Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 15#include "accessors.h"
 16
 17/*
 18 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 20 * the level the eb occupies in the tree.
 21 *
 22 * Different roots are used for different purposes and may nest inside each
 23 * other and they require separate keysets.  As lockdep keys should be
 24 * static, assign keysets according to the purpose of the root as indicated
 25 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 26 * roots have separate keysets.
 27 *
 28 * Lock-nesting across peer nodes is always done with the immediate parent
 29 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 30 * subclass to avoid triggering lockdep warning in such cases.
 31 *
 32 * The key is set by the readpage_end_io_hook after the buffer has passed
 33 * csum validation but before the pages are unlocked.  It is also set by
 34 * btrfs_init_new_buffer on freshly allocated blocks.
 35 *
 36 * We also add a check to make sure the highest level of the tree is the
 37 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 38 * needs update as well.
 39 */
 40#ifdef CONFIG_DEBUG_LOCK_ALLOC
 41#if BTRFS_MAX_LEVEL != 8
 42#error
 43#endif
 44
 45#define DEFINE_LEVEL(stem, level)					\
 46	.names[level] = "btrfs-" stem "-0" #level,
 47
 48#define DEFINE_NAME(stem)						\
 49	DEFINE_LEVEL(stem, 0)						\
 50	DEFINE_LEVEL(stem, 1)						\
 51	DEFINE_LEVEL(stem, 2)						\
 52	DEFINE_LEVEL(stem, 3)						\
 53	DEFINE_LEVEL(stem, 4)						\
 54	DEFINE_LEVEL(stem, 5)						\
 55	DEFINE_LEVEL(stem, 6)						\
 56	DEFINE_LEVEL(stem, 7)
 57
 58static struct btrfs_lockdep_keyset {
 59	u64			id;		/* root objectid */
 60	/* Longest entry: btrfs-free-space-00 */
 61	char			names[BTRFS_MAX_LEVEL][20];
 62	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 63} btrfs_lockdep_keysets[] = {
 64	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 65	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 66	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 67	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 68	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 69	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 70	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 71	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 72	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 73	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 74	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 
 
 75	{ .id = 0,				DEFINE_NAME("tree")	},
 76};
 77
 78#undef DEFINE_LEVEL
 79#undef DEFINE_NAME
 80
 81void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 82{
 83	struct btrfs_lockdep_keyset *ks;
 84
 85	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 86
 87	/* Find the matching keyset, id 0 is the default entry */
 88	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 89		if (ks->id == objectid)
 90			break;
 91
 92	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 93}
 94
 95void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 96{
 97	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
 98		btrfs_set_buffer_lockdep_class(root->root_key.objectid,
 99					       eb, btrfs_header_level(eb));
100}
101
102#endif
103
 
 
 
 
 
 
 
 
 
104/*
105 * Extent buffer locking
106 * =====================
107 *
108 * We use a rw_semaphore for tree locking, and the semantics are exactly the
109 * same:
110 *
111 * - reader/writer exclusion
112 * - writer/writer exclusion
113 * - reader/reader sharing
114 * - try-lock semantics for readers and writers
115 *
116 * The rwsem implementation does opportunistic spinning which reduces number of
117 * times the locking task needs to sleep.
118 */
119
120/*
121 * __btrfs_tree_read_lock - lock extent buffer for read
122 * @eb:		the eb to be locked
123 * @nest:	the nesting level to be used for lockdep
124 *
125 * This takes the read lock on the extent buffer, using the specified nesting
126 * level for lockdep purposes.
127 */
128void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
129{
130	u64 start_ns = 0;
131
132	if (trace_btrfs_tree_read_lock_enabled())
133		start_ns = ktime_get_ns();
134
135	down_read_nested(&eb->lock, nest);
136	trace_btrfs_tree_read_lock(eb, start_ns);
137}
138
139void btrfs_tree_read_lock(struct extent_buffer *eb)
140{
141	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
142}
143
144/*
145 * Try-lock for read.
146 *
147 * Return 1 if the rwlock has been taken, 0 otherwise
148 */
149int btrfs_try_tree_read_lock(struct extent_buffer *eb)
150{
151	if (down_read_trylock(&eb->lock)) {
152		trace_btrfs_try_tree_read_lock(eb);
153		return 1;
154	}
155	return 0;
156}
157
158/*
159 * Try-lock for write.
160 *
161 * Return 1 if the rwlock has been taken, 0 otherwise
162 */
163int btrfs_try_tree_write_lock(struct extent_buffer *eb)
164{
165	if (down_write_trylock(&eb->lock)) {
166		eb->lock_owner = current->pid;
167		trace_btrfs_try_tree_write_lock(eb);
168		return 1;
169	}
170	return 0;
171}
172
173/*
174 * Release read lock.
175 */
176void btrfs_tree_read_unlock(struct extent_buffer *eb)
177{
178	trace_btrfs_tree_read_unlock(eb);
179	up_read(&eb->lock);
180}
181
182/*
183 * __btrfs_tree_lock - lock eb for write
 
