Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* OPP tables with uninitialized required OPPs */
33LIST_HEAD(lazy_opp_tables);
34
35/* Lock to allow exclusive modification to the device and opp lists */
36DEFINE_MUTEX(opp_table_lock);
37/* Flag indicating that opp_tables list is being updated at the moment */
38static bool opp_tables_busy;
39
40/* OPP ID allocator */
41static DEFINE_XARRAY_ALLOC1(opp_configs);
42
43static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
44{
45 struct opp_device *opp_dev;
46 bool found = false;
47
48 mutex_lock(&opp_table->lock);
49 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 if (opp_dev->dev == dev) {
51 found = true;
52 break;
53 }
54
55 mutex_unlock(&opp_table->lock);
56 return found;
57}
58
59static struct opp_table *_find_opp_table_unlocked(struct device *dev)
60{
61 struct opp_table *opp_table;
62
63 list_for_each_entry(opp_table, &opp_tables, node) {
64 if (_find_opp_dev(dev, opp_table)) {
65 _get_opp_table_kref(opp_table);
66 return opp_table;
67 }
68 }
69
70 return ERR_PTR(-ENODEV);
71}
72
73/**
74 * _find_opp_table() - find opp_table struct using device pointer
75 * @dev: device pointer used to lookup OPP table
76 *
77 * Search OPP table for one containing matching device.
78 *
79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80 * -EINVAL based on type of error.
81 *
82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
83 */
84struct opp_table *_find_opp_table(struct device *dev)
85{
86 struct opp_table *opp_table;
87
88 if (IS_ERR_OR_NULL(dev)) {
89 pr_err("%s: Invalid parameters\n", __func__);
90 return ERR_PTR(-EINVAL);
91 }
92
93 mutex_lock(&opp_table_lock);
94 opp_table = _find_opp_table_unlocked(dev);
95 mutex_unlock(&opp_table_lock);
96
97 return opp_table;
98}
99
100/*
101 * Returns true if multiple clocks aren't there, else returns false with WARN.
102 *
103 * We don't force clk_count == 1 here as there are users who don't have a clock
104 * representation in the OPP table and manage the clock configuration themselves
105 * in an platform specific way.
106 */
107static bool assert_single_clk(struct opp_table *opp_table)
108{
109 return !WARN_ON(opp_table->clk_count > 1);
110}
111
112/**
113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114 * @opp: opp for which voltage has to be returned for
115 *
116 * Return: voltage in micro volt corresponding to the opp, else
117 * return 0
118 *
119 * This is useful only for devices with single power supply.
120 */
121unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
122{
123 if (IS_ERR_OR_NULL(opp)) {
124 pr_err("%s: Invalid parameters\n", __func__);
125 return 0;
126 }
127
128 return opp->supplies[0].u_volt;
129}
130EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
131
132/**
133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134 * @opp: opp for which voltage has to be returned for
135 * @supplies: Placeholder for copying the supply information.
136 *
137 * Return: negative error number on failure, 0 otherwise on success after
138 * setting @supplies.
139 *
140 * This can be used for devices with any number of power supplies. The caller
141 * must ensure the @supplies array must contain space for each regulator.
142 */
143int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 struct dev_pm_opp_supply *supplies)
145{
146 if (IS_ERR_OR_NULL(opp) || !supplies) {
147 pr_err("%s: Invalid parameters\n", __func__);
148 return -EINVAL;
149 }
150
151 memcpy(supplies, opp->supplies,
152 sizeof(*supplies) * opp->opp_table->regulator_count);
153 return 0;
154}
155EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
156
157/**
158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159 * @opp: opp for which power has to be returned for
160 *
161 * Return: power in micro watt corresponding to the opp, else
162 * return 0
163 *
164 * This is useful only for devices with single power supply.
