Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* internal.h: mm/ internal definitions
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 */
  7#ifndef __MM_INTERNAL_H
  8#define __MM_INTERNAL_H
  9
 10#include <linux/fs.h>
 
 11#include <linux/mm.h>
 
 12#include <linux/pagemap.h>
 
 13#include <linux/rmap.h>
 
 
 
 14#include <linux/tracepoint-defs.h>
 15
 
 
 
 16struct folio_batch;
 17
 18/*
 19 * The set of flags that only affect watermark checking and reclaim
 20 * behaviour. This is used by the MM to obey the caller constraints
 21 * about IO, FS and watermark checking while ignoring placement
 22 * hints such as HIGHMEM usage.
 23 */
 24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 25			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 26			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 27			__GFP_ATOMIC|__GFP_NOLOCKDEP)
 28
 29/* The GFP flags allowed during early boot */
 30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 31
 32/* Control allocation cpuset and node placement constraints */
 33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 34
 35/* Do not use these with a slab allocator */
 36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 37
 38/*
 39 * Different from WARN_ON_ONCE(), no warning will be issued
 40 * when we specify __GFP_NOWARN.
 41 */
 42#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
 43	static bool __section(".data.once") __warned;			\
 44	int __ret_warn_once = !!(cond);					\
 45									\
 46	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
 47		__warned = true;					\
 48		WARN_ON(1);						\
 49	}								\
 50	unlikely(__ret_warn_once);					\
 51})
 52
 53void page_writeback_init(void);
 54
 55static inline void *folio_raw_mapping(struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56{
 57	unsigned long mapping = (unsigned long)folio->mapping;
 58
 59	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
 60}
 61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 63						int nr_throttled);
 64static inline void acct_reclaim_writeback(struct folio *folio)
 65{
 66	pg_data_t *pgdat = folio_pgdat(folio);
 67	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 68
 69	if (nr_throttled)
 70		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 71}
 72
 73static inline void wake_throttle_isolated(pg_data_t *pgdat)
 74{
 75	wait_queue_head_t *wqh;
 76
 77	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 78	if (waitqueue_active(wqh))
 79		wake_up(wqh);
 80}
 81
 
 
 
 
 
 
 
 
 
 
 82vm_fault_t do_swap_page(struct vm_fault *vmf);
 83void folio_rotate_reclaimable(struct folio *folio);
 84bool __folio_end_writeback(struct folio *folio);
 85void deactivate_file_folio(struct folio *folio);
 86void folio_activate(struct folio *folio);
 87
 88void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
 89		   struct vm_area_struct *start_vma, unsigned long floor,
 90		   unsigned long ceiling);
 91void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 92
 93struct zap_details;
 94void unmap_page_range(struct mmu_gather *tlb,
 95			     struct vm_area_struct *vma,
 96			     unsigned long addr, unsigned long end,
 97			     struct zap_details *details);
 98
 99void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
100		unsigned int order);
101void force_page_cache_ra(struct readahead_control *, unsigned long nr);
102static inline void force_page_cache_readahead(struct address_space *mapping,
103		struct file *file, pgoff_t index, unsigned long nr_to_read)
104{
105	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
106	force_page_cache_ra(&ractl, nr_to_read);
107}
108
109unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
110		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
111unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
112		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
113void filemap_free_folio(struct address_space *mapping, struct folio *folio);
114int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
115bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
116		loff_t end);
117long invalidate_inode_page(struct page *page);
118unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
119		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
120
121/**
122 * folio_evictable - Test whether a folio is evictable.
123 * @folio: The folio to test.
124 *
125 * Test whether @folio is evictable -- i.e., should be placed on
126 * active/inactive lists vs unevictable list.
127 *
128 * Reasons folio might not be evictable:
129 * 1. folio's mapping marked unevictable
130 * 2. One of the pages in the folio is part of an mlocked VMA
131 */
132static inline bool folio_evictable(struct folio *folio)
133{
134	bool ret;
135
136	/* Prevent address_space of inode and swap cache from being freed */
137	rcu_read_lock();
138	ret = !mapping_unevictable(folio_mapping(folio)) &&
139			!folio_test_mlocked(folio);
140	rcu_read_unlock();
141	return ret;
142}
143
144static inline bool page_evictable(struct page *page)
145{
146	bool ret;
147
148	/* Prevent address_space of inode and swap cache from being freed */
149	rcu_read_lock();
150	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
151	rcu_read_unlock();
152	return ret;
153}
154
155/*
156 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
157 * a count of one.
158 */
159static inline void set_page_refcounted(struct page *page)
160{
161	VM_BUG_ON_PAGE(PageTail(page), page);
162	VM_BUG_ON_PAGE(page_ref_count(page), page);
163	set_page_count(page, 1);
164}
165
 
 
 
 
 
 
 
 
 
 
 
166extern unsigned long highest_memmap_pfn;
167
168/*
169 * Maximum number of reclaim retries without progress before the OOM
170 * killer is consider the only way forward.
171 */
172#define MAX_RECLAIM_RETRIES 16
173
174/*
175 * in mm/early_ioremap.c
176 */
177pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
178					unsigned long size, pgprot_t prot);
179
180/*
181 * in mm/vmscan.c:
182 */
183int isolate_lru_page(struct page *page);
184int folio_isolate_lru(struct folio *folio);
185void putback_lru_page(struct page *page);
186void folio_putback_lru(struct folio *folio);
187extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
188
189/*
190 * in mm/rmap.c:
191 */
192pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
193
194/*
195 * in mm/page_alloc.c
196 */
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198/*
199 * Structure for holding the mostly immutable allocation parameters passed
200 * between functions involved in allocations, including the alloc_pages*
201 * family of functions.
202 *
203 * nodemask, migratetype and highest_zoneidx are initialized only once in
204 * __alloc_pages() and then never change.
205 *
206 * zonelist, preferred_zone and highest_zoneidx are set first in
207 * __alloc_pages() for the fast path, and might be later changed
208 * in __alloc_pages_slowpath(). All other functions pass the whole structure
209 * by a const pointer.
210 */
211struct alloc_context {
212	struct zonelist *zonelist;
213	nodemask_t *nodemask;
214	struct zoneref *preferred_zoneref;
215	int migratetype;
216
217	/*
218	 * highest_zoneidx represents highest usable zone index of
219	 * the allocation request. Due to the nature of the zone,
220	 * memory on lower zone than the highest_zoneidx will be
221	 * protected by lowmem_reserve[highest_zoneidx].
222	 *
223	 * highest_zoneidx is also used by reclaim/compaction to limit
224	 * the target zone since higher zone than this index cannot be
225	 * usable for this allocation request.
226	 */
227	enum zone_type highest_zoneidx;
228	bool spread_dirty_pages;
229};
230
231/*
232 * This function returns the order of a free page in the buddy system. In
233 * general, page_zone(page)->lock must be held by the caller to prevent the
234 * page from being allocated in parallel and returning garbage as the order.
235 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
236 * page cannot be allocated or merged in parallel. Alternatively, it must
237 * handle invalid values gracefully, and use buddy_order_unsafe() below.
238 */
239static inline unsigned int buddy_order(struct page *page)
240{
241	/* PageBuddy() must be checked by the caller */
242	return page_private(page);
243}
244
245/*
246 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
247 * PageBuddy() should be checked first by the caller to minimize race window,
248 * and invalid values must be handled gracefully.
249 *
250 * READ_ONCE is used so that if the caller assigns the result into a local
251 * variable and e.g. tests it for valid range before using, the compiler cannot
252 * decide to remove the variable and inline the page_private(page) multiple
253 * times, potentially observing different values in the tests and the actual
254 * use of the result.
255 */
256#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
257
258/*
259 * This function checks whether a page is free && is the buddy
260 * we can coalesce a page and its buddy if
261 * (a) the buddy is not in a hole (check before calling!) &&
262 * (b) the buddy is in the buddy system &&
263 * (c) a page and its buddy have the same order &&
264 * (d) a page and its buddy are in the same zone.
265 *
266 * For recording whether a page is in the buddy system, we set PageBuddy.
267 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
268 *
269 * For recording page's order, we use page_private(page).
270 */
271static inline bool page_is_buddy(struct page *page, struct page *buddy,
272				 unsigned int order)
273{
274	if (!page_is_guard(buddy) && !PageBuddy(buddy))
275		return false;
276
277	if (buddy_order(buddy) != order)
278		return false;
279
280	/*
281	 * zone check is done late to avoid uselessly calculating
282	 * zone/node ids for pages that could never merge.
283	 */
284	if (page_zone_id(page) != page_zone_id(buddy))
285		return false;
286
287	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
288
289	return true;
290}
291
292/*
293 * Locate the struct page for both the matching buddy in our
294 * pair (buddy1) and the combined O(n+1) page they form (page).
295 *
296 * 1) Any buddy B1 will have an order O twin B2 which satisfies
297 * the following equation:
298 *     B2 = B1 ^ (1 << O)
299 * For example, if the starting buddy (buddy2) is #8 its order
300 * 1 buddy is #10:
301 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
302 *
303 * 2) Any buddy B will have an order O+1 parent P which
304 * satisfies the following equation:
305 *     P = B & ~(1 << O)
306 *
307 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
308 */
309static inline unsigned long
310__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
311{
312	return page_pfn ^ (1 << order);
313}
314
315/*
316 * Find the buddy of @page and validate it.
317 * @page: The input page
318 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
319 *       function is used in the performance-critical __free_one_page().
320 * @order: The order of the page
321 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
322 *             page_to_pfn().
323 *
324 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
325 * not the same as @page. The validation is necessary before use it.
326 *
327 * Return: the found buddy page or NULL if not found.
328 */
329static inline struct page *find_buddy_page_pfn(struct page *page,
330			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
331{
332	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
333	struct page *buddy;
334
335	buddy = page + (__buddy_pfn - pfn);
336	if (buddy_pfn)
337		*buddy_pfn = __buddy_pfn;
338
339	if (page_is_buddy(page, buddy, order))
340		return buddy;
341	return NULL;
342}
343
344extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
345				unsigned long end_pfn, struct zone *zone);
346
347static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
348				unsigned long end_pfn, struct zone *zone)
349{
350	if (zone->contiguous)
351		return pfn_to_page(start_pfn);
352
353	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
354}
355
 
