Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#define ARCH_HAS_IOREMAP_WC
16
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/types.h>
20#include <linux/irqflags.h>
21
22#include <asm/addrspace.h>
23#include <asm/barrier.h>
24#include <asm/bug.h>
25#include <asm/byteorder.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm-generic/iomap.h>
29#include <asm/page.h>
30#include <asm/pgtable-bits.h>
31#include <asm/processor.h>
32#include <asm/string.h>
33#include <mangle-port.h>
34
35/*
36 * Raw operations are never swapped in software. OTOH values that raw
37 * operations are working on may or may not have been swapped by the bus
38 * hardware. An example use would be for flash memory that's used for
39 * execute in place.
40 */
41# define __raw_ioswabb(a, x) (x)
42# define __raw_ioswabw(a, x) (x)
43# define __raw_ioswabl(a, x) (x)
44# define __raw_ioswabq(a, x) (x)
45# define ____raw_ioswabq(a, x) (x)
46
47# define __relaxed_ioswabb ioswabb
48# define __relaxed_ioswabw ioswabw
49# define __relaxed_ioswabl ioswabl
50# define __relaxed_ioswabq ioswabq
51
52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
53
54/*
55 * On MIPS I/O ports are memory mapped, so we access them using normal
56 * load/store instructions. mips_io_port_base is the virtual address to
57 * which all ports are being mapped. For sake of efficiency some code
58 * assumes that this is an address that can be loaded with a single lui
59 * instruction, so the lower 16 bits must be zero. Should be true on
60 * any sane architecture; generic code does not use this assumption.
61 */
62extern unsigned long mips_io_port_base;
63
64static inline void set_io_port_base(unsigned long base)
65{
66 mips_io_port_base = base;
67}
68
69/*
70 * Provide the necessary definitions for generic iomap. We make use of
71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
72 * use with I/O ports.
73 */
74
75#define HAVE_ARCH_PIO_SIZE
76#define PIO_OFFSET mips_io_port_base
77#define PIO_MASK IO_SPACE_LIMIT
78#define PIO_RESERVED 0x0UL
79
80/*
81 * Enforce in-order execution of data I/O. In the MIPS architecture
82 * these are equivalent to corresponding platform-specific memory
83 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
84 * with sync additionally defined.
85 */
86#define iobarrier_rw() mb()
87#define iobarrier_r() rmb()
88#define iobarrier_w() wmb()
89#define iobarrier_sync() iob()
90
91/*
92 * virt_to_phys - map virtual addresses to physical
93 * @address: address to remap
94 *
95 * The returned physical address is the physical (CPU) mapping for
96 * the memory address given. It is only valid to use this function on
97 * addresses directly mapped or allocated via kmalloc.
98 *
99 * This function does not give bus mappings for DMA transfers. In
100 * almost all conceivable cases a device driver should not be using
101 * this function
102 */
103static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104{
105 return __pa(address);
106}
107
108#ifdef CONFIG_DEBUG_VIRTUAL
109extern phys_addr_t __virt_to_phys(volatile const void *x);
110#else
111#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
112#endif
113
114#define virt_to_phys virt_to_phys
115static inline phys_addr_t virt_to_phys(const volatile void *x)
116{
117 return __virt_to_phys(x);
118}
119
120/*
121 * phys_to_virt - map physical address to virtual
122 * @address: address to remap
123 *
124 * The returned virtual address is a current CPU mapping for
125 * the memory address given. It is only valid to use this function on
126 * addresses that have a kernel mapping
127 *
128 * This function does not handle bus mappings for DMA transfers. In
129 * almost all conceivable cases a device driver should not be using
130 * this function
131 */
132static inline void * phys_to_virt(unsigned long address)
133{
134 return __va(address);
135}
136
137/*
138 * ISA I/O bus memory addresses are 1:1 with the physical address.
139 */
140static inline unsigned long isa_virt_to_bus(volatile void *address)
141{
142 return virt_to_phys(address);
143}
144
145static inline void *isa_bus_to_virt(unsigned long address)
146{
147 return phys_to_virt(address);
148}
149
150/*
151 * Change "struct page" to physical address.
