Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
 
 
 
 
  66}
  67
  68void *kexec_image_load_default(struct kimage *image)
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
 
 
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
 
  83
  84	return image->fops->cleanup(image->image_loader_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 126}
 127
 128#ifdef CONFIG_KEXEC_SIG
 129#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 130int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 131{
 132	int ret;
 133
 134	ret = verify_pefile_signature(kernel, kernel_len,
 135				      VERIFY_USE_SECONDARY_KEYRING,
 136				      VERIFYING_KEXEC_PE_SIGNATURE);
 137	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 138		ret = verify_pefile_signature(kernel, kernel_len,
 139					      VERIFY_USE_PLATFORM_KEYRING,
 140					      VERIFYING_KEXEC_PE_SIGNATURE);
 141	}
 142	return ret;
 143}
 144#endif
 145
 146static int kexec_image_verify_sig(struct kimage *image, void *buf,
 147				  unsigned long buf_len)
 148{
 149	if (!image->fops || !image->fops->verify_sig) {
 150		pr_debug("kernel loader does not support signature verification.\n");
 151		return -EKEYREJECTED;
 152	}
 153
 154	return image->fops->verify_sig(buf, buf_len);
 155}
 156
 157static int
 158kimage_validate_signature(struct kimage *image)
 159{
 160	int ret;
 161
 162	ret = kexec_image_verify_sig(image, image->kernel_buf,
 163				     image->kernel_buf_len);
 164	if (ret) {
 165
 166		if (sig_enforce) {
 167			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 168			return ret;
 169		}
 170
 171		/*
 172		 * If IMA is guaranteed to appraise a signature on the kexec
 173		 * image, permit it even if the kernel is otherwise locked
 174		 * down.
 175		 */
 176		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 177		    security_locked_down(LOCKDOWN_KEXEC))
 178			return -EPERM;
 179
 180		pr_debug("kernel signature verification failed (%d).\n", ret);
 181	}
 182
 183	return 0;
 184}
 185#endif
 186
 187/*
 188 * In file mode list of segments is prepared by kernel. Copy relevant
 189 * data from user space, do error checking, prepare segment list
 190 */
 191static int
 192kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 193			     const char __user *cmdline_ptr,
 194			     unsigned long cmdline_len, unsigned flags)
 195{
 196	ssize_t ret;
 197	void *ldata;
 
 198
 199	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 200				       KEXEC_FILE_SIZE_MAX, NULL,
 201				       READING_KEXEC_IMAGE);
 202	if (ret < 0)
 203		return ret;
 204	image->kernel_buf_len = ret;
 205
 206	/* Call arch image probe handlers */
 207	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 208					    image->kernel_buf_len);
 209	if (ret)
 210		goto out;
 211
 212#ifdef CONFIG_KEXEC_SIG
 213	ret = kimage_validate_signature(image);
 214
 215	if (ret)
 
 216		goto out;
 
 
 217#endif
 218	/* It is possible that there no initramfs is being loaded */
 219	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 220		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 221					       KEXEC_FILE_SIZE_MAX, NULL,
 222					       READING_KEXEC_INITRAMFS);
 223		if (ret < 0)
 224			goto out;
 225		image->initrd_buf_len = ret;
 226		ret = 0;
 227	}
 228
 229	if (cmdline_len) {
 230		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 231		if (IS_ERR(image->cmdline_buf)) {
 232			ret = PTR_ERR(image->cmdline_buf);
 233			image->cmdline_buf = NULL;
 
 
 
 
 
