Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common EFI (Extensible Firmware Interface) support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 2005-2008 Intel Co.
12 * Fenghua Yu <fenghua.yu@intel.com>
13 * Bibo Mao <bibo.mao@intel.com>
14 * Chandramouli Narayanan <mouli@linux.intel.com>
15 * Huang Ying <ying.huang@intel.com>
16 * Copyright (C) 2013 SuSE Labs
17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 *
19 * Copied from efi_32.c to eliminate the duplicated code between EFI
20 * 32/64 support code. --ying 2007-10-26
21 *
22 * All EFI Runtime Services are not implemented yet as EFI only
23 * supports physical mode addressing on SoftSDV. This is to be fixed
24 * in a future version. --drummond 1999-07-20
25 *
26 * Implemented EFI runtime services and virtual mode calls. --davidm
27 *
28 * Goutham Rao: <goutham.rao@intel.com>
29 * Skip non-WB memory and ignore empty memory ranges.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/efi.h>
37#include <linux/efi-bgrt.h>
38#include <linux/export.h>
39#include <linux/memblock.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/uaccess.h>
43#include <linux/time.h>
44#include <linux/io.h>
45#include <linux/reboot.h>
46#include <linux/bcd.h>
47
48#include <asm/setup.h>
49#include <asm/efi.h>
50#include <asm/e820/api.h>
51#include <asm/time.h>
52#include <asm/tlbflush.h>
53#include <asm/x86_init.h>
54#include <asm/uv/uv.h>
55
56static unsigned long efi_systab_phys __initdata;
57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
59static unsigned long efi_runtime, efi_nr_tables;
60
61unsigned long efi_fw_vendor, efi_config_table;
62
63static const efi_config_table_type_t arch_tables[] __initconst = {
64 {EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" },
65 {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" },
66#ifdef CONFIG_X86_UV
67 {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
68#endif
69 {},
70};
71
72static const unsigned long * const efi_tables[] = {
73 &efi.acpi,
74 &efi.acpi20,
75 &efi.smbios,
76 &efi.smbios3,
77 &uga_phys,
78#ifdef CONFIG_X86_UV
79 &uv_systab_phys,
80#endif
81 &efi_fw_vendor,
82 &efi_runtime,
83 &efi_config_table,
84 &efi.esrt,
85 &prop_phys,
86 &efi_mem_attr_table,
87#ifdef CONFIG_EFI_RCI2_TABLE
88 &rci2_table_phys,
89#endif
90 &efi.tpm_log,
91 &efi.tpm_final_log,
92 &efi_rng_seed,
93#ifdef CONFIG_LOAD_UEFI_KEYS
94 &efi.mokvar_table,
95#endif
96#ifdef CONFIG_EFI_COCO_SECRET
97 &efi.coco_secret,
98#endif
99};
100
101u64 efi_setup; /* efi setup_data physical address */
102
103static int add_efi_memmap __initdata;
104static int __init setup_add_efi_memmap(char *arg)
105{
106 add_efi_memmap = 1;
107 return 0;
108}
109early_param("add_efi_memmap", setup_add_efi_memmap);
110
111/*
112 * Tell the kernel about the EFI memory map. This might include
113 * more than the max 128 entries that can fit in the passed in e820
114 * legacy (zeropage) memory map, but the kernel's e820 table can hold
115 * E820_MAX_ENTRIES.
116 */
117
118static void __init do_add_efi_memmap(void)
119{
120 efi_memory_desc_t *md;
121
122 if (!efi_enabled(EFI_MEMMAP))
123 return;
124
125 for_each_efi_memory_desc(md) {
126 unsigned long long start = md->phys_addr;
127 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128 int e820_type;
129
130 switch (md->type) {
131 case EFI_LOADER_CODE:
132 case EFI_LOADER_DATA:
133 case EFI_BOOT_SERVICES_CODE:
134 case EFI_BOOT_SERVICES_DATA:
135 case EFI_CONVENTIONAL_MEMORY:
136 if (efi_soft_reserve_enabled()
137 && (md->attribute & EFI_MEMORY_SP))
138 e820_type = E820_TYPE_SOFT_RESERVED;
139 else if (md->attribute & EFI_MEMORY_WB)
140 e820_type = E820_TYPE_RAM;
141 else
142 e820_type = E820_TYPE_RESERVED;
143 break;
144 case EFI_ACPI_RECLAIM_MEMORY:
145 e820_type = E820_TYPE_ACPI;
146 break;
147 case EFI_ACPI_MEMORY_NVS:
148 e820_type = E820_TYPE_NVS;
149 break;
150 case EFI_UNUSABLE_MEMORY:
151 e820_type = E820_TYPE_UNUSABLE;
152 break;
153 case EFI_PERSISTENT_MEMORY:
154 e820_type = E820_TYPE_PMEM;
155 break;
156 default:
157 /*
158 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
159 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
160 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
161 */
162 e820_type = E820_TYPE_RESERVED;
163 break;
164 }
165
166 e820__range_add(start, size, e820_type);
167 }
168 e820__update_table(e820_table);
169}
170
171/*
172 * Given add_efi_memmap defaults to 0 and there is no alternative
173 * e820 mechanism for soft-reserved memory, import the full EFI memory
174 * map if soft reservations are present and enabled. Otherwise, the
175 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
176 * the efi=nosoftreserve option.