152 */
153#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
154
155void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
156 unsigned long prot_val);
157void iounmap(const volatile void __iomem *addr);
158
159/*
160 * ioremap - map bus memory into CPU space
161 * @offset: bus address of the memory
162 * @size: size of the resource to map
163 *
164 * ioremap performs a platform specific sequence of operations to
165 * make bus memory CPU accessible via the readb/readw/readl/writeb/
166 * writew/writel functions and the other mmio helpers. The returned
167 * address is not guaranteed to be usable directly as a virtual
168 * address.
169 */
170#define ioremap(offset, size) \
171 ioremap_prot((offset), (size), _CACHE_UNCACHED)
172#define ioremap_uc ioremap
173
174/*
175 * ioremap_cache - map bus memory into CPU space
176 * @offset: bus address of the memory
177 * @size: size of the resource to map
178 *
179 * ioremap_cache performs a platform specific sequence of operations to
180 * make bus memory CPU accessible via the readb/readw/readl/writeb/
181 * writew/writel functions and the other mmio helpers. The returned
182 * address is not guaranteed to be usable directly as a virtual
183 * address.
184 *
185 * This version of ioremap ensures that the memory is marked cachable by
186 * the CPU. Also enables full write-combining. Useful for some
187 * memory-like regions on I/O busses.
188 */
189#define ioremap_cache(offset, size) \
190 ioremap_prot((offset), (size), _page_cachable_default)
191
192/*
193 * ioremap_wc - map bus memory into CPU space
194 * @offset: bus address of the memory
195 * @size: size of the resource to map
196 *
197 * ioremap_wc performs a platform specific sequence of operations to
198 * make bus memory CPU accessible via the readb/readw/readl/writeb/
199 * writew/writel functions and the other mmio helpers. The returned
200 * address is not guaranteed to be usable directly as a virtual
201 * address.
202 *
203 * This version of ioremap ensures that the memory is marked uncachable
204 * but accelerated by means of write-combining feature. It is specifically
205 * useful for PCIe prefetchable windows, which may vastly improve a
206 * communications performance. If it was determined on boot stage, what
207 * CPU CCA doesn't support UCA, the method shall fall-back to the
208 * _CACHE_UNCACHED option (see cpu_probe() method).
209 */
210#define ioremap_wc(offset, size) \
211 ioremap_prot((offset), (size), boot_cpu_data.writecombine)
212
213#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64)
214#define war_io_reorder_wmb() wmb()
215#else
216#define war_io_reorder_wmb() barrier()
217#endif
218
219#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
220 \
221static inline void pfx##write##bwlq(type val, \
222 volatile void __iomem *mem) \
223{ \
224 volatile type *__mem; \
225 type __val; \
226 \
227 if (barrier) \
228 iobarrier_rw(); \
229 else \
230 war_io_reorder_wmb(); \
231 \
232 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
233 \
234 __val = pfx##ioswab##bwlq(__mem, val); \
235 \
236 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
237 *__mem = __val; \
238 else if (cpu_has_64bits) { \
239 unsigned long __flags; \
240 type __tmp; \
241 \
242 if (irq) \
243 local_irq_save(__flags); \
244 __asm__ __volatile__( \
245 ".set push" "\t\t# __writeq""\n\t" \
246 ".set arch=r4000" "\n\t" \
247 "dsll32 %L0, %L0, 0" "\n\t" \
248 "dsrl32 %L0, %L0, 0" "\n\t" \
249 "dsll32 %M0, %M0, 0" "\n\t" \
250 "or %L0, %L0, %M0" "\n\t" \
251 "sd %L0, %2" "\n\t" \
252 ".set pop" "\n" \
253 : "=r" (__tmp) \
254 : "0" (__val), "m" (*__mem)); \
255 if (irq) \
256 local_irq_restore(__flags); \
257 } else \
258 BUG(); \
259} \
260 \
261static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
262{ \
263 volatile type *__mem; \
264 type __val; \
265 \
266 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
267 \
268 if (barrier) \
269 iobarrier_rw(); \
270 \
271 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
272 __val = *__mem; \
273 else if (cpu_has_64bits) { \
274 unsigned long __flags; \
275 \
276 if (irq) \
277 local_irq_save(__flags); \
278 __asm__ __volatile__( \
279 ".set push" "\t\t# __readq" "\n\t" \
280 ".set arch=r4000" "\n\t" \
281 "ld %L0, %1" "\n\t" \
282 "dsra32 %M0, %L0, 0" "\n\t" \
283 "sll %L0, %L0, 0" "\n\t" \
