Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author: Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 15#define ARCH_HAS_IOREMAP_WC
 16
 17#include <linux/compiler.h>
 18#include <linux/kernel.h>
 19#include <linux/types.h>
 20#include <linux/irqflags.h>
 21
 22#include <asm/addrspace.h>
 23#include <asm/barrier.h>
 24#include <asm/bug.h>
 25#include <asm/byteorder.h>
 26#include <asm/cpu.h>
 27#include <asm/cpu-features.h>
 28#include <asm-generic/iomap.h>
 29#include <asm/page.h>
 30#include <asm/pgtable-bits.h>
 31#include <asm/processor.h>
 32#include <asm/string.h>
 33#include <mangle-port.h>
 34
 35/*
 36 * Raw operations are never swapped in software.  OTOH values that raw
 37 * operations are working on may or may not have been swapped by the bus
 38 * hardware.  An example use would be for flash memory that's used for
 39 * execute in place.
 40 */
 41# define __raw_ioswabb(a, x)	(x)
 42# define __raw_ioswabw(a, x)	(x)
 43# define __raw_ioswabl(a, x)	(x)
 44# define __raw_ioswabq(a, x)	(x)
 45# define ____raw_ioswabq(a, x)	(x)
 46
 
 
 
 
 
 47# define __relaxed_ioswabb ioswabb
 48# define __relaxed_ioswabw ioswabw
 49# define __relaxed_ioswabl ioswabl
 50# define __relaxed_ioswabq ioswabq
 51
 52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 53
 54/*
 55 * On MIPS I/O ports are memory mapped, so we access them using normal
 56 * load/store instructions. mips_io_port_base is the virtual address to
 57 * which all ports are being mapped.  For sake of efficiency some code
 58 * assumes that this is an address that can be loaded with a single lui
 59 * instruction, so the lower 16 bits must be zero.  Should be true on
 60 * any sane architecture; generic code does not use this assumption.
 61 */
 62extern unsigned long mips_io_port_base;
 63
 64static inline void set_io_port_base(unsigned long base)
 65{
 66	mips_io_port_base = base;
 67}
 68
 69/*
 70 * Provide the necessary definitions for generic iomap. We make use of
 71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
 72 * use with I/O ports.
 73 */
 74
 75#define HAVE_ARCH_PIO_SIZE
 76#define PIO_OFFSET	mips_io_port_base
 77#define PIO_MASK	IO_SPACE_LIMIT
 78#define PIO_RESERVED	0x0UL
 79
 80/*
 81 * Enforce in-order execution of data I/O.  In the MIPS architecture
 82 * these are equivalent to corresponding platform-specific memory
 83 * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
 84 * with sync additionally defined.
 85 */
 86#define iobarrier_rw() mb()
 87#define iobarrier_r() rmb()
 88#define iobarrier_w() wmb()
 89#define iobarrier_sync() iob()
 90
 91/*
 92 *     virt_to_phys    -       map virtual addresses to physical
 93 *     @address: address to remap
 94 *
 95 *     The returned physical address is the physical (CPU) mapping for
 96 *     the memory address given. It is only valid to use this function on
 97 *     addresses directly mapped or allocated via kmalloc.
 98 *
 99 *     This function does not give bus mappings for DMA transfers. In
100 *     almost all conceivable cases a device driver should not be using
101 *     this function
102 */
103static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104{
105	return __pa(address);
106}
107
108#ifdef CONFIG_DEBUG_VIRTUAL
109extern phys_addr_t __virt_to_phys(volatile const void *x);
110#else
111#define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
112#endif
113
114#define virt_to_phys virt_to_phys
115static inline phys_addr_t virt_to_phys(const volatile void *x)
116{
117	return __virt_to_phys(x);
118}
119
120/*
121 *     phys_to_virt    -       map physical address to virtual
122 *     @address: address to remap
123 *
124 *     The returned virtual address is a current CPU mapping for
125 *     the memory address given. It is only valid to use this function on
126 *     addresses that have a kernel mapping
127 *
128 *     This function does not handle bus mappings for DMA transfers. In
129 *     almost all conceivable cases a device driver should not be using
130 *     this function
131 */
132static inline void * phys_to_virt(unsigned long address)
133{
134	return __va(address);
135}
136
137/*
138 * ISA I/O bus memory addresses are 1:1 with the physical address.
139 */
140static inline unsigned long isa_virt_to_bus(volatile void *address)
141{
142	return virt_to_phys(address);
143}
144
145static inline void *isa_bus_to_virt(unsigned long address)
146{
147	return phys_to_virt(address);
148}
149
150/*
151 * Change "struct page" to physical address.