177 */
178static bool do_efi_soft_reserve(void)
179{
180 efi_memory_desc_t *md;
181
182 if (!efi_enabled(EFI_MEMMAP))
183 return false;
184
185 if (!efi_soft_reserve_enabled())
186 return false;
187
188 for_each_efi_memory_desc(md)
189 if (md->type == EFI_CONVENTIONAL_MEMORY &&
190 (md->attribute & EFI_MEMORY_SP))
191 return true;
192 return false;
193}
194
195int __init efi_memblock_x86_reserve_range(void)
196{
197 struct efi_info *e = &boot_params.efi_info;
198 struct efi_memory_map_data data;
199 phys_addr_t pmap;
200 int rv;
201
202 if (efi_enabled(EFI_PARAVIRT))
203 return 0;
204
205 /* Can't handle firmware tables above 4GB on i386 */
206 if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
207 pr_err("Memory map is above 4GB, disabling EFI.\n");
208 return -EINVAL;
209 }
210 pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
211
212 data.phys_map = pmap;
213 data.size = e->efi_memmap_size;
214 data.desc_size = e->efi_memdesc_size;
215 data.desc_version = e->efi_memdesc_version;
216
217 if (!efi_enabled(EFI_PARAVIRT)) {
218 rv = efi_memmap_init_early(&data);
219 if (rv)
220 return rv;
221 }
222
223 if (add_efi_memmap || do_efi_soft_reserve())
224 do_add_efi_memmap();
225
226 efi_fake_memmap_early();
227
228 WARN(efi.memmap.desc_version != 1,
229 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
230 efi.memmap.desc_version);
231
232 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
233 set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
234
235 return 0;
236}
237
238#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
239#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
240#define U64_HIGH_BIT (~(U64_MAX >> 1))
241
242static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
243{
244 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
245 u64 end_hi = 0;
246 char buf[64];
247
248 if (md->num_pages == 0) {
249 end = 0;
250 } else if (md->num_pages > EFI_PAGES_MAX ||
251 EFI_PAGES_MAX - md->num_pages <
252 (md->phys_addr >> EFI_PAGE_SHIFT)) {
253 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
254 >> OVERFLOW_ADDR_SHIFT;
255
256 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
257 end_hi += 1;
258 } else {
259 return true;
260 }
261
262 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
263
264 if (end_hi) {
265 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
266 i, efi_md_typeattr_format(buf, sizeof(buf), md),
267 md->phys_addr, end_hi, end);
268 } else {
269 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
270 i, efi_md_typeattr_format(buf, sizeof(buf), md),
271 md->phys_addr, end);
272 }
273 return false;
274}
275
276static void __init efi_clean_memmap(void)
277{
278 efi_memory_desc_t *out = efi.memmap.map;
279 const efi_memory_desc_t *in = out;
280 const efi_memory_desc_t *end = efi.memmap.map_end;
281 int i, n_removal;
282
283 for (i = n_removal = 0; in < end; i++) {
284 if (efi_memmap_entry_valid(in, i)) {
285 if (out != in)
286 memcpy(out, in, efi.memmap.desc_size);
287 out = (void *)out + efi.memmap.desc_size;
288 } else {
289 n_removal++;
290 }
291 in = (void *)in + efi.memmap.desc_size;
292 }
293
294 if (n_removal > 0) {
295 struct efi_memory_map_data data = {
296 .phys_map = efi.memmap.phys_map,
297 .desc_version = efi.memmap.desc_version,
298 .desc_size = efi.memmap.desc_size,
299 .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
300 .flags = 0,
301 };
302
303 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
304 efi_memmap_install(&data);
305 }
306}
307
308/*
309 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
310 * mapped by the OS so they can be accessed by EFI runtime services, but
311 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
312 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
313 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
314 * allocating space from them (see remove_e820_regions()).
315 *
316 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
317 * PCI host bridge windows, which means Linux can't allocate BAR space for
318 * hot-added devices.
319 *
320 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
321 * problem.
322 *
323 * Retain small EfiMemoryMappedIO regions because on some platforms, these
324 * describe non-window space that's included in host bridge _CRS. If we
325 * assign that space to PCI devices, they don't work.
326 */
327static void __init efi_remove_e820_mmio(void)
328{
329 efi_memory_desc_t *md;
330 u64 size, start, end;
331 int i = 0;
332
333 for_each_efi_memory_desc(md) {
334 if (md->type == EFI_MEMORY_MAPPED_IO) {
335 size = md->num_pages << EFI_PAGE_SHIFT;
336 start = md->phys_addr;
337 end = start + size - 1;
338 if (size >= 256*1024) {
339 pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
340 i, start, end, size >> 20);
341 e820__range_remove(start, size,
342 E820_TYPE_RESERVED, 1);
343 } else {
344 pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
345 i, start, end, size >> 10);
346 }
347 }
348 i++;
349 }
350}
351
352void __init efi_print_memmap(void)
353{
354 efi_memory_desc_t *md;
355 int i = 0;
356
357 for_each_efi_memory_desc(md) {
358 char buf[64];
359
360 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
361 i++, efi_md_typeattr_format(buf, sizeof(buf), md),
362 md->phys_addr,
363 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
364 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
365 }
366}
367
368static int __init efi_systab_init(unsigned long phys)
369{
370 int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
371 : sizeof(efi_system_table_32_t);
372 const efi_table_hdr_t *hdr;
373 bool over4g = false;
374 void *p;
375 int ret;
376
377 hdr = p = early_memremap_ro(phys, size);
378 if (p == NULL) {
379 pr_err("Couldn't map the system table!\n");
380 return -ENOMEM;
381 }
382
383 ret = efi_systab_check_header(hdr, 1);
384 if (ret) {
385 early_memunmap(p, size);
386 return ret;
387 }
388
389 if (efi_enabled(EFI_64BIT)) {
390 const efi_system_table_64_t *systab64 = p;
391
392 efi_runtime = systab64->runtime;
393 over4g = systab64->runtime > U32_MAX;
394
395 if (efi_setup) {
396 struct efi_setup_data *data;
397
398 data = early_memremap_ro(efi_setup, sizeof(*data));
399 if (!data) {
400 early_memunmap(p, size);
401 return -ENOMEM;
402 }
403
404 efi_fw_vendor = (unsigned long)data->fw_vendor;
405 efi_config_table = (unsigned long)data->tables;
406
407 over4g |= data->fw_vendor > U32_MAX ||
408 data->tables > U32_MAX;
409
410 early_memunmap(data, sizeof(*data));
411 } else {
412 efi_fw_vendor = systab64->fw_vendor;
413 efi_config_table = systab64->tables;
414
415 over4g |= systab64->fw_vendor > U32_MAX ||
416 systab64->tables > U32_MAX;
417 }
418 efi_nr_tables = systab64->nr_tables;
419 } else {
420 const efi_system_table_32_t *systab32 = p;
421
422 efi_fw_vendor = systab32->fw_vendor;
423 efi_runtime = systab32->runtime;
424 efi_config_table = systab32->tables;
425 efi_nr_tables = systab32->nr_tables;
426 }
427
428 efi.runtime_version = hdr->revision;
429
430 efi_systab_report_header(hdr, efi_fw_vendor);
431 early_memunmap(p, size);
432
433 if (IS_ENABLED(CONFIG_X86_32) && over4g) {
434 pr_err("EFI data located above 4GB, disabling EFI.\n");
435 return -EINVAL;
436 }
437
438 return 0;
439}
440
441static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
442{
443 void *config_tables;
444 int sz, ret;
445
446 if (efi_nr_tables == 0)
447 return 0;
448
449 if (efi_enabled(EFI_64BIT))
450 sz = sizeof(efi_config_table_64_t);
451 else
452 sz = sizeof(efi_config_table_32_t);
453
454 /*
455 * Let's see what config tables the firmware passed to us.
