Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI (Extensible Firmware Interface) support functions
  4 * Based on Extensible Firmware Interface Specification version 1.0
  5 *
  6 * Copyright (C) 1999 VA Linux Systems
  7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *	Stephane Eranian <eranian@hpl.hp.com>
 11 * Copyright (C) 2005-2008 Intel Co.
 12 *	Fenghua Yu <fenghua.yu@intel.com>
 13 *	Bibo Mao <bibo.mao@intel.com>
 14 *	Chandramouli Narayanan <mouli@linux.intel.com>
 15 *	Huang Ying <ying.huang@intel.com>
 16 * Copyright (C) 2013 SuSE Labs
 17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
 18 *
 19 * Copied from efi_32.c to eliminate the duplicated code between EFI
 20 * 32/64 support code. --ying 2007-10-26
 21 *
 22 * All EFI Runtime Services are not implemented yet as EFI only
 23 * supports physical mode addressing on SoftSDV. This is to be fixed
 24 * in a future version.  --drummond 1999-07-20
 25 *
 26 * Implemented EFI runtime services and virtual mode calls.  --davidm
 27 *
 28 * Goutham Rao: <goutham.rao@intel.com>
 29 *	Skip non-WB memory and ignore empty memory ranges.
 30 */
 31
 32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/efi.h>
 37#include <linux/efi-bgrt.h>
 38#include <linux/export.h>
 39#include <linux/memblock.h>
 40#include <linux/slab.h>
 
 41#include <linux/spinlock.h>
 42#include <linux/uaccess.h>
 43#include <linux/time.h>
 44#include <linux/io.h>
 45#include <linux/reboot.h>
 46#include <linux/bcd.h>
 47
 48#include <asm/setup.h>
 49#include <asm/efi.h>
 50#include <asm/e820/api.h>
 51#include <asm/time.h>
 
 52#include <asm/tlbflush.h>
 53#include <asm/x86_init.h>
 54#include <asm/uv/uv.h>
 55
 56static unsigned long efi_systab_phys __initdata;
 57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
 58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
 59static unsigned long efi_runtime, efi_nr_tables;
 60
 61unsigned long efi_fw_vendor, efi_config_table;
 62
 63static const efi_config_table_type_t arch_tables[] __initconst = {
 64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
 65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
 66#ifdef CONFIG_X86_UV
 67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
 68#endif
 69	{},
 70};
 71
 72static const unsigned long * const efi_tables[] = {
 73	&efi.acpi,
 74	&efi.acpi20,
 75	&efi.smbios,
 76	&efi.smbios3,
 77	&uga_phys,
 78#ifdef CONFIG_X86_UV
 79	&uv_systab_phys,
 80#endif
 81	&efi_fw_vendor,
 82	&efi_runtime,
 83	&efi_config_table,
 84	&efi.esrt,
 85	&prop_phys,
 86	&efi_mem_attr_table,
 87#ifdef CONFIG_EFI_RCI2_TABLE
 88	&rci2_table_phys,
 89#endif
 90	&efi.tpm_log,
 91	&efi.tpm_final_log,
 92	&efi_rng_seed,
 93#ifdef CONFIG_LOAD_UEFI_KEYS
 94	&efi.mokvar_table,
 95#endif
 96#ifdef CONFIG_EFI_COCO_SECRET
 97	&efi.coco_secret,
 98#endif
 
 99};
100
101u64 efi_setup;		/* efi setup_data physical address */
102
103static int add_efi_memmap __initdata;
104static int __init setup_add_efi_memmap(char *arg)
105{
106	add_efi_memmap = 1;
107	return 0;
108}
109early_param("add_efi_memmap", setup_add_efi_memmap);
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111/*
112 * Tell the kernel about the EFI memory map.  This might include
113 * more than the max 128 entries that can fit in the passed in e820
114 * legacy (zeropage) memory map, but the kernel's e820 table can hold
115 * E820_MAX_ENTRIES.
116 */
117
118static void __init do_add_efi_memmap(void)
119{
120	efi_memory_desc_t *md;
121
122	if (!efi_enabled(EFI_MEMMAP))
123		return;
124
125	for_each_efi_memory_desc(md) {
126		unsigned long long start = md->phys_addr;
127		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128		int e820_type;
129
130		switch (md->type) {
131		case EFI_LOADER_CODE:
132		case EFI_LOADER_DATA:
133		case EFI_BOOT_SERVICES_CODE:
134		case EFI_BOOT_SERVICES_DATA:
135		case EFI_CONVENTIONAL_MEMORY:
136			if (efi_soft_reserve_enabled()
137			    && (md->attribute & EFI_MEMORY_SP))
138				e820_type = E820_TYPE_SOFT_RESERVED;
139			else if (md->attribute & EFI_MEMORY_WB)
140				e820_type = E820_TYPE_RAM;
141			else
142				e820_type = E820_TYPE_RESERVED;
143			break;
144		case EFI_ACPI_RECLAIM_MEMORY:
145			e820_type = E820_TYPE_ACPI;
146			break;
147		case EFI_ACPI_MEMORY_NVS:
148			e820_type = E820_TYPE_NVS;
149			break;
150		case EFI_UNUSABLE_MEMORY:
151			e820_type = E820_TYPE_UNUSABLE;
152			break;
153		case EFI_PERSISTENT_MEMORY:
154			e820_type = E820_TYPE_PMEM;
155			break;
156		default:
157			/*
158			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
159			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
160			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
161			 */
162			e820_type = E820_TYPE_RESERVED;
163			break;
164		}
165
166		e820__range_add(start, size, e820_type);
167	}
168	e820__update_table(e820_table);
169}
170
171/*
172 * Given add_efi_memmap defaults to 0 and there is no alternative
173 * e820 mechanism for soft-reserved memory, import the full EFI memory
174 * map if soft reservations are present and enabled. Otherwise, the
175 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
176 * the efi=nosoftreserve option.
177 */
178static bool do_efi_soft_reserve(void)
179{
180	efi_memory_desc_t *md;
181
182	if (!efi_enabled(EFI_MEMMAP))
183		return false;
184
185	if (!efi_soft_reserve_enabled())
186		return false;
187
188	for_each_efi_memory_desc(md)
189		if (md->type == EFI_CONVENTIONAL_MEMORY &&
190		    (md->attribute & EFI_MEMORY_SP))
191			return true;
192	return false;
193}
194
195int __init efi_memblock_x86_reserve_range(void)
196{
197	struct efi_info *e = &boot_params.efi_info;
198	struct efi_memory_map_data data;
199	phys_addr_t pmap;
200	int rv;
201
202	if (efi_enabled(EFI_PARAVIRT))
203		return 0;
204
205	/* Can't handle firmware tables above 4GB on i386 */
206	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
 
207		pr_err("Memory map is above 4GB, disabling EFI.\n");
208		return -EINVAL;
209	}
210	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
211
 