184 * @eb:		the eb to lock
185 * @nest:	the nesting to use for the lock
186 *
187 * Returns with the eb->lock write locked.
188 */
189void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
190	__acquires(&eb->lock)
191{
192	u64 start_ns = 0;
193
194	if (trace_btrfs_tree_lock_enabled())
195		start_ns = ktime_get_ns();
196
197	down_write_nested(&eb->lock, nest);
198	eb->lock_owner = current->pid;
199	trace_btrfs_tree_lock(eb, start_ns);
200}
201
202void btrfs_tree_lock(struct extent_buffer *eb)
203{
204	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
205}
206
207/*
208 * Release the write lock.
209 */
210void btrfs_tree_unlock(struct extent_buffer *eb)
211{
212	trace_btrfs_tree_unlock(eb);
213	eb->lock_owner = 0;
214	up_write(&eb->lock);
215}
216
217/*
218 * This releases any locks held in the path starting at level and going all the
219 * way up to the root.
220 *
221 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
222 * cases, such as COW of the block at slot zero in the node.  This ignores
223 * those rules, and it should only be called when there are no more updates to
224 * be done higher up in the tree.
225 */
226void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
227{
228	int i;
229
230	if (path->keep_locks)
231		return;
232
233	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
234		if (!path->nodes[i])
235			continue;
236		if (!path->locks[i])
237			continue;
238		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
239		path->locks[i] = 0;
240	}
241}
242
243/*
244 * Loop around taking references on and locking the root node of the tree until
245 * we end up with a lock on the root node.
246 *
247 * Return: root extent buffer with write lock held
248 */
249struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
250{
251	struct extent_buffer *eb;
252
253	while (1) {
254		eb = btrfs_root_node(root);
255
256		btrfs_maybe_reset_lockdep_class(root, eb);
257		btrfs_tree_lock(eb);
258		if (eb == root->node)
259			break;
260		btrfs_tree_unlock(eb);
261		free_extent_buffer(eb);
262	}
263	return eb;
264}
265
266/*
267 * Loop around taking references on and locking the root node of the tree until
268 * we end up with a lock on the root node.
269 *
270 * Return: root extent buffer with read lock held
271 */
272struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
273{
274	struct extent_buffer *eb;
275
276	while (1) {
277		eb = btrfs_root_node(root);
278
279		btrfs_maybe_reset_lockdep_class(root, eb);
280		btrfs_tree_read_lock(eb);
281		if (eb == root->node)
282			break;
283		btrfs_tree_read_unlock(eb);
284		free_extent_buffer(eb);
285	}
286	return eb;
287}
288
289/*
290 * Loop around taking references on and locking the root node of the tree in
291 * nowait mode until we end up with a lock on the root node or returning to
292 * avoid blocking.
293 *
294 * Return: root extent buffer with read lock held or -EAGAIN.
295 */
296struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
297{
298	struct extent_buffer *eb;
299
300	while (1) {
301		eb = btrfs_root_node(root);
302		if (!btrfs_try_tree_read_lock(eb)) {
303			free_extent_buffer(eb);
304			return ERR_PTR(-EAGAIN);
305		}
306		if (eb == root->node)
307			break;
308		btrfs_tree_read_unlock(eb);
309		free_extent_buffer(eb);
310	}
311	return eb;
312}
313
314/*
315 * DREW locks
316 * ==========
317 *
318 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
319 * where you want to provide A-B exclusion but not AA or BB.
320 *
321 * Currently implementation gives more priority to reader. If a reader and a
322 * writer both race to acquire their respective sides of the lock the writer
323 * would yield its lock as soon as it detects a concurrent reader. Additionally
324 * if there are pending readers no new writers would be allowed to come in and
325 * acquire the lock.
326 */
327
328int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
329{
330	int ret;
331
332	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
333	if (ret)
334		return ret;
335
336	atomic_set(&lock->readers, 0);
 