 
 234			goto out;
 235		}
 236
 237		image->cmdline_buf_len = cmdline_len;
 238
 239		/* command line should be a string with last byte null */
 240		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 241			ret = -EINVAL;
 242			goto out;
 243		}
 244
 245		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 246				  image->cmdline_buf_len - 1);
 247	}
 248
 249	/* IMA needs to pass the measurement list to the next kernel. */
 250	ima_add_kexec_buffer(image);
 251
 252	/* Call arch image load handlers */
 253	ldata = arch_kexec_kernel_image_load(image);
 254
 255	if (IS_ERR(ldata)) {
 256		ret = PTR_ERR(ldata);
 257		goto out;
 258	}
 259
 260	image->image_loader_data = ldata;
 261out:
 262	/* In case of error, free up all allocated memory in this function */
 263	if (ret)
 264		kimage_file_post_load_cleanup(image);
 265	return ret;
 266}
 267
 268static int
 269kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 270		       int initrd_fd, const char __user *cmdline_ptr,
 271		       unsigned long cmdline_len, unsigned long flags)
 272{
 273	int ret;
 274	struct kimage *image;
 275	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 276
 277	image = do_kimage_alloc_init();
 278	if (!image)
 279		return -ENOMEM;
 280
 281	image->file_mode = 1;
 282
 283	if (kexec_on_panic) {
 284		/* Enable special crash kernel control page alloc policy. */
 285		image->control_page = crashk_res.start;
 286		image->type = KEXEC_TYPE_CRASH;
 287	}
 288
 289	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 290					   cmdline_ptr, cmdline_len, flags);
 291	if (ret)
 292		goto out_free_image;
 293
 294	ret = sanity_check_segment_list(image);
 295	if (ret)
 296		goto out_free_post_load_bufs;
 297
 298	ret = -ENOMEM;
 299	image->control_code_page = kimage_alloc_control_pages(image,
 300					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 301	if (!image->control_code_page) {
 302		pr_err("Could not allocate control_code_buffer\n");
 303		goto out_free_post_load_bufs;
 304	}
 305
 306	if (!kexec_on_panic) {
 307		image->swap_page = kimage_alloc_control_pages(image, 0);
 308		if (!image->swap_page) {
 309			pr_err("Could not allocate swap buffer\n");
 310			goto out_free_control_pages;
 311		}
 312	}
 313
 314	*rimage = image;
 315	return 0;
 316out_free_control_pages:
 317	kimage_free_page_list(&image->control_pages);
 318out_free_post_load_bufs:
 319	kimage_file_post_load_cleanup(image);
 320out_free_image:
 321	kfree(image);
 322	return ret;
 323}
 324
 325SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 326		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 327		unsigned long, flags)
 328{
 329	int ret = 0, i;
 330	struct kimage **dest_image, *image;
 331
 332	/* We only trust the superuser with rebooting the system. */
 333	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 334		return -EPERM;
 335
 336	/* Make sure we have a legal set of flags */
 337	if (flags != (flags & KEXEC_FILE_FLAGS))
 338		return -EINVAL;
 339
 340	image = NULL;
 341
 342	if (!kexec_trylock())
 343		return -EBUSY;
 344
 345	dest_image = &kexec_image;
 346	if (flags & KEXEC_FILE_ON_CRASH) {
 347		dest_image = &kexec_crash_image;
 348		if (kexec_crash_image)
 349			arch_kexec_unprotect_crashkres();
 350	}
 351
 352	if (flags & KEXEC_FILE_UNLOAD)
 353		goto exchange;
 354
 355	/*
 356	 * In case of crash, new kernel gets loaded in reserved region. It is
 357	 * same memory where old crash kernel might be loaded. Free any
 358	 * current crash dump kernel before we corrupt it.
 359	 */
 360	if (flags & KEXEC_FILE_ON_CRASH)
 361		kimage_free(xchg(&kexec_crash_image, NULL));
 362
 363	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 364				     cmdline_len, flags);
 365	if (ret)
 366		goto out;
 367
 368	ret = machine_kexec_prepare(image);
 369	if (ret)
 370		goto out;
 371
 372	/*
 373	 * Some architecture(like S390) may touch the crash memory before
 374	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 375	 */
 376	ret = kimage_crash_copy_vmcoreinfo(image);
 377	if (ret)
 378		goto out;
 379
 380	ret = kexec_calculate_store_digests(image);
 381	if (ret)
 382		goto out;
 383
 384	for (i = 0; i < image->nr_segments; i++) {
 385		struct kexec_segment *ksegment;
 386
 387		ksegment = &image->segment[i];
 388		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 389			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 390			 ksegment->memsz);
 391
 392		ret = kimage_load_segment(image, &image->segment[i]);
 393		if (ret)
 394			goto out;
 395	}
 396
 397	kimage_terminate(image);
 398
 399	ret = machine_kexec_post_load(image);
 400	if (ret)
 401		goto out;
 402
 403	/*
 404	 * Free up any temporary buffers allocated which are not needed
 405	 * after image has been loaded
 406	 */
 407	kimage_file_post_load_cleanup(image);
 408exchange:
 409	image = xchg(dest_image, image);
 410out:
 411	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 412		arch_kexec_protect_crashkres();
 413
 414	kexec_unlock();
 415	kimage_free(image);
 416	return ret;
 417}
 418
 419static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 420				    struct kexec_buf *kbuf)
 421{
 422	struct kimage *image = kbuf->image;
 423	unsigned long temp_start, temp_end;
 424
 425	temp_end = min(end, kbuf->buf_max);
 426	temp_start = temp_end - kbuf->memsz;
 427
 428	do {
 429		/* align down start */
 430		temp_start = temp_start & (~(kbuf->buf_align - 1));
 431
 432		if (temp_start < start || temp_start < kbuf->buf_min)
 433			return 0;
 434
 435		temp_end = temp_start + kbuf->memsz - 1;
 436
 437		/*
 438		 * Make sure this does not conflict with any of existing
 439		 * segments
 440		 */
 441		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 442			temp_start = temp_start - PAGE_SIZE;
 443			continue;
 444		}
 445
 446		/* We found a suitable memory range */
 447		break;
 448	} while (1);
 449
 450	/* If we are here, we found a suitable memory range */
 451	kbuf->mem = temp_start;
 452
 453	/* Success, stop navigating through remaining System RAM ranges */
 454	return 1;
 455}
 456
 457static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 458				     struct kexec_buf *kbuf)
 459{
 460	struct kimage *image = kbuf->image;
 461	unsigned long temp_start, temp_end;
 462
 463	temp_start = max(start, kbuf->buf_min);
 464
 465	do {
 466		temp_start = ALIGN(temp_start, kbuf->buf_align);
 467		temp_end = temp_start + kbuf->memsz - 1;
 468
 469		if (temp_end > end || temp_end > kbuf->buf_max)
 470			return 0;
 471		/*
 472		 * Make sure this does not conflict with any of existing
 473		 * segments
 474		 */
 475		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 476			temp_start = temp_start + PAGE_SIZE;
 477			continue;
 478		}
 479
 480		/* We found a suitable memory range */
 481		break;
 482	} while (1);
 483
 484	/* If we are here, we found a suitable memory range */
 485	kbuf->mem = temp_start;
 486
 487	/* Success, stop navigating through remaining System RAM ranges */
 488	return 1;
 489}
 490
 491static int locate_mem_hole_callback(struct resource *res, void *arg)
 492{
 493	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 494	u64 start = res->start, end = res->end;
 495	unsigned long sz = end - start + 1;
 496
 497	/* Returning 0 will take to next memory range */
 498
 499	/* Don't use memory that will be detected and handled by a driver. */
 500	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 501		return 0;
 502
 503	if (sz < kbuf->memsz)
 504		return 0;
 505
 506	if (end < kbuf->buf_min || start > kbuf->buf_max)
 507		return 0;
 508
 509	/*
 510	 * Allocate memory top down with-in ram range. Otherwise bottom up
 511	 * allocation.
 512	 */
 513	if (kbuf->top_down)
 514		return locate_mem_hole_top_down(start, end, kbuf);
 515	return locate_mem_hole_bottom_up(start, end, kbuf);
 516}
 517
 518#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 519static int kexec_walk_memblock(struct kexec_buf *kbuf,
 520			       int (*func)(struct resource *, void *))
 521{
 522	int ret = 0;
 523	u64 i;
 524	phys_addr_t mstart, mend;
 525	struct resource res = { };
 526
 527	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 528		return func(&crashk_res, kbuf);
 529
 530	/*
 531	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 532	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 533	 * locate_mem_hole_callback().
 534	 */
 535	if (kbuf->top_down) {
 536		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 537						&mstart, &mend, NULL) {
 538			/*
 539			 * In memblock, end points to the first byte after the
 540			 * range while in kexec, end points to the last byte
 541			 * in the range.
 542			 */
 543			res.start = mstart;
 544			res.end = mend - 1;
 545			ret = func(&res, kbuf);
 546			if (ret)
 547				break;
 548		}
 549	} else {
 550		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 551					&mstart, &mend, NULL) {
 552			/*
 553			 * In memblock, end points to the first byte after the
 554			 * range while in kexec, end points to the last byte
 555			 * in the range.
 556			 */
 557			res.start = mstart;
 558			res.end = mend - 1;
 559			ret = func(&res, kbuf);
 560			if (ret)
 561				break;
 562		}
 563	}
 564
 565	return ret;
 566}
 567#else
 568static int kexec_walk_memblock(struct kexec_buf *kbuf,
 569			       int (*func)(struct resource *, void *))
 570{
 571	return 0;
 572}
 573#endif
 574
 575/**
 576 * kexec_walk_resources - call func(data) on free memory regions
 577 * @kbuf:	Context info for the search. Also passed to @func.
 578 * @func:	Function to call for each memory region.
 579 *
 580 * Return: The memory walk will stop when func returns a non-zero value
 581 * and that value will be returned. If all free regions are visited without
 582 * func returning non-zero, then zero will be returned.
 583 */
 584static int kexec_walk_resources(struct kexec_buf *kbuf,
 585				int (*func)(struct resource *, void *))
 586{
 587	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 588		return walk_iomem_res_desc(crashk_res.desc,
 589					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 590					   crashk_res.start, crashk_res.end,
 591					   kbuf, func);
 592	else
 593		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 594}
 595
 596/**
 597 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 598 * @kbuf:	Parameters for the memory search.
 599 *
 600 * On success, kbuf->mem will have the start address of the memory region found.
 601 *
 602 * Return: 0 on success, negative errno on error.
 603 */
 604int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 
 
 
 605{
 606	int ret;
 607
 608	/* Arch knows where to place */
 609	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 610		return 0;
 611
 612	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 613		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 614	else
 615		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 616
 617	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 618}
 619
 620/**
 621 * kexec_add_buffer - place a buffer in a kexec segment
 622 * @kbuf:	Buffer contents and memory parameters.
 623 *
 624 * This function assumes that kexec_mutex is held.
 625 * On successful return, @kbuf->mem will have the physical address of
 626 * the buffer in memory.
 627 *
 628 * Return: 0 on success, negative errno on error.
 629 */
 630int kexec_add_buffer(struct kexec_buf *kbuf)
 631{
 632	struct kexec_segment *ksegment;
 
 633	int ret;
 634
 635	/* Currently adding segment this way is allowed only in file mode */
 636	if (!kbuf->image->file_mode)
 637		return -EINVAL;
 638
 639	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 640		return -EINVAL;
 641
 642	/*
 643	 * Make sure we are not trying to add buffer after allocating
 644	 * control pages. All segments need to be placed first before
 645	 * any control pages are allocated. As control page allocation
 646	 * logic goes through list of segments to make sure there are
 647	 * no destination overlaps.
 648	 */
 649	if (!list_empty(&kbuf->image->control_pages)) {
 650		WARN_ON(1);
 651		return -EINVAL;
 652	}
 653
 654	/* Ensure minimum alignment needed for segments. */
 655	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 656	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 
 
 
 
 
 
 
 
 657
 658	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 659	ret = arch_kexec_locate_mem_hole(kbuf);
 660	if (ret)
 661		return ret;
 
 
 
 
 
 
 
 
 
 662
 663	/* Found a suitable memory range */
 664	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 665	ksegment->kbuf = kbuf->buffer;
 666	ksegment->bufsz = kbuf->bufsz;
 667	ksegment->mem = kbuf->mem;
 668	ksegment->memsz = kbuf->memsz;
 669	kbuf->image->nr_segments++;
 
