Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_btree_staging.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22#include "xfs_rmap.h"
23#include "xfs_ag.h"
24
25static struct kmem_cache *xfs_inobt_cur_cache;
26
27STATIC int
28xfs_inobt_get_minrecs(
29 struct xfs_btree_cur *cur,
30 int level)
31{
32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
33}
34
35STATIC struct xfs_btree_cur *
36xfs_inobt_dup_cursor(
37 struct xfs_btree_cur *cur)
38{
39 return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
40 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
41}
42
43STATIC void
44xfs_inobt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *nptr,
47 int inc) /* level change */
48{
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agi *agi = agbp->b_addr;
51
52 agi->agi_root = nptr->s;
53 be32_add_cpu(&agi->agi_level, inc);
54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
55}
56
57STATIC void
58xfs_finobt_set_root(
59 struct xfs_btree_cur *cur,
60 const union xfs_btree_ptr *nptr,
61 int inc) /* level change */
62{
63 struct xfs_buf *agbp = cur->bc_ag.agbp;
64 struct xfs_agi *agi = agbp->b_addr;
65
66 agi->agi_free_root = nptr->s;
67 be32_add_cpu(&agi->agi_free_level, inc);
68 xfs_ialloc_log_agi(cur->bc_tp, agbp,
69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
70}
71
72/* Update the inode btree block counter for this btree. */
73static inline void
74xfs_inobt_mod_blockcount(
75 struct xfs_btree_cur *cur,
76 int howmuch)
77{
78 struct xfs_buf *agbp = cur->bc_ag.agbp;
79 struct xfs_agi *agi = agbp->b_addr;
80
81 if (!xfs_has_inobtcounts(cur->bc_mp))
82 return;
83
84 if (cur->bc_btnum == XFS_BTNUM_FINO)
85 be32_add_cpu(&agi->agi_fblocks, howmuch);
86 else if (cur->bc_btnum == XFS_BTNUM_INO)
87 be32_add_cpu(&agi->agi_iblocks, howmuch);
88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
89}
90
91STATIC int
92__xfs_inobt_alloc_block(
93 struct xfs_btree_cur *cur,
94 const union xfs_btree_ptr *start,
95 union xfs_btree_ptr *new,
96 int *stat,
97 enum xfs_ag_resv_type resv)
98{
99 xfs_alloc_arg_t args; /* block allocation args */
100 int error; /* error return value */
101 xfs_agblock_t sbno = be32_to_cpu(start->s);
102
103 memset(&args, 0, sizeof(args));
104 args.tp = cur->bc_tp;
105 args.mp = cur->bc_mp;
106 args.oinfo = XFS_RMAP_OINFO_INOBT;
107 args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_ag.pag->pag_agno, sbno);
108 args.minlen = 1;
109 args.maxlen = 1;
110 args.prod = 1;
111 args.type = XFS_ALLOCTYPE_NEAR_BNO;
112 args.resv = resv;
113
114 error = xfs_alloc_vextent(&args);
115 if (error)
116 return error;
117
118 if (args.fsbno == NULLFSBLOCK) {
119 *stat = 0;
120 return 0;
121 }
122 ASSERT(args.len == 1);
123
124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125 *stat = 1;
126 xfs_inobt_mod_blockcount(cur, 1);
127 return 0;
128}
129
130STATIC int
131xfs_inobt_alloc_block(
132 struct xfs_btree_cur *cur,
133 const union xfs_btree_ptr *start,
134 union xfs_btree_ptr *new,
135 int *stat)
136{
137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138}
139
140STATIC int
141xfs_finobt_alloc_block(
142 struct xfs_btree_cur *cur,
143 const union xfs_btree_ptr *start,
144 union xfs_btree_ptr *new,
145 int *stat)
146{
147 if (cur->bc_mp->m_finobt_nores)
148 return xfs_inobt_alloc_block(cur, start, new, stat);
149 return __xfs_inobt_alloc_block(cur, start, new, stat,
150 XFS_AG_RESV_METADATA);
151}
152
153STATIC int
154__xfs_inobt_free_block(
155 struct xfs_btree_cur *cur,
156 struct xfs_buf *bp,
157 enum xfs_ag_resv_type resv)
158{
159 xfs_inobt_mod_blockcount(cur, -1);
160 return xfs_free_extent(cur->bc_tp,
161 XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)), 1,
162 &XFS_RMAP_OINFO_INOBT, resv);
163}
164
165STATIC int
166xfs_inobt_free_block(
167 struct xfs_btree_cur *cur,
168 struct xfs_buf *bp)
169{
170 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
171}
172
173STATIC int
174xfs_finobt_free_block(
175 struct xfs_btree_cur *cur,
176 struct xfs_buf *bp)
177{
178 if (cur->bc_mp->m_finobt_nores)
179 return xfs_inobt_free_block(cur, bp);
180 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
181}
182
183STATIC int
184xfs_inobt_get_maxrecs(
185 struct xfs_btree_cur *cur,
186 int level)
187{
188 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
189}
190
191STATIC void
192xfs_inobt_init_key_from_rec(
193 union xfs_btree_key *key,
194 const union xfs_btree_rec *rec)
195{
196 key->inobt.ir_startino = rec->inobt.ir_startino;
197}
198
199STATIC void
200xfs_inobt_init_high_key_from_rec(
201 union xfs_btree_key *key,
202 const union xfs_btree_rec *rec)
203{
204 __u32 x;
205
206 x = be32_to_cpu(rec->inobt.ir_startino);
207 x += XFS_INODES_PER_CHUNK - 1;
208 key->inobt.ir_startino = cpu_to_be32(x);
209}
210
211STATIC void
212xfs_inobt_init_rec_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_rec *rec)
215{
216 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
217 if (xfs_has_sparseinodes(cur->bc_mp)) {
218 rec->inobt.ir_u.sp.ir_holemask =
219 cpu_to_be16(cur->bc_rec.i.ir_holemask);
220 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
221 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
222 } else {
223 /* ir_holemask/ir_count not supported on-disk */
224 rec->inobt.ir_u.f.ir_freecount =
225 cpu_to_be32(cur->bc_rec.i.ir_freecount);
226 }
227 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
228}
229
230/*
231 * initial value of ptr for lookup
232 */
233STATIC void
234xfs_inobt_init_ptr_from_cur(
235 struct xfs_btree_cur *cur,
236 union xfs_btree_ptr *ptr)
237{
238 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
239
240 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
241
242 ptr->s = agi->agi_root;
243}
244
245STATIC void
246xfs_finobt_init_ptr_from_cur(
247 struct xfs_btree_cur *cur,
248 union xfs_btree_ptr *ptr)
249{
250 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
251
252 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
253 ptr->s = agi->agi_free_root;
254}
255
256STATIC int64_t
257xfs_inobt_key_diff(
258 struct xfs_btree_cur *cur,
259 const union xfs_btree_key *key)
260{
261 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
262 cur->bc_rec.i.ir_startino;
263}
264
265STATIC int64_t
266xfs_inobt_diff_two_keys(
267 struct xfs_btree_cur *cur,
268 const union xfs_btree_key *k1,
269 const union xfs_btree_key *k2)
270{
271 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
272 be32_to_cpu(k2->inobt.ir_startino);
273}
274
275static xfs_failaddr_t
276xfs_inobt_verify(
277 struct xfs_buf *bp)
278{
279 struct xfs_mount *mp = bp->b_mount;
280 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
281 xfs_failaddr_t fa;
282 unsigned int level;
283
284 if (!xfs_verify_magic(bp, block->bb_magic))
285 return __this_address;
286
287 /*
288 * During growfs operations, we can't verify the exact owner as the
289 * perag is not fully initialised and hence not attached to the buffer.