337	init_waitqueue_head(&lock->pending_readers);
338	init_waitqueue_head(&lock->pending_writers);
339
340	return 0;
341}
342
343void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
344{
345	percpu_counter_destroy(&lock->writers);
346}
347
348/* Return true if acquisition is successful, false otherwise */
349bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
350{
351	if (atomic_read(&lock->readers))
352		return false;
353
354	percpu_counter_inc(&lock->writers);
355
356	/* Ensure writers count is updated before we check for pending readers */
357	smp_mb();
358	if (atomic_read(&lock->readers)) {
359		btrfs_drew_write_unlock(lock);
360		return false;
361	}
362
363	return true;
364}
365
366void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
367{
368	while (true) {
369		if (btrfs_drew_try_write_lock(lock))
370			return;
371		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
372	}
373}
374
375void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
376{
377	percpu_counter_dec(&lock->writers);
378	cond_wake_up(&lock->pending_readers);
379}
380
381void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
382{
383	atomic_inc(&lock->readers);
384
385	/*
386	 * Ensure the pending reader count is perceieved BEFORE this reader
387	 * goes to sleep in case of active writers. This guarantees new writers
388	 * won't be allowed and that the current reader will be woken up when
389	 * the last active writer finishes its jobs.
390	 */
391	smp_mb__after_atomic();
392
393	wait_event(lock->pending_readers,
394		   percpu_counter_sum(&lock->writers) == 0);
395}
396
397void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
398{
399	/*
400	 * atomic_dec_and_test implies a full barrier, so woken up writers
401	 * are guaranteed to see the decrement
402	 */
403	if (atomic_dec_and_test(&lock->readers))
404		wake_up(&lock->pending_writers);
405}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include <trace/events/btrfs.h>
 12#include "misc.h"
 13#include "ctree.h"
 14#include "extent_io.h"
 15#include "locking.h"
 
