Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
  66}
  67
  68void *kexec_image_load_default(struct kimage *image)
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 
 
 126}
 127
 128#ifdef CONFIG_KEXEC_SIG
 129#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 130int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 131{
 132	int ret;
 133
 134	ret = verify_pefile_signature(kernel, kernel_len,
 135				      VERIFY_USE_SECONDARY_KEYRING,
 136				      VERIFYING_KEXEC_PE_SIGNATURE);
 137	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 138		ret = verify_pefile_signature(kernel, kernel_len,
 139					      VERIFY_USE_PLATFORM_KEYRING,
 140					      VERIFYING_KEXEC_PE_SIGNATURE);
 141	}
 142	return ret;
 143}
 144#endif
 145
 146static int kexec_image_verify_sig(struct kimage *image, void *buf,
 147				  unsigned long buf_len)
 148{
 149	if (!image->fops || !image->fops->verify_sig) {
 150		pr_debug("kernel loader does not support signature verification.\n");
 151		return -EKEYREJECTED;
 152	}
 153
 154	return image->fops->verify_sig(buf, buf_len);
 155}
 156
 157static int
 158kimage_validate_signature(struct kimage *image)
 159{
 160	int ret;
 161
 162	ret = kexec_image_verify_sig(image, image->kernel_buf,
 163				     image->kernel_buf_len);
 164	if (ret) {
 165
 166		if (sig_enforce) {
 167			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 168			return ret;
 169		}
 170
 171		/*
 172		 * If IMA is guaranteed to appraise a signature on the kexec
 173		 * image, permit it even if the kernel is otherwise locked
 174		 * down.
 175		 */
 176		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 177		    security_locked_down(LOCKDOWN_KEXEC))
 178			return -EPERM;
 179
 180		pr_debug("kernel signature verification failed (%d).\n", ret);
 181	}
 182
 183	return 0;
 184}
 185#endif
 186
 187/*
 188 * In file mode list of segments is prepared by kernel. Copy relevant
 189 * data from user space, do error checking, prepare segment list
 190 */
 191static int
 192kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 193			     const char __user *cmdline_ptr,
 194			     unsigned long cmdline_len, unsigned flags)
 195{
 196	ssize_t ret;
 197	void *ldata;
 198
 199	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 200				       KEXEC_FILE_SIZE_MAX, NULL,
 201				       READING_KEXEC_IMAGE);
 202	if (ret < 0)
 203		return ret;
 204	image->kernel_buf_len = ret;
 
 
 205
 206	/* Call arch image probe handlers */
 207	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 208					    image->kernel_buf_len);
 209	if (ret)
 210		goto out;
 211
 212#ifdef CONFIG_KEXEC_SIG
 213	ret = kimage_validate_signature(image);
 214
 215	if (ret)
 216		goto out;
 217#endif
 218	/* It is possible that there no initramfs is being loaded */
 219	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 220		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 221					       KEXEC_FILE_SIZE_MAX, NULL,
 222					       READING_KEXEC_INITRAMFS);
 223		if (ret < 0)
 224			goto out;
 225		image->initrd_buf_len = ret;
 226		ret = 0;
 227	}
 228
 229	if (cmdline_len) {
 230		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 231		if (IS_ERR(image->cmdline_buf)) {
 232			ret = PTR_ERR(image->cmdline_buf);
 233			image->cmdline_buf = NULL;
 234			goto out;
 235		}
 236
 237		image->cmdline_buf_len = cmdline_len;
 238
 239		/* command line should be a string with last byte null */
 240		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 241			ret = -EINVAL;
 242			goto out;
 243		}
 244
 245		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 246				  image->cmdline_buf_len - 1);
 247	}
 248
 249	/* IMA needs to pass the measurement list to the next kernel. */
 250	ima_add_kexec_buffer(image);
 251
 252	/* Call arch image load handlers */
 253	ldata = arch_kexec_kernel_image_load(image);
 254
 255	if (IS_ERR(ldata)) {
 256		ret = PTR_ERR(ldata);
 257		goto out;
 258	}
 259
 260	image->image_loader_data = ldata;
 261out:
 262	/* In case of error, free up all allocated memory in this function */
 263	if (ret)
 264		kimage_file_post_load_cleanup(image);
 265	return ret;
 266}
 267
 268static int
 269kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 270		       int initrd_fd, const char __user *cmdline_ptr,
 271		       unsigned long cmdline_len, unsigned long flags)
 272{
 273	int ret;
 274	struct kimage *image;
 275	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 276
 277	image = do_kimage_alloc_init();
 278	if (!image)
 279		return -ENOMEM;
 280
 
 281	image->file_mode = 1;
 282
 
 283	if (kexec_on_panic) {
 284		/* Enable special crash kernel control page alloc policy. */
 285		image->control_page = crashk_res.start;
 286		image->type = KEXEC_TYPE_CRASH;
 287	}
 
 288
 289	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 290					   cmdline_ptr, cmdline_len, flags);
 291	if (ret)
 292		goto out_free_image;
 293
 294	ret = sanity_check_segment_list(image);
 295	if (ret)
 296		goto out_free_post_load_bufs;
 297
 298	ret = -ENOMEM;
 299	image->control_code_page = kimage_alloc_control_pages(image,
 300					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 301	if (!image->control_code_page) {
 302		pr_err("Could not allocate control_code_buffer\n");
 303		goto out_free_post_load_bufs;
 304	}
 305
 306	if (!kexec_on_panic) {
 307		image->swap_page = kimage_alloc_control_pages(image, 0);
 308		if (!image->swap_page) {
 309			pr_err("Could not allocate swap buffer\n");
 310			goto out_free_control_pages;
 311		}
 312	}
 313
 314	*rimage = image;
 315	return 0;
 316out_free_control_pages:
 317	kimage_free_page_list(&image->control_pages);
 318out_free_post_load_bufs:
 319	kimage_file_post_load_cleanup(image);
 320out_free_image:
 321	kfree(image);
 322	return ret;
 323}
 324
 325SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 326		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 327		unsigned long, flags)
 328{
 329	int ret = 0, i;
 
 330	struct kimage **dest_image, *image;
 
 331
 332	/* We only trust the superuser with rebooting the system. */
 333	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 334		return -EPERM;
 335
 336	/* Make sure we have a legal set of flags */
 337	if (flags != (flags & KEXEC_FILE_FLAGS))
 338		return -EINVAL;
 339
 340	image = NULL;
 341
 342	if (!kexec_trylock())
 343		return -EBUSY;
 344
 345	dest_image = &kexec_image;
 346	if (flags & KEXEC_FILE_ON_CRASH) {
 347		dest_image = &kexec_crash_image;
 348		if (kexec_crash_image)
 349			arch_kexec_unprotect_crashkres();
 350	}
 
 
 351
 352	if (flags & KEXEC_FILE_UNLOAD)
 353		goto exchange;
 354
 355	/*
 356	 * In case of crash, new kernel gets loaded in reserved region. It is
 357	 * same memory where old crash kernel might be loaded. Free any
 358	 * current crash dump kernel before we corrupt it.
 359	 */
 360	if (flags & KEXEC_FILE_ON_CRASH)
 361		kimage_free(xchg(&kexec_crash_image, NULL));
 362
 363	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 364				     cmdline_len, flags);
 365	if (ret)
 366		goto out;
 367
 368	ret = machine_kexec_prepare(image);
 369	if (ret)
 370		goto out;
 371
 372	/*
 373	 * Some architecture(like S390) may touch the crash memory before
 374	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 375	 */
 376	ret = kimage_crash_copy_vmcoreinfo(image);
 377	if (ret)
 378		goto out;
 379
 380	ret = kexec_calculate_store_digests(image);
 381	if (ret)
 382		goto out;
 383
 
 384	for (i = 0; i < image->nr_segments; i++) {
 385		struct kexec_segment *ksegment;
 386
 387		ksegment = &image->segment[i];
 388		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 389			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 390			 ksegment->memsz);
 391
 392		ret = kimage_load_segment(image, &image->segment[i]);
 393		if (ret)
 394			goto out;
 395	}
 396
 397	kimage_terminate(image);
 398
 399	ret = machine_kexec_post_load(image);
 400	if (ret)
 401		goto out;
 402
 