290 *
291 * Similarly, during log recovery we will have a perag structure
292 * attached, but the agi information will not yet have been initialised
293 * from the on disk AGI. We don't currently use any of this information,
294 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
295 * ever do.
296 */
297 if (xfs_has_crc(mp)) {
298 fa = xfs_btree_sblock_v5hdr_verify(bp);
299 if (fa)
300 return fa;
301 }
302
303 /* level verification */
304 level = be16_to_cpu(block->bb_level);
305 if (level >= M_IGEO(mp)->inobt_maxlevels)
306 return __this_address;
307
308 return xfs_btree_sblock_verify(bp,
309 M_IGEO(mp)->inobt_mxr[level != 0]);
310}
311
312static void
313xfs_inobt_read_verify(
314 struct xfs_buf *bp)
315{
316 xfs_failaddr_t fa;
317
318 if (!xfs_btree_sblock_verify_crc(bp))
319 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
320 else {
321 fa = xfs_inobt_verify(bp);
322 if (fa)
323 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
324 }
325
326 if (bp->b_error)
327 trace_xfs_btree_corrupt(bp, _RET_IP_);
328}
329
330static void
331xfs_inobt_write_verify(
332 struct xfs_buf *bp)
333{
334 xfs_failaddr_t fa;
335
336 fa = xfs_inobt_verify(bp);
337 if (fa) {
338 trace_xfs_btree_corrupt(bp, _RET_IP_);
339 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340 return;
341 }
342 xfs_btree_sblock_calc_crc(bp);
343
344}
345
346const struct xfs_buf_ops xfs_inobt_buf_ops = {
347 .name = "xfs_inobt",
348 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
349 .verify_read = xfs_inobt_read_verify,
350 .verify_write = xfs_inobt_write_verify,
351 .verify_struct = xfs_inobt_verify,
352};
353
354const struct xfs_buf_ops xfs_finobt_buf_ops = {
355 .name = "xfs_finobt",
356 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
357 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
358 .verify_read = xfs_inobt_read_verify,
359 .verify_write = xfs_inobt_write_verify,
360 .verify_struct = xfs_inobt_verify,
361};
362
363STATIC int
364xfs_inobt_keys_inorder(
365 struct xfs_btree_cur *cur,
366 const union xfs_btree_key *k1,
367 const union xfs_btree_key *k2)
368{
369 return be32_to_cpu(k1->inobt.ir_startino) <
370 be32_to_cpu(k2->inobt.ir_startino);
371}
372
373STATIC int
374xfs_inobt_recs_inorder(
375 struct xfs_btree_cur *cur,
376 const union xfs_btree_rec *r1,
377 const union xfs_btree_rec *r2)
378{
379 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
380 be32_to_cpu(r2->inobt.ir_startino);
381}
382
383static const struct xfs_btree_ops xfs_inobt_ops = {
384 .rec_len = sizeof(xfs_inobt_rec_t),
385 .key_len = sizeof(xfs_inobt_key_t),
386
387 .dup_cursor = xfs_inobt_dup_cursor,
388 .set_root = xfs_inobt_set_root,
389 .alloc_block = xfs_inobt_alloc_block,
390 .free_block = xfs_inobt_free_block,
391 .get_minrecs = xfs_inobt_get_minrecs,
392 .get_maxrecs = xfs_inobt_get_maxrecs,
393 .init_key_from_rec = xfs_inobt_init_key_from_rec,
394 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
395 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
396 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
397 .key_diff = xfs_inobt_key_diff,
398 .buf_ops = &xfs_inobt_buf_ops,
399 .diff_two_keys = xfs_inobt_diff_two_keys,
400 .keys_inorder = xfs_inobt_keys_inorder,
401 .recs_inorder = xfs_inobt_recs_inorder,
402};
403
404static const struct xfs_btree_ops xfs_finobt_ops = {
405 .rec_len = sizeof(xfs_inobt_rec_t),
406 .key_len = sizeof(xfs_inobt_key_t),
407
408 .dup_cursor = xfs_inobt_dup_cursor,
409 .set_root = xfs_finobt_set_root,
410 .alloc_block = xfs_finobt_alloc_block,
411 .free_block = xfs_finobt_free_block,
412 .get_minrecs = xfs_inobt_get_minrecs,
413 .get_maxrecs = xfs_inobt_get_maxrecs,
414 .init_key_from_rec = xfs_inobt_init_key_from_rec,
415 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
416 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
417 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
418 .key_diff = xfs_inobt_key_diff,
419 .buf_ops = &xfs_finobt_buf_ops,
420 .diff_two_keys = xfs_inobt_diff_two_keys,
421 .keys_inorder = xfs_inobt_keys_inorder,
422 .recs_inorder = xfs_inobt_recs_inorder,
423};
424
425/*
426 * Initialize a new inode btree cursor.