 
 
 
 
 
 
356extern int __isolate_free_page(struct page *page, unsigned int order);
357extern void __putback_isolated_page(struct page *page, unsigned int order,
358				    int mt);
359extern void memblock_free_pages(struct page *page, unsigned long pfn,
360					unsigned int order);
361extern void __free_pages_core(struct page *page, unsigned int order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362extern void prep_compound_page(struct page *page, unsigned int order);
 
363extern void post_alloc_hook(struct page *page, unsigned int order,
364					gfp_t gfp_flags);
 
 
365extern int user_min_free_kbytes;
366
367extern void free_unref_page(struct page *page, unsigned int order);
368extern void free_unref_page_list(struct list_head *list);
369
370extern void zone_pcp_reset(struct zone *zone);
371extern void zone_pcp_disable(struct zone *zone);
372extern void zone_pcp_enable(struct zone *zone);
 
373
374extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
375			  phys_addr_t min_addr,
376			  int nid, bool exact_nid);
377
378int split_free_page(struct page *free_page,
379			unsigned int order, unsigned long split_pfn_offset);
380
381#if defined CONFIG_COMPACTION || defined CONFIG_CMA
382
383/*
384 * in mm/compaction.c
385 */
386/*
387 * compact_control is used to track pages being migrated and the free pages
388 * they are being migrated to during memory compaction. The free_pfn starts
389 * at the end of a zone and migrate_pfn begins at the start. Movable pages
390 * are moved to the end of a zone during a compaction run and the run
391 * completes when free_pfn <= migrate_pfn
392 */
393struct compact_control {
394	struct list_head freepages;	/* List of free pages to migrate to */
395	struct list_head migratepages;	/* List of pages being migrated */
396	unsigned int nr_freepages;	/* Number of isolated free pages */
397	unsigned int nr_migratepages;	/* Number of pages to migrate */
398	unsigned long free_pfn;		/* isolate_freepages search base */
399	/*
400	 * Acts as an in/out parameter to page isolation for migration.
401	 * isolate_migratepages uses it as a search base.
402	 * isolate_migratepages_block will update the value to the next pfn
403	 * after the last isolated one.
404	 */
405	unsigned long migrate_pfn;
406	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
407	struct zone *zone;
408	unsigned long total_migrate_scanned;
409	unsigned long total_free_scanned;
410	unsigned short fast_search_fail;/* failures to use free list searches */
411	short search_order;		/* order to start a fast search at */
412	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
413	int order;			/* order a direct compactor needs */
414	int migratetype;		/* migratetype of direct compactor */
415	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
416	const int highest_zoneidx;	/* zone index of a direct compactor */
417	enum migrate_mode mode;		/* Async or sync migration mode */
418	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
419	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
420	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
421	bool direct_compaction;		/* False from kcompactd or /proc/... */
422	bool proactive_compaction;	/* kcompactd proactive compaction */
423	bool whole_zone;		/* Whole zone should/has been scanned */
424	bool contended;			/* Signal lock contention */
425	bool rescan;			/* Rescanning the same pageblock */
 
 
 
 
426	bool alloc_contig;		/* alloc_contig_range allocation */
427};
428
429/*
430 * Used in direct compaction when a page should be taken from the freelists
431 * immediately when one is created during the free path.
432 */
433struct capture_control {
434	struct compact_control *cc;
435	struct page *page;
436};
437
438unsigned long
439isolate_freepages_range(struct compact_control *cc,
440			unsigned long start_pfn, unsigned long end_pfn);
441int
442isolate_migratepages_range(struct compact_control *cc,
443			   unsigned long low_pfn, unsigned long end_pfn);
444
445int __alloc_contig_migrate_range(struct compact_control *cc,
446					unsigned long start, unsigned long end);
447#endif
 
 
 
 
 
 
448int find_suitable_fallback(struct free_area *area, unsigned int order,
449			int migratetype, bool only_stealable, bool *can_steal);
450
451/*
452 * These three helpers classifies VMAs for virtual memory accounting.
453 */
454
455/*
456 * Executable code area - executable, not writable, not stack
457 */
458static inline bool is_exec_mapping(vm_flags_t flags)
459{
460	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
461}
462
 
 
 
 
 
 
 
 
 
 
 
 
463/*
464 * Stack area - automatically grows in one direction
 
 
 
 
 
465 *
466 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
467 * do_mmap() forbids all other combinations.
468 */
469static inline bool is_stack_mapping(vm_flags_t flags)
 
 
 
 
 
 
470{
471	return (flags & VM_STACK) == VM_STACK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472}
473
474/*
475 * Data area - private, writable, not stack
476 */
477static inline bool is_data_mapping(vm_flags_t flags)
478{
479	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
480}
481
482/* mm/util.c */
483struct anon_vma *folio_anon_vma(struct folio *folio);
484
485#ifdef CONFIG_MMU
486void unmap_mapping_folio(struct folio *folio);
487extern long populate_vma_page_range(struct vm_area_struct *vma,
488		unsigned long start, unsigned long end, int *locked);
489extern long faultin_vma_page_range(struct vm_area_struct *vma,
490				   unsigned long start, unsigned long end,
491				   bool write, int *locked);
492extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
493			      unsigned long len);
494/*
495 * mlock_vma_page() and munlock_vma_page():
496 * should be called with vma's mmap_lock held for read or write,
497 * under page table lock for the pte/pmd being added or removed.
498 *
499 * mlock is usually called at the end of page_add_*_rmap(),
500 * munlock at the end of page_remove_rmap(); but new anon
501 * pages are managed by lru_cache_add_inactive_or_unevictable()
502 * calling mlock_new_page().
503 *
504 * @compound is used to include pmd mappings of THPs, but filter out
505 * pte mappings of THPs, which cannot be consistently counted: a pte
506 * mapping of the THP head cannot be distinguished by the page alone.
507 */
508void mlock_folio(struct folio *folio);
509static inline void mlock_vma_folio(struct folio *folio,
510			struct vm_area_struct *vma, bool compound)
511{
512	/*
513	 * The VM_SPECIAL check here serves two purposes.
514	 * 1) VM_IO check prevents migration from double-counting during mlock.
515	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
516	 *    is never left set on a VM_SPECIAL vma, there is an interval while
517	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
518	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
519	 */
520	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
521	    (compound || !folio_test_large(folio)))
522		mlock_folio(folio);
523}
524
525static inline void mlock_vma_page(struct page *page,
526			struct vm_area_struct *vma, bool compound)
 
527{
528	mlock_vma_folio(page_folio(page), vma, compound);
 
 
 
 
 
 
 
 
 
 
529}
530
531void munlock_page(struct page *page);
532static inline void munlock_vma_page(struct page *page,
533			struct vm_area_struct *vma, bool compound)
534{
535	if (unlikely(vma->vm_flags & VM_LOCKED) &&
536	    (compound || !PageTransCompound(page)))
537		munlock_page(page);
538}
539void mlock_new_page(struct page *page);
540bool need_mlock_page_drain(int cpu);
541void mlock_page_drain_local(void);
542void mlock_page_drain_remote(int cpu);
543
544extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
545
546/*
547 * Return the start of user virtual address at the specific offset within
548 * a vma.
 
