Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* internal.h: mm/ internal definitions
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 */
  7#ifndef __MM_INTERNAL_H
  8#define __MM_INTERNAL_H
  9
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/pagemap.h>
 13#include <linux/rmap.h>
 14#include <linux/tracepoint-defs.h>
 15
 16struct folio_batch;
 17
 18/*
 19 * The set of flags that only affect watermark checking and reclaim
 20 * behaviour. This is used by the MM to obey the caller constraints
 21 * about IO, FS and watermark checking while ignoring placement
 22 * hints such as HIGHMEM usage.
 23 */
 24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 25			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 26			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 27			__GFP_ATOMIC|__GFP_NOLOCKDEP)
 28
 29/* The GFP flags allowed during early boot */
 30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 31
 32/* Control allocation cpuset and node placement constraints */
 33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 34
 35/* Do not use these with a slab allocator */
 36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 37
 38/*
 39 * Different from WARN_ON_ONCE(), no warning will be issued
 40 * when we specify __GFP_NOWARN.
 41 */
 42#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
 43	static bool __section(".data.once") __warned;			\
 44	int __ret_warn_once = !!(cond);					\
 45									\
 46	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
 47		__warned = true;					\
 48		WARN_ON(1);						\
 49	}								\
 50	unlikely(__ret_warn_once);					\
 51})
 52
 53void page_writeback_init(void);
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55static inline void *folio_raw_mapping(struct folio *folio)
 56{
 57	unsigned long mapping = (unsigned long)folio->mapping;
 58
 59	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
 60}
 61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 63						int nr_throttled);
 64static inline void acct_reclaim_writeback(struct folio *folio)
 65{
 66	pg_data_t *pgdat = folio_pgdat(folio);
 67	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 68
 69	if (nr_throttled)
 70		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 71}
 72
 73static inline void wake_throttle_isolated(pg_data_t *pgdat)
 74{
 75	wait_queue_head_t *wqh;
 76
 77	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 78	if (waitqueue_active(wqh))
 79		wake_up(wqh);
 80}
 81
 
 82vm_fault_t do_swap_page(struct vm_fault *vmf);
 83void folio_rotate_reclaimable(struct folio *folio);
 84bool __folio_end_writeback(struct folio *folio);
 85void deactivate_file_folio(struct folio *folio);
 86void folio_activate(struct folio *folio);
 87
 88void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
 89		   struct vm_area_struct *start_vma, unsigned long floor,
 90		   unsigned long ceiling);
 91void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 92
 93struct zap_details;
 94void unmap_page_range(struct mmu_gather *tlb,
 95			     struct vm_area_struct *vma,
 96			     unsigned long addr, unsigned long end,
 97			     struct zap_details *details);
 98
 99void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
100		unsigned int order);
101void force_page_cache_ra(struct readahead_control *, unsigned long nr);
102static inline void force_page_cache_readahead(struct address_space *mapping,
103		struct file *file, pgoff_t index, unsigned long nr_to_read)
104{
105	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
106	force_page_cache_ra(&ractl, nr_to_read);
107}
108
109unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
110		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
111unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
112		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
113void filemap_free_folio(struct address_space *mapping, struct folio *folio);
114int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
115bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
116		loff_t end);
117long invalidate_inode_page(struct page *page);
118unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
119		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
120
121/**
122 * folio_evictable - Test whether a folio is evictable.
123 * @folio: The folio to test.
124 *
125 * Test whether @folio is evictable -- i.e., should be placed on
126 * active/inactive lists vs unevictable list.
127 *
128 * Reasons folio might not be evictable:
129 * 1. folio's mapping marked unevictable
130 * 2. One of the pages in the folio is part of an mlocked VMA
131 */
132static inline bool folio_evictable(struct folio *folio)
133{
134	bool ret;
135
136	/* Prevent address_space of inode and swap cache from being freed */
137	rcu_read_lock();
138	ret = !mapping_unevictable(folio_mapping(folio)) &&
139			!folio_test_mlocked(folio);
140	rcu_read_unlock();
141	return ret;
142}
143
144static inline bool page_evictable(struct page *page)
145{
146	bool ret;
147
148	/* Prevent address_space of inode and swap cache from being freed */
149	rcu_read_lock();
150	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
151	rcu_read_unlock();
152	return ret;
153}
154
155/*
156 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
157 * a count of one.
158 */
159static inline void set_page_refcounted(struct page *page)
160{
161	VM_BUG_ON_PAGE(PageTail(page), page);
162	VM_BUG_ON_PAGE(page_ref_count(page), page);
163	set_page_count(page, 1);
164}
165
 
 
 
 
 
 
 
 
 
 
 
166extern unsigned long highest_memmap_pfn;
167
168/*
169 * Maximum number of reclaim retries without progress before the OOM
170 * killer is consider the only way forward.
171 */
172#define MAX_RECLAIM_RETRIES 16
173
174/*
175 * in mm/early_ioremap.c
176 */
177pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
178					unsigned long size, pgprot_t prot);
179
180/*
181 * in mm/vmscan.c:
182 */
183int isolate_lru_page(struct page *page);
184int folio_isolate_lru(struct folio *folio);
185void putback_lru_page(struct page *page);
186void folio_putback_lru(struct folio *folio);
187extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
188
189/*
190 * in mm/rmap.c:
191 */
192pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
193
194/*
195 * in mm/page_alloc.c
196 */
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198/*
199 * Structure for holding the mostly immutable allocation parameters passed
200 * between functions involved in allocations, including the alloc_pages*
201 * family of functions.
202 *
203 * nodemask, migratetype and highest_zoneidx are initialized only once in
204 * __alloc_pages() and then never change.
205 *
206 * zonelist, preferred_zone and highest_zoneidx are set first in
207 * __alloc_pages() for the fast path, and might be later changed
208 * in __alloc_pages_slowpath(). All other functions pass the whole structure
209 * by a const pointer.
210 */
211struct alloc_context {
212	struct zonelist *zonelist;
213	nodemask_t *nodemask;
214	struct zoneref *preferred_zoneref;
215	int migratetype;
216
217	/*
218	 * highest_zoneidx represents highest usable zone index of
219	 * the allocation request. Due to the nature of the zone,
220	 * memory on lower zone than the highest_zoneidx will be
221	 * protected by lowmem_reserve[highest_zoneidx].
222	 *
223	 * highest_zoneidx is also used by reclaim/compaction to limit
224	 * the target zone since higher zone than this index cannot be
225	 * usable for this allocation request.
226	 */
227	enum zone_type highest_zoneidx;
228	bool spread_dirty_pages;
229};
230
231/*
232 * This function returns the order of a free page in the buddy system. In
233 * general, page_zone(page)->lock must be held by the caller to prevent the
234 * page from being allocated in parallel and returning garbage as the order.
235 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
236 * page cannot be allocated or merged in parallel. Alternatively, it must
237 * handle invalid values gracefully, and use buddy_order_unsafe() below.
238 */
239static inline unsigned int buddy_order(struct page *page)
240{
241	/* PageBuddy() must be checked by the caller */
242	return page_private(page);
243}
244
245/*
246 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
247 * PageBuddy() should be checked first by the caller to minimize race window,
248 * and invalid values must be handled gracefully.
249 *
250 * READ_ONCE is used so that if the caller assigns the result into a local
251 * variable and e.g. tests it for valid range before using, the compiler cannot
252 * decide to remove the variable and inline the page_private(page) multiple
253 * times, potentially observing different values in the tests and the actual
254 * use of the result.
255 */
256#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
257
258/*
259 * This function checks whether a page is free && is the buddy
260 * we can coalesce a page and its buddy if
261 * (a) the buddy is not in a hole (check before calling!) &&
262 * (b) the buddy is in the buddy system &&
263 * (c) a page and its buddy have the same order &&
264 * (d) a page and its buddy are in the same zone.
265 *
266 * For recording whether a page is in the buddy system, we set PageBuddy.
267 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
268 *
269 * For recording page's order, we use page_private(page).
270 */
271static inline bool page_is_buddy(struct page *page, struct page *buddy,
272				 unsigned int order)
273{
274	if (!page_is_guard(buddy) && !PageBuddy(buddy))
275		return false;
276
277	if (buddy_order(buddy) != order)
278		return false;
279
280	/*
281	 * zone check is done late to avoid uselessly calculating
282	 * zone/node ids for pages that could never merge.
283	 */
284	if (page_zone_id(page) != page_zone_id(buddy))
285		return false;
286
287	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
288
289	return true;
290}
291
292/*
293 * Locate the struct page for both the matching buddy in our
294 * pair (buddy1) and the combined O(n+1) page they form (page).
295 *
296 * 1) Any buddy B1 will have an order O twin B2 which satisfies
297 * the following equation:
298 *     B2 = B1 ^ (1 << O)
299 * For example, if the starting buddy (buddy2) is #8 its order
300 * 1 buddy is #10:
301 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
302 *
303 * 2) Any buddy B will have an order O+1 parent P which
304 * satisfies the following equation:
305 *     P = B & ~(1 << O)
306 *
307 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
308 */
309static inline unsigned long
310__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
311{
312	return page_pfn ^ (1 << order);
313}
314
315/*
316 * Find the buddy of @page and validate it.
317 * @page: The input page
318 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
319 *       function is used in the performance-critical __free_one_page().
320 * @order: The order of the page
321 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
322 *             page_to_pfn().
323 *
324 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
325 * not the same as @page. The validation is necessary before use it.
326 *
327 * Return: the found buddy page or NULL if not found.
328 */
329static inline struct page *find_buddy_page_pfn(struct page *page,
330			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
331{
332	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
333	struct page *buddy;
334
335	buddy = page + (__buddy_pfn - pfn);
336	if (buddy_pfn)
337		*buddy_pfn = __buddy_pfn;
338
339	if (page_is_buddy(page, buddy, order))
340		return buddy;
341	return NULL;
342}
343
344extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
345				unsigned long end_pfn, struct zone *zone);
346
347static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
348				unsigned long end_pfn, struct zone *zone)
349{
350	if (zone->contiguous)
351		return pfn_to_page(start_pfn);
352
353	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
354}
355
 