 670	return 0;
 671}
 672
 673/* Calculate and store the digest of segments */
 674static int kexec_calculate_store_digests(struct kimage *image)
 675{
 676	struct crypto_shash *tfm;
 677	struct shash_desc *desc;
 678	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 679	size_t desc_size, nullsz;
 680	char *digest;
 681	void *zero_buf;
 682	struct kexec_sha_region *sha_regions;
 683	struct purgatory_info *pi = &image->purgatory_info;
 684
 685	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 686		return 0;
 687
 688	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 689	zero_buf_sz = PAGE_SIZE;
 690
 691	tfm = crypto_alloc_shash("sha256", 0, 0);
 692	if (IS_ERR(tfm)) {
 693		ret = PTR_ERR(tfm);
 694		goto out;
 695	}
 696
 697	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 698	desc = kzalloc(desc_size, GFP_KERNEL);
 699	if (!desc) {
 700		ret = -ENOMEM;
 701		goto out_free_tfm;
 702	}
 703
 704	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 705	sha_regions = vzalloc(sha_region_sz);
 706	if (!sha_regions) {
 707		ret = -ENOMEM;
 708		goto out_free_desc;
 709	}
 710
 711	desc->tfm   = tfm;
 
 712
 713	ret = crypto_shash_init(desc);
 714	if (ret < 0)
 715		goto out_free_sha_regions;
 716
 717	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 718	if (!digest) {
 719		ret = -ENOMEM;
 720		goto out_free_sha_regions;
 721	}
 722
 723	for (j = i = 0; i < image->nr_segments; i++) {
 724		struct kexec_segment *ksegment;
 725
 726		ksegment = &image->segment[i];
 727		/*
 728		 * Skip purgatory as it will be modified once we put digest
 729		 * info in purgatory.
 730		 */
 731		if (ksegment->kbuf == pi->purgatory_buf)
 732			continue;
 733
 734		ret = crypto_shash_update(desc, ksegment->kbuf,
 735					  ksegment->bufsz);
 736		if (ret)
 737			break;
 738
 739		/*
 740		 * Assume rest of the buffer is filled with zero and
 741		 * update digest accordingly.
 742		 */
 743		nullsz = ksegment->memsz - ksegment->bufsz;
 744		while (nullsz) {
 745			unsigned long bytes = nullsz;
 746
 747			if (bytes > zero_buf_sz)
 748				bytes = zero_buf_sz;
 749			ret = crypto_shash_update(desc, zero_buf, bytes);
 750			if (ret)
 751				break;
 752			nullsz -= bytes;
 753		}
 754
 755		if (ret)
 756			break;
 757
 758		sha_regions[j].start = ksegment->mem;
 759		sha_regions[j].len = ksegment->memsz;
 760		j++;
 761	}
 762
 763	if (!ret) {
 764		ret = crypto_shash_final(desc, digest);
 765		if (ret)
 766			goto out_free_digest;
 767		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 768						     sha_regions, sha_region_sz, 0);
 769		if (ret)
 770			goto out_free_digest;
 771
 772		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 773						     digest, SHA256_DIGEST_SIZE, 0);
 774		if (ret)
 775			goto out_free_digest;
 776	}
 777
 778out_free_digest:
 779	kfree(digest);
 780out_free_sha_regions:
 781	vfree(sha_regions);
 782out_free_desc:
 783	kfree(desc);
 784out_free_tfm:
 785	kfree(tfm);
 786out:
 787	return ret;
 788}
 789
 790#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 791/*
 792 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 793 * @pi:		Purgatory to be loaded.
 794 * @kbuf:	Buffer to setup.
 795 *
 796 * Allocates the memory needed for the buffer. Caller is responsible to free
 797 * the memory after use.
 798 *
 799 * Return: 0 on success, negative errno on error.
 800 */
 801static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 802				      struct kexec_buf *kbuf)
 803{
 804	const Elf_Shdr *sechdrs;
 805	unsigned long bss_align;
 806	unsigned long bss_sz;
 807	unsigned long align;
 808	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 811	kbuf->buf_align = bss_align = 1;
 812	kbuf->bufsz = bss_sz = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813
 814	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 815		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 816			continue;
 817
 818		align = sechdrs[i].sh_addralign;
 819		if (sechdrs[i].sh_type != SHT_NOBITS) {
 820			if (kbuf->buf_align < align)
 821				kbuf->buf_align = align;
 822			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 823			kbuf->bufsz += sechdrs[i].sh_size;
 824		} else {
 
 825			if (bss_align < align)
 826				bss_align = align;
 827			bss_sz = ALIGN(bss_sz, align);
 828			bss_sz += sechdrs[i].sh_size;
 829		}
 830	}
 831	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 832	kbuf->memsz = kbuf->bufsz + bss_sz;
 833	if (kbuf->buf_align < bss_align)
 834		kbuf->buf_align = bss_align;
 835
 836	kbuf->buffer = vzalloc(kbuf->bufsz);
 837	if (!kbuf->buffer)
 838		return -ENOMEM;
 839	pi->purgatory_buf = kbuf->buffer;
 840
 841	ret = kexec_add_buffer(kbuf);
 842	if (ret)
 
 
 
 
 
 
 
 
 
 843		goto out;
 
 844
 845	return 0;
 846out:
 847	vfree(pi->purgatory_buf);
 848	pi->purgatory_buf = NULL;
 849	return ret;
 850}
 851
 852/*
 853 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 854 * @pi:		Purgatory to be loaded.
 855 * @kbuf:	Buffer prepared to store purgatory.
 856 *
 857 * Allocates the memory needed for the buffer. Caller is responsible to free
 858 * the memory after use.
 859 *
 860 * Return: 0 on success, negative errno on error.
 861 */
 862static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 863					 struct kexec_buf *kbuf)
 864{
 865	unsigned long bss_addr;
 866	unsigned long offset;
 867	Elf_Shdr *sechdrs;
 868	int i;
 869
 870	/*
 871	 * The section headers in kexec_purgatory are read-only. In order to
 872	 * have them modifiable make a temporary copy.
 873	 */
 874	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 875	if (!sechdrs)
 876		return -ENOMEM;
 877	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 878	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 879	pi->sechdrs = sechdrs;
 880
 881	offset = 0;
 882	bss_addr = kbuf->mem + kbuf->bufsz;
 883	kbuf->image->start = pi->ehdr->e_entry;
 
 884
 885	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 886		unsigned long align;
 887		void *src, *dst;
 888
 889		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 890			continue;
 891
 892		align = sechdrs[i].sh_addralign;
 893		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894			bss_addr = ALIGN(bss_addr, align);
 895			sechdrs[i].sh_addr = bss_addr;
 896			bss_addr += sechdrs[i].sh_size;
 897			continue;
 898		}
 
 899
 900		offset = ALIGN(offset, align);
 901		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 902		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 903		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 904					 + sechdrs[i].sh_size)) {
 905			kbuf->image->start -= sechdrs[i].sh_addr;
 906			kbuf->image->start += kbuf->mem + offset;
 907		}
 908
 909		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 910		dst = pi->purgatory_buf + offset;
 911		memcpy(dst, src, sechdrs[i].sh_size);
 912
 913		sechdrs[i].sh_addr = kbuf->mem + offset;
 914		sechdrs[i].sh_offset = offset;
 915		offset += sechdrs[i].sh_size;
 916	}
 917
 918	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 919}
 920
 921static int kexec_apply_relocations(struct kimage *image)
 922{
 923	int i, ret;
 924	struct purgatory_info *pi = &image->purgatory_info;
 925	const Elf_Shdr *sechdrs;
 926
 927	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 928
 