 
 
 
 
549 */
550static inline unsigned long
551vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
552		  struct vm_area_struct *vma)
553{
554	unsigned long address;
555
556	if (pgoff >= vma->vm_pgoff) {
557		address = vma->vm_start +
558			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
559		/* Check for address beyond vma (or wrapped through 0?) */
560		if (address < vma->vm_start || address >= vma->vm_end)
561			address = -EFAULT;
562	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
563		/* Test above avoids possibility of wrap to 0 on 32-bit */
564		address = vma->vm_start;
565	} else {
566		address = -EFAULT;
567	}
568	return address;
569}
570
571/*
572 * Return the start of user virtual address of a page within a vma.
573 * Returns -EFAULT if all of the page is outside the range of vma.
574 * If page is a compound head, the entire compound page is considered.
575 */
576static inline unsigned long
577vma_address(struct page *page, struct vm_area_struct *vma)
578{
579	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
580	return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
581}
582
583/*
584 * Then at what user virtual address will none of the range be found in vma?
585 * Assumes that vma_address() already returned a good starting address.
586 */
587static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
588{
589	struct vm_area_struct *vma = pvmw->vma;
590	pgoff_t pgoff;
591	unsigned long address;
592
593	/* Common case, plus ->pgoff is invalid for KSM */
594	if (pvmw->nr_pages == 1)
595		return pvmw->address + PAGE_SIZE;
596
597	pgoff = pvmw->pgoff + pvmw->nr_pages;
598	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
599	/* Check for address beyond vma (or wrapped through 0?) */
600	if (address < vma->vm_start || address > vma->vm_end)
601		address = vma->vm_end;
602	return address;
603}
604
605static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
606						    struct file *fpin)
607{
608	int flags = vmf->flags;
609
610	if (fpin)
611		return fpin;
612
613	/*
614	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
615	 * anything, so we only pin the file and drop the mmap_lock if only
616	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
617	 */
618	if (fault_flag_allow_retry_first(flags) &&
619	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
620		fpin = get_file(vmf->vma->vm_file);
621		mmap_read_unlock(vmf->vma->vm_mm);
622	}
623	return fpin;
624}
625#else /* !CONFIG_MMU */
626static inline void unmap_mapping_folio(struct folio *folio) { }
627static inline void mlock_vma_page(struct page *page,
628			struct vm_area_struct *vma, bool compound) { }
629static inline void munlock_vma_page(struct page *page,
630			struct vm_area_struct *vma, bool compound) { }
631static inline void mlock_new_page(struct page *page) { }
632static inline bool need_mlock_page_drain(int cpu) { return false; }
633static inline void mlock_page_drain_local(void) { }
634static inline void mlock_page_drain_remote(int cpu) { }
635static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
636{
637}
638#endif /* !CONFIG_MMU */
639
640/* Memory initialisation debug and verification */
 
 
 
 
 
 
641enum mminit_level {
642	MMINIT_WARNING,
643	MMINIT_VERIFY,
644	MMINIT_TRACE
645};
646
647#ifdef CONFIG_DEBUG_MEMORY_INIT
648
649extern int mminit_loglevel;
650
651#define mminit_dprintk(level, prefix, fmt, arg...) \
652do { \
653	if (level < mminit_loglevel) { \
654		if (level <= MMINIT_WARNING) \
655			pr_warn("mminit::" prefix " " fmt, ##arg);	\
656		else \
657			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
658	} \
659} while (0)
660
661extern void mminit_verify_pageflags_layout(void);
662extern void mminit_verify_zonelist(void);
663#else
664
665static inline void mminit_dprintk(enum mminit_level level,
666				const char *prefix, const char *fmt, ...)
667{
668}
669
670static inline void mminit_verify_pageflags_layout(void)
671{
672}
673
674static inline void mminit_verify_zonelist(void)
675{
676}
677#endif /* CONFIG_DEBUG_MEMORY_INIT */
678
679#define NODE_RECLAIM_NOSCAN	-2
680#define NODE_RECLAIM_FULL	-1
681#define NODE_RECLAIM_SOME	0
682#define NODE_RECLAIM_SUCCESS	1
683
684#ifdef CONFIG_NUMA
685extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
686extern int find_next_best_node(int node, nodemask_t *used_node_mask);
687#else
688static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
689				unsigned int order)
690{
691	return NODE_RECLAIM_NOSCAN;
692}
693static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
694{
695	return NUMA_NO_NODE;
696}
697#endif
698
699/*
700 * mm/memory-failure.c
701 */
 
 
 
702extern int hwpoison_filter(struct page *p);
703
704extern u32 hwpoison_filter_dev_major;
705extern u32 hwpoison_filter_dev_minor;
706extern u64 hwpoison_filter_flags_mask;
707extern u64 hwpoison_filter_flags_value;
708extern u64 hwpoison_filter_memcg;
709extern u32 hwpoison_filter_enable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710
711extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
712        unsigned long, unsigned long,
713        unsigned long, unsigned long);
714
715extern void set_pageblock_order(void);
 
 
716unsigned int reclaim_clean_pages_from_list(struct zone *zone,
717					    struct list_head *page_list);
718/* The ALLOC_WMARK bits are used as an index to zone->watermark */
719#define ALLOC_WMARK_MIN		WMARK_MIN
720#define ALLOC_WMARK_LOW		WMARK_LOW
721#define ALLOC_WMARK_HIGH	WMARK_HIGH
722#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
723
724/* Mask to get the watermark bits */
725#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
726
727/*
728 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
729 * cannot assume a reduced access to memory reserves is sufficient for
730 * !MMU
731 */
732#ifdef CONFIG_MMU
733#define ALLOC_OOM		0x08
734#else
735#define ALLOC_OOM		ALLOC_NO_WATERMARKS
736#endif
737
738#define ALLOC_HARDER		 0x10 /* try to alloc harder */
739#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
 
 
 
 
 
740#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
741#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
742#ifdef CONFIG_ZONE_DMA32
743#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
744#else
745#define ALLOC_NOFRAGMENT	  0x0
746#endif
 
747#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
748
 
 
 
749enum ttu_flags;
750struct tlbflush_unmap_batch;
751
752
753/*
754 * only for MM internal work items which do not depend on
755 * any allocations or locks which might depend on allocations
756 */
757extern struct workqueue_struct *mm_percpu_wq;
758
759#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
760void try_to_unmap_flush(void);
761void try_to_unmap_flush_dirty(void);
762void flush_tlb_batched_pending(struct mm_struct *mm);
763#else
764static inline void try_to_unmap_flush(void)
765{
766}
767static inline void try_to_unmap_flush_dirty(void)
768{
769}
770static inline void flush_tlb_batched_pending(struct mm_struct *mm)
771{
772}
773#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
774
775extern const struct trace_print_flags pageflag_names[];
776extern const struct trace_print_flags vmaflag_names[];
777extern const struct trace_print_flags gfpflag_names[];
778
779static inline bool is_migrate_highatomic(enum migratetype migratetype)
780{
781	return migratetype == MIGRATE_HIGHATOMIC;
782}
783
784static inline bool is_migrate_highatomic_page(struct page *page)
785{
786	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
787}
788
789void setup_zone_pageset(struct zone *zone);
790
791struct migration_target_control {
792	int nid;		/* preferred node id */
793	nodemask_t *nmask;
794	gfp_t gfp_mask;
 
795};
796
797/*
 
 
 
 
 
 
798 * mm/vmalloc.c
799 */
800#ifdef CONFIG_MMU
801int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 
802                pgprot_t prot, struct page **pages, unsigned int page_shift);
 
803#else
 
 
 
 
804static inline
805int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
806                pgprot_t prot, struct page **pages, unsigned int page_shift)
807{
808	return -EINVAL;
809}
810#endif
811
812int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
813			       pgprot_t prot, struct page **pages,
814			       unsigned int page_shift);
815
816void vunmap_range_noflush(unsigned long start, unsigned long end);
817
818void __vunmap_range_noflush(unsigned long start, unsigned long end);
819
820int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
821		      unsigned long addr, int page_nid, int *flags);
822
823void free_zone_device_page(struct page *page);
824int migrate_device_coherent_page(struct page *page);
 
 
 
 
 
 
 
825
826/*
827 * mm/gup.c
828 */
829struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830
831extern bool mirrored_kernelcore;
 
 
 
 
 
 
 
 
 