 
 
 
 
 
 
356extern int __isolate_free_page(struct page *page, unsigned int order);
357extern void __putback_isolated_page(struct page *page, unsigned int order,
358				    int mt);
359extern void memblock_free_pages(struct page *page, unsigned long pfn,
360					unsigned int order);
361extern void __free_pages_core(struct page *page, unsigned int order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362extern void prep_compound_page(struct page *page, unsigned int order);
 
363extern void post_alloc_hook(struct page *page, unsigned int order,
364					gfp_t gfp_flags);
 
 
365extern int user_min_free_kbytes;
366
367extern void free_unref_page(struct page *page, unsigned int order);
368extern void free_unref_page_list(struct list_head *list);
369
370extern void zone_pcp_reset(struct zone *zone);
371extern void zone_pcp_disable(struct zone *zone);
372extern void zone_pcp_enable(struct zone *zone);
 
373
374extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
375			  phys_addr_t min_addr,
376			  int nid, bool exact_nid);
377
 
 
 
 
378int split_free_page(struct page *free_page,
379			unsigned int order, unsigned long split_pfn_offset);
380
381#if defined CONFIG_COMPACTION || defined CONFIG_CMA
382
383/*
384 * in mm/compaction.c
385 */
386/*
387 * compact_control is used to track pages being migrated and the free pages
388 * they are being migrated to during memory compaction. The free_pfn starts
389 * at the end of a zone and migrate_pfn begins at the start. Movable pages
390 * are moved to the end of a zone during a compaction run and the run
391 * completes when free_pfn <= migrate_pfn
392 */
393struct compact_control {
394	struct list_head freepages;	/* List of free pages to migrate to */
395	struct list_head migratepages;	/* List of pages being migrated */
396	unsigned int nr_freepages;	/* Number of isolated free pages */
397	unsigned int nr_migratepages;	/* Number of pages to migrate */
398	unsigned long free_pfn;		/* isolate_freepages search base */
399	/*
400	 * Acts as an in/out parameter to page isolation for migration.
401	 * isolate_migratepages uses it as a search base.
402	 * isolate_migratepages_block will update the value to the next pfn
403	 * after the last isolated one.
404	 */
405	unsigned long migrate_pfn;
406	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
407	struct zone *zone;
408	unsigned long total_migrate_scanned;
409	unsigned long total_free_scanned;
410	unsigned short fast_search_fail;/* failures to use free list searches */
411	short search_order;		/* order to start a fast search at */
412	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
413	int order;			/* order a direct compactor needs */
414	int migratetype;		/* migratetype of direct compactor */
415	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
416	const int highest_zoneidx;	/* zone index of a direct compactor */
417	enum migrate_mode mode;		/* Async or sync migration mode */
418	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
419	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
420	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
421	bool direct_compaction;		/* False from kcompactd or /proc/... */
422	bool proactive_compaction;	/* kcompactd proactive compaction */
423	bool whole_zone;		/* Whole zone should/has been scanned */
424	bool contended;			/* Signal lock contention */
425	bool rescan;			/* Rescanning the same pageblock */
 
 
 
 
426	bool alloc_contig;		/* alloc_contig_range allocation */
427};
428
429/*
430 * Used in direct compaction when a page should be taken from the freelists
431 * immediately when one is created during the free path.
432 */
433struct capture_control {
434	struct compact_control *cc;
435	struct page *page;
436};
437
438unsigned long
439isolate_freepages_range(struct compact_control *cc,
440			unsigned long start_pfn, unsigned long end_pfn);
441int
442isolate_migratepages_range(struct compact_control *cc,
443			   unsigned long low_pfn, unsigned long end_pfn);
444
445int __alloc_contig_migrate_range(struct compact_control *cc,
446					unsigned long start, unsigned long end);
447#endif
 
 
 
 
 
 
448int find_suitable_fallback(struct free_area *area, unsigned int order,
449			int migratetype, bool only_stealable, bool *can_steal);
450
 
 
 
 
 
451/*
452 * These three helpers classifies VMAs for virtual memory accounting.
453 */
454
455/*
456 * Executable code area - executable, not writable, not stack
457 */
458static inline bool is_exec_mapping(vm_flags_t flags)
459{
460	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
461}
462
463/*
464 * Stack area - automatically grows in one direction
465 *
466 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
467 * do_mmap() forbids all other combinations.
468 */
469static inline bool is_stack_mapping(vm_flags_t flags)
470{
471	return (flags & VM_STACK) == VM_STACK;
472}
473
474/*
475 * Data area - private, writable, not stack
476 */
477static inline bool is_data_mapping(vm_flags_t flags)
478{
479	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
480}
481
482/* mm/util.c */
483struct anon_vma *folio_anon_vma(struct folio *folio);
484
485#ifdef CONFIG_MMU
486void unmap_mapping_folio(struct folio *folio);
487extern long populate_vma_page_range(struct vm_area_struct *vma,
488		unsigned long start, unsigned long end, int *locked);
489extern long faultin_vma_page_range(struct vm_area_struct *vma,
490				   unsigned long start, unsigned long end,
491				   bool write, int *locked);
492extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
493			      unsigned long len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494/*
495 * mlock_vma_page() and munlock_vma_page():
496 * should be called with vma's mmap_lock held for read or write,
497 * under page table lock for the pte/pmd being added or removed.
498 *
499 * mlock is usually called at the end of page_add_*_rmap(),
500 * munlock at the end of page_remove_rmap(); but new anon
501 * pages are managed by lru_cache_add_inactive_or_unevictable()
502 * calling mlock_new_page().
503 *
504 * @compound is used to include pmd mappings of THPs, but filter out
505 * pte mappings of THPs, which cannot be consistently counted: a pte
506 * mapping of the THP head cannot be distinguished by the page alone.
507 */
508void mlock_folio(struct folio *folio);
509static inline void mlock_vma_folio(struct folio *folio,
510			struct vm_area_struct *vma, bool compound)
511{
512	/*
513	 * The VM_SPECIAL check here serves two purposes.
514	 * 1) VM_IO check prevents migration from double-counting during mlock.
515	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
516	 *    is never left set on a VM_SPECIAL vma, there is an interval while
517	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
518	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
519	 */
520	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
521	    (compound || !folio_test_large(folio)))
522		mlock_folio(folio);
523}
524
525static inline void mlock_vma_page(struct page *page,
526			struct vm_area_struct *vma, bool compound)
 
527{
528	mlock_vma_folio(page_folio(page), vma, compound);
 
 
 
 
 
 
 
 
 
