Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 15#include "accessors.h"
 16
 17/*
 18 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 20 * the level the eb occupies in the tree.
 21 *
 22 * Different roots are used for different purposes and may nest inside each
 23 * other and they require separate keysets.  As lockdep keys should be
 24 * static, assign keysets according to the purpose of the root as indicated
 25 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 26 * roots have separate keysets.
 27 *
 28 * Lock-nesting across peer nodes is always done with the immediate parent
 29 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 30 * subclass to avoid triggering lockdep warning in such cases.
 31 *
 32 * The key is set by the readpage_end_io_hook after the buffer has passed
 33 * csum validation but before the pages are unlocked.  It is also set by
 34 * btrfs_init_new_buffer on freshly allocated blocks.
 35 *
 36 * We also add a check to make sure the highest level of the tree is the
 37 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 38 * needs update as well.
 39 */
 40#ifdef CONFIG_DEBUG_LOCK_ALLOC
 41#if BTRFS_MAX_LEVEL != 8
 42#error
 43#endif
 44
 45#define DEFINE_LEVEL(stem, level)					\
 46	.names[level] = "btrfs-" stem "-0" #level,
 47
 48#define DEFINE_NAME(stem)						\
 49	DEFINE_LEVEL(stem, 0)						\
 50	DEFINE_LEVEL(stem, 1)						\
 51	DEFINE_LEVEL(stem, 2)						\
 52	DEFINE_LEVEL(stem, 3)						\
 53	DEFINE_LEVEL(stem, 4)						\
 54	DEFINE_LEVEL(stem, 5)						\
 55	DEFINE_LEVEL(stem, 6)						\
 56	DEFINE_LEVEL(stem, 7)
 57
 58static struct btrfs_lockdep_keyset {
 59	u64			id;		/* root objectid */
 60	/* Longest entry: btrfs-free-space-00 */
 61	char			names[BTRFS_MAX_LEVEL][20];
 62	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 63} btrfs_lockdep_keysets[] = {
 64	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 65	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 66	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 67	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 68	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 69	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 70	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 71	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 72	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 73	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 74	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 75	{ .id = 0,				DEFINE_NAME("tree")	},
 76};
 77
 78#undef DEFINE_LEVEL
 79#undef DEFINE_NAME
 80
 81void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
 82{
 83	struct btrfs_lockdep_keyset *ks;
 84
 85	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 86
 87	/* Find the matching keyset, id 0 is the default entry */
 88	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 89		if (ks->id == objectid)
 90			break;
 91
 92	lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
 93}
 94
 95void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
 96{
 97	if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
 98		btrfs_set_buffer_lockdep_class(root->root_key.objectid,
 99					       eb, btrfs_header_level(eb));
100}
101
102#endif
103
104/*
105 * Extent buffer locking
106 * =====================
107 *
108 * We use a rw_semaphore for tree locking, and the semantics are exactly the
109 * same:
110 *
111 * - reader/writer exclusion
112 * - writer/writer exclusion
113 * - reader/reader sharing
114 * - try-lock semantics for readers and writers
115 *
116 * The rwsem implementation does opportunistic spinning which reduces number of
117 * times the locking task needs to sleep.
118 */
119
120/*
121 * __btrfs_tree_read_lock - lock extent buffer for read
122 * @eb:		the eb to be locked
123 * @nest:	the nesting level to be used for lockdep
124 *
125 * This takes the read lock on the extent buffer, using the specified nesting
126 * level for lockdep purposes.
127 */
128void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
129{
130	u64 start_ns = 0;
131
132	if (trace_btrfs_tree_read_lock_enabled())
133		start_ns = ktime_get_ns();
134
135	down_read_nested(&eb->lock, nest);
 
136	trace_btrfs_tree_read_lock(eb, start_ns);
137}
138
139void btrfs_tree_read_lock(struct extent_buffer *eb)
140{
141	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
142}
143
144/*
145 * Try-lock for read.
146 *
147 * Return 1 if the rwlock has been taken, 0 otherwise
148 */
149int btrfs_try_tree_read_lock(struct extent_buffer *eb)
150{
151	if (down_read_trylock(&eb->lock)) {
 
152		trace_btrfs_try_tree_read_lock(eb);
153		return 1;
154	}
155	return 0;
156}
157
158/*
159 * Try-lock for write.