 
832
833static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
834{
835	/*
836	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
837	 * enablements, because when without soft-dirty being compiled in,
838	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
839	 * will be constantly true.
840	 */
841	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
842		return false;
843
844	/*
845	 * Soft-dirty is kind of special: its tracking is enabled when the
846	 * vma flags not set.
847	 */
848	return !(vma->vm_flags & VM_SOFTDIRTY);
849}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850
851#endif	/* __MM_INTERNAL_H */
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* internal.h: mm/ internal definitions
   3 *
   4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7#ifndef __MM_INTERNAL_H
   8#define __MM_INTERNAL_H
   9
  10#include <linux/fs.h>
  11#include <linux/khugepaged.h>
  12#include <linux/mm.h>
  13#include <linux/mm_inline.h>
  14#include <linux/pagemap.h>
  15#include <linux/pagewalk.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/swap_cgroup.h>
  20#include <linux/tracepoint-defs.h>
  21
  22/* Internal core VMA manipulation functions. */
  23#include "vma.h"
  24
  25struct folio_batch;
  26
  27/*
  28 * The set of flags that only affect watermark checking and reclaim
  29 * behaviour. This is used by the MM to obey the caller constraints
  30 * about IO, FS and watermark checking while ignoring placement
  31 * hints such as HIGHMEM usage.
  32 */
  33#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  34			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
  35			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
  36			__GFP_NOLOCKDEP)
  37
  38/* The GFP flags allowed during early boot */
  39#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  40
  41/* Control allocation cpuset and node placement constraints */
  42#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  43
  44/* Do not use these with a slab allocator */
  45#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  46
  47/*
  48 * Different from WARN_ON_ONCE(), no warning will be issued
  49 * when we specify __GFP_NOWARN.
  50 */
  51#define WARN_ON_ONCE_GFP(cond, gfp)	({				\
  52	static bool __section(".data..once") __warned;			\
  53	int __ret_warn_once = !!(cond);					\
  54									\
  55	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
  56		__warned = true;					\
  57		WARN_ON(1);						\
  58	}								\
  59	unlikely(__ret_warn_once);					\
  60})
  61
  62void page_writeback_init(void);
  63
  64/*
  65 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
  66 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
  67 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
  68 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
  69 */
  70#define ENTIRELY_MAPPED		0x800000
  71#define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
  72
  73/*
  74 * Flags passed to __show_mem() and show_free_areas() to suppress output in
  75 * various contexts.
  76 */
  77#define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
  78
  79/*
  80 * How many individual pages have an elevated _mapcount.  Excludes
  81 * the folio's entire_mapcount.
  82 *
  83 * Don't use this function outside of debugging code.
  84 */
  85static inline int folio_nr_pages_mapped(const struct folio *folio)
  86{
  87	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
  88}
  89
  90/*
  91 * Retrieve the first entry of a folio based on a provided entry within the
  92 * folio. We cannot rely on folio->swap as there is no guarantee that it has
  93 * been initialized. Used for calling arch_swap_restore()
  94 */
  95static inline swp_entry_t folio_swap(swp_entry_t entry,
  96		const struct folio *folio)
  97{
  98	swp_entry_t swap = {
  99		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
 100	};
 101
 102	return swap;
 103}
 104
 105static inline void *folio_raw_mapping(const struct folio *folio)
 106{
 107	unsigned long mapping = (unsigned long)folio->mapping;
 108
 109	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
 110}
 111
 112/*
 113 * This is a file-backed mapping, and is about to be memory mapped - invoke its
 114 * mmap hook and safely handle error conditions. On error, VMA hooks will be
 115 * mutated.
 116 *
 117 * @file: File which backs the mapping.
 118 * @vma:  VMA which we are mapping.
 119 *
 120 * Returns: 0 if success, error otherwise.
 121 */
 122static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
 123{
 124	int err = call_mmap(file, vma);
 125
 126	if (likely(!err))
 127		return 0;
 128
 129	/*
 130	 * OK, we tried to call the file hook for mmap(), but an error
 131	 * arose. The mapping is in an inconsistent state and we most not invoke
 132	 * any further hooks on it.
 133	 */
 134	vma->vm_ops = &vma_dummy_vm_ops;
 135
 136	return err;
 137}
 138
 139/*
 140 * If the VMA has a close hook then close it, and since closing it might leave
 141 * it in an inconsistent state which makes the use of any hooks suspect, clear
 142 * them down by installing dummy empty hooks.
 143 */
 144static inline void vma_close(struct vm_area_struct *vma)
 145{
 146	if (vma->vm_ops && vma->vm_ops->close) {
 147		vma->vm_ops->close(vma);
 148
 149		/*
 150		 * The mapping is in an inconsistent state, and no further hooks
 151		 * may be invoked upon it.
 152		 */
 153		vma->vm_ops = &vma_dummy_vm_ops;
 154	}
 155}
 156
 157#ifdef CONFIG_MMU
 158
 159/* Flags for folio_pte_batch(). */
 160typedef int __bitwise fpb_t;
 161
 162/* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
 163#define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
 164
 165/* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
 166#define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
 167
 168static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
 169{
 170	if (flags & FPB_IGNORE_DIRTY)
 171		pte = pte_mkclean(pte);
 172	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
 173		pte = pte_clear_soft_dirty(pte);
 174	return pte_wrprotect(pte_mkold(pte));
 175}
 176
 177/**
 178 * folio_pte_batch - detect a PTE batch for a large folio
 179 * @folio: The large folio to detect a PTE batch for.
 180 * @addr: The user virtual address the first page is mapped at.
 181 * @start_ptep: Page table pointer for the first entry.
 182 * @pte: Page table entry for the first page.
 183 * @max_nr: The maximum number of table entries to consider.
 184 * @flags: Flags to modify the PTE batch semantics.
 185 * @any_writable: Optional pointer to indicate whether any entry except the
 186 *		  first one is writable.
 187 * @any_young: Optional pointer to indicate whether any entry except the
 188 *		  first one is young.
 189 * @any_dirty: Optional pointer to indicate whether any entry except the
 190 *		  first one is dirty.
 191 *
 192 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
 193 * pages of the same large folio.
 194 *
 195 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
 196 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
 197 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
 198 *
 199 * start_ptep must map any page of the folio. max_nr must be at least one and
 200 * must be limited by the caller so scanning cannot exceed a single page table.
 201 *
 202 * Return: the number of table entries in the batch.
 203 */
 204static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
 205		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
 206		bool *any_writable, bool *any_young, bool *any_dirty)
 207{
 208	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
 209	const pte_t *end_ptep = start_ptep + max_nr;
 210	pte_t expected_pte, *ptep;
 211	bool writable, young, dirty;
 212	int nr;
 213
 214	if (any_writable)
 215		*any_writable = false;
 216	if (any_young)
 217		*any_young = false;
 218	if (any_dirty)
 219		*any_dirty = false;
 220
 221	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
 222	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
 223	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
 224
 225	nr = pte_batch_hint(start_ptep, pte);
 226	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
 227	ptep = start_ptep + nr;
 228
 229	while (ptep < end_ptep) {
 230		pte = ptep_get(ptep);
 231		if (any_writable)
 232			writable = !!pte_write(pte);
 233		if (any_young)
 234			young = !!pte_young(pte);
 235		if (any_dirty)
 236			dirty = !!pte_dirty(pte);
 237		pte = __pte_batch_clear_ignored(pte, flags);
 238
 239		if (!pte_same(pte, expected_pte))
 240			break;
 241
 242		/*
 243		 * Stop immediately once we reached the end of the folio. In
 244		 * corner cases the next PFN might fall into a different
 245		 * folio.
 246		 */
 247		if (pte_pfn(pte) >= folio_end_pfn)
 248			break;
 249
 250		if (any_writable)
 251			*any_writable |= writable;
 252		if (any_young)
 253			*any_young |= young;
 254		if (any_dirty)
 255			*any_dirty |= dirty;
 256
 257		nr = pte_batch_hint(ptep, pte);
 258		expected_pte = pte_advance_pfn(expected_pte, nr);
 259		ptep += nr;
 260	}
 261
 262	return min(ptep - start_ptep, max_nr);
 263}
 264
 265/**
 266 * pte_move_swp_offset - Move the swap entry offset field of a swap pte
 267 *	 forward or backward by delta
 268 * @pte: The initial pte state; is_swap_pte(pte) must be true and
 269 *	 non_swap_entry() must be false.
 270 * @delta: The direction and the offset we are moving; forward if delta
 271 *	 is positive; backward if delta is negative
 272 *
 273 * Moves the swap offset, while maintaining all other fields, including
 274 * swap type, and any swp pte bits. The resulting pte is returned.
 275 */
 276static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
 277{
 278	swp_entry_t entry = pte_to_swp_entry(pte);
 279	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
 280						   (swp_offset(entry) + delta)));
 281
 282	if (pte_swp_soft_dirty(pte))
 283		new = pte_swp_mksoft_dirty(new);
 284	if (pte_swp_exclusive(pte))
 285		new = pte_swp_mkexclusive(new);
 286	if (pte_swp_uffd_wp(pte))
 287		new = pte_swp_mkuffd_wp(new);
 288
 289	return new;
 290}
 291
 292
 293/**
 294 * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
 295 * @pte: The initial pte state; is_swap_pte(pte) must be true and
 296 *	 non_swap_entry() must be false.
 297 *
 298 * Increments the swap offset, while maintaining all other fields, including
 299 * swap type, and any swp pte bits. The resulting pte is returned.
 300 */
 301static inline pte_t pte_next_swp_offset(pte_t pte)
 302{
 303	return pte_move_swp_offset(pte, 1);
 304}
 305
 306/**
 307 * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
 308 * @start_ptep: Page table pointer for the first entry.
 309 * @max_nr: The maximum number of table entries to consider.
 310 * @pte: Page table entry for the first entry.
 311 *
 312 * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
 313 * containing swap entries all with consecutive offsets and targeting the same
 314 * swap type, all with matching swp pte bits.
 315 *
 316 * max_nr must be at least one and must be limited by the caller so scanning
 317 * cannot exceed a single page table.
 318 *
 319 * Return: the number of table entries in the batch.
 320 */
 321static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
 322{
 323	pte_t expected_pte = pte_next_swp_offset(pte);
 324	const pte_t *end_ptep = start_ptep + max_nr;
 325	swp_entry_t entry = pte_to_swp_entry(pte);
 326	pte_t *ptep = start_ptep + 1;
 327	unsigned short cgroup_id;
 328
 329	VM_WARN_ON(max_nr < 1);
 330	VM_WARN_ON(!is_swap_pte(pte));
 331	VM_WARN_ON(non_swap_entry(entry));
 332
 333	cgroup_id = lookup_swap_cgroup_id(entry);
 334	while (ptep < end_ptep) {
 335		pte = ptep_get(ptep);
 336
 337		if (!pte_same(pte, expected_pte))
 338			break;
 339		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
 340			break;
 341		expected_pte = pte_next_swp_offset(expected_pte);
 342		ptep++;
 343	}
 344
 345	return ptep - start_ptep;
 346}
 347#endif /* CONFIG_MMU */
 348
 349void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 350						int nr_throttled);
 351static inline void acct_reclaim_writeback(struct folio *folio)
 352{
 353	pg_data_t *pgdat = folio_pgdat(folio);
 354	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 355
 356	if (nr_throttled)
 357		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 358}
 359
 360static inline void wake_throttle_isolated(pg_data_t *pgdat)
 361{
 362	wait_queue_head_t *wqh;
 363
 364	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 365	if (waitqueue_active(wqh))
 366		wake_up(wqh);
 367}
 368
 369vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
 370static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
 371{
 372	vm_fault_t ret = __vmf_anon_prepare(vmf);
 373
 374	if (unlikely(ret & VM_FAULT_RETRY))
 375		vma_end_read(vmf->vma);
 376	return ret;
 377}
 378
 379vm_fault_t do_swap_page(struct vm_fault *vmf);
 380void folio_rotate_reclaimable(struct folio *folio);
 381bool __folio_end_writeback(struct folio *folio);
 382void deactivate_file_folio(struct folio *folio);
 383void folio_activate(struct folio *folio);
 384
 385void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
 386		   struct vm_area_struct *start_vma, unsigned long floor,
 387		   unsigned long ceiling, bool mm_wr_locked);
 388void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 389
 390struct zap_details;
 391void unmap_page_range(struct mmu_gather *tlb,
 392			     struct vm_area_struct *vma,
 393			     unsigned long addr, unsigned long end,
 394			     struct zap_details *details);
 395
 396void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
 397		unsigned int order);
 398void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 399static inline void force_page_cache_readahead(struct address_space *mapping,
 400		struct file *file, pgoff_t index, unsigned long nr_to_read)
 401{
 402	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 403	force_page_cache_ra(&ractl, nr_to_read);
 404}
 405
 406unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
 407		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 408unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
 409		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 410void filemap_free_folio(struct address_space *mapping, struct folio *folio);
 411int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
 412bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
 413		loff_t end);
 414long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
 415unsigned long mapping_try_invalidate(struct address_space *mapping,
 416		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
 417
 418/**
 419 * folio_evictable - Test whether a folio is evictable.
 420 * @folio: The folio to test.
 421 *
 422 * Test whether @folio is evictable -- i.e., should be placed on
 423 * active/inactive lists vs unevictable list.
 424 *
 425 * Reasons folio might not be evictable:
 426 * 1. folio's mapping marked unevictable
 427 * 2. One of the pages in the folio is part of an mlocked VMA
 428 */
 429static inline bool folio_evictable(struct folio *folio)
 430{
 431	bool ret;
 432
 433	/* Prevent address_space of inode and swap cache from being freed */
 434	rcu_read_lock();
 435	ret = !mapping_unevictable(folio_mapping(folio)) &&
 436			!folio_test_mlocked(folio);
 437	rcu_read_unlock();
 438	return ret;
 439}
 440
 