284 ".set pop" "\n" \
285 : "=r" (__val) \
286 : "m" (*__mem)); \
287 if (irq) \
288 local_irq_restore(__flags); \
289 } else { \
290 __val = 0; \
291 BUG(); \
292 } \
293 \
294 /* prevent prefetching of coherent DMA data prematurely */ \
295 if (!relax) \
296 rmb(); \
297 return pfx##ioswab##bwlq(__mem, __val); \
298}
299
300#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
301 \
302static inline void pfx##out##bwlq##p(type val, unsigned long port) \
303{ \
304 volatile type *__addr; \
305 type __val; \
306 \
307 if (barrier) \
308 iobarrier_rw(); \
309 else \
310 war_io_reorder_wmb(); \
311 \
312 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
313 \
314 __val = pfx##ioswab##bwlq(__addr, val); \
315 \
316 /* Really, we want this to be atomic */ \
317 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
318 \
319 *__addr = __val; \
320} \
321 \
322static inline type pfx##in##bwlq##p(unsigned long port) \
323{ \
324 volatile type *__addr; \
325 type __val; \
326 \
327 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
328 \
329 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
330 \
331 if (barrier) \
332 iobarrier_rw(); \
333 \
334 __val = *__addr; \
335 \
336 /* prevent prefetching of coherent DMA data prematurely */ \
337 if (!relax) \
338 rmb(); \
339 return pfx##ioswab##bwlq(__addr, __val); \
340}
341
342#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
343 \
344__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
345
346#define BUILDIO_MEM(bwlq, type) \
347 \
348__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
349__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
350__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
351__BUILD_MEMORY_PFX(, bwlq, type, 0)
352
353BUILDIO_MEM(b, u8)
354BUILDIO_MEM(w, u16)
355BUILDIO_MEM(l, u32)
356#ifdef CONFIG_64BIT
357BUILDIO_MEM(q, u64)
358#else
359__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
360__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
361#endif
362
363#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
364 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
365 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
366
367#define BUILDIO_IOPORT(bwlq, type) \
368 __BUILD_IOPORT_PFX(, bwlq, type) \
369 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
370
371BUILDIO_IOPORT(b, u8)
372BUILDIO_IOPORT(w, u16)
373BUILDIO_IOPORT(l, u32)
374#ifdef CONFIG_64BIT
375BUILDIO_IOPORT(q, u64)
376#endif
377
378#define __BUILDIO(bwlq, type) \
379 \
380__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
381
382__BUILDIO(q, u64)
383
384#define readb_relaxed __relaxed_readb
385#define readw_relaxed __relaxed_readw
386#define readl_relaxed __relaxed_readl
387#ifdef CONFIG_64BIT
388#define readq_relaxed __relaxed_readq
389#endif
390
391#define writeb_relaxed __relaxed_writeb
392#define writew_relaxed __relaxed_writew
393#define writel_relaxed __relaxed_writel
394#ifdef CONFIG_64BIT
395#define writeq_relaxed __relaxed_writeq
396#endif
397
398#define readb_be(addr) \
399 __raw_readb((__force unsigned *)(addr))
400#define readw_be(addr) \
401 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
402#define readl_be(addr) \
403 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
404#define readq_be(addr) \
405 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
406
407#define writeb_be(val, addr) \
408 __raw_writeb((val), (__force unsigned *)(addr))
409#define writew_be(val, addr) \
410 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
411#define writel_be(val, addr) \
412 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
413#define writeq_be(val, addr) \
414 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
415
416/*
417 * Some code tests for these symbols
418 */
419#ifdef CONFIG_64BIT
420#define readq readq
421#define writeq writeq
422#endif
423
424#define __BUILD_MEMORY_STRING(bwlq, type) \
425 \
426static inline void writes##bwlq(volatile void __iomem *mem, \
427 const void *addr, unsigned int count) \
428{ \
429 const volatile type *__addr = addr; \
430 \
431 while (count--) { \
432 __mem_write##bwlq(*__addr, mem); \
433 __addr++; \
434 } \
435} \
436 \
437static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
438 unsigned int count) \
439{ \
440 volatile type *__addr = addr; \
441 \
442 while (count--) { \