152 */
153#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
154
155void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
156		unsigned long prot_val);
157void iounmap(const volatile void __iomem *addr);
158
159/*
160 * ioremap     -   map bus memory into CPU space
161 * @offset:    bus address of the memory
162 * @size:      size of the resource to map
163 *
164 * ioremap performs a platform specific sequence of operations to
165 * make bus memory CPU accessible via the readb/readw/readl/writeb/
166 * writew/writel functions and the other mmio helpers. The returned
167 * address is not guaranteed to be usable directly as a virtual
168 * address.
169 */
170#define ioremap(offset, size)						\
171	ioremap_prot((offset), (size), _CACHE_UNCACHED)
172#define ioremap_uc		ioremap
173
174/*
175 * ioremap_cache -	map bus memory into CPU space
176 * @offset:	    bus address of the memory
177 * @size:	    size of the resource to map
178 *
179 * ioremap_cache performs a platform specific sequence of operations to
180 * make bus memory CPU accessible via the readb/readw/readl/writeb/
181 * writew/writel functions and the other mmio helpers. The returned
182 * address is not guaranteed to be usable directly as a virtual
183 * address.
184 *
185 * This version of ioremap ensures that the memory is marked cachable by
186 * the CPU.  Also enables full write-combining.	 Useful for some
187 * memory-like regions on I/O busses.
188 */
189#define ioremap_cache(offset, size)					\
190	ioremap_prot((offset), (size), _page_cachable_default)
191
192/*
193 * ioremap_wc     -   map bus memory into CPU space
194 * @offset:    bus address of the memory
195 * @size:      size of the resource to map
196 *
197 * ioremap_wc performs a platform specific sequence of operations to
198 * make bus memory CPU accessible via the readb/readw/readl/writeb/
199 * writew/writel functions and the other mmio helpers. The returned
200 * address is not guaranteed to be usable directly as a virtual
201 * address.
202 *
203 * This version of ioremap ensures that the memory is marked uncachable
204 * but accelerated by means of write-combining feature. It is specifically
205 * useful for PCIe prefetchable windows, which may vastly improve a
206 * communications performance. If it was determined on boot stage, what
207 * CPU CCA doesn't support UCA, the method shall fall-back to the
208 * _CACHE_UNCACHED option (see cpu_probe() method).
209 */
210#define ioremap_wc(offset, size)					\
211	ioremap_prot((offset), (size), boot_cpu_data.writecombine)
212
213#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64)
214#define war_io_reorder_wmb()		wmb()
215#else
216#define war_io_reorder_wmb()		barrier()
217#endif
218
219#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
220									\
221static inline void pfx##write##bwlq(type val,				\
222				    volatile void __iomem *mem)		\
223{									\
224	volatile type *__mem;						\
225	type __val;							\
226									\
227	if (barrier)							\
228		iobarrier_rw();						\
229	else								\
230		war_io_reorder_wmb();					\
231									\
232	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
233									\
234	__val = pfx##ioswab##bwlq(__mem, val);				\
235									\
236	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
237		*__mem = __val;						\
238	else if (cpu_has_64bits) {					\
239		unsigned long __flags;					\
240		type __tmp;						\
241									\
242		if (irq)						\
243			local_irq_save(__flags);			\
244		__asm__ __volatile__(					\
245			".set	push"		"\t\t# __writeq""\n\t"	\
246			".set	arch=r4000"			"\n\t"	\
247			"dsll32 %L0, %L0, 0"			"\n\t"	\
248			"dsrl32 %L0, %L0, 0"			"\n\t"	\
249			"dsll32 %M0, %M0, 0"			"\n\t"	\
250			"or	%L0, %L0, %M0"			"\n\t"	\
251			"sd	%L0, %2"			"\n\t"	\
252			".set	pop"				"\n"	\
253			: "=r" (__tmp)					\
254			: "0" (__val), "m" (*__mem));			\
255		if (irq)						\
256			local_irq_restore(__flags);			\
257	} else								\
258		BUG();							\
259}									\
260									\
261static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
262{									\
263	volatile type *__mem;						\
264	type __val;							\
265									\
266	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
267									\
268	if (barrier)							\
269		iobarrier_rw();						\
270									\
271	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
272		__val = *__mem;						\
273	else if (cpu_has_64bits) {					\
274		unsigned long __flags;					\
275									\
276		if (irq)						\