 
212	data.phys_map		= pmap;
213	data.size 		= e->efi_memmap_size;
214	data.desc_size		= e->efi_memdesc_size;
215	data.desc_version	= e->efi_memdesc_version;
216
217	if (!efi_enabled(EFI_PARAVIRT)) {
218		rv = efi_memmap_init_early(&data);
219		if (rv)
220			return rv;
221	}
222
223	if (add_efi_memmap || do_efi_soft_reserve())
224		do_add_efi_memmap();
225
226	efi_fake_memmap_early();
227
228	WARN(efi.memmap.desc_version != 1,
229	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
230	     efi.memmap.desc_version);
231
232	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
233	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
234
235	return 0;
236}
237
238#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
239#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
240#define U64_HIGH_BIT		(~(U64_MAX >> 1))
241
242static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
243{
244	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
245	u64 end_hi = 0;
246	char buf[64];
247
248	if (md->num_pages == 0) {
249		end = 0;
250	} else if (md->num_pages > EFI_PAGES_MAX ||
251		   EFI_PAGES_MAX - md->num_pages <
252		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
253		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
254			>> OVERFLOW_ADDR_SHIFT;
255
256		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
257			end_hi += 1;
258	} else {
259		return true;
260	}
261
262	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
263
264	if (end_hi) {
265		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
266			i, efi_md_typeattr_format(buf, sizeof(buf), md),
267			md->phys_addr, end_hi, end);
268	} else {
269		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
270			i, efi_md_typeattr_format(buf, sizeof(buf), md),
271			md->phys_addr, end);
272	}
273	return false;
274}
275
276static void __init efi_clean_memmap(void)
277{
278	efi_memory_desc_t *out = efi.memmap.map;
279	const efi_memory_desc_t *in = out;
280	const efi_memory_desc_t *end = efi.memmap.map_end;
281	int i, n_removal;
282
283	for (i = n_removal = 0; in < end; i++) {
284		if (efi_memmap_entry_valid(in, i)) {
285			if (out != in)
286				memcpy(out, in, efi.memmap.desc_size);
287			out = (void *)out + efi.memmap.desc_size;
288		} else {
289			n_removal++;
290		}
291		in = (void *)in + efi.memmap.desc_size;
292	}
293
294	if (n_removal > 0) {
295		struct efi_memory_map_data data = {
296			.phys_map	= efi.memmap.phys_map,
297			.desc_version	= efi.memmap.desc_version,
298			.desc_size	= efi.memmap.desc_size,
299			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
300			.flags		= 0,
301		};
302
303		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
304		efi_memmap_install(&data);
305	}
306}
307
308/*
309 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
310 * mapped by the OS so they can be accessed by EFI runtime services, but
311 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
312 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
313 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
314 * allocating space from them (see remove_e820_regions()).
315 *
316 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
317 * PCI host bridge windows, which means Linux can't allocate BAR space for
318 * hot-added devices.
319 *
320 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
321 * problem.
322 *
323 * Retain small EfiMemoryMappedIO regions because on some platforms, these
324 * describe non-window space that's included in host bridge _CRS.  If we
325 * assign that space to PCI devices, they don't work.
326 */
327static void __init efi_remove_e820_mmio(void)
328{
329	efi_memory_desc_t *md;
330	u64 size, start, end;
331	int i = 0;
332
333	for_each_efi_memory_desc(md) {
334		if (md->type == EFI_MEMORY_MAPPED_IO) {
335			size = md->num_pages << EFI_PAGE_SHIFT;
336			start = md->phys_addr;
337			end = start + size - 1;
338			if (size >= 256*1024) {
339				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
340					i, start, end, size >> 20);
341				e820__range_remove(start, size,
342						   E820_TYPE_RESERVED, 1);
343			} else {
344				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
345					i, start, end, size >> 10);
346			}
347		}
348		i++;
349	}
350}
351
352void __init efi_print_memmap(void)
353{
354	efi_memory_desc_t *md;
355	int i = 0;
356
357	for_each_efi_memory_desc(md) {
358		char buf[64];
359
360		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
361			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
362			md->phys_addr,
363			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
364			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
365	}
366}
367
368static int __init efi_systab_init(unsigned long phys)
369{
370	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
371					  : sizeof(efi_system_table_32_t);
372	const efi_table_hdr_t *hdr;
373	bool over4g = false;
374	void *p;
375	int ret;
376
377	hdr = p = early_memremap_ro(phys, size);
378	if (p == NULL) {
379		pr_err("Couldn't map the system table!\n");
380		return -ENOMEM;
381	}
382
383	ret = efi_systab_check_header(hdr, 1);
384	if (ret) {
385		early_memunmap(p, size);
386		return ret;
387	}
388
389	if (efi_enabled(EFI_64BIT)) {
390		const efi_system_table_64_t *systab64 = p;
391
392		efi_runtime	= systab64->runtime;
393		over4g		= systab64->runtime > U32_MAX;
394
395		if (efi_setup) {
396			struct efi_setup_data *data;
397
398			data = early_memremap_ro(efi_setup, sizeof(*data));
399			if (!data) {
400				early_memunmap(p, size);
401				return -ENOMEM;
402			}
403
404			efi_fw_vendor		= (unsigned long)data->fw_vendor;
405			efi_config_table	= (unsigned long)data->tables;
 
 
 
 
 
406
407			over4g |= data->fw_vendor	> U32_MAX ||
408				  data->tables		> U32_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409
 
 
410			early_memunmap(data, sizeof(*data));
411		} else {
412			efi_fw_vendor		= systab64->fw_vendor;
413			efi_config_table	= systab64->tables;
414
415			over4g |= systab64->fw_vendor	> U32_MAX ||
416				  systab64->tables	> U32_MAX;
417		}
418		efi_nr_tables = systab64->nr_tables;
419	} else {
420		const efi_system_table_32_t *systab32 = p;
421
422		efi_fw_vendor		= systab32->fw_vendor;
423		efi_runtime		= systab32->runtime;
424		efi_config_table	= systab32->tables;
425		efi_nr_tables		= systab32->nr_tables;
426	}
 
427
428	efi.runtime_version = hdr->revision;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429
430	efi_systab_report_header(hdr, efi_fw_vendor);
431	early_memunmap(p, size);
432
433	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
434		pr_err("EFI data located above 4GB, disabling EFI.\n");
 
 
 
435		return -EINVAL;
436	}
 
 
 
 
437
438	return 0;
439}
440
441static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
442{
443	void *config_tables;
444	int sz, ret;
445
446	if (efi_nr_tables == 0)
447		return 0;
 
 
 
 
448
449	if (efi_enabled(EFI_64BIT))
450		sz = sizeof(efi_config_table_64_t);
451	else
452		sz = sizeof(efi_config_table_32_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453
454	/*
455	 * Let's see what config tables the firmware passed to us.
 
 
 
 
 
 
 
 
 
 
456	 */
457	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
458	if (config_tables == NULL) {
459		pr_err("Could not map Configuration table!\n");
460		return -ENOMEM;
 
 
 
 
 
461	}
462
463	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
464				      arch_tables);
465
466	early_memunmap(config_tables, efi_nr_tables * sz);
467	return ret;
468}
469
470void __init efi_init(void)
471{
472	if (IS_ENABLED(CONFIG_X86_32) &&
473	    (boot_params.efi_info.efi_systab_hi ||
474	     boot_params.efi_info.efi_memmap_hi)) {
 
 
 
 
 
475		pr_info("Table located above 4GB, disabling EFI.\n");
476		return;
477	}
 
 
 
 
 
