
155			break;
156		default:
157			/*
158			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
159			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
160			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
161			 */
162			e820_type = E820_TYPE_RESERVED;
163			break;
164		}
165
166		e820__range_add(start, size, e820_type);
167	}
168	e820__update_table(e820_table);
169}
170
171/*
172 * Given add_efi_memmap defaults to 0 and there is no alternative
173 * e820 mechanism for soft-reserved memory, import the full EFI memory
174 * map if soft reservations are present and enabled. Otherwise, the
175 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
176 * the efi=nosoftreserve option.
177 */
178static bool do_efi_soft_reserve(void)
179{
180	efi_memory_desc_t *md;
181
182	if (!efi_enabled(EFI_MEMMAP))
183		return false;
184
185	if (!efi_soft_reserve_enabled())
186		return false;
187
188	for_each_efi_memory_desc(md)
189		if (md->type == EFI_CONVENTIONAL_MEMORY &&
190		    (md->attribute & EFI_MEMORY_SP))
191			return true;
192	return false;
193}
194
195int __init efi_memblock_x86_reserve_range(void)
196{
197	struct efi_info *e = &boot_params.efi_info;
198	struct efi_memory_map_data data;
199	phys_addr_t pmap;
200	int rv;
201
202	if (efi_enabled(EFI_PARAVIRT))
203		return 0;
204
205	/* Can't handle firmware tables above 4GB on i386 */
206	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
207		pr_err("Memory map is above 4GB, disabling EFI.\n");
208		return -EINVAL;
209	}
210	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
211
212	data.phys_map		= pmap;
213	data.size 		= e->efi_memmap_size;
214	data.desc_size		= e->efi_memdesc_size;
215	data.desc_version	= e->efi_memdesc_version;
216
217	if (!efi_enabled(EFI_PARAVIRT)) {
218		rv = efi_memmap_init_early(&data);
219		if (rv)
220			return rv;
221	}
222
223	if (add_efi_memmap || do_efi_soft_reserve())
224		do_add_efi_memmap();
225
226	efi_fake_memmap_early();
227
228	WARN(efi.memmap.desc_version != 1,
229	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
230	     efi.memmap.desc_version);
231
232	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
233	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
234
235	return 0;
236}
237
238#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
239#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
240#define U64_HIGH_BIT		(~(U64_MAX >> 1))
241
242static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
243{
244	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
245	u64 end_hi = 0;
246	char buf[64];
247
248	if (md->num_pages == 0) {
249		end = 0;
250	} else if (md->num_pages > EFI_PAGES_MAX ||
251		   EFI_PAGES_MAX - md->num_pages <
252		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
253		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
254			>> OVERFLOW_ADDR_SHIFT;
255
256		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
257			end_hi += 1;
258	} else {
259		return true;
260	}
261
262	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
263
264	if (end_hi) {
265		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
266			i, efi_md_typeattr_format(buf, sizeof(buf), md),
267			md->phys_addr, end_hi, end);
268	} else {
269		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
270			i, efi_md_typeattr_format(buf, sizeof(buf), md),
271			md->phys_addr, end);
272	}
273	return false;
274}
275
276static void __init efi_clean_memmap(void)
277{
278	efi_memory_desc_t *out = efi.memmap.map;
279	const efi_memory_desc_t *in = out;
280	const efi_memory_desc_t *end = efi.memmap.map_end;
281	int i, n_removal;
282
283	for (i = n_removal = 0; in < end; i++) {
284		if (efi_memmap_entry_valid(in, i)) {
285			if (out != in)
286				memcpy(out, in, efi.memmap.desc_size);
287			out = (void *)out + efi.memmap.desc_size;
288		} else {
289			n_removal++;
290		}
291		in = (void *)in + efi.memmap.desc_size;
292	}
293
294	if (n_removal > 0) {
295		struct efi_memory_map_data data = {
296			.phys_map	= efi.memmap.phys_map,
297			.desc_version	= efi.memmap.desc_version,
298			.desc_size	= efi.memmap.desc_size,
299			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
300			.flags		= 0,
301		};
302
303		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
304		efi_memmap_install(&data);
305	}
306}
307
308/*
309 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
310 * mapped by the OS so they can be accessed by EFI runtime services, but
311 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
312 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
313 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
314 * allocating space from them (see remove_e820_regions()).
315 *
316 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
317 * PCI host bridge windows, which means Linux can't allocate BAR space for
318 * hot-added devices.
319 *
320 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
321 * problem.
322 *
323 * Retain small EfiMemoryMappedIO regions because on some platforms, these
324 * describe non-window space that's included in host bridge _CRS.  If we
325 * assign that space to PCI devices, they don't work.