427 */
428static struct xfs_btree_cur *
429xfs_inobt_init_common(
430 struct xfs_mount *mp, /* file system mount point */
431 struct xfs_trans *tp, /* transaction pointer */
432 struct xfs_perag *pag,
433 xfs_btnum_t btnum) /* ialloc or free ino btree */
434{
435 struct xfs_btree_cur *cur;
436
437 cur = xfs_btree_alloc_cursor(mp, tp, btnum,
438 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
439 if (btnum == XFS_BTNUM_INO) {
440 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
441 cur->bc_ops = &xfs_inobt_ops;
442 } else {
443 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
444 cur->bc_ops = &xfs_finobt_ops;
445 }
446
447 if (xfs_has_crc(mp))
448 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
449
450 /* take a reference for the cursor */
451 atomic_inc(&pag->pag_ref);
452 cur->bc_ag.pag = pag;
453 return cur;
454}
455
456/* Create an inode btree cursor. */
457struct xfs_btree_cur *
458xfs_inobt_init_cursor(
459 struct xfs_mount *mp,
460 struct xfs_trans *tp,
461 struct xfs_buf *agbp,
462 struct xfs_perag *pag,
463 xfs_btnum_t btnum)
464{
465 struct xfs_btree_cur *cur;
466 struct xfs_agi *agi = agbp->b_addr;
467
468 cur = xfs_inobt_init_common(mp, tp, pag, btnum);
469 if (btnum == XFS_BTNUM_INO)
470 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
471 else
472 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
473 cur->bc_ag.agbp = agbp;
474 return cur;
475}
476
477/* Create an inode btree cursor with a fake root for staging. */
478struct xfs_btree_cur *
479xfs_inobt_stage_cursor(
480 struct xfs_mount *mp,
481 struct xbtree_afakeroot *afake,
482 struct xfs_perag *pag,
483 xfs_btnum_t btnum)
484{
485 struct xfs_btree_cur *cur;
486
487 cur = xfs_inobt_init_common(mp, NULL, pag, btnum);
488 xfs_btree_stage_afakeroot(cur, afake);
489 return cur;
490}
491
492/*
493 * Install a new inobt btree root. Caller is responsible for invalidating
494 * and freeing the old btree blocks.
495 */
496void
497xfs_inobt_commit_staged_btree(
498 struct xfs_btree_cur *cur,
499 struct xfs_trans *tp,
500 struct xfs_buf *agbp)
501{
502 struct xfs_agi *agi = agbp->b_addr;
503 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
504 int fields;
505
506 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
507
508 if (cur->bc_btnum == XFS_BTNUM_INO) {
509 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
510 agi->agi_root = cpu_to_be32(afake->af_root);
511 agi->agi_level = cpu_to_be32(afake->af_levels);
512 if (xfs_has_inobtcounts(cur->bc_mp)) {
513 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
514 fields |= XFS_AGI_IBLOCKS;
515 }
516 xfs_ialloc_log_agi(tp, agbp, fields);
517 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
518 } else {
519 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
520 agi->agi_free_root = cpu_to_be32(afake->af_root);
521 agi->agi_free_level = cpu_to_be32(afake->af_levels);
522 if (xfs_has_inobtcounts(cur->bc_mp)) {
523 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
524 fields |= XFS_AGI_IBLOCKS;
525 }
526 xfs_ialloc_log_agi(tp, agbp, fields);
527 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
528 }
529}
530
531/* Calculate number of records in an inode btree block. */
532static inline unsigned int
533xfs_inobt_block_maxrecs(
534 unsigned int blocklen,
535 bool leaf)
536{
537 if (leaf)
538 return blocklen / sizeof(xfs_inobt_rec_t);
539 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
540}
541
542/*
543 * Calculate number of records in an inobt btree block.
544 */
545int
546xfs_inobt_maxrecs(
547 struct xfs_mount *mp,
548 int blocklen,
549 int leaf)
550{
551 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
552 return xfs_inobt_block_maxrecs(blocklen, leaf);
553}
554
555/*
556 * Maximum number of inode btree records per AG. Pretend that we can fill an
557 * entire AG completely full of inodes except for the AG headers.
558 */
559#define XFS_MAX_INODE_RECORDS \
560 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
561 XFS_INODES_PER_CHUNK
562
563/* Compute the max possible height for the inode btree. */
564static inline unsigned int
565xfs_inobt_maxlevels_ondisk(void)
566{
567 unsigned int minrecs[2];
568 unsigned int blocklen;
569
570 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
571 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
572
573 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
574 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
575
576 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
577}
578
579/* Compute the max possible height for the free inode btree. */
580static inline unsigned int
581xfs_finobt_maxlevels_ondisk(void)
582{
583 unsigned int minrecs[2];
584 unsigned int blocklen;
585
586 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
587
588 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
589 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
590
591 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
592}
593
594/* Compute the max possible height for either inode btree. */
595unsigned int
596xfs_iallocbt_maxlevels_ondisk(void)
597{
598 return max(xfs_inobt_maxlevels_ondisk(),
599 xfs_finobt_maxlevels_ondisk());
600}
601
602/*
603 * Convert the inode record holemask to an inode allocation bitmap. The inode
604 * allocation bitmap is inode granularity and specifies whether an inode is
605 * physically allocated on disk (not whether the inode is considered allocated
606 * or free by the fs).