 
478
479	efi_systab_phys = boot_params.efi_info.efi_systab |
480			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
481
482	if (efi_systab_init(efi_systab_phys))
483		return;
484
485	if (efi_reuse_config(efi_config_table, efi_nr_tables))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486		return;
487
488	if (efi_config_init(arch_tables))
489		return;
490
491	/*
492	 * Note: We currently don't support runtime services on an EFI
493	 * that doesn't match the kernel 32/64-bit mode.
494	 */
495
496	if (!efi_runtime_supported())
497		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
498
499	if (!efi_runtime_supported() || efi_runtime_disabled()) {
500		efi_memmap_unmap();
501		return;
502	}
503
504	/* Parse the EFI Properties table if it exists */
505	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
506		efi_properties_table_t *tbl;
507
508		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
509		if (tbl == NULL) {
510			pr_err("Could not map Properties table!\n");
511		} else {
512			if (tbl->memory_protection_attribute &
513			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
514				set_bit(EFI_NX_PE_DATA, &efi.flags);
515
516			early_memunmap(tbl, sizeof(*tbl));
517		}
518	}
519
520	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
521	efi_clean_memmap();
522
523	efi_remove_e820_mmio();
524
525	if (efi_enabled(EFI_DBG))
526		efi_print_memmap();
527}
528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529/* Merge contiguous regions of the same type and attribute */
530static void __init efi_merge_regions(void)
531{
532	efi_memory_desc_t *md, *prev_md = NULL;
533
534	for_each_efi_memory_desc(md) {
535		u64 prev_size;
536
537		if (!prev_md) {
538			prev_md = md;
539			continue;
540		}
541
542		if (prev_md->type != md->type ||
543		    prev_md->attribute != md->attribute) {
544			prev_md = md;
545			continue;
546		}
547
548		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
549
550		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
551			prev_md->num_pages += md->num_pages;
552			md->type = EFI_RESERVED_TYPE;
553			md->attribute = 0;
554			continue;
555		}
556		prev_md = md;
557	}
558}
559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560static void *realloc_pages(void *old_memmap, int old_shift)
561{
562	void *ret;
563
564	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
565	if (!ret)
566		goto out;
567
568	/*
569	 * A first-time allocation doesn't have anything to copy.
570	 */
571	if (!old_memmap)
572		return ret;
573
574	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
575
576out:
577	free_pages((unsigned long)old_memmap, old_shift);
578	return ret;
579}
580
581/*
582 * Iterate the EFI memory map in reverse order because the regions
583 * will be mapped top-down. The end result is the same as if we had
584 * mapped things forward, but doesn't require us to change the
585 * existing implementation of efi_map_region().
586 */
587static inline void *efi_map_next_entry_reverse(void *entry)
588{
589	/* Initial call */
590	if (!entry)
591		return efi.memmap.map_end - efi.memmap.desc_size;
592
593	entry -= efi.memmap.desc_size;
594	if (entry < efi.memmap.map)
595		return NULL;
596
597	return entry;
598}
599
600/*
601 * efi_map_next_entry - Return the next EFI memory map descriptor
602 * @entry: Previous EFI memory map descriptor
603 *
604 * This is a helper function to iterate over the EFI memory map, which
605 * we do in different orders depending on the current configuration.
606 *
607 * To begin traversing the memory map @entry must be %NULL.
608 *
609 * Returns %NULL when we reach the end of the memory map.
610 */
611static void *efi_map_next_entry(void *entry)
612{
613	if (efi_enabled(EFI_64BIT)) {
614		/*
615		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
616		 * config table feature requires us to map all entries
617		 * in the same order as they appear in the EFI memory
618		 * map. That is to say, entry N must have a lower
619		 * virtual address than entry N+1. This is because the
620		 * firmware toolchain leaves relative references in
621		 * the code/data sections, which are split and become
622		 * separate EFI memory regions. Mapping things
623		 * out-of-order leads to the firmware accessing
624		 * unmapped addresses.
625		 *
626		 * Since we need to map things this way whether or not
627		 * the kernel actually makes use of
628		 * EFI_PROPERTIES_TABLE, let's just switch to this
629		 * scheme by default for 64-bit.
630		 */
631		return efi_map_next_entry_reverse(entry);
632	}
633
634	/* Initial call */
635	if (!entry)
636		return efi.memmap.map;
637
638	entry += efi.memmap.desc_size;
639	if (entry >= efi.memmap.map_end)
640		return NULL;
641
642	return entry;
643}
644
645static bool should_map_region(efi_memory_desc_t *md)
646{
647	/*
648	 * Runtime regions always require runtime mappings (obviously).
649	 */
650	if (md->attribute & EFI_MEMORY_RUNTIME)
651		return true;
652
653	/*
654	 * 32-bit EFI doesn't suffer from the bug that requires us to
655	 * reserve boot services regions, and mixed mode support
656	 * doesn't exist for 32-bit kernels.
657	 */
658	if (IS_ENABLED(CONFIG_X86_32))
659		return false;
660
661	/*
662	 * EFI specific purpose memory may be reserved by default
663	 * depending on kernel config and boot options.
664	 */
665	if (md->type == EFI_CONVENTIONAL_MEMORY &&
666	    efi_soft_reserve_enabled() &&
667	    (md->attribute & EFI_MEMORY_SP))
668		return false;
669
670	/*
671	 * Map all of RAM so that we can access arguments in the 1:1
672	 * mapping when making EFI runtime calls.
673	 */
674	if (efi_is_mixed()) {
675		if (md->type == EFI_CONVENTIONAL_MEMORY ||
676		    md->type == EFI_LOADER_DATA ||
677		    md->type == EFI_LOADER_CODE)
678			return true;
679	}
680
681	/*
682	 * Map boot services regions as a workaround for buggy
683	 * firmware that accesses them even when they shouldn't.
684	 *
685	 * See efi_{reserve,free}_boot_services().
686	 */
687	if (md->type == EFI_BOOT_SERVICES_CODE ||
688	    md->type == EFI_BOOT_SERVICES_DATA)
689		return true;
690
691	return false;
692}
693
694/*
695 * Map the efi memory ranges of the runtime services and update new_mmap with
696 * virtual addresses.
697 */
698static void * __init efi_map_regions(int *count, int *pg_shift)
699{
700	void *p, *new_memmap = NULL;
701	unsigned long left = 0;
702	unsigned long desc_size;
703	efi_memory_desc_t *md;
704
705	desc_size = efi.memmap.desc_size;
706
707	p = NULL;
708	while ((p = efi_map_next_entry(p))) {
709		md = p;
710
711		if (!should_map_region(md))
712			continue;
713
714		efi_map_region(md);
 
715
716		if (left < desc_size) {
717			new_memmap = realloc_pages(new_memmap, *pg_shift);
718			if (!new_memmap)
719				return NULL;
720
721			left += PAGE_SIZE << *pg_shift;
722			(*pg_shift)++;
723		}
724
725		memcpy(new_memmap + (*count * desc_size), md, desc_size);
726
727		left -= desc_size;
728		(*count)++;
729	}
730
731	return new_memmap;
732}
733
734static void __init kexec_enter_virtual_mode(void)
735{
736#ifdef CONFIG_KEXEC_CORE
737	efi_memory_desc_t *md;
738	unsigned int num_pages;
739
 
 
740	/*
741	 * We don't do virtual mode, since we don't do runtime services, on
742	 * non-native EFI.
 