326 */
327static void __init efi_remove_e820_mmio(void)
328{
329	efi_memory_desc_t *md;
330	u64 size, start, end;
331	int i = 0;
332
333	for_each_efi_memory_desc(md) {
334		if (md->type == EFI_MEMORY_MAPPED_IO) {
335			size = md->num_pages << EFI_PAGE_SHIFT;
336			start = md->phys_addr;
337			end = start + size - 1;
338			if (size >= 256*1024) {
339				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
340					i, start, end, size >> 20);
341				e820__range_remove(start, size,
342						   E820_TYPE_RESERVED, 1);
343			} else {
344				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
345					i, start, end, size >> 10);
346			}
347		}
348		i++;
349	}
350}
351
352void __init efi_print_memmap(void)
353{
354	efi_memory_desc_t *md;
355	int i = 0;
356
357	for_each_efi_memory_desc(md) {
358		char buf[64];
359
360		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
361			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
362			md->phys_addr,
363			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
364			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
365	}
366}
367
368static int __init efi_systab_init(unsigned long phys)
369{
370	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
371					  : sizeof(efi_system_table_32_t);
372	const efi_table_hdr_t *hdr;
373	bool over4g = false;
374	void *p;
375	int ret;
376
377	hdr = p = early_memremap_ro(phys, size);
378	if (p == NULL) {
379		pr_err("Couldn't map the system table!\n");
380		return -ENOMEM;
381	}
382
383	ret = efi_systab_check_header(hdr, 1);
384	if (ret) {
385		early_memunmap(p, size);
386		return ret;
387	}
388
389	if (efi_enabled(EFI_64BIT)) {
390		const efi_system_table_64_t *systab64 = p;
391
392		efi_runtime	= systab64->runtime;
393		over4g		= systab64->runtime > U32_MAX;
394
395		if (efi_setup) {
396			struct efi_setup_data *data;
397
398			data = early_memremap_ro(efi_setup, sizeof(*data));
399			if (!data) {
400				early_memunmap(p, size);
401				return -ENOMEM;
402			}
403
404			efi_fw_vendor		= (unsigned long)data->fw_vendor;
405			efi_config_table	= (unsigned long)data->tables;
406
407			over4g |= data->fw_vendor	> U32_MAX ||
408				  data->tables		> U32_MAX;
409
410			early_memunmap(data, sizeof(*data));
411		} else {
412			efi_fw_vendor		= systab64->fw_vendor;
413			efi_config_table	= systab64->tables;
414
415			over4g |= systab64->fw_vendor	> U32_MAX ||
416				  systab64->tables	> U32_MAX;
417		}
418		efi_nr_tables = systab64->nr_tables;
419	} else {
420		const efi_system_table_32_t *systab32 = p;
421
422		efi_fw_vendor		= systab32->fw_vendor;
423		efi_runtime		= systab32->runtime;
424		efi_config_table	= systab32->tables;
425		efi_nr_tables		= systab32->nr_tables;
426	}
427
428	efi.runtime_version = hdr->revision;
429
430	efi_systab_report_header(hdr, efi_fw_vendor);
431	early_memunmap(p, size);
432
433	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
434		pr_err("EFI data located above 4GB, disabling EFI.\n");
435		return -EINVAL;
436	}
437
438	return 0;
439}
440
441static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
442{
443	void *config_tables;
444	int sz, ret;
445
446	if (efi_nr_tables == 0)
447		return 0;
448
449	if (efi_enabled(EFI_64BIT))
450		sz = sizeof(efi_config_table_64_t);
451	else
452		sz = sizeof(efi_config_table_32_t);
453
454	/*
455	 * Let's see what config tables the firmware passed to us.
456	 */
457	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
458	if (config_tables == NULL) {
459		pr_err("Could not map Configuration table!\n");
460		return -ENOMEM;
461	}
462
463	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
464				      arch_tables);
465
466	early_memunmap(config_tables, efi_nr_tables * sz);
467	return ret;
468}
469
470void __init efi_init(void)
471{
472	if (IS_ENABLED(CONFIG_X86_32) &&
473	    (boot_params.efi_info.efi_systab_hi ||
474	     boot_params.efi_info.efi_memmap_hi)) {
475		pr_info("Table located above 4GB, disabling EFI.\n");
476		return;
477	}
478
479	efi_systab_phys = boot_params.efi_info.efi_systab |
480			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
481
482	if (efi_systab_init(efi_systab_phys))
483		return;
484
485	if (efi_reuse_config(efi_config_table, efi_nr_tables))
486		return;
487
488	if (efi_config_init(arch_tables))
489		return;
490
491	/*
492	 * Note: We currently don't support runtime services on an EFI
493	 * that doesn't match the kernel 32/64-bit mode.
494	 */
495
496	if (!efi_runtime_supported())
497		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
498
499	if (!efi_runtime_supported() || efi_runtime_disabled()) {
500		efi_memmap_unmap();
501		return;
502	}
503
504	/* Parse the EFI Properties table if it exists */
505	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
506		efi_properties_table_t *tbl;
507
508		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
509		if (tbl == NULL) {
510			pr_err("Could not map Properties table!\n");
511		} else {
512			if (tbl->memory_protection_attribute &
513			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
514				set_bit(EFI_NX_PE_DATA, &efi.flags);
515
516			early_memunmap(tbl, sizeof(*tbl));
517		}
518	}
519
520	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
521	efi_clean_memmap();
522
523	efi_remove_e820_mmio();
524
525	if (efi_enabled(EFI_DBG))
526		efi_print_memmap();
527}
528
529/* Merge contiguous regions of the same type and attribute */
530static void __init efi_merge_regions(void)
531{
532	efi_memory_desc_t *md, *prev_md = NULL;
533
534	for_each_efi_memory_desc(md) {
535		u64 prev_size;
536
537		if (!prev_md) {
538			prev_md = md;
539			continue;
540		}
541
542		if (prev_md->type != md->type ||
543		    prev_md->attribute != md->attribute) {
544			prev_md = md;
545			continue;
546		}
547
548		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
549
550		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
551			prev_md->num_pages += md->num_pages;
552			md->type = EFI_RESERVED_TYPE;
553			md->attribute = 0;
554			continue;
555		}
556		prev_md = md;
557	}
558}
559
560static void *realloc_pages(void *old_memmap, int old_shift)
561{
562	void *ret;
563
564	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
565	if (!ret)
566		goto out;
567
568	/*
569	 * A first-time allocation doesn't have anything to copy.
570	 */
571	if (!old_memmap)
572		return ret;
573
574	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
575
576out:
577	free_pages((unsigned long)old_memmap, old_shift);
578	return ret;
579}
580
581/*
582 * Iterate the EFI memory map in reverse order because the regions
583 * will be mapped top-down. The end result is the same as if we had
584 * mapped things forward, but doesn't require us to change the
585 * existing implementation of efi_map_region().
586 */
587static inline void *efi_map_next_entry_reverse(void *entry)
588{
589	/* Initial call */
590	if (!entry)
591		return efi.memmap.map_end - efi.memmap.desc_size;
592
593	entry -= efi.memmap.desc_size;
594	if (entry < efi.memmap.map)
595		return NULL;
596
597	return entry;
598}
599
600/*
601 * efi_map_next_entry - Return the next EFI memory map descriptor
602 * @entry: Previous EFI memory map descriptor
603 *
604 * This is a helper function to iterate over the EFI memory map, which
605 * we do in different orders depending on the current configuration.
606 *
607 * To begin traversing the memory map @entry must be %NULL.
608 *
609 * Returns %NULL when we reach the end of the memory map.