160 *
161 * Return 1 if the rwlock has been taken, 0 otherwise
162 */
163int btrfs_try_tree_write_lock(struct extent_buffer *eb)
164{
165	if (down_write_trylock(&eb->lock)) {
166		eb->lock_owner = current->pid;
167		trace_btrfs_try_tree_write_lock(eb);
168		return 1;
169	}
170	return 0;
171}
172
173/*
174 * Release read lock.
175 */
176void btrfs_tree_read_unlock(struct extent_buffer *eb)
177{
178	trace_btrfs_tree_read_unlock(eb);
 
179	up_read(&eb->lock);
180}
181
182/*
183 * __btrfs_tree_lock - lock eb for write
184 * @eb:		the eb to lock
185 * @nest:	the nesting to use for the lock
186 *
187 * Returns with the eb->lock write locked.
188 */
189void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
190	__acquires(&eb->lock)
191{
192	u64 start_ns = 0;
193
194	if (trace_btrfs_tree_lock_enabled())
195		start_ns = ktime_get_ns();
196
197	down_write_nested(&eb->lock, nest);
198	eb->lock_owner = current->pid;
199	trace_btrfs_tree_lock(eb, start_ns);
200}
201
202void btrfs_tree_lock(struct extent_buffer *eb)
203{
204	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
205}
206
207/*
208 * Release the write lock.
209 */
210void btrfs_tree_unlock(struct extent_buffer *eb)
211{
212	trace_btrfs_tree_unlock(eb);
213	eb->lock_owner = 0;
214	up_write(&eb->lock);
215}
216
217/*
218 * This releases any locks held in the path starting at level and going all the
219 * way up to the root.
220 *
221 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
222 * cases, such as COW of the block at slot zero in the node.  This ignores
223 * those rules, and it should only be called when there are no more updates to
224 * be done higher up in the tree.
225 */
226void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
227{
228	int i;
229
230	if (path->keep_locks)
231		return;
232
233	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
234		if (!path->nodes[i])
235			continue;
236		if (!path->locks[i])
237			continue;
238		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
239		path->locks[i] = 0;
240	}
241}
242
243/*
244 * Loop around taking references on and locking the root node of the tree until
245 * we end up with a lock on the root node.
246 *
247 * Return: root extent buffer with write lock held
248 */
249struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
250{
251	struct extent_buffer *eb;
252
253	while (1) {
254		eb = btrfs_root_node(root);
255
256		btrfs_maybe_reset_lockdep_class(root, eb);
257		btrfs_tree_lock(eb);
258		if (eb == root->node)
259			break;
260		btrfs_tree_unlock(eb);
261		free_extent_buffer(eb);
262	}
263	return eb;
264}
265
266/*
267 * Loop around taking references on and locking the root node of the tree until
268 * we end up with a lock on the root node.
269 *
270 * Return: root extent buffer with read lock held
271 */
272struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
273{
274	struct extent_buffer *eb;
275
276	while (1) {
277		eb = btrfs_root_node(root);
278
279		btrfs_maybe_reset_lockdep_class(root, eb);
280		btrfs_tree_read_lock(eb);
281		if (eb == root->node)
282			break;
283		btrfs_tree_read_unlock(eb);
284		free_extent_buffer(eb);
285	}
286	return eb;
287}
288
289/*
290 * Loop around taking references on and locking the root node of the tree in
291 * nowait mode until we end up with a lock on the root node or returning to
292 * avoid blocking.
293 *
294 * Return: root extent buffer with read lock held or -EAGAIN.
295 */
296struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
297{
298	struct extent_buffer *eb;
299
300	while (1) {
301		eb = btrfs_root_node(root);
302		if (!btrfs_try_tree_read_lock(eb)) {
303			free_extent_buffer(eb);
304			return ERR_PTR(-EAGAIN);
305		}
306		if (eb == root->node)
307			break;
308		btrfs_tree_read_unlock(eb);
309		free_extent_buffer(eb);
310	}
311	return eb;
312}
313
314/*
315 * DREW locks
316 * ==========
317 *
318 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
319 * where you want to provide A-B exclusion but not AA or BB.
320 *
321 * Currently implementation gives more priority to reader. If a reader and a
322 * writer both race to acquire their respective sides of the lock the writer
323 * would yield its lock as soon as it detects a concurrent reader. Additionally
324 * if there are pending readers no new writers would be allowed to come in and
325 * acquire the lock.