277			local_irq_save(__flags);			\
278		__asm__ __volatile__(					\
279			".set	push"		"\t\t# __readq" "\n\t"	\
280			".set	arch=r4000"			"\n\t"	\
281			"ld	%L0, %1"			"\n\t"	\
282			"dsra32 %M0, %L0, 0"			"\n\t"	\
283			"sll	%L0, %L0, 0"			"\n\t"	\
284			".set	pop"				"\n"	\
285			: "=r" (__val)					\
286			: "m" (*__mem));				\
287		if (irq)						\
288			local_irq_restore(__flags);			\
289	} else {							\
290		__val = 0;						\
291		BUG();							\
292	}								\
293									\
294	/* prevent prefetching of coherent DMA data prematurely */	\
295	if (!relax)							\
296		rmb();							\
297	return pfx##ioswab##bwlq(__mem, __val);				\
298}
299
300#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p)	\
301									\
302static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
303{									\
304	volatile type *__addr;						\
305	type __val;							\
306									\
307	if (barrier)							\
308		iobarrier_rw();						\
309	else								\
310		war_io_reorder_wmb();					\
311									\
312	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
313									\
314	__val = pfx##ioswab##bwlq(__addr, val);				\
315									\
316	/* Really, we want this to be atomic */				\
317	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
318									\
319	*__addr = __val;						\
320}									\
321									\
322static inline type pfx##in##bwlq##p(unsigned long port)			\
323{									\
324	volatile type *__addr;						\
325	type __val;							\
326									\
327	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
328									\
329	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
330									\
331	if (barrier)							\
332		iobarrier_rw();						\
333									\
334	__val = *__addr;						\
335									\
336	/* prevent prefetching of coherent DMA data prematurely */	\
337	if (!relax)							\
338		rmb();							\
339	return pfx##ioswab##bwlq(__addr, __val);			\
340}
341
342#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
343									\
344__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
345
346#define BUILDIO_MEM(bwlq, type)						\
347									\
348__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
349__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
350__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
351__BUILD_MEMORY_PFX(, bwlq, type, 0)
352
353BUILDIO_MEM(b, u8)
354BUILDIO_MEM(w, u16)
355BUILDIO_MEM(l, u32)
356#ifdef CONFIG_64BIT
357BUILDIO_MEM(q, u64)
358#else
359__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
360__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
361#endif
362
363#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
364	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,)			\
365	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
366
367#define BUILDIO_IOPORT(bwlq, type)					\
368	__BUILD_IOPORT_PFX(, bwlq, type)				\
369	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
370
371BUILDIO_IOPORT(b, u8)
372BUILDIO_IOPORT(w, u16)
373BUILDIO_IOPORT(l, u32)
374#ifdef CONFIG_64BIT
375BUILDIO_IOPORT(q, u64)
376#endif
377
378#define __BUILDIO(bwlq, type)						\
379									\
380__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
381
382__BUILDIO(q, u64)
383
384#define readb_relaxed			__relaxed_readb
385#define readw_relaxed			__relaxed_readw
386#define readl_relaxed			__relaxed_readl
387#ifdef CONFIG_64BIT
388#define readq_relaxed			__relaxed_readq
389#endif
390
391#define writeb_relaxed			__relaxed_writeb
392#define writew_relaxed			__relaxed_writew
393#define writel_relaxed			__relaxed_writel
394#ifdef CONFIG_64BIT
395#define writeq_relaxed			__relaxed_writeq
396#endif
397
398#define readb_be(addr)							\
399	__raw_readb((__force unsigned *)(addr))
400#define readw_be(addr)							\
401	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
402#define readl_be(addr)							\
403	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
404#define readq_be(addr)							\
405	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
406
407#define writeb_be(val, addr)						\
408	__raw_writeb((val), (__force unsigned *)(addr))
409#define writew_be(val, addr)						\
410	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
411#define writel_be(val, addr)						\
412	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
413#define writeq_be(val, addr)						\
414	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
415
416/*
417 * Some code tests for these symbols
418 */
419#ifdef CONFIG_64BIT
420#define readq				readq
421#define writeq				writeq
422#endif
423