610 */
611static void *efi_map_next_entry(void *entry)
612{
613	if (efi_enabled(EFI_64BIT)) {
614		/*
615		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
616		 * config table feature requires us to map all entries
617		 * in the same order as they appear in the EFI memory
618		 * map. That is to say, entry N must have a lower
619		 * virtual address than entry N+1. This is because the
620		 * firmware toolchain leaves relative references in
621		 * the code/data sections, which are split and become
622		 * separate EFI memory regions. Mapping things
623		 * out-of-order leads to the firmware accessing
624		 * unmapped addresses.
625		 *
626		 * Since we need to map things this way whether or not
627		 * the kernel actually makes use of
628		 * EFI_PROPERTIES_TABLE, let's just switch to this
629		 * scheme by default for 64-bit.
630		 */
631		return efi_map_next_entry_reverse(entry);
632	}
633
634	/* Initial call */
635	if (!entry)
636		return efi.memmap.map;
637
638	entry += efi.memmap.desc_size;
639	if (entry >= efi.memmap.map_end)
640		return NULL;
641
642	return entry;
643}
644
645static bool should_map_region(efi_memory_desc_t *md)
646{
647	/*
648	 * Runtime regions always require runtime mappings (obviously).
649	 */
650	if (md->attribute & EFI_MEMORY_RUNTIME)
651		return true;
652
653	/*
654	 * 32-bit EFI doesn't suffer from the bug that requires us to
655	 * reserve boot services regions, and mixed mode support
656	 * doesn't exist for 32-bit kernels.
657	 */
658	if (IS_ENABLED(CONFIG_X86_32))
659		return false;
660
661	/*
662	 * EFI specific purpose memory may be reserved by default
663	 * depending on kernel config and boot options.
664	 */
665	if (md->type == EFI_CONVENTIONAL_MEMORY &&
666	    efi_soft_reserve_enabled() &&
667	    (md->attribute & EFI_MEMORY_SP))
668		return false;
669
670	/*
671	 * Map all of RAM so that we can access arguments in the 1:1
672	 * mapping when making EFI runtime calls.
673	 */
674	if (efi_is_mixed()) {
675		if (md->type == EFI_CONVENTIONAL_MEMORY ||
676		    md->type == EFI_LOADER_DATA ||
677		    md->type == EFI_LOADER_CODE)
678			return true;
679	}
680
681	/*
682	 * Map boot services regions as a workaround for buggy
683	 * firmware that accesses them even when they shouldn't.
684	 *
685	 * See efi_{reserve,free}_boot_services().
686	 */
687	if (md->type == EFI_BOOT_SERVICES_CODE ||
688	    md->type == EFI_BOOT_SERVICES_DATA)
689		return true;
690
691	return false;
692}
693
694/*
695 * Map the efi memory ranges of the runtime services and update new_mmap with
696 * virtual addresses.
697 */
698static void * __init efi_map_regions(int *count, int *pg_shift)
699{
700	void *p, *new_memmap = NULL;
701	unsigned long left = 0;
702	unsigned long desc_size;
703	efi_memory_desc_t *md;
704
705	desc_size = efi.memmap.desc_size;
706
707	p = NULL;
708	while ((p = efi_map_next_entry(p))) {
709		md = p;
710
711		if (!should_map_region(md))
712			continue;
713
714		efi_map_region(md);
715
716		if (left < desc_size) {
717			new_memmap = realloc_pages(new_memmap, *pg_shift);
718			if (!new_memmap)
719				return NULL;
720
721			left += PAGE_SIZE << *pg_shift;
722			(*pg_shift)++;
723		}
724
725		memcpy(new_memmap + (*count * desc_size), md, desc_size);
726
727		left -= desc_size;
728		(*count)++;
729	}
730
731	return new_memmap;
732}
733
734static void __init kexec_enter_virtual_mode(void)
735{
736#ifdef CONFIG_KEXEC_CORE
737	efi_memory_desc_t *md;
738	unsigned int num_pages;
739
740	/*
741	 * We don't do virtual mode, since we don't do runtime services, on
742	 * non-native EFI.
743	 */
744	if (efi_is_mixed()) {
745		efi_memmap_unmap();
746		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
747		return;
748	}
749
750	if (efi_alloc_page_tables()) {
751		pr_err("Failed to allocate EFI page tables\n");
752		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
753		return;
754	}
755
756	/*
757	* Map efi regions which were passed via setup_data. The virt_addr is a
758	* fixed addr which was used in first kernel of a kexec boot.
759	*/
760	for_each_efi_memory_desc(md)
761		efi_map_region_fixed(md); /* FIXME: add error handling */
762
763	/*
764	 * Unregister the early EFI memmap from efi_init() and install
765	 * the new EFI memory map.
766	 */
767	efi_memmap_unmap();
768
769	if (efi_memmap_init_late(efi.memmap.phys_map,
770				 efi.memmap.desc_size * efi.memmap.nr_map)) {
771		pr_err("Failed to remap late EFI memory map\n");
772		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
773		return;
774	}
775
776	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
777	num_pages >>= PAGE_SHIFT;
778
779	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
780		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
781		return;
782	}
783
784	efi_sync_low_kernel_mappings();
785	efi_native_runtime_setup();
786#endif
787}
788
789/*
790 * This function will switch the EFI runtime services to virtual mode.
791 * Essentially, we look through the EFI memmap and map every region that
792 * has the runtime attribute bit set in its memory descriptor into the
793 * efi_pgd page table.
794 *
795 * The new method does a pagetable switch in a preemption-safe manner
796 * so that we're in a different address space when calling a runtime
797 * function. For function arguments passing we do copy the PUDs of the
798 * kernel page table into efi_pgd prior to each call.
799 *
800 * Specially for kexec boot, efi runtime maps in previous kernel should
801 * be passed in via setup_data. In that case runtime ranges will be mapped
802 * to the same virtual addresses as the first kernel, see
803 * kexec_enter_virtual_mode().