456 */
457 config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
458 if (config_tables == NULL) {
459 pr_err("Could not map Configuration table!\n");
460 return -ENOMEM;
461 }
462
463 ret = efi_config_parse_tables(config_tables, efi_nr_tables,
464 arch_tables);
465
466 early_memunmap(config_tables, efi_nr_tables * sz);
467 return ret;
468}
469
470void __init efi_init(void)
471{
472 if (IS_ENABLED(CONFIG_X86_32) &&
473 (boot_params.efi_info.efi_systab_hi ||
474 boot_params.efi_info.efi_memmap_hi)) {
475 pr_info("Table located above 4GB, disabling EFI.\n");
476 return;
477 }
478
479 efi_systab_phys = boot_params.efi_info.efi_systab |
480 ((__u64)boot_params.efi_info.efi_systab_hi << 32);
481
482 if (efi_systab_init(efi_systab_phys))
483 return;
484
485 if (efi_reuse_config(efi_config_table, efi_nr_tables))
486 return;
487
488 if (efi_config_init(arch_tables))
489 return;
490
491 /*
492 * Note: We currently don't support runtime services on an EFI
493 * that doesn't match the kernel 32/64-bit mode.
494 */
495
496 if (!efi_runtime_supported())
497 pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
498
499 if (!efi_runtime_supported() || efi_runtime_disabled()) {
500 efi_memmap_unmap();
501 return;
502 }
503
504 /* Parse the EFI Properties table if it exists */
505 if (prop_phys != EFI_INVALID_TABLE_ADDR) {
506 efi_properties_table_t *tbl;
507
508 tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
509 if (tbl == NULL) {
510 pr_err("Could not map Properties table!\n");
511 } else {
512 if (tbl->memory_protection_attribute &
513 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
514 set_bit(EFI_NX_PE_DATA, &efi.flags);
515
516 early_memunmap(tbl, sizeof(*tbl));
517 }
518 }
519
520 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
521 efi_clean_memmap();
522
523 efi_remove_e820_mmio();
524
525 if (efi_enabled(EFI_DBG))
526 efi_print_memmap();
527}
528
529/* Merge contiguous regions of the same type and attribute */
530static void __init efi_merge_regions(void)
531{
532 efi_memory_desc_t *md, *prev_md = NULL;
533
534 for_each_efi_memory_desc(md) {
535 u64 prev_size;
536
537 if (!prev_md) {
538 prev_md = md;
539 continue;
540 }
541
542 if (prev_md->type != md->type ||
543 prev_md->attribute != md->attribute) {
544 prev_md = md;
545 continue;
546 }
547
548 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
549
550 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
551 prev_md->num_pages += md->num_pages;
552 md->type = EFI_RESERVED_TYPE;
553 md->attribute = 0;
554 continue;
555 }
556 prev_md = md;
557 }
558}
559
560static void *realloc_pages(void *old_memmap, int old_shift)
561{
562 void *ret;
563
564 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
565 if (!ret)
566 goto out;
567
568 /*
569 * A first-time allocation doesn't have anything to copy.
570 */
571 if (!old_memmap)
572 return ret;
573
574 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
575
576out:
577 free_pages((unsigned long)old_memmap, old_shift);
578 return ret;
579}
580
581/*
582 * Iterate the EFI memory map in reverse order because the regions
583 * will be mapped top-down. The end result is the same as if we had
584 * mapped things forward, but doesn't require us to change the
585 * existing implementation of efi_map_region().
586 */
587static inline void *efi_map_next_entry_reverse(void *entry)
588{
589 /* Initial call */
590 if (!entry)
591 return efi.memmap.map_end - efi.memmap.desc_size;
592
593 entry -= efi.memmap.desc_size;
594 if (entry < efi.memmap.map)
595 return NULL;
596
597 return entry;
598}
599
600/*
601 * efi_map_next_entry - Return the next EFI memory map descriptor
602 * @entry: Previous EFI memory map descriptor
603 *
604 * This is a helper function to iterate over the EFI memory map, which
605 * we do in different orders depending on the current configuration.
606 *
607 * To begin traversing the memory map @entry must be %NULL.
608 *
609 * Returns %NULL when we reach the end of the memory map.
610 */
611static void *efi_map_next_entry(void *entry)
612{
613 if (efi_enabled(EFI_64BIT)) {
614 /*
615 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
616 * config table feature requires us to map all entries
617 * in the same order as they appear in the EFI memory
618 * map. That is to say, entry N must have a lower
619 * virtual address than entry N+1. This is because the
620 * firmware toolchain leaves relative references in
621 * the code/data sections, which are split and become
622 * separate EFI memory regions. Mapping things
623 * out-of-order leads to the firmware accessing
624 * unmapped addresses.
625 *
626 * Since we need to map things this way whether or not
627 * the kernel actually makes use of
628 * EFI_PROPERTIES_TABLE, let's just switch to this
629 * scheme by default for 64-bit.
630 */
631 return efi_map_next_entry_reverse(entry);
632 }
633
634 /* Initial call */
635 if (!entry)
636 return efi.memmap.map;
637
638 entry += efi.memmap.desc_size;
639 if (entry >= efi.memmap.map_end)
640 return NULL;
641
642 return entry;
643}
644
645static bool should_map_region(efi_memory_desc_t *md)
646{
647 /*
648 * Runtime regions always require runtime mappings (obviously).
649 */
650 if (md->attribute & EFI_MEMORY_RUNTIME)
651 return true;
652
653 /*
654 * 32-bit EFI doesn't suffer from the bug that requires us to
655 * reserve boot services regions, and mixed mode support
656 * doesn't exist for 32-bit kernels.
657 */
658 if (IS_ENABLED(CONFIG_X86_32))
659 return false;
660
661 /*
662 * EFI specific purpose memory may be reserved by default
663 * depending on kernel config and boot options.
664 */
665 if (md->type == EFI_CONVENTIONAL_MEMORY &&
666 efi_soft_reserve_enabled() &&
667 (md->attribute & EFI_MEMORY_SP))
668 return false;
669
670 /*
671 * Map all of RAM so that we can access arguments in the 1:1
672 * mapping when making EFI runtime calls.
673 */
674 if (efi_is_mixed()) {
675 if (md->type == EFI_CONVENTIONAL_MEMORY ||
676 md->type == EFI_LOADER_DATA ||
677 md->type == EFI_LOADER_CODE)
678 return true;
679 }
680
681 /*
682 * Map boot services regions as a workaround for buggy
683 * firmware that accesses them even when they shouldn't.
684 *
685 * See efi_{reserve,free}_boot_services().
686 */
687 if (md->type == EFI_BOOT_SERVICES_CODE ||
688 md->type == EFI_BOOT_SERVICES_DATA)
689 return true;
690
691 return false;
692}
693
694/*
695 * Map the efi memory ranges of the runtime services and update new_mmap with
696 * virtual addresses.