 
529}
530
531void munlock_page(struct page *page);
532static inline void munlock_vma_page(struct page *page,
533			struct vm_area_struct *vma, bool compound)
534{
535	if (unlikely(vma->vm_flags & VM_LOCKED) &&
536	    (compound || !PageTransCompound(page)))
537		munlock_page(page);
538}
539void mlock_new_page(struct page *page);
540bool need_mlock_page_drain(int cpu);
541void mlock_page_drain_local(void);
542void mlock_page_drain_remote(int cpu);
543
544extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
545
546/*
547 * Return the start of user virtual address at the specific offset within
548 * a vma.
549 */
550static inline unsigned long
551vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
552		  struct vm_area_struct *vma)
553{
554	unsigned long address;
555
556	if (pgoff >= vma->vm_pgoff) {
557		address = vma->vm_start +
558			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
559		/* Check for address beyond vma (or wrapped through 0?) */
560		if (address < vma->vm_start || address >= vma->vm_end)
561			address = -EFAULT;
562	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
563		/* Test above avoids possibility of wrap to 0 on 32-bit */
564		address = vma->vm_start;
565	} else {
566		address = -EFAULT;
567	}
568	return address;
569}
570
571/*
572 * Return the start of user virtual address of a page within a vma.
573 * Returns -EFAULT if all of the page is outside the range of vma.
574 * If page is a compound head, the entire compound page is considered.
575 */
576static inline unsigned long
577vma_address(struct page *page, struct vm_area_struct *vma)
578{
579	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
580	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
581}
582
583/*
584 * Then at what user virtual address will none of the range be found in vma?
585 * Assumes that vma_address() already returned a good starting address.
586 */
587static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
588{
589	struct vm_area_struct *vma = pvmw->vma;
590	pgoff_t pgoff;
591	unsigned long address;
592
593	/* Common case, plus ->pgoff is invalid for KSM */
594	if (pvmw->nr_pages == 1)
595		return pvmw->address + PAGE_SIZE;
596
597	pgoff = pvmw->pgoff + pvmw->nr_pages;
598	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
599	/* Check for address beyond vma (or wrapped through 0?) */
600	if (address < vma->vm_start || address > vma->vm_end)
601		address = vma->vm_end;
602	return address;
603}
604
605static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
606						    struct file *fpin)
607{
608	int flags = vmf->flags;
609
610	if (fpin)
611		return fpin;
612
613	/*
614	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
615	 * anything, so we only pin the file and drop the mmap_lock if only
616	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
617	 */
618	if (fault_flag_allow_retry_first(flags) &&
619	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
620		fpin = get_file(vmf->vma->vm_file);
621		mmap_read_unlock(vmf->vma->vm_mm);
622	}
623	return fpin;
624}
625#else /* !CONFIG_MMU */
626static inline void unmap_mapping_folio(struct folio *folio) { }
627static inline void mlock_vma_page(struct page *page,
628			struct vm_area_struct *vma, bool compound) { }
629static inline void munlock_vma_page(struct page *page,
630			struct vm_area_struct *vma, bool compound) { }
631static inline void mlock_new_page(struct page *page) { }
632static inline bool need_mlock_page_drain(int cpu) { return false; }
633static inline void mlock_page_drain_local(void) { }
634static inline void mlock_page_drain_remote(int cpu) { }
635static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
636{
637}
638#endif /* !CONFIG_MMU */
639
640/* Memory initialisation debug and verification */
 
 
 
 
 
 
641enum mminit_level {
642	MMINIT_WARNING,
643	MMINIT_VERIFY,
644	MMINIT_TRACE
645};
646
647#ifdef CONFIG_DEBUG_MEMORY_INIT
648
649extern int mminit_loglevel;
650
651#define mminit_dprintk(level, prefix, fmt, arg...) \
652do { \
653	if (level < mminit_loglevel) { \
654		if (level <= MMINIT_WARNING) \
655			pr_warn("mminit::" prefix " " fmt, ##arg);	\
656		else \
657			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
658	} \
659} while (0)
660
661extern void mminit_verify_pageflags_layout(void);
662extern void mminit_verify_zonelist(void);
663#else
664
665static inline void mminit_dprintk(enum mminit_level level,
666				const char *prefix, const char *fmt, ...)
667{
668}
669
670static inline void mminit_verify_pageflags_layout(void)
671{
672}
673
674static inline void mminit_verify_zonelist(void)
675{
676}
677#endif /* CONFIG_DEBUG_MEMORY_INIT */
678
679#define NODE_RECLAIM_NOSCAN	-2
680#define NODE_RECLAIM_FULL	-1
681#define NODE_RECLAIM_SOME	0
682#define NODE_RECLAIM_SUCCESS	1
683
684#ifdef CONFIG_NUMA
685extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
686extern int find_next_best_node(int node, nodemask_t *used_node_mask);
687#else
688static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
689				unsigned int order)
690{
691	return NODE_RECLAIM_NOSCAN;
692}
693static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
694{
695	return NUMA_NO_NODE;
696}
697#endif
698
699/*
700 * mm/memory-failure.c
701 */
702extern int hwpoison_filter(struct page *p);
703
704extern u32 hwpoison_filter_dev_major;
705extern u32 hwpoison_filter_dev_minor;
706extern u64 hwpoison_filter_flags_mask;
707extern u64 hwpoison_filter_flags_value;
708extern u64 hwpoison_filter_memcg;
709extern u32 hwpoison_filter_enable;
710
711extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
712        unsigned long, unsigned long,
713        unsigned long, unsigned long);
714
715extern void set_pageblock_order(void);
 
716unsigned int reclaim_clean_pages_from_list(struct zone *zone,
717					    struct list_head *page_list);
718/* The ALLOC_WMARK bits are used as an index to zone->watermark */
719#define ALLOC_WMARK_MIN		WMARK_MIN
720#define ALLOC_WMARK_LOW		WMARK_LOW
721#define ALLOC_WMARK_HIGH	WMARK_HIGH
722#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
723
724/* Mask to get the watermark bits */
725#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
726
727/*
728 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
729 * cannot assume a reduced access to memory reserves is sufficient for
730 * !MMU
731 */
732#ifdef CONFIG_MMU
733#define ALLOC_OOM		0x08
734#else
735#define ALLOC_OOM		ALLOC_NO_WATERMARKS
736#endif
737
738#define ALLOC_HARDER		 0x10 /* try to alloc harder */
739#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
 
 
 
 
 
740#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
741#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
742#ifdef CONFIG_ZONE_DMA32
743#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
744#else
745#define ALLOC_NOFRAGMENT	  0x0
746#endif
 
747#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
748
 
 
 
749enum ttu_flags;
750struct tlbflush_unmap_batch;
751
752
753/*
754 * only for MM internal work items which do not depend on
755 * any allocations or locks which might depend on allocations
756 */
757extern struct workqueue_struct *mm_percpu_wq;
758
759#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
760void try_to_unmap_flush(void);
761void try_to_unmap_flush_dirty(void);
762void flush_tlb_batched_pending(struct mm_struct *mm);
763#else
764static inline void try_to_unmap_flush(void)
765{
766}
767static inline void try_to_unmap_flush_dirty(void)
768{
769}
770static inline void flush_tlb_batched_pending(struct mm_struct *mm)
771{
772}
773#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
774
775extern const struct trace_print_flags pageflag_names[];
 
776extern const struct trace_print_flags vmaflag_names[];
777extern const struct trace_print_flags gfpflag_names[];
778
779static inline bool is_migrate_highatomic(enum migratetype migratetype)
780{
781	return migratetype == MIGRATE_HIGHATOMIC;
782}
783
784static inline bool is_migrate_highatomic_page(struct page *page)
785{
786	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
787}
788
789void setup_zone_pageset(struct zone *zone);
790
791struct migration_target_control {
792	int nid;		/* preferred node id */
793	nodemask_t *nmask;
794	gfp_t gfp_mask;
795};
796
797/*
 
 
 
 
 
 
798 * mm/vmalloc.c
799 */
800#ifdef CONFIG_MMU
801int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 
802                pgprot_t prot, struct page **pages, unsigned int page_shift);
803#else
 
 
 
 
804static inline
805int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
806                pgprot_t prot, struct page **pages, unsigned int page_shift)
807{
808	return -EINVAL;
809}
810#endif
811
812int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
813			       pgprot_t prot, struct page **pages,
814			       unsigned int page_shift);
815
816void vunmap_range_noflush(unsigned long start, unsigned long end);
817
818void __vunmap_range_noflush(unsigned long start, unsigned long end);
819
820int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
821		      unsigned long addr, int page_nid, int *flags);
822
823void free_zone_device_page(struct page *page);
824int migrate_device_coherent_page(struct page *page);
825
826/*
827 * mm/gup.c
828 */
829struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830
831extern bool mirrored_kernelcore;
 