804 */
805static void __init __efi_enter_virtual_mode(void)
806{
807	int count = 0, pg_shift = 0;
808	void *new_memmap = NULL;
809	efi_status_t status;
810	unsigned long pa;
811
812	if (efi_alloc_page_tables()) {
813		pr_err("Failed to allocate EFI page tables\n");
814		goto err;
815	}
816
817	efi_merge_regions();
818	new_memmap = efi_map_regions(&count, &pg_shift);
819	if (!new_memmap) {
820		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
821		goto err;
822	}
823
824	pa = __pa(new_memmap);
825
826	/*
827	 * Unregister the early EFI memmap from efi_init() and install
828	 * the new EFI memory map that we are about to pass to the
829	 * firmware via SetVirtualAddressMap().
830	 */
831	efi_memmap_unmap();
832
833	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
834		pr_err("Failed to remap late EFI memory map\n");
835		goto err;
836	}
837
838	if (efi_enabled(EFI_DBG)) {
839		pr_info("EFI runtime memory map:\n");
840		efi_print_memmap();
841	}
842
843	if (efi_setup_page_tables(pa, 1 << pg_shift))
844		goto err;
845
846	efi_sync_low_kernel_mappings();
847
848	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
849					     efi.memmap.desc_size,
850					     efi.memmap.desc_version,
851					     (efi_memory_desc_t *)pa,
852					     efi_systab_phys);
853	if (status != EFI_SUCCESS) {
854		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
855		       status);
856		goto err;
857	}
858
859	efi_check_for_embedded_firmwares();
860	efi_free_boot_services();
861
862	if (!efi_is_mixed())
863		efi_native_runtime_setup();
864	else
865		efi_thunk_runtime_setup();
866
867	/*
868	 * Apply more restrictive page table mapping attributes now that
869	 * SVAM() has been called and the firmware has performed all
870	 * necessary relocation fixups for the new virtual addresses.
871	 */
872	efi_runtime_update_mappings();
873
874	/* clean DUMMY object */
875	efi_delete_dummy_variable();
876	return;
877
878err:
879	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880}
881
882void __init efi_enter_virtual_mode(void)
883{
884	if (efi_enabled(EFI_PARAVIRT))
885		return;
886
887	efi.runtime = (efi_runtime_services_t *)efi_runtime;
888
889	if (efi_setup)
890		kexec_enter_virtual_mode();
891	else
892		__efi_enter_virtual_mode();
893
894	efi_dump_pagetable();
895}
896
897bool efi_is_table_address(unsigned long phys_addr)
898{
899	unsigned int i;
900
901	if (phys_addr == EFI_INVALID_TABLE_ADDR)
902		return false;
903
904	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
905		if (*(efi_tables[i]) == phys_addr)
906			return true;
907
908	return false;
909}
910
911char *efi_systab_show_arch(char *str)
912{
913	if (uga_phys != EFI_INVALID_TABLE_ADDR)
914		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
915	return str;
916}
917
918#define EFI_FIELD(var) efi_ ## var
919
920#define EFI_ATTR_SHOW(name) \
921static ssize_t name##_show(struct kobject *kobj, \
922				struct kobj_attribute *attr, char *buf) \
923{ \
924	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
925}
926
927EFI_ATTR_SHOW(fw_vendor);
928EFI_ATTR_SHOW(runtime);
929EFI_ATTR_SHOW(config_table);
930
931struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
932struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
933struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
934
935umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
936{
937	if (attr == &efi_attr_fw_vendor.attr) {
938		if (efi_enabled(EFI_PARAVIRT) ||
939				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
940			return 0;
941	} else if (attr == &efi_attr_runtime.attr) {
942		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
943			return 0;
944	} else if (attr == &efi_attr_config_table.attr) {
945		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
946			return 0;
947	}
948	return attr->mode;
 
 
 
 
 
949}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI (Extensible Firmware Interface) support functions
  4 * Based on Extensible Firmware Interface Specification version 1.0
  5 *
  6 * Copyright (C) 1999 VA Linux Systems
  7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *	Stephane Eranian <eranian@hpl.hp.com>
 11 * Copyright (C) 2005-2008 Intel Co.
 12 *	Fenghua Yu <fenghua.yu@intel.com>
 13 *	Bibo Mao <bibo.mao@intel.com>
 14 *	Chandramouli Narayanan <mouli@linux.intel.com>
 15 *	Huang Ying <ying.huang@intel.com>
 16 * Copyright (C) 2013 SuSE Labs
 17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
 18 *
 19 * Copied from efi_32.c to eliminate the duplicated code between EFI
 20 * 32/64 support code. --ying 2007-10-26
 21 *
 22 * All EFI Runtime Services are not implemented yet as EFI only
 23 * supports physical mode addressing on SoftSDV. This is to be fixed
 24 * in a future version.  --drummond 1999-07-20
 25 *
 26 * Implemented EFI runtime services and virtual mode calls.  --davidm
 27 *
 28 * Goutham Rao: <goutham.rao@intel.com>
 29 *	Skip non-WB memory and ignore empty memory ranges.
 30 */
 31
 32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/efi.h>
 37#include <linux/efi-bgrt.h>
 38#include <linux/export.h>
 39#include <linux/memblock.h>
 40#include <linux/slab.h>
 41#include <linux/spinlock.h>
 42#include <linux/uaccess.h>
 43#include <linux/time.h>
 44#include <linux/io.h>
 45#include <linux/reboot.h>
 46#include <linux/bcd.h>
 47
 48#include <asm/setup.h>
 49#include <asm/efi.h>
 50#include <asm/e820/api.h>
 51#include <asm/time.h>
 52#include <asm/tlbflush.h>
 53#include <asm/x86_init.h>
 54#include <asm/uv/uv.h>
 55
 56static unsigned long efi_systab_phys __initdata;
 57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
 58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
 59static unsigned long efi_runtime, efi_nr_tables;
 60
 61unsigned long efi_fw_vendor, efi_config_table;
 62
 63static const efi_config_table_type_t arch_tables[] __initconst = {
 64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
 65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
 66#ifdef CONFIG_X86_UV
 67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
 68#endif
 69	{},
 70};
 71
 72static const unsigned long * const efi_tables[] = {
 73	&efi.acpi,
 74	&efi.acpi20,
 75	&efi.smbios,
 76	&efi.smbios3,
 77	&uga_phys,
 78#ifdef CONFIG_X86_UV
 79	&uv_systab_phys,
 80#endif
 81	&efi_fw_vendor,
 82	&efi_runtime,
 83	&efi_config_table,
 84	&efi.esrt,
 85	&prop_phys,
 86	&efi_mem_attr_table,
 87#ifdef CONFIG_EFI_RCI2_TABLE
 88	&rci2_table_phys,
 89#endif
 90	&efi.tpm_log,
 91	&efi.tpm_final_log,
 92	&efi_rng_seed,
 93#ifdef CONFIG_LOAD_UEFI_KEYS
 94	&efi.mokvar_table,
 95#endif
 96#ifdef CONFIG_EFI_COCO_SECRET
 97	&efi.coco_secret,
 98#endif
 99#ifdef CONFIG_UNACCEPTED_MEMORY
100	&efi.unaccepted,
101#endif
102};
103
104u64 efi_setup;		/* efi setup_data physical address */
105
106static int add_efi_memmap __initdata;
107static int __init setup_add_efi_memmap(char *arg)
108{
109	add_efi_memmap = 1;
110	return 0;
111}
112early_param("add_efi_memmap", setup_add_efi_memmap);
113
114/*
115 * Tell the kernel about the EFI memory map.  This might include
116 * more than the max 128 entries that can fit in the passed in e820
117 * legacy (zeropage) memory map, but the kernel's e820 table can hold
118 * E820_MAX_ENTRIES.