607 *
608 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
609 */
610uint64_t
611xfs_inobt_irec_to_allocmask(
612 struct xfs_inobt_rec_incore *rec)
613{
614 uint64_t bitmap = 0;
615 uint64_t inodespbit;
616 int nextbit;
617 uint allocbitmap;
618
619 /*
620 * The holemask has 16-bits for a 64 inode record. Therefore each
621 * holemask bit represents multiple inodes. Create a mask of bits to set
622 * in the allocmask for each holemask bit.
623 */
624 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
625
626 /*
627 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
628 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
629 * anything beyond the 16 holemask bits since this casts to a larger
630 * type.
631 */
632 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
633
634 /*
635 * allocbitmap is the inverted holemask so every set bit represents
636 * allocated inodes. To expand from 16-bit holemask granularity to
637 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
638 * bitmap for every holemask bit.
639 */
640 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
641 while (nextbit != -1) {
642 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
643
644 bitmap |= (inodespbit <<
645 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
646
647 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
648 }
649
650 return bitmap;
651}
652
653#if defined(DEBUG) || defined(XFS_WARN)
654/*
655 * Verify that an in-core inode record has a valid inode count.
656 */
657int
658xfs_inobt_rec_check_count(
659 struct xfs_mount *mp,
660 struct xfs_inobt_rec_incore *rec)
661{
662 int inocount = 0;
663 int nextbit = 0;
664 uint64_t allocbmap;
665 int wordsz;
666
667 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
668 allocbmap = xfs_inobt_irec_to_allocmask(rec);
669
670 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
671 while (nextbit != -1) {
672 inocount++;
673 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
674 nextbit + 1);
675 }
676
677 if (inocount != rec->ir_count)
678 return -EFSCORRUPTED;
679
680 return 0;
681}
682#endif /* DEBUG */
683
684static xfs_extlen_t
685xfs_inobt_max_size(
686 struct xfs_perag *pag)
687{
688 struct xfs_mount *mp = pag->pag_mount;
689 xfs_agblock_t agblocks = pag->block_count;
690
691 /* Bail out if we're uninitialized, which can happen in mkfs. */
692 if (M_IGEO(mp)->inobt_mxr[0] == 0)
693 return 0;
694
695 /*
696 * The log is permanently allocated, so the space it occupies will
697 * never be available for the kinds of things that would require btree
698 * expansion. We therefore can pretend the space isn't there.
699 */
700 if (xfs_ag_contains_log(mp, pag->pag_agno))
701 agblocks -= mp->m_sb.sb_logblocks;
702
703 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
704 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
705 XFS_INODES_PER_CHUNK);
706}
707
708/* Read AGI and create inobt cursor. */
709int
710xfs_inobt_cur(
711 struct xfs_mount *mp,
712 struct xfs_trans *tp,
713 struct xfs_perag *pag,
714 xfs_btnum_t which,
715 struct xfs_btree_cur **curpp,
716 struct xfs_buf **agi_bpp)
717{
718 struct xfs_btree_cur *cur;
719 int error;
720
721 ASSERT(*agi_bpp == NULL);
722 ASSERT(*curpp == NULL);
723
724 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
725 if (error)
726 return error;
727
728 cur = xfs_inobt_init_cursor(mp, tp, *agi_bpp, pag, which);
729 *curpp = cur;
730 return 0;
731}
732
733static int
734xfs_inobt_count_blocks(
735 struct xfs_mount *mp,
736 struct xfs_trans *tp,
737 struct xfs_perag *pag,
738 xfs_btnum_t btnum,
739 xfs_extlen_t *tree_blocks)
740{
741 struct xfs_buf *agbp = NULL;
742 struct xfs_btree_cur *cur = NULL;
743 int error;
744
745 error = xfs_inobt_cur(mp, tp, pag, btnum, &cur, &agbp);
746 if (error)
747 return error;
748
749 error = xfs_btree_count_blocks(cur, tree_blocks);
750 xfs_btree_del_cursor(cur, error);
751 xfs_trans_brelse(tp, agbp);
752
753 return error;
754}
755
756/* Read finobt block count from AGI header. */
757static int
758xfs_finobt_read_blocks(
759 struct xfs_perag *pag,
760 struct xfs_trans *tp,
761 xfs_extlen_t *tree_blocks)
762{
763 struct xfs_buf *agbp;
764 struct xfs_agi *agi;
765 int error;
766
767 error = xfs_ialloc_read_agi(pag, tp, &agbp);
768 if (error)
769 return error;
770
771 agi = agbp->b_addr;
772 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
773 xfs_trans_brelse(tp, agbp);
774 return 0;
775}
776
777/*
778 * Figure out how many blocks to reserve and how many are used by this btree.