697 */
698static void * __init efi_map_regions(int *count, int *pg_shift)
699{
700 void *p, *new_memmap = NULL;
701 unsigned long left = 0;
702 unsigned long desc_size;
703 efi_memory_desc_t *md;
704
705 desc_size = efi.memmap.desc_size;
706
707 p = NULL;
708 while ((p = efi_map_next_entry(p))) {
709 md = p;
710
711 if (!should_map_region(md))
712 continue;
713
714 efi_map_region(md);
715
716 if (left < desc_size) {
717 new_memmap = realloc_pages(new_memmap, *pg_shift);
718 if (!new_memmap)
719 return NULL;
720
721 left += PAGE_SIZE << *pg_shift;
722 (*pg_shift)++;
723 }
724
725 memcpy(new_memmap + (*count * desc_size), md, desc_size);
726
727 left -= desc_size;
728 (*count)++;
729 }
730
731 return new_memmap;
732}
733
734static void __init kexec_enter_virtual_mode(void)
735{
736#ifdef CONFIG_KEXEC_CORE
737 efi_memory_desc_t *md;
738 unsigned int num_pages;
739
740 /*
741 * We don't do virtual mode, since we don't do runtime services, on
742 * non-native EFI.
743 */
744 if (efi_is_mixed()) {
745 efi_memmap_unmap();
746 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
747 return;
748 }
749
750 if (efi_alloc_page_tables()) {
751 pr_err("Failed to allocate EFI page tables\n");
752 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
753 return;
754 }
755
756 /*
757 * Map efi regions which were passed via setup_data. The virt_addr is a
758 * fixed addr which was used in first kernel of a kexec boot.
759 */
760 for_each_efi_memory_desc(md)
761 efi_map_region_fixed(md); /* FIXME: add error handling */
762
763 /*
764 * Unregister the early EFI memmap from efi_init() and install
765 * the new EFI memory map.
766 */
767 efi_memmap_unmap();
768
769 if (efi_memmap_init_late(efi.memmap.phys_map,
770 efi.memmap.desc_size * efi.memmap.nr_map)) {
771 pr_err("Failed to remap late EFI memory map\n");
772 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
773 return;
774 }
775
776 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
777 num_pages >>= PAGE_SHIFT;
778
779 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
780 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
781 return;
782 }
783
784 efi_sync_low_kernel_mappings();
785 efi_native_runtime_setup();
786#endif
787}
788
789/*
790 * This function will switch the EFI runtime services to virtual mode.
791 * Essentially, we look through the EFI memmap and map every region that
792 * has the runtime attribute bit set in its memory descriptor into the
793 * efi_pgd page table.
794 *
795 * The new method does a pagetable switch in a preemption-safe manner
796 * so that we're in a different address space when calling a runtime
797 * function. For function arguments passing we do copy the PUDs of the
798 * kernel page table into efi_pgd prior to each call.
799 *
800 * Specially for kexec boot, efi runtime maps in previous kernel should
801 * be passed in via setup_data. In that case runtime ranges will be mapped
802 * to the same virtual addresses as the first kernel, see
803 * kexec_enter_virtual_mode().
804 */
805static void __init __efi_enter_virtual_mode(void)
806{
807 int count = 0, pg_shift = 0;
808 void *new_memmap = NULL;
809 efi_status_t status;
810 unsigned long pa;
811
812 if (efi_alloc_page_tables()) {
813 pr_err("Failed to allocate EFI page tables\n");
814 goto err;
815 }
816
817 efi_merge_regions();
818 new_memmap = efi_map_regions(&count, &pg_shift);
819 if (!new_memmap) {
820 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
821 goto err;
822 }
823
824 pa = __pa(new_memmap);
825
826 /*
827 * Unregister the early EFI memmap from efi_init() and install
828 * the new EFI memory map that we are about to pass to the
829 * firmware via SetVirtualAddressMap().
830 */
831 efi_memmap_unmap();
832
833 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
834 pr_err("Failed to remap late EFI memory map\n");
835 goto err;
836 }
837
838 if (efi_enabled(EFI_DBG)) {
839 pr_info("EFI runtime memory map:\n");
840 efi_print_memmap();
841 }
842
843 if (efi_setup_page_tables(pa, 1 << pg_shift))
844 goto err;
845
846 efi_sync_low_kernel_mappings();
847
848 status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
849 efi.memmap.desc_size,
850 efi.memmap.desc_version,
851 (efi_memory_desc_t *)pa,
852 efi_systab_phys);
853 if (status != EFI_SUCCESS) {
854 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
855 status);
856 goto err;
857 }
858
859 efi_check_for_embedded_firmwares();
860 efi_free_boot_services();
861
862 if (!efi_is_mixed())
863 efi_native_runtime_setup();
864 else
865 efi_thunk_runtime_setup();
866
867 /*
868 * Apply more restrictive page table mapping attributes now that
869 * SVAM() has been called and the firmware has performed all
870 * necessary relocation fixups for the new virtual addresses.
871 */
872 efi_runtime_update_mappings();
873
874 /* clean DUMMY object */
875 efi_delete_dummy_variable();
876 return;
877
878err:
879 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880}
881
882void __init efi_enter_virtual_mode(void)
883{
884 if (efi_enabled(EFI_PARAVIRT))
885 return;
886
887 efi.runtime = (efi_runtime_services_t *)efi_runtime;
888
889 if (efi_setup)
890 kexec_enter_virtual_mode();
891 else
892 __efi_enter_virtual_mode();
893
894 efi_dump_pagetable();
895}
896
897bool efi_is_table_address(unsigned long phys_addr)
898{
899 unsigned int i;
900
901 if (phys_addr == EFI_INVALID_TABLE_ADDR)
902 return false;
903
904 for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
905 if (*(efi_tables[i]) == phys_addr)
906 return true;
907
908 return false;
909}
910
911char *efi_systab_show_arch(char *str)
912{
913 if (uga_phys != EFI_INVALID_TABLE_ADDR)
914 str += sprintf(str, "UGA=0x%lx\n", uga_phys);
915 return str;
916}
917
918#define EFI_FIELD(var) efi_ ## var
919
920#define EFI_ATTR_SHOW(name) \
921static ssize_t name##_show(struct kobject *kobj, \
922 struct kobj_attribute *attr, char *buf) \
923{ \
924 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
925}
926
927EFI_ATTR_SHOW(fw_vendor);
928EFI_ATTR_SHOW(runtime);
929EFI_ATTR_SHOW(config_table);
930
931struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
932struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
933struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
934
935umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
936{
937 if (attr == &efi_attr_fw_vendor.attr) {
938 if (efi_enabled(EFI_PARAVIRT) ||
939 efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
940 return 0;
941 } else if (attr == &efi_attr_runtime.attr) {
942 if (efi_runtime == EFI_INVALID_TABLE_ADDR)
943 return 0;
944 } else if (attr == &efi_attr_config_table.attr) {
945 if (efi_config_table == EFI_INVALID_TABLE_ADDR)
946 return 0;
947 }
948 return attr->mode;
949}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common EFI (Extensible Firmware Interface) support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 2005-2008 Intel Co.