 
 403	/*
 404	 * Free up any temporary buffers allocated which are not needed
 405	 * after image has been loaded
 406	 */
 407	kimage_file_post_load_cleanup(image);
 408exchange:
 409	image = xchg(dest_image, image);
 410out:
 
 411	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 412		arch_kexec_protect_crashkres();
 
 413
 414	kexec_unlock();
 415	kimage_free(image);
 416	return ret;
 417}
 418
 419static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 420				    struct kexec_buf *kbuf)
 421{
 422	struct kimage *image = kbuf->image;
 423	unsigned long temp_start, temp_end;
 424
 425	temp_end = min(end, kbuf->buf_max);
 426	temp_start = temp_end - kbuf->memsz;
 427
 428	do {
 429		/* align down start */
 430		temp_start = temp_start & (~(kbuf->buf_align - 1));
 431
 432		if (temp_start < start || temp_start < kbuf->buf_min)
 433			return 0;
 434
 435		temp_end = temp_start + kbuf->memsz - 1;
 436
 437		/*
 438		 * Make sure this does not conflict with any of existing
 439		 * segments
 440		 */
 441		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 442			temp_start = temp_start - PAGE_SIZE;
 443			continue;
 444		}
 445
 446		/* We found a suitable memory range */
 447		break;
 448	} while (1);
 449
 450	/* If we are here, we found a suitable memory range */
 451	kbuf->mem = temp_start;
 452
 453	/* Success, stop navigating through remaining System RAM ranges */
 454	return 1;
 455}
 456
 457static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 458				     struct kexec_buf *kbuf)
 459{
 460	struct kimage *image = kbuf->image;
 461	unsigned long temp_start, temp_end;
 462
 463	temp_start = max(start, kbuf->buf_min);
 464
 465	do {
 466		temp_start = ALIGN(temp_start, kbuf->buf_align);
 467		temp_end = temp_start + kbuf->memsz - 1;
 468
 469		if (temp_end > end || temp_end > kbuf->buf_max)
 470			return 0;
 471		/*
 472		 * Make sure this does not conflict with any of existing
 473		 * segments
 474		 */
 475		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 476			temp_start = temp_start + PAGE_SIZE;
 477			continue;
 478		}
 479
 480		/* We found a suitable memory range */
 481		break;
 482	} while (1);
 483
 484	/* If we are here, we found a suitable memory range */
 485	kbuf->mem = temp_start;
 486
 487	/* Success, stop navigating through remaining System RAM ranges */
 488	return 1;
 489}
 490
 491static int locate_mem_hole_callback(struct resource *res, void *arg)
 492{
 493	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 494	u64 start = res->start, end = res->end;
 495	unsigned long sz = end - start + 1;
 496
 497	/* Returning 0 will take to next memory range */
 498
 499	/* Don't use memory that will be detected and handled by a driver. */
 500	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 501		return 0;
 502
 503	if (sz < kbuf->memsz)
 504		return 0;
 505
 506	if (end < kbuf->buf_min || start > kbuf->buf_max)
 507		return 0;
 508
 509	/*
 510	 * Allocate memory top down with-in ram range. Otherwise bottom up
 511	 * allocation.
 512	 */
 513	if (kbuf->top_down)
 514		return locate_mem_hole_top_down(start, end, kbuf);
 515	return locate_mem_hole_bottom_up(start, end, kbuf);
 516}
 517
 518#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 519static int kexec_walk_memblock(struct kexec_buf *kbuf,
 520			       int (*func)(struct resource *, void *))
 521{
 522	int ret = 0;
 523	u64 i;
 524	phys_addr_t mstart, mend;
 525	struct resource res = { };
 526
 
 527	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 528		return func(&crashk_res, kbuf);
 
 529
 530	/*
 531	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 532	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 533	 * locate_mem_hole_callback().
 534	 */
 535	if (kbuf->top_down) {
 536		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 537						&mstart, &mend, NULL) {
 538			/*
 539			 * In memblock, end points to the first byte after the
 540			 * range while in kexec, end points to the last byte
 541			 * in the range.
 542			 */
 543			res.start = mstart;
 544			res.end = mend - 1;
 545			ret = func(&res, kbuf);
 546			if (ret)
 547				break;
 548		}
 549	} else {
 550		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 551					&mstart, &mend, NULL) {
 552			/*
 553			 * In memblock, end points to the first byte after the
 554			 * range while in kexec, end points to the last byte
 555			 * in the range.
 556			 */
 557			res.start = mstart;
 558			res.end = mend - 1;
 559			ret = func(&res, kbuf);
 560			if (ret)
 561				break;
 562		}
 563	}
 564
 565	return ret;
 566}
 567#else
 568static int kexec_walk_memblock(struct kexec_buf *kbuf,
 569			       int (*func)(struct resource *, void *))
 570{
 571	return 0;
 572}
 573#endif
 574
 575/**
 576 * kexec_walk_resources - call func(data) on free memory regions
 577 * @kbuf:	Context info for the search. Also passed to @func.
 578 * @func:	Function to call for each memory region.
 579 *
 580 * Return: The memory walk will stop when func returns a non-zero value
 581 * and that value will be returned. If all free regions are visited without
 582 * func returning non-zero, then zero will be returned.
 583 */
 584static int kexec_walk_resources(struct kexec_buf *kbuf,
 585				int (*func)(struct resource *, void *))
 586{
 
 587	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 588		return walk_iomem_res_desc(crashk_res.desc,
 589					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 590					   crashk_res.start, crashk_res.end,
 591					   kbuf, func);
 
 
 
 592	else
 593		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 594}
 595
 596/**
 597 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 598 * @kbuf:	Parameters for the memory search.
 599 *
 600 * On success, kbuf->mem will have the start address of the memory region found.
 601 *
 602 * Return: 0 on success, negative errno on error.
 603 */
 604int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 605{
 606	int ret;
 607
 608	/* Arch knows where to place */
 609	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 610		return 0;
 611
 612	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 613		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 614	else
 615		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 616
 617	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 618}
 619
 620/**
 621 * kexec_add_buffer - place a buffer in a kexec segment
 622 * @kbuf:	Buffer contents and memory parameters.
 623 *
 624 * This function assumes that kexec_mutex is held.
 625 * On successful return, @kbuf->mem will have the physical address of
 626 * the buffer in memory.
 627 *
 628 * Return: 0 on success, negative errno on error.
 629 */
 630int kexec_add_buffer(struct kexec_buf *kbuf)
 631{
 632	struct kexec_segment *ksegment;
 633	int ret;
 634
 635	/* Currently adding segment this way is allowed only in file mode */
 636	if (!kbuf->image->file_mode)
 637		return -EINVAL;
 638
 639	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 640		return -EINVAL;
 641
 642	/*
 643	 * Make sure we are not trying to add buffer after allocating
 644	 * control pages. All segments need to be placed first before
 645	 * any control pages are allocated. As control page allocation
 646	 * logic goes through list of segments to make sure there are
 647	 * no destination overlaps.
 648	 */
 649	if (!list_empty(&kbuf->image->control_pages)) {
 650		WARN_ON(1);
 651		return -EINVAL;
 652	}
 653
 654	/* Ensure minimum alignment needed for segments. */
 655	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 656	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 657
 658	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 659	ret = arch_kexec_locate_mem_hole(kbuf);
 660	if (ret)
 661		return ret;
 662
 663	/* Found a suitable memory range */
 664	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 665	ksegment->kbuf = kbuf->buffer;
 666	ksegment->bufsz = kbuf->bufsz;
 667	ksegment->mem = kbuf->mem;
 668	ksegment->memsz = kbuf->memsz;
 669	kbuf->image->nr_segments++;
 670	return 0;
 671}
 672
 673/* Calculate and store the digest of segments */
 674static int kexec_calculate_store_digests(struct kimage *image)
 675{
 676	struct crypto_shash *tfm;
 677	struct shash_desc *desc;
 678	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 679	size_t desc_size, nullsz;
 680	char *digest;
 681	void *zero_buf;
 682	struct kexec_sha_region *sha_regions;
 683	struct purgatory_info *pi = &image->purgatory_info;
 684
 685	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 686		return 0;
 687
 688	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 689	zero_buf_sz = PAGE_SIZE;
 690
 691	tfm = crypto_alloc_shash("sha256", 0, 0);
 692	if (IS_ERR(tfm)) {
 693		ret = PTR_ERR(tfm);
 694		goto out;
 695	}
 696
 697	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 698	desc = kzalloc(desc_size, GFP_KERNEL);
 699	if (!desc) {
 700		ret = -ENOMEM;
 701		goto out_free_tfm;
 702	}
 703
 704	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 705	sha_regions = vzalloc(sha_region_sz);
 706	if (!sha_regions) {
 707		ret = -ENOMEM;
 708		goto out_free_desc;
 709	}
 710
 711	desc->tfm   = tfm;
 712
 713	ret = crypto_shash_init(desc);
 714	if (ret < 0)
 715		goto out_free_sha_regions;
 716
 717	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 718	if (!digest) {
 719		ret = -ENOMEM;
 720		goto out_free_sha_regions;
 721	}
 722
 723	for (j = i = 0; i < image->nr_segments; i++) {
 724		struct kexec_segment *ksegment;
 725
 