779 */
780int
781xfs_finobt_calc_reserves(
782 struct xfs_mount *mp,
783 struct xfs_trans *tp,
784 struct xfs_perag *pag,
785 xfs_extlen_t *ask,
786 xfs_extlen_t *used)
787{
788 xfs_extlen_t tree_len = 0;
789 int error;
790
791 if (!xfs_has_finobt(mp))
792 return 0;
793
794 if (xfs_has_inobtcounts(mp))
795 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
796 else
797 error = xfs_inobt_count_blocks(mp, tp, pag, XFS_BTNUM_FINO,
798 &tree_len);
799 if (error)
800 return error;
801
802 *ask += xfs_inobt_max_size(pag);
803 *used += tree_len;
804 return 0;
805}
806
807/* Calculate the inobt btree size for some records. */
808xfs_extlen_t
809xfs_iallocbt_calc_size(
810 struct xfs_mount *mp,
811 unsigned long long len)
812{
813 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
814}
815
816int __init
817xfs_inobt_init_cur_cache(void)
818{
819 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
820 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
821 0, 0, NULL);
822
823 if (!xfs_inobt_cur_cache)
824 return -ENOMEM;
825 return 0;
826}
827
828void
829xfs_inobt_destroy_cur_cache(void)
830{
831 kmem_cache_destroy(xfs_inobt_cur_cache);
832 xfs_inobt_cur_cache = NULL;
833}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_btree_staging.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_error.h"
20#include "xfs_health.h"
21#include "xfs_trace.h"
22#include "xfs_trans.h"
23#include "xfs_rmap.h"
24#include "xfs_ag.h"
25
26static struct kmem_cache *xfs_inobt_cur_cache;
27
28STATIC int
29xfs_inobt_get_minrecs(
30 struct xfs_btree_cur *cur,
31 int level)
32{
33 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
34}
35
36STATIC struct xfs_btree_cur *
37xfs_inobt_dup_cursor(
38 struct xfs_btree_cur *cur)
39{
40 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
41 cur->bc_ag.agbp);
42}
43
44STATIC struct xfs_btree_cur *
45xfs_finobt_dup_cursor(
46 struct xfs_btree_cur *cur)
47{
48 return xfs_finobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
49 cur->bc_ag.agbp);
50}
51
52STATIC void
53xfs_inobt_set_root(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *nptr,
56 int inc) /* level change */
57{
58 struct xfs_buf *agbp = cur->bc_ag.agbp;
59 struct xfs_agi *agi = agbp->b_addr;
60
61 agi->agi_root = nptr->s;
62 be32_add_cpu(&agi->agi_level, inc);
63 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
64}
65
66STATIC void
67xfs_finobt_set_root(
68 struct xfs_btree_cur *cur,
69 const union xfs_btree_ptr *nptr,
70 int inc) /* level change */
71{
72 struct xfs_buf *agbp = cur->bc_ag.agbp;
73 struct xfs_agi *agi = agbp->b_addr;
74
75 agi->agi_free_root = nptr->s;
76 be32_add_cpu(&agi->agi_free_level, inc);
77 xfs_ialloc_log_agi(cur->bc_tp, agbp,
78 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
79}
80
81/* Update the inode btree block counter for this btree. */
82static inline void
83xfs_inobt_mod_blockcount(
84 struct xfs_btree_cur *cur,
85 int howmuch)
86{
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 struct xfs_agi *agi = agbp->b_addr;
89
90 if (!xfs_has_inobtcounts(cur->bc_mp))
91 return;
92
93 if (xfs_btree_is_fino(cur->bc_ops))
94 be32_add_cpu(&agi->agi_fblocks, howmuch);
95 else
96 be32_add_cpu(&agi->agi_iblocks, howmuch);
97 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
98}
99
100STATIC int
101__xfs_inobt_alloc_block(
102 struct xfs_btree_cur *cur,
103 const union xfs_btree_ptr *start,
104 union xfs_btree_ptr *new,
105 int *stat,
106 enum xfs_ag_resv_type resv)
107{
108 xfs_alloc_arg_t args; /* block allocation args */
109 int error; /* error return value */
110 xfs_agblock_t sbno = be32_to_cpu(start->s);
111
112 memset(&args, 0, sizeof(args));
113 args.tp = cur->bc_tp;
114 args.mp = cur->bc_mp;
115 args.pag = cur->bc_ag.pag;
116 args.oinfo = XFS_RMAP_OINFO_INOBT;
117 args.minlen = 1;
118 args.maxlen = 1;
119 args.prod = 1;
120 args.resv = resv;
121
122 error = xfs_alloc_vextent_near_bno(&args,
123 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
124 if (error)
125 return error;
126
127 if (args.fsbno == NULLFSBLOCK) {
128 *stat = 0;
129 return 0;
130 }
131 ASSERT(args.len == 1);
132
133 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134 *stat = 1;
135 xfs_inobt_mod_blockcount(cur, 1);
136 return 0;
137}
138
139STATIC int
140xfs_inobt_alloc_block(
141 struct xfs_btree_cur *cur,
142 const union xfs_btree_ptr *start,
143 union xfs_btree_ptr *new,
144 int *stat)
145{
146 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147}
148
149STATIC int
150xfs_finobt_alloc_block(
151 struct xfs_btree_cur *cur,
152 const union xfs_btree_ptr *start,
153 union xfs_btree_ptr *new,
154 int *stat)
155{
156 if (cur->bc_mp->m_finobt_nores)
157 return xfs_inobt_alloc_block(cur, start, new, stat);
158 return __xfs_inobt_alloc_block(cur, start, new, stat,
159 XFS_AG_RESV_METADATA);
160}
161
162STATIC int
163__xfs_inobt_free_block(
164 struct xfs_btree_cur *cur,
165 struct xfs_buf *bp,
166 enum xfs_ag_resv_type resv)
167{
168 xfs_fsblock_t fsbno;
169
170 xfs_inobt_mod_blockcount(cur, -1);
171 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173 &XFS_RMAP_OINFO_INOBT, resv, false);
174}
175
176STATIC int
177xfs_inobt_free_block(
178 struct xfs_btree_cur *cur,
179 struct xfs_buf *bp)
180{
181 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182}
183
184STATIC int
185xfs_finobt_free_block(
186 struct xfs_btree_cur *cur,
187 struct xfs_buf *bp)
188{
189 if (cur->bc_mp->m_finobt_nores)
190 return xfs_inobt_free_block(cur, bp);
191 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192}
193
194STATIC int
195xfs_inobt_get_maxrecs(