326 */
327
328int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
329{
330	int ret;
331
332	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
333	if (ret)
334		return ret;
335
336	atomic_set(&lock->readers, 0);
337	init_waitqueue_head(&lock->pending_readers);
338	init_waitqueue_head(&lock->pending_writers);
339
340	return 0;
341}
342
343void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
344{
345	percpu_counter_destroy(&lock->writers);
346}
347
348/* Return true if acquisition is successful, false otherwise */
349bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
350{
351	if (atomic_read(&lock->readers))
352		return false;
353
354	percpu_counter_inc(&lock->writers);
355
356	/* Ensure writers count is updated before we check for pending readers */
357	smp_mb();
358	if (atomic_read(&lock->readers)) {
359		btrfs_drew_write_unlock(lock);
360		return false;
361	}
362
363	return true;
364}
365
366void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
367{
368	while (true) {
369		if (btrfs_drew_try_write_lock(lock))
370			return;
371		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
372	}
373}
374
375void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
376{
377	percpu_counter_dec(&lock->writers);
378	cond_wake_up(&lock->pending_readers);
379}
380
381void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
382{
383	atomic_inc(&lock->readers);
384
385	/*
386	 * Ensure the pending reader count is perceieved BEFORE this reader
387	 * goes to sleep in case of active writers. This guarantees new writers
388	 * won't be allowed and that the current reader will be woken up when
389	 * the last active writer finishes its jobs.
390	 */
391	smp_mb__after_atomic();
392
393	wait_event(lock->pending_readers,
394		   percpu_counter_sum(&lock->writers) == 0);
395}
396
397void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
398{
399	/*
400	 * atomic_dec_and_test implies a full barrier, so woken up writers
401	 * are guaranteed to see the decrement
402	 */
403	if (atomic_dec_and_test(&lock->readers))
404		wake_up(&lock->pending_writers);
405}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16/*
 17 * Extent buffer locking
 18 * =====================
 19 *
 20 * We use a rw_semaphore for tree locking, and the semantics are exactly the
 21 * same:
 22 *
 23 * - reader/writer exclusion
 24 * - writer/writer exclusion
 25 * - reader/reader sharing
 26 * - try-lock semantics for readers and writers
 27 *
 28 * The rwsem implementation does opportunistic spinning which reduces number of
 29 * times the locking task needs to sleep.
 30 */
 31
 32/*
 33 * __btrfs_tree_read_lock - lock extent buffer for read
 34 * @eb:		the eb to be locked
 35 * @nest:	the nesting level to be used for lockdep
 36 *
 37 * This takes the read lock on the extent buffer, using the specified nesting
 38 * level for lockdep purposes.
 39 */
 40void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
 41{
 42	u64 start_ns = 0;
 43
 44	if (trace_btrfs_tree_read_lock_enabled())
 45		start_ns = ktime_get_ns();
 46
 47	down_read_nested(&eb->lock, nest);
 48	eb->lock_owner = current->pid;
 49	trace_btrfs_tree_read_lock(eb, start_ns);
 50}
 51
 52void btrfs_tree_read_lock(struct extent_buffer *eb)
 53{
 54	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
 55}
 56
 57/*
 58 * Try-lock for read.
 59 *
 60 * Return 1 if the rwlock has been taken, 0 otherwise
 61 */
 62int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 63{
 64	if (down_read_trylock(&eb->lock)) {
 65		eb->lock_owner = current->pid;
 66		trace_btrfs_try_tree_read_lock(eb);
 67		return 1;
 68	}
 69	return 0;
 70}
 71
 72/*
 73 * Try-lock for write.
 74 *
 75 * Return 1 if the rwlock has been taken, 0 otherwise
 76 */
 77int btrfs_try_tree_write_lock(struct extent_buffer *eb)
 78{
 79	if (down_write_trylock(&eb->lock)) {
 80		eb->lock_owner = current->pid;
 81		trace_btrfs_try_tree_write_lock(eb);
 82		return 1;
 83	}
 84	return 0;
 85}
 86
 87/*
 88 * Release read lock.
 89 */
 90void btrfs_tree_read_unlock(struct extent_buffer *eb)
 91{
 92	trace_btrfs_tree_read_unlock(eb);
 93	eb->lock_owner = 0;
 94	up_read(&eb->lock);
 95}
 96
 97/*
 98 * __btrfs_tree_lock - lock eb for write
 99 * @eb:		the eb to lock
100 * @nest:	the nesting to use for the lock
101 *
102 * Returns with the eb->lock write locked.