 
 
 
 
 
 726		ksegment = &image->segment[i];
 727		/*
 728		 * Skip purgatory as it will be modified once we put digest
 729		 * info in purgatory.
 730		 */
 731		if (ksegment->kbuf == pi->purgatory_buf)
 732			continue;
 733
 734		ret = crypto_shash_update(desc, ksegment->kbuf,
 735					  ksegment->bufsz);
 736		if (ret)
 737			break;
 738
 739		/*
 740		 * Assume rest of the buffer is filled with zero and
 741		 * update digest accordingly.
 742		 */
 743		nullsz = ksegment->memsz - ksegment->bufsz;
 744		while (nullsz) {
 745			unsigned long bytes = nullsz;
 746
 747			if (bytes > zero_buf_sz)
 748				bytes = zero_buf_sz;
 749			ret = crypto_shash_update(desc, zero_buf, bytes);
 750			if (ret)
 751				break;
 752			nullsz -= bytes;
 753		}
 754
 755		if (ret)
 756			break;
 757
 758		sha_regions[j].start = ksegment->mem;
 759		sha_regions[j].len = ksegment->memsz;
 760		j++;
 761	}
 762
 763	if (!ret) {
 764		ret = crypto_shash_final(desc, digest);
 765		if (ret)
 766			goto out_free_digest;
 767		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 768						     sha_regions, sha_region_sz, 0);
 769		if (ret)
 770			goto out_free_digest;
 771
 772		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 773						     digest, SHA256_DIGEST_SIZE, 0);
 774		if (ret)
 775			goto out_free_digest;
 776	}
 777
 778out_free_digest:
 779	kfree(digest);
 780out_free_sha_regions:
 781	vfree(sha_regions);
 782out_free_desc:
 783	kfree(desc);
 784out_free_tfm:
 785	kfree(tfm);
 786out:
 787	return ret;
 788}
 789
 790#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 791/*
 792 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 793 * @pi:		Purgatory to be loaded.
 794 * @kbuf:	Buffer to setup.
 795 *
 796 * Allocates the memory needed for the buffer. Caller is responsible to free
 797 * the memory after use.
 798 *
 799 * Return: 0 on success, negative errno on error.
 800 */
 801static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 802				      struct kexec_buf *kbuf)
 803{
 804	const Elf_Shdr *sechdrs;
 805	unsigned long bss_align;
 806	unsigned long bss_sz;
 807	unsigned long align;
 808	int i, ret;
 809
 810	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 811	kbuf->buf_align = bss_align = 1;
 812	kbuf->bufsz = bss_sz = 0;
 813
 814	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 815		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 816			continue;
 817
 818		align = sechdrs[i].sh_addralign;
 819		if (sechdrs[i].sh_type != SHT_NOBITS) {
 820			if (kbuf->buf_align < align)
 821				kbuf->buf_align = align;
 822			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 823			kbuf->bufsz += sechdrs[i].sh_size;
 824		} else {
 825			if (bss_align < align)
 826				bss_align = align;
 827			bss_sz = ALIGN(bss_sz, align);
 828			bss_sz += sechdrs[i].sh_size;
 829		}
 830	}
 831	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 832	kbuf->memsz = kbuf->bufsz + bss_sz;
 833	if (kbuf->buf_align < bss_align)
 834		kbuf->buf_align = bss_align;
 835
 836	kbuf->buffer = vzalloc(kbuf->bufsz);
 837	if (!kbuf->buffer)
 838		return -ENOMEM;
 839	pi->purgatory_buf = kbuf->buffer;
 840
 841	ret = kexec_add_buffer(kbuf);
 842	if (ret)
 843		goto out;
 844
 845	return 0;
 846out:
 847	vfree(pi->purgatory_buf);
 848	pi->purgatory_buf = NULL;
 849	return ret;
 850}
 851
 852/*
 853 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 854 * @pi:		Purgatory to be loaded.
 855 * @kbuf:	Buffer prepared to store purgatory.
 856 *
 857 * Allocates the memory needed for the buffer. Caller is responsible to free
 858 * the memory after use.
 859 *
 860 * Return: 0 on success, negative errno on error.
 861 */
 862static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 863					 struct kexec_buf *kbuf)
 864{
 865	unsigned long bss_addr;
 866	unsigned long offset;
 
 867	Elf_Shdr *sechdrs;
 868	int i;
 869
 870	/*
 871	 * The section headers in kexec_purgatory are read-only. In order to
 872	 * have them modifiable make a temporary copy.
 873	 */
 874	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 
 875	if (!sechdrs)
 876		return -ENOMEM;
 877	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 878	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 879	pi->sechdrs = sechdrs;
 880
 881	offset = 0;
 882	bss_addr = kbuf->mem + kbuf->bufsz;
 883	kbuf->image->start = pi->ehdr->e_entry;
 884
 885	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 886		unsigned long align;
 887		void *src, *dst;
 888
 889		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 890			continue;
 891
 892		align = sechdrs[i].sh_addralign;
 893		if (sechdrs[i].sh_type == SHT_NOBITS) {
 894			bss_addr = ALIGN(bss_addr, align);
 895			sechdrs[i].sh_addr = bss_addr;
 896			bss_addr += sechdrs[i].sh_size;
 897			continue;
 898		}
 899
 900		offset = ALIGN(offset, align);
 
 
 
 
 
 
 
 
 
 
 
 901		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 902		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 903		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 904					 + sechdrs[i].sh_size)) {
 