 
743	 */
744	if (efi_is_mixed()) {
745		efi_memmap_unmap();
746		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
747		return;
748	}
749
750	if (efi_alloc_page_tables()) {
751		pr_err("Failed to allocate EFI page tables\n");
752		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
753		return;
754	}
755
756	/*
757	* Map efi regions which were passed via setup_data. The virt_addr is a
758	* fixed addr which was used in first kernel of a kexec boot.
759	*/
760	for_each_efi_memory_desc(md)
761		efi_map_region_fixed(md); /* FIXME: add error handling */
 
 
762
763	/*
764	 * Unregister the early EFI memmap from efi_init() and install
765	 * the new EFI memory map.
766	 */
767	efi_memmap_unmap();
768
769	if (efi_memmap_init_late(efi.memmap.phys_map,
770				 efi.memmap.desc_size * efi.memmap.nr_map)) {
771		pr_err("Failed to remap late EFI memory map\n");
772		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
773		return;
774	}
775
 
 
776	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
777	num_pages >>= PAGE_SHIFT;
778
779	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
780		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
781		return;
782	}
783
784	efi_sync_low_kernel_mappings();
 
 
 
 
 
 
 
 
 
785	efi_native_runtime_setup();
 
 
 
 
 
 
 
 
786#endif
787}
788
789/*
790 * This function will switch the EFI runtime services to virtual mode.
791 * Essentially, we look through the EFI memmap and map every region that
792 * has the runtime attribute bit set in its memory descriptor into the
793 * efi_pgd page table.
794 *
 
 
 
 
 
 
795 * The new method does a pagetable switch in a preemption-safe manner
796 * so that we're in a different address space when calling a runtime
797 * function. For function arguments passing we do copy the PUDs of the
798 * kernel page table into efi_pgd prior to each call.
799 *
800 * Specially for kexec boot, efi runtime maps in previous kernel should
801 * be passed in via setup_data. In that case runtime ranges will be mapped
802 * to the same virtual addresses as the first kernel, see
803 * kexec_enter_virtual_mode().
804 */
805static void __init __efi_enter_virtual_mode(void)
806{
807	int count = 0, pg_shift = 0;
808	void *new_memmap = NULL;
809	efi_status_t status;
810	unsigned long pa;
811
 
 
812	if (efi_alloc_page_tables()) {
813		pr_err("Failed to allocate EFI page tables\n");
814		goto err;
 
815	}
816
817	efi_merge_regions();
818	new_memmap = efi_map_regions(&count, &pg_shift);
819	if (!new_memmap) {
820		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
821		goto err;
 
822	}
823
824	pa = __pa(new_memmap);
825
826	/*
827	 * Unregister the early EFI memmap from efi_init() and install
828	 * the new EFI memory map that we are about to pass to the
829	 * firmware via SetVirtualAddressMap().
830	 */
831	efi_memmap_unmap();
832
833	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
834		pr_err("Failed to remap late EFI memory map\n");
835		goto err;
 
836	}
837
838	if (efi_enabled(EFI_DBG)) {
839		pr_info("EFI runtime memory map:\n");
840		efi_print_memmap();
841	}
842
843	if (efi_setup_page_tables(pa, 1 << pg_shift))
844		goto err;
 
 
 
 
845
846	efi_sync_low_kernel_mappings();
847
848	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
849					     efi.memmap.desc_size,
850					     efi.memmap.desc_version,
851					     (efi_memory_desc_t *)pa,
852					     efi_systab_phys);
 
 
 
 
 
 
 
 
 
 
853	if (status != EFI_SUCCESS) {
854		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
855		       status);
856		goto err;
857	}
858
859	efi_check_for_embedded_firmwares();
860	efi_free_boot_services();
 
 
 
 
 
861
862	if (!efi_is_mixed())
863		efi_native_runtime_setup();
864	else
865		efi_thunk_runtime_setup();
866
 
 
867	/*
868	 * Apply more restrictive page table mapping attributes now that
869	 * SVAM() has been called and the firmware has performed all
870	 * necessary relocation fixups for the new virtual addresses.
871	 */
872	efi_runtime_update_mappings();
873
874	/* clean DUMMY object */
875	efi_delete_dummy_variable();
876	return;
877
878err:
879	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880}
881
882void __init efi_enter_virtual_mode(void)
883{
884	if (efi_enabled(EFI_PARAVIRT))
885		return;
886
887	efi.runtime = (efi_runtime_services_t *)efi_runtime;
888
889	if (efi_setup)
890		kexec_enter_virtual_mode();
891	else
892		__efi_enter_virtual_mode();
893
894	efi_dump_pagetable();
895}
896
897bool efi_is_table_address(unsigned long phys_addr)
898{
899	unsigned int i;
900
901	if (phys_addr == EFI_INVALID_TABLE_ADDR)
902		return false;
903
904	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
905		if (*(efi_tables[i]) == phys_addr)
906			return true;
907
908	return false;
909}
910
911char *efi_systab_show_arch(char *str)
912{
913	if (uga_phys != EFI_INVALID_TABLE_ADDR)
914		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
915	return str;
916}
917
918#define EFI_FIELD(var) efi_ ## var
919
920#define EFI_ATTR_SHOW(name) \
921static ssize_t name##_show(struct kobject *kobj, \
922				struct kobj_attribute *attr, char *buf) \
923{ \
924	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
925}
926
927EFI_ATTR_SHOW(fw_vendor);
928EFI_ATTR_SHOW(runtime);
929EFI_ATTR_SHOW(config_table);
930
931struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
932struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
933struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
934
935umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
936{
937	if (attr == &efi_attr_fw_vendor.attr) {
938		if (efi_enabled(EFI_PARAVIRT) ||
939				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
940			return 0;
941	} else if (attr == &efi_attr_runtime.attr) {
942		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
943			return 0;
944	} else if (attr == &efi_attr_config_table.attr) {
945		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
946			return 0;
947	}
948	return attr->mode;
949}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Common EFI (Extensible Firmware Interface) support functions
   4 * Based on Extensible Firmware Interface Specification version 1.0
   5 *
   6 * Copyright (C) 1999 VA Linux Systems
   7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *	Stephane Eranian <eranian@hpl.hp.com>
  11 * Copyright (C) 2005-2008 Intel Co.
  12 *	Fenghua Yu <fenghua.yu@intel.com>
  13 *	Bibo Mao <bibo.mao@intel.com>
  14 *	Chandramouli Narayanan <mouli@linux.intel.com>
  15 *	Huang Ying <ying.huang@intel.com>
  16 * Copyright (C) 2013 SuSE Labs
  17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
  18 *
  19 * Copied from efi_32.c to eliminate the duplicated code between EFI
  20 * 32/64 support code. --ying 2007-10-26
  21 *
  22 * All EFI Runtime Services are not implemented yet as EFI only
  23 * supports physical mode addressing on SoftSDV. This is to be fixed
  24 * in a future version.  --drummond 1999-07-20
  25 *
  26 * Implemented EFI runtime services and virtual mode calls.  --davidm
  27 *
  28 * Goutham Rao: <goutham.rao@intel.com>
  29 *	Skip non-WB memory and ignore empty memory ranges.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/efi.h>
  37#include <linux/efi-bgrt.h>
  38#include <linux/export.h>
  39#include <linux/bootmem.h>
  40#include <linux/slab.h>
  41#include <linux/memblock.h>
  42#include <linux/spinlock.h>
  43#include <linux/uaccess.h>
  44#include <linux/time.h>
  45#include <linux/io.h>
  46#include <linux/reboot.h>
  47#include <linux/bcd.h>
  48
  49#include <asm/setup.h>
  50#include <asm/efi.h>
  51#include <asm/e820/api.h>
  52#include <asm/time.h>
  53#include <asm/set_memory.h>
  54#include <asm/tlbflush.h>
  55#include <asm/x86_init.h>
  56#include <asm/uv/uv.h>
  57
  58static struct efi efi_phys __initdata;
  59static efi_system_table_t efi_systab __initdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61static efi_config_table_type_t arch_tables[] __initdata = {
 
 
 
 
 