 
 
 
 
 
 
 
 
 
832
833static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
834{
835	/*
836	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
837	 * enablements, because when without soft-dirty being compiled in,
838	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
839	 * will be constantly true.
840	 */
841	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
842		return false;
843
844	/*
845	 * Soft-dirty is kind of special: its tracking is enabled when the
846	 * vma flags not set.
847	 */
848	return !(vma->vm_flags & VM_SOFTDIRTY);
849}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850
851#endif	/* __MM_INTERNAL_H */
v6.9.4
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* internal.h: mm/ internal definitions
   3 *
   4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7#ifndef __MM_INTERNAL_H
   8#define __MM_INTERNAL_H
   9
  10#include <linux/fs.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/rmap.h>
  14#include <linux/tracepoint-defs.h>
  15
  16struct folio_batch;
  17
  18/*
  19 * The set of flags that only affect watermark checking and reclaim
  20 * behaviour. This is used by the MM to obey the caller constraints
  21 * about IO, FS and watermark checking while ignoring placement
  22 * hints such as HIGHMEM usage.
  23 */
  24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  25			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
  26			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
  27			__GFP_NOLOCKDEP)
  28
  29/* The GFP flags allowed during early boot */
  30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  31
  32/* Control allocation cpuset and node placement constraints */
  33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  34
  35/* Do not use these with a slab allocator */
  36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  37
  38/*
  39 * Different from WARN_ON_ONCE(), no warning will be issued
  40 * when we specify __GFP_NOWARN.
  41 */
  42#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
  43	static bool __section(".data.once") __warned;			\
  44	int __ret_warn_once = !!(cond);					\
  45									\
  46	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
  47		__warned = true;					\
  48		WARN_ON(1);						\
  49	}								\
  50	unlikely(__ret_warn_once);					\
  51})
  52
  53void page_writeback_init(void);
  54
  55/*
  56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
  57 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
  58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
  59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
  60 */
  61#define ENTIRELY_MAPPED		0x800000
  62#define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
  63
  64/*
  65 * Flags passed to __show_mem() and show_free_areas() to suppress output in
  66 * various contexts.
  67 */
  68#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
  69
  70/*
  71 * How many individual pages have an elevated _mapcount.  Excludes
  72 * the folio's entire_mapcount.
  73 */
  74static inline int folio_nr_pages_mapped(struct folio *folio)
  75{
  76	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
  77}
  78
  79static inline void *folio_raw_mapping(struct folio *folio)
  80{
  81	unsigned long mapping = (unsigned long)folio->mapping;
  82
  83	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
  84}
  85
  86#ifdef CONFIG_MMU
  87
  88/* Flags for folio_pte_batch(). */
  89typedef int __bitwise fpb_t;
  90
  91/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
  92#define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
  93
  94/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
  95#define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
  96
  97static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
  98{
  99	if (flags & FPB_IGNORE_DIRTY)
 100		pte = pte_mkclean(pte);
 101	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
 102		pte = pte_clear_soft_dirty(pte);
 103	return pte_wrprotect(pte_mkold(pte));
 104}
 105
 106/**
 107 * folio_pte_batch - detect a PTE batch for a large folio
 108 * @folio: The large folio to detect a PTE batch for.
 109 * @addr: The user virtual address the first page is mapped at.
 110 * @start_ptep: Page table pointer for the first entry.
 111 * @pte: Page table entry for the first page.
 112 * @max_nr: The maximum number of table entries to consider.
 113 * @flags: Flags to modify the PTE batch semantics.
 114 * @any_writable: Optional pointer to indicate whether any entry except the
 115 *		  first one is writable.
 116 *
 117 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
 118 * pages of the same large folio.
 119 *
 120 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
 121 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
 122 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
 123 *
 124 * start_ptep must map any page of the folio. max_nr must be at least one and
 125 * must be limited by the caller so scanning cannot exceed a single page table.
 126 *
 127 * Return: the number of table entries in the batch.
 128 */
 129static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
 130		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
 131		bool *any_writable)
 132{
 133	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
 134	const pte_t *end_ptep = start_ptep + max_nr;
 135	pte_t expected_pte, *ptep;
 136	bool writable;
 137	int nr;
 138
 139	if (any_writable)
 140		*any_writable = false;
 141
 142	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
 143	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
 144	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
 145
 146	nr = pte_batch_hint(start_ptep, pte);
 147	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
 148	ptep = start_ptep + nr;
 149
 150	while (ptep < end_ptep) {
 151		pte = ptep_get(ptep);
 152		if (any_writable)
 153			writable = !!pte_write(pte);
 154		pte = __pte_batch_clear_ignored(pte, flags);
 155
 156		if (!pte_same(pte, expected_pte))
 157			break;
 158
 159		/*
 160		 * Stop immediately once we reached the end of the folio. In
 161		 * corner cases the next PFN might fall into a different
 162		 * folio.
 163		 */
 164		if (pte_pfn(pte) >= folio_end_pfn)
 165			break;
 166
 167		if (any_writable)
 168			*any_writable |= writable;
 169
 170		nr = pte_batch_hint(ptep, pte);
 171		expected_pte = pte_advance_pfn(expected_pte, nr);
 172		ptep += nr;
 173	}
 174
 175	return min(ptep - start_ptep, max_nr);
 176}
 177#endif /* CONFIG_MMU */
 178
 179void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 180						int nr_throttled);
 181static inline void acct_reclaim_writeback(struct folio *folio)
 182{
 183	pg_data_t *pgdat = folio_pgdat(folio);
 184	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 185
 186	if (nr_throttled)
 187		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 188}
 189
 190static inline void wake_throttle_isolated(pg_data_t *pgdat)
 191{
 192	wait_queue_head_t *wqh;
 193
 194	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 195	if (waitqueue_active(wqh))
 196		wake_up(wqh);
 197}
 198
 199vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
 200vm_fault_t do_swap_page(struct vm_fault *vmf);
 201void folio_rotate_reclaimable(struct folio *folio);
 202bool __folio_end_writeback(struct folio *folio);
 203void deactivate_file_folio(struct folio *folio);
 204void folio_activate(struct folio *folio);
 205
 206void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
 207		   struct vm_area_struct *start_vma, unsigned long floor,
 208		   unsigned long ceiling, bool mm_wr_locked);
 209void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 210
 211struct zap_details;
 212void unmap_page_range(struct mmu_gather *tlb,
 213			     struct vm_area_struct *vma,
 214			     unsigned long addr, unsigned long end,
 215			     struct zap_details *details);
 216
 217void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
 218		unsigned int order);
 219void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 220static inline void force_page_cache_readahead(struct address_space *mapping,
 221		struct file *file, pgoff_t index, unsigned long nr_to_read)
 222{
 223	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 224	force_page_cache_ra(&ractl, nr_to_read);
 225}
 226
 227unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
 228		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 229unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
 230		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 231void filemap_free_folio(struct address_space *mapping, struct folio *folio);
 232int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
 233bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
 234		loff_t end);
 235long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
 236unsigned long mapping_try_invalidate(struct address_space *mapping,
 237		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
 238
 239/**
 240 * folio_evictable - Test whether a folio is evictable.
 241 * @folio: The folio to test.
 242 *
 243 * Test whether @folio is evictable -- i.e., should be placed on
 244 * active/inactive lists vs unevictable list.
 245 *
 246 * Reasons folio might not be evictable:
 247 * 1. folio's mapping marked unevictable
 248 * 2. One of the pages in the folio is part of an mlocked VMA
 249 */
 250static inline bool folio_evictable(struct folio *folio)
 251{
 252	bool ret;
 253
 254	/* Prevent address_space of inode and swap cache from being freed */
 255	rcu_read_lock();
 256	ret = !mapping_unevictable(folio_mapping(folio)) &&
 257			!folio_test_mlocked(folio);
 258	rcu_read_unlock();
 259	return ret;
 260}
 261
 
 
 
 
 
 
 
 
 
 
 
 262/*
 263 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 264 * a count of one.
 265 */
 266static inline void set_page_refcounted(struct page *page)
 267{
 268	VM_BUG_ON_PAGE(PageTail(page), page);
 269	VM_BUG_ON_PAGE(page_ref_count(page), page);
 270	set_page_count(page, 1);
 271}
 272
 273/*
 274 * Return true if a folio needs ->release_folio() calling upon it.
 275 */
 276static inline bool folio_needs_release(struct folio *folio)
 277{
 278	struct address_space *mapping = folio_mapping(folio);
 279
 280	return folio_has_private(folio) ||
 281		(mapping && mapping_release_always(mapping));
 282}
 283
 284extern unsigned long highest_memmap_pfn;
 285
 286/*
 287 * Maximum number of reclaim retries without progress before the OOM
 288 * killer is consider the only way forward.
 289 */
 290#define MAX_RECLAIM_RETRIES 16
 291
 292/*
 