 929	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 930		const Elf_Shdr *relsec;
 931		const Elf_Shdr *symtab;
 932		Elf_Shdr *section;
 933
 934		relsec = sechdrs + i;
 935
 936		if (relsec->sh_type != SHT_RELA &&
 937		    relsec->sh_type != SHT_REL)
 938			continue;
 939
 940		/*
 941		 * For section of type SHT_RELA/SHT_REL,
 942		 * ->sh_link contains section header index of associated
 943		 * symbol table. And ->sh_info contains section header
 944		 * index of section to which relocations apply.
 945		 */
 946		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 947		    relsec->sh_link >= pi->ehdr->e_shnum)
 948			return -ENOEXEC;
 949
 950		section = pi->sechdrs + relsec->sh_info;
 951		symtab = sechdrs + relsec->sh_link;
 952
 953		if (!(section->sh_flags & SHF_ALLOC))
 954			continue;
 955
 956		/*
 957		 * symtab->sh_link contain section header index of associated
 958		 * string table.
 959		 */
 960		if (symtab->sh_link >= pi->ehdr->e_shnum)
 961			/* Invalid section number? */
 962			continue;
 963
 964		/*
 965		 * Respective architecture needs to provide support for applying
 966		 * relocations of type SHT_RELA/SHT_REL.
 967		 */
 968		if (relsec->sh_type == SHT_RELA)
 969			ret = arch_kexec_apply_relocations_add(pi, section,
 970							       relsec, symtab);
 971		else if (relsec->sh_type == SHT_REL)
 972			ret = arch_kexec_apply_relocations(pi, section,
 973							   relsec, symtab);
 974		if (ret)
 975			return ret;
 976	}
 977
 978	return 0;
 979}
 980
 981/*
 982 * kexec_load_purgatory - Load and relocate the purgatory object.
 983 * @image:	Image to add the purgatory to.
 984 * @kbuf:	Memory parameters to use.
 985 *
 986 * Allocates the memory needed for image->purgatory_info.sechdrs and
 987 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 988 * to free the memory after use.
 989 *
 990 * Return: 0 on success, negative errno on error.
 991 */
 992int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 993{
 994	struct purgatory_info *pi = &image->purgatory_info;
 995	int ret;
 996
 997	if (kexec_purgatory_size <= 0)
 998		return -EINVAL;
 999
1000	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
1001
1002	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1003	if (ret)
1004		return ret;
1005
1006	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 
 
 
 
 
 
 
 
 
 
 
1007	if (ret)
1008		goto out_free_kbuf;
1009
1010	ret = kexec_apply_relocations(image);
1011	if (ret)
1012		goto out;
1013
 
1014	return 0;
1015out:
1016	vfree(pi->sechdrs);
1017	pi->sechdrs = NULL;
1018out_free_kbuf:
1019	vfree(pi->purgatory_buf);
1020	pi->purgatory_buf = NULL;
1021	return ret;
1022}
1023
1024/*
1025 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1026 * @pi:		Purgatory to search in.
1027 * @name:	Name of the symbol.
1028 *
1029 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1030 */
1031static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1032						  const char *name)
1033{
1034	const Elf_Shdr *sechdrs;
1035	const Elf_Ehdr *ehdr;
1036	const Elf_Sym *syms;
1037	const char *strtab;
1038	int i, k;
 
1039
1040	if (!pi->ehdr)
1041		return NULL;
1042
 
1043	ehdr = pi->ehdr;
1044	sechdrs = (void *)ehdr + ehdr->e_shoff;
1045
1046	for (i = 0; i < ehdr->e_shnum; i++) {
1047		if (sechdrs[i].sh_type != SHT_SYMTAB)
1048			continue;
1049
1050		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1051			/* Invalid strtab section number */
1052			continue;
1053		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1054		syms = (void *)ehdr + sechdrs[i].sh_offset;
1055
1056		/* Go through symbols for a match */
1057		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1058			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1059				continue;
1060
1061			if (strcmp(strtab + syms[k].st_name, name) != 0)
1062				continue;
1063
1064			if (syms[k].st_shndx == SHN_UNDEF ||
1065			    syms[k].st_shndx >= ehdr->e_shnum) {
1066				pr_debug("Symbol: %s has bad section index %d.\n",
1067						name, syms[k].st_shndx);
1068				return NULL;
1069			}
1070
1071			/* Found the symbol we are looking for */
1072			return &syms[k];
1073		}
1074	}
1075
1076	return NULL;
1077}
1078
1079void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1080{
1081	struct purgatory_info *pi = &image->purgatory_info;
1082	const Elf_Sym *sym;
1083	Elf_Shdr *sechdr;
1084
1085	sym = kexec_purgatory_find_symbol(pi, name);
1086	if (!sym)
1087		return ERR_PTR(-EINVAL);
1088
1089	sechdr = &pi->sechdrs[sym->st_shndx];
1090
1091	/*
1092	 * Returns the address where symbol will finally be loaded after
1093	 * kexec_load_segment()
1094	 */
1095	return (void *)(sechdr->sh_addr + sym->st_value);
1096}
1097
1098/*
1099 * Get or set value of a symbol. If "get_value" is true, symbol value is
1100 * returned in buf otherwise symbol value is set based on value in buf.
1101 */
1102int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1103				   void *buf, unsigned int size, bool get_value)
1104{
 