  62#ifdef CONFIG_X86_UV
  63	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64#endif
  65	{NULL_GUID, NULL, NULL},
  66};
  67
  68u64 efi_setup;		/* efi setup_data physical address */
  69
  70static int add_efi_memmap __initdata;
  71static int __init setup_add_efi_memmap(char *arg)
  72{
  73	add_efi_memmap = 1;
  74	return 0;
  75}
  76early_param("add_efi_memmap", setup_add_efi_memmap);
  77
  78static efi_status_t __init phys_efi_set_virtual_address_map(
  79	unsigned long memory_map_size,
  80	unsigned long descriptor_size,
  81	u32 descriptor_version,
  82	efi_memory_desc_t *virtual_map)
  83{
  84	efi_status_t status;
  85	unsigned long flags;
  86	pgd_t *save_pgd;
  87
  88	save_pgd = efi_call_phys_prolog();
  89
  90	/* Disable interrupts around EFI calls: */
  91	local_irq_save(flags);
  92	status = efi_call_phys(efi_phys.set_virtual_address_map,
  93			       memory_map_size, descriptor_size,
  94			       descriptor_version, virtual_map);
  95	local_irq_restore(flags);
  96
  97	efi_call_phys_epilog(save_pgd);
  98
  99	return status;
 100}
 101
 102void __init efi_find_mirror(void)
 103{
 104	efi_memory_desc_t *md;
 105	u64 mirror_size = 0, total_size = 0;
 106
 107	for_each_efi_memory_desc(md) {
 108		unsigned long long start = md->phys_addr;
 109		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 110
 111		total_size += size;
 112		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 113			memblock_mark_mirror(start, size);
 114			mirror_size += size;
 115		}
 116	}
 117	if (mirror_size)
 118		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 119			mirror_size>>20, total_size>>20);
 120}
 121
 122/*
 123 * Tell the kernel about the EFI memory map.  This might include
 124 * more than the max 128 entries that can fit in the e820 legacy
 125 * (zeropage) memory map.
 
 126 */
 127
 128static void __init do_add_efi_memmap(void)
 129{
 130	efi_memory_desc_t *md;
 131
 
 
 
 132	for_each_efi_memory_desc(md) {
 133		unsigned long long start = md->phys_addr;
 134		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 135		int e820_type;
 136
 137		switch (md->type) {
 138		case EFI_LOADER_CODE:
 139		case EFI_LOADER_DATA:
 140		case EFI_BOOT_SERVICES_CODE:
 141		case EFI_BOOT_SERVICES_DATA:
 142		case EFI_CONVENTIONAL_MEMORY:
 143			if (md->attribute & EFI_MEMORY_WB)
 
 
 
 144				e820_type = E820_TYPE_RAM;
 145			else
 146				e820_type = E820_TYPE_RESERVED;
 147			break;
 148		case EFI_ACPI_RECLAIM_MEMORY:
 149			e820_type = E820_TYPE_ACPI;
 150			break;
 151		case EFI_ACPI_MEMORY_NVS:
 152			e820_type = E820_TYPE_NVS;
 153			break;
 154		case EFI_UNUSABLE_MEMORY:
 155			e820_type = E820_TYPE_UNUSABLE;
 156			break;
 157		case EFI_PERSISTENT_MEMORY:
 158			e820_type = E820_TYPE_PMEM;
 159			break;
 160		default:
 161			/*
 162			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
 163			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
 164			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
 165			 */
 166			e820_type = E820_TYPE_RESERVED;
 167			break;
 168		}
 
 169		e820__range_add(start, size, e820_type);
 170	}
 171	e820__update_table(e820_table);
 172}
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174int __init efi_memblock_x86_reserve_range(void)
 175{
 176	struct efi_info *e = &boot_params.efi_info;
 177	struct efi_memory_map_data data;
 178	phys_addr_t pmap;
 179	int rv;
 180
 181	if (efi_enabled(EFI_PARAVIRT))
 182		return 0;
 183
 184#ifdef CONFIG_X86_32
 185	/* Can't handle data above 4GB at this time */
 186	if (e->efi_memmap_hi) {
 187		pr_err("Memory map is above 4GB, disabling EFI.\n");
 188		return -EINVAL;
 189	}
 190	pmap =  e->efi_memmap;
 191#else
 192	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
 193#endif
 194	data.phys_map		= pmap;
 195	data.size 		= e->efi_memmap_size;
 196	data.desc_size		= e->efi_memdesc_size;
 197	data.desc_version	= e->efi_memdesc_version;
 198
 199	rv = efi_memmap_init_early(&data);
 200	if (rv)
 201		return rv;
 
 
 202
 203	if (add_efi_memmap)
 204		do_add_efi_memmap();
 205
 
 
 206	WARN(efi.memmap.desc_version != 1,
 207	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
 208	     efi.memmap.desc_version);
 209
 210	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
 
 211
 212	return 0;
 213}
 214
 215#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
 216#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
 217#define U64_HIGH_BIT		(~(U64_MAX >> 1))
 218
 219static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
 220{
 221	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
 222	u64 end_hi = 0;
 223	char buf[64];
 224
 225	if (md->num_pages == 0) {
 226		end = 0;
 227	} else if (md->num_pages > EFI_PAGES_MAX ||
 228		   EFI_PAGES_MAX - md->num_pages <
 229		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
 230		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
 231			>> OVERFLOW_ADDR_SHIFT;
 232
 233		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
 234			end_hi += 1;
 235	} else {
 236		return true;
 237	}
 238
 239	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
 240
 241	if (end_hi) {
 242		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
 243			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 244			md->phys_addr, end_hi, end);
 245	} else {
 246		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
 247			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 248			md->phys_addr, end);
 249	}
 250	return false;
 251}
 252
 253static void __init efi_clean_memmap(void)
 254{
 255	efi_memory_desc_t *out = efi.memmap.map;
 256	const efi_memory_desc_t *in = out;
 257	const efi_memory_desc_t *end = efi.memmap.map_end;
 258	int i, n_removal;
 259
 260	for (i = n_removal = 0; in < end; i++) {
 261		if (efi_memmap_entry_valid(in, i)) {
 262			if (out != in)
 263				memcpy(out, in, efi.memmap.desc_size);
 264			out = (void *)out + efi.memmap.desc_size;
 265		} else {
 266			n_removal++;
 267		}
 268		in = (void *)in + efi.memmap.desc_size;
 269	}
 270
 271	if (n_removal > 0) {
 272		u64 size = efi.memmap.nr_map - n_removal;
 
 
 
 
 
 
 273
 274		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
 275		efi_memmap_install(efi.memmap.phys_map, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276	}
 277}
 278
 279void __init efi_print_memmap(void)
 280{
 281	efi_memory_desc_t *md;
 282	int i = 0;
 283
 284	for_each_efi_memory_desc(md) {
 285		char buf[64];
 286
 287		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
 288			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
 289			md->phys_addr,
 290			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
 291			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 292	}
 293}
 294
 295static int __init efi_systab_init(void *phys)
 296{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297	if (efi_enabled(EFI_64BIT)) {
 298		efi_system_table_64_t *systab64;
 299		struct efi_setup_data *data = NULL;
 300		u64 tmp = 0;
 
 301
 302		if (efi_setup) {
 303			data = early_memremap(efi_setup, sizeof(*data));
 304			if (!data)
 
 
 