119 */
120
121static void __init do_add_efi_memmap(void)
122{
123	efi_memory_desc_t *md;
124
125	if (!efi_enabled(EFI_MEMMAP))
126		return;
127
128	for_each_efi_memory_desc(md) {
129		unsigned long long start = md->phys_addr;
130		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
131		int e820_type;
132
133		switch (md->type) {
134		case EFI_LOADER_CODE:
135		case EFI_LOADER_DATA:
136		case EFI_BOOT_SERVICES_CODE:
137		case EFI_BOOT_SERVICES_DATA:
138		case EFI_CONVENTIONAL_MEMORY:
139			if (efi_soft_reserve_enabled()
140			    && (md->attribute & EFI_MEMORY_SP))
141				e820_type = E820_TYPE_SOFT_RESERVED;
142			else if (md->attribute & EFI_MEMORY_WB)
143				e820_type = E820_TYPE_RAM;
144			else
145				e820_type = E820_TYPE_RESERVED;
146			break;
147		case EFI_ACPI_RECLAIM_MEMORY:
148			e820_type = E820_TYPE_ACPI;
149			break;
150		case EFI_ACPI_MEMORY_NVS:
151			e820_type = E820_TYPE_NVS;
152			break;
153		case EFI_UNUSABLE_MEMORY:
154			e820_type = E820_TYPE_UNUSABLE;
155			break;
156		case EFI_PERSISTENT_MEMORY:
157			e820_type = E820_TYPE_PMEM;
158			break;
159		default:
160			/*
161			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
162			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
163			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
164			 */
165			e820_type = E820_TYPE_RESERVED;
166			break;
167		}
168
169		e820__range_add(start, size, e820_type);
170	}
171	e820__update_table(e820_table);
172}
173
174/*
175 * Given add_efi_memmap defaults to 0 and there is no alternative
176 * e820 mechanism for soft-reserved memory, import the full EFI memory
177 * map if soft reservations are present and enabled. Otherwise, the
178 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
179 * the efi=nosoftreserve option.
180 */
181static bool do_efi_soft_reserve(void)
182{
183	efi_memory_desc_t *md;
184
185	if (!efi_enabled(EFI_MEMMAP))
186		return false;
187
188	if (!efi_soft_reserve_enabled())
189		return false;
190
191	for_each_efi_memory_desc(md)
192		if (md->type == EFI_CONVENTIONAL_MEMORY &&
193		    (md->attribute & EFI_MEMORY_SP))
194			return true;
195	return false;
196}
197
198int __init efi_memblock_x86_reserve_range(void)
199{
200	struct efi_info *e = &boot_params.efi_info;
201	struct efi_memory_map_data data;
202	phys_addr_t pmap;
203	int rv;
204
205	if (efi_enabled(EFI_PARAVIRT))
206		return 0;
207
208	/* Can't handle firmware tables above 4GB on i386 */
209	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
210		pr_err("Memory map is above 4GB, disabling EFI.\n");
211		return -EINVAL;
212	}
213	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
214
215	data.phys_map		= pmap;
216	data.size 		= e->efi_memmap_size;
217	data.desc_size		= e->efi_memdesc_size;
218	data.desc_version	= e->efi_memdesc_version;
219
220	if (!efi_enabled(EFI_PARAVIRT)) {
221		rv = efi_memmap_init_early(&data);
222		if (rv)
223			return rv;
224	}
225
226	if (add_efi_memmap || do_efi_soft_reserve())
227		do_add_efi_memmap();
228
229	efi_fake_memmap_early();
230
231	WARN(efi.memmap.desc_version != 1,
232	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
233	     efi.memmap.desc_version);
234
235	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
236	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
237
238	return 0;
239}
240
241#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
242#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
243#define U64_HIGH_BIT		(~(U64_MAX >> 1))
244
245static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
246{
247	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
248	u64 end_hi = 0;
249	char buf[64];
250
251	if (md->num_pages == 0) {
252		end = 0;
253	} else if (md->num_pages > EFI_PAGES_MAX ||
254		   EFI_PAGES_MAX - md->num_pages <
255		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
256		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
257			>> OVERFLOW_ADDR_SHIFT;
258
259		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
260			end_hi += 1;
261	} else {
262		return true;
263	}
264
265	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
266
267	if (end_hi) {
268		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
269			i, efi_md_typeattr_format(buf, sizeof(buf), md),
270			md->phys_addr, end_hi, end);
271	} else {
272		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
273			i, efi_md_typeattr_format(buf, sizeof(buf), md),
274			md->phys_addr, end);
275	}
276	return false;
277}
278
279static void __init efi_clean_memmap(void)
280{
281	efi_memory_desc_t *out = efi.memmap.map;
282	const efi_memory_desc_t *in = out;
283	const efi_memory_desc_t *end = efi.memmap.map_end;
284	int i, n_removal;
285
286	for (i = n_removal = 0; in < end; i++) {
287		if (efi_memmap_entry_valid(in, i)) {
288			if (out != in)
289				memcpy(out, in, efi.memmap.desc_size);
290			out = (void *)out + efi.memmap.desc_size;
291		} else {
292			n_removal++;
293		}
294		in = (void *)in + efi.memmap.desc_size;
295	}
296
297	if (n_removal > 0) {
298		struct efi_memory_map_data data = {
299			.phys_map	= efi.memmap.phys_map,
300			.desc_version	= efi.memmap.desc_version,
301			.desc_size	= efi.memmap.desc_size,
302			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
303			.flags		= 0,
304		};
305
306		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
307		efi_memmap_install(&data);
308	}
309}
310
311/*
312 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
313 * mapped by the OS so they can be accessed by EFI runtime services, but
314 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
315 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
316 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
317 * allocating space from them (see remove_e820_regions()).