 905			kbuf->image->start -= sechdrs[i].sh_addr;
 906			kbuf->image->start += kbuf->mem + offset;
 907		}
 908
 909		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 910		dst = pi->purgatory_buf + offset;
 911		memcpy(dst, src, sechdrs[i].sh_size);
 912
 913		sechdrs[i].sh_addr = kbuf->mem + offset;
 914		sechdrs[i].sh_offset = offset;
 915		offset += sechdrs[i].sh_size;
 916	}
 917
 918	return 0;
 919}
 920
 921static int kexec_apply_relocations(struct kimage *image)
 922{
 923	int i, ret;
 924	struct purgatory_info *pi = &image->purgatory_info;
 925	const Elf_Shdr *sechdrs;
 926
 927	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 928
 929	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 930		const Elf_Shdr *relsec;
 931		const Elf_Shdr *symtab;
 932		Elf_Shdr *section;
 933
 934		relsec = sechdrs + i;
 935
 936		if (relsec->sh_type != SHT_RELA &&
 937		    relsec->sh_type != SHT_REL)
 938			continue;
 939
 940		/*
 941		 * For section of type SHT_RELA/SHT_REL,
 942		 * ->sh_link contains section header index of associated
 943		 * symbol table. And ->sh_info contains section header
 944		 * index of section to which relocations apply.
 945		 */
 946		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 947		    relsec->sh_link >= pi->ehdr->e_shnum)
 948			return -ENOEXEC;
 949
 950		section = pi->sechdrs + relsec->sh_info;
 951		symtab = sechdrs + relsec->sh_link;
 952
 953		if (!(section->sh_flags & SHF_ALLOC))
 954			continue;
 955
 956		/*
 957		 * symtab->sh_link contain section header index of associated
 958		 * string table.
 959		 */
 960		if (symtab->sh_link >= pi->ehdr->e_shnum)
 961			/* Invalid section number? */
 962			continue;
 963
 964		/*
 965		 * Respective architecture needs to provide support for applying
 966		 * relocations of type SHT_RELA/SHT_REL.
 967		 */
 968		if (relsec->sh_type == SHT_RELA)
 969			ret = arch_kexec_apply_relocations_add(pi, section,
 970							       relsec, symtab);
 971		else if (relsec->sh_type == SHT_REL)
 972			ret = arch_kexec_apply_relocations(pi, section,
 973							   relsec, symtab);
 974		if (ret)
 975			return ret;
 976	}
 977
 978	return 0;
 979}
 980
 981/*
 982 * kexec_load_purgatory - Load and relocate the purgatory object.
 983 * @image:	Image to add the purgatory to.
 984 * @kbuf:	Memory parameters to use.
 985 *
 986 * Allocates the memory needed for image->purgatory_info.sechdrs and
 987 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 988 * to free the memory after use.
 989 *
 990 * Return: 0 on success, negative errno on error.
 991 */
 992int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 993{
 994	struct purgatory_info *pi = &image->purgatory_info;
 995	int ret;
 996
 997	if (kexec_purgatory_size <= 0)
 998		return -EINVAL;
 999
1000	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1001
1002	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1003	if (ret)
1004		return ret;
1005
1006	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1007	if (ret)
1008		goto out_free_kbuf;
1009
1010	ret = kexec_apply_relocations(image);
1011	if (ret)
1012		goto out;
1013
1014	return 0;
1015out:
1016	vfree(pi->sechdrs);
1017	pi->sechdrs = NULL;
1018out_free_kbuf:
1019	vfree(pi->purgatory_buf);
1020	pi->purgatory_buf = NULL;
1021	return ret;
1022}
1023
1024/*
1025 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1026 * @pi:		Purgatory to search in.
1027 * @name:	Name of the symbol.
1028 *
1029 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1030 */
1031static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1032						  const char *name)
1033{
1034	const Elf_Shdr *sechdrs;
1035	const Elf_Ehdr *ehdr;
1036	const Elf_Sym *syms;
1037	const char *strtab;
1038	int i, k;
1039
1040	if (!pi->ehdr)
1041		return NULL;
1042
1043	ehdr = pi->ehdr;
1044	sechdrs = (void *)ehdr + ehdr->e_shoff;
1045
1046	for (i = 0; i < ehdr->e_shnum; i++) {
1047		if (sechdrs[i].sh_type != SHT_SYMTAB)
1048			continue;
1049
1050		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1051			/* Invalid strtab section number */
1052			continue;
1053		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1054		syms = (void *)ehdr + sechdrs[i].sh_offset;
1055
1056		/* Go through symbols for a match */
1057		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1058			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1059				continue;
1060
1061			if (strcmp(strtab + syms[k].st_name, name) != 0)
1062				continue;
1063
1064			if (syms[k].st_shndx == SHN_UNDEF ||
1065			    syms[k].st_shndx >= ehdr->e_shnum) {
1066				pr_debug("Symbol: %s has bad section index %d.\n",
1067						name, syms[k].st_shndx);
1068				return NULL;
1069			}
1070
1071			/* Found the symbol we are looking for */
1072			return &syms[k];
1073		}
1074	}
1075
1076	return NULL;
1077}
1078
1079void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1080{
1081	struct purgatory_info *pi = &image->purgatory_info;
1082	const Elf_Sym *sym;
1083	Elf_Shdr *sechdr;
1084
1085	sym = kexec_purgatory_find_symbol(pi, name);
1086	if (!sym)
1087		return ERR_PTR(-EINVAL);
1088
1089	sechdr = &pi->sechdrs[sym->st_shndx];
1090
1091	/*
1092	 * Returns the address where symbol will finally be loaded after
1093	 * kexec_load_segment()
1094	 */
1095	return (void *)(sechdr->sh_addr + sym->st_value);
1096}
1097
1098/*
1099 * Get or set value of a symbol. If "get_value" is true, symbol value is
1100 * returned in buf otherwise symbol value is set based on value in buf.
1101 */
1102int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1103				   void *buf, unsigned int size, bool get_value)
1104{
1105	struct purgatory_info *pi = &image->purgatory_info;
1106	const Elf_Sym *sym;
1107	Elf_Shdr *sec;
1108	char *sym_buf;
1109
1110	sym = kexec_purgatory_find_symbol(pi, name);
1111	if (!sym)
1112		return -EINVAL;
1113
1114	if (sym->st_size != size) {
1115		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1116		       name, (unsigned long)sym->st_size, size);
1117		return -EINVAL;
1118	}
1119
1120	sec = pi->sechdrs + sym->st_shndx;
1121
1122	if (sec->sh_type == SHT_NOBITS) {
1123		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1124		       get_value ? "get" : "set");
1125		return -EINVAL;
1126	}
1127
1128	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1129
1130	if (get_value)
1131		memcpy((void *)buf, sym_buf, size);
1132	else
1133		memcpy((void *)sym_buf, buf, size);
1134
1135	return 0;
1136}
1137#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1138
1139int crash_exclude_mem_range(struct crash_mem *mem,
1140			    unsigned long long mstart, unsigned long long mend)
1141{
1142	int i, j;
1143	unsigned long long start, end, p_start, p_end;
1144	struct range temp_range = {0, 0};
1145
1146	for (i = 0; i < mem->nr_ranges; i++) {
1147		start = mem->ranges[i].start;
1148		end = mem->ranges[i].end;
1149		p_start = mstart;
1150		p_end = mend;
1151
1152		if (mstart > end || mend < start)
1153			continue;
1154
1155		/* Truncate any area outside of range */
1156		if (mstart < start)
1157			p_start = start;
1158		if (mend > end)
1159			p_end = end;
1160
1161		/* Found completely overlapping range */
1162		if (p_start == start && p_end == end) {
1163			mem->ranges[i].start = 0;
1164			mem->ranges[i].end = 0;
1165			if (i < mem->nr_ranges - 1) {
1166				/* Shift rest of the ranges to left */
1167				for (j = i; j < mem->nr_ranges - 1; j++) {
1168					mem->ranges[j].start =
1169						mem->ranges[j+1].start;
1170					mem->ranges[j].end =
1171							mem->ranges[j+1].end;
1172				}
1173
1174				/*
1175				 * Continue to check if there are another overlapping ranges
1176				 * from the current position because of shifting the above
1177				 * mem ranges.
1178				 */
1179				i--;
1180				mem->nr_ranges--;
1181				continue;
1182			}
1183			mem->nr_ranges--;
1184			return 0;
1185		}
1186
1187		if (p_start > start && p_end < end) {
1188			/* Split original range */
1189			mem->ranges[i].end = p_start - 1;
1190			temp_range.start = p_end + 1;
1191			temp_range.end = end;
1192		} else if (p_start != start)
1193			mem->ranges[i].end = p_start - 1;
1194		else
1195			mem->ranges[i].start = p_end + 1;
1196		break;
1197	}
1198
1199	/* If a split happened, add the split to array */
1200	if (!temp_range.end)
1201		return 0;
1202
1203	/* Split happened */
1204	if (i == mem->max_nr_ranges - 1)
1205		return -ENOMEM;
1206
1207	/* Location where new range should go */
1208	j = i + 1;
1209	if (j < mem->nr_ranges) {
1210		/* Move over all ranges one slot towards the end */
1211		for (i = mem->nr_ranges - 1; i >= j; i--)
1212			mem->ranges[i + 1] = mem->ranges[i];
1213	}
1214
1215	mem->ranges[j].start = temp_range.start;
1216	mem->ranges[j].end = temp_range.end;