443 *__addr = __mem_read##bwlq(mem); \
444 __addr++; \
445 } \
446}
447
448#define __BUILD_IOPORT_STRING(bwlq, type) \
449 \
450static inline void outs##bwlq(unsigned long port, const void *addr, \
451 unsigned int count) \
452{ \
453 const volatile type *__addr = addr; \
454 \
455 while (count--) { \
456 __mem_out##bwlq(*__addr, port); \
457 __addr++; \
458 } \
459} \
460 \
461static inline void ins##bwlq(unsigned long port, void *addr, \
462 unsigned int count) \
463{ \
464 volatile type *__addr = addr; \
465 \
466 while (count--) { \
467 *__addr = __mem_in##bwlq(port); \
468 __addr++; \
469 } \
470}
471
472#define BUILDSTRING(bwlq, type) \
473 \
474__BUILD_MEMORY_STRING(bwlq, type) \
475__BUILD_IOPORT_STRING(bwlq, type)
476
477BUILDSTRING(b, u8)
478BUILDSTRING(w, u16)
479BUILDSTRING(l, u32)
480#ifdef CONFIG_64BIT
481BUILDSTRING(q, u64)
482#endif
483
484static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
485{
486 memset((void __force *) addr, val, count);
487}
488static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
489{
490 memcpy(dst, (void __force *) src, count);
491}
492static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
493{
494 memcpy((void __force *) dst, src, count);
495}
496
497/*
498 * The caches on some architectures aren't dma-coherent and have need to
499 * handle this in software. There are three types of operations that
500 * can be applied to dma buffers.
501 *
502 * - dma_cache_wback_inv(start, size) makes caches and coherent by
503 * writing the content of the caches back to memory, if necessary.
504 * The function also invalidates the affected part of the caches as
505 * necessary before DMA transfers from outside to memory.
506 * - dma_cache_wback(start, size) makes caches and coherent by
507 * writing the content of the caches back to memory, if necessary.
508 * The function also invalidates the affected part of the caches as
509 * necessary before DMA transfers from outside to memory.
510 * - dma_cache_inv(start, size) invalidates the affected parts of the
511 * caches. Dirty lines of the caches may be written back or simply
512 * be discarded. This operation is necessary before dma operations
513 * to the memory.
514 *
515 * This API used to be exported; it now is for arch code internal use only.
516 */
517#ifdef CONFIG_DMA_NONCOHERENT
518
519extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
520extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
521extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
522
523#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
524#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
525#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
526
527#else /* Sane hardware */
528
529#define dma_cache_wback_inv(start,size) \
530 do { (void) (start); (void) (size); } while (0)
531#define dma_cache_wback(start,size) \
532 do { (void) (start); (void) (size); } while (0)
533#define dma_cache_inv(start,size) \
534 do { (void) (start); (void) (size); } while (0)
535
536#endif /* CONFIG_DMA_NONCOHERENT */
537
538/*
539 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
540 * Avoid interrupt mucking, just adjust the address for 4-byte access.
541 * Assume the addresses are 8-byte aligned.
542 */
543#ifdef __MIPSEB__
544#define __CSR_32_ADJUST 4
545#else
546#define __CSR_32_ADJUST 0
547#endif
548
549#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
550#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
551
552/*
553 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
554 * access
555 */
556#define xlate_dev_mem_ptr(p) __va(p)
557
558void __ioread64_copy(void *to, const void __iomem *from, size_t count);
559
560#endif /* _ASM_IO_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/compiler.h>
16#include <linux/types.h>
17#include <linux/irqflags.h>
18
19#include <asm/addrspace.h>
20#include <asm/barrier.h>
21#include <asm/bug.h>
22#include <asm/byteorder.h>
23#include <asm/cpu.h>
24#include <asm/cpu-features.h>
25#include <asm/page.h>
26#include <asm/pgtable-bits.h>
27#include <asm/string.h>
28#include <mangle-port.h>
29
30/*
31 * Raw operations are never swapped in software. OTOH values that raw
32 * operations are working on may or may not have been swapped by the bus
33 * hardware. An example use would be for flash memory that's used for
34 * execute in place.