 16
 17/*
 18 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 20 * the level the eb occupies in the tree.
 21 *
 22 * Different roots are used for different purposes and may nest inside each
 23 * other and they require separate keysets.  As lockdep keys should be
 24 * static, assign keysets according to the purpose of the root as indicated
 25 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 26 * roots have separate keysets.
 27 *
 28 * Lock-nesting across peer nodes is always done with the immediate parent
 29 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 30 * subclass to avoid triggering lockdep warning in such cases.
 31 *
 32 * The key is set by the readpage_end_io_hook after the buffer has passed
 33 * csum validation but before the pages are unlocked.  It is also set by
 34 * btrfs_init_new_buffer on freshly allocated blocks.
 35 *
 36 * We also add a check to make sure the highest level of the tree is the
 37 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 38 * needs update as well.
 39 */
 40#ifdef CONFIG_DEBUG_LOCK_ALLOC
 41#if BTRFS_MAX_LEVEL != 8
 42#error
 43#endif
 44
 45#define DEFINE_LEVEL(stem, level)					\
 46	.names[level] = "btrfs-" stem "-0" #level,
 47
 48#define DEFINE_NAME(stem)						\
 49	DEFINE_LEVEL(stem, 0)						\
 50	DEFINE_LEVEL(stem, 1)						\
 51	DEFINE_LEVEL(stem, 2)						\
 52	DEFINE_LEVEL(stem, 3)						\
 53	DEFINE_LEVEL(stem, 4)						\
 54	DEFINE_LEVEL(stem, 5)						\
 55	DEFINE_LEVEL(stem, 6)						\
 56	DEFINE_LEVEL(stem, 7)
 57
 58static struct btrfs_lockdep_keyset {
 59	u64			id;		/* root objectid */
 60	/* Longest entry: btrfs-block-group-00 */
 61	char			names[BTRFS_MAX_LEVEL][24];
 62	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 63} btrfs_lockdep_keysets[] = {
 64	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 65	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 66	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 67	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 68	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 69	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 70	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 71	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 72	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 73	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 74	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 75	{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
 76	{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
 77	{ .id = 0,				DEFINE_NAME("tree")	},
 78};
 79
 80#undef DEFINE_LEVEL
 81#undef DEFINE_NAME
 82
 83void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 84{
 85	struct btrfs_lockdep_keyset *ks;
 86
 87	ASSERT(level < ARRAY_SIZE(ks->keys));
 88
 89	/* Find the matching keyset, id 0 is the default entry */
 90	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 91		if (ks->id == objectid)
 92			break;
 93
 94	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 95}
 96
 97void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 98{
 99	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
100		btrfs_set_buffer_lockdep_class(root->root_key.objectid,
101					       eb, btrfs_header_level(eb));
102}
103
104#endif
105
106#ifdef CONFIG_BTRFS_DEBUG
107static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
108{
109	eb->lock_owner = owner;
110}
111#else
112static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
113#endif
114
115/*
116 * Extent buffer locking
117 * =====================
118 *
119 * We use a rw_semaphore for tree locking, and the semantics are exactly the
120 * same:
121 *
122 * - reader/writer exclusion
123 * - writer/writer exclusion
124 * - reader/reader sharing
125 * - try-lock semantics for readers and writers
126 *
127 * The rwsem implementation does opportunistic spinning which reduces number of
128 * times the locking task needs to sleep.
129 */
130
131/*
132 * __btrfs_tree_read_lock - lock extent buffer for read
133 * @eb:		the eb to be locked
134 * @nest:	the nesting level to be used for lockdep
135 *
136 * This takes the read lock on the extent buffer, using the specified nesting
137 * level for lockdep purposes.
138 */
139void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
140{
141	u64 start_ns = 0;
142
143	if (trace_btrfs_tree_read_lock_enabled())
144		start_ns = ktime_get_ns();
145
146	down_read_nested(&eb->lock, nest);
147	trace_btrfs_tree_read_lock(eb, start_ns);
148}
149
150void btrfs_tree_read_lock(struct extent_buffer *eb)
151{
152	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
153}
154
155/*
156 * Try-lock for read.
157 *
158 * Return 1 if the rwlock has been taken, 0 otherwise
159 */
160int btrfs_try_tree_read_lock(struct extent_buffer *eb)
161{
162	if (down_read_trylock(&eb->lock)) {
163		trace_btrfs_try_tree_read_lock(eb);
164		return 1;
165	}
166	return 0;
167}
168
169/*
170 * Try-lock for write.
171 *
172 * Return 1 if the rwlock has been taken, 0 otherwise
173 */
174int btrfs_try_tree_write_lock(struct extent_buffer *eb)
175{
176	if (down_write_trylock(&eb->lock)) {
177		btrfs_set_eb_lock_owner(eb, current->pid);
178		trace_btrfs_try_tree_write_lock(eb);
179		return 1;
180	}
181	return 0;
182}
183
184/*
185 * Release read lock.
186 */
187void btrfs_tree_read_unlock(struct extent_buffer *eb)
188{
189	trace_btrfs_tree_read_unlock(eb);
190	up_read(&eb->lock);
191}
192
193/*
194 * Lock eb for write.
195 *
196 * @eb:		the eb to lock
197 * @nest:	the nesting to use for the lock
198 *
199 * Returns with the eb->lock write locked.
200 */
201void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
202	__acquires(&eb->lock)
203{
204	u64 start_ns = 0;
205
206	if (trace_btrfs_tree_lock_enabled())
207		start_ns = ktime_get_ns();
208
209	down_write_nested(&eb->lock, nest);
210	btrfs_set_eb_lock_owner(eb, current->pid);
211	trace_btrfs_tree_lock(eb, start_ns);
212}
213
214void btrfs_tree_lock(struct extent_buffer *eb)
215{
216	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
217}
218
219/*
220 * Release the write lock.
221 */
222void btrfs_tree_unlock(struct extent_buffer *eb)
223{
224	trace_btrfs_tree_unlock(eb);
225	btrfs_set_eb_lock_owner(eb, 0);
226	up_write(&eb->lock);
227}
228
229/*
230 * This releases any locks held in the path starting at level and going all the
231 * way up to the root.
232 *
233 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
234 * cases, such as COW of the block at slot zero in the node.  This ignores
235 * those rules, and it should only be called when there are no more updates to
236 * be done higher up in the tree.
237 */
238void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
239{
240	int i;
241
242	if (path->keep_locks)
243		return;
244
245	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
246		if (!path->nodes[i])
247			continue;
248		if (!path->locks[i])
249			continue;
250		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
251		path->locks[i] = 0;
252	}
253}
254
255/*
256 * Loop around taking references on and locking the root node of the tree until
257 * we end up with a lock on the root node.
258 *
259 * Return: root extent buffer with write lock held
260 */
261struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
262{
263	struct extent_buffer *eb;
264
265	while (1) {
266		eb = btrfs_root_node(root);
267
268		btrfs_maybe_reset_lockdep_class(root, eb);
269		btrfs_tree_lock(eb);
270		if (eb == root->node)
271			break;
272		btrfs_tree_unlock(eb);
273		free_extent_buffer(eb);
274	}
275	return eb;
276}
277
278/*
279 * Loop around taking references on and locking the root node of the tree until
280 * we end up with a lock on the root node.
281 *
282 * Return: root extent buffer with read lock held
283 */
284struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
285{
286	struct extent_buffer *eb;
287
288	while (1) {
289		eb = btrfs_root_node(root);
290
291		btrfs_maybe_reset_lockdep_class(root, eb);
292		btrfs_tree_read_lock(eb);
293		if (eb == root->node)
294			break;
295		btrfs_tree_read_unlock(eb);
296		free_extent_buffer(eb);
297	}
298	return eb;
299}
300
301/*
302 * Loop around taking references on and locking the root node of the tree in
303 * nowait mode until we end up with a lock on the root node or returning to
304 * avoid blocking.
305 *
306 * Return: root extent buffer with read lock held or -EAGAIN.
307 */
308struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
309{
310	struct extent_buffer *eb;
311
312	while (1) {
313		eb = btrfs_root_node(root);
314		if (!btrfs_try_tree_read_lock(eb)) {
315			free_extent_buffer(eb);
316			return ERR_PTR(-EAGAIN);
317		}
318		if (eb == root->node)
319			break;
320		btrfs_tree_read_unlock(eb);
321		free_extent_buffer(eb);
322	}
323	return eb;
324}
325
326/*
327 * DREW locks
328 * ==========
329 *
330 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
331 * where you want to provide A-B exclusion but not AA or BB.
332 *
333 * Currently implementation gives more priority to reader. If a reader and a
334 * writer both race to acquire their respective sides of the lock the writer
335 * would yield its lock as soon as it detects a concurrent reader. Additionally
336 * if there are pending readers no new writers would be allowed to come in and
337 * acquire the lock.
338 */
339
340void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
341{
 