103 */
104void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
105	__acquires(&eb->lock)
106{
107	u64 start_ns = 0;
108
109	if (trace_btrfs_tree_lock_enabled())
110		start_ns = ktime_get_ns();
111
112	down_write_nested(&eb->lock, nest);
113	eb->lock_owner = current->pid;
114	trace_btrfs_tree_lock(eb, start_ns);
115}
116
117void btrfs_tree_lock(struct extent_buffer *eb)
118{
119	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
120}
121
122/*
123 * Release the write lock.
124 */
125void btrfs_tree_unlock(struct extent_buffer *eb)
126{
127	trace_btrfs_tree_unlock(eb);
128	eb->lock_owner = 0;
129	up_write(&eb->lock);
130}
131
132/*
133 * This releases any locks held in the path starting at level and going all the
134 * way up to the root.
135 *
136 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
137 * cases, such as COW of the block at slot zero in the node.  This ignores
138 * those rules, and it should only be called when there are no more updates to
139 * be done higher up in the tree.
140 */
141void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
142{
143	int i;
144
145	if (path->keep_locks)
146		return;
147
148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
149		if (!path->nodes[i])
150			continue;
151		if (!path->locks[i])
152			continue;
153		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
154		path->locks[i] = 0;
155	}
156}
157
158/*
159 * Loop around taking references on and locking the root node of the tree until
160 * we end up with a lock on the root node.
161 *
162 * Return: root extent buffer with write lock held
163 */
164struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
165{
166	struct extent_buffer *eb;
167
168	while (1) {
169		eb = btrfs_root_node(root);
 
 
170		btrfs_tree_lock(eb);
171		if (eb == root->node)
172			break;
173		btrfs_tree_unlock(eb);
174		free_extent_buffer(eb);
175	}
176	return eb;
177}
178
179/*
180 * Loop around taking references on and locking the root node of the tree until
181 * we end up with a lock on the root node.
182 *
183 * Return: root extent buffer with read lock held
184 */
185struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
186{
187	struct extent_buffer *eb;
188
189	while (1) {
190		eb = btrfs_root_node(root);
 
 
191		btrfs_tree_read_lock(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192		if (eb == root->node)
193			break;
194		btrfs_tree_read_unlock(eb);
195		free_extent_buffer(eb);
196	}
197	return eb;
198}
199
200/*
201 * DREW locks
202 * ==========
203 *
204 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
205 * where you want to provide A-B exclusion but not AA or BB.
206 *
207 * Currently implementation gives more priority to reader. If a reader and a
208 * writer both race to acquire their respective sides of the lock the writer
209 * would yield its lock as soon as it detects a concurrent reader. Additionally
210 * if there are pending readers no new writers would be allowed to come in and
211 * acquire the lock.
212 */
213
214int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
215{
216	int ret;
217
218	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
219	if (ret)
220		return ret;
221
222	atomic_set(&lock->readers, 0);
223	init_waitqueue_head(&lock->pending_readers);
224	init_waitqueue_head(&lock->pending_writers);
225
226	return 0;
227}
228
229void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
230{
231	percpu_counter_destroy(&lock->writers);
232}
233
234/* Return true if acquisition is successful, false otherwise */
235bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
236{
237	if (atomic_read(&lock->readers))
238		return false;
239
240	percpu_counter_inc(&lock->writers);
241
242	/* Ensure writers count is updated before we check for pending readers */
243	smp_mb();
244	if (atomic_read(&lock->readers)) {
245		btrfs_drew_write_unlock(lock);
246		return false;
247	}
248
249	return true;
250}
251
252void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
253{
254	while (true) {
255		if (btrfs_drew_try_write_lock(lock))
256			return;
257		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
258	}
259}
260
261void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
262{
263	percpu_counter_dec(&lock->writers);
264	cond_wake_up(&lock->pending_readers);
265}
266
267void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
268{
269	atomic_inc(&lock->readers);
270
271	/*
272	 * Ensure the pending reader count is perceieved BEFORE this reader
273	 * goes to sleep in case of active writers. This guarantees new writers
274	 * won't be allowed and that the current reader will be woken up when
275	 * the last active writer finishes its jobs.
276	 */
277	smp_mb__after_atomic();
278
279	wait_event(lock->pending_readers,
280		   percpu_counter_sum(&lock->writers) == 0);
281}
282
283void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
284{
285	/*
286	 * atomic_dec_and_test implies a full barrier, so woken up writers
287	 * are guaranteed to see the decrement
288	 */
289	if (atomic_dec_and_test(&lock->readers))
290		wake_up(&lock->pending_writers);
291}