318 *
319 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
320 * PCI host bridge windows, which means Linux can't allocate BAR space for
321 * hot-added devices.
322 *
323 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
324 * problem.
325 *
326 * Retain small EfiMemoryMappedIO regions because on some platforms, these
327 * describe non-window space that's included in host bridge _CRS.  If we
328 * assign that space to PCI devices, they don't work.
329 */
330static void __init efi_remove_e820_mmio(void)
331{
332	efi_memory_desc_t *md;
333	u64 size, start, end;
334	int i = 0;
335
336	for_each_efi_memory_desc(md) {
337		if (md->type == EFI_MEMORY_MAPPED_IO) {
338			size = md->num_pages << EFI_PAGE_SHIFT;
339			start = md->phys_addr;
340			end = start + size - 1;
341			if (size >= 256*1024) {
342				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
343					i, start, end, size >> 20);
344				e820__range_remove(start, size,
345						   E820_TYPE_RESERVED, 1);
346			} else {
347				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
348					i, start, end, size >> 10);
349			}
350		}
351		i++;
352	}
353}
354
355void __init efi_print_memmap(void)
356{
357	efi_memory_desc_t *md;
358	int i = 0;
359
360	for_each_efi_memory_desc(md) {
361		char buf[64];
362
363		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
364			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
365			md->phys_addr,
366			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
367			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
368	}
369}
370
371static int __init efi_systab_init(unsigned long phys)
372{
373	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
374					  : sizeof(efi_system_table_32_t);
375	const efi_table_hdr_t *hdr;
376	bool over4g = false;
377	void *p;
378	int ret;
379
380	hdr = p = early_memremap_ro(phys, size);
381	if (p == NULL) {
382		pr_err("Couldn't map the system table!\n");
383		return -ENOMEM;
384	}
385
386	ret = efi_systab_check_header(hdr);
387	if (ret) {
388		early_memunmap(p, size);
389		return ret;
390	}
391
392	if (efi_enabled(EFI_64BIT)) {
393		const efi_system_table_64_t *systab64 = p;
394
395		efi_runtime	= systab64->runtime;
396		over4g		= systab64->runtime > U32_MAX;
397
398		if (efi_setup) {
399			struct efi_setup_data *data;
400
401			data = early_memremap_ro(efi_setup, sizeof(*data));
402			if (!data) {
403				early_memunmap(p, size);
404				return -ENOMEM;
405			}
406
407			efi_fw_vendor		= (unsigned long)data->fw_vendor;
408			efi_config_table	= (unsigned long)data->tables;
409
410			over4g |= data->fw_vendor	> U32_MAX ||
411				  data->tables		> U32_MAX;
412
413			early_memunmap(data, sizeof(*data));
414		} else {
415			efi_fw_vendor		= systab64->fw_vendor;
416			efi_config_table	= systab64->tables;
417
418			over4g |= systab64->fw_vendor	> U32_MAX ||
419				  systab64->tables	> U32_MAX;
420		}
421		efi_nr_tables = systab64->nr_tables;
422	} else {
423		const efi_system_table_32_t *systab32 = p;
424
425		efi_fw_vendor		= systab32->fw_vendor;
426		efi_runtime		= systab32->runtime;
427		efi_config_table	= systab32->tables;
428		efi_nr_tables		= systab32->nr_tables;
429	}
430
431	efi.runtime_version = hdr->revision;
432
433	efi_systab_report_header(hdr, efi_fw_vendor);
434	early_memunmap(p, size);
435
436	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
437		pr_err("EFI data located above 4GB, disabling EFI.\n");
438		return -EINVAL;
439	}
440
441	return 0;
442}
443
444static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
445{
446	void *config_tables;
447	int sz, ret;
448
449	if (efi_nr_tables == 0)
450		return 0;
451
452	if (efi_enabled(EFI_64BIT))
453		sz = sizeof(efi_config_table_64_t);
454	else
455		sz = sizeof(efi_config_table_32_t);
456
457	/*
458	 * Let's see what config tables the firmware passed to us.
459	 */
460	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
461	if (config_tables == NULL) {
462		pr_err("Could not map Configuration table!\n");
463		return -ENOMEM;
464	}
465
466	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
467				      arch_tables);
468
469	early_memunmap(config_tables, efi_nr_tables * sz);
470	return ret;
471}
472
473void __init efi_init(void)
474{
475	if (IS_ENABLED(CONFIG_X86_32) &&
476	    (boot_params.efi_info.efi_systab_hi ||
477	     boot_params.efi_info.efi_memmap_hi)) {
478		pr_info("Table located above 4GB, disabling EFI.\n");
479		return;
480	}
481
482	efi_systab_phys = boot_params.efi_info.efi_systab |
483			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
484
485	if (efi_systab_init(efi_systab_phys))
486		return;
487
488	if (efi_reuse_config(efi_config_table, efi_nr_tables))
489		return;
490
491	if (efi_config_init(arch_tables))
492		return;
493
494	/*
495	 * Note: We currently don't support runtime services on an EFI
496	 * that doesn't match the kernel 32/64-bit mode.