 
 
 
 
 
 
 
 
 
 
 441/*
 442 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 443 * a count of one.
 444 */
 445static inline void set_page_refcounted(struct page *page)
 446{
 447	VM_BUG_ON_PAGE(PageTail(page), page);
 448	VM_BUG_ON_PAGE(page_ref_count(page), page);
 449	set_page_count(page, 1);
 450}
 451
 452/*
 453 * Return true if a folio needs ->release_folio() calling upon it.
 454 */
 455static inline bool folio_needs_release(struct folio *folio)
 456{
 457	struct address_space *mapping = folio_mapping(folio);
 458
 459	return folio_has_private(folio) ||
 460		(mapping && mapping_release_always(mapping));
 461}
 462
 463extern unsigned long highest_memmap_pfn;
 464
 465/*
 466 * Maximum number of reclaim retries without progress before the OOM
 467 * killer is consider the only way forward.
 468 */
 469#define MAX_RECLAIM_RETRIES 16
 470
 471/*
 
 
 
 
 
 
 472 * in mm/vmscan.c:
 473 */
 474bool folio_isolate_lru(struct folio *folio);
 
 
 475void folio_putback_lru(struct folio *folio);
 476extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
 477
 478/*
 479 * in mm/rmap.c:
 480 */
 481pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 482
 483/*
 484 * in mm/page_alloc.c
 485 */
 486#define K(x) ((x) << (PAGE_SHIFT-10))
 487
 488extern char * const zone_names[MAX_NR_ZONES];
 489
 490/* perform sanity checks on struct pages being allocated or freed */
 491DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
 492
 493extern int min_free_kbytes;
 494
 495void setup_per_zone_wmarks(void);
 496void calculate_min_free_kbytes(void);
 497int __meminit init_per_zone_wmark_min(void);
 498void page_alloc_sysctl_init(void);
 499
 500/*
 501 * Structure for holding the mostly immutable allocation parameters passed
 502 * between functions involved in allocations, including the alloc_pages*
 503 * family of functions.
 504 *
 505 * nodemask, migratetype and highest_zoneidx are initialized only once in
 506 * __alloc_pages() and then never change.
 507 *
 508 * zonelist, preferred_zone and highest_zoneidx are set first in
 509 * __alloc_pages() for the fast path, and might be later changed
 510 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 511 * by a const pointer.
 512 */
 513struct alloc_context {
 514	struct zonelist *zonelist;
 515	nodemask_t *nodemask;
 516	struct zoneref *preferred_zoneref;
 517	int migratetype;
 518
 519	/*
 520	 * highest_zoneidx represents highest usable zone index of
 521	 * the allocation request. Due to the nature of the zone,
 522	 * memory on lower zone than the highest_zoneidx will be
 523	 * protected by lowmem_reserve[highest_zoneidx].
 524	 *
 525	 * highest_zoneidx is also used by reclaim/compaction to limit
 526	 * the target zone since higher zone than this index cannot be
 527	 * usable for this allocation request.
 528	 */
 529	enum zone_type highest_zoneidx;
 530	bool spread_dirty_pages;
 531};
 532
 533/*
 534 * This function returns the order of a free page in the buddy system. In
 535 * general, page_zone(page)->lock must be held by the caller to prevent the
 536 * page from being allocated in parallel and returning garbage as the order.
 537 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 538 * page cannot be allocated or merged in parallel. Alternatively, it must
 539 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 540 */
 541static inline unsigned int buddy_order(struct page *page)
 542{
 543	/* PageBuddy() must be checked by the caller */
 544	return page_private(page);
 545}
 546
 547/*
 548 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 549 * PageBuddy() should be checked first by the caller to minimize race window,
 550 * and invalid values must be handled gracefully.
 551 *
 552 * READ_ONCE is used so that if the caller assigns the result into a local
 553 * variable and e.g. tests it for valid range before using, the compiler cannot
 554 * decide to remove the variable and inline the page_private(page) multiple
 555 * times, potentially observing different values in the tests and the actual
 556 * use of the result.
 557 */
 558#define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
 559
 560/*
 561 * This function checks whether a page is free && is the buddy
 562 * we can coalesce a page and its buddy if
 563 * (a) the buddy is not in a hole (check before calling!) &&
 564 * (b) the buddy is in the buddy system &&
 565 * (c) a page and its buddy have the same order &&
 566 * (d) a page and its buddy are in the same zone.
 567 *
 568 * For recording whether a page is in the buddy system, we set PageBuddy.
 569 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 570 *
 571 * For recording page's order, we use page_private(page).
 572 */
 573static inline bool page_is_buddy(struct page *page, struct page *buddy,
 574				 unsigned int order)
 575{
 576	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 577		return false;
 578
 579	if (buddy_order(buddy) != order)
 580		return false;
 581
 582	/*
 583	 * zone check is done late to avoid uselessly calculating
 584	 * zone/node ids for pages that could never merge.
 585	 */
 586	if (page_zone_id(page) != page_zone_id(buddy))
 587		return false;
 588
 589	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 590
 591	return true;
 592}
 593
 594/*
 595 * Locate the struct page for both the matching buddy in our
 596 * pair (buddy1) and the combined O(n+1) page they form (page).
 597 *
 598 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 599 * the following equation:
 600 *     B2 = B1 ^ (1 << O)
 601 * For example, if the starting buddy (buddy2) is #8 its order
 602 * 1 buddy is #10:
 603 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 604 *
 605 * 2) Any buddy B will have an order O+1 parent P which
 606 * satisfies the following equation:
 607 *     P = B & ~(1 << O)
 608 *
 609 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
 610 */
 611static inline unsigned long
 612__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 613{
 614	return page_pfn ^ (1 << order);
 615}
 616
 617/*
 618 * Find the buddy of @page and validate it.
 619 * @page: The input page
 620 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 621 *       function is used in the performance-critical __free_one_page().
 622 * @order: The order of the page
 623 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 624 *             page_to_pfn().
 625 *
 626 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 627 * not the same as @page. The validation is necessary before use it.
 628 *
 629 * Return: the found buddy page or NULL if not found.
 630 */
 631static inline struct page *find_buddy_page_pfn(struct page *page,
 632			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
 633{
 634	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
 635	struct page *buddy;
 636
 637	buddy = page + (__buddy_pfn - pfn);
 638	if (buddy_pfn)
 639		*buddy_pfn = __buddy_pfn;
 640
 641	if (page_is_buddy(page, buddy, order))
 642		return buddy;
 643	return NULL;
 644}
 645
 646extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 647				unsigned long end_pfn, struct zone *zone);
 648
 649static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 650				unsigned long end_pfn, struct zone *zone)
 651{
 652	if (zone->contiguous)
 653		return pfn_to_page(start_pfn);
 654
 655	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 656}
 657
 658void set_zone_contiguous(struct zone *zone);
 659
 660static inline void clear_zone_contiguous(struct zone *zone)
 661{
 662	zone->contiguous = false;
 663}
 664
 665extern int __isolate_free_page(struct page *page, unsigned int order);
 666extern void __putback_isolated_page(struct page *page, unsigned int order,
 667				    int mt);
 668extern void memblock_free_pages(struct page *page, unsigned long pfn,
 669					unsigned int order);
 670extern void __free_pages_core(struct page *page, unsigned int order,
 671		enum meminit_context context);
 672
 673/*
 674 * This will have no effect, other than possibly generating a warning, if the
 675 * caller passes in a non-large folio.
 676 */
 677static inline void folio_set_order(struct folio *folio, unsigned int order)
 678{
 679	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
 680		return;
 681
 682	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
 683#ifdef CONFIG_64BIT
 684	folio->_folio_nr_pages = 1U << order;
 685#endif
 686}
 687
 688bool __folio_unqueue_deferred_split(struct folio *folio);
 689static inline bool folio_unqueue_deferred_split(struct folio *folio)
 690{