165 */
166unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
167{
168 unsigned long opp_power = 0;
169 int i;
170
171 if (IS_ERR_OR_NULL(opp)) {
172 pr_err("%s: Invalid parameters\n", __func__);
173 return 0;
174 }
175 for (i = 0; i < opp->opp_table->regulator_count; i++)
176 opp_power += opp->supplies[i].u_watt;
177
178 return opp_power;
179}
180EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
181
182/**
183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184 * @opp: opp for which frequency has to be returned for
185 *
186 * Return: frequency in hertz corresponding to the opp, else
187 * return 0
188 */
189unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
190{
191 if (IS_ERR_OR_NULL(opp)) {
192 pr_err("%s: Invalid parameters\n", __func__);
193 return 0;
194 }
195
196 if (!assert_single_clk(opp->opp_table))
197 return 0;
198
199 return opp->rates[0];
200}
201EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
202
203/**
204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205 * @opp: opp for which level value has to be returned for
206 *
207 * Return: level read from device tree corresponding to the opp, else
208 * return 0.
209 */
210unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
211{
212 if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 pr_err("%s: Invalid parameters\n", __func__);
214 return 0;
215 }
216
217 return opp->level;
218}
219EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
220
221/**
222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
223 * corresponding to an available opp
224 * @opp: opp for which performance state has to be returned for
225 * @index: index of the required opp
226 *
227 * Return: performance state read from device tree corresponding to the
228 * required opp, else return 0.
229 */
230unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
231 unsigned int index)
232{
233 if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 index >= opp->opp_table->required_opp_count) {
235 pr_err("%s: Invalid parameters\n", __func__);
236 return 0;
237 }
238
239 /* required-opps not fully initialized yet */
240 if (lazy_linking_pending(opp->opp_table))
241 return 0;
242
243 return opp->required_opps[index]->pstate;
244}
245EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
246
247/**
248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249 * @opp: opp for which turbo mode is being verified
250 *
251 * Turbo OPPs are not for normal use, and can be enabled (under certain
252 * conditions) for short duration of times to finish high throughput work
253 * quickly. Running on them for longer times may overheat the chip.
254 *
255 * Return: true if opp is turbo opp, else false.
256 */
257bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
258{
259 if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 pr_err("%s: Invalid parameters\n", __func__);
261 return false;
262 }
263
264 return opp->turbo;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
267
268/**
269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270 * @dev: device for which we do this operation
271 *
272 * Return: This function returns the max clock latency in nanoseconds.
273 */
274unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
275{
276 struct opp_table *opp_table;
277 unsigned long clock_latency_ns;
278
279 opp_table = _find_opp_table(dev);
280 if (IS_ERR(opp_table))
281 return 0;
282
283 clock_latency_ns = opp_table->clock_latency_ns_max;
284
285 dev_pm_opp_put_opp_table(opp_table);
286
287 return clock_latency_ns;
288}
289EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
290
291/**
292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293 * @dev: device for which we do this operation
294 *
295 * Return: This function returns the max voltage latency in nanoseconds.
296 */
297unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
298{
299 struct opp_table *opp_table;
300 struct dev_pm_opp *opp;
301 struct regulator *reg;
302 unsigned long latency_ns = 0;
303 int ret, i, count;
304 struct {
305 unsigned long min;
306 unsigned long max;
307 } *uV;
308
309 opp_table = _find_opp_table(dev);
310 if (IS_ERR(opp_table))
311 return 0;
312
313 /* Regulator may not be required for the device */
314 if (!opp_table->regulators)
315 goto put_opp_table;
316
317 count = opp_table->regulator_count;
318
319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
320 if (!uV)
321 goto put_opp_table;
322
323 mutex_lock(&opp_table->lock);
324
325 for (i = 0; i < count; i++) {
326 uV[i].min = ~0;
327 uV[i].max = 0;
328
329 list_for_each_entry(opp, &opp_table->opp_list, node) {
330 if (!opp->available)
331 continue;
332
333 if (opp->supplies[i].u_volt_min < uV[i].min)
334 uV[i].min = opp->supplies[i].u_volt_min;
335 if (opp->supplies[i].u_volt_max > uV[i].max)
336 uV[i].max = opp->supplies[i].u_volt_max;
337 }
338 }
339
340 mutex_unlock(&opp_table->lock);
341
342 /*
343 * The caller needs to ensure that opp_table (and hence the regulator)
344 * isn't freed, while we are executing this routine.