12 * Fenghua Yu <fenghua.yu@intel.com>
13 * Bibo Mao <bibo.mao@intel.com>
14 * Chandramouli Narayanan <mouli@linux.intel.com>
15 * Huang Ying <ying.huang@intel.com>
16 * Copyright (C) 2013 SuSE Labs
17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 *
19 * Copied from efi_32.c to eliminate the duplicated code between EFI
20 * 32/64 support code. --ying 2007-10-26
21 *
22 * All EFI Runtime Services are not implemented yet as EFI only
23 * supports physical mode addressing on SoftSDV. This is to be fixed
24 * in a future version. --drummond 1999-07-20
25 *
26 * Implemented EFI runtime services and virtual mode calls. --davidm
27 *
28 * Goutham Rao: <goutham.rao@intel.com>
29 * Skip non-WB memory and ignore empty memory ranges.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/efi.h>
37#include <linux/efi-bgrt.h>
38#include <linux/export.h>
39#include <linux/memblock.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/uaccess.h>
43#include <linux/time.h>
44#include <linux/io.h>
45#include <linux/reboot.h>
46#include <linux/bcd.h>
47
48#include <asm/setup.h>
49#include <asm/efi.h>
50#include <asm/e820/api.h>
51#include <asm/time.h>
52#include <asm/tlbflush.h>
53#include <asm/x86_init.h>
54#include <asm/uv/uv.h>
55
56static unsigned long efi_systab_phys __initdata;
57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
59static unsigned long efi_runtime, efi_nr_tables;
60
61unsigned long efi_fw_vendor, efi_config_table;
62
63static const efi_config_table_type_t arch_tables[] __initconst = {
64 {EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" },
65 {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" },
66#ifdef CONFIG_X86_UV
67 {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
68#endif
69 {},
70};
71
72static const unsigned long * const efi_tables[] = {
73 &efi.acpi,
74 &efi.acpi20,
75 &efi.smbios,
76 &efi.smbios3,
77 &uga_phys,
78#ifdef CONFIG_X86_UV
79 &uv_systab_phys,
80#endif
81 &efi_fw_vendor,
82 &efi_runtime,
83 &efi_config_table,
84 &efi.esrt,
85 &prop_phys,
86 &efi_mem_attr_table,
87#ifdef CONFIG_EFI_RCI2_TABLE
88 &rci2_table_phys,
89#endif
90 &efi.tpm_log,
91 &efi.tpm_final_log,
92 &efi_rng_seed,
93#ifdef CONFIG_LOAD_UEFI_KEYS
94 &efi.mokvar_table,
95#endif
96#ifdef CONFIG_EFI_COCO_SECRET
97 &efi.coco_secret,
98#endif
99#ifdef CONFIG_UNACCEPTED_MEMORY
100 &efi.unaccepted,
101#endif
102};
103
104u64 efi_setup; /* efi setup_data physical address */
105
106static int add_efi_memmap __initdata;
107static int __init setup_add_efi_memmap(char *arg)
108{
109 add_efi_memmap = 1;
110 return 0;
111}
112early_param("add_efi_memmap", setup_add_efi_memmap);
113
114/*
115 * Tell the kernel about the EFI memory map. This might include
116 * more than the max 128 entries that can fit in the passed in e820
117 * legacy (zeropage) memory map, but the kernel's e820 table can hold
118 * E820_MAX_ENTRIES.
119 */
120
121static void __init do_add_efi_memmap(void)
122{
123 efi_memory_desc_t *md;
124
125 if (!efi_enabled(EFI_MEMMAP))
126 return;
127
128 for_each_efi_memory_desc(md) {
129 unsigned long long start = md->phys_addr;
130 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
131 int e820_type;
132
133 switch (md->type) {
134 case EFI_LOADER_CODE:
135 case EFI_LOADER_DATA:
136 case EFI_BOOT_SERVICES_CODE:
137 case EFI_BOOT_SERVICES_DATA:
138 case EFI_CONVENTIONAL_MEMORY:
139 if (efi_soft_reserve_enabled()
140 && (md->attribute & EFI_MEMORY_SP))
141 e820_type = E820_TYPE_SOFT_RESERVED;
142 else if (md->attribute & EFI_MEMORY_WB)
143 e820_type = E820_TYPE_RAM;
144 else
145 e820_type = E820_TYPE_RESERVED;
146 break;
147 case EFI_ACPI_RECLAIM_MEMORY:
148 e820_type = E820_TYPE_ACPI;
149 break;
150 case EFI_ACPI_MEMORY_NVS:
151 e820_type = E820_TYPE_NVS;
152 break;
153 case EFI_UNUSABLE_MEMORY:
154 e820_type = E820_TYPE_UNUSABLE;
155 break;
156 case EFI_PERSISTENT_MEMORY:
157 e820_type = E820_TYPE_PMEM;
158 break;
159 default:
160 /*
161 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
162 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
163 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
164 */
165 e820_type = E820_TYPE_RESERVED;
166 break;
167 }
168
169 e820__range_add(start, size, e820_type);
170 }
171 e820__update_table(e820_table);
172}
173
174/*
175 * Given add_efi_memmap defaults to 0 and there is no alternative
176 * e820 mechanism for soft-reserved memory, import the full EFI memory
177 * map if soft reservations are present and enabled. Otherwise, the
178 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
179 * the efi=nosoftreserve option.