497	 */
498
499	if (!efi_runtime_supported())
500		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
501
502	if (!efi_runtime_supported() || efi_runtime_disabled()) {
503		efi_memmap_unmap();
504		return;
505	}
506
507	/* Parse the EFI Properties table if it exists */
508	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
509		efi_properties_table_t *tbl;
510
511		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
512		if (tbl == NULL) {
513			pr_err("Could not map Properties table!\n");
514		} else {
515			if (tbl->memory_protection_attribute &
516			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
517				set_bit(EFI_NX_PE_DATA, &efi.flags);
518
519			early_memunmap(tbl, sizeof(*tbl));
520		}
521	}
522
523	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
524	efi_clean_memmap();
525
526	efi_remove_e820_mmio();
527
528	if (efi_enabled(EFI_DBG))
529		efi_print_memmap();
530}
531
532/* Merge contiguous regions of the same type and attribute */
533static void __init efi_merge_regions(void)
534{
535	efi_memory_desc_t *md, *prev_md = NULL;
536
537	for_each_efi_memory_desc(md) {
538		u64 prev_size;
539
540		if (!prev_md) {
541			prev_md = md;
542			continue;
543		}
544
545		if (prev_md->type != md->type ||
546		    prev_md->attribute != md->attribute) {
547			prev_md = md;
548			continue;
549		}
550
551		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
552
553		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
554			prev_md->num_pages += md->num_pages;
555			md->type = EFI_RESERVED_TYPE;
556			md->attribute = 0;
557			continue;
558		}
559		prev_md = md;
560	}
561}
562
563static void *realloc_pages(void *old_memmap, int old_shift)
564{
565	void *ret;
566
567	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
568	if (!ret)
569		goto out;
570
571	/*
572	 * A first-time allocation doesn't have anything to copy.
573	 */
574	if (!old_memmap)
575		return ret;
576
577	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
578
579out:
580	free_pages((unsigned long)old_memmap, old_shift);
581	return ret;
582}
583
584/*
585 * Iterate the EFI memory map in reverse order because the regions
586 * will be mapped top-down. The end result is the same as if we had
587 * mapped things forward, but doesn't require us to change the
588 * existing implementation of efi_map_region().
589 */
590static inline void *efi_map_next_entry_reverse(void *entry)
591{
592	/* Initial call */
593	if (!entry)
594		return efi.memmap.map_end - efi.memmap.desc_size;
595
596	entry -= efi.memmap.desc_size;
597	if (entry < efi.memmap.map)
598		return NULL;
599
600	return entry;
601}
602
603/*
604 * efi_map_next_entry - Return the next EFI memory map descriptor
605 * @entry: Previous EFI memory map descriptor
606 *
607 * This is a helper function to iterate over the EFI memory map, which
608 * we do in different orders depending on the current configuration.
609 *
610 * To begin traversing the memory map @entry must be %NULL.
611 *
612 * Returns %NULL when we reach the end of the memory map.
613 */
614static void *efi_map_next_entry(void *entry)
615{
616	if (efi_enabled(EFI_64BIT)) {
617		/*
618		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
619		 * config table feature requires us to map all entries
620		 * in the same order as they appear in the EFI memory
621		 * map. That is to say, entry N must have a lower
622		 * virtual address than entry N+1. This is because the
623		 * firmware toolchain leaves relative references in
624		 * the code/data sections, which are split and become
625		 * separate EFI memory regions. Mapping things
626		 * out-of-order leads to the firmware accessing
627		 * unmapped addresses.
628		 *
629		 * Since we need to map things this way whether or not
630		 * the kernel actually makes use of
631		 * EFI_PROPERTIES_TABLE, let's just switch to this
632		 * scheme by default for 64-bit.
633		 */
634		return efi_map_next_entry_reverse(entry);
635	}
636
637	/* Initial call */
638	if (!entry)
639		return efi.memmap.map;
640
641	entry += efi.memmap.desc_size;
642	if (entry >= efi.memmap.map_end)
643		return NULL;
644
645	return entry;
646}
647
648static bool should_map_region(efi_memory_desc_t *md)
649{
650	/*
651	 * Runtime regions always require runtime mappings (obviously).
652	 */
653	if (md->attribute & EFI_MEMORY_RUNTIME)
654		return true;
655
656	/*
657	 * 32-bit EFI doesn't suffer from the bug that requires us to
658	 * reserve boot services regions, and mixed mode support
659	 * doesn't exist for 32-bit kernels.
660	 */
661	if (IS_ENABLED(CONFIG_X86_32))
662		return false;
663
664	/*
665	 * EFI specific purpose memory may be reserved by default
666	 * depending on kernel config and boot options.
667	 */
668	if (md->type == EFI_CONVENTIONAL_MEMORY &&
669	    efi_soft_reserve_enabled() &&
670	    (md->attribute & EFI_MEMORY_SP))
671		return false;
672
673	/*
674	 * Map all of RAM so that we can access arguments in the 1:1
675	 * mapping when making EFI runtime calls.
676	 */
677	if (efi_is_mixed()) {
678		if (md->type == EFI_CONVENTIONAL_MEMORY ||
679		    md->type == EFI_LOADER_DATA ||
680		    md->type == EFI_LOADER_CODE)
681			return true;
682	}
683
684	/*
685	 * Map boot services regions as a workaround for buggy
686	 * firmware that accesses them even when they shouldn't.
687	 *
688	 * See efi_{reserve,free}_boot_services().
689	 */
690	if (md->type == EFI_BOOT_SERVICES_CODE ||
691	    md->type == EFI_BOOT_SERVICES_DATA)
692		return true;
693
694	return false;
695}
696
697/*
698 * Map the efi memory ranges of the runtime services and update new_mmap with
699 * virtual addresses.
700 */
701static void * __init efi_map_regions(int *count, int *pg_shift)
702{
703	void *p, *new_memmap = NULL;
704	unsigned long left = 0;
705	unsigned long desc_size;
706	efi_memory_desc_t *md;
707
708	desc_size = efi.memmap.desc_size;
709
710	p = NULL;
711	while ((p = efi_map_next_entry(p))) {
712		md = p;
713
714		if (!should_map_region(md))
715			continue;
716
717		efi_map_region(md);
718
719		if (left < desc_size) {
720			new_memmap = realloc_pages(new_memmap, *pg_shift);
721			if (!new_memmap)
722				return NULL;
723
724			left += PAGE_SIZE << *pg_shift;
725			(*pg_shift)++;
726		}
727
728		memcpy(new_memmap + (*count * desc_size), md, desc_size);
729
730		left -= desc_size;
731		(*count)++;
732	}
733
734	return new_memmap;
735}
736
737static void __init kexec_enter_virtual_mode(void)
738{
739#ifdef CONFIG_KEXEC_CORE
740	efi_memory_desc_t *md;
741	unsigned int num_pages;
742
743	/*
744	 * We don't do virtual mode, since we don't do runtime services, on
745	 * non-native EFI.