 
1105	struct purgatory_info *pi = &image->purgatory_info;
1106	const Elf_Sym *sym;
1107	Elf_Shdr *sec;
1108	char *sym_buf;
1109
1110	sym = kexec_purgatory_find_symbol(pi, name);
1111	if (!sym)
1112		return -EINVAL;
1113
1114	if (sym->st_size != size) {
1115		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1116		       name, (unsigned long)sym->st_size, size);
1117		return -EINVAL;
1118	}
1119
1120	sec = pi->sechdrs + sym->st_shndx;
1121
1122	if (sec->sh_type == SHT_NOBITS) {
1123		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1124		       get_value ? "get" : "set");
1125		return -EINVAL;
1126	}
1127
1128	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1129
1130	if (get_value)
1131		memcpy((void *)buf, sym_buf, size);
1132	else
1133		memcpy((void *)sym_buf, buf, size);
1134
1135	return 0;
1136}
1137#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1138
1139int crash_exclude_mem_range(struct crash_mem *mem,
1140			    unsigned long long mstart, unsigned long long mend)
1141{
1142	int i, j;
1143	unsigned long long start, end, p_start, p_end;
1144	struct range temp_range = {0, 0};
1145
1146	for (i = 0; i < mem->nr_ranges; i++) {
1147		start = mem->ranges[i].start;
1148		end = mem->ranges[i].end;
1149		p_start = mstart;
1150		p_end = mend;
1151
1152		if (mstart > end || mend < start)
1153			continue;
1154
1155		/* Truncate any area outside of range */
1156		if (mstart < start)
1157			p_start = start;
1158		if (mend > end)
1159			p_end = end;
1160
1161		/* Found completely overlapping range */
1162		if (p_start == start && p_end == end) {
1163			mem->ranges[i].start = 0;
1164			mem->ranges[i].end = 0;
1165			if (i < mem->nr_ranges - 1) {
1166				/* Shift rest of the ranges to left */
1167				for (j = i; j < mem->nr_ranges - 1; j++) {
1168					mem->ranges[j].start =
1169						mem->ranges[j+1].start;
1170					mem->ranges[j].end =
1171							mem->ranges[j+1].end;
1172				}
1173
1174				/*
1175				 * Continue to check if there are another overlapping ranges
1176				 * from the current position because of shifting the above
1177				 * mem ranges.
1178				 */
1179				i--;
1180				mem->nr_ranges--;
1181				continue;
1182			}
1183			mem->nr_ranges--;
1184			return 0;
1185		}
1186
1187		if (p_start > start && p_end < end) {
1188			/* Split original range */
1189			mem->ranges[i].end = p_start - 1;
1190			temp_range.start = p_end + 1;
1191			temp_range.end = end;
1192		} else if (p_start != start)
1193			mem->ranges[i].end = p_start - 1;
1194		else
1195			mem->ranges[i].start = p_end + 1;
1196		break;
1197	}
1198
1199	/* If a split happened, add the split to array */
1200	if (!temp_range.end)
1201		return 0;
1202
1203	/* Split happened */
1204	if (i == mem->max_nr_ranges - 1)
1205		return -ENOMEM;
1206
1207	/* Location where new range should go */
1208	j = i + 1;
1209	if (j < mem->nr_ranges) {
1210		/* Move over all ranges one slot towards the end */
1211		for (i = mem->nr_ranges - 1; i >= j; i--)
1212			mem->ranges[i + 1] = mem->ranges[i];
1213	}
1214
1215	mem->ranges[j].start = temp_range.start;
1216	mem->ranges[j].end = temp_range.end;
1217	mem->nr_ranges++;
1218	return 0;
1219}
1220
1221int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1222			  void **addr, unsigned long *sz)
1223{
1224	Elf64_Ehdr *ehdr;
1225	Elf64_Phdr *phdr;
1226	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1227	unsigned char *buf;
1228	unsigned int cpu, i;
1229	unsigned long long notes_addr;
1230	unsigned long mstart, mend;
1231
1232	/* extra phdr for vmcoreinfo ELF note */
1233	nr_phdr = nr_cpus + 1;
1234	nr_phdr += mem->nr_ranges;
1235
1236	/*
1237	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1238	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1239	 * I think this is required by tools like gdb. So same physical
1240	 * memory will be mapped in two ELF headers. One will contain kernel
1241	 * text virtual addresses and other will have __va(physical) addresses.
1242	 */
1243
1244	nr_phdr++;
1245	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1246	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1247
1248	buf = vzalloc(elf_sz);
1249	if (!buf)
1250		return -ENOMEM;
1251
1252	ehdr = (Elf64_Ehdr *)buf;
1253	phdr = (Elf64_Phdr *)(ehdr + 1);
1254	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1255	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1256	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1257	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1258	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1259	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1260	ehdr->e_type = ET_CORE;
1261	ehdr->e_machine = ELF_ARCH;
1262	ehdr->e_version = EV_CURRENT;
1263	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1264	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1265	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1266
1267	/* Prepare one phdr of type PT_NOTE for each present CPU */
1268	for_each_present_cpu(cpu) {
1269		phdr->p_type = PT_NOTE;
1270		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1271		phdr->p_offset = phdr->p_paddr = notes_addr;
1272		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1273		(ehdr->e_phnum)++;
1274		phdr++;
1275	}
1276
1277	/* Prepare one PT_NOTE header for vmcoreinfo */
1278	phdr->p_type = PT_NOTE;
1279	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1280	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1281	(ehdr->e_phnum)++;
1282	phdr++;
1283
1284	/* Prepare PT_LOAD type program header for kernel text region */
1285	if (need_kernel_map) {
1286		phdr->p_type = PT_LOAD;
1287		phdr->p_flags = PF_R|PF_W|PF_X;
1288		phdr->p_vaddr = (unsigned long) _text;
1289		phdr->p_filesz = phdr->p_memsz = _end - _text;
1290		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1291		ehdr->e_phnum++;
1292		phdr++;
1293	}
1294
1295	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1296	for (i = 0; i < mem->nr_ranges; i++) {
1297		mstart = mem->ranges[i].start;
1298		mend = mem->ranges[i].end;
1299
1300		phdr->p_type = PT_LOAD;
1301		phdr->p_flags = PF_R|PF_W|PF_X;
1302		phdr->p_offset  = mstart;
1303
1304		phdr->p_paddr = mstart;
1305		phdr->p_vaddr = (unsigned long) __va(mstart);
1306		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1307		phdr->p_align = 0;
1308		ehdr->e_phnum++;
1309		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1310			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1311			ehdr->e_phnum, phdr->p_offset);
1312		phdr++;
1313	}
1314
1315	*addr = buf;
1316	*sz = elf_sz;
1317	return 0;
1318}
v4.6
 
  1/*
  2 * kexec: kexec_file_load system call
  3 *
  4 * Copyright (C) 2014 Red Hat Inc.
  5 * Authors:
  6 *      Vivek Goyal <vgoyal@redhat.com>
  7 *
  8 * This source code is licensed under the GNU General Public License,
  9 * Version 2.  See the file COPYING for more details.
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/capability.h>
 15#include <linux/mm.h>
 16#include <linux/file.h>
 17#include <linux/slab.h>
 18#include <linux/kexec.h>
 
 19#include <linux/mutex.h>
 20#include <linux/list.h>
 21#include <linux/fs.h>
 
 22#include <crypto/hash.h>
 23#include <crypto/sha.h>
 
 
 
 
 24#include <linux/syscalls.h>
 25#include <linux/vmalloc.h>
 26#include "kexec_internal.h"
 27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28/*
 29 * Declare these symbols weak so that if architecture provides a purgatory,
 30 * these will be overridden.
 
 31 */
 32char __weak kexec_purgatory[0];
 33size_t __weak kexec_purgatory_size = 0;
 
 
 
 34
 35static int kexec_calculate_store_digests(struct kimage *image);
 
 
 
 
 
 
 36
 37/* Architectures can provide this probe function */
 38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 39					 unsigned long buf_len)
 40{
 41	return -ENOEXEC;
 42}
 43
 44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
 45{
 46	return ERR_PTR(-ENOEXEC);
 47}
 48
 49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
 50{
 51	return -EINVAL;
 
 52}
 53
 54#ifdef CONFIG_KEXEC_VERIFY_SIG
 55int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 56					unsigned long buf_len)
 57{
 58	return -EKEYREJECTED;
 59}
 60#endif
 61
 62/* Apply relocations of type RELA */
 63int __weak
 64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 65				 unsigned int relsec)
 66{
 67	pr_err("RELA relocation unsupported.\n");
 68	return -ENOEXEC;
 69}
 70
 71/* Apply relocations of type REL */
 72int __weak
 73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 74			     unsigned int relsec)
 75{
 76	pr_err("REL relocation unsupported.\n");
 77	return -ENOEXEC;
 78}
 79
 80/*
 81 * Free up memory used by kernel, initrd, and command line. This is temporary
 82 * memory allocation which is not needed any more after these buffers have
 83 * been loaded into separate segments and have been copied elsewhere.
 84 */
 85void kimage_file_post_load_cleanup(struct kimage *image)
 86{
 87	struct purgatory_info *pi = &image->purgatory_info;
 88
 89	vfree(image->kernel_buf);
 90	image->kernel_buf = NULL;
 91
 92	vfree(image->initrd_buf);
 93	image->initrd_buf = NULL;
 94
 95	kfree(image->cmdline_buf);
 96	image->cmdline_buf = NULL;
 97
 98	vfree(pi->purgatory_buf);
 99	pi->purgatory_buf = NULL;
100
101	vfree(pi->sechdrs);
102	pi->sechdrs = NULL;
103
 
 
 
 
 
104	/* See if architecture has anything to cleanup post load */
105	arch_kimage_file_post_load_cleanup(image);
106
107	/*
108	 * Above call should have called into bootloader to free up
109	 * any data stored in kimage->image_loader_data. It should
110	 * be ok now to free it up.
111	 */
112	kfree(image->image_loader_data);
113	image->image_loader_data = NULL;
114}
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122			     const char __user *cmdline_ptr,
123			     unsigned long cmdline_len, unsigned flags)
124{
125	int ret = 0;
126	void *ldata;
127	loff_t size;
128
129	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130				       &size, INT_MAX, READING_KEXEC_IMAGE);
131	if (ret)
 
132		return ret;
133	image->kernel_buf_len = size;
134
135	/* Call arch image probe handlers */
136	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137					    image->kernel_buf_len);
138	if (ret)
139		goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143					   image->kernel_buf_len);
144	if (ret) {
145		pr_debug("kernel signature verification failed.\n");
146		goto out;
147	}
148	pr_debug("kernel signature verification successful.\n");
149#endif
150	/* It is possible that there no initramfs is being loaded */
151	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153					       &size, INT_MAX,
154					       READING_KEXEC_INITRAMFS);
155		if (ret)
156			goto out;
157		image->initrd_buf_len = size;
 