424#define __BUILD_MEMORY_STRING(bwlq, type)				\
425									\
426static inline void writes##bwlq(volatile void __iomem *mem,		\
427				const void *addr, unsigned int count)	\
428{									\
429	const volatile type *__addr = addr;				\
430									\
431	while (count--) {						\
432		__mem_write##bwlq(*__addr, mem);			\
433		__addr++;						\
434	}								\
435}									\
436									\
437static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
438			       unsigned int count)			\
439{									\
440	volatile type *__addr = addr;					\
441									\
442	while (count--) {						\
443		*__addr = __mem_read##bwlq(mem);			\
444		__addr++;						\
445	}								\
446}
447
448#define __BUILD_IOPORT_STRING(bwlq, type)				\
449									\
450static inline void outs##bwlq(unsigned long port, const void *addr,	\
451			      unsigned int count)			\
452{									\
453	const volatile type *__addr = addr;				\
454									\
455	while (count--) {						\
456		__mem_out##bwlq(*__addr, port);				\
457		__addr++;						\
458	}								\
459}									\
460									\
461static inline void ins##bwlq(unsigned long port, void *addr,		\
462			     unsigned int count)			\
463{									\
464	volatile type *__addr = addr;					\
465									\
466	while (count--) {						\
467		*__addr = __mem_in##bwlq(port);				\
468		__addr++;						\
469	}								\
470}
471
472#define BUILDSTRING(bwlq, type)						\
473									\
474__BUILD_MEMORY_STRING(bwlq, type)					\
475__BUILD_IOPORT_STRING(bwlq, type)
476
477BUILDSTRING(b, u8)
478BUILDSTRING(w, u16)
479BUILDSTRING(l, u32)
480#ifdef CONFIG_64BIT
481BUILDSTRING(q, u64)
482#endif
483
484static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
485{
486	memset((void __force *) addr, val, count);
487}
488static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
489{
490	memcpy(dst, (void __force *) src, count);
491}
492static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
493{
494	memcpy((void __force *) dst, src, count);
495}
496
497/*
498 * The caches on some architectures aren't dma-coherent and have need to
499 * handle this in software.  There are three types of operations that
500 * can be applied to dma buffers.
501 *
502 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
503 *    writing the content of the caches back to memory, if necessary.
504 *    The function also invalidates the affected part of the caches as
505 *    necessary before DMA transfers from outside to memory.
506 *  - dma_cache_wback(start, size) makes caches and coherent by
507 *    writing the content of the caches back to memory, if necessary.
508 *    The function also invalidates the affected part of the caches as
509 *    necessary before DMA transfers from outside to memory.
510 *  - dma_cache_inv(start, size) invalidates the affected parts of the
511 *    caches.  Dirty lines of the caches may be written back or simply
512 *    be discarded.  This operation is necessary before dma operations
513 *    to the memory.
514 *
515 * This API used to be exported; it now is for arch code internal use only.
516 */
517#ifdef CONFIG_DMA_NONCOHERENT
518
519extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
520extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
521extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
522
523#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
524#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
525#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
526
527#else /* Sane hardware */
528
529#define dma_cache_wback_inv(start,size) \
530	do { (void) (start); (void) (size); } while (0)
531#define dma_cache_wback(start,size)	\
532	do { (void) (start); (void) (size); } while (0)
533#define dma_cache_inv(start,size)	\
534	do { (void) (start); (void) (size); } while (0)
535
536#endif /* CONFIG_DMA_NONCOHERENT */
537
538/*
539 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
540 * Avoid interrupt mucking, just adjust the address for 4-byte access.
541 * Assume the addresses are 8-byte aligned.
542 */
543#ifdef __MIPSEB__
544#define __CSR_32_ADJUST 4
545#else
546#define __CSR_32_ADJUST 0
547#endif
548
549#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
550#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
551
552/*
553 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
554 * access
555 */
556#define xlate_dev_mem_ptr(p)	__va(p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557
558void __ioread64_copy(void *to, const void __iomem *from, size_t count);
 