180 */
181static bool do_efi_soft_reserve(void)
182{
183 efi_memory_desc_t *md;
184
185 if (!efi_enabled(EFI_MEMMAP))
186 return false;
187
188 if (!efi_soft_reserve_enabled())
189 return false;
190
191 for_each_efi_memory_desc(md)
192 if (md->type == EFI_CONVENTIONAL_MEMORY &&
193 (md->attribute & EFI_MEMORY_SP))
194 return true;
195 return false;
196}
197
198int __init efi_memblock_x86_reserve_range(void)
199{
200 struct efi_info *e = &boot_params.efi_info;
201 struct efi_memory_map_data data;
202 phys_addr_t pmap;
203 int rv;
204
205 if (efi_enabled(EFI_PARAVIRT))
206 return 0;
207
208 /* Can't handle firmware tables above 4GB on i386 */
209 if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
210 pr_err("Memory map is above 4GB, disabling EFI.\n");
211 return -EINVAL;
212 }
213 pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
214
215 data.phys_map = pmap;
216 data.size = e->efi_memmap_size;
217 data.desc_size = e->efi_memdesc_size;
218 data.desc_version = e->efi_memdesc_version;
219
220 if (!efi_enabled(EFI_PARAVIRT)) {
221 rv = efi_memmap_init_early(&data);
222 if (rv)
223 return rv;
224 }
225
226 if (add_efi_memmap || do_efi_soft_reserve())
227 do_add_efi_memmap();
228
229 efi_fake_memmap_early();
230
231 WARN(efi.memmap.desc_version != 1,
232 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
233 efi.memmap.desc_version);
234
235 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
236 set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
237
238 return 0;
239}
240
241#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
242#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
243#define U64_HIGH_BIT (~(U64_MAX >> 1))
244
245static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
246{
247 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
248 u64 end_hi = 0;
249 char buf[64];
250
251 if (md->num_pages == 0) {
252 end = 0;
253 } else if (md->num_pages > EFI_PAGES_MAX ||
254 EFI_PAGES_MAX - md->num_pages <
255 (md->phys_addr >> EFI_PAGE_SHIFT)) {
256 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
257 >> OVERFLOW_ADDR_SHIFT;
258
259 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
260 end_hi += 1;
261 } else {
262 return true;
263 }
264
265 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
266
267 if (end_hi) {
268 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
269 i, efi_md_typeattr_format(buf, sizeof(buf), md),
270 md->phys_addr, end_hi, end);
271 } else {
272 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
273 i, efi_md_typeattr_format(buf, sizeof(buf), md),
274 md->phys_addr, end);
275 }
276 return false;
277}
278
279static void __init efi_clean_memmap(void)
280{
281 efi_memory_desc_t *out = efi.memmap.map;
282 const efi_memory_desc_t *in = out;
283 const efi_memory_desc_t *end = efi.memmap.map_end;
284 int i, n_removal;
285
286 for (i = n_removal = 0; in < end; i++) {
287 if (efi_memmap_entry_valid(in, i)) {
288 if (out != in)
289 memcpy(out, in, efi.memmap.desc_size);
290 out = (void *)out + efi.memmap.desc_size;
291 } else {
292 n_removal++;
293 }
294 in = (void *)in + efi.memmap.desc_size;
295 }
296
297 if (n_removal > 0) {
298 struct efi_memory_map_data data = {
299 .phys_map = efi.memmap.phys_map,
300 .desc_version = efi.memmap.desc_version,
301 .desc_size = efi.memmap.desc_size,
302 .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
303 .flags = 0,
304 };
305
306 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
307 efi_memmap_install(&data);
308 }
309}
310
311/*
312 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
313 * mapped by the OS so they can be accessed by EFI runtime services, but
314 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
315 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
316 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
317 * allocating space from them (see remove_e820_regions()).
318 *
319 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
320 * PCI host bridge windows, which means Linux can't allocate BAR space for
321 * hot-added devices.
322 *
323 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
324 * problem.
325 *
326 * Retain small EfiMemoryMappedIO regions because on some platforms, these
327 * describe non-window space that's included in host bridge _CRS. If we
328 * assign that space to PCI devices, they don't work.
329 */
330static void __init efi_remove_e820_mmio(void)
331{
332 efi_memory_desc_t *md;
333 u64 size, start, end;
334 int i = 0;
335
336 for_each_efi_memory_desc(md) {
337 if (md->type == EFI_MEMORY_MAPPED_IO) {
338 size = md->num_pages << EFI_PAGE_SHIFT;
339 start = md->phys_addr;
340 end = start + size - 1;
341 if (size >= 256*1024) {
342 pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
343 i, start, end, size >> 20);
344 e820__range_remove(start, size,
345 E820_TYPE_RESERVED, 1);
346 } else {
347 pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
348 i, start, end, size >> 10);
349 }
350 }
351 i++;
352 }
353}
354
355void __init efi_print_memmap(void)
356{
357 efi_memory_desc_t *md;
358 int i = 0;
359
360 for_each_efi_memory_desc(md) {
361 char buf[64];
362
363 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
364 i++, efi_md_typeattr_format(buf, sizeof(buf), md),
365 md->phys_addr,
366 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
367 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
368 }
369}
370
371static int __init efi_systab_init(unsigned long phys)
372{
373 int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
374 : sizeof(efi_system_table_32_t);
375 const efi_table_hdr_t *hdr;
376 bool over4g = false;
377 void *p;
378 int ret;
379
380 hdr = p = early_memremap_ro(phys, size);
381 if (p == NULL) {
382 pr_err("Couldn't map the system table!\n");
383 return -ENOMEM;
384 }
385
386 ret = efi_systab_check_header(hdr);
387 if (ret) {
388 early_memunmap(p, size);
389 return ret;
390 }
391
392 if (efi_enabled(EFI_64BIT)) {
393 const efi_system_table_64_t *systab64 = p;
394
395 efi_runtime = systab64->runtime;
396 over4g = systab64->runtime > U32_MAX;
397
398 if (efi_setup) {
399 struct efi_setup_data *data;
400
401 data = early_memremap_ro(efi_setup, sizeof(*data));
402 if (!data) {
403 early_memunmap(p, size);
404 return -ENOMEM;
405 }
406
407 efi_fw_vendor = (unsigned long)data->fw_vendor;
408 efi_config_table = (unsigned long)data->tables;
409
410 over4g |= data->fw_vendor > U32_MAX ||
411 data->tables > U32_MAX;
412
413 early_memunmap(data, sizeof(*data));
414 } else {
415 efi_fw_vendor = systab64->fw_vendor;
416 efi_config_table = systab64->tables;
417
418 over4g |= systab64->fw_vendor > U32_MAX ||
419 systab64->tables > U32_MAX;
420 }
421 efi_nr_tables = systab64->nr_tables;
422 } else {
423 const efi_system_table_32_t *systab32 = p;
424
425 efi_fw_vendor = systab32->fw_vendor;
426 efi_runtime = systab32->runtime;
427 efi_config_table = systab32->tables;
428 efi_nr_tables = systab32->nr_tables;
429 }
430
431 efi.runtime_version = hdr->revision;
432
433 efi_systab_report_header(hdr, efi_fw_vendor);
434 early_memunmap(p, size);
435
436 if (IS_ENABLED(CONFIG_X86_32) && over4g) {
437 pr_err("EFI data located above 4GB, disabling EFI.\n");
438 return -EINVAL;
439 }
440
441 return 0;
442}
443
444static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
445{
446 void *config_tables;
447 int sz, ret;
448
449 if (efi_nr_tables == 0)
450 return 0;
451
452 if (efi_enabled(EFI_64BIT))
453 sz = sizeof(efi_config_table_64_t);
454 else
455 sz = sizeof(efi_config_table_32_t);
456
457 /*
458 * Let's see what config tables the firmware passed to us.