158	}
159
160	if (cmdline_len) {
161		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162		if (!image->cmdline_buf) {
163			ret = -ENOMEM;
164			goto out;
165		}
166
167		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168				     cmdline_len);
169		if (ret) {
170			ret = -EFAULT;
171			goto out;
172		}
173
174		image->cmdline_buf_len = cmdline_len;
175
176		/* command line should be a string with last byte null */
177		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178			ret = -EINVAL;
179			goto out;
180		}
 
 
 
181	}
182
 
 
 
183	/* Call arch image load handlers */
184	ldata = arch_kexec_kernel_image_load(image);
185
186	if (IS_ERR(ldata)) {
187		ret = PTR_ERR(ldata);
188		goto out;
189	}
190
191	image->image_loader_data = ldata;
192out:
193	/* In case of error, free up all allocated memory in this function */
194	if (ret)
195		kimage_file_post_load_cleanup(image);
196	return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201		       int initrd_fd, const char __user *cmdline_ptr,
202		       unsigned long cmdline_len, unsigned long flags)
203{
204	int ret;
205	struct kimage *image;
206	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208	image = do_kimage_alloc_init();
209	if (!image)
210		return -ENOMEM;
211
212	image->file_mode = 1;
213
214	if (kexec_on_panic) {
215		/* Enable special crash kernel control page alloc policy. */
216		image->control_page = crashk_res.start;
217		image->type = KEXEC_TYPE_CRASH;
218	}
219
220	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221					   cmdline_ptr, cmdline_len, flags);
222	if (ret)
223		goto out_free_image;
224
225	ret = sanity_check_segment_list(image);
226	if (ret)
227		goto out_free_post_load_bufs;
228
229	ret = -ENOMEM;
230	image->control_code_page = kimage_alloc_control_pages(image,
231					   get_order(KEXEC_CONTROL_PAGE_SIZE));
232	if (!image->control_code_page) {
233		pr_err("Could not allocate control_code_buffer\n");
234		goto out_free_post_load_bufs;
235	}
236
237	if (!kexec_on_panic) {
238		image->swap_page = kimage_alloc_control_pages(image, 0);
239		if (!image->swap_page) {
240			pr_err("Could not allocate swap buffer\n");
241			goto out_free_control_pages;
242		}
243	}
244
245	*rimage = image;
246	return 0;
247out_free_control_pages:
248	kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250	kimage_file_post_load_cleanup(image);
251out_free_image:
252	kfree(image);
253	return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258		unsigned long, flags)
259{
260	int ret = 0, i;
261	struct kimage **dest_image, *image;
262
263	/* We only trust the superuser with rebooting the system. */
264	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265		return -EPERM;
266
267	/* Make sure we have a legal set of flags */
268	if (flags != (flags & KEXEC_FILE_FLAGS))
269		return -EINVAL;
270
271	image = NULL;
272
273	if (!mutex_trylock(&kexec_mutex))
274		return -EBUSY;
275
276	dest_image = &kexec_image;
277	if (flags & KEXEC_FILE_ON_CRASH)
278		dest_image = &kexec_crash_image;
 
 
 
279
280	if (flags & KEXEC_FILE_UNLOAD)
281		goto exchange;
282
283	/*
284	 * In case of crash, new kernel gets loaded in reserved region. It is
285	 * same memory where old crash kernel might be loaded. Free any
286	 * current crash dump kernel before we corrupt it.
287	 */
288	if (flags & KEXEC_FILE_ON_CRASH)
289		kimage_free(xchg(&kexec_crash_image, NULL));
290
291	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292				     cmdline_len, flags);
293	if (ret)
294		goto out;
295
296	ret = machine_kexec_prepare(image);
297	if (ret)
298		goto out;
299
 
 
 
 
 
 
 
 
300	ret = kexec_calculate_store_digests(image);
301	if (ret)
302		goto out;
303
304	for (i = 0; i < image->nr_segments; i++) {
305		struct kexec_segment *ksegment;
306
307		ksegment = &image->segment[i];
308		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
309			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
310			 ksegment->memsz);
311
312		ret = kimage_load_segment(image, &image->segment[i]);
313		if (ret)
314			goto out;
315	}
316
317	kimage_terminate(image);
318
 
 
 
 
319	/*
320	 * Free up any temporary buffers allocated which are not needed
321	 * after image has been loaded
322	 */
323	kimage_file_post_load_cleanup(image);
324exchange:
325	image = xchg(dest_image, image);
326out:
327	mutex_unlock(&kexec_mutex);
 
 
 
328	kimage_free(image);
329	return ret;
330}
331
332static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
333				    struct kexec_buf *kbuf)
334{
335	struct kimage *image = kbuf->image;
336	unsigned long temp_start, temp_end;
337
338	temp_end = min(end, kbuf->buf_max);
339	temp_start = temp_end - kbuf->memsz;
340
341	do {
342		/* align down start */
343		temp_start = temp_start & (~(kbuf->buf_align - 1));
344
345		if (temp_start < start || temp_start < kbuf->buf_min)
346			return 0;
347
348		temp_end = temp_start + kbuf->memsz - 1;
349
350		/*
351		 * Make sure this does not conflict with any of existing
352		 * segments
353		 */
354		if (kimage_is_destination_range(image, temp_start, temp_end)) {
355			temp_start = temp_start - PAGE_SIZE;
356			continue;
357		}
358
359		/* We found a suitable memory range */
360		break;
361	} while (1);
362
363	/* If we are here, we found a suitable memory range */
364	kbuf->mem = temp_start;
365
366	/* Success, stop navigating through remaining System RAM ranges */
367	return 1;
368}
369
370static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
371				     struct kexec_buf *kbuf)
372{
373	struct kimage *image = kbuf->image;
374	unsigned long temp_start, temp_end;
375
376	temp_start = max(start, kbuf->buf_min);
377
378	do {
379		temp_start = ALIGN(temp_start, kbuf->buf_align);
380		temp_end = temp_start + kbuf->memsz - 1;
381
382		if (temp_end > end || temp_end > kbuf->buf_max)
383			return 0;
384		/*
385		 * Make sure this does not conflict with any of existing
386		 * segments
387		 */
388		if (kimage_is_destination_range(image, temp_start, temp_end)) {
389			temp_start = temp_start + PAGE_SIZE;
390			continue;
391		}
392
393		/* We found a suitable memory range */
394		break;
395	} while (1);
396
397	/* If we are here, we found a suitable memory range */
398	kbuf->mem = temp_start;
399
400	/* Success, stop navigating through remaining System RAM ranges */
401	return 1;
402}
403
404static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
405{
406	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
407	unsigned long sz = end - start + 1;
408
409	/* Returning 0 will take to next memory range */
 
 
 
 
 
410	if (sz < kbuf->memsz)
411		return 0;
412
413	if (end < kbuf->buf_min || start > kbuf->buf_max)
414		return 0;
415
416	/*
417	 * Allocate memory top down with-in ram range. Otherwise bottom up
418	 * allocation.
419	 */
420	if (kbuf->top_down)
421		return locate_mem_hole_top_down(start, end, kbuf);
422	return locate_mem_hole_bottom_up(start, end, kbuf);
423}
424
425/*
426 * Helper function for placing a buffer in a kexec segment. This assumes
427 * that kexec_mutex is held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428 */
429int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
430		     unsigned long memsz, unsigned long buf_align,
431		     unsigned long buf_min, unsigned long buf_max,
432		     bool top_down, unsigned long *load_addr)
433{
 