 
 
 
 
 
342	atomic_set(&lock->readers, 0);
343	atomic_set(&lock->writers, 0);
344	init_waitqueue_head(&lock->pending_readers);
345	init_waitqueue_head(&lock->pending_writers);
 
 
 
 
 
 
 
346}
347
348/* Return true if acquisition is successful, false otherwise */
349bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
350{
351	if (atomic_read(&lock->readers))
352		return false;
353
354	atomic_inc(&lock->writers);
355
356	/* Ensure writers count is updated before we check for pending readers */
357	smp_mb__after_atomic();
358	if (atomic_read(&lock->readers)) {
359		btrfs_drew_write_unlock(lock);
360		return false;
361	}
362
363	return true;
364}
365
366void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
367{
368	while (true) {
369		if (btrfs_drew_try_write_lock(lock))
370			return;
371		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
372	}
373}
374
375void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
376{
377	atomic_dec(&lock->writers);
378	cond_wake_up(&lock->pending_readers);
379}
380
381void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
382{
383	atomic_inc(&lock->readers);
384
385	/*
386	 * Ensure the pending reader count is perceieved BEFORE this reader
387	 * goes to sleep in case of active writers. This guarantees new writers
388	 * won't be allowed and that the current reader will be woken up when
389	 * the last active writer finishes its jobs.
390	 */
391	smp_mb__after_atomic();
392
393	wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
 
394}
395
396void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
397{
398	/*
399	 * atomic_dec_and_test implies a full barrier, so woken up writers
400	 * are guaranteed to see the decrement
401	 */
402	if (atomic_dec_and_test(&lock->readers))
403		wake_up(&lock->pending_writers);
404}