345 */
346 for (i = 0; i < count; i++) {
347 reg = opp_table->regulators[i];
348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
349 if (ret > 0)
350 latency_ns += ret * 1000;
351 }
352
353 kfree(uV);
354put_opp_table:
355 dev_pm_opp_put_opp_table(opp_table);
356
357 return latency_ns;
358}
359EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
360
361/**
362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
363 * nanoseconds
364 * @dev: device for which we do this operation
365 *
366 * Return: This function returns the max transition latency, in nanoseconds, to
367 * switch from one OPP to other.
368 */
369unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
370{
371 return dev_pm_opp_get_max_volt_latency(dev) +
372 dev_pm_opp_get_max_clock_latency(dev);
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
375
376/**
377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378 * @dev: device for which we do this operation
379 *
380 * Return: This function returns the frequency of the OPP marked as suspend_opp
381 * if one is available, else returns 0;
382 */
383unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
384{
385 struct opp_table *opp_table;
386 unsigned long freq = 0;
387
388 opp_table = _find_opp_table(dev);
389 if (IS_ERR(opp_table))
390 return 0;
391
392 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
394
395 dev_pm_opp_put_opp_table(opp_table);
396
397 return freq;
398}
399EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
400
401int _get_opp_count(struct opp_table *opp_table)
402{
403 struct dev_pm_opp *opp;
404 int count = 0;
405
406 mutex_lock(&opp_table->lock);
407
408 list_for_each_entry(opp, &opp_table->opp_list, node) {
409 if (opp->available)
410 count++;
411 }
412
413 mutex_unlock(&opp_table->lock);
414
415 return count;
416}
417
418/**
419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420 * @dev: device for which we do this operation
421 *
422 * Return: This function returns the number of available opps if there are any,
423 * else returns 0 if none or the corresponding error value.
424 */
425int dev_pm_opp_get_opp_count(struct device *dev)
426{
427 struct opp_table *opp_table;
428 int count;
429
430 opp_table = _find_opp_table(dev);
431 if (IS_ERR(opp_table)) {
432 count = PTR_ERR(opp_table);
433 dev_dbg(dev, "%s: OPP table not found (%d)\n",
434 __func__, count);
435 return count;
436 }
437
438 count = _get_opp_count(opp_table);
439 dev_pm_opp_put_opp_table(opp_table);
440
441 return count;
442}
443EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
444
445/* Helpers to read keys */
446static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
447{
448 return opp->rates[0];
449}
450
451static unsigned long _read_level(struct dev_pm_opp *opp, int index)
452{
453 return opp->level;
454}
455
456static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
457{
458 return opp->bandwidth[index].peak;
459}
460
461/* Generic comparison helpers */
462static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 unsigned long opp_key, unsigned long key)
464{
465 if (opp_key == key) {
466 *opp = temp_opp;
467 return true;
468 }
469
470 return false;
471}
472
473static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 unsigned long opp_key, unsigned long key)
475{
476 if (opp_key >= key) {
477 *opp = temp_opp;
478 return true;
479 }
480
481 return false;
482}
483
484static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 unsigned long opp_key, unsigned long key)
486{
487 if (opp_key > key)
488 return true;
489
490 *opp = temp_opp;
491 return false;
492}
493
494/* Generic key finding helpers */
495static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 unsigned long *key, int index, bool available,
497 unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 unsigned long opp_key, unsigned long key),
500 bool (*assert)(struct opp_table *opp_table))
501{
502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
503
504 /* Assert that the requirement is met */
505 if (assert && !assert(opp_table))
506 return ERR_PTR(-EINVAL);
507
508 mutex_lock(&opp_table->lock);
509
510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 if (temp_opp->available == available) {
512 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
513 break;
514 }
515 }
516
517 /* Increment the reference count of OPP */
518 if (!IS_ERR(opp)) {
519 *key = read(opp, index);
520 dev_pm_opp_get(opp);
521 }
522
523 mutex_unlock(&opp_table->lock);
524
525 return opp;
526}
527
528static struct dev_pm_opp *
529_find_key(struct device *dev, unsigned long *key, int index, bool available,
530 unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 unsigned long opp_key, unsigned long key),
533 bool (*assert)(struct opp_table *opp_table))
534{
535 struct opp_table *opp_table;
536 struct dev_pm_opp *opp;
537
538 opp_table = _find_opp_table(dev);
539 if (IS_ERR(opp_table)) {
540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
541 PTR_ERR(opp_table));
542 return ERR_CAST(opp_table);
543 }
544
545 opp = _opp_table_find_key(opp_table, key, index, available, read,
546 compare, assert);
547
548 dev_pm_opp_put_opp_table(opp_table);
549
550 return opp;
551}
552
553static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 unsigned long key, int index, bool available,
555 unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 bool (*assert)(struct opp_table *opp_table))
557{
558 /*
559 * The value of key will be updated here, but will be ignored as the
560 * caller doesn't need it.