 305				return -ENOMEM;
 306		}
 307		systab64 = early_memremap((unsigned long)phys,
 308					 sizeof(*systab64));
 309		if (systab64 == NULL) {
 310			pr_err("Couldn't map the system table!\n");
 311			if (data)
 312				early_memunmap(data, sizeof(*data));
 313			return -ENOMEM;
 314		}
 315
 316		efi_systab.hdr = systab64->hdr;
 317		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
 318					      systab64->fw_vendor;
 319		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
 320		efi_systab.fw_revision = systab64->fw_revision;
 321		efi_systab.con_in_handle = systab64->con_in_handle;
 322		tmp |= systab64->con_in_handle;
 323		efi_systab.con_in = systab64->con_in;
 324		tmp |= systab64->con_in;
 325		efi_systab.con_out_handle = systab64->con_out_handle;
 326		tmp |= systab64->con_out_handle;
 327		efi_systab.con_out = systab64->con_out;
 328		tmp |= systab64->con_out;
 329		efi_systab.stderr_handle = systab64->stderr_handle;
 330		tmp |= systab64->stderr_handle;
 331		efi_systab.stderr = systab64->stderr;
 332		tmp |= systab64->stderr;
 333		efi_systab.runtime = data ?
 334				     (void *)(unsigned long)data->runtime :
 335				     (void *)(unsigned long)systab64->runtime;
 336		tmp |= data ? data->runtime : systab64->runtime;
 337		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
 338		tmp |= systab64->boottime;
 339		efi_systab.nr_tables = systab64->nr_tables;
 340		efi_systab.tables = data ? (unsigned long)data->tables :
 341					   systab64->tables;
 342		tmp |= data ? data->tables : systab64->tables;
 343
 344		early_memunmap(systab64, sizeof(*systab64));
 345		if (data)
 346			early_memunmap(data, sizeof(*data));
 347#ifdef CONFIG_X86_32
 348		if (tmp >> 32) {
 349			pr_err("EFI data located above 4GB, disabling EFI.\n");
 350			return -EINVAL;
 
 
 351		}
 352#endif
 353	} else {
 354		efi_system_table_32_t *systab32;
 355
 356		systab32 = early_memremap((unsigned long)phys,
 357					 sizeof(*systab32));
 358		if (systab32 == NULL) {
 359			pr_err("Couldn't map the system table!\n");
 360			return -ENOMEM;
 361		}
 362
 363		efi_systab.hdr = systab32->hdr;
 364		efi_systab.fw_vendor = systab32->fw_vendor;
 365		efi_systab.fw_revision = systab32->fw_revision;
 366		efi_systab.con_in_handle = systab32->con_in_handle;
 367		efi_systab.con_in = systab32->con_in;
 368		efi_systab.con_out_handle = systab32->con_out_handle;
 369		efi_systab.con_out = systab32->con_out;
 370		efi_systab.stderr_handle = systab32->stderr_handle;
 371		efi_systab.stderr = systab32->stderr;
 372		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
 373		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
 374		efi_systab.nr_tables = systab32->nr_tables;
 375		efi_systab.tables = systab32->tables;
 376
 377		early_memunmap(systab32, sizeof(*systab32));
 378	}
 379
 380	efi.systab = &efi_systab;
 
 381
 382	/*
 383	 * Verify the EFI Table
 384	 */
 385	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 386		pr_err("System table signature incorrect!\n");
 387		return -EINVAL;
 388	}
 389	if ((efi.systab->hdr.revision >> 16) == 0)
 390		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
 391		       efi.systab->hdr.revision >> 16,
 392		       efi.systab->hdr.revision & 0xffff);
 393
 394	return 0;
 395}
 396
 397static int __init efi_runtime_init32(void)
 398{
 399	efi_runtime_services_32_t *runtime;
 
 400
 401	runtime = early_memremap((unsigned long)efi.systab->runtime,
 402			sizeof(efi_runtime_services_32_t));
 403	if (!runtime) {
 404		pr_err("Could not map the runtime service table!\n");
 405		return -ENOMEM;
 406	}
 407
 408	/*
 409	 * We will only need *early* access to the SetVirtualAddressMap
 410	 * EFI runtime service. All other runtime services will be called
 411	 * via the virtual mapping.
 412	 */
 413	efi_phys.set_virtual_address_map =
 414			(efi_set_virtual_address_map_t *)
 415			(unsigned long)runtime->set_virtual_address_map;
 416	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
 417
 418	return 0;
 419}
 420
 421static int __init efi_runtime_init64(void)
 422{
 423	efi_runtime_services_64_t *runtime;
 424
 425	runtime = early_memremap((unsigned long)efi.systab->runtime,
 426			sizeof(efi_runtime_services_64_t));
 427	if (!runtime) {
 428		pr_err("Could not map the runtime service table!\n");
 429		return -ENOMEM;
 430	}
 431
 432	/*
 433	 * We will only need *early* access to the SetVirtualAddressMap
 434	 * EFI runtime service. All other runtime services will be called
 435	 * via the virtual mapping.
 436	 */
 437	efi_phys.set_virtual_address_map =
 438			(efi_set_virtual_address_map_t *)
 439			(unsigned long)runtime->set_virtual_address_map;
 440	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
 441
 442	return 0;
 443}
 444
 445static int __init efi_runtime_init(void)
 446{
 447	int rv;
 448
 449	/*
 450	 * Check out the runtime services table. We need to map
 451	 * the runtime services table so that we can grab the physical
 452	 * address of several of the EFI runtime functions, needed to
 453	 * set the firmware into virtual mode.
 454	 *
 455	 * When EFI_PARAVIRT is in force then we could not map runtime
 456	 * service memory region because we do not have direct access to it.
 457	 * However, runtime services are available through proxy functions
 458	 * (e.g. in case of Xen dom0 EFI implementation they call special
 459	 * hypercall which executes relevant EFI functions) and that is why
 460	 * they are always enabled.
 461	 */
 462
 463	if (!efi_enabled(EFI_PARAVIRT)) {
 464		if (efi_enabled(EFI_64BIT))
 465			rv = efi_runtime_init64();
 466		else
 467			rv = efi_runtime_init32();
 468
 469		if (rv)
 470			return rv;
 471	}
 472
 473	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 
 474
 475	return 0;
 
 476}
 477
 478void __init efi_init(void)
 479{
 480	efi_char16_t *c16;
 481	char vendor[100] = "unknown";
 482	int i = 0;
 483	void *tmp;
 484
 485#ifdef CONFIG_X86_32
 486	if (boot_params.efi_info.efi_systab_hi ||
 487	    boot_params.efi_info.efi_memmap_hi) {
 488		pr_info("Table located above 4GB, disabling EFI.\n");
 489		return;
 490	}
 491	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
 492#else
 493	efi_phys.systab = (efi_system_table_t *)
 494			  (boot_params.efi_info.efi_systab |
 495			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
 496#endif
 497
 498	if (efi_systab_init(efi_phys.systab))
 
 
 
 499		return;
 500
 501	efi.config_table = (unsigned long)efi.systab->tables;
 502	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
 503	efi.runtime	 = (unsigned long)efi.systab->runtime;
 504
 505	/*
 506	 * Show what we know for posterity
 507	 */
 508	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
 509	if (c16) {
 510		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
 511			vendor[i] = *c16++;
 512		vendor[i] = '\0';
 513	} else
 514		pr_err("Could not map the firmware vendor!\n");
 515	early_memunmap(tmp, 2);
 516
 517	pr_info("EFI v%u.%.02u by %s\n",
 518		efi.systab->hdr.revision >> 16,
 519		efi.systab->hdr.revision & 0xffff, vendor);
 520
 521	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
 522		return;
 523
 524	if (efi_config_init(arch_tables))
 525		return;
 526
 527	/*
 528	 * Note: We currently don't support runtime services on an EFI
 529	 * that doesn't match the kernel 32/64-bit mode.
 530	 */
 531
 532	if (!efi_runtime_supported())
 533		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
 534	else {
 535		if (efi_runtime_disabled() || efi_runtime_init()) {
 536			efi_memmap_unmap();
 537			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538		}
 539	}
 540
 