 
 
 
 
 
 293 * in mm/vmscan.c:
 294 */
 295bool isolate_lru_page(struct page *page);
 296bool folio_isolate_lru(struct folio *folio);
 297void putback_lru_page(struct page *page);
 298void folio_putback_lru(struct folio *folio);
 299extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
 300
 301/*
 302 * in mm/rmap.c:
 303 */
 304pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 305
 306/*
 307 * in mm/page_alloc.c
 308 */
 309#define K(x) ((x) << (PAGE_SHIFT-10))
 310
 311extern char * const zone_names[MAX_NR_ZONES];
 312
 313/* perform sanity checks on struct pages being allocated or freed */
 314DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
 315
 316extern int min_free_kbytes;
 317
 318void setup_per_zone_wmarks(void);
 319void calculate_min_free_kbytes(void);
 320int __meminit init_per_zone_wmark_min(void);
 321void page_alloc_sysctl_init(void);
 322
 323/*
 324 * Structure for holding the mostly immutable allocation parameters passed
 325 * between functions involved in allocations, including the alloc_pages*
 326 * family of functions.
 327 *
 328 * nodemask, migratetype and highest_zoneidx are initialized only once in
 329 * __alloc_pages() and then never change.
 330 *
 331 * zonelist, preferred_zone and highest_zoneidx are set first in
 332 * __alloc_pages() for the fast path, and might be later changed
 333 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 334 * by a const pointer.
 335 */
 336struct alloc_context {
 337	struct zonelist *zonelist;
 338	nodemask_t *nodemask;
 339	struct zoneref *preferred_zoneref;
 340	int migratetype;
 341
 342	/*
 343	 * highest_zoneidx represents highest usable zone index of
 344	 * the allocation request. Due to the nature of the zone,
 345	 * memory on lower zone than the highest_zoneidx will be
 346	 * protected by lowmem_reserve[highest_zoneidx].
 347	 *
 348	 * highest_zoneidx is also used by reclaim/compaction to limit
 349	 * the target zone since higher zone than this index cannot be
 350	 * usable for this allocation request.
 351	 */
 352	enum zone_type highest_zoneidx;
 353	bool spread_dirty_pages;
 354};
 355
 356/*
 357 * This function returns the order of a free page in the buddy system. In
 358 * general, page_zone(page)->lock must be held by the caller to prevent the
 359 * page from being allocated in parallel and returning garbage as the order.
 360 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 361 * page cannot be allocated or merged in parallel. Alternatively, it must
 362 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 363 */
 364static inline unsigned int buddy_order(struct page *page)
 365{
 366	/* PageBuddy() must be checked by the caller */
 367	return page_private(page);
 368}
 369
 370/*
 371 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 372 * PageBuddy() should be checked first by the caller to minimize race window,
 373 * and invalid values must be handled gracefully.
 374 *
 375 * READ_ONCE is used so that if the caller assigns the result into a local
 376 * variable and e.g. tests it for valid range before using, the compiler cannot
 377 * decide to remove the variable and inline the page_private(page) multiple
 378 * times, potentially observing different values in the tests and the actual
 379 * use of the result.
 380 */
 381#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
 382
 383/*
 384 * This function checks whether a page is free && is the buddy
 385 * we can coalesce a page and its buddy if
 386 * (a) the buddy is not in a hole (check before calling!) &&
 387 * (b) the buddy is in the buddy system &&
 388 * (c) a page and its buddy have the same order &&
 389 * (d) a page and its buddy are in the same zone.
 390 *
 391 * For recording whether a page is in the buddy system, we set PageBuddy.
 392 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 393 *
 394 * For recording page's order, we use page_private(page).
 395 */
 396static inline bool page_is_buddy(struct page *page, struct page *buddy,
 397				 unsigned int order)
 398{
 399	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 400		return false;
 401
 402	if (buddy_order(buddy) != order)
 403		return false;
 404
 405	/*
 406	 * zone check is done late to avoid uselessly calculating
 407	 * zone/node ids for pages that could never merge.
 408	 */
 409	if (page_zone_id(page) != page_zone_id(buddy))
 410		return false;
 411
 412	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 413
 414	return true;
 415}
 416
 417/*
 418 * Locate the struct page for both the matching buddy in our
 419 * pair (buddy1) and the combined O(n+1) page they form (page).
 420 *
 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 422 * the following equation:
 423 *     B2 = B1 ^ (1 << O)
 424 * For example, if the starting buddy (buddy2) is #8 its order
 425 * 1 buddy is #10:
 426 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 427 *
 428 * 2) Any buddy B will have an order O+1 parent P which
 429 * satisfies the following equation:
 430 *     P = B & ~(1 << O)
 431 *
 432 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
 433 */
 434static inline unsigned long
 435__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 436{
 437	return page_pfn ^ (1 << order);
 438}
 439
 440/*
 441 * Find the buddy of @page and validate it.
 442 * @page: The input page
 443 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 444 *       function is used in the performance-critical __free_one_page().
 445 * @order: The order of the page
 446 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 447 *             page_to_pfn().
 448 *
 449 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 450 * not the same as @page. The validation is necessary before use it.
 451 *
 452 * Return: the found buddy page or NULL if not found.
 453 */
 454static inline struct page *find_buddy_page_pfn(struct page *page,
 455			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
 456{
 457	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
 458	struct page *buddy;
 459
 460	buddy = page + (__buddy_pfn - pfn);
 461	if (buddy_pfn)
 462		*buddy_pfn = __buddy_pfn;
 463
 464	if (page_is_buddy(page, buddy, order))
 465		return buddy;
 466	return NULL;
 467}
 468
 469extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 470				unsigned long end_pfn, struct zone *zone);
 471
 472static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 473				unsigned long end_pfn, struct zone *zone)
 474{
 475	if (zone->contiguous)
 476		return pfn_to_page(start_pfn);
 477
 478	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 479}
 480
 481void set_zone_contiguous(struct zone *zone);
 482
 483static inline void clear_zone_contiguous(struct zone *zone)
 484{
 485	zone->contiguous = false;
 486}
 487
 488extern int __isolate_free_page(struct page *page, unsigned int order);
 489extern void __putback_isolated_page(struct page *page, unsigned int order,
 490				    int mt);
 491extern void memblock_free_pages(struct page *page, unsigned long pfn,
 492					unsigned int order);
 493extern void __free_pages_core(struct page *page, unsigned int order);
 494
 495/*
 496 * This will have no effect, other than possibly generating a warning, if the
 497 * caller passes in a non-large folio.
 498 */
 499static inline void folio_set_order(struct folio *folio, unsigned int order)
 500{
 501	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
 502		return;
 503
 504	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
 505#ifdef CONFIG_64BIT
 506	folio->_folio_nr_pages = 1U << order;
 507#endif
 508}
 509
 510void folio_undo_large_rmappable(struct folio *folio);
 511
 512static inline struct folio *page_rmappable_folio(struct page *page)
 513{
 514	struct folio *folio = (struct folio *)page;
 515
 516	folio_prep_large_rmappable(folio);
 517	return folio;
 518}
 519
 520static inline void prep_compound_head(struct page *page, unsigned int order)
 521{
 522	struct folio *folio = (struct folio *)page;
 523
 524	folio_set_order(folio, order);
 525	atomic_set(&folio->_entire_mapcount, -1);
 526	atomic_set(&folio->_nr_pages_mapped, 0);
 527	atomic_set(&folio->_pincount, 0);
 528}
 529
 530static inline void prep_compound_tail(struct page *head, int tail_idx)
 531{
 532	struct page *p = head + tail_idx;
 533
 534	p->mapping = TAIL_MAPPING;
 535	set_compound_head(p, head);
 536	set_page_private(p, 0);
 537}
 538
 539extern void prep_compound_page(struct page *page, unsigned int order);
 540
 541extern void post_alloc_hook(struct page *page, unsigned int order,
 542					gfp_t gfp_flags);
 543extern bool free_pages_prepare(struct page *page, unsigned int order);
 544
 545extern int user_min_free_kbytes;
 546
 547void free_unref_page(struct page *page, unsigned int order);
 548void free_unref_folios(struct folio_batch *fbatch);
 549
 550extern void zone_pcp_reset(struct zone *zone);
 551extern void zone_pcp_disable(struct zone *zone);
 552extern void zone_pcp_enable(struct zone *zone);
 553extern void zone_pcp_init(struct zone *zone);
 554
 555extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 556			  phys_addr_t min_addr,
 557			  int nid, bool exact_nid);
 558
 559void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
 560		unsigned long, enum meminit_context, struct vmem_altmap *, int);
 561
 562
 563int split_free_page(struct page *free_page,
 564			unsigned int order, unsigned long split_pfn_offset);
 565
 566#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 567
 568/*
 569 * in mm/compaction.c
 570 */
 571/*
 572 * compact_control is used to track pages being migrated and the free pages
 573 * they are being migrated to during memory compaction. The free_pfn starts
 574 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 575 * are moved to the end of a zone during a compaction run and the run
 576 * completes when free_pfn <= migrate_pfn
 577 */
 578struct compact_control {
 579	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
 580	struct list_head migratepages;	/* List of pages being migrated */
 581	unsigned int nr_freepages;	/* Number of isolated free pages */
 582	unsigned int nr_migratepages;	/* Number of pages to migrate */
 583	unsigned long free_pfn;		/* isolate_freepages search base */
 584	/*
 585	 * Acts as an in/out parameter to page isolation for migration.
 586	 * isolate_migratepages uses it as a search base.
 587	 * isolate_migratepages_block will update the value to the next pfn
 588	 * after the last isolated one.
 589	 */
 590	unsigned long migrate_pfn;
 591	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
 592	struct zone *zone;
 593	unsigned long total_migrate_scanned;
 594	unsigned long total_free_scanned;
 595	unsigned short fast_search_fail;/* failures to use free list searches */
 596	short search_order;		/* order to start a fast search at */
 597	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
 598	int order;			/* order a direct compactor needs */
 599	int migratetype;		/* migratetype of direct compactor */
 600	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
 601	const int highest_zoneidx;	/* zone index of a direct compactor */
 602	enum migrate_mode mode;		/* Async or sync migration mode */
 603	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
 604	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
 605	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
 606	bool direct_compaction;		/* False from kcompactd or /proc/... */
 607	bool proactive_compaction;	/* kcompactd proactive compaction */
 608	bool whole_zone;		/* Whole zone should/has been scanned */
 609	bool contended;			/* Signal lock contention */
 610	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
 611					 * when there are potentially transient
 612					 * isolation or migration failures to
 613					 * ensure forward progress.
 614					 */
 615	bool alloc_contig;		/* alloc_contig_range allocation */
 616};
 617
 618/*
 619 * Used in direct compaction when a page should be taken from the freelists
 620 * immediately when one is created during the free path.
 621 */
 622struct capture_control {
 623	struct compact_control *cc;
 624	struct page *page;
 625};
 626
 627unsigned long
 628isolate_freepages_range(struct compact_control *cc,
 629			unsigned long start_pfn, unsigned long end_pfn);
 630int
 631isolate_migratepages_range(struct compact_control *cc,
 632			   unsigned long low_pfn, unsigned long end_pfn);
 633
 634int __alloc_contig_migrate_range(struct compact_control *cc,
 635					unsigned long start, unsigned long end,
 636					int migratetype);
 637
 638/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 639void init_cma_reserved_pageblock(struct page *page);
 640
 641#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 642
 643int find_suitable_fallback(struct free_area *area, unsigned int order,
 644			int migratetype, bool only_stealable, bool *can_steal);
 645
 646static inline bool free_area_empty(struct free_area *area, int migratetype)
 647{
 648	return list_empty(&area->free_list[migratetype]);
 649}
 650
 651/*
 652 * These three helpers classifies VMAs for virtual memory accounting.
 653 */
 654
 655/*
 656 * Executable code area - executable, not writable, not stack
 657 */
 658static inline bool is_exec_mapping(vm_flags_t flags)
 659{
 660	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 661}
 662
 663/*
 664 * Stack area (including shadow stacks)
 665 *
 666 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 667 * do_mmap() forbids all other combinations.
 668 */
 669static inline bool is_stack_mapping(vm_flags_t flags)
 670{
 671	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
 672}
 673
 674/*
 675 * Data area - private, writable, not stack
 676 */
 677static inline bool is_data_mapping(vm_flags_t flags)
 678{
 679	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 680}
 681
 682/* mm/util.c */
 683struct anon_vma *folio_anon_vma(struct folio *folio);
 684
 685#ifdef CONFIG_MMU
 686void unmap_mapping_folio(struct folio *folio);
 687extern long populate_vma_page_range(struct vm_area_struct *vma,
 688		unsigned long start, unsigned long end, int *locked);
 689extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
 690		unsigned long end, bool write, int *locked);
 691extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 692			       unsigned long bytes);
 693
 694/*
 695 * NOTE: This function can't tell whether the folio is "fully mapped" in the
 696 * range.
 697 * "fully mapped" means all the pages of folio is associated with the page
 698 * table of range while this function just check whether the folio range is
 699 * within the range [start, end). Function caller needs to do page table
 700 * check if it cares about the page table association.
 701 *
 702 * Typical usage (like mlock or madvise) is:
 703 * Caller knows at least 1 page of folio is associated with page table of VMA
 704 * and the range [start, end) is intersect with the VMA range. Caller wants
 705 * to know whether the folio is fully associated with the range. It calls
 706 * this function to check whether the folio is in the range first. Then checks
 707 * the page table to know whether the folio is fully mapped to the range.
 708 */
 709static inline bool
 710folio_within_range(struct folio *folio, struct vm_area_struct *vma,
 711		unsigned long start, unsigned long end)
 712{
 713	pgoff_t pgoff, addr;
 714	unsigned long vma_pglen = vma_pages(vma);
 715
 716	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
 717	if (start > end)
 718		return false;
 719
 720	if (start < vma->vm_start)
 721		start = vma->vm_start;
 722
 723	if (end > vma->vm_end)
 724		end = vma->vm_end;
 725
 726	pgoff = folio_pgoff(folio);
 727
 728	/* if folio start address is not in vma range */
 729	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
 730		return false;
 731
 732	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 733
 734	return !(addr < start || end - addr < folio_size(folio));
 735}
 736
 737static inline bool
 738folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
 739{
 740	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
 741}
 742
 743/*
 744 * mlock_vma_folio() and munlock_vma_folio():
 745 * should be called with vma's mmap_lock held for read or write,
 746 * under page table lock for the pte/pmd being added or removed.
 747 *
 748 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
 749 * the end of folio_remove_rmap_*(); but new anon folios are managed by
 750 * folio_add_lru_vma() calling mlock_new_folio().
 