 
 
 
 
 
 
559
560#endif /* _ASM_IO_H */
v6.9.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author: Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 
 
 15#include <linux/compiler.h>
 
 16#include <linux/types.h>
 17#include <linux/irqflags.h>
 18
 19#include <asm/addrspace.h>
 20#include <asm/barrier.h>
 21#include <asm/bug.h>
 22#include <asm/byteorder.h>
 23#include <asm/cpu.h>
 24#include <asm/cpu-features.h>
 
 25#include <asm/page.h>
 26#include <asm/pgtable-bits.h>
 
 27#include <asm/string.h>
 28#include <mangle-port.h>
 29
 30/*
 31 * Raw operations are never swapped in software.  OTOH values that raw
 32 * operations are working on may or may not have been swapped by the bus
 33 * hardware.  An example use would be for flash memory that's used for
 34 * execute in place.
 35 */
 36# define __raw_ioswabb(a, x)	(x)
 37# define __raw_ioswabw(a, x)	(x)
 38# define __raw_ioswabl(a, x)	(x)
 39# define __raw_ioswabq(a, x)	(x)
 40# define ____raw_ioswabq(a, x)	(x)
 41
 42# define _ioswabb ioswabb
 43# define _ioswabw ioswabw
 44# define _ioswabl ioswabl
 45# define _ioswabq ioswabq
 46
 47# define __relaxed_ioswabb ioswabb
 48# define __relaxed_ioswabw ioswabw
 49# define __relaxed_ioswabl ioswabl
 50# define __relaxed_ioswabq ioswabq
 51
 52/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 53
 54/*
 55 * On MIPS I/O ports are memory mapped, so we access them using normal
 56 * load/store instructions. mips_io_port_base is the virtual address to
 57 * which all ports are being mapped.  For sake of efficiency some code
 58 * assumes that this is an address that can be loaded with a single lui
 59 * instruction, so the lower 16 bits must be zero.  Should be true on
 60 * any sane architecture; generic code does not use this assumption.
 61 */
 62extern unsigned long mips_io_port_base;
 63
 64static inline void set_io_port_base(unsigned long base)
 65{
 66	mips_io_port_base = base;
 67}
 68
 69/*
 70 * Provide the necessary definitions for generic iomap. We make use of
 71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
 72 * use with I/O ports.
 73 */
 74
 75#define HAVE_ARCH_PIO_SIZE
 76#define PIO_OFFSET	mips_io_port_base
 77#define PIO_MASK	IO_SPACE_LIMIT
 78#define PIO_RESERVED	0x0UL
 79
 80/*
 81 * Enforce in-order execution of data I/O.  In the MIPS architecture
 82 * these are equivalent to corresponding platform-specific memory
 83 * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
 84 * with sync additionally defined.
 85 */
 86#define iobarrier_rw() mb()
 87#define iobarrier_r() rmb()
 88#define iobarrier_w() wmb()
 89#define iobarrier_sync() iob()
 90
 91/*
 92 *     virt_to_phys    -       map virtual addresses to physical
 93 *     @address: address to remap
 94 *
 95 *     The returned physical address is the physical (CPU) mapping for
 96 *     the memory address given. It is only valid to use this function on
 97 *     addresses directly mapped or allocated via kmalloc.
 98 *
 99 *     This function does not give bus mappings for DMA transfers. In
100 *     almost all conceivable cases a device driver should not be using
101 *     this function
102 */
103static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
104{
105	return __pa(address);
106}
107
108#ifdef CONFIG_DEBUG_VIRTUAL
109extern phys_addr_t __virt_to_phys(volatile const void *x);
110#else
111#define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
112#endif
113
114#define virt_to_phys virt_to_phys
115static inline phys_addr_t virt_to_phys(const volatile void *x)
116{
117	return __virt_to_phys(x);
118}
119
120/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121 * ISA I/O bus memory addresses are 1:1 with the physical address.
122 */
123static inline unsigned long isa_virt_to_bus(volatile void *address)
124{
125	return virt_to_phys(address);
126}
127
 
 
 
 
 
128/*
129 * Change "struct page" to physical address.
130 */
131#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
132
133void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
134		unsigned long prot_val);
135void iounmap(const volatile void __iomem *addr);
136
137/*
138 * ioremap     -   map bus memory into CPU space
139 * @offset:    bus address of the memory
140 * @size:      size of the resource to map
141 *
142 * ioremap performs a platform specific sequence of operations to
143 * make bus memory CPU accessible via the readb/readw/readl/writeb/
144 * writew/writel functions and the other mmio helpers. The returned
145 * address is not guaranteed to be usable directly as a virtual
146 * address.
147 */
148#define ioremap(offset, size)						\
149	ioremap_prot((offset), (size), _CACHE_UNCACHED)
 