 691	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
 692		return false;
 693
 694	/*
 695	 * At this point, there is no one trying to add the folio to
 696	 * deferred_list. If folio is not in deferred_list, it's safe
 697	 * to check without acquiring the split_queue_lock.
 698	 */
 699	if (data_race(list_empty(&folio->_deferred_list)))
 700		return false;
 701
 702	return __folio_unqueue_deferred_split(folio);
 703}
 704
 705static inline struct folio *page_rmappable_folio(struct page *page)
 706{
 707	struct folio *folio = (struct folio *)page;
 708
 709	if (folio && folio_test_large(folio))
 710		folio_set_large_rmappable(folio);
 711	return folio;
 712}
 713
 714static inline void prep_compound_head(struct page *page, unsigned int order)
 715{
 716	struct folio *folio = (struct folio *)page;
 717
 718	folio_set_order(folio, order);
 719	atomic_set(&folio->_large_mapcount, -1);
 720	atomic_set(&folio->_entire_mapcount, -1);
 721	atomic_set(&folio->_nr_pages_mapped, 0);
 722	atomic_set(&folio->_pincount, 0);
 723	if (order > 1)
 724		INIT_LIST_HEAD(&folio->_deferred_list);
 725}
 726
 727static inline void prep_compound_tail(struct page *head, int tail_idx)
 728{
 729	struct page *p = head + tail_idx;
 730
 731	p->mapping = TAIL_MAPPING;
 732	set_compound_head(p, head);
 733	set_page_private(p, 0);
 734}
 735
 736extern void prep_compound_page(struct page *page, unsigned int order);
 737
 738extern void post_alloc_hook(struct page *page, unsigned int order,
 739					gfp_t gfp_flags);
 740extern bool free_pages_prepare(struct page *page, unsigned int order);
 741
 742extern int user_min_free_kbytes;
 743
 744void free_unref_page(struct page *page, unsigned int order);
 745void free_unref_folios(struct folio_batch *fbatch);
 746
 747extern void zone_pcp_reset(struct zone *zone);
 748extern void zone_pcp_disable(struct zone *zone);
 749extern void zone_pcp_enable(struct zone *zone);
 750extern void zone_pcp_init(struct zone *zone);
 751
 752extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 753			  phys_addr_t min_addr,
 754			  int nid, bool exact_nid);
 755
 756void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
 757		unsigned long, enum meminit_context, struct vmem_altmap *, int);
 758
 759#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 760
 761/*
 762 * in mm/compaction.c
 763 */
 764/*
 765 * compact_control is used to track pages being migrated and the free pages
 766 * they are being migrated to during memory compaction. The free_pfn starts
 767 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 768 * are moved to the end of a zone during a compaction run and the run
 769 * completes when free_pfn <= migrate_pfn
 770 */
 771struct compact_control {
 772	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
 773	struct list_head migratepages;	/* List of pages being migrated */
 774	unsigned int nr_freepages;	/* Number of isolated free pages */
 775	unsigned int nr_migratepages;	/* Number of pages to migrate */
 776	unsigned long free_pfn;		/* isolate_freepages search base */
 777	/*
 778	 * Acts as an in/out parameter to page isolation for migration.
 779	 * isolate_migratepages uses it as a search base.
 780	 * isolate_migratepages_block will update the value to the next pfn
 781	 * after the last isolated one.
 782	 */
 783	unsigned long migrate_pfn;
 784	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
 785	struct zone *zone;
 786	unsigned long total_migrate_scanned;
 787	unsigned long total_free_scanned;
 788	unsigned short fast_search_fail;/* failures to use free list searches */
 789	short search_order;		/* order to start a fast search at */
 790	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
 791	int order;			/* order a direct compactor needs */
 792	int migratetype;		/* migratetype of direct compactor */
 793	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
 794	const int highest_zoneidx;	/* zone index of a direct compactor */
 795	enum migrate_mode mode;		/* Async or sync migration mode */
 796	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
 797	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
 798	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
 799	bool direct_compaction;		/* False from kcompactd or /proc/... */
 800	bool proactive_compaction;	/* kcompactd proactive compaction */
 801	bool whole_zone;		/* Whole zone should/has been scanned */
 802	bool contended;			/* Signal lock contention */
 803	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
 804					 * when there are potentially transient
 805					 * isolation or migration failures to
 806					 * ensure forward progress.
 807					 */
 808	bool alloc_contig;		/* alloc_contig_range allocation */
 809};
 810
 811/*
 812 * Used in direct compaction when a page should be taken from the freelists
 813 * immediately when one is created during the free path.
 814 */
 815struct capture_control {
 816	struct compact_control *cc;
 817	struct page *page;
 818};
 819
 820unsigned long
 821isolate_freepages_range(struct compact_control *cc,
 822			unsigned long start_pfn, unsigned long end_pfn);
 823int
 824isolate_migratepages_range(struct compact_control *cc,
 825			   unsigned long low_pfn, unsigned long end_pfn);
 826
 827int __alloc_contig_migrate_range(struct compact_control *cc,
 828					unsigned long start, unsigned long end,
 829					int migratetype);
 830
 831/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 832void init_cma_reserved_pageblock(struct page *page);
 833
 834#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 835
 836int find_suitable_fallback(struct free_area *area, unsigned int order,
 837			int migratetype, bool only_stealable, bool *can_steal);
 838
 839static inline bool free_area_empty(struct free_area *area, int migratetype)
 
 
 
 
 
 
 
 840{
 841	return list_empty(&area->free_list[migratetype]);
 842}
 843
 844/* mm/util.c */
 845struct anon_vma *folio_anon_vma(const struct folio *folio);
 846
 847#ifdef CONFIG_MMU
 848void unmap_mapping_folio(struct folio *folio);
 849extern long populate_vma_page_range(struct vm_area_struct *vma,
 850		unsigned long start, unsigned long end, int *locked);
 851extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
 852		unsigned long end, bool write, int *locked);
 853extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 854			       unsigned long bytes);
 855
 856/*
 857 * NOTE: This function can't tell whether the folio is "fully mapped" in the
 858 * range.
 859 * "fully mapped" means all the pages of folio is associated with the page
 860 * table of range while this function just check whether the folio range is
 861 * within the range [start, end). Function caller needs to do page table
 862 * check if it cares about the page table association.
 863 *
 864 * Typical usage (like mlock or madvise) is:
 865 * Caller knows at least 1 page of folio is associated with page table of VMA
 866 * and the range [start, end) is intersect with the VMA range. Caller wants
 867 * to know whether the folio is fully associated with the range. It calls
 868 * this function to check whether the folio is in the range first. Then checks
 869 * the page table to know whether the folio is fully mapped to the range.
 870 */
 871static inline bool
 872folio_within_range(struct folio *folio, struct vm_area_struct *vma,
 873		unsigned long start, unsigned long end)
 874{
 875	pgoff_t pgoff, addr;
 876	unsigned long vma_pglen = vma_pages(vma);
 877
 878	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
 879	if (start > end)
 880		return false;
 881
 882	if (start < vma->vm_start)
 883		start = vma->vm_start;
 884
 885	if (end > vma->vm_end)
 886		end = vma->vm_end;
 887
 888	pgoff = folio_pgoff(folio);
 889
 890	/* if folio start address is not in vma range */
 891	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
 892		return false;
 893
 894	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 895
 896	return !(addr < start || end - addr < folio_size(folio));
 897}
 898
 899static inline bool
 900folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
 
 
 901{
 902	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
 903}
 904
 
 
 
 
 
 
 
 
 
 
 
 
 905/*
 906 * mlock_vma_folio() and munlock_vma_folio():
 907 * should be called with vma's mmap_lock held for read or write,
 908 * under page table lock for the pte/pmd being added or removed.
 909 *
 910 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
 911 * the end of folio_remove_rmap_*(); but new anon folios are managed by
 912 * folio_add_lru_vma() calling mlock_new_folio().
 