 
 
 
 
 751 */
 752void mlock_folio(struct folio *folio);
 753static inline void mlock_vma_folio(struct folio *folio,
 754				struct vm_area_struct *vma)
 755{
 756	/*
 757	 * The VM_SPECIAL check here serves two purposes.
 758	 * 1) VM_IO check prevents migration from double-counting during mlock.
 759	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
 760	 *    is never left set on a VM_SPECIAL vma, there is an interval while
 761	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
 762	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
 763	 */
 764	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
 
 765		mlock_folio(folio);
 766}
 767
 768void munlock_folio(struct folio *folio);
 769static inline void munlock_vma_folio(struct folio *folio,
 770					struct vm_area_struct *vma)
 771{
 772	/*
 773	 * munlock if the function is called. Ideally, we should only
 774	 * do munlock if any page of folio is unmapped from VMA and
 775	 * cause folio not fully mapped to VMA.
 776	 *
 777	 * But it's not easy to confirm that's the situation. So we
 778	 * always munlock the folio and page reclaim will correct it
 779	 * if it's wrong.
 780	 */
 781	if (unlikely(vma->vm_flags & VM_LOCKED))
 782		munlock_folio(folio);
 783}
 784
 785void mlock_new_folio(struct folio *folio);
 786bool need_mlock_drain(int cpu);
 787void mlock_drain_local(void);
 788void mlock_drain_remote(int cpu);
 
 
 
 
 
 
 