561 */
562 return _find_key(dev, &key, index, available, read, _compare_exact,
563 assert);
564}
565
566static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 unsigned long *key, int index, bool available,
568 unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 bool (*assert)(struct opp_table *opp_table))
570{
571 return _opp_table_find_key(opp_table, key, index, available, read,
572 _compare_ceil, assert);
573}
574
575static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 int index, bool available,
577 unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 bool (*assert)(struct opp_table *opp_table))
579{
580 return _find_key(dev, key, index, available, read, _compare_ceil,
581 assert);
582}
583
584static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 unsigned long *key, int index, bool available,
586 unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 bool (*assert)(struct opp_table *opp_table))
588{
589 return _find_key(dev, key, index, available, read, _compare_floor,
590 assert);
591}
592
593/**
594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
595 * @dev: device for which we do this operation
596 * @freq: frequency to search for
597 * @available: true/false - match for available opp
598 *
599 * Return: Searches for exact match in the opp table and returns pointer to the
600 * matching opp if found, else returns ERR_PTR in case of error and should
601 * be handled using IS_ERR. Error return values can be:
602 * EINVAL: for bad pointer
603 * ERANGE: no match found for search
604 * ENODEV: if device not found in list of registered devices
605 *
606 * Note: available is a modifier for the search. if available=true, then the
607 * match is for exact matching frequency and is available in the stored OPP
608 * table. if false, the match is for exact frequency which is not available.
609 *
610 * This provides a mechanism to enable an opp which is not available currently
611 * or the opposite as well.
612 *
613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
614 * use.
615 */
616struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 unsigned long freq, bool available)
618{
619 return _find_key_exact(dev, freq, 0, available, _read_freq,
620 assert_single_clk);
621}
622EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
623
624static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
625 unsigned long *freq)
626{
627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
628 assert_single_clk);
629}
630
631/**
632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633 * @dev: device for which we do this operation
634 * @freq: Start frequency
635 *
636 * Search for the matching ceil *available* OPP from a starting freq
637 * for a device.
638 *
639 * Return: matching *opp and refreshes *freq accordingly, else returns
640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
641 * values can be:
642 * EINVAL: for bad pointer
643 * ERANGE: no match found for search
644 * ENODEV: if device not found in list of registered devices
645 *
646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
647 * use.
648 */
649struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
650 unsigned long *freq)
651{
652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
653}
654EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
655
656/**
657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658 * @dev: device for which we do this operation
659 * @freq: Start frequency
660 *
661 * Search for the matching floor *available* OPP from a starting freq
662 * for a device.
663 *
664 * Return: matching *opp and refreshes *freq accordingly, else returns
665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
666 * values can be:
667 * EINVAL: for bad pointer
668 * ERANGE: no match found for search
669 * ENODEV: if device not found in list of registered devices
670 *
671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
672 * use.
673 */
674struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
675 unsigned long *freq)
676{
677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
678}
679EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
680
681/**
682 * dev_pm_opp_find_level_exact() - search for an exact level
683 * @dev: device for which we do this operation
684 * @level: level to search for
685 *
686 * Return: Searches for exact match in the opp table and returns pointer to the
687 * matching opp if found, else returns ERR_PTR in case of error and should
688 * be handled using IS_ERR. Error return values can be:
689 * EINVAL: for bad pointer
690 * ERANGE: no match found for search
691 * ENODEV: if device not found in list of registered devices
692 *
693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
694 * use.
695 */
696struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
697 unsigned int level)
698{
699 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
700}
701EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
702
703/**
704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
705 * @dev: device for which we do this operation
706 * @level: level to search for
707 *
708 * Return: Searches for rounded up match in the opp table and returns pointer
709 * to the matching opp if found, else returns ERR_PTR in case of error and
710