1217	mem->nr_ranges++;
1218	return 0;
1219}
1220
1221int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1222			  void **addr, unsigned long *sz)
1223{
1224	Elf64_Ehdr *ehdr;
1225	Elf64_Phdr *phdr;
1226	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1227	unsigned char *buf;
1228	unsigned int cpu, i;
1229	unsigned long long notes_addr;
1230	unsigned long mstart, mend;
1231
1232	/* extra phdr for vmcoreinfo ELF note */
1233	nr_phdr = nr_cpus + 1;
1234	nr_phdr += mem->nr_ranges;
1235
1236	/*
1237	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1238	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1239	 * I think this is required by tools like gdb. So same physical
1240	 * memory will be mapped in two ELF headers. One will contain kernel
1241	 * text virtual addresses and other will have __va(physical) addresses.
1242	 */
1243
1244	nr_phdr++;
1245	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1246	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1247
1248	buf = vzalloc(elf_sz);
1249	if (!buf)
1250		return -ENOMEM;
1251
1252	ehdr = (Elf64_Ehdr *)buf;
1253	phdr = (Elf64_Phdr *)(ehdr + 1);
1254	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1255	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1256	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1257	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1258	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1259	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1260	ehdr->e_type = ET_CORE;
1261	ehdr->e_machine = ELF_ARCH;
1262	ehdr->e_version = EV_CURRENT;
1263	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1264	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1265	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1266
1267	/* Prepare one phdr of type PT_NOTE for each present CPU */
1268	for_each_present_cpu(cpu) {
1269		phdr->p_type = PT_NOTE;
1270		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1271		phdr->p_offset = phdr->p_paddr = notes_addr;
1272		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1273		(ehdr->e_phnum)++;
1274		phdr++;
1275	}
1276
1277	/* Prepare one PT_NOTE header for vmcoreinfo */
1278	phdr->p_type = PT_NOTE;
1279	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1280	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1281	(ehdr->e_phnum)++;
1282	phdr++;
1283
1284	/* Prepare PT_LOAD type program header for kernel text region */
1285	if (need_kernel_map) {
1286		phdr->p_type = PT_LOAD;
1287		phdr->p_flags = PF_R|PF_W|PF_X;
1288		phdr->p_vaddr = (unsigned long) _text;
1289		phdr->p_filesz = phdr->p_memsz = _end - _text;
1290		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1291		ehdr->e_phnum++;
1292		phdr++;
1293	}
1294
1295	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1296	for (i = 0; i < mem->nr_ranges; i++) {
1297		mstart = mem->ranges[i].start;
1298		mend = mem->ranges[i].end;
1299
1300		phdr->p_type = PT_LOAD;
1301		phdr->p_flags = PF_R|PF_W|PF_X;
1302		phdr->p_offset  = mstart;
1303
1304		phdr->p_paddr = mstart;
1305		phdr->p_vaddr = (unsigned long) __va(mstart);
1306		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1307		phdr->p_align = 0;
1308		ehdr->e_phnum++;
1309		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1310			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1311			ehdr->e_phnum, phdr->p_offset);
1312		phdr++;
1313	}
1314
1315	*addr = buf;
1316	*sz = elf_sz;
1317	return 0;
1318}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
  66}
  67
  68static void *kexec_image_load_default(struct kimage *image)
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 126
 127	kexec_file_dbg_print = false;
 128}
 129
 130#ifdef CONFIG_KEXEC_SIG
 131#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 132int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 133{
 134	int ret;
 135
 136	ret = verify_pefile_signature(kernel, kernel_len,
 137				      VERIFY_USE_SECONDARY_KEYRING,
 138				      VERIFYING_KEXEC_PE_SIGNATURE);
 139	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 140		ret = verify_pefile_signature(kernel, kernel_len,
 141					      VERIFY_USE_PLATFORM_KEYRING,
 142					      VERIFYING_KEXEC_PE_SIGNATURE);
 143	}
 144	return ret;
 145}
 146#endif
 147
 148static int kexec_image_verify_sig(struct kimage *image, void *buf,
 149				  unsigned long buf_len)
 150{
 151	if (!image->fops || !image->fops->verify_sig) {
 152		pr_debug("kernel loader does not support signature verification.\n");
 153		return -EKEYREJECTED;
 154	}
 155
 156	return image->fops->verify_sig(buf, buf_len);
 157}
 158
 159static int
 160kimage_validate_signature(struct kimage *image)
 161{
 162	int ret;
 163
 164	ret = kexec_image_verify_sig(image, image->kernel_buf,
 165				     image->kernel_buf_len);
 166	if (ret) {
 167
 168		if (sig_enforce) {
 169			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 170			return ret;
 171		}
 172
 173		/*
 174		 * If IMA is guaranteed to appraise a signature on the kexec
 175		 * image, permit it even if the kernel is otherwise locked
 176		 * down.
 177		 */
 178		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 179		    security_locked_down(LOCKDOWN_KEXEC))
 180			return -EPERM;
 181
 182		pr_debug("kernel signature verification failed (%d).\n", ret);
 183	}
 184
 185	return 0;
 186}
 187#endif
 188
 189/*
 190 * In file mode list of segments is prepared by kernel. Copy relevant
 191 * data from user space, do error checking, prepare segment list
 192 */
 193static int
 194kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 195			     const char __user *cmdline_ptr,
 196			     unsigned long cmdline_len, unsigned flags)
 197{
 198	ssize_t ret;
 199	void *ldata;
 200
 201	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 202				       KEXEC_FILE_SIZE_MAX, NULL,
 203				       READING_KEXEC_IMAGE);
 204	if (ret < 0)
 205		return ret;
 206	image->kernel_buf_len = ret;
 207	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
 208		      image->kernel_buf, image->kernel_buf_len);
 209
 210	/* Call arch image probe handlers */
 211	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 212					    image->kernel_buf_len);
 213	if (ret)
 214		goto out;
 215
 216#ifdef CONFIG_KEXEC_SIG
 217	ret = kimage_validate_signature(image);
 218
 219	if (ret)
 220		goto out;
 221#endif
 222	/* It is possible that there no initramfs is being loaded */
 223	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 224		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 225					       KEXEC_FILE_SIZE_MAX, NULL,
 226					       READING_KEXEC_INITRAMFS);
 227		if (ret < 0)
 228			goto out;
 229		image->initrd_buf_len = ret;
 230		ret = 0;
 231	}
 232
 233	if (cmdline_len) {
 234		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 235		if (IS_ERR(image->cmdline_buf)) {
 236			ret = PTR_ERR(image->cmdline_buf);
 237			image->cmdline_buf = NULL;
 238			goto out;
 239		}
 240
 241		image->cmdline_buf_len = cmdline_len;
 242
 243		/* command line should be a string with last byte null */
 244		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 245			ret = -EINVAL;
 246			goto out;
 247		}
 248
 249		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 250				  image->cmdline_buf_len - 1);
 251	}
 252
 253	/* IMA needs to pass the measurement list to the next kernel. */
 254	ima_add_kexec_buffer(image);
 255
 256	/* Call image load handler */
 257	ldata = kexec_image_load_default(image);
 258
 259	if (IS_ERR(ldata)) {
 260		ret = PTR_ERR(ldata);
 261		goto out;
 262	}
 263
 264	image->image_loader_data = ldata;
 265out:
 266	/* In case of error, free up all allocated memory in this function */
 267	if (ret)
 268		kimage_file_post_load_cleanup(image);
 269	return ret;
 270}
 271
 272static int
 273kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 274		       int initrd_fd, const char __user *cmdline_ptr,
 275		       unsigned long cmdline_len, unsigned long flags)
 276{
 277	int ret;
 278	struct kimage *image;
 279	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 280
 281	image = do_kimage_alloc_init();
 282	if (!image)
 283		return -ENOMEM;
 284
 285	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
 286	image->file_mode = 1;
 287
 288#ifdef CONFIG_CRASH_DUMP
 289	if (kexec_on_panic) {
 290		/* Enable special crash kernel control page alloc policy. */
 291		image->control_page = crashk_res.start;
 292		image->type = KEXEC_TYPE_CRASH;
 293	}
 294#endif
 295
 296	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 297					   cmdline_ptr, cmdline_len, flags);
 298	if (ret)
 299		goto out_free_image;
 300
 301	ret = sanity_check_segment_list(image);
 302	if (ret)
 303		goto out_free_post_load_bufs;
 304