459 */
460 config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
461 if (config_tables == NULL) {
462 pr_err("Could not map Configuration table!\n");
463 return -ENOMEM;
464 }
465
466 ret = efi_config_parse_tables(config_tables, efi_nr_tables,
467 arch_tables);
468
469 early_memunmap(config_tables, efi_nr_tables * sz);
470 return ret;
471}
472
473void __init efi_init(void)
474{
475 if (IS_ENABLED(CONFIG_X86_32) &&
476 (boot_params.efi_info.efi_systab_hi ||
477 boot_params.efi_info.efi_memmap_hi)) {
478 pr_info("Table located above 4GB, disabling EFI.\n");
479 return;
480 }
481
482 efi_systab_phys = boot_params.efi_info.efi_systab |
483 ((__u64)boot_params.efi_info.efi_systab_hi << 32);
484
485 if (efi_systab_init(efi_systab_phys))
486 return;
487
488 if (efi_reuse_config(efi_config_table, efi_nr_tables))
489 return;
490
491 if (efi_config_init(arch_tables))
492 return;
493
494 /*
495 * Note: We currently don't support runtime services on an EFI
496 * that doesn't match the kernel 32/64-bit mode.
497 */
498
499 if (!efi_runtime_supported())
500 pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
501
502 if (!efi_runtime_supported() || efi_runtime_disabled()) {
503 efi_memmap_unmap();
504 return;
505 }
506
507 /* Parse the EFI Properties table if it exists */
508 if (prop_phys != EFI_INVALID_TABLE_ADDR) {
509 efi_properties_table_t *tbl;
510
511 tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
512 if (tbl == NULL) {
513 pr_err("Could not map Properties table!\n");
514 } else {
515 if (tbl->memory_protection_attribute &
516 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
517 set_bit(EFI_NX_PE_DATA, &efi.flags);
518
519 early_memunmap(tbl, sizeof(*tbl));
520 }
521 }
522
523 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
524 efi_clean_memmap();
525
526 efi_remove_e820_mmio();
527
528 if (efi_enabled(EFI_DBG))
529 efi_print_memmap();
530}
531
532/* Merge contiguous regions of the same type and attribute */
533static void __init efi_merge_regions(void)
534{
535 efi_memory_desc_t *md, *prev_md = NULL;
536
537 for_each_efi_memory_desc(md) {
538 u64 prev_size;
539
540 if (!prev_md) {
541 prev_md = md;
542 continue;
543 }
544
545 if (prev_md->type != md->type ||
546 prev_md->attribute != md->attribute) {
547 prev_md = md;
548 continue;
549 }
550
551 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
552
553 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
554 prev_md->num_pages += md->num_pages;
555 md->type = EFI_RESERVED_TYPE;
556 md->attribute = 0;
557 continue;
558 }
559 prev_md = md;
560 }
561}
562
563static void *realloc_pages(void *old_memmap, int old_shift)
564{
565 void *ret;
566
567 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
568 if (!ret)
569 goto out;
570
571 /*
572 * A first-time allocation doesn't have anything to copy.
573 */
574 if (!old_memmap)
575 return ret;
576
577 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
578
579out:
580 free_pages((unsigned long)old_memmap, old_shift);
581 return ret;
582}
583
584/*
585 * Iterate the EFI memory map in reverse order because the regions
586 * will be mapped top-down. The end result is the same as if we had
587 * mapped things forward, but doesn't require us to change the
588 * existing implementation of efi_map_region().
589 */
590static inline void *efi_map_next_entry_reverse(void *entry)
591{
592 /* Initial call */
593 if (!entry)
594 return efi.memmap.map_end - efi.memmap.desc_size;
595
596 entry -= efi.memmap.desc_size;
597 if (entry < efi.memmap.map)
598 return NULL;
599
600 return entry;
601}
602
603/*
604 * efi_map_next_entry - Return the next EFI memory map descriptor
605 * @entry: Previous EFI memory map descriptor
606 *
607 * This is a helper function to iterate over the EFI memory map, which
608 * we do in different orders depending on the current configuration.
609 *
610 * To begin traversing the memory map @entry must be %NULL.
611 *
612 * Returns %NULL when we reach the end of the memory map.
613 */
614static void *efi_map_next_entry(void *entry)
615{
616 if (efi_enabled(EFI_64BIT)) {
617 /*
618 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
619 * config table feature requires us to map all entries
620 * in the same order as they appear in the EFI memory
621 * map. That is to say, entry N must have a lower
622 * virtual address than entry N+1. This is because the
623 * firmware toolchain leaves relative references in
624 * the code/data sections, which are split and become
625 * separate EFI memory regions. Mapping things
626 * out-of-order leads to the firmware accessing
627 * unmapped addresses.
628 *
629 * Since we need to map things this way whether or not
630 * the kernel actually makes use of
631 * EFI_PROPERTIES_TABLE, let's just switch to this
632 * scheme by default for 64-bit.
633 */
634 return efi_map_next_entry_reverse(entry);
635 }
636
637 /* Initial call */
638 if (!entry)
639 return efi.memmap.map;
640
641 entry += efi.memmap.desc_size;
642 if (entry >= efi.memmap.map_end)
643 return NULL;
644
645 return entry;
646}
647
648static bool should_map_region(efi_memory_desc_t *md)
649{
650 /*
651 * Runtime regions always require runtime mappings (obviously).
652 */
653 if (md->attribute & EFI_MEMORY_RUNTIME)
654 return true;
655
656 /*
657 * 32-bit EFI doesn't suffer from the bug that requires us to
658 * reserve boot services regions, and mixed mode support
659 * doesn't exist for 32-bit kernels.
660 */
661 if (IS_ENABLED(CONFIG_X86_32))
662 return false;
663
664 /*
665 * EFI specific purpose memory may be reserved by default
666 * depending on kernel config and boot options.
667 */
668 if (md->type == EFI_CONVENTIONAL_MEMORY &&
669 efi_soft_reserve_enabled() &&
670 (md->attribute & EFI_MEMORY_SP))
671 return false;
672
673 /*
674 * Map all of RAM so that we can access arguments in the 1:1
675 * mapping when making EFI runtime calls.
676 */
677 if (efi_is_mixed()) {
678 if (md->type == EFI_CONVENTIONAL_MEMORY ||
679 md->type == EFI_LOADER_DATA ||
680 md->type == EFI_LOADER_CODE)
681 return true;
682 }
683
684 /*
685 * Map boot services regions as a workaround for buggy
686 * firmware that accesses them even when they shouldn't.
687 *
688 * See efi_{reserve,free}_boot_services().
689 */
690 if (md->type == EFI_BOOT_SERVICES_CODE ||
691 md->type == EFI_BOOT_SERVICES_DATA)
692 return true;
693
694 return false;
695}
696
697/*
698 * Map the efi memory ranges of the runtime services and update new_mmap with
699 * virtual addresses.