 541	efi_clean_memmap();
 542
 
 
 543	if (efi_enabled(EFI_DBG))
 544		efi_print_memmap();
 545}
 546
 547void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
 548{
 549	u64 addr, npages;
 550
 551	addr = md->virt_addr;
 552	npages = md->num_pages;
 553
 554	memrange_efi_to_native(&addr, &npages);
 555
 556	if (executable)
 557		set_memory_x(addr, npages);
 558	else
 559		set_memory_nx(addr, npages);
 560}
 561
 562void __init runtime_code_page_mkexec(void)
 563{
 564	efi_memory_desc_t *md;
 565
 566	/* Make EFI runtime service code area executable */
 567	for_each_efi_memory_desc(md) {
 568		if (md->type != EFI_RUNTIME_SERVICES_CODE)
 569			continue;
 570
 571		efi_set_executable(md, true);
 572	}
 573}
 574
 575void __init efi_memory_uc(u64 addr, unsigned long size)
 576{
 577	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
 578	u64 npages;
 579
 580	npages = round_up(size, page_shift) / page_shift;
 581	memrange_efi_to_native(&addr, &npages);
 582	set_memory_uc(addr, npages);
 583}
 584
 585void __init old_map_region(efi_memory_desc_t *md)
 586{
 587	u64 start_pfn, end_pfn, end;
 588	unsigned long size;
 589	void *va;
 590
 591	start_pfn = PFN_DOWN(md->phys_addr);
 592	size	  = md->num_pages << PAGE_SHIFT;
 593	end	  = md->phys_addr + size;
 594	end_pfn   = PFN_UP(end);
 595
 596	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
 597		va = __va(md->phys_addr);
 598
 599		if (!(md->attribute & EFI_MEMORY_WB))
 600			efi_memory_uc((u64)(unsigned long)va, size);
 601	} else
 602		va = efi_ioremap(md->phys_addr, size,
 603				 md->type, md->attribute);
 604
 605	md->virt_addr = (u64) (unsigned long) va;
 606	if (!va)
 607		pr_err("ioremap of 0x%llX failed!\n",
 608		       (unsigned long long)md->phys_addr);
 609}
 610
 611/* Merge contiguous regions of the same type and attribute */
 612static void __init efi_merge_regions(void)
 613{
 614	efi_memory_desc_t *md, *prev_md = NULL;
 615
 616	for_each_efi_memory_desc(md) {
 617		u64 prev_size;
 618
 619		if (!prev_md) {
 620			prev_md = md;
 621			continue;
 622		}
 623
 624		if (prev_md->type != md->type ||
 625		    prev_md->attribute != md->attribute) {
 626			prev_md = md;
 627			continue;
 628		}
 629
 630		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
 631
 632		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
 633			prev_md->num_pages += md->num_pages;
 634			md->type = EFI_RESERVED_TYPE;
 635			md->attribute = 0;
 636			continue;
 637		}
 638		prev_md = md;
 639	}
 640}
 641
 642static void __init get_systab_virt_addr(efi_memory_desc_t *md)
 643{
 644	unsigned long size;
 645	u64 end, systab;
 646
 647	size = md->num_pages << EFI_PAGE_SHIFT;
 648	end = md->phys_addr + size;
 649	systab = (u64)(unsigned long)efi_phys.systab;
 650	if (md->phys_addr <= systab && systab < end) {
 651		systab += md->virt_addr - md->phys_addr;
 652		efi.systab = (efi_system_table_t *)(unsigned long)systab;
 653	}
 654}
 655
 656static void *realloc_pages(void *old_memmap, int old_shift)
 657{
 658	void *ret;
 659
 660	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
 661	if (!ret)
 662		goto out;
 663
 664	/*
 665	 * A first-time allocation doesn't have anything to copy.
 666	 */
 667	if (!old_memmap)
 668		return ret;
 669
 670	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
 671
 672out:
 673	free_pages((unsigned long)old_memmap, old_shift);
 674	return ret;
 675}
 676
 677/*
 678 * Iterate the EFI memory map in reverse order because the regions
 679 * will be mapped top-down. The end result is the same as if we had
 680 * mapped things forward, but doesn't require us to change the
 681 * existing implementation of efi_map_region().
 682 */
 683static inline void *efi_map_next_entry_reverse(void *entry)
 684{
 685	/* Initial call */
 686	if (!entry)
 687		return efi.memmap.map_end - efi.memmap.desc_size;
 688
 689	entry -= efi.memmap.desc_size;
 690	if (entry < efi.memmap.map)
 691		return NULL;
 692
 693	return entry;
 694}
 695
 696/*
 697 * efi_map_next_entry - Return the next EFI memory map descriptor
 698 * @entry: Previous EFI memory map descriptor
 699 *
 700 * This is a helper function to iterate over the EFI memory map, which
 701 * we do in different orders depending on the current configuration.
 702 *
 703 * To begin traversing the memory map @entry must be %NULL.
 704 *
 705 * Returns %NULL when we reach the end of the memory map.
 706 */
 707static void *efi_map_next_entry(void *entry)
 708{
 709	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
 710		/*
 711		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
 712		 * config table feature requires us to map all entries
 713		 * in the same order as they appear in the EFI memory
 714		 * map. That is to say, entry N must have a lower
 715		 * virtual address than entry N+1. This is because the
 716		 * firmware toolchain leaves relative references in
 717		 * the code/data sections, which are split and become
 718		 * separate EFI memory regions. Mapping things
 719		 * out-of-order leads to the firmware accessing
 720		 * unmapped addresses.
 721		 *
 722		 * Since we need to map things this way whether or not
 723		 * the kernel actually makes use of
 724		 * EFI_PROPERTIES_TABLE, let's just switch to this
 725		 * scheme by default for 64-bit.
 726		 */
 727		return efi_map_next_entry_reverse(entry);
 728	}
 729
 730	/* Initial call */
 731	if (!entry)
 732		return efi.memmap.map;
 733
 734	entry += efi.memmap.desc_size;
 735	if (entry >= efi.memmap.map_end)
 736		return NULL;
 737
 738	return entry;
 739}
 740
 741static bool should_map_region(efi_memory_desc_t *md)
 742{
 743	/*
 744	 * Runtime regions always require runtime mappings (obviously).
 745	 */
 746	if (md->attribute & EFI_MEMORY_RUNTIME)
 747		return true;
 748
 749	/*
 750	 * 32-bit EFI doesn't suffer from the bug that requires us to
 751	 * reserve boot services regions, and mixed mode support
 752	 * doesn't exist for 32-bit kernels.
 753	 */
 754	if (IS_ENABLED(CONFIG_X86_32))
 755		return false;
 756
 757	/*
 
 
 
 
 
 
 
 
 