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435	struct kexec_segment *ksegment;
436	struct kexec_buf buf, *kbuf;
437	int ret;
438
439	/* Currently adding segment this way is allowed only in file mode */
440	if (!image->file_mode)
441		return -EINVAL;
442
443	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
444		return -EINVAL;
445
446	/*
447	 * Make sure we are not trying to add buffer after allocating
448	 * control pages. All segments need to be placed first before
449	 * any control pages are allocated. As control page allocation
450	 * logic goes through list of segments to make sure there are
451	 * no destination overlaps.
452	 */
453	if (!list_empty(&image->control_pages)) {
454		WARN_ON(1);
455		return -EINVAL;
456	}
457
458	memset(&buf, 0, sizeof(struct kexec_buf));
459	kbuf = &buf;
460	kbuf->image = image;
461	kbuf->buffer = buffer;
462	kbuf->bufsz = bufsz;
463
464	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
465	kbuf->buf_align = max(buf_align, PAGE_SIZE);
466	kbuf->buf_min = buf_min;
467	kbuf->buf_max = buf_max;
468	kbuf->top_down = top_down;
469
470	/* Walk the RAM ranges and allocate a suitable range for the buffer */
471	if (image->type == KEXEC_TYPE_CRASH)
472		ret = walk_iomem_res_desc(crashk_res.desc,
473				IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
474				crashk_res.start, crashk_res.end, kbuf,
475				locate_mem_hole_callback);
476	else
477		ret = walk_system_ram_res(0, -1, kbuf,
478					  locate_mem_hole_callback);
479	if (ret != 1) {
480		/* A suitable memory range could not be found for buffer */
481		return -EADDRNOTAVAIL;
482	}
483
484	/* Found a suitable memory range */
485	ksegment = &image->segment[image->nr_segments];
486	ksegment->kbuf = kbuf->buffer;
487	ksegment->bufsz = kbuf->bufsz;
488	ksegment->mem = kbuf->mem;
489	ksegment->memsz = kbuf->memsz;
490	image->nr_segments++;
491	*load_addr = ksegment->mem;
492	return 0;
493}
494
495/* Calculate and store the digest of segments */
496static int kexec_calculate_store_digests(struct kimage *image)
497{
498	struct crypto_shash *tfm;
499	struct shash_desc *desc;
500	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
501	size_t desc_size, nullsz;
502	char *digest;
503	void *zero_buf;
504	struct kexec_sha_region *sha_regions;
505	struct purgatory_info *pi = &image->purgatory_info;
506
 
 
 
507	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
508	zero_buf_sz = PAGE_SIZE;
509
510	tfm = crypto_alloc_shash("sha256", 0, 0);
511	if (IS_ERR(tfm)) {
512		ret = PTR_ERR(tfm);
513		goto out;
514	}
515
516	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
517	desc = kzalloc(desc_size, GFP_KERNEL);
518	if (!desc) {
519		ret = -ENOMEM;
520		goto out_free_tfm;
521	}
522
523	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
524	sha_regions = vzalloc(sha_region_sz);
525	if (!sha_regions)
 
526		goto out_free_desc;
 
527
528	desc->tfm   = tfm;
529	desc->flags = 0;
530
531	ret = crypto_shash_init(desc);
532	if (ret < 0)
533		goto out_free_sha_regions;
534
535	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
536	if (!digest) {
537		ret = -ENOMEM;
538		goto out_free_sha_regions;
539	}
540
541	for (j = i = 0; i < image->nr_segments; i++) {
542		struct kexec_segment *ksegment;
543
544		ksegment = &image->segment[i];
545		/*
546		 * Skip purgatory as it will be modified once we put digest
547		 * info in purgatory.
548		 */
549		if (ksegment->kbuf == pi->purgatory_buf)
550			continue;
551
552		ret = crypto_shash_update(desc, ksegment->kbuf,
553					  ksegment->bufsz);
554		if (ret)
555			break;
556
557		/*
558		 * Assume rest of the buffer is filled with zero and
559		 * update digest accordingly.
560		 */
561		nullsz = ksegment->memsz - ksegment->bufsz;
562		while (nullsz) {
563			unsigned long bytes = nullsz;
564
565			if (bytes > zero_buf_sz)
566				bytes = zero_buf_sz;
567			ret = crypto_shash_update(desc, zero_buf, bytes);
568			if (ret)
569				break;
570			nullsz -= bytes;
571		}
572
573		if (ret)
574			break;
575
576		sha_regions[j].start = ksegment->mem;
577		sha_regions[j].len = ksegment->memsz;
578		j++;
579	}
580
581	if (!ret) {
582		ret = crypto_shash_final(desc, digest);
583		if (ret)
584			goto out_free_digest;
585		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
586						sha_regions, sha_region_sz, 0);
587		if (ret)
588			goto out_free_digest;
589
590		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
591						digest, SHA256_DIGEST_SIZE, 0);
592		if (ret)
593			goto out_free_digest;
594	}
595
596out_free_digest:
597	kfree(digest);
598out_free_sha_regions:
599	vfree(sha_regions);
600out_free_desc:
601	kfree(desc);
602out_free_tfm:
603	kfree(tfm);
604out:
605	return ret;
606}
607
608/* Actually load purgatory. Lot of code taken from kexec-tools */
609static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
610				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
611{
612	struct purgatory_info *pi = &image->purgatory_info;
613	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
614	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
615	unsigned char *buf_addr, *src;
616	int i, ret = 0, entry_sidx = -1;
617	const Elf_Shdr *sechdrs_c;
618	Elf_Shdr *sechdrs = NULL;
619	void *purgatory_buf = NULL;
620
621	/*
622	 * sechdrs_c points to section headers in purgatory and are read
623	 * only. No modifications allowed.
624	 */
625	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
626
627	/*
628	 * We can not modify sechdrs_c[] and its fields. It is read only.
629	 * Copy it over to a local copy where one can store some temporary
630	 * data and free it at the end. We need to modify ->sh_addr and
631	 * ->sh_offset fields to keep track of permanent and temporary
632	 * locations of sections.
633	 */
634	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
635	if (!sechdrs)
636		return -ENOMEM;
637
638	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
639
640	/*
641	 * We seem to have multiple copies of sections. First copy is which
642	 * is embedded in kernel in read only section. Some of these sections
643	 * will be copied to a temporary buffer and relocated. And these
644	 * sections will finally be copied to their final destination at
645	 * segment load time.
646	 *
647	 * Use ->sh_offset to reflect section address in memory. It will
648	 * point to original read only copy if section is not allocatable.
649	 * Otherwise it will point to temporary copy which will be relocated.
650	 *
651	 * Use ->sh_addr to contain final address of the section where it
652	 * will go during execution time.
653	 */
654	for (i = 0; i < pi->ehdr->e_shnum; i++) {
655		if (sechdrs[i].sh_type == SHT_NOBITS)
656			continue;
657
658		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
659						sechdrs[i].sh_offset;
660	}
661
662	/*
663	 * Identify entry point section and make entry relative to section
664	 * start.
665	 */
666	entry = pi->ehdr->e_entry;
667	for (i = 0; i < pi->ehdr->e_shnum; i++) {
668		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
669			continue;
670
671		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
672			continue;
673
674		/* Make entry section relative */
675		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
676		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
677		     pi->ehdr->e_entry)) {
678			entry_sidx = i;
679			entry -= sechdrs[i].sh_addr;
680			break;
681		}
682	}
683
684	/* Determine how much memory is needed to load relocatable object. */
685	buf_align = 1;
686	bss_align = 1;
687	buf_sz = 0;
688	bss_sz = 0;
689
690	for (i = 0; i < pi->ehdr->e_shnum; i++) {
691		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
692			continue;
693
694		align = sechdrs[i].sh_addralign;
695		if (sechdrs[i].sh_type != SHT_NOBITS) {
696			if (buf_align < align)
697				buf_align = align;
698			buf_sz = ALIGN(buf_sz, align);
699			buf_sz += sechdrs[i].sh_size;
700		} else {
701			/* bss section */
702			if (bss_align < align)
703				bss_align = align;
704			bss_sz = ALIGN(bss_sz, align);
705			bss_sz += sechdrs[i].sh_size;
706		}
707	}
 
 
 
 
 
 
 
 
 
708
709	/* Determine the bss padding required to align bss properly */
710	bss_pad = 0;
711	if (buf_sz & (bss_align - 1))
712		bss_pad = bss_align - (buf_sz & (bss_align - 1));
713
714	memsz = buf_sz + bss_pad + bss_sz;
715
716	/* Allocate buffer for purgatory */
717	purgatory_buf = vzalloc(buf_sz);
718	if (!purgatory_buf) {
719		ret = -ENOMEM;
720		goto out;
721	}
722
723	if (buf_align < bss_align)
724		buf_align = bss_align;
 