700 */
701static void * __init efi_map_regions(int *count, int *pg_shift)
702{
703 void *p, *new_memmap = NULL;
704 unsigned long left = 0;
705 unsigned long desc_size;
706 efi_memory_desc_t *md;
707
708 desc_size = efi.memmap.desc_size;
709
710 p = NULL;
711 while ((p = efi_map_next_entry(p))) {
712 md = p;
713
714 if (!should_map_region(md))
715 continue;
716
717 efi_map_region(md);
718
719 if (left < desc_size) {
720 new_memmap = realloc_pages(new_memmap, *pg_shift);
721 if (!new_memmap)
722 return NULL;
723
724 left += PAGE_SIZE << *pg_shift;
725 (*pg_shift)++;
726 }
727
728 memcpy(new_memmap + (*count * desc_size), md, desc_size);
729
730 left -= desc_size;
731 (*count)++;
732 }
733
734 return new_memmap;
735}
736
737static void __init kexec_enter_virtual_mode(void)
738{
739#ifdef CONFIG_KEXEC_CORE
740 efi_memory_desc_t *md;
741 unsigned int num_pages;
742
743 /*
744 * We don't do virtual mode, since we don't do runtime services, on
745 * non-native EFI.
746 */
747 if (efi_is_mixed()) {
748 efi_memmap_unmap();
749 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
750 return;
751 }
752
753 if (efi_alloc_page_tables()) {
754 pr_err("Failed to allocate EFI page tables\n");
755 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
756 return;
757 }
758
759 /*
760 * Map efi regions which were passed via setup_data. The virt_addr is a
761 * fixed addr which was used in first kernel of a kexec boot.
762 */
763 for_each_efi_memory_desc(md)
764 efi_map_region_fixed(md); /* FIXME: add error handling */
765
766 /*
767 * Unregister the early EFI memmap from efi_init() and install
768 * the new EFI memory map.
769 */
770 efi_memmap_unmap();
771
772 if (efi_memmap_init_late(efi.memmap.phys_map,
773 efi.memmap.desc_size * efi.memmap.nr_map)) {
774 pr_err("Failed to remap late EFI memory map\n");
775 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
776 return;
777 }
778
779 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
780 num_pages >>= PAGE_SHIFT;
781
782 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
783 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
784 return;
785 }
786
787 efi_sync_low_kernel_mappings();
788 efi_native_runtime_setup();
789#endif
790}
791
792/*
793 * This function will switch the EFI runtime services to virtual mode.
794 * Essentially, we look through the EFI memmap and map every region that
795 * has the runtime attribute bit set in its memory descriptor into the
796 * efi_pgd page table.
797 *
798 * The new method does a pagetable switch in a preemption-safe manner
799 * so that we're in a different address space when calling a runtime
800 * function. For function arguments passing we do copy the PUDs of the
801 * kernel page table into efi_pgd prior to each call.
802 *
803 * Specially for kexec boot, efi runtime maps in previous kernel should
804 * be passed in via setup_data. In that case runtime ranges will be mapped
805 * to the same virtual addresses as the first kernel, see
806 * kexec_enter_virtual_mode().
807 */
808static void __init __efi_enter_virtual_mode(void)
809{
810 int count = 0, pg_shift = 0;
811 void *new_memmap = NULL;
812 efi_status_t status;
813 unsigned long pa;
814
815 if (efi_alloc_page_tables()) {
816 pr_err("Failed to allocate EFI page tables\n");
817 goto err;
818 }
819
820 efi_merge_regions();
821 new_memmap = efi_map_regions(&count, &pg_shift);
822 if (!new_memmap) {
823 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
824 goto err;
825 }
826
827 pa = __pa(new_memmap);
828
829 /*
830 * Unregister the early EFI memmap from efi_init() and install
831 * the new EFI memory map that we are about to pass to the
832 * firmware via SetVirtualAddressMap().
833 */
834 efi_memmap_unmap();
835
836 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
837 pr_err("Failed to remap late EFI memory map\n");
838 goto err;
839 }
840
841 if (efi_enabled(EFI_DBG)) {
842 pr_info("EFI runtime memory map:\n");
843 efi_print_memmap();
844 }
845
846 if (efi_setup_page_tables(pa, 1 << pg_shift))
847 goto err;
848
849 efi_sync_low_kernel_mappings();
850
851 status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
852 efi.memmap.desc_size,
853 efi.memmap.desc_version,
854 (efi_memory_desc_t *)pa,
855 efi_systab_phys);
856 if (status != EFI_SUCCESS) {
857 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
858 status);
859 goto err;
860 }
861
862 efi_check_for_embedded_firmwares();
863 efi_free_boot_services();
864
865 if (!efi_is_mixed())
866 efi_native_runtime_setup();
867 else
868 efi_thunk_runtime_setup();
869
870 /*
871 * Apply more restrictive page table mapping attributes now that
872 * SVAM() has been called and the firmware has performed all
873 * necessary relocation fixups for the new virtual addresses.
874 */
875 efi_runtime_update_mappings();
876
877 /* clean DUMMY object */
878 efi_delete_dummy_variable();
879 return;
880
881err:
882 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
883}
884
885void __init efi_enter_virtual_mode(void)
886{
887 if (efi_enabled(EFI_PARAVIRT))
888 return;
889
890 efi.runtime = (efi_runtime_services_t *)efi_runtime;
891
892 if (efi_setup)
893 kexec_enter_virtual_mode();
894 else
895 __efi_enter_virtual_mode();
896
897 efi_dump_pagetable();
898}
899
900bool efi_is_table_address(unsigned long phys_addr)
901{
902 unsigned int i;
903
904 if (phys_addr == EFI_INVALID_TABLE_ADDR)
905 return false;
906
907 for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
908 if (*(efi_tables[i]) == phys_addr)
909 return true;
910
911 return false;
912}
913
914char *efi_systab_show_arch(char *str)
915{
916 if (uga_phys != EFI_INVALID_TABLE_ADDR)
917 str += sprintf(str, "UGA=0x%lx\n", uga_phys);
918 return str;
919}
920
921#define EFI_FIELD(var) efi_ ## var
922
923#define EFI_ATTR_SHOW(name) \
924static ssize_t name##_show(struct kobject *kobj, \
925 struct kobj_attribute *attr, char *buf) \
926{ \
927 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
928}
929
930EFI_ATTR_SHOW(fw_vendor);
931EFI_ATTR_SHOW(runtime);
932EFI_ATTR_SHOW(config_table);
933
934struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
935struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
936struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
937
938umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
939{
940 if (attr == &efi_attr_fw_vendor.attr) {
941 if (efi_enabled(EFI_PARAVIRT) ||
942 efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
943 return 0;
944 } else if (attr == &efi_attr_runtime.attr) {
945 if (efi_runtime == EFI_INVALID_TABLE_ADDR)
946 return 0;
947 } else if (attr == &efi_attr_config_table.attr) {
948 if (efi_config_table == EFI_INVALID_TABLE_ADDR)
949 return 0;
950 }
951 return attr->mode;
952}
953
954enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
955{
956 return boot_params.secure_boot;
957}