150
151/*
152 * ioremap_cache -	map bus memory into CPU space
153 * @offset:	    bus address of the memory
154 * @size:	    size of the resource to map
155 *
156 * ioremap_cache performs a platform specific sequence of operations to
157 * make bus memory CPU accessible via the readb/readw/readl/writeb/
158 * writew/writel functions and the other mmio helpers. The returned
159 * address is not guaranteed to be usable directly as a virtual
160 * address.
161 *
162 * This version of ioremap ensures that the memory is marked cacheable by
163 * the CPU.  Also enables full write-combining.	 Useful for some
164 * memory-like regions on I/O busses.
165 */
166#define ioremap_cache(offset, size)					\
167	ioremap_prot((offset), (size), _page_cachable_default)
168
169/*
170 * ioremap_wc     -   map bus memory into CPU space
171 * @offset:    bus address of the memory
172 * @size:      size of the resource to map
173 *
174 * ioremap_wc performs a platform specific sequence of operations to
175 * make bus memory CPU accessible via the readb/readw/readl/writeb/
176 * writew/writel functions and the other mmio helpers. The returned
177 * address is not guaranteed to be usable directly as a virtual
178 * address.
179 *
180 * This version of ioremap ensures that the memory is marked uncacheable
181 * but accelerated by means of write-combining feature. It is specifically
182 * useful for PCIe prefetchable windows, which may vastly improve a
183 * communications performance. If it was determined on boot stage, what
184 * CPU CCA doesn't support UCA, the method shall fall-back to the
185 * _CACHE_UNCACHED option (see cpu_probe() method).
186 */
187#define ioremap_wc(offset, size)					\
188	ioremap_prot((offset), (size), boot_cpu_data.writecombine)
189
190#if defined(CONFIG_CPU_CAVIUM_OCTEON)
191#define war_io_reorder_wmb()		wmb()
192#else
193#define war_io_reorder_wmb()		barrier()
194#endif
195
196#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
197									\
198static inline void pfx##write##bwlq(type val,				\
199				    volatile void __iomem *mem)		\
200{									\
201	volatile type *__mem;						\
202	type __val;							\
203									\
204	if (barrier)							\
205		iobarrier_rw();						\
206	else								\
207		war_io_reorder_wmb();					\
208									\
209	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
210									\
211	__val = pfx##ioswab##bwlq(__mem, val);				\
212									\
213	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
214		*__mem = __val;						\
215	else if (cpu_has_64bits) {					\
216		unsigned long __flags;					\
217		type __tmp;						\
218									\
219		if (irq)						\
220			local_irq_save(__flags);			\
221		__asm__ __volatile__(					\
222			".set	push"		"\t\t# __writeq""\n\t"	\
223			".set	arch=r4000"			"\n\t"	\
224			"dsll32 %L0, %L0, 0"			"\n\t"	\
225			"dsrl32 %L0, %L0, 0"			"\n\t"	\
226			"dsll32 %M0, %M0, 0"			"\n\t"	\
227			"or	%L0, %L0, %M0"			"\n\t"	\
228			"sd	%L0, %2"			"\n\t"	\
229			".set	pop"				"\n"	\
230			: "=r" (__tmp)					\
231			: "0" (__val), "m" (*__mem));			\
232		if (irq)						\
233			local_irq_restore(__flags);			\
234	} else								\
235		BUG();							\
236}									\
237									\
238static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
239{									\
240	volatile type *__mem;						\
241	type __val;							\
242									\
243	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
244									\
245	if (barrier)							\
246		iobarrier_rw();						\
247									\
248	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
249		__val = *__mem;						\
250	else if (cpu_has_64bits) {					\
251		unsigned long __flags;					\
252									\
253		if (irq)						\
254			local_irq_save(__flags);			\
255		__asm__ __volatile__(					\
256			".set	push"		"\t\t# __readq" "\n\t"	\
257			".set	arch=r4000"			"\n\t"	\
258			"ld	%L0, %1"			"\n\t"	\
259			"dsra32 %M0, %L0, 0"			"\n\t"	\
260			"sll	%L0, %L0, 0"			"\n\t"	\
261			".set	pop"				"\n"	\
262			: "=r" (__val)					\
263			: "m" (*__mem));				\
264		if (irq)						\
265			local_irq_restore(__flags);			\
266	} else {							\
267		__val = 0;						\
268		BUG();							\
269	}								\
270									\
271	/* prevent prefetching of coherent DMA data prematurely */	\
272	if (!relax)							\
273		rmb();							\
274	return pfx##ioswab##bwlq(__mem, __val);				\
275}
276
277#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax)		\
278									\
279static inline void pfx##out##bwlq(type val, unsigned long port)		\
280{									\
281	volatile type *__addr;						\
282	type __val;							\
283									\
284	if (barrier)							\
285		iobarrier_rw();						\
286	else								\
287		war_io_reorder_wmb();					\
288									\
289	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
290									\
291	__val = pfx##ioswab##bwlq(__addr, val);				\
292									\
293	/* Really, we want this to be atomic */				\
294	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
295									\
296	*__addr = __val;						\
297}									\
298									\
299static inline type pfx##in##bwlq(unsigned long port)			\
300{									\
301	volatile type *__addr;						\
302	type __val;							\
303									\
304	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
305									\
306	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
307									\
308	if (barrier)							\
309		iobarrier_rw();						\
310									\
311	__val = *__addr;						\
312									\
313	/* prevent prefetching of coherent DMA data prematurely */	\
314	if (!relax)							\
315		rmb();							\
316	return pfx##ioswab##bwlq(__addr, __val);			\
317}
318
319#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
320									\
321__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
322
323#define BUILDIO_MEM(bwlq, type)						\
324									\
325__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
326__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
327__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
328__BUILD_MEMORY_PFX(, bwlq, type, 0)
329
330BUILDIO_MEM(b, u8)
331BUILDIO_MEM(w, u16)
332BUILDIO_MEM(l, u32)
333#ifdef CONFIG_64BIT
334BUILDIO_MEM(q, u64)
335#else
336__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
337__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
338#endif
339
340#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
341	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0)
 