196 struct xfs_btree_cur *cur,
197 int level)
198{
199 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200}
201
202STATIC void
203xfs_inobt_init_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
206{
207 key->inobt.ir_startino = rec->inobt.ir_startino;
208}
209
210STATIC void
211xfs_inobt_init_high_key_from_rec(
212 union xfs_btree_key *key,
213 const union xfs_btree_rec *rec)
214{
215 __u32 x;
216
217 x = be32_to_cpu(rec->inobt.ir_startino);
218 x += XFS_INODES_PER_CHUNK - 1;
219 key->inobt.ir_startino = cpu_to_be32(x);
220}
221
222STATIC void
223xfs_inobt_init_rec_from_cur(
224 struct xfs_btree_cur *cur,
225 union xfs_btree_rec *rec)
226{
227 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228 if (xfs_has_sparseinodes(cur->bc_mp)) {
229 rec->inobt.ir_u.sp.ir_holemask =
230 cpu_to_be16(cur->bc_rec.i.ir_holemask);
231 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233 } else {
234 /* ir_holemask/ir_count not supported on-disk */
235 rec->inobt.ir_u.f.ir_freecount =
236 cpu_to_be32(cur->bc_rec.i.ir_freecount);
237 }
238 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239}
240
241/*
242 * initial value of ptr for lookup
243 */
244STATIC void
245xfs_inobt_init_ptr_from_cur(
246 struct xfs_btree_cur *cur,
247 union xfs_btree_ptr *ptr)
248{
249 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
250
251 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
252
253 ptr->s = agi->agi_root;
254}
255
256STATIC void
257xfs_finobt_init_ptr_from_cur(
258 struct xfs_btree_cur *cur,
259 union xfs_btree_ptr *ptr)
260{
261 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
262
263 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
264 ptr->s = agi->agi_free_root;
265}
266
267STATIC int64_t
268xfs_inobt_key_diff(
269 struct xfs_btree_cur *cur,
270 const union xfs_btree_key *key)
271{
272 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
273 cur->bc_rec.i.ir_startino;
274}
275
276STATIC int64_t
277xfs_inobt_diff_two_keys(
278 struct xfs_btree_cur *cur,
279 const union xfs_btree_key *k1,
280 const union xfs_btree_key *k2,
281 const union xfs_btree_key *mask)
282{
283 ASSERT(!mask || mask->inobt.ir_startino);
284
285 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
286 be32_to_cpu(k2->inobt.ir_startino);
287}
288
289static xfs_failaddr_t
290xfs_inobt_verify(
291 struct xfs_buf *bp)
292{
293 struct xfs_mount *mp = bp->b_mount;
294 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
295 xfs_failaddr_t fa;
296 unsigned int level;
297
298 if (!xfs_verify_magic(bp, block->bb_magic))
299 return __this_address;
300
301 /*
302 * During growfs operations, we can't verify the exact owner as the
303 * perag is not fully initialised and hence not attached to the buffer.
304 *
305 * Similarly, during log recovery we will have a perag structure
306 * attached, but the agi information will not yet have been initialised
307 * from the on disk AGI. We don't currently use any of this information,
308 * but beware of the landmine (i.e. need to check
309 * xfs_perag_initialised_agi(pag)) if we ever do.
310 */
311 if (xfs_has_crc(mp)) {
312 fa = xfs_btree_agblock_v5hdr_verify(bp);
313 if (fa)
314 return fa;
315 }
316
317 /* level verification */
318 level = be16_to_cpu(block->bb_level);
319 if (level >= M_IGEO(mp)->inobt_maxlevels)
320 return __this_address;
321
322 return xfs_btree_agblock_verify(bp,
323 M_IGEO(mp)->inobt_mxr[level != 0]);
324}
325
326static void
327xfs_inobt_read_verify(
328 struct xfs_buf *bp)
329{
330 xfs_failaddr_t fa;
331
332 if (!xfs_btree_agblock_verify_crc(bp))
333 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
334 else {
335 fa = xfs_inobt_verify(bp);
336 if (fa)
337 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338 }
339
340 if (bp->b_error)
341 trace_xfs_btree_corrupt(bp, _RET_IP_);
342}
343
344static void
345xfs_inobt_write_verify(
346 struct xfs_buf *bp)
347{
348 xfs_failaddr_t fa;
349
350 fa = xfs_inobt_verify(bp);
351 if (fa) {
352 trace_xfs_btree_corrupt(bp, _RET_IP_);
353 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
354 return;
355 }
356 xfs_btree_agblock_calc_crc(bp);
357
358}
359
360const struct xfs_buf_ops xfs_inobt_buf_ops = {
361 .name = "xfs_inobt",
362 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
363 .verify_read = xfs_inobt_read_verify,
364 .verify_write = xfs_inobt_write_verify,
365 .verify_struct = xfs_inobt_verify,
366};
367
368const struct xfs_buf_ops xfs_finobt_buf_ops = {
369 .name = "xfs_finobt",
370 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
371 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
372 .verify_read = xfs_inobt_read_verify,
373 .verify_write = xfs_inobt_write_verify,
374 .verify_struct = xfs_inobt_verify,
375};
376
377STATIC int
378xfs_inobt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 const union xfs_btree_key *k1,
381 const union xfs_btree_key *k2)
382{
383 return be32_to_cpu(k1->inobt.ir_startino) <
384 be32_to_cpu(k2->inobt.ir_startino);
385}
386
387STATIC int
388xfs_inobt_recs_inorder(
389 struct xfs_btree_cur *cur,
390 const union xfs_btree_rec *r1,
391 const union xfs_btree_rec *r2)
392{
393 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
394 be32_to_cpu(r2->inobt.ir_startino);
395}
396
397STATIC enum xbtree_key_contig
398xfs_inobt_keys_contiguous(
399 struct xfs_btree_cur *cur,
400 const union xfs_btree_key *key1,
401 const union xfs_btree_key *key2,
402 const union xfs_btree_key *mask)
403{
404 ASSERT(!mask || mask->inobt.ir_startino);
405
406 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
407 be32_to_cpu(key2->inobt.ir_startino));