 758	 * Map all of RAM so that we can access arguments in the 1:1
 759	 * mapping when making EFI runtime calls.
 760	 */
 761	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
 762		if (md->type == EFI_CONVENTIONAL_MEMORY ||
 763		    md->type == EFI_LOADER_DATA ||
 764		    md->type == EFI_LOADER_CODE)
 765			return true;
 766	}
 767
 768	/*
 769	 * Map boot services regions as a workaround for buggy
 770	 * firmware that accesses them even when they shouldn't.
 771	 *
 772	 * See efi_{reserve,free}_boot_services().
 773	 */
 774	if (md->type == EFI_BOOT_SERVICES_CODE ||
 775	    md->type == EFI_BOOT_SERVICES_DATA)
 776		return true;
 777
 778	return false;
 779}
 780
 781/*
 782 * Map the efi memory ranges of the runtime services and update new_mmap with
 783 * virtual addresses.
 784 */
 785static void * __init efi_map_regions(int *count, int *pg_shift)
 786{
 787	void *p, *new_memmap = NULL;
 788	unsigned long left = 0;
 789	unsigned long desc_size;
 790	efi_memory_desc_t *md;
 791
 792	desc_size = efi.memmap.desc_size;
 793
 794	p = NULL;
 795	while ((p = efi_map_next_entry(p))) {
 796		md = p;
 797
 798		if (!should_map_region(md))
 799			continue;
 800
 801		efi_map_region(md);
 802		get_systab_virt_addr(md);
 803
 804		if (left < desc_size) {
 805			new_memmap = realloc_pages(new_memmap, *pg_shift);
 806			if (!new_memmap)
 807				return NULL;
 808
 809			left += PAGE_SIZE << *pg_shift;
 810			(*pg_shift)++;
 811		}
 812
 813		memcpy(new_memmap + (*count * desc_size), md, desc_size);
 814
 815		left -= desc_size;
 816		(*count)++;
 817	}
 818
 819	return new_memmap;
 820}
 821
 822static void __init kexec_enter_virtual_mode(void)
 823{
 824#ifdef CONFIG_KEXEC_CORE
 825	efi_memory_desc_t *md;
 826	unsigned int num_pages;
 827
 828	efi.systab = NULL;
 829
 830	/*
 831	 * We don't do virtual mode, since we don't do runtime services, on
 832	 * non-native EFI. With efi=old_map, we don't do runtime services in
 833	 * kexec kernel because in the initial boot something else might
 834	 * have been mapped at these virtual addresses.
 835	 */
 836	if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
 837		efi_memmap_unmap();
 838		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 839		return;
 840	}
 841
 842	if (efi_alloc_page_tables()) {
 843		pr_err("Failed to allocate EFI page tables\n");
 844		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 845		return;
 846	}
 847
 848	/*
 849	* Map efi regions which were passed via setup_data. The virt_addr is a
 850	* fixed addr which was used in first kernel of a kexec boot.
 851	*/
 852	for_each_efi_memory_desc(md) {
 853		efi_map_region_fixed(md); /* FIXME: add error handling */
 854		get_systab_virt_addr(md);
 855	}
 856
 857	/*
 858	 * Unregister the early EFI memmap from efi_init() and install
 859	 * the new EFI memory map.
 860	 */
 861	efi_memmap_unmap();
 862
 863	if (efi_memmap_init_late(efi.memmap.phys_map,
 864				 efi.memmap.desc_size * efi.memmap.nr_map)) {
 865		pr_err("Failed to remap late EFI memory map\n");
 866		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 867		return;
 868	}
 869
 870	BUG_ON(!efi.systab);
 871
 872	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
 873	num_pages >>= PAGE_SHIFT;
 874
 875	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
 876		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 877		return;
 878	}
 879
 880	efi_sync_low_kernel_mappings();
 881
 882	/*
 883	 * Now that EFI is in virtual mode, update the function
 884	 * pointers in the runtime service table to the new virtual addresses.
 885	 *
 886	 * Call EFI services through wrapper functions.
 887	 */
 888	efi.runtime_version = efi_systab.hdr.revision;
 889
 890	efi_native_runtime_setup();
 891
 892	efi.set_virtual_address_map = NULL;
 893
 894	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
 895		runtime_code_page_mkexec();
 896
 897	/* clean DUMMY object */
 898	efi_delete_dummy_variable();
 899#endif
 900}
 901
 902/*
 903 * This function will switch the EFI runtime services to virtual mode.
 904 * Essentially, we look through the EFI memmap and map every region that
 905 * has the runtime attribute bit set in its memory descriptor into the
 906 * efi_pgd page table.
 907 *
 908 * The old method which used to update that memory descriptor with the
 909 * virtual address obtained from ioremap() is still supported when the
 910 * kernel is booted with efi=old_map on its command line. Same old
 911 * method enabled the runtime services to be called without having to
 912 * thunk back into physical mode for every invocation.
 913 *
 914 * The new method does a pagetable switch in a preemption-safe manner
 915 * so that we're in a different address space when calling a runtime
 916 * function. For function arguments passing we do copy the PUDs of the
 917 * kernel page table into efi_pgd prior to each call.
 918 *
 919 * Specially for kexec boot, efi runtime maps in previous kernel should
 920 * be passed in via setup_data. In that case runtime ranges will be mapped
 921 * to the same virtual addresses as the first kernel, see
 922 * kexec_enter_virtual_mode().
 923 */
 924static void __init __efi_enter_virtual_mode(void)
 925{
 926	int count = 0, pg_shift = 0;
 927	void *new_memmap = NULL;
 928	efi_status_t status;
 929	unsigned long pa;
 930
 931	efi.systab = NULL;
 932
 933	if (efi_alloc_page_tables()) {
 934		pr_err("Failed to allocate EFI page tables\n");
 935		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 936		return;
 937	}
 938
 939	efi_merge_regions();
 940	new_memmap = efi_map_regions(&count, &pg_shift);
 941	if (!new_memmap) {
 942		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
 943		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 944		return;
 945	}
 946
 947	pa = __pa(new_memmap);
 948
 949	/*
 950	 * Unregister the early EFI memmap from efi_init() and install
 951	 * the new EFI memory map that we are about to pass to the
 952	 * firmware via SetVirtualAddressMap().
 953	 */
 954	efi_memmap_unmap();
 955
 956	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
 957		pr_err("Failed to remap late EFI memory map\n");
 958		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 959		return;
 960	}
 961
 962	if (efi_enabled(EFI_DBG)) {
 963		pr_info("EFI runtime memory map:\n");
 964		efi_print_memmap();
 965	}
 966
 967	BUG_ON(!efi.systab);
 968
 969	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
 970		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 971		return;
 972	}
 973
 974	efi_sync_low_kernel_mappings();
 975
 976	if (efi_is_native()) {
 977		status = phys_efi_set_virtual_address_map(
 978				efi.memmap.desc_size * count,
 979				efi.memmap.desc_size,
 980				efi.memmap.desc_version,
 981				(efi_memory_desc_t *)pa);
 982	} else {
 983		status = efi_thunk_set_virtual_address_map(
 984				efi_phys.set_virtual_address_map,
 985				efi.memmap.desc_size * count,
 986				efi.memmap.desc_size,
 987				efi.memmap.desc_version,
 988				(efi_memory_desc_t *)pa);
 989	}
 990
 991	if (status != EFI_SUCCESS) {
 992		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
 993			 status);
 994		panic("EFI call to SetVirtualAddressMap() failed!");
 995	}
 996
 997	/*
 998	 * Now that EFI is in virtual mode, update the function
 999	 * pointers in the runtime service table to the new virtual addresses.
1000	 *
1001	 * Call EFI services through wrapper functions.
1002	 */
1003	efi.runtime_version = efi_systab.hdr.revision;
1004
1005	if (efi_is_native())
1006		efi_native_runtime_setup();
1007	else
1008		efi_thunk_runtime_setup();
1009
1010	efi.set_virtual_address_map = NULL;
1011
1012	/*
1013	 * Apply more restrictive page table mapping attributes now that
1014	 * SVAM() has been called and the firmware has performed all
1015	 * necessary relocation fixups for the new virtual addresses.
1016	 */
1017	efi_runtime_update_mappings();
1018
1019	/* clean DUMMY object */
1020	efi_delete_dummy_variable();
 
 
 
 
1021}
1022
1023void __init efi_enter_virtual_mode(void)
1024{
1025	if (efi_enabled(EFI_PARAVIRT))
1026		return;
1027
 
 
1028	if (efi_setup)
1029		kexec_enter_virtual_mode();
1030	else
1031		__efi_enter_virtual_mode();
1032
1033	efi_dump_pagetable();
1034}
1035
1036static int __init arch_parse_efi_cmdline(char *str)
1037{
1038	if (!str) {
1039		pr_warn("need at least one option\n");
1040		return -EINVAL;
1041	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043	if (parse_option_str(str, "old_map"))
1044		set_bit(EFI_OLD_MEMMAP, &efi.flags);
 
1045
1046	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1047}
1048early_param("efi", arch_parse_efi_cmdline);