 305	ret = -ENOMEM;
 306	image->control_code_page = kimage_alloc_control_pages(image,
 307					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 308	if (!image->control_code_page) {
 309		pr_err("Could not allocate control_code_buffer\n");
 310		goto out_free_post_load_bufs;
 311	}
 312
 313	if (!kexec_on_panic) {
 314		image->swap_page = kimage_alloc_control_pages(image, 0);
 315		if (!image->swap_page) {
 316			pr_err("Could not allocate swap buffer\n");
 317			goto out_free_control_pages;
 318		}
 319	}
 320
 321	*rimage = image;
 322	return 0;
 323out_free_control_pages:
 324	kimage_free_page_list(&image->control_pages);
 325out_free_post_load_bufs:
 326	kimage_file_post_load_cleanup(image);
 327out_free_image:
 328	kfree(image);
 329	return ret;
 330}
 331
 332SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 333		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 334		unsigned long, flags)
 335{
 336	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
 337			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
 338	struct kimage **dest_image, *image;
 339	int ret = 0, i;
 340
 341	/* We only trust the superuser with rebooting the system. */
 342	if (!kexec_load_permitted(image_type))
 343		return -EPERM;
 344
 345	/* Make sure we have a legal set of flags */
 346	if (flags != (flags & KEXEC_FILE_FLAGS))
 347		return -EINVAL;
 348
 349	image = NULL;
 350
 351	if (!kexec_trylock())
 352		return -EBUSY;
 353
 354#ifdef CONFIG_CRASH_DUMP
 355	if (image_type == KEXEC_TYPE_CRASH) {
 356		dest_image = &kexec_crash_image;
 357		if (kexec_crash_image)
 358			arch_kexec_unprotect_crashkres();
 359	} else
 360#endif
 361		dest_image = &kexec_image;
 362
 363	if (flags & KEXEC_FILE_UNLOAD)
 364		goto exchange;
 365
 366	/*
 367	 * In case of crash, new kernel gets loaded in reserved region. It is
 368	 * same memory where old crash kernel might be loaded. Free any
 369	 * current crash dump kernel before we corrupt it.
 370	 */
 371	if (flags & KEXEC_FILE_ON_CRASH)
 372		kimage_free(xchg(&kexec_crash_image, NULL));
 373
 374	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 375				     cmdline_len, flags);
 376	if (ret)
 377		goto out;
 378
 379	ret = machine_kexec_prepare(image);
 380	if (ret)
 381		goto out;
 382
 383	/*
 384	 * Some architecture(like S390) may touch the crash memory before
 385	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 386	 */
 387	ret = kimage_crash_copy_vmcoreinfo(image);
 388	if (ret)
 389		goto out;
 390
 391	ret = kexec_calculate_store_digests(image);
 392	if (ret)
 393		goto out;
 394
 395	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
 396	for (i = 0; i < image->nr_segments; i++) {
 397		struct kexec_segment *ksegment;
 398
 399		ksegment = &image->segment[i];
 400		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 401			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 402			      ksegment->memsz);
 403
 404		ret = kimage_load_segment(image, &image->segment[i]);
 405		if (ret)
 406			goto out;
 407	}
 408
 409	kimage_terminate(image);
 410
 411	ret = machine_kexec_post_load(image);
 412	if (ret)
 413		goto out;
 414
 415	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
 416		      image->type, image->start, image->head, flags);
 417	/*
 418	 * Free up any temporary buffers allocated which are not needed
 419	 * after image has been loaded
 420	 */
 421	kimage_file_post_load_cleanup(image);
 422exchange:
 423	image = xchg(dest_image, image);
 424out:
 425#ifdef CONFIG_CRASH_DUMP
 426	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 427		arch_kexec_protect_crashkres();
 428#endif
 429
 430	kexec_unlock();
 431	kimage_free(image);
 432	return ret;
 433}
 434
 435static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 436				    struct kexec_buf *kbuf)
 437{
 438	struct kimage *image = kbuf->image;
 439	unsigned long temp_start, temp_end;
 440
 441	temp_end = min(end, kbuf->buf_max);
 442	temp_start = temp_end - kbuf->memsz + 1;
 443
 444	do {
 445		/* align down start */
 446		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
 447
 448		if (temp_start < start || temp_start < kbuf->buf_min)
 449			return 0;
 450
 451		temp_end = temp_start + kbuf->memsz - 1;
 452
 453		/*
 454		 * Make sure this does not conflict with any of existing
 455		 * segments
 456		 */
 457		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 458			temp_start = temp_start - PAGE_SIZE;
 459			continue;
 460		}
 461
 462		/* We found a suitable memory range */
 463		break;
 464	} while (1);
 465
 466	/* If we are here, we found a suitable memory range */
 467	kbuf->mem = temp_start;
 468
 469	/* Success, stop navigating through remaining System RAM ranges */
 470	return 1;
 471}
 472
 473static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 474				     struct kexec_buf *kbuf)
 475{
 476	struct kimage *image = kbuf->image;
 477	unsigned long temp_start, temp_end;
 478
 479	temp_start = max(start, kbuf->buf_min);
 480
 481	do {
 482		temp_start = ALIGN(temp_start, kbuf->buf_align);
 483		temp_end = temp_start + kbuf->memsz - 1;
 484
 485		if (temp_end > end || temp_end > kbuf->buf_max)
 486			return 0;
 487		/*
 488		 * Make sure this does not conflict with any of existing
 489		 * segments
 490		 */
 491		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 492			temp_start = temp_start + PAGE_SIZE;
 493			continue;
 494		}
 495
 496		/* We found a suitable memory range */
 497		break;
 498	} while (1);
 499
 500	/* If we are here, we found a suitable memory range */
 501	kbuf->mem = temp_start;
 502
 503	/* Success, stop navigating through remaining System RAM ranges */
 504	return 1;
 505}
 506
 507static int locate_mem_hole_callback(struct resource *res, void *arg)
 508{
 509	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 510	u64 start = res->start, end = res->end;
 511	unsigned long sz = end - start + 1;
 512
 513	/* Returning 0 will take to next memory range */
 514
 515	/* Don't use memory that will be detected and handled by a driver. */
 516	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 517		return 0;
 518
 519	if (sz < kbuf->memsz)
 520		return 0;
 521
 522	if (end < kbuf->buf_min || start > kbuf->buf_max)
 523		return 0;
 524
 525	/*
 526	 * Allocate memory top down with-in ram range. Otherwise bottom up
 527	 * allocation.
 528	 */
 529	if (kbuf->top_down)
 530		return locate_mem_hole_top_down(start, end, kbuf);
 531	return locate_mem_hole_bottom_up(start, end, kbuf);
 532}
 533
 534#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 535static int kexec_walk_memblock(struct kexec_buf *kbuf,
 536			       int (*func)(struct resource *, void *))
 537{
 538	int ret = 0;
 539	u64 i;
 540	phys_addr_t mstart, mend;
 541	struct resource res = { };
 542
 543#ifdef CONFIG_CRASH_DUMP
 544	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 545		return func(&crashk_res, kbuf);
 546#endif
 547
 548	/*
 549	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 550	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 551	 * locate_mem_hole_callback().
 552	 */
 553	if (kbuf->top_down) {
 554		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 555						&mstart, &mend, NULL) {
 556			/*
 557			 * In memblock, end points to the first byte after the
 558			 * range while in kexec, end points to the last byte
 559			 * in the range.
 560			 */
 561			res.start = mstart;
 562			res.end = mend - 1;
 563			ret = func(&res, kbuf);
 564			if (ret)
 565				break;
 566		}
 567	} else {
 568		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 569					&mstart, &mend, NULL) {
 570			/*
 571			 * In memblock, end points to the first byte after the
 572			 * range while in kexec, end points to the last byte
 573			 * in the range.
 574			 */
 575			res.start = mstart;
 576			res.end = mend - 1;
 577			ret = func(&res, kbuf);
 578			if (ret)
 579				break;
 580		}
 581	}
 582
 583	return ret;
 584}
 585#else
 586static int kexec_walk_memblock(struct kexec_buf *kbuf,
 587			       int (*func)(struct resource *, void *))
 588{
 589	return 0;
 590}
 591#endif
 592
 593/**
 594 * kexec_walk_resources - call func(data) on free memory regions
 595 * @kbuf:	Context info for the search. Also passed to @func.
 596 * @func:	Function to call for each memory region.
 597 *
 598 * Return: The memory walk will stop when func returns a non-zero value
 599 * and that value will be returned. If all free regions are visited without
 600 * func returning non-zero, then zero will be returned.
 601 */
 602static int kexec_walk_resources(struct kexec_buf *kbuf,
 603				int (*func)(struct resource *, void *))
 604{
 605#ifdef CONFIG_CRASH_DUMP