408}
409
410const struct xfs_btree_ops xfs_inobt_ops = {
411 .name = "ino",
412 .type = XFS_BTREE_TYPE_AG,
413
414 .rec_len = sizeof(xfs_inobt_rec_t),
415 .key_len = sizeof(xfs_inobt_key_t),
416 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
417
418 .lru_refs = XFS_INO_BTREE_REF,
419 .statoff = XFS_STATS_CALC_INDEX(xs_ibt_2),
420 .sick_mask = XFS_SICK_AG_INOBT,
421
422 .dup_cursor = xfs_inobt_dup_cursor,
423 .set_root = xfs_inobt_set_root,
424 .alloc_block = xfs_inobt_alloc_block,
425 .free_block = xfs_inobt_free_block,
426 .get_minrecs = xfs_inobt_get_minrecs,
427 .get_maxrecs = xfs_inobt_get_maxrecs,
428 .init_key_from_rec = xfs_inobt_init_key_from_rec,
429 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
430 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
431 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
432 .key_diff = xfs_inobt_key_diff,
433 .buf_ops = &xfs_inobt_buf_ops,
434 .diff_two_keys = xfs_inobt_diff_two_keys,
435 .keys_inorder = xfs_inobt_keys_inorder,
436 .recs_inorder = xfs_inobt_recs_inorder,
437 .keys_contiguous = xfs_inobt_keys_contiguous,
438};
439
440const struct xfs_btree_ops xfs_finobt_ops = {
441 .name = "fino",
442 .type = XFS_BTREE_TYPE_AG,
443
444 .rec_len = sizeof(xfs_inobt_rec_t),
445 .key_len = sizeof(xfs_inobt_key_t),
446 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
447
448 .lru_refs = XFS_INO_BTREE_REF,
449 .statoff = XFS_STATS_CALC_INDEX(xs_fibt_2),
450 .sick_mask = XFS_SICK_AG_FINOBT,
451
452 .dup_cursor = xfs_finobt_dup_cursor,
453 .set_root = xfs_finobt_set_root,
454 .alloc_block = xfs_finobt_alloc_block,
455 .free_block = xfs_finobt_free_block,
456 .get_minrecs = xfs_inobt_get_minrecs,
457 .get_maxrecs = xfs_inobt_get_maxrecs,
458 .init_key_from_rec = xfs_inobt_init_key_from_rec,
459 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
460 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
461 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
462 .key_diff = xfs_inobt_key_diff,
463 .buf_ops = &xfs_finobt_buf_ops,
464 .diff_two_keys = xfs_inobt_diff_two_keys,
465 .keys_inorder = xfs_inobt_keys_inorder,
466 .recs_inorder = xfs_inobt_recs_inorder,
467 .keys_contiguous = xfs_inobt_keys_contiguous,
468};
469
470/*
471 * Create an inode btree cursor.
472 *
473 * For staging cursors tp and agbp are NULL.
474 */
475struct xfs_btree_cur *
476xfs_inobt_init_cursor(
477 struct xfs_perag *pag,
478 struct xfs_trans *tp,
479 struct xfs_buf *agbp)
480{
481 struct xfs_mount *mp = pag->pag_mount;
482 struct xfs_btree_cur *cur;
483
484 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
485 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
486 cur->bc_ag.pag = xfs_perag_hold(pag);
487 cur->bc_ag.agbp = agbp;
488 if (agbp) {
489 struct xfs_agi *agi = agbp->b_addr;
490
491 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
492 }
493 return cur;
494}
495
496/*
497 * Create a free inode btree cursor.
498 *
499 * For staging cursors tp and agbp are NULL.
500 */
501struct xfs_btree_cur *
502xfs_finobt_init_cursor(
503 struct xfs_perag *pag,
504 struct xfs_trans *tp,
505 struct xfs_buf *agbp)
506{
507 struct xfs_mount *mp = pag->pag_mount;
508 struct xfs_btree_cur *cur;
509
510 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
511 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
512 cur->bc_ag.pag = xfs_perag_hold(pag);
513 cur->bc_ag.agbp = agbp;
514 if (agbp) {
515 struct xfs_agi *agi = agbp->b_addr;
516
517 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
518 }
519 return cur;
520}
521
522/*
523 * Install a new inobt btree root. Caller is responsible for invalidating
524 * and freeing the old btree blocks.
525 */
526void
527xfs_inobt_commit_staged_btree(
528 struct xfs_btree_cur *cur,
529 struct xfs_trans *tp,
530 struct xfs_buf *agbp)
531{
532 struct xfs_agi *agi = agbp->b_addr;
533 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
534 int fields;
535
536 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
537
538 if (xfs_btree_is_ino(cur->bc_ops)) {
539 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
540 agi->agi_root = cpu_to_be32(afake->af_root);
541 agi->agi_level = cpu_to_be32(afake->af_levels);
542 if (xfs_has_inobtcounts(cur->bc_mp)) {
543 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
544 fields |= XFS_AGI_IBLOCKS;
545 }
546 xfs_ialloc_log_agi(tp, agbp, fields);
547 xfs_btree_commit_afakeroot(cur, tp, agbp);
548 } else {
549 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
550 agi->agi_free_root = cpu_to_be32(afake->af_root);
551 agi->agi_free_level = cpu_to_be32(afake->af_levels);
552 if (xfs_has_inobtcounts(cur->bc_mp)) {
553 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
554 fields |= XFS_AGI_IBLOCKS;
555 }
556 xfs_ialloc_log_agi(tp, agbp, fields);
557 xfs_btree_commit_afakeroot(cur, tp, agbp);
558 }
559}
560
561/* Calculate number of records in an inode btree block. */
562static inline unsigned int
563xfs_inobt_block_maxrecs(
564 unsigned int blocklen,
565 bool leaf)
566{
567 if (leaf)
568 return blocklen / sizeof(xfs_inobt_rec_t);
569 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
570}
571
572/*
573 * Calculate number of records in an inobt btree block.
574 */
575int
576xfs_inobt_maxrecs(
577 struct xfs_mount *mp,
578 int blocklen,
579 int leaf)
580{
581 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
582 return xfs_inobt_block_maxrecs(blocklen, leaf);
583}
584
585/*
586 * Maximum number of inode btree records per AG. Pretend that we can fill an
587 * entire AG completely full of inodes except for the AG headers.