 
 789
 790extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 791
 792/*
 793 * Return the start of user virtual address at the specific offset within
 794 * a vma.
 795 */
 796static inline unsigned long
 797vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
 798		  struct vm_area_struct *vma)
 799{
 800	unsigned long address;
 801
 802	if (pgoff >= vma->vm_pgoff) {
 803		address = vma->vm_start +
 804			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 805		/* Check for address beyond vma (or wrapped through 0?) */
 806		if (address < vma->vm_start || address >= vma->vm_end)
 807			address = -EFAULT;
 808	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
 809		/* Test above avoids possibility of wrap to 0 on 32-bit */
 810		address = vma->vm_start;
 811	} else {
 812		address = -EFAULT;
 813	}
 814	return address;
 815}
 816
 817/*
 818 * Return the start of user virtual address of a page within a vma.
 819 * Returns -EFAULT if all of the page is outside the range of vma.
 820 * If page is a compound head, the entire compound page is considered.
 821 */
 822static inline unsigned long
 823vma_address(struct page *page, struct vm_area_struct *vma)
 824{
 825	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
 826	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
 827}
 828
 829/*
 830 * Then at what user virtual address will none of the range be found in vma?
 831 * Assumes that vma_address() already returned a good starting address.
 832 */
 833static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
 834{
 835	struct vm_area_struct *vma = pvmw->vma;
 836	pgoff_t pgoff;
 837	unsigned long address;
 838
 839	/* Common case, plus ->pgoff is invalid for KSM */
 840	if (pvmw->nr_pages == 1)
 841		return pvmw->address + PAGE_SIZE;
 842
 843	pgoff = pvmw->pgoff + pvmw->nr_pages;
 844	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 845	/* Check for address beyond vma (or wrapped through 0?) */
 846	if (address < vma->vm_start || address > vma->vm_end)
 847		address = vma->vm_end;
 848	return address;
 849}
 850
 851static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 852						    struct file *fpin)
 853{
 854	int flags = vmf->flags;
 855
 856	if (fpin)
 857		return fpin;
 858
 859	/*
 860	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 861	 * anything, so we only pin the file and drop the mmap_lock if only
 862	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 863	 */
 864	if (fault_flag_allow_retry_first(flags) &&
 865	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 866		fpin = get_file(vmf->vma->vm_file);
 867		release_fault_lock(vmf);
 868	}
 869	return fpin;
 870}
 871#else /* !CONFIG_MMU */
 872static inline void unmap_mapping_folio(struct folio *folio) { }
 873static inline void mlock_new_folio(struct folio *folio) { }
 874static inline bool need_mlock_drain(int cpu) { return false; }
 875static inline void mlock_drain_local(void) { }
 876static inline void mlock_drain_remote(int cpu) { }
 
 
 