746	 */
747	if (efi_is_mixed()) {
748		efi_memmap_unmap();
749		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
750		return;
751	}
752
753	if (efi_alloc_page_tables()) {
754		pr_err("Failed to allocate EFI page tables\n");
755		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
756		return;
757	}
758
759	/*
760	* Map efi regions which were passed via setup_data. The virt_addr is a
761	* fixed addr which was used in first kernel of a kexec boot.
762	*/
763	for_each_efi_memory_desc(md)
764		efi_map_region_fixed(md); /* FIXME: add error handling */
765
766	/*
767	 * Unregister the early EFI memmap from efi_init() and install
768	 * the new EFI memory map.
769	 */
770	efi_memmap_unmap();
771
772	if (efi_memmap_init_late(efi.memmap.phys_map,
773				 efi.memmap.desc_size * efi.memmap.nr_map)) {
774		pr_err("Failed to remap late EFI memory map\n");
775		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
776		return;
777	}
778
779	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
780	num_pages >>= PAGE_SHIFT;
781
782	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
783		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
784		return;
785	}
786
787	efi_sync_low_kernel_mappings();
788	efi_native_runtime_setup();
789#endif
790}
791
792/*
793 * This function will switch the EFI runtime services to virtual mode.
794 * Essentially, we look through the EFI memmap and map every region that
795 * has the runtime attribute bit set in its memory descriptor into the
796 * efi_pgd page table.
797 *
798 * The new method does a pagetable switch in a preemption-safe manner
799 * so that we're in a different address space when calling a runtime
800 * function. For function arguments passing we do copy the PUDs of the
801 * kernel page table into efi_pgd prior to each call.
802 *
803 * Specially for kexec boot, efi runtime maps in previous kernel should
804 * be passed in via setup_data. In that case runtime ranges will be mapped
805 * to the same virtual addresses as the first kernel, see
806 * kexec_enter_virtual_mode().
807 */
808static void __init __efi_enter_virtual_mode(void)
809{
810	int count = 0, pg_shift = 0;
811	void *new_memmap = NULL;
812	efi_status_t status;
813	unsigned long pa;
814
815	if (efi_alloc_page_tables()) {
816		pr_err("Failed to allocate EFI page tables\n");
817		goto err;
818	}
819
820	efi_merge_regions();
821	new_memmap = efi_map_regions(&count, &pg_shift);
822	if (!new_memmap) {
823		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
824		goto err;
825	}
826
827	pa = __pa(new_memmap);
828
829	/*
830	 * Unregister the early EFI memmap from efi_init() and install
831	 * the new EFI memory map that we are about to pass to the
832	 * firmware via SetVirtualAddressMap().
833	 */
834	efi_memmap_unmap();
835
836	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
837		pr_err("Failed to remap late EFI memory map\n");
838		goto err;
839	}
840
841	if (efi_enabled(EFI_DBG)) {
842		pr_info("EFI runtime memory map:\n");
843		efi_print_memmap();
844	}
845
846	if (efi_setup_page_tables(pa, 1 << pg_shift))
847		goto err;
848
849	efi_sync_low_kernel_mappings();
850
851	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
852					     efi.memmap.desc_size,
853					     efi.memmap.desc_version,
854					     (efi_memory_desc_t *)pa,
855					     efi_systab_phys);
856	if (status != EFI_SUCCESS) {
857		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
858		       status);
859		goto err;
860	}
861
862	efi_check_for_embedded_firmwares();
863	efi_free_boot_services();
864
865	if (!efi_is_mixed())
866		efi_native_runtime_setup();
867	else
868		efi_thunk_runtime_setup();
869
870	/*
871	 * Apply more restrictive page table mapping attributes now that
872	 * SVAM() has been called and the firmware has performed all
873	 * necessary relocation fixups for the new virtual addresses.
874	 */
875	efi_runtime_update_mappings();
876
877	/* clean DUMMY object */
878	efi_delete_dummy_variable();
879	return;
880
881err:
882	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
883}
884
885void __init efi_enter_virtual_mode(void)
886{
887	if (efi_enabled(EFI_PARAVIRT))
888		return;
889
890	efi.runtime = (efi_runtime_services_t *)efi_runtime;
891
892	if (efi_setup)
893		kexec_enter_virtual_mode();
894	else
895		__efi_enter_virtual_mode();
896
897	efi_dump_pagetable();
898}
899
900bool efi_is_table_address(unsigned long phys_addr)
901{
902	unsigned int i;
903
904	if (phys_addr == EFI_INVALID_TABLE_ADDR)
905		return false;
906
907	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
908		if (*(efi_tables[i]) == phys_addr)
909			return true;
910
911	return false;
912}
913
914char *efi_systab_show_arch(char *str)
915{
916	if (uga_phys != EFI_INVALID_TABLE_ADDR)
917		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
918	return str;
919}
920
921#define EFI_FIELD(var) efi_ ## var
922
923#define EFI_ATTR_SHOW(name) \
924static ssize_t name##_show(struct kobject *kobj, \
925				struct kobj_attribute *attr, char *buf) \
926{ \
927	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
928}
929
930EFI_ATTR_SHOW(fw_vendor);
931EFI_ATTR_SHOW(runtime);
932EFI_ATTR_SHOW(config_table);
933
934struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
935struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
936struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
937
938umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
939{
940	if (attr == &efi_attr_fw_vendor.attr) {
941		if (efi_enabled(EFI_PARAVIRT) ||
942				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
943			return 0;
944	} else if (attr == &efi_attr_runtime.attr) {
945		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
946			return 0;
947	} else if (attr == &efi_attr_config_table.attr) {
948		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
949			return 0;
950	}
951	return attr->mode;
952}
953
954enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
955{
956	return boot_params.secure_boot;
957}