 606	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 607		return walk_iomem_res_desc(crashk_res.desc,
 608					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 609					   crashk_res.start, crashk_res.end,
 610					   kbuf, func);
 611#endif
 612	if (kbuf->top_down)
 613		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
 614	else
 615		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 616}
 617
 618/**
 619 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 620 * @kbuf:	Parameters for the memory search.
 621 *
 622 * On success, kbuf->mem will have the start address of the memory region found.
 623 *
 624 * Return: 0 on success, negative errno on error.
 625 */
 626int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 627{
 628	int ret;
 629
 630	/* Arch knows where to place */
 631	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 632		return 0;
 633
 634	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 635		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 636	else
 637		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 638
 639	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 640}
 641
 642/**
 643 * kexec_add_buffer - place a buffer in a kexec segment
 644 * @kbuf:	Buffer contents and memory parameters.
 645 *
 646 * This function assumes that kexec_lock is held.
 647 * On successful return, @kbuf->mem will have the physical address of
 648 * the buffer in memory.
 649 *
 650 * Return: 0 on success, negative errno on error.
 651 */
 652int kexec_add_buffer(struct kexec_buf *kbuf)
 653{
 654	struct kexec_segment *ksegment;
 655	int ret;
 656
 657	/* Currently adding segment this way is allowed only in file mode */
 658	if (!kbuf->image->file_mode)
 659		return -EINVAL;
 660
 661	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 662		return -EINVAL;
 663
 664	/*
 665	 * Make sure we are not trying to add buffer after allocating
 666	 * control pages. All segments need to be placed first before
 667	 * any control pages are allocated. As control page allocation
 668	 * logic goes through list of segments to make sure there are
 669	 * no destination overlaps.
 670	 */
 671	if (!list_empty(&kbuf->image->control_pages)) {
 672		WARN_ON(1);
 673		return -EINVAL;
 674	}
 675
 676	/* Ensure minimum alignment needed for segments. */
 677	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 678	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 679
 680	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 681	ret = arch_kexec_locate_mem_hole(kbuf);
 682	if (ret)
 683		return ret;
 684
 685	/* Found a suitable memory range */
 686	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 687	ksegment->kbuf = kbuf->buffer;
 688	ksegment->bufsz = kbuf->bufsz;
 689	ksegment->mem = kbuf->mem;
 690	ksegment->memsz = kbuf->memsz;
 691	kbuf->image->nr_segments++;
 692	return 0;
 693}
 694
 695/* Calculate and store the digest of segments */
 696static int kexec_calculate_store_digests(struct kimage *image)
 697{
 698	struct crypto_shash *tfm;
 699	struct shash_desc *desc;
 700	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 701	size_t desc_size, nullsz;
 702	char *digest;
 703	void *zero_buf;
 704	struct kexec_sha_region *sha_regions;
 705	struct purgatory_info *pi = &image->purgatory_info;
 706
 707	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
 708		return 0;
 709
 710	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 711	zero_buf_sz = PAGE_SIZE;
 712
 713	tfm = crypto_alloc_shash("sha256", 0, 0);
 714	if (IS_ERR(tfm)) {
 715		ret = PTR_ERR(tfm);
 716		goto out;
 717	}
 718
 719	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 720	desc = kzalloc(desc_size, GFP_KERNEL);
 721	if (!desc) {
 722		ret = -ENOMEM;
 723		goto out_free_tfm;
 724	}
 725
 726	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 727	sha_regions = vzalloc(sha_region_sz);
 728	if (!sha_regions) {
 729		ret = -ENOMEM;
 730		goto out_free_desc;
 731	}
 732
 733	desc->tfm   = tfm;
 734
 735	ret = crypto_shash_init(desc);
 736	if (ret < 0)
 737		goto out_free_sha_regions;
 738
 739	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 740	if (!digest) {
 741		ret = -ENOMEM;
 742		goto out_free_sha_regions;
 743	}
 744
 745	for (j = i = 0; i < image->nr_segments; i++) {
 746		struct kexec_segment *ksegment;
 747
 748#ifdef CONFIG_CRASH_HOTPLUG
 749		/* Exclude elfcorehdr segment to allow future changes via hotplug */
 750		if (j == image->elfcorehdr_index)
 751			continue;
 752#endif
 753
 754		ksegment = &image->segment[i];
 755		/*
 756		 * Skip purgatory as it will be modified once we put digest
 757		 * info in purgatory.
 758		 */
 759		if (ksegment->kbuf == pi->purgatory_buf)
 760			continue;
 761
 762		ret = crypto_shash_update(desc, ksegment->kbuf,
 763					  ksegment->bufsz);
 764		if (ret)
 765			break;
 766
 767		/*
 768		 * Assume rest of the buffer is filled with zero and
 769		 * update digest accordingly.
 770		 */
 771		nullsz = ksegment->memsz - ksegment->bufsz;
 772		while (nullsz) {
 773			unsigned long bytes = nullsz;
 774
 775			if (bytes > zero_buf_sz)
 776				bytes = zero_buf_sz;
 777			ret = crypto_shash_update(desc, zero_buf, bytes);
 778			if (ret)
 779				break;
 780			nullsz -= bytes;
 781		}
 782
 783		if (ret)
 784			break;
 785
 786		sha_regions[j].start = ksegment->mem;
 787		sha_regions[j].len = ksegment->memsz;
 788		j++;
 789	}
 790
 791	if (!ret) {
 792		ret = crypto_shash_final(desc, digest);
 793		if (ret)
 794			goto out_free_digest;
 795		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 796						     sha_regions, sha_region_sz, 0);
 797		if (ret)
 798			goto out_free_digest;
 799
 800		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 801						     digest, SHA256_DIGEST_SIZE, 0);
 802		if (ret)
 803			goto out_free_digest;
 804	}
 805
 806out_free_digest:
 807	kfree(digest);
 808out_free_sha_regions:
 809	vfree(sha_regions);
 810out_free_desc:
 811	kfree(desc);
 812out_free_tfm:
 813	kfree(tfm);
 814out:
 815	return ret;
 816}
 817
 818#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
 819/*
 820 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 821 * @pi:		Purgatory to be loaded.
 822 * @kbuf:	Buffer to setup.
 823 *
 824 * Allocates the memory needed for the buffer. Caller is responsible to free
 825 * the memory after use.
 826 *
 827 * Return: 0 on success, negative errno on error.
 828 */
 829static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 830				      struct kexec_buf *kbuf)
 831{
 832	const Elf_Shdr *sechdrs;
 833	unsigned long bss_align;
 834	unsigned long bss_sz;
 835	unsigned long align;
 836	int i, ret;
 837
 838	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 839	kbuf->buf_align = bss_align = 1;
 840	kbuf->bufsz = bss_sz = 0;
 841
 842	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 843		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 844			continue;
 845
 846		align = sechdrs[i].sh_addralign;
 847		if (sechdrs[i].sh_type != SHT_NOBITS) {
 848			if (kbuf->buf_align < align)
 849				kbuf->buf_align = align;
 850			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 851			kbuf->bufsz += sechdrs[i].sh_size;
 852		} else {
 853			if (bss_align < align)
 854				bss_align = align;
 855			bss_sz = ALIGN(bss_sz, align);
 856			bss_sz += sechdrs[i].sh_size;
 857		}
 858	}
 859	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 860	kbuf->memsz = kbuf->bufsz + bss_sz;
 861	if (kbuf->buf_align < bss_align)
 862		kbuf->buf_align = bss_align;
 863
 864	kbuf->buffer = vzalloc(kbuf->bufsz);
 865	if (!kbuf->buffer)
 866		return -ENOMEM;
 867	pi->purgatory_buf = kbuf->buffer;
 868
 869	ret = kexec_add_buffer(kbuf);
 870	if (ret)
 871		goto out;
 872
 873	return 0;
 874out:
 875	vfree(pi->purgatory_buf);
 876	pi->purgatory_buf = NULL;
 877	return ret;
 878}
 879
 880/*
 881 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 882 * @pi:		Purgatory to be loaded.
 883 * @kbuf:	Buffer prepared to store purgatory.
 884 *
 885 * Allocates the memory needed for the buffer. Caller is responsible to free
 886 * the memory after use.
 887 *
 888 * Return: 0 on success, negative errno on error.
 889 */
 890static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 891					 struct kexec_buf *kbuf)
 892{
 893	unsigned long bss_addr;
 894	unsigned long offset;
 895	size_t sechdrs_size;
 896	Elf_Shdr *sechdrs;
 897	int i;
 898
 899	/*
 900	 * The section headers in kexec_purgatory are read-only. In order to
 901	 * have them modifiable make a temporary copy.
 902	 */
 903	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
 904	sechdrs = vzalloc(sechdrs_size);
 905	if (!sechdrs)
 906		return -ENOMEM;
 907	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
 