 
 877static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 878{
 879}
 880#endif /* !CONFIG_MMU */
 881
 882/* Memory initialisation debug and verification */
 883#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 884DECLARE_STATIC_KEY_TRUE(deferred_pages);
 885
 886bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
 887#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 888
 889enum mminit_level {
 890	MMINIT_WARNING,
 891	MMINIT_VERIFY,
 892	MMINIT_TRACE
 893};
 894
 895#ifdef CONFIG_DEBUG_MEMORY_INIT
 896
 897extern int mminit_loglevel;
 898
 899#define mminit_dprintk(level, prefix, fmt, arg...) \
 900do { \
 901	if (level < mminit_loglevel) { \
 902		if (level <= MMINIT_WARNING) \
 903			pr_warn("mminit::" prefix " " fmt, ##arg);	\
 904		else \
 905			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 906	} \
 907} while (0)
 908
 909extern void mminit_verify_pageflags_layout(void);
 910extern void mminit_verify_zonelist(void);
 911#else
 912
 913static inline void mminit_dprintk(enum mminit_level level,
 914				const char *prefix, const char *fmt, ...)
 915{
 916}
 917
 918static inline void mminit_verify_pageflags_layout(void)
 919{
 920}
 921
 922static inline void mminit_verify_zonelist(void)
 923{
 924}
 925#endif /* CONFIG_DEBUG_MEMORY_INIT */
 926
 927#define NODE_RECLAIM_NOSCAN	-2
 928#define NODE_RECLAIM_FULL	-1
 929#define NODE_RECLAIM_SOME	0
 930#define NODE_RECLAIM_SUCCESS	1
 931
 932#ifdef CONFIG_NUMA
 933extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 934extern int find_next_best_node(int node, nodemask_t *used_node_mask);
 935#else
 936static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 937				unsigned int order)
 938{
 939	return NODE_RECLAIM_NOSCAN;
 940}
 941static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
 942{
 943	return NUMA_NO_NODE;
 944}
 945#endif
 946
 947/*
 948 * mm/memory-failure.c
 949 */
 950extern int hwpoison_filter(struct page *p);
 951
 952extern u32 hwpoison_filter_dev_major;
 953extern u32 hwpoison_filter_dev_minor;
 954extern u64 hwpoison_filter_flags_mask;
 955extern u64 hwpoison_filter_flags_value;
 956extern u64 hwpoison_filter_memcg;
 957extern u32 hwpoison_filter_enable;
 958
 959extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 960        unsigned long, unsigned long,
 961        unsigned long, unsigned long);
 962
 963extern void set_pageblock_order(void);
 964unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references);
 965unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 966					    struct list_head *folio_list);
 967/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 968#define ALLOC_WMARK_MIN		WMARK_MIN
 969#define ALLOC_WMARK_LOW		WMARK_LOW
 970#define ALLOC_WMARK_HIGH	WMARK_HIGH
 971#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
 972
 973/* Mask to get the watermark bits */
 974#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
 975
 976/*
 977 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 978 * cannot assume a reduced access to memory reserves is sufficient for
 979 * !MMU
 980 */
 981#ifdef CONFIG_MMU
 982#define ALLOC_OOM		0x08
 983#else
 984#define ALLOC_OOM		ALLOC_NO_WATERMARKS
 985#endif
 986
 987#define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
 988				       * to 25% of the min watermark or
 989				       * 62.5% if __GFP_HIGH is set.
 990				       */
 991#define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
 992				       * of the min watermark.
 993				       */
 994#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
 995#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
 996#ifdef CONFIG_ZONE_DMA32
 997#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
 998#else
 999#define ALLOC_NOFRAGMENT	  0x0
1000#endif
1001#define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1002#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1003
1004/* Flags that allow allocations below the min watermark. */
1005#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1006
1007enum ttu_flags;
1008struct tlbflush_unmap_batch;
1009
1010
1011/*
1012 * only for MM internal work items which do not depend on
1013 * any allocations or locks which might depend on allocations
1014 */
1015extern struct workqueue_struct *mm_percpu_wq;
1016
1017#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1018void try_to_unmap_flush(void);
1019void try_to_unmap_flush_dirty(void);
1020void flush_tlb_batched_pending(struct mm_struct *mm);
1021#else
1022static inline void try_to_unmap_flush(void)
1023{
1024}
1025static inline void try_to_unmap_flush_dirty(void)
1026{
1027}
1028static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1029{
1030}
1031#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1032
1033extern const struct trace_print_flags pageflag_names[];
1034extern const struct trace_print_flags pagetype_names[];
1035extern const struct trace_print_flags vmaflag_names[];
1036extern const struct trace_print_flags gfpflag_names[];
1037
1038static inline bool is_migrate_highatomic(enum migratetype migratetype)
1039{
1040	return migratetype == MIGRATE_HIGHATOMIC;
1041}
1042
1043static inline bool is_migrate_highatomic_page(struct page *page)
1044{
1045	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
1046}
1047
1048void setup_zone_pageset(struct zone *zone);
1049
1050struct migration_target_control {
1051	int nid;		/* preferred node id */
1052	nodemask_t *nmask;
1053	gfp_t gfp_mask;
1054};
1055
1056/*
1057 * mm/filemap.c
1058 */
1059size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1060			      struct folio *folio, loff_t fpos, size_t size);
1061
1062/*
1063 * mm/vmalloc.c
1064 */
1065#ifdef CONFIG_MMU
1066void __init vmalloc_init(void);
1067int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1068                pgprot_t prot, struct page **pages, unsigned int page_shift);
1069#else
1070static inline void vmalloc_init(void)
1071{
1072}
1073
1074static inline
1075int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1076                pgprot_t prot, struct page **pages, unsigned int page_shift)
1077{
1078	return -EINVAL;
1079}
1080#endif
1081
1082int __must_check __vmap_pages_range_noflush(unsigned long addr,
1083			       unsigned long end, pgprot_t prot,
1084			       struct page **pages, unsigned int page_shift);
1085
1086void vunmap_range_noflush(unsigned long start, unsigned long end);
1087
1088void __vunmap_range_noflush(unsigned long start, unsigned long end);
1089
1090int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
1091		      unsigned long addr, int page_nid, int *flags);
1092
1093void free_zone_device_page(struct page *page);
1094int migrate_device_coherent_page(struct page *page);
1095
1096/*
1097 * mm/gup.c
1098 */
1099struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
1100int __must_check try_grab_page(struct page *page, unsigned int flags);
1101
1102/*
1103 * mm/huge_memory.c
1104 */
1105struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1106				   unsigned long addr, pmd_t *pmd,
1107				   unsigned int flags);
1108
1109/*
1110 * mm/mmap.c
1111 */
1112struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1113					struct vm_area_struct *vma,
1114					unsigned long delta);
1115
1116enum {
1117	/* mark page accessed */
1118	FOLL_TOUCH = 1 << 16,
1119	/* a retry, previous pass started an IO */
1120	FOLL_TRIED = 1 << 17,
1121	/* we are working on non-current tsk/mm */
1122	FOLL_REMOTE = 1 << 18,
1123	/* pages must be released via unpin_user_page */
1124	FOLL_PIN = 1 << 19,
1125	/* gup_fast: prevent fall-back to slow gup */
1126	FOLL_FAST_ONLY = 1 << 20,
1127	/* allow unlocking the mmap lock */
1128	FOLL_UNLOCKABLE = 1 << 21,
1129	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1130	FOLL_MADV_POPULATE = 1 << 22,
1131};
1132
1133#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1134			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1135			    FOLL_MADV_POPULATE)
1136
1137/*
1138 * Indicates for which pages that are write-protected in the page table,
1139 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1140 * GUP pin will remain consistent with the pages mapped into the page tables
1141 * of the MM.
1142 *
1143 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1144 * PageAnonExclusive() has to protect against concurrent GUP:
1145 * * Ordinary GUP: Using the PT lock
1146 * * GUP-fast and fork(): mm->write_protect_seq
1147 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1148 *    folio_try_share_anon_rmap_*()
1149 *
1150 * Must be called with the (sub)page that's actually referenced via the
1151 * page table entry, which might not necessarily be the head page for a
1152 * PTE-mapped THP.
1153 *
1154 * If the vma is NULL, we're coming from the GUP-fast path and might have
1155 * to fallback to the slow path just to lookup the vma.
1156 */
1157static inline bool gup_must_unshare(struct vm_area_struct *vma,
1158				    unsigned int flags, struct page *page)
1159{
1160	/*
1161	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1162	 * has to be writable -- and if it references (part of) an anonymous
1163	 * folio, that part is required to be marked exclusive.
1164	 */
1165	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1166		return false;
1167	/*
1168	 * Note: PageAnon(page) is stable until the page is actually getting
1169	 * freed.
1170	 */
1171	if (!PageAnon(page)) {
1172		/*
1173		 * We only care about R/O long-term pining: R/O short-term
1174		 * pinning does not have the semantics to observe successive
1175		 * changes through the process page tables.
1176		 */
1177		if (!(flags & FOLL_LONGTERM))
1178			return false;
1179
1180		/* We really need the vma ... */
1181		if (!vma)
1182			return true;
1183
1184		/*
1185		 * ... because we only care about writable private ("COW")
1186		 * mappings where we have to break COW early.
1187		 */
1188		return is_cow_mapping(vma->vm_flags);
1189	}
1190
1191	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1192	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1193		smp_rmb();
1194
1195	/*
1196	 * During GUP-fast we might not get called on the head page for a
1197	 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1198	 * not work with the abstracted hugetlb PTEs that always point at the
1199	 * head page. For hugetlb, PageAnonExclusive only applies on the head
1200	 * page (as it cannot be partially COW-shared), so lookup the head page.
1201	 */
1202	if (unlikely(!PageHead(page) && PageHuge(page)))
1203		page = compound_head(page);
1204
1205	/*
1206	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1207	 * cannot get pinned.
1208	 */
1209	return !PageAnonExclusive(page);
1210}
1211
1212extern bool mirrored_kernelcore;
1213extern bool memblock_has_mirror(void);
1214
1215static __always_inline void vma_set_range(struct vm_area_struct *vma,
1216					  unsigned long start, unsigned long end,
1217					  pgoff_t pgoff)
1218{
1219	vma->vm_start = start;
1220	vma->vm_end = end;
1221	vma->vm_pgoff = pgoff;
1222}
1223
1224static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1225{
1226	/*
1227	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1228	 * enablements, because when without soft-dirty being compiled in,
1229	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1230	 * will be constantly true.
1231	 */
1232	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1233		return false;
1234
1235	/*
1236	 * Soft-dirty is kind of special: its tracking is enabled when the
1237	 * vma flags not set.
1238	 */
1239	return !(vma->vm_flags & VM_SOFTDIRTY);
1240}
1241
1242static inline void vma_iter_config(struct vma_iterator *vmi,
1243		unsigned long index, unsigned long last)
1244{
1245	__mas_set_range(&vmi->mas, index, last - 1);
1246}
1247
1248/*
1249 * VMA Iterator functions shared between nommu and mmap
1250 */
1251static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1252		struct vm_area_struct *vma)
1253{
1254	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1255}
1256
1257static inline void vma_iter_clear(struct vma_iterator *vmi)
1258{
1259	mas_store_prealloc(&vmi->mas, NULL);
1260}
1261
1262static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1263{
1264	return mas_walk(&vmi->mas);
1265}
1266
1267/* Store a VMA with preallocated memory */
1268static inline void vma_iter_store(struct vma_iterator *vmi,
1269				  struct vm_area_struct *vma)
1270{
1271
1272#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1273	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1274			vmi->mas.index > vma->vm_start)) {
1275		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1276			vmi->mas.index, vma->vm_start, vma->vm_start,
1277			vma->vm_end, vmi->mas.index, vmi->mas.last);
1278	}
1279	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1280			vmi->mas.last <  vma->vm_start)) {
1281		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1282		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1283		       vmi->mas.index, vmi->mas.last);
1284	}
1285#endif
1286
1287	if (vmi->mas.status != ma_start &&
1288	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1289		vma_iter_invalidate(vmi);
1290
1291	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1292	mas_store_prealloc(&vmi->mas, vma);
1293}
1294
1295static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1296			struct vm_area_struct *vma, gfp_t gfp)
1297{
1298	if (vmi->mas.status != ma_start &&
1299	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1300		vma_iter_invalidate(vmi);
1301
1302	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1303	mas_store_gfp(&vmi->mas, vma, gfp);
1304	if (unlikely(mas_is_err(&vmi->mas)))
1305		return -ENOMEM;
1306
1307	return 0;
1308}
1309
1310/*
1311 * VMA lock generalization
1312 */
1313struct vma_prepare {
1314	struct vm_area_struct *vma;
1315	struct vm_area_struct *adj_next;
1316	struct file *file;
1317	struct address_space *mapping;
1318	struct anon_vma *anon_vma;
1319	struct vm_area_struct *insert;
1320	struct vm_area_struct *remove;
1321	struct vm_area_struct *remove2;
1322};
1323
1324void __meminit __init_single_page(struct page *page, unsigned long pfn,
1325				unsigned long zone, int nid);
1326
1327/* shrinker related functions */
1328unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1329			  int priority);
1330
1331#ifdef CONFIG_SHRINKER_DEBUG
1332static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1333			struct shrinker *shrinker, const char *fmt, va_list ap)
1334{
1335	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1336
1337	return shrinker->name ? 0 : -ENOMEM;
1338}
1339
1340static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1341{
1342	kfree_const(shrinker->name);
1343	shrinker->name = NULL;
1344}
1345
1346extern int shrinker_debugfs_add(struct shrinker *shrinker);
1347extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1348					      int *debugfs_id);
1349extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1350				    int debugfs_id);
1351#else /* CONFIG_SHRINKER_DEBUG */
1352static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1353{
1354	return 0;
1355}
1356static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1357					      const char *fmt, va_list ap)
1358{
1359	return 0;
1360}
1361static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1362{
1363}
1364static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1365						     int *debugfs_id)
1366{
1367	*debugfs_id = -1;
1368	return NULL;
1369}
1370static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1371					   int debugfs_id)
1372{
1373}
1374#endif /* CONFIG_SHRINKER_DEBUG */
1375
1376/* Only track the nodes of mappings with shadow entries */
1377void workingset_update_node(struct xa_node *node);
1378extern struct list_lru shadow_nodes;
1379
1380#endif	/* __MM_INTERNAL_H */