35 */
36# define __raw_ioswabb(a, x) (x)
37# define __raw_ioswabw(a, x) (x)
38# define __raw_ioswabl(a, x) (x)
39# define __raw_ioswabq(a, x) (x)
40# define ____raw_ioswabq(a, x) (x)
41
42# define _ioswabb ioswabb
43# define _ioswabw ioswabw
44# define _ioswabl ioswabl
45# define _ioswabq ioswabq
46
47# define __relaxed_ioswabb ioswabb
48# define __relaxed_ioswabw ioswabw
49# define __relaxed_ioswabl ioswabl
50# define __relaxed_ioswabq ioswabq
51
52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
53
54/*
55 * On MIPS I/O ports are memory mapped, so we access them using normal
56 * load/store instructions. mips_io_port_base is the virtual address to
57 * which all ports are being mapped. For sake of efficiency some code
58 * assumes that this is an address that can be loaded with a single lui
59 * instruction, so the lower 16 bits must be zero. Should be true on
60 * any sane architecture; generic code does not use this assumption.
61 */
62extern unsigned long mips_io_port_base;
63
64static inline void set_io_port_base(unsigned long base)
65{
66 mips_io_port_base = base;
67}
68
69/*
70 * Provide the necessary definitions for generic iomap. We make use of
71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
72 * use with I/O ports.
73 */
74
75#define HAVE_ARCH_PIO_SIZE
76#define PIO_OFFSET mips_io_port_base
77#define PIO_MASK IO_SPACE_LIMIT
78#define PIO_RESERVED 0x0UL
79
80/*
81 * Enforce in-order execution of data I/O. In the MIPS architecture
82 * these are equivalent to corresponding platform-specific memory
83 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
84 * with sync additionally defined.
85 */
86#define iobarrier_rw() mb()
87#define iobarrier_r() rmb()
88#define iobarrier_w() wmb()
89#define iobarrier_sync() iob()
90
91/*
92 * virt_to_phys - map virtual addresses to physical
93 * @address: address to remap
94 *
95 * The returned physical address is the physical (CPU) mapping for
96 * the memory address given. It is only valid to use this function on
97 * addresses directly mapped or allocated via kmalloc.
98 *
99 * This function does not give bus mappings for DMA transfers. In
100 * almost all conceivable cases a device driver should not be using
101 * this function
102 */
103static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104{
105 return __pa(address);
106}
107
108#ifdef CONFIG_DEBUG_VIRTUAL
109extern phys_addr_t __virt_to_phys(volatile const void *x);
110#else
111#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
112#endif
113
114#define virt_to_phys virt_to_phys
115static inline phys_addr_t virt_to_phys(const volatile void *x)
116{
117 return __virt_to_phys(x);
118}
119
120/*
121 * ISA I/O bus memory addresses are 1:1 with the physical address.
122 */
123static inline unsigned long isa_virt_to_bus(volatile void *address)
124{
125 return virt_to_phys(address);
126}
127
128/*
129 * Change "struct page" to physical address.
130 */
131#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
132
133void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
134 unsigned long prot_val);
135void iounmap(const volatile void __iomem *addr);
136
137/*
138 * ioremap - map bus memory into CPU space
139 * @offset: bus address of the memory
140 * @size: size of the resource to map
141 *
142 * ioremap performs a platform specific sequence of operations to
143 * make bus memory CPU accessible via the readb/readw/readl/writeb/
144 * writew/writel functions and the other mmio helpers. The returned
145 * address is not guaranteed to be usable directly as a virtual
146 * address.