 
 
 
 
 913 */
 914void mlock_folio(struct folio *folio);
 915static inline void mlock_vma_folio(struct folio *folio,
 916				struct vm_area_struct *vma)
 917{
 918	/*
 919	 * The VM_SPECIAL check here serves two purposes.
 920	 * 1) VM_IO check prevents migration from double-counting during mlock.
 921	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
 922	 *    is never left set on a VM_SPECIAL vma, there is an interval while
 923	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
 924	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
 925	 */
 926	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
 
 927		mlock_folio(folio);
 928}
 929
 930void munlock_folio(struct folio *folio);
 931static inline void munlock_vma_folio(struct folio *folio,
 932					struct vm_area_struct *vma)
 933{
 934	/*
 935	 * munlock if the function is called. Ideally, we should only
 936	 * do munlock if any page of folio is unmapped from VMA and
 937	 * cause folio not fully mapped to VMA.
 938	 *
 939	 * But it's not easy to confirm that's the situation. So we
 940	 * always munlock the folio and page reclaim will correct it
 941	 * if it's wrong.
 942	 */
 943	if (unlikely(vma->vm_flags & VM_LOCKED))
 944		munlock_folio(folio);
 945}
 946
 947void mlock_new_folio(struct folio *folio);
 948bool need_mlock_drain(int cpu);
 949void mlock_drain_local(void);
 950void mlock_drain_remote(int cpu);
 
 
 
 
 
 
 
 
 951
 952extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 953
 954/**
 955 * vma_address - Find the virtual address a page range is mapped at
 956 * @vma: The vma which maps this object.
 957 * @pgoff: The page offset within its object.
 958 * @nr_pages: The number of pages to consider.
 959 *
 960 * If any page in this range is mapped by this VMA, return the first address
 961 * where any of these pages appear.  Otherwise, return -EFAULT.
 962 */
 963static inline unsigned long vma_address(const struct vm_area_struct *vma,
 964		pgoff_t pgoff, unsigned long nr_pages)
 
 965{
 966	unsigned long address;
 967
 968	if (pgoff >= vma->vm_pgoff) {
 969		address = vma->vm_start +
 970			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 971		/* Check for address beyond vma (or wrapped through 0?) */
 972		if (address < vma->vm_start || address >= vma->vm_end)
 973			address = -EFAULT;
 974	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
 975		/* Test above avoids possibility of wrap to 0 on 32-bit */
 976		address = vma->vm_start;
 977	} else {
 978		address = -EFAULT;
 979	}
 980	return address;
 981}
 982
 983/*
 
 
 
 
 
 
 
 
 
 
 
 
 984 * Then at what user virtual address will none of the range be found in vma?
 985 * Assumes that vma_address() already returned a good starting address.
 986 */
 987static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
 988{
 989	struct vm_area_struct *vma = pvmw->vma;
 990	pgoff_t pgoff;
 991	unsigned long address;
 992
 993	/* Common case, plus ->pgoff is invalid for KSM */
 994	if (pvmw->nr_pages == 1)
 995		return pvmw->address + PAGE_SIZE;
 996
 997	pgoff = pvmw->pgoff + pvmw->nr_pages;
 998	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 999	/* Check for address beyond vma (or wrapped through 0?) */
1000	if (address < vma->vm_start || address > vma->vm_end)
1001		address = vma->vm_end;
1002	return address;
1003}
1004
1005static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1006						    struct file *fpin)
1007{
1008	int flags = vmf->flags;
1009
1010	if (fpin)
1011		return fpin;
1012
1013	/*
1014	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1015	 * anything, so we only pin the file and drop the mmap_lock if only
1016	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1017	 */
1018	if (fault_flag_allow_retry_first(flags) &&
1019	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1020		fpin = get_file(vmf->vma->vm_file);
1021		release_fault_lock(vmf);
1022	}
1023	return fpin;
1024}
1025#else /* !CONFIG_MMU */
1026static inline void unmap_mapping_folio(struct folio *folio) { }
1027static inline void mlock_new_folio(struct folio *folio) { }
1028static inline bool need_mlock_drain(int cpu) { return false; }
1029static inline void mlock_drain_local(void) { }
1030static inline void mlock_drain_remote(int cpu) { }
 
 
 
 
1031static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1032{
1033}
1034#endif /* !CONFIG_MMU */
1035
1036/* Memory initialisation debug and verification */
1037#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1038DECLARE_STATIC_KEY_TRUE(deferred_pages);
1039
1040bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1041#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1042
1043enum mminit_level {
1044	MMINIT_WARNING,
1045	MMINIT_VERIFY,
1046	MMINIT_TRACE
1047};
1048
1049#ifdef CONFIG_DEBUG_MEMORY_INIT
1050
1051extern int mminit_loglevel;
1052
1053#define mminit_dprintk(level, prefix, fmt, arg...) \
1054do { \
1055	if (level < mminit_loglevel) { \
1056		if (level <= MMINIT_WARNING) \
1057			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1058		else \
1059			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1060	} \
1061} while (0)
1062
1063extern void mminit_verify_pageflags_layout(void);
1064extern void mminit_verify_zonelist(void);
1065#else
1066
1067static inline void mminit_dprintk(enum mminit_level level,
1068				const char *prefix, const char *fmt, ...)
1069{
1070}
1071
1072static inline void mminit_verify_pageflags_layout(void)
1073{
1074}
1075
1076static inline void mminit_verify_zonelist(void)
1077{
1078}
1079#endif /* CONFIG_DEBUG_MEMORY_INIT */
1080
1081#define NODE_RECLAIM_NOSCAN	-2
1082#define NODE_RECLAIM_FULL	-1
1083#define NODE_RECLAIM_SOME	0
1084#define NODE_RECLAIM_SUCCESS	1
1085
1086#ifdef CONFIG_NUMA
1087extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1088extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1089#else
1090static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1091				unsigned int order)
1092{
1093	return NODE_RECLAIM_NOSCAN;
1094}
1095static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1096{
1097	return NUMA_NO_NODE;
1098}
1099#endif
1100
1101/*
1102 * mm/memory-failure.c
1103 */
1104#ifdef CONFIG_MEMORY_FAILURE
1105int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1106void shake_folio(struct folio *folio);
1107extern int hwpoison_filter(struct page *p);
1108
1109extern u32 hwpoison_filter_dev_major;
1110extern u32 hwpoison_filter_dev_minor;
1111extern u64 hwpoison_filter_flags_mask;
1112extern u64 hwpoison_filter_flags_value;
1113extern u64 hwpoison_filter_memcg;
1114extern u32 hwpoison_filter_enable;
1115#define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1116void SetPageHWPoisonTakenOff(struct page *page);
1117void ClearPageHWPoisonTakenOff(struct page *page);
1118bool take_page_off_buddy(struct page *page);
1119bool put_page_back_buddy(struct page *page);
1120struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1121void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1122		     struct vm_area_struct *vma, struct list_head *to_kill,
1123		     unsigned long ksm_addr);
1124unsigned long page_mapped_in_vma(const struct page *page,
1125		struct vm_area_struct *vma);
1126
1127#else
1128static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1129{
1130	return -EBUSY;
1131}
1132#endif
1133
1134extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1135        unsigned long, unsigned long,
1136        unsigned long, unsigned long);
1137
1138extern void set_pageblock_order(void);
1139struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1140unsigned long reclaim_pages(struct list_head *folio_list);
1141unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1142					    struct list_head *folio_list);
1143/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1144#define ALLOC_WMARK_MIN		WMARK_MIN
1145#define ALLOC_WMARK_LOW		WMARK_LOW
1146#define ALLOC_WMARK_HIGH	WMARK_HIGH
1147#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1148
1149/* Mask to get the watermark bits */
1150#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1151
1152/*
1153 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1154 * cannot assume a reduced access to memory reserves is sufficient for
1155 * !MMU
1156 */
1157#ifdef CONFIG_MMU
1158#define ALLOC_OOM		0x08
1159#else
1160#define ALLOC_OOM		ALLOC_NO_WATERMARKS
1161#endif
1162
1163#define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1164				       * to 25% of the min watermark or
1165				       * 62.5% if __GFP_HIGH is set.
1166				       */
1167#define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1168				       * of the min watermark.
1169				       */
1170#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1171#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1172#ifdef CONFIG_ZONE_DMA32
1173#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1174#else
1175#define ALLOC_NOFRAGMENT	  0x0
1176#endif
1177#define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1178#define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1179
1180/* Flags that allow allocations below the min watermark. */
1181#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1182
1183enum ttu_flags;
1184struct tlbflush_unmap_batch;
1185
1186
1187/*
1188 * only for MM internal work items which do not depend on
1189 * any allocations or locks which might depend on allocations
1190 */
1191extern struct workqueue_struct *mm_percpu_wq;
1192
1193#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1194void try_to_unmap_flush(void);
1195void try_to_unmap_flush_dirty(void);
1196void flush_tlb_batched_pending(struct mm_struct *mm);
1197#else
1198static inline void try_to_unmap_flush(void)
1199{
1200}
1201static inline void try_to_unmap_flush_dirty(void)
1202{
1203}
1204static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1205{
1206}
1207#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1208
1209extern const struct trace_print_flags pageflag_names[];
1210extern const struct trace_print_flags vmaflag_names[];
1211extern const struct trace_print_flags gfpflag_names[];
1212
1213static inline bool is_migrate_highatomic(enum migratetype migratetype)
1214{
1215	return migratetype == MIGRATE_HIGHATOMIC;
1216}
1217
 
 
 
 
 