 
 
 
725
726	/* Add buffer to segment list */
727	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
728				buf_align, min, max, top_down,
729				&pi->purgatory_load_addr);
730	if (ret)
731		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732
733	/* Load SHF_ALLOC sections */
734	buf_addr = purgatory_buf;
735	load_addr = curr_load_addr = pi->purgatory_load_addr;
736	bss_addr = load_addr + buf_sz + bss_pad;
737
738	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
739		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
740			continue;
741
742		align = sechdrs[i].sh_addralign;
743		if (sechdrs[i].sh_type != SHT_NOBITS) {
744			curr_load_addr = ALIGN(curr_load_addr, align);
745			offset = curr_load_addr - load_addr;
746			/* We already modifed ->sh_offset to keep src addr */
747			src = (char *) sechdrs[i].sh_offset;
748			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
749
750			/* Store load address and source address of section */
751			sechdrs[i].sh_addr = curr_load_addr;
752
753			/*
754			 * This section got copied to temporary buffer. Update
755			 * ->sh_offset accordingly.
756			 */
757			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
758
759			/* Advance to the next address */
760			curr_load_addr += sechdrs[i].sh_size;
761		} else {
762			bss_addr = ALIGN(bss_addr, align);
763			sechdrs[i].sh_addr = bss_addr;
764			bss_addr += sechdrs[i].sh_size;
 
765		}
766	}
767
768	/* Update entry point based on load address of text section */
769	if (entry_sidx >= 0)
770		entry += sechdrs[entry_sidx].sh_addr;
 
 
 
 
 
771
772	/* Make kernel jump to purgatory after shutdown */
773	image->start = entry;
 
 
 
 
 
 
774
775	/* Used later to get/set symbol values */
776	pi->sechdrs = sechdrs;
777
778	/*
779	 * Used later to identify which section is purgatory and skip it
780	 * from checksumming.
781	 */
782	pi->purgatory_buf = purgatory_buf;
783	return ret;
784out:
785	vfree(sechdrs);
786	vfree(purgatory_buf);
787	return ret;
788}
789
790static int kexec_apply_relocations(struct kimage *image)
791{
792	int i, ret;
793	struct purgatory_info *pi = &image->purgatory_info;
794	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
795
796	/* Apply relocations */
797	for (i = 0; i < pi->ehdr->e_shnum; i++) {
798		Elf_Shdr *section, *symtab;
 
 
 
 
799
800		if (sechdrs[i].sh_type != SHT_RELA &&
801		    sechdrs[i].sh_type != SHT_REL)
802			continue;
803
804		/*
805		 * For section of type SHT_RELA/SHT_REL,
806		 * ->sh_link contains section header index of associated
807		 * symbol table. And ->sh_info contains section header
808		 * index of section to which relocations apply.
809		 */
810		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
811		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
812			return -ENOEXEC;
813
814		section = &sechdrs[sechdrs[i].sh_info];
815		symtab = &sechdrs[sechdrs[i].sh_link];
816
817		if (!(section->sh_flags & SHF_ALLOC))
818			continue;
819
820		/*
821		 * symtab->sh_link contain section header index of associated
822		 * string table.
823		 */
824		if (symtab->sh_link >= pi->ehdr->e_shnum)
825			/* Invalid section number? */
826			continue;
827
828		/*
829		 * Respective architecture needs to provide support for applying
830		 * relocations of type SHT_RELA/SHT_REL.
831		 */
832		if (sechdrs[i].sh_type == SHT_RELA)
833			ret = arch_kexec_apply_relocations_add(pi->ehdr,
834							       sechdrs, i);
835		else if (sechdrs[i].sh_type == SHT_REL)
836			ret = arch_kexec_apply_relocations(pi->ehdr,
837							   sechdrs, i);
838		if (ret)
839			return ret;
840	}
841
842	return 0;
843}
844
845/* Load relocatable purgatory object and relocate it appropriately */
846int kexec_load_purgatory(struct kimage *image, unsigned long min,
847			 unsigned long max, int top_down,
848			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
849{
850	struct purgatory_info *pi = &image->purgatory_info;
851	int ret;
852
853	if (kexec_purgatory_size <= 0)
854		return -EINVAL;
855
856	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
857		return -ENOEXEC;
858
859	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 
 
860
861	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
862	    || pi->ehdr->e_type != ET_REL
863	    || !elf_check_arch(pi->ehdr)
864	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
865		return -ENOEXEC;
866
867	if (pi->ehdr->e_shoff >= kexec_purgatory_size
868	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
869	    kexec_purgatory_size - pi->ehdr->e_shoff))
870		return -ENOEXEC;
871
872	ret = __kexec_load_purgatory(image, min, max, top_down);
873	if (ret)
874		return ret;
875
876	ret = kexec_apply_relocations(image);
877	if (ret)
878		goto out;
879
880	*load_addr = pi->purgatory_load_addr;
881	return 0;
882out:
883	vfree(pi->sechdrs);
 
 
884	vfree(pi->purgatory_buf);
 
885	return ret;
886}
887
888static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
889					    const char *name)
 
 
 
 
 
 
 
890{
891	Elf_Sym *syms;
892	Elf_Shdr *sechdrs;
893	Elf_Ehdr *ehdr;
 
894	int i, k;
895	const char *strtab;
896
897	if (!pi->sechdrs || !pi->ehdr)
898		return NULL;
899
900	sechdrs = pi->sechdrs;
901	ehdr = pi->ehdr;
 
902
903	for (i = 0; i < ehdr->e_shnum; i++) {
904		if (sechdrs[i].sh_type != SHT_SYMTAB)
905			continue;
906
907		if (sechdrs[i].sh_link >= ehdr->e_shnum)
908			/* Invalid strtab section number */
909			continue;
910		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
911		syms = (Elf_Sym *)sechdrs[i].sh_offset;
912
913		/* Go through symbols for a match */
914		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
915			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
916				continue;
917
918			if (strcmp(strtab + syms[k].st_name, name) != 0)
919				continue;
920
921			if (syms[k].st_shndx == SHN_UNDEF ||
922			    syms[k].st_shndx >= ehdr->e_shnum) {
923				pr_debug("Symbol: %s has bad section index %d.\n",
924						name, syms[k].st_shndx);
925				return NULL;
926			}
927
928			/* Found the symbol we are looking for */
929			return &syms[k];
930		}
931	}
932
933	return NULL;
934}
935
936void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
937{
938	struct purgatory_info *pi = &image->purgatory_info;
939	Elf_Sym *sym;
940	Elf_Shdr *sechdr;
941
942	sym = kexec_purgatory_find_symbol(pi, name);
943	if (!sym)
944		return ERR_PTR(-EINVAL);
945
946	sechdr = &pi->sechdrs[sym->st_shndx];
947
948	/*
949	 * Returns the address where symbol will finally be loaded after
950	 * kexec_load_segment()
951	 */
952	return (void *)(sechdr->sh_addr + sym->st_value);
953}
954
955/*
956 * Get or set value of a symbol. If "get_value" is true, symbol value is
957 * returned in buf otherwise symbol value is set based on value in buf.
958 */
959int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
960				   void *buf, unsigned int size, bool get_value)
961{
962	Elf_Sym *sym;
963	Elf_Shdr *sechdrs;
964	struct purgatory_info *pi = &image->purgatory_info;
 
 
965	char *sym_buf;
966
967	sym = kexec_purgatory_find_symbol(pi, name);
968	if (!sym)
969		return -EINVAL;
970
971	if (sym->st_size != size) {
972		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
973		       name, (unsigned long)sym->st_size, size);
974		return -EINVAL;
975	}
976
977	sechdrs = pi->sechdrs;
978
979	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
980		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
981		       get_value ? "get" : "set");
982		return -EINVAL;
983	}
984
985	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
986					sym->st_value;
987
988	if (get_value)
989		memcpy((void *)buf, sym_buf, size);
990	else
991		memcpy((void *)sym_buf, buf, size);
992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993	return 0;
994}