 908	pi->sechdrs = sechdrs;
 909
 910	offset = 0;
 911	bss_addr = kbuf->mem + kbuf->bufsz;
 912	kbuf->image->start = pi->ehdr->e_entry;
 913
 914	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 915		unsigned long align;
 916		void *src, *dst;
 917
 918		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 919			continue;
 920
 921		align = sechdrs[i].sh_addralign;
 922		if (sechdrs[i].sh_type == SHT_NOBITS) {
 923			bss_addr = ALIGN(bss_addr, align);
 924			sechdrs[i].sh_addr = bss_addr;
 925			bss_addr += sechdrs[i].sh_size;
 926			continue;
 927		}
 928
 929		offset = ALIGN(offset, align);
 930
 931		/*
 932		 * Check if the segment contains the entry point, if so,
 933		 * calculate the value of image->start based on it.
 934		 * If the compiler has produced more than one .text section
 935		 * (Eg: .text.hot), they are generally after the main .text
 936		 * section, and they shall not be used to calculate
 937		 * image->start. So do not re-calculate image->start if it
 938		 * is not set to the initial value, and warn the user so they
 939		 * have a chance to fix their purgatory's linker script.
 940		 */
 941		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 942		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 943		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 944					 + sechdrs[i].sh_size) &&
 945		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
 946			kbuf->image->start -= sechdrs[i].sh_addr;
 947			kbuf->image->start += kbuf->mem + offset;
 948		}
 949
 950		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 951		dst = pi->purgatory_buf + offset;
 952		memcpy(dst, src, sechdrs[i].sh_size);
 953
 954		sechdrs[i].sh_addr = kbuf->mem + offset;
 955		sechdrs[i].sh_offset = offset;
 956		offset += sechdrs[i].sh_size;
 957	}
 958
 959	return 0;
 960}
 961
 962static int kexec_apply_relocations(struct kimage *image)
 963{
 964	int i, ret;
 965	struct purgatory_info *pi = &image->purgatory_info;
 966	const Elf_Shdr *sechdrs;
 967
 968	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 969
 970	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 971		const Elf_Shdr *relsec;
 972		const Elf_Shdr *symtab;
 973		Elf_Shdr *section;
 974
 975		relsec = sechdrs + i;
 976
 977		if (relsec->sh_type != SHT_RELA &&
 978		    relsec->sh_type != SHT_REL)
 979			continue;
 980
 981		/*
 982		 * For section of type SHT_RELA/SHT_REL,
 983		 * ->sh_link contains section header index of associated
 984		 * symbol table. And ->sh_info contains section header
 985		 * index of section to which relocations apply.
 986		 */
 987		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 988		    relsec->sh_link >= pi->ehdr->e_shnum)
 989			return -ENOEXEC;
 990
 991		section = pi->sechdrs + relsec->sh_info;
 992		symtab = sechdrs + relsec->sh_link;
 993
 994		if (!(section->sh_flags & SHF_ALLOC))
 995			continue;
 996
 997		/*
 998		 * symtab->sh_link contain section header index of associated
 999		 * string table.
1000		 */
1001		if (symtab->sh_link >= pi->ehdr->e_shnum)
1002			/* Invalid section number? */
1003			continue;
1004
1005		/*
1006		 * Respective architecture needs to provide support for applying
1007		 * relocations of type SHT_RELA/SHT_REL.
1008		 */
1009		if (relsec->sh_type == SHT_RELA)
1010			ret = arch_kexec_apply_relocations_add(pi, section,
1011							       relsec, symtab);
1012		else if (relsec->sh_type == SHT_REL)
1013			ret = arch_kexec_apply_relocations(pi, section,
1014							   relsec, symtab);
1015		if (ret)
1016			return ret;
1017	}
1018
1019	return 0;
1020}
1021
1022/*
1023 * kexec_load_purgatory - Load and relocate the purgatory object.
1024 * @image:	Image to add the purgatory to.
1025 * @kbuf:	Memory parameters to use.
1026 *
1027 * Allocates the memory needed for image->purgatory_info.sechdrs and
1028 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1029 * to free the memory after use.
1030 *
1031 * Return: 0 on success, negative errno on error.
1032 */
1033int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1034{
1035	struct purgatory_info *pi = &image->purgatory_info;
1036	int ret;
1037
1038	if (kexec_purgatory_size <= 0)
1039		return -EINVAL;
1040
1041	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1042
1043	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1044	if (ret)
1045		return ret;
1046
1047	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1048	if (ret)
1049		goto out_free_kbuf;
1050
1051	ret = kexec_apply_relocations(image);
1052	if (ret)
1053		goto out;
1054
1055	return 0;
1056out:
1057	vfree(pi->sechdrs);
1058	pi->sechdrs = NULL;
1059out_free_kbuf:
1060	vfree(pi->purgatory_buf);
1061	pi->purgatory_buf = NULL;
1062	return ret;
1063}
1064
1065/*
1066 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1067 * @pi:		Purgatory to search in.
1068 * @name:	Name of the symbol.
1069 *
1070 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1071 */
1072static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1073						  const char *name)
1074{
1075	const Elf_Shdr *sechdrs;
1076	const Elf_Ehdr *ehdr;
1077	const Elf_Sym *syms;
1078	const char *strtab;
1079	int i, k;
1080
1081	if (!pi->ehdr)
1082		return NULL;
1083
1084	ehdr = pi->ehdr;
1085	sechdrs = (void *)ehdr + ehdr->e_shoff;
1086
1087	for (i = 0; i < ehdr->e_shnum; i++) {
1088		if (sechdrs[i].sh_type != SHT_SYMTAB)
1089			continue;
1090
1091		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1092			/* Invalid strtab section number */
1093			continue;
1094		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1095		syms = (void *)ehdr + sechdrs[i].sh_offset;
1096
1097		/* Go through symbols for a match */
1098		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1099			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1100				continue;
1101
1102			if (strcmp(strtab + syms[k].st_name, name) != 0)
1103				continue;
1104
1105			if (syms[k].st_shndx == SHN_UNDEF ||
1106			    syms[k].st_shndx >= ehdr->e_shnum) {
1107				pr_debug("Symbol: %s has bad section index %d.\n",
1108						name, syms[k].st_shndx);
1109				return NULL;
1110			}
1111
1112			/* Found the symbol we are looking for */
1113			return &syms[k];
1114		}
1115	}
1116
1117	return NULL;
1118}
1119
1120void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1121{
1122	struct purgatory_info *pi = &image->purgatory_info;
1123	const Elf_Sym *sym;
1124	Elf_Shdr *sechdr;
1125
1126	sym = kexec_purgatory_find_symbol(pi, name);
1127	if (!sym)
1128		return ERR_PTR(-EINVAL);
1129
1130	sechdr = &pi->sechdrs[sym->st_shndx];
1131
1132	/*
1133	 * Returns the address where symbol will finally be loaded after
1134	 * kexec_load_segment()
1135	 */
1136	return (void *)(sechdr->sh_addr + sym->st_value);
1137}
1138
1139/*
1140 * Get or set value of a symbol. If "get_value" is true, symbol value is
1141 * returned in buf otherwise symbol value is set based on value in buf.
1142 */
1143int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1144				   void *buf, unsigned int size, bool get_value)
1145{
1146	struct purgatory_info *pi = &image->purgatory_info;
1147	const Elf_Sym *sym;
1148	Elf_Shdr *sec;
1149	char *sym_buf;
1150
1151	sym = kexec_purgatory_find_symbol(pi, name);
1152	if (!sym)
1153		return -EINVAL;
1154
1155	if (sym->st_size != size) {
1156		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1157		       name, (unsigned long)sym->st_size, size);
1158		return -EINVAL;
1159	}
1160
1161	sec = pi->sechdrs + sym->st_shndx;
1162
1163	if (sec->sh_type == SHT_NOBITS) {
1164		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1165		       get_value ? "get" : "set");
1166		return -EINVAL;
1167	}
1168
1169	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1170
1171	if (get_value)
1172		memcpy((void *)buf, sym_buf, size);
1173	else
1174		memcpy((void *)sym_buf, buf, size);
1175
1176	return 0;
1177}
1178#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */