Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_bit.h"
 13#include "xfs_mount.h"
 
 14#include "xfs_btree.h"
 15#include "xfs_btree_staging.h"
 16#include "xfs_ialloc.h"
 17#include "xfs_ialloc_btree.h"
 18#include "xfs_alloc.h"
 19#include "xfs_error.h"
 20#include "xfs_trace.h"
 
 21#include "xfs_trans.h"
 22#include "xfs_rmap.h"
 23#include "xfs_ag.h"
 24
 25static struct kmem_cache	*xfs_inobt_cur_cache;
 26
 27STATIC int
 28xfs_inobt_get_minrecs(
 29	struct xfs_btree_cur	*cur,
 30	int			level)
 31{
 32	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
 33}
 34
 35STATIC struct xfs_btree_cur *
 36xfs_inobt_dup_cursor(
 37	struct xfs_btree_cur	*cur)
 38{
 39	return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
 40			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
 
 41}
 42
 43STATIC void
 44xfs_inobt_set_root(
 45	struct xfs_btree_cur		*cur,
 46	const union xfs_btree_ptr	*nptr,
 47	int				inc)	/* level change */
 48{
 49	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 50	struct xfs_agi		*agi = agbp->b_addr;
 51
 52	agi->agi_root = nptr->s;
 53	be32_add_cpu(&agi->agi_level, inc);
 54	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
 55}
 56
 57STATIC void
 58xfs_finobt_set_root(
 59	struct xfs_btree_cur		*cur,
 60	const union xfs_btree_ptr	*nptr,
 61	int				inc)	/* level change */
 62{
 63	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 64	struct xfs_agi		*agi = agbp->b_addr;
 65
 66	agi->agi_free_root = nptr->s;
 67	be32_add_cpu(&agi->agi_free_level, inc);
 68	xfs_ialloc_log_agi(cur->bc_tp, agbp,
 69			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
 70}
 71
 72/* Update the inode btree block counter for this btree. */
 73static inline void
 74xfs_inobt_mod_blockcount(
 75	struct xfs_btree_cur	*cur,
 76	int			howmuch)
 77{
 78	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 79	struct xfs_agi		*agi = agbp->b_addr;
 80
 81	if (!xfs_has_inobtcounts(cur->bc_mp))
 82		return;
 83
 84	if (cur->bc_btnum == XFS_BTNUM_FINO)
 85		be32_add_cpu(&agi->agi_fblocks, howmuch);
 86	else if (cur->bc_btnum == XFS_BTNUM_INO)
 87		be32_add_cpu(&agi->agi_iblocks, howmuch);
 88	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
 89}
 90
 91STATIC int
 92__xfs_inobt_alloc_block(
 93	struct xfs_btree_cur		*cur,
 94	const union xfs_btree_ptr	*start,
 95	union xfs_btree_ptr		*new,
 96	int				*stat,
 97	enum xfs_ag_resv_type		resv)
 98{
 99	xfs_alloc_arg_t		args;		/* block allocation args */
100	int			error;		/* error return value */
101	xfs_agblock_t		sbno = be32_to_cpu(start->s);
102
103	memset(&args, 0, sizeof(args));
104	args.tp = cur->bc_tp;
105	args.mp = cur->bc_mp;
106	args.oinfo = XFS_RMAP_OINFO_INOBT;
107	args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_ag.pag->pag_agno, sbno);
108	args.minlen = 1;
109	args.maxlen = 1;
110	args.prod = 1;
111	args.type = XFS_ALLOCTYPE_NEAR_BNO;
112	args.resv = resv;
113
114	error = xfs_alloc_vextent(&args);
115	if (error)
116		return error;
117
118	if (args.fsbno == NULLFSBLOCK) {
119		*stat = 0;
120		return 0;
121	}
122	ASSERT(args.len == 1);
123
124	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125	*stat = 1;
126	xfs_inobt_mod_blockcount(cur, 1);
127	return 0;
128}
129
130STATIC int
131xfs_inobt_alloc_block(
132	struct xfs_btree_cur		*cur,
133	const union xfs_btree_ptr	*start,
134	union xfs_btree_ptr		*new,
135	int				*stat)
136{
137	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138}
139
140STATIC int
141xfs_finobt_alloc_block(
142	struct xfs_btree_cur		*cur,
143	const union xfs_btree_ptr	*start,
144	union xfs_btree_ptr		*new,
145	int				*stat)
146{
147	if (cur->bc_mp->m_finobt_nores)
148		return xfs_inobt_alloc_block(cur, start, new, stat);
149	return __xfs_inobt_alloc_block(cur, start, new, stat,
150			XFS_AG_RESV_METADATA);
151}
152
153STATIC int
154__xfs_inobt_free_block(
155	struct xfs_btree_cur	*cur,
156	struct xfs_buf		*bp,
157	enum xfs_ag_resv_type	resv)
158{
159	xfs_inobt_mod_blockcount(cur, -1);
 
 
160	return xfs_free_extent(cur->bc_tp,
161			XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)), 1,
162			&XFS_RMAP_OINFO_INOBT, resv);
163}
164
165STATIC int
166xfs_inobt_free_block(
167	struct xfs_btree_cur	*cur,
168	struct xfs_buf		*bp)
169{
170	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
171}
172
173STATIC int
174xfs_finobt_free_block(
175	struct xfs_btree_cur	*cur,
176	struct xfs_buf		*bp)
177{
178	if (cur->bc_mp->m_finobt_nores)
179		return xfs_inobt_free_block(cur, bp);
180	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
181}
182
183STATIC int
184xfs_inobt_get_maxrecs(
185	struct xfs_btree_cur	*cur,
186	int			level)
187{
188	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
189}
190
191STATIC void
192xfs_inobt_init_key_from_rec(
193	union xfs_btree_key		*key,
194	const union xfs_btree_rec	*rec)
195{
196	key->inobt.ir_startino = rec->inobt.ir_startino;
197}
198
199STATIC void
200xfs_inobt_init_high_key_from_rec(
201	union xfs_btree_key		*key,
202	const union xfs_btree_rec	*rec)
203{
204	__u32				x;
205
206	x = be32_to_cpu(rec->inobt.ir_startino);
207	x += XFS_INODES_PER_CHUNK - 1;
208	key->inobt.ir_startino = cpu_to_be32(x);
209}
210
211STATIC void
212xfs_inobt_init_rec_from_cur(
213	struct xfs_btree_cur	*cur,
214	union xfs_btree_rec	*rec)
215{
216	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
217	if (xfs_has_sparseinodes(cur->bc_mp)) {
218		rec->inobt.ir_u.sp.ir_holemask =
219					cpu_to_be16(cur->bc_rec.i.ir_holemask);
220		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
221		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
222	} else {
223		/* ir_holemask/ir_count not supported on-disk */
224		rec->inobt.ir_u.f.ir_freecount =
225					cpu_to_be32(cur->bc_rec.i.ir_freecount);
226	}
227	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
228}
229
230/*
231 * initial value of ptr for lookup
232 */
233STATIC void
234xfs_inobt_init_ptr_from_cur(
235	struct xfs_btree_cur	*cur,
236	union xfs_btree_ptr	*ptr)
237{
238	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
239
240	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
241
242	ptr->s = agi->agi_root;
243}
244
245STATIC void
246xfs_finobt_init_ptr_from_cur(
247	struct xfs_btree_cur	*cur,
248	union xfs_btree_ptr	*ptr)
249{
250	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
251
252	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
253	ptr->s = agi->agi_free_root;
254}
255
256STATIC int64_t
257xfs_inobt_key_diff(
258	struct xfs_btree_cur		*cur,
259	const union xfs_btree_key	*key)
260{
261	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
262			  cur->bc_rec.i.ir_startino;
263}
264
265STATIC int64_t
266xfs_inobt_diff_two_keys(
267	struct xfs_btree_cur		*cur,
268	const union xfs_btree_key	*k1,
269	const union xfs_btree_key	*k2)
270{
271	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
272			  be32_to_cpu(k2->inobt.ir_startino);
273}
274
275static xfs_failaddr_t
276xfs_inobt_verify(
277	struct xfs_buf		*bp)
278{
279	struct xfs_mount	*mp = bp->b_mount;
280	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
281	xfs_failaddr_t		fa;
282	unsigned int		level;
283
284	if (!xfs_verify_magic(bp, block->bb_magic))
285		return __this_address;
286
287	/*
288	 * During growfs operations, we can't verify the exact owner as the
289	 * perag is not fully initialised and hence not attached to the buffer.
290	 *
291	 * Similarly, during log recovery we will have a perag structure
292	 * attached, but the agi information will not yet have been initialised
293	 * from the on disk AGI. We don't currently use any of this information,
294	 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
295	 * ever do.
296	 */
297	if (xfs_has_crc(mp)) {
 
 
298		fa = xfs_btree_sblock_v5hdr_verify(bp);
299		if (fa)
300			return fa;
 
 
 
 
 
 
301	}
302
303	/* level verification */
304	level = be16_to_cpu(block->bb_level);
305	if (level >= M_IGEO(mp)->inobt_maxlevels)
306		return __this_address;
307
308	return xfs_btree_sblock_verify(bp,
309			M_IGEO(mp)->inobt_mxr[level != 0]);
310}
311
312static void
313xfs_inobt_read_verify(
314	struct xfs_buf	*bp)
315{
316	xfs_failaddr_t	fa;
317
318	if (!xfs_btree_sblock_verify_crc(bp))
319		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
320	else {
321		fa = xfs_inobt_verify(bp);
322		if (fa)
323			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
324	}
325
326	if (bp->b_error)
327		trace_xfs_btree_corrupt(bp, _RET_IP_);
328}
329
330static void
331xfs_inobt_write_verify(
332	struct xfs_buf	*bp)
333{
334	xfs_failaddr_t	fa;
335
336	fa = xfs_inobt_verify(bp);
337	if (fa) {
338		trace_xfs_btree_corrupt(bp, _RET_IP_);
339		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340		return;
341	}
342	xfs_btree_sblock_calc_crc(bp);
343
344}
345
346const struct xfs_buf_ops xfs_inobt_buf_ops = {
347	.name = "xfs_inobt",
348	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
349	.verify_read = xfs_inobt_read_verify,
350	.verify_write = xfs_inobt_write_verify,
351	.verify_struct = xfs_inobt_verify,
352};
353
354const struct xfs_buf_ops xfs_finobt_buf_ops = {
355	.name = "xfs_finobt",
356	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
357		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
358	.verify_read = xfs_inobt_read_verify,
359	.verify_write = xfs_inobt_write_verify,
360	.verify_struct = xfs_inobt_verify,
361};
362
363STATIC int
364xfs_inobt_keys_inorder(
365	struct xfs_btree_cur		*cur,
366	const union xfs_btree_key	*k1,
367	const union xfs_btree_key	*k2)
368{
369	return be32_to_cpu(k1->inobt.ir_startino) <
370		be32_to_cpu(k2->inobt.ir_startino);
371}
372
373STATIC int
374xfs_inobt_recs_inorder(
375	struct xfs_btree_cur		*cur,
376	const union xfs_btree_rec	*r1,
377	const union xfs_btree_rec	*r2)
378{
379	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
380		be32_to_cpu(r2->inobt.ir_startino);
381}
382
383static const struct xfs_btree_ops xfs_inobt_ops = {
384	.rec_len		= sizeof(xfs_inobt_rec_t),
385	.key_len		= sizeof(xfs_inobt_key_t),
386
387	.dup_cursor		= xfs_inobt_dup_cursor,
388	.set_root		= xfs_inobt_set_root,
389	.alloc_block		= xfs_inobt_alloc_block,
390	.free_block		= xfs_inobt_free_block,
391	.get_minrecs		= xfs_inobt_get_minrecs,
392	.get_maxrecs		= xfs_inobt_get_maxrecs,
393	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
394	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
395	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
396	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
397	.key_diff		= xfs_inobt_key_diff,
398	.buf_ops		= &xfs_inobt_buf_ops,
399	.diff_two_keys		= xfs_inobt_diff_two_keys,
400	.keys_inorder		= xfs_inobt_keys_inorder,
401	.recs_inorder		= xfs_inobt_recs_inorder,
402};
403
404static const struct xfs_btree_ops xfs_finobt_ops = {
405	.rec_len		= sizeof(xfs_inobt_rec_t),
406	.key_len		= sizeof(xfs_inobt_key_t),
407
408	.dup_cursor		= xfs_inobt_dup_cursor,
409	.set_root		= xfs_finobt_set_root,
410	.alloc_block		= xfs_finobt_alloc_block,
411	.free_block		= xfs_finobt_free_block,
412	.get_minrecs		= xfs_inobt_get_minrecs,
413	.get_maxrecs		= xfs_inobt_get_maxrecs,
414	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
415	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
416	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
417	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
418	.key_diff		= xfs_inobt_key_diff,
419	.buf_ops		= &xfs_finobt_buf_ops,
420	.diff_two_keys		= xfs_inobt_diff_two_keys,
421	.keys_inorder		= xfs_inobt_keys_inorder,
422	.recs_inorder		= xfs_inobt_recs_inorder,
423};
424
425/*
426 * Initialize a new inode btree cursor.
427 */
428static struct xfs_btree_cur *
429xfs_inobt_init_common(
430	struct xfs_mount	*mp,		/* file system mount point */
431	struct xfs_trans	*tp,		/* transaction pointer */
432	struct xfs_perag	*pag,
 
433	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
434{
 
435	struct xfs_btree_cur	*cur;
436
437	cur = xfs_btree_alloc_cursor(mp, tp, btnum,
438			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
 
 
 
439	if (btnum == XFS_BTNUM_INO) {
440		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
441		cur->bc_ops = &xfs_inobt_ops;
 
442	} else {
443		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
444		cur->bc_ops = &xfs_finobt_ops;
 
445	}
446
447	if (xfs_has_crc(mp))
448		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
449
450	/* take a reference for the cursor */
451	atomic_inc(&pag->pag_ref);
452	cur->bc_ag.pag = pag;
453	return cur;
454}
455
456/* Create an inode btree cursor. */
457struct xfs_btree_cur *
458xfs_inobt_init_cursor(
459	struct xfs_mount	*mp,
460	struct xfs_trans	*tp,
461	struct xfs_buf		*agbp,
462	struct xfs_perag	*pag,
463	xfs_btnum_t		btnum)
464{
465	struct xfs_btree_cur	*cur;
466	struct xfs_agi		*agi = agbp->b_addr;
467
468	cur = xfs_inobt_init_common(mp, tp, pag, btnum);
469	if (btnum == XFS_BTNUM_INO)
470		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
471	else
472		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
473	cur->bc_ag.agbp = agbp;
474	return cur;
475}
476
477/* Create an inode btree cursor with a fake root for staging. */
478struct xfs_btree_cur *
479xfs_inobt_stage_cursor(
480	struct xfs_mount	*mp,
481	struct xbtree_afakeroot	*afake,
482	struct xfs_perag	*pag,
483	xfs_btnum_t		btnum)
484{
485	struct xfs_btree_cur	*cur;
486
487	cur = xfs_inobt_init_common(mp, NULL, pag, btnum);
488	xfs_btree_stage_afakeroot(cur, afake);
489	return cur;
490}
491
492/*
493 * Install a new inobt btree root.  Caller is responsible for invalidating
494 * and freeing the old btree blocks.
495 */
496void
497xfs_inobt_commit_staged_btree(
498	struct xfs_btree_cur	*cur,
499	struct xfs_trans	*tp,
500	struct xfs_buf		*agbp)
501{
502	struct xfs_agi		*agi = agbp->b_addr;
503	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
504	int			fields;
505
506	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
507
508	if (cur->bc_btnum == XFS_BTNUM_INO) {
509		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
510		agi->agi_root = cpu_to_be32(afake->af_root);
511		agi->agi_level = cpu_to_be32(afake->af_levels);
512		if (xfs_has_inobtcounts(cur->bc_mp)) {
513			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
514			fields |= XFS_AGI_IBLOCKS;
515		}
516		xfs_ialloc_log_agi(tp, agbp, fields);
517		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
518	} else {
519		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
520		agi->agi_free_root = cpu_to_be32(afake->af_root);
521		agi->agi_free_level = cpu_to_be32(afake->af_levels);
522		if (xfs_has_inobtcounts(cur->bc_mp)) {
523			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
524			fields |= XFS_AGI_IBLOCKS;
525		}
526		xfs_ialloc_log_agi(tp, agbp, fields);
527		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
528	}
529}
530
531/* Calculate number of records in an inode btree block. */
532static inline unsigned int
533xfs_inobt_block_maxrecs(
534	unsigned int		blocklen,
535	bool			leaf)
536{
537	if (leaf)
538		return blocklen / sizeof(xfs_inobt_rec_t);
539	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
540}
541
542/*
543 * Calculate number of records in an inobt btree block.
544 */
545int
546xfs_inobt_maxrecs(
547	struct xfs_mount	*mp,
548	int			blocklen,
549	int			leaf)
550{
551	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
552	return xfs_inobt_block_maxrecs(blocklen, leaf);
553}
554
555/*
556 * Maximum number of inode btree records per AG.  Pretend that we can fill an
557 * entire AG completely full of inodes except for the AG headers.
558 */
559#define XFS_MAX_INODE_RECORDS \
560	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
561			XFS_INODES_PER_CHUNK
562
563/* Compute the max possible height for the inode btree. */
564static inline unsigned int
565xfs_inobt_maxlevels_ondisk(void)
566{
567	unsigned int		minrecs[2];
568	unsigned int		blocklen;
569
570	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
571		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
572
573	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
574	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
575
576	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
577}
578
579/* Compute the max possible height for the free inode btree. */
580static inline unsigned int
581xfs_finobt_maxlevels_ondisk(void)
582{
583	unsigned int		minrecs[2];
584	unsigned int		blocklen;
585
586	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
587
588	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
589	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
590
591	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
592}
593
594/* Compute the max possible height for either inode btree. */
595unsigned int
596xfs_iallocbt_maxlevels_ondisk(void)
597{
598	return max(xfs_inobt_maxlevels_ondisk(),
599		   xfs_finobt_maxlevels_ondisk());
600}
601
602/*
603 * Convert the inode record holemask to an inode allocation bitmap. The inode
604 * allocation bitmap is inode granularity and specifies whether an inode is
605 * physically allocated on disk (not whether the inode is considered allocated
606 * or free by the fs).
607 *
608 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
609 */
610uint64_t
611xfs_inobt_irec_to_allocmask(
612	struct xfs_inobt_rec_incore	*rec)
613{
614	uint64_t			bitmap = 0;
615	uint64_t			inodespbit;
616	int				nextbit;
617	uint				allocbitmap;
618
619	/*
620	 * The holemask has 16-bits for a 64 inode record. Therefore each
621	 * holemask bit represents multiple inodes. Create a mask of bits to set
622	 * in the allocmask for each holemask bit.
623	 */
624	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
625
626	/*
627	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
628	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
629	 * anything beyond the 16 holemask bits since this casts to a larger
630	 * type.
631	 */
632	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
633
634	/*
635	 * allocbitmap is the inverted holemask so every set bit represents
636	 * allocated inodes. To expand from 16-bit holemask granularity to
637	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
638	 * bitmap for every holemask bit.
639	 */
640	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
641	while (nextbit != -1) {
642		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
643
644		bitmap |= (inodespbit <<
645			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
646
647		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
648	}
649
650	return bitmap;
651}
652
653#if defined(DEBUG) || defined(XFS_WARN)
654/*
655 * Verify that an in-core inode record has a valid inode count.
656 */
657int
658xfs_inobt_rec_check_count(
659	struct xfs_mount		*mp,
660	struct xfs_inobt_rec_incore	*rec)
661{
662	int				inocount = 0;
663	int				nextbit = 0;
664	uint64_t			allocbmap;
665	int				wordsz;
666
667	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
668	allocbmap = xfs_inobt_irec_to_allocmask(rec);
669
670	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
671	while (nextbit != -1) {
672		inocount++;
673		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
674				       nextbit + 1);
675	}
676
677	if (inocount != rec->ir_count)
678		return -EFSCORRUPTED;
679
680	return 0;
681}
682#endif	/* DEBUG */
683
684static xfs_extlen_t
685xfs_inobt_max_size(
686	struct xfs_perag	*pag)
687{
688	struct xfs_mount	*mp = pag->pag_mount;
689	xfs_agblock_t		agblocks = pag->block_count;
690
691	/* Bail out if we're uninitialized, which can happen in mkfs. */
692	if (M_IGEO(mp)->inobt_mxr[0] == 0)
693		return 0;
694
695	/*
696	 * The log is permanently allocated, so the space it occupies will
697	 * never be available for the kinds of things that would require btree
698	 * expansion.  We therefore can pretend the space isn't there.
699	 */
700	if (xfs_ag_contains_log(mp, pag->pag_agno))
701		agblocks -= mp->m_sb.sb_logblocks;
702
703	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
704				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
705					XFS_INODES_PER_CHUNK);
706}
707
708/* Read AGI and create inobt cursor. */
709int
710xfs_inobt_cur(
711	struct xfs_mount	*mp,
712	struct xfs_trans	*tp,
713	struct xfs_perag	*pag,
714	xfs_btnum_t		which,
715	struct xfs_btree_cur	**curpp,
716	struct xfs_buf		**agi_bpp)
717{
718	struct xfs_btree_cur	*cur;
719	int			error;
720
721	ASSERT(*agi_bpp == NULL);
722	ASSERT(*curpp == NULL);
723
724	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
725	if (error)
726		return error;
727
728	cur = xfs_inobt_init_cursor(mp, tp, *agi_bpp, pag, which);
729	*curpp = cur;
730	return 0;
731}
732
733static int
734xfs_inobt_count_blocks(
735	struct xfs_mount	*mp,
736	struct xfs_trans	*tp,
737	struct xfs_perag	*pag,
738	xfs_btnum_t		btnum,
739	xfs_extlen_t		*tree_blocks)
740{
741	struct xfs_buf		*agbp = NULL;
742	struct xfs_btree_cur	*cur = NULL;
743	int			error;
744
745	error = xfs_inobt_cur(mp, tp, pag, btnum, &cur, &agbp);
746	if (error)
747		return error;
748
 
749	error = xfs_btree_count_blocks(cur, tree_blocks);
750	xfs_btree_del_cursor(cur, error);
751	xfs_trans_brelse(tp, agbp);
752
753	return error;
754}
755
756/* Read finobt block count from AGI header. */
757static int
758xfs_finobt_read_blocks(
759	struct xfs_perag	*pag,
760	struct xfs_trans	*tp,
761	xfs_extlen_t		*tree_blocks)
762{
763	struct xfs_buf		*agbp;
764	struct xfs_agi		*agi;
765	int			error;
766
767	error = xfs_ialloc_read_agi(pag, tp, &agbp);
768	if (error)
769		return error;
770
771	agi = agbp->b_addr;
772	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
773	xfs_trans_brelse(tp, agbp);
774	return 0;
775}
776
777/*
778 * Figure out how many blocks to reserve and how many are used by this btree.
779 */
780int
781xfs_finobt_calc_reserves(
782	struct xfs_mount	*mp,
783	struct xfs_trans	*tp,
784	struct xfs_perag	*pag,
785	xfs_extlen_t		*ask,
786	xfs_extlen_t		*used)
787{
788	xfs_extlen_t		tree_len = 0;
789	int			error;
790
791	if (!xfs_has_finobt(mp))
792		return 0;
793
794	if (xfs_has_inobtcounts(mp))
795		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
796	else
797		error = xfs_inobt_count_blocks(mp, tp, pag, XFS_BTNUM_FINO,
798				&tree_len);
799	if (error)
800		return error;
801
802	*ask += xfs_inobt_max_size(pag);
803	*used += tree_len;
804	return 0;
805}
806
807/* Calculate the inobt btree size for some records. */
808xfs_extlen_t
809xfs_iallocbt_calc_size(
810	struct xfs_mount	*mp,
811	unsigned long long	len)
812{
813	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
814}
815
816int __init
817xfs_inobt_init_cur_cache(void)
818{
819	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
820			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
821			0, 0, NULL);
822
823	if (!xfs_inobt_cur_cache)
824		return -ENOMEM;
825	return 0;
826}
827
828void
829xfs_inobt_destroy_cur_cache(void)
830{
831	kmem_cache_destroy(xfs_inobt_cur_cache);
832	xfs_inobt_cur_cache = NULL;
833}
v4.17
 
  1/*
  2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_bit.h"
 25#include "xfs_mount.h"
 26#include "xfs_inode.h"
 27#include "xfs_btree.h"
 
 28#include "xfs_ialloc.h"
 29#include "xfs_ialloc_btree.h"
 30#include "xfs_alloc.h"
 31#include "xfs_error.h"
 32#include "xfs_trace.h"
 33#include "xfs_cksum.h"
 34#include "xfs_trans.h"
 35#include "xfs_rmap.h"
 
 36
 
 37
 38STATIC int
 39xfs_inobt_get_minrecs(
 40	struct xfs_btree_cur	*cur,
 41	int			level)
 42{
 43	return cur->bc_mp->m_inobt_mnr[level != 0];
 44}
 45
 46STATIC struct xfs_btree_cur *
 47xfs_inobt_dup_cursor(
 48	struct xfs_btree_cur	*cur)
 49{
 50	return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
 51			cur->bc_private.a.agbp, cur->bc_private.a.agno,
 52			cur->bc_btnum);
 53}
 54
 55STATIC void
 56xfs_inobt_set_root(
 57	struct xfs_btree_cur	*cur,
 58	union xfs_btree_ptr	*nptr,
 59	int			inc)	/* level change */
 60{
 61	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 62	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 63
 64	agi->agi_root = nptr->s;
 65	be32_add_cpu(&agi->agi_level, inc);
 66	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
 67}
 68
 69STATIC void
 70xfs_finobt_set_root(
 71	struct xfs_btree_cur	*cur,
 72	union xfs_btree_ptr	*nptr,
 73	int			inc)	/* level change */
 74{
 75	struct xfs_buf		*agbp = cur->bc_private.a.agbp;
 76	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 77
 78	agi->agi_free_root = nptr->s;
 79	be32_add_cpu(&agi->agi_free_level, inc);
 80	xfs_ialloc_log_agi(cur->bc_tp, agbp,
 81			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
 82}
 83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84STATIC int
 85__xfs_inobt_alloc_block(
 86	struct xfs_btree_cur	*cur,
 87	union xfs_btree_ptr	*start,
 88	union xfs_btree_ptr	*new,
 89	int			*stat,
 90	enum xfs_ag_resv_type	resv)
 91{
 92	xfs_alloc_arg_t		args;		/* block allocation args */
 93	int			error;		/* error return value */
 94	xfs_agblock_t		sbno = be32_to_cpu(start->s);
 95
 96	memset(&args, 0, sizeof(args));
 97	args.tp = cur->bc_tp;
 98	args.mp = cur->bc_mp;
 99	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
100	args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
101	args.minlen = 1;
102	args.maxlen = 1;
103	args.prod = 1;
104	args.type = XFS_ALLOCTYPE_NEAR_BNO;
105	args.resv = resv;
106
107	error = xfs_alloc_vextent(&args);
108	if (error)
109		return error;
110
111	if (args.fsbno == NULLFSBLOCK) {
112		*stat = 0;
113		return 0;
114	}
115	ASSERT(args.len == 1);
116
117	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
118	*stat = 1;
 
119	return 0;
120}
121
122STATIC int
123xfs_inobt_alloc_block(
124	struct xfs_btree_cur	*cur,
125	union xfs_btree_ptr	*start,
126	union xfs_btree_ptr	*new,
127	int			*stat)
128{
129	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
130}
131
132STATIC int
133xfs_finobt_alloc_block(
134	struct xfs_btree_cur	*cur,
135	union xfs_btree_ptr	*start,
136	union xfs_btree_ptr	*new,
137	int			*stat)
138{
139	if (cur->bc_mp->m_inotbt_nores)
140		return xfs_inobt_alloc_block(cur, start, new, stat);
141	return __xfs_inobt_alloc_block(cur, start, new, stat,
142			XFS_AG_RESV_METADATA);
143}
144
145STATIC int
146__xfs_inobt_free_block(
147	struct xfs_btree_cur	*cur,
148	struct xfs_buf		*bp,
149	enum xfs_ag_resv_type	resv)
150{
151	struct xfs_owner_info	oinfo;
152
153	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
154	return xfs_free_extent(cur->bc_tp,
155			XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
156			&oinfo, resv);
157}
158
159STATIC int
160xfs_inobt_free_block(
161	struct xfs_btree_cur	*cur,
162	struct xfs_buf		*bp)
163{
164	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
165}
166
167STATIC int
168xfs_finobt_free_block(
169	struct xfs_btree_cur	*cur,
170	struct xfs_buf		*bp)
171{
172	if (cur->bc_mp->m_inotbt_nores)
173		return xfs_inobt_free_block(cur, bp);
174	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
175}
176
177STATIC int
178xfs_inobt_get_maxrecs(
179	struct xfs_btree_cur	*cur,
180	int			level)
181{
182	return cur->bc_mp->m_inobt_mxr[level != 0];
183}
184
185STATIC void
186xfs_inobt_init_key_from_rec(
187	union xfs_btree_key	*key,
188	union xfs_btree_rec	*rec)
189{
190	key->inobt.ir_startino = rec->inobt.ir_startino;
191}
192
193STATIC void
194xfs_inobt_init_high_key_from_rec(
195	union xfs_btree_key	*key,
196	union xfs_btree_rec	*rec)
197{
198	__u32			x;
199
200	x = be32_to_cpu(rec->inobt.ir_startino);
201	x += XFS_INODES_PER_CHUNK - 1;
202	key->inobt.ir_startino = cpu_to_be32(x);
203}
204
205STATIC void
206xfs_inobt_init_rec_from_cur(
207	struct xfs_btree_cur	*cur,
208	union xfs_btree_rec	*rec)
209{
210	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
211	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
212		rec->inobt.ir_u.sp.ir_holemask =
213					cpu_to_be16(cur->bc_rec.i.ir_holemask);
214		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
215		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
216	} else {
217		/* ir_holemask/ir_count not supported on-disk */
218		rec->inobt.ir_u.f.ir_freecount =
219					cpu_to_be32(cur->bc_rec.i.ir_freecount);
220	}
221	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
222}
223
224/*
225 * initial value of ptr for lookup
226 */
227STATIC void
228xfs_inobt_init_ptr_from_cur(
229	struct xfs_btree_cur	*cur,
230	union xfs_btree_ptr	*ptr)
231{
232	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
233
234	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
235
236	ptr->s = agi->agi_root;
237}
238
239STATIC void
240xfs_finobt_init_ptr_from_cur(
241	struct xfs_btree_cur	*cur,
242	union xfs_btree_ptr	*ptr)
243{
244	struct xfs_agi		*agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
245
246	ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
247	ptr->s = agi->agi_free_root;
248}
249
250STATIC int64_t
251xfs_inobt_key_diff(
252	struct xfs_btree_cur	*cur,
253	union xfs_btree_key	*key)
254{
255	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
256			  cur->bc_rec.i.ir_startino;
257}
258
259STATIC int64_t
260xfs_inobt_diff_two_keys(
261	struct xfs_btree_cur	*cur,
262	union xfs_btree_key	*k1,
263	union xfs_btree_key	*k2)
264{
265	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
266			  be32_to_cpu(k2->inobt.ir_startino);
267}
268
269static xfs_failaddr_t
270xfs_inobt_verify(
271	struct xfs_buf		*bp)
272{
273	struct xfs_mount	*mp = bp->b_target->bt_mount;
274	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
275	xfs_failaddr_t		fa;
276	unsigned int		level;
277
 
 
 
278	/*
279	 * During growfs operations, we can't verify the exact owner as the
280	 * perag is not fully initialised and hence not attached to the buffer.
281	 *
282	 * Similarly, during log recovery we will have a perag structure
283	 * attached, but the agi information will not yet have been initialised
284	 * from the on disk AGI. We don't currently use any of this information,
285	 * but beware of the landmine (i.e. need to check pag->pagi_init) if we
286	 * ever do.
287	 */
288	switch (block->bb_magic) {
289	case cpu_to_be32(XFS_IBT_CRC_MAGIC):
290	case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
291		fa = xfs_btree_sblock_v5hdr_verify(bp);
292		if (fa)
293			return fa;
294		/* fall through */
295	case cpu_to_be32(XFS_IBT_MAGIC):
296	case cpu_to_be32(XFS_FIBT_MAGIC):
297		break;
298	default:
299		return NULL;
300	}
301
302	/* level verification */
303	level = be16_to_cpu(block->bb_level);
304	if (level >= mp->m_in_maxlevels)
305		return __this_address;
306
307	return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
 
308}
309
310static void
311xfs_inobt_read_verify(
312	struct xfs_buf	*bp)
313{
314	xfs_failaddr_t	fa;
315
316	if (!xfs_btree_sblock_verify_crc(bp))
317		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
318	else {
319		fa = xfs_inobt_verify(bp);
320		if (fa)
321			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
322	}
323
324	if (bp->b_error)
325		trace_xfs_btree_corrupt(bp, _RET_IP_);
326}
327
328static void
329xfs_inobt_write_verify(
330	struct xfs_buf	*bp)
331{
332	xfs_failaddr_t	fa;
333
334	fa = xfs_inobt_verify(bp);
335	if (fa) {
336		trace_xfs_btree_corrupt(bp, _RET_IP_);
337		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338		return;
339	}
340	xfs_btree_sblock_calc_crc(bp);
341
342}
343
344const struct xfs_buf_ops xfs_inobt_buf_ops = {
345	.name = "xfs_inobt",
 
 
 
 
 
 
 
 
 
 
346	.verify_read = xfs_inobt_read_verify,
347	.verify_write = xfs_inobt_write_verify,
348	.verify_struct = xfs_inobt_verify,
349};
350
351STATIC int
352xfs_inobt_keys_inorder(
353	struct xfs_btree_cur	*cur,
354	union xfs_btree_key	*k1,
355	union xfs_btree_key	*k2)
356{
357	return be32_to_cpu(k1->inobt.ir_startino) <
358		be32_to_cpu(k2->inobt.ir_startino);
359}
360
361STATIC int
362xfs_inobt_recs_inorder(
363	struct xfs_btree_cur	*cur,
364	union xfs_btree_rec	*r1,
365	union xfs_btree_rec	*r2)
366{
367	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
368		be32_to_cpu(r2->inobt.ir_startino);
369}
370
371static const struct xfs_btree_ops xfs_inobt_ops = {
372	.rec_len		= sizeof(xfs_inobt_rec_t),
373	.key_len		= sizeof(xfs_inobt_key_t),
374
375	.dup_cursor		= xfs_inobt_dup_cursor,
376	.set_root		= xfs_inobt_set_root,
377	.alloc_block		= xfs_inobt_alloc_block,
378	.free_block		= xfs_inobt_free_block,
379	.get_minrecs		= xfs_inobt_get_minrecs,
380	.get_maxrecs		= xfs_inobt_get_maxrecs,
381	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
382	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
383	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
384	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
385	.key_diff		= xfs_inobt_key_diff,
386	.buf_ops		= &xfs_inobt_buf_ops,
387	.diff_two_keys		= xfs_inobt_diff_two_keys,
388	.keys_inorder		= xfs_inobt_keys_inorder,
389	.recs_inorder		= xfs_inobt_recs_inorder,
390};
391
392static const struct xfs_btree_ops xfs_finobt_ops = {
393	.rec_len		= sizeof(xfs_inobt_rec_t),
394	.key_len		= sizeof(xfs_inobt_key_t),
395
396	.dup_cursor		= xfs_inobt_dup_cursor,
397	.set_root		= xfs_finobt_set_root,
398	.alloc_block		= xfs_finobt_alloc_block,
399	.free_block		= xfs_finobt_free_block,
400	.get_minrecs		= xfs_inobt_get_minrecs,
401	.get_maxrecs		= xfs_inobt_get_maxrecs,
402	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
403	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
404	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
405	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
406	.key_diff		= xfs_inobt_key_diff,
407	.buf_ops		= &xfs_inobt_buf_ops,
408	.diff_two_keys		= xfs_inobt_diff_two_keys,
409	.keys_inorder		= xfs_inobt_keys_inorder,
410	.recs_inorder		= xfs_inobt_recs_inorder,
411};
412
413/*
414 * Allocate a new inode btree cursor.
415 */
416struct xfs_btree_cur *				/* new inode btree cursor */
417xfs_inobt_init_cursor(
418	struct xfs_mount	*mp,		/* file system mount point */
419	struct xfs_trans	*tp,		/* transaction pointer */
420	struct xfs_buf		*agbp,		/* buffer for agi structure */
421	xfs_agnumber_t		agno,		/* allocation group number */
422	xfs_btnum_t		btnum)		/* ialloc or free ino btree */
423{
424	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
425	struct xfs_btree_cur	*cur;
426
427	cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
428
429	cur->bc_tp = tp;
430	cur->bc_mp = mp;
431	cur->bc_btnum = btnum;
432	if (btnum == XFS_BTNUM_INO) {
433		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
434		cur->bc_ops = &xfs_inobt_ops;
435		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
436	} else {
437		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
438		cur->bc_ops = &xfs_finobt_ops;
439		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
440	}
441
442	cur->bc_blocklog = mp->m_sb.sb_blocklog;
 