342
343#define BUILDIO_IOPORT(bwlq, type)					\
344	__BUILD_IOPORT_PFX(_, bwlq, type)				\
345	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
346
347BUILDIO_IOPORT(b, u8)
348BUILDIO_IOPORT(w, u16)
349BUILDIO_IOPORT(l, u32)
350#ifdef CONFIG_64BIT
351BUILDIO_IOPORT(q, u64)
352#endif
353
354#define __BUILDIO(bwlq, type)						\
355									\
356__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
357
358__BUILDIO(q, u64)
359
360#define readb_relaxed			__relaxed_readb
361#define readw_relaxed			__relaxed_readw
362#define readl_relaxed			__relaxed_readl
363#ifdef CONFIG_64BIT
364#define readq_relaxed			__relaxed_readq
365#endif
366
367#define writeb_relaxed			__relaxed_writeb
368#define writew_relaxed			__relaxed_writew
369#define writel_relaxed			__relaxed_writel
370#ifdef CONFIG_64BIT
371#define writeq_relaxed			__relaxed_writeq
372#endif
373
374#define readb_be(addr)							\
375	__raw_readb((__force unsigned *)(addr))
376#define readw_be(addr)							\
377	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
378#define readl_be(addr)							\
379	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
380#define readq_be(addr)							\
381	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
382
383#define writeb_be(val, addr)						\
384	__raw_writeb((val), (__force unsigned *)(addr))
385#define writew_be(val, addr)						\
386	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
387#define writel_be(val, addr)						\
388	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
389#define writeq_be(val, addr)						\
390	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
391
 
 
 
 
 
 
 
 
392#define __BUILD_MEMORY_STRING(bwlq, type)				\
393									\
394static inline void writes##bwlq(volatile void __iomem *mem,		\
395				const void *addr, unsigned int count)	\
396{									\
397	const volatile type *__addr = addr;				\
398									\
399	while (count--) {						\
400		__mem_write##bwlq(*__addr, mem);			\
401		__addr++;						\
402	}								\
403}									\
404									\
405static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
406			       unsigned int count)			\
407{									\
408	volatile type *__addr = addr;					\
409									\
410	while (count--) {						\
411		*__addr = __mem_read##bwlq(mem);			\
412		__addr++;						\
413	}								\
414}
415
416#define __BUILD_IOPORT_STRING(bwlq, type)				\
417									\
418static inline void outs##bwlq(unsigned long port, const void *addr,	\
419			      unsigned int count)			\
420{									\
421	const volatile type *__addr = addr;				\
422									\
423	while (count--) {						\
424		__mem_out##bwlq(*__addr, port);				\
425		__addr++;						\
426	}								\
427}									\
428									\
429static inline void ins##bwlq(unsigned long port, void *addr,		\
430			     unsigned int count)			\
431{									\
432	volatile type *__addr = addr;					\
433									\
434	while (count--) {						\
435		*__addr = __mem_in##bwlq(port);				\
436		__addr++;						\
437	}								\
438}
439
440#define BUILDSTRING(bwlq, type)						\
441									\
442__BUILD_MEMORY_STRING(bwlq, type)					\
443__BUILD_IOPORT_STRING(bwlq, type)
444
445BUILDSTRING(b, u8)
446BUILDSTRING(w, u16)
447BUILDSTRING(l, u32)
448#ifdef CONFIG_64BIT
449BUILDSTRING(q, u64)
450#endif
451
 