147 */
148#define ioremap(offset, size) \
149 ioremap_prot((offset), (size), _CACHE_UNCACHED)
150
151/*
152 * ioremap_cache - map bus memory into CPU space
153 * @offset: bus address of the memory
154 * @size: size of the resource to map
155 *
156 * ioremap_cache performs a platform specific sequence of operations to
157 * make bus memory CPU accessible via the readb/readw/readl/writeb/
158 * writew/writel functions and the other mmio helpers. The returned
159 * address is not guaranteed to be usable directly as a virtual
160 * address.
161 *
162 * This version of ioremap ensures that the memory is marked cacheable by
163 * the CPU. Also enables full write-combining. Useful for some
164 * memory-like regions on I/O busses.
165 */
166#define ioremap_cache(offset, size) \
167 ioremap_prot((offset), (size), _page_cachable_default)
168
169/*
170 * ioremap_wc - map bus memory into CPU space
171 * @offset: bus address of the memory
172 * @size: size of the resource to map
173 *
174 * ioremap_wc performs a platform specific sequence of operations to
175 * make bus memory CPU accessible via the readb/readw/readl/writeb/
176 * writew/writel functions and the other mmio helpers. The returned
177 * address is not guaranteed to be usable directly as a virtual
178 * address.
179 *
180 * This version of ioremap ensures that the memory is marked uncacheable
181 * but accelerated by means of write-combining feature. It is specifically
182 * useful for PCIe prefetchable windows, which may vastly improve a
183 * communications performance. If it was determined on boot stage, what
184 * CPU CCA doesn't support UCA, the method shall fall-back to the
185 * _CACHE_UNCACHED option (see cpu_probe() method).
186 */
187#define ioremap_wc(offset, size) \
188 ioremap_prot((offset), (size), boot_cpu_data.writecombine)
189
190#if defined(CONFIG_CPU_CAVIUM_OCTEON)
191#define war_io_reorder_wmb() wmb()
192#else
193#define war_io_reorder_wmb() barrier()
194#endif
195
196#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
197 \
198static inline void pfx##write##bwlq(type val, \
199 volatile void __iomem *mem) \
200{ \
201 volatile type *__mem; \
202 type __val; \
203 \
204 if (barrier) \
205 iobarrier_rw(); \
206 else \
207 war_io_reorder_wmb(); \
208 \
209 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
210 \
211 __val = pfx##ioswab##bwlq(__mem, val); \
212 \
213 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
214 *__mem = __val; \
215 else if (cpu_has_64bits) { \
216 unsigned long __flags; \
217 type __tmp; \
218 \
219 if (irq) \
220 local_irq_save(__flags); \
221 __asm__ __volatile__( \
222 ".set push" "\t\t# __writeq""\n\t" \
223 ".set arch=r4000" "\n\t" \
224 "dsll32 %L0, %L0, 0" "\n\t" \
225 "dsrl32 %L0, %L0, 0" "\n\t" \
226 "dsll32 %M0, %M0, 0" "\n\t" \
227 "or %L0, %L0, %M0" "\n\t" \
228 "sd %L0, %2" "\n\t" \
229 ".set pop" "\n" \
230 : "=r" (__tmp) \
231 : "0" (__val), "m" (*__mem)); \
232 if (irq) \
233 local_irq_restore(__flags); \
234 } else \
235 BUG(); \
236} \
237 \
238static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
239{ \
240 volatile type *__mem; \
241 type __val; \
242 \
243 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
244 \
245 if (barrier) \
246 iobarrier_rw(); \
247 \
248 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
249 __val = *__mem; \
250 else if (cpu_has_64bits) { \
251 unsigned long __flags; \
252 \
253 if (irq) \
254 local_irq_save(__flags); \
255 __asm__ __volatile__( \
256 ".set push" "\t\t# __readq" "\n\t" \
257 ".set arch=r4000" "\n\t" \
258 "ld %L0, %1" "\n\t" \
259 "dsra32 %M0, %L0, 0" "\n\t" \
260 "sll %L0, %L0, 0" "\n\t" \
261 ".set pop" "\n" \
262 : "=r" (__val) \
263 : "m" (*__mem)); \
264 if (irq) \
265 local_irq_restore(__flags); \
266 } else { \
267 __val = 0; \
268 BUG(); \
269 } \
270 \
271 /* prevent prefetching of coherent DMA data prematurely */ \
272 if (!relax) \
273 rmb(); \
274 return pfx##ioswab##bwlq(__mem, __val); \
275}
276
277#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax) \
278 \
279static inline void pfx##out##bwlq(type val, unsigned long port) \
280{ \
281 volatile type *__addr; \
282 type __val; \
283 \
284 if (barrier) \
285 iobarrier_rw(); \
286 else \
287 war_io_reorder_wmb(); \
288 \
289 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
290 \
291 __val = pfx##ioswab##bwlq(__addr, val); \
292 \
293 /* Really, we want this to be atomic */ \