1218void setup_zone_pageset(struct zone *zone);
1219
1220struct migration_target_control {
1221	int nid;		/* preferred node id */
1222	nodemask_t *nmask;
1223	gfp_t gfp_mask;
1224	enum migrate_reason reason;
1225};
1226
1227/*
1228 * mm/filemap.c
1229 */
1230size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1231			      struct folio *folio, loff_t fpos, size_t size);
1232
1233/*
1234 * mm/vmalloc.c
1235 */
1236#ifdef CONFIG_MMU
1237void __init vmalloc_init(void);
1238int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1239                pgprot_t prot, struct page **pages, unsigned int page_shift);
1240unsigned int get_vm_area_page_order(struct vm_struct *vm);
1241#else
1242static inline void vmalloc_init(void)
1243{
1244}
1245
1246static inline
1247int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1248                pgprot_t prot, struct page **pages, unsigned int page_shift)
1249{
1250	return -EINVAL;
1251}
1252#endif
1253
1254int __must_check __vmap_pages_range_noflush(unsigned long addr,
1255			       unsigned long end, pgprot_t prot,
1256			       struct page **pages, unsigned int page_shift);
1257
1258void vunmap_range_noflush(unsigned long start, unsigned long end);
1259
1260void __vunmap_range_noflush(unsigned long start, unsigned long end);
1261
1262int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1263		      unsigned long addr, int *flags, bool writable,
1264		      int *last_cpupid);
1265
1266void free_zone_device_folio(struct folio *folio);
1267int migrate_device_coherent_folio(struct folio *folio);
1268
1269struct vm_struct *__get_vm_area_node(unsigned long size,
1270				     unsigned long align, unsigned long shift,
1271				     unsigned long flags, unsigned long start,
1272				     unsigned long end, int node, gfp_t gfp_mask,
1273				     const void *caller);
1274
1275/*
1276 * mm/gup.c
1277 */
1278int __must_check try_grab_folio(struct folio *folio, int refs,
1279				unsigned int flags);
1280
1281/*
1282 * mm/huge_memory.c
1283 */
1284void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1285	       pud_t *pud, bool write);
1286void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1287	       pmd_t *pmd, bool write);
1288
1289/*
1290 * Parses a string with mem suffixes into its order. Useful to parse kernel
1291 * parameters.
1292 */
1293static inline int get_order_from_str(const char *size_str,
1294				     unsigned long valid_orders)
1295{
1296	unsigned long size;
1297	char *endptr;
1298	int order;
1299
1300	size = memparse(size_str, &endptr);
1301
1302	if (!is_power_of_2(size))
1303		return -EINVAL;
1304	order = get_order(size);
1305	if (BIT(order) & ~valid_orders)
1306		return -EINVAL;
1307
1308	return order;
1309}
1310
1311enum {
1312	/* mark page accessed */
1313	FOLL_TOUCH = 1 << 16,
1314	/* a retry, previous pass started an IO */
1315	FOLL_TRIED = 1 << 17,
1316	/* we are working on non-current tsk/mm */
1317	FOLL_REMOTE = 1 << 18,
1318	/* pages must be released via unpin_user_page */
1319	FOLL_PIN = 1 << 19,
1320	/* gup_fast: prevent fall-back to slow gup */
1321	FOLL_FAST_ONLY = 1 << 20,
1322	/* allow unlocking the mmap lock */
1323	FOLL_UNLOCKABLE = 1 << 21,
1324	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1325	FOLL_MADV_POPULATE = 1 << 22,
1326};
1327
1328#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1329			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1330			    FOLL_MADV_POPULATE)
1331
1332/*
1333 * Indicates for which pages that are write-protected in the page table,
1334 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1335 * GUP pin will remain consistent with the pages mapped into the page tables
1336 * of the MM.
1337 *
1338 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1339 * PageAnonExclusive() has to protect against concurrent GUP:
1340 * * Ordinary GUP: Using the PT lock
1341 * * GUP-fast and fork(): mm->write_protect_seq
1342 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1343 *    folio_try_share_anon_rmap_*()
1344 *
1345 * Must be called with the (sub)page that's actually referenced via the
1346 * page table entry, which might not necessarily be the head page for a
1347 * PTE-mapped THP.
1348 *
1349 * If the vma is NULL, we're coming from the GUP-fast path and might have
1350 * to fallback to the slow path just to lookup the vma.
1351 */
1352static inline bool gup_must_unshare(struct vm_area_struct *vma,
1353				    unsigned int flags, struct page *page)
1354{
1355	/*
1356	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1357	 * has to be writable -- and if it references (part of) an anonymous
1358	 * folio, that part is required to be marked exclusive.
1359	 */
1360	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1361		return false;
1362	/*
1363	 * Note: PageAnon(page) is stable until the page is actually getting
1364	 * freed.
1365	 */
1366	if (!PageAnon(page)) {
1367		/*
1368		 * We only care about R/O long-term pining: R/O short-term
1369		 * pinning does not have the semantics to observe successive
1370		 * changes through the process page tables.
1371		 */
1372		if (!(flags & FOLL_LONGTERM))
1373			return false;
1374
1375		/* We really need the vma ... */
1376		if (!vma)
1377			return true;
1378
1379		/*
1380		 * ... because we only care about writable private ("COW")
1381		 * mappings where we have to break COW early.
1382		 */
1383		return is_cow_mapping(vma->vm_flags);
1384	}
1385
1386	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1387	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1388		smp_rmb();
1389
1390	/*
1391	 * Note that KSM pages cannot be exclusive, and consequently,
1392	 * cannot get pinned.
1393	 */
1394	return !PageAnonExclusive(page);
1395}
1396
1397extern bool mirrored_kernelcore;
1398extern bool memblock_has_mirror(void);
1399
1400static __always_inline void vma_set_range(struct vm_area_struct *vma,
1401					  unsigned long start, unsigned long end,
1402					  pgoff_t pgoff)
1403{
1404	vma->vm_start = start;
1405	vma->vm_end = end;
1406	vma->vm_pgoff = pgoff;
1407}
1408
1409static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1410{
1411	/*
1412	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1413	 * enablements, because when without soft-dirty being compiled in,
1414	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1415	 * will be constantly true.
1416	 */
1417	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1418		return false;
1419
1420	/*
1421	 * Soft-dirty is kind of special: its tracking is enabled when the
1422	 * vma flags not set.
1423	 */
1424	return !(vma->vm_flags & VM_SOFTDIRTY);
1425}
1426
1427static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1428{
1429	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1430}
1431
1432static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1433{
1434	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1435}
1436
1437void __meminit __init_single_page(struct page *page, unsigned long pfn,
1438				unsigned long zone, int nid);
1439
1440/* shrinker related functions */
1441unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1442			  int priority);
1443
1444#ifdef CONFIG_64BIT
1445static inline int can_do_mseal(unsigned long flags)
1446{
1447	if (flags)
1448		return -EINVAL;
1449
1450	return 0;
1451}
1452
1453#else
1454static inline int can_do_mseal(unsigned long flags)
1455{
1456	return -EPERM;
1457}
1458#endif
1459
1460#ifdef CONFIG_SHRINKER_DEBUG
1461static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1462			struct shrinker *shrinker, const char *fmt, va_list ap)
1463{
1464	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1465
1466	return shrinker->name ? 0 : -ENOMEM;
1467}
1468
1469static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1470{
1471	kfree_const(shrinker->name);
1472	shrinker->name = NULL;
1473}
1474
1475extern int shrinker_debugfs_add(struct shrinker *shrinker);
1476extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1477					      int *debugfs_id);
1478extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1479				    int debugfs_id);
1480#else /* CONFIG_SHRINKER_DEBUG */
1481static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1482{
1483	return 0;
1484}
1485static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1486					      const char *fmt, va_list ap)
1487{
1488	return 0;
1489}
1490static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1491{
1492}
1493static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1494						     int *debugfs_id)
1495{
1496	*debugfs_id = -1;
1497	return NULL;
1498}
1499static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1500					   int debugfs_id)
1501{
1502}
1503#endif /* CONFIG_SHRINKER_DEBUG */
1504
1505/* Only track the nodes of mappings with shadow entries */
1506void workingset_update_node(struct xa_node *node);
1507extern struct list_lru shadow_nodes;
1508#define mapping_set_update(xas, mapping) do {			\
1509	if (!dax_mapping(mapping) && !shmem_mapping(mapping)) {	\
1510		xas_set_update(xas, workingset_update_node);	\
1511		xas_set_lru(xas, &shadow_nodes);		\
1512	}							\
1513} while (0)
1514
1515/* mremap.c */
1516unsigned long move_page_tables(struct vm_area_struct *vma,
1517	unsigned long old_addr, struct vm_area_struct *new_vma,
1518	unsigned long new_addr, unsigned long len,
1519	bool need_rmap_locks, bool for_stack);
1520
1521#ifdef CONFIG_UNACCEPTED_MEMORY
1522void accept_page(struct page *page);
1523#else /* CONFIG_UNACCEPTED_MEMORY */
1524static inline void accept_page(struct page *page)
1525{
1526}
1527#endif /* CONFIG_UNACCEPTED_MEMORY */
1528
1529/* pagewalk.c */
1530int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1531		unsigned long end, const struct mm_walk_ops *ops,
1532		void *private);
1533
1534#endif	/* __MM_INTERNAL_H */