 
 
 
 
 
 
 
 
 
 
 
452
453/*
454 * The caches on some architectures aren't dma-coherent and have need to
455 * handle this in software.  There are three types of operations that
456 * can be applied to dma buffers.
457 *
458 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
459 *    writing the content of the caches back to memory, if necessary.
460 *    The function also invalidates the affected part of the caches as
461 *    necessary before DMA transfers from outside to memory.
462 *  - dma_cache_wback(start, size) makes caches and coherent by
463 *    writing the content of the caches back to memory, if necessary.
464 *    The function also invalidates the affected part of the caches as
465 *    necessary before DMA transfers from outside to memory.
466 *  - dma_cache_inv(start, size) invalidates the affected parts of the
467 *    caches.  Dirty lines of the caches may be written back or simply
468 *    be discarded.  This operation is necessary before dma operations
469 *    to the memory.
470 *
471 * This API used to be exported; it now is for arch code internal use only.
472 */
473#ifdef CONFIG_DMA_NONCOHERENT
474
475extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
476extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
477extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
478
479#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
480#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
481#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
482
483#else /* Sane hardware */
484
485#define dma_cache_wback_inv(start,size) \
486	do { (void) (start); (void) (size); } while (0)
487#define dma_cache_wback(start,size)	\
488	do { (void) (start); (void) (size); } while (0)
489#define dma_cache_inv(start,size)	\
490	do { (void) (start); (void) (size); } while (0)
491
492#endif /* CONFIG_DMA_NONCOHERENT */
493
494/*
495 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
496 * Avoid interrupt mucking, just adjust the address for 4-byte access.
497 * Assume the addresses are 8-byte aligned.
498 */
499#ifdef __MIPSEB__
500#define __CSR_32_ADJUST 4
501#else
502#define __CSR_32_ADJUST 0
503#endif
504
505#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
506#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
507
508#define __raw_readb __raw_readb
509#define __raw_readw __raw_readw
510#define __raw_readl __raw_readl
511#ifdef CONFIG_64BIT
512#define __raw_readq __raw_readq
513#endif
514#define __raw_writeb __raw_writeb
515#define __raw_writew __raw_writew
516#define __raw_writel __raw_writel
517#ifdef CONFIG_64BIT
518#define __raw_writeq __raw_writeq
519#endif
520
521#define readb readb
522#define readw readw
523#define readl readl
524#ifdef CONFIG_64BIT
525#define readq readq
526#endif
527#define writeb writeb
528#define writew writew
529#define writel writel
530#ifdef CONFIG_64BIT
531#define writeq writeq
532#endif
533
534#define readsb readsb
535#define readsw readsw
536#define readsl readsl
537#ifdef CONFIG_64BIT
538#define readsq readsq
539#endif
540#define writesb writesb
541#define writesw writesw
542#define writesl writesl
543#ifdef CONFIG_64BIT
544#define writesq writesq
545#endif
546
547#define _inb _inb
548#define _inw _inw
549#define _inl _inl
550#define insb insb
551#define insw insw
552#define insl insl
553
554#define _outb _outb
555#define _outw _outw
556#define _outl _outl
557#define outsb outsb
558#define outsw outsw
559#define outsl outsl
560
561void __ioread64_copy(void *to, const void __iomem *from, size_t count);
562
563#include <asm-generic/io.h>
564
565static inline void *isa_bus_to_virt(unsigned long address)
566{
567	return phys_to_virt(address);
568}
569
570#endif /* _ASM_IO_H */