294 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
295 \
296 *__addr = __val; \
297} \
298 \
299static inline type pfx##in##bwlq(unsigned long port) \
300{ \
301 volatile type *__addr; \
302 type __val; \
303 \
304 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
305 \
306 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
307 \
308 if (barrier) \
309 iobarrier_rw(); \
310 \
311 __val = *__addr; \
312 \
313 /* prevent prefetching of coherent DMA data prematurely */ \
314 if (!relax) \
315 rmb(); \
316 return pfx##ioswab##bwlq(__addr, __val); \
317}
318
319#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
320 \
321__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
322
323#define BUILDIO_MEM(bwlq, type) \
324 \
325__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
326__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
327__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
328__BUILD_MEMORY_PFX(, bwlq, type, 0)
329
330BUILDIO_MEM(b, u8)
331BUILDIO_MEM(w, u16)
332BUILDIO_MEM(l, u32)
333#ifdef CONFIG_64BIT
334BUILDIO_MEM(q, u64)
335#else
336__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
337__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
338#endif
339
340#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
341 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0)
342
343#define BUILDIO_IOPORT(bwlq, type) \
344 __BUILD_IOPORT_PFX(_, bwlq, type) \
345 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
346
347BUILDIO_IOPORT(b, u8)
348BUILDIO_IOPORT(w, u16)
349BUILDIO_IOPORT(l, u32)
350#ifdef CONFIG_64BIT
351BUILDIO_IOPORT(q, u64)
352#endif
353
354#define __BUILDIO(bwlq, type) \
355 \
356__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
357
358__BUILDIO(q, u64)
359
360#define readb_relaxed __relaxed_readb
361#define readw_relaxed __relaxed_readw
362#define readl_relaxed __relaxed_readl
363#ifdef CONFIG_64BIT
364#define readq_relaxed __relaxed_readq
365#endif
366
367#define writeb_relaxed __relaxed_writeb
368#define writew_relaxed __relaxed_writew
369#define writel_relaxed __relaxed_writel
370#ifdef CONFIG_64BIT
371#define writeq_relaxed __relaxed_writeq
372#endif
373
374#define readb_be(addr) \
375 __raw_readb((__force unsigned *)(addr))
376#define readw_be(addr) \
377 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
378#define readl_be(addr) \
379 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
380#define readq_be(addr) \
381 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
382
383#define writeb_be(val, addr) \
384 __raw_writeb((val), (__force unsigned *)(addr))
385#define writew_be(val, addr) \
386 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
387#define writel_be(val, addr) \
388 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
389#define writeq_be(val, addr) \
390 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
391
392#define __BUILD_MEMORY_STRING(bwlq, type) \
393 \
394static inline void writes##bwlq(volatile void __iomem *mem, \
395 const void *addr, unsigned int count) \
396{ \
397 const volatile type *__addr = addr; \
398 \
399 while (count--) { \
400 __mem_write##bwlq(*__addr, mem); \
401 __addr++; \
402 } \
403} \
404 \
405static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
406 unsigned int count) \
407{ \
408 volatile type *__addr = addr; \
409 \
410 while (count--) { \
411 *__addr = __mem_read##bwlq(mem); \
412 __addr++; \
413 } \
414}
415
416#define __BUILD_IOPORT_STRING(bwlq, type) \
417 \
418static inline void outs##bwlq(unsigned long port, const void *addr, \
419 unsigned int count) \
420{ \
421 const volatile type *__addr = addr; \
422 \
423 while (count--) { \
424 __mem_out##bwlq(*__addr, port); \
425 __addr++; \
426 } \
427} \
428 \
429static inline void ins##bwlq(unsigned long port, void *addr, \
430 unsigned int count) \
431{ \
432 volatile type *__addr = addr; \
433 \
434 while (count--) { \
435 *__addr = __mem_in##bwlq(port); \
436 __addr++; \
437 } \
438}
439
440#define BUILDSTRING(bwlq, type) \
441 \
442__BUILD_MEMORY_STRING(bwlq, type) \
443__BUILD_IOPORT_STRING(bwlq, type)
444
445BUILDSTRING(b, u8)
446BUILDSTRING(w, u16)
447BUILDSTRING(l, u32)
448#ifdef CONFIG_64BIT
449BUILDSTRING(q, u64)
450#endif
451
452
453/*
454 * The caches on some architectures aren't dma-coherent and have need to
455 * handle this in software. There are three types of operations that
456 * can be applied to dma buffers.