588 */
589#define XFS_MAX_INODE_RECORDS \
590 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
591 XFS_INODES_PER_CHUNK
592
593/* Compute the max possible height for the inode btree. */
594static inline unsigned int
595xfs_inobt_maxlevels_ondisk(void)
596{
597 unsigned int minrecs[2];
598 unsigned int blocklen;
599
600 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
601 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
602
603 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
604 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
605
606 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
607}
608
609/* Compute the max possible height for the free inode btree. */
610static inline unsigned int
611xfs_finobt_maxlevels_ondisk(void)
612{
613 unsigned int minrecs[2];
614 unsigned int blocklen;
615
616 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
617
618 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
619 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
620
621 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
622}
623
624/* Compute the max possible height for either inode btree. */
625unsigned int
626xfs_iallocbt_maxlevels_ondisk(void)
627{
628 return max(xfs_inobt_maxlevels_ondisk(),
629 xfs_finobt_maxlevels_ondisk());
630}
631
632/*
633 * Convert the inode record holemask to an inode allocation bitmap. The inode
634 * allocation bitmap is inode granularity and specifies whether an inode is
635 * physically allocated on disk (not whether the inode is considered allocated
636 * or free by the fs).
637 *
638 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
639 */
640uint64_t
641xfs_inobt_irec_to_allocmask(
642 const struct xfs_inobt_rec_incore *rec)
643{
644 uint64_t bitmap = 0;
645 uint64_t inodespbit;
646 int nextbit;
647 uint allocbitmap;
648
649 /*
650 * The holemask has 16-bits for a 64 inode record. Therefore each
651 * holemask bit represents multiple inodes. Create a mask of bits to set
652 * in the allocmask for each holemask bit.
653 */
654 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
655
656 /*
657 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
658 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
659 * anything beyond the 16 holemask bits since this casts to a larger
660 * type.
661 */
662 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
663
664 /*
665 * allocbitmap is the inverted holemask so every set bit represents
666 * allocated inodes. To expand from 16-bit holemask granularity to
667 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
668 * bitmap for every holemask bit.
669 */
670 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
671 while (nextbit != -1) {
672 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
673
674 bitmap |= (inodespbit <<
675 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
676
677 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
678 }
679
680 return bitmap;
681}
682
683#if defined(DEBUG) || defined(XFS_WARN)
684/*
685 * Verify that an in-core inode record has a valid inode count.
686 */
687int
688xfs_inobt_rec_check_count(
689 struct xfs_mount *mp,
690 struct xfs_inobt_rec_incore *rec)
691{
692 int inocount = 0;
693 int nextbit = 0;
694 uint64_t allocbmap;
695 int wordsz;
696
697 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
698 allocbmap = xfs_inobt_irec_to_allocmask(rec);
699
700 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
701 while (nextbit != -1) {
702 inocount++;
703 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
704 nextbit + 1);
705 }
706
707 if (inocount != rec->ir_count)
708 return -EFSCORRUPTED;
709
710 return 0;
711}
712#endif /* DEBUG */
713
714static xfs_extlen_t
715xfs_inobt_max_size(
716 struct xfs_perag *pag)
717{
718 struct xfs_mount *mp = pag->pag_mount;
719 xfs_agblock_t agblocks = pag->block_count;
720
721 /* Bail out if we're uninitialized, which can happen in mkfs. */
722 if (M_IGEO(mp)->inobt_mxr[0] == 0)
723 return 0;
724
725 /*
726 * The log is permanently allocated, so the space it occupies will
727 * never be available for the kinds of things that would require btree
728 * expansion. We therefore can pretend the space isn't there.
729 */
730 if (xfs_ag_contains_log(mp, pag->pag_agno))
731 agblocks -= mp->m_sb.sb_logblocks;
732
733 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
734 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
735 XFS_INODES_PER_CHUNK);
736}
737
738static int
739xfs_finobt_count_blocks(
740 struct xfs_perag *pag,
741 struct xfs_trans *tp,
742 xfs_extlen_t *tree_blocks)
743{
744 struct xfs_buf *agbp = NULL;
745 struct xfs_btree_cur *cur;
746 int error;
747
748 error = xfs_ialloc_read_agi(pag, tp, &agbp);
749 if (error)
750 return error;
751
752 cur = xfs_inobt_init_cursor(pag, tp, agbp);
753 error = xfs_btree_count_blocks(cur, tree_blocks);
754 xfs_btree_del_cursor(cur, error);
755 xfs_trans_brelse(tp, agbp);
756
757 return error;
758}
759
760/* Read finobt block count from AGI header. */
761static int
762xfs_finobt_read_blocks(
763 struct xfs_perag *pag,
764 struct xfs_trans *tp,
765 xfs_extlen_t *tree_blocks)
766{
767 struct xfs_buf *agbp;
768 struct xfs_agi *agi;
769 int error;
770
771 error = xfs_ialloc_read_agi(pag, tp, &agbp);
772 if (error)
773 return error;
774
775 agi = agbp->b_addr;
776 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
777 xfs_trans_brelse(tp, agbp);
778 return 0;
779}
780
781/*
782 * Figure out how many blocks to reserve and how many are used by this btree.
783 */
784int
785xfs_finobt_calc_reserves(
786 struct xfs_perag *pag,
787 struct xfs_trans *tp,
788 xfs_extlen_t *ask,
789 xfs_extlen_t *used)
790{
791 xfs_extlen_t tree_len = 0;
792 int error;
793
794 if (!xfs_has_finobt(pag->pag_mount))
795 return 0;
796
797 if (xfs_has_inobtcounts(pag->pag_mount))
798 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
799 else
800 error = xfs_finobt_count_blocks(pag, tp, &tree_len);
801 if (error)
802 return error;
803
804 *ask += xfs_inobt_max_size(pag);
805 *used += tree_len;
806 return 0;
807}
808
809/* Calculate the inobt btree size for some records. */
810xfs_extlen_t
811xfs_iallocbt_calc_size(
812 struct xfs_mount *mp,
813 unsigned long long len)
814{
815 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
816}
817
818int __init
819xfs_inobt_init_cur_cache(void)
820{
821 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
822 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
823 0, 0, NULL);
824
825 if (!xfs_inobt_cur_cache)
826 return -ENOMEM;
827 return 0;
828}
829
830void
831xfs_inobt_destroy_cur_cache(void)
832{
833 kmem_cache_destroy(xfs_inobt_cur_cache);
834 xfs_inobt_cur_cache = NULL;
835}