 
 
 
 
 
 
443
444	if (xfs_sb_version_hascrc(&mp->m_sb))
445		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446
447	cur->bc_private.a.agbp = agbp;
448	cur->bc_private.a.agno = agno;
 
 
 
 
 
 
 
449
 
 
450	return cur;
451}
452
453/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454 * Calculate number of records in an inobt btree block.
455 */
456int
457xfs_inobt_maxrecs(
458	struct xfs_mount	*mp,
459	int			blocklen,
460	int			leaf)
461{
462	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463
464	if (leaf)
465		return blocklen / sizeof(xfs_inobt_rec_t);
466	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
 
 
 
 
 
 
467}
468
469/*
470 * Convert the inode record holemask to an inode allocation bitmap. The inode
471 * allocation bitmap is inode granularity and specifies whether an inode is
472 * physically allocated on disk (not whether the inode is considered allocated
473 * or free by the fs).
474 *
475 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
476 */
477uint64_t
478xfs_inobt_irec_to_allocmask(
479	struct xfs_inobt_rec_incore	*rec)
480{
481	uint64_t			bitmap = 0;
482	uint64_t			inodespbit;
483	int				nextbit;
484	uint				allocbitmap;
485
486	/*
487	 * The holemask has 16-bits for a 64 inode record. Therefore each
488	 * holemask bit represents multiple inodes. Create a mask of bits to set
489	 * in the allocmask for each holemask bit.
490	 */
491	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
492
493	/*
494	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
495	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
496	 * anything beyond the 16 holemask bits since this casts to a larger
497	 * type.
498	 */
499	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
500
501	/*
502	 * allocbitmap is the inverted holemask so every set bit represents
503	 * allocated inodes. To expand from 16-bit holemask granularity to
504	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
505	 * bitmap for every holemask bit.
506	 */
507	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
508	while (nextbit != -1) {
509		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
510
511		bitmap |= (inodespbit <<
512			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
513
514		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
515	}
516
517	return bitmap;
518}
519
520#if defined(DEBUG) || defined(XFS_WARN)
521/*
522 * Verify that an in-core inode record has a valid inode count.
523 */
524int
525xfs_inobt_rec_check_count(
526	struct xfs_mount		*mp,
527	struct xfs_inobt_rec_incore	*rec)
528{
529	int				inocount = 0;
530	int				nextbit = 0;
531	uint64_t			allocbmap;
532	int				wordsz;
533
534	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
535	allocbmap = xfs_inobt_irec_to_allocmask(rec);
536
537	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
538	while (nextbit != -1) {
539		inocount++;
540		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
541				       nextbit + 1);
542	}
543
544	if (inocount != rec->ir_count)
545		return -EFSCORRUPTED;
546
547	return 0;
548}
549#endif	/* DEBUG */
550
551static xfs_extlen_t
552xfs_inobt_max_size(
553	struct xfs_mount	*mp)
554{
 
 
 
555	/* Bail out if we're uninitialized, which can happen in mkfs. */
556	if (mp->m_inobt_mxr[0] == 0)
557		return 0;
558
559	return xfs_btree_calc_size(mp->m_inobt_mnr,
560		(uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock /
561				XFS_INODES_PER_CHUNK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562}
563
564static int
565xfs_inobt_count_blocks(
566	struct xfs_mount	*mp,
567	xfs_agnumber_t		agno,
 
568	xfs_btnum_t		btnum,
569	xfs_extlen_t		*tree_blocks)
570{
571	struct xfs_buf		*agbp;
572	struct xfs_btree_cur	*cur;
573	int			error;
574
575	error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp);
576	if (error)
577		return error;
578
579	cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum);
580	error = xfs_btree_count_blocks(cur, tree_blocks);
581	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
582	xfs_buf_relse(agbp);
583
584	return error;
585}
586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587/*
588 * Figure out how many blocks to reserve and how many are used by this btree.
589 */
590int
591xfs_finobt_calc_reserves(
592	struct xfs_mount	*mp,
593	xfs_agnumber_t		agno,
 
594	xfs_extlen_t		*ask,
595	xfs_extlen_t		*used)
596{
597	xfs_extlen_t		tree_len = 0;
598	int			error;
599
600	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
601		return 0;
602
603	error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len);
 
 
 
 
604	if (error)
605		return error;
606
607	*ask += xfs_inobt_max_size(mp);
608	*used += tree_len;
609	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610}