457 *
458 * - dma_cache_wback_inv(start, size) makes caches and coherent by
459 * writing the content of the caches back to memory, if necessary.
460 * The function also invalidates the affected part of the caches as
461 * necessary before DMA transfers from outside to memory.
462 * - dma_cache_wback(start, size) makes caches and coherent by
463 * writing the content of the caches back to memory, if necessary.
464 * The function also invalidates the affected part of the caches as
465 * necessary before DMA transfers from outside to memory.
466 * - dma_cache_inv(start, size) invalidates the affected parts of the
467 * caches. Dirty lines of the caches may be written back or simply
468 * be discarded. This operation is necessary before dma operations
469 * to the memory.
470 *
471 * This API used to be exported; it now is for arch code internal use only.
472 */
473#ifdef CONFIG_DMA_NONCOHERENT
474
475extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
476extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
477extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
478
479#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
480#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
481#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
482
483#else /* Sane hardware */
484
485#define dma_cache_wback_inv(start,size) \
486 do { (void) (start); (void) (size); } while (0)
487#define dma_cache_wback(start,size) \
488 do { (void) (start); (void) (size); } while (0)
489#define dma_cache_inv(start,size) \
490 do { (void) (start); (void) (size); } while (0)
491
492#endif /* CONFIG_DMA_NONCOHERENT */
493
494/*
495 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
496 * Avoid interrupt mucking, just adjust the address for 4-byte access.
497 * Assume the addresses are 8-byte aligned.
498 */
499#ifdef __MIPSEB__
500#define __CSR_32_ADJUST 4
501#else
502#define __CSR_32_ADJUST 0
503#endif
504
505#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
506#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
507
508#define __raw_readb __raw_readb
509#define __raw_readw __raw_readw
510#define __raw_readl __raw_readl
511#ifdef CONFIG_64BIT
512#define __raw_readq __raw_readq
513#endif
514#define __raw_writeb __raw_writeb
515#define __raw_writew __raw_writew
516#define __raw_writel __raw_writel
517#ifdef CONFIG_64BIT
518#define __raw_writeq __raw_writeq
519#endif
520
521#define readb readb
522#define readw readw
523#define readl readl
524#ifdef CONFIG_64BIT
525#define readq readq
526#endif
527#define writeb writeb
528#define writew writew
529#define writel writel
530#ifdef CONFIG_64BIT
531#define writeq writeq
532#endif
533
534#define readsb readsb
535#define readsw readsw
536#define readsl readsl
537#ifdef CONFIG_64BIT
538#define readsq readsq
539#endif
540#define writesb writesb
541#define writesw writesw
542#define writesl writesl
543#ifdef CONFIG_64BIT
544#define writesq writesq
545#endif
546
547#define _inb _inb
548#define _inw _inw
549#define _inl _inl
550#define insb insb
551#define insw insw
552#define insl insl
553
554#define _outb _outb
555#define _outw _outw
556#define _outl _outl
557#define outsb outsb
558#define outsw outsw
559#define outsl outsl
560
561void __ioread64_copy(void *to, const void __iomem *from, size_t count);
562
563#include <asm-generic/io.h>
564
565static inline void *isa_bus_to_virt(unsigned long address)
566{
567 return phys_to_virt(address);
568}
569
570#endif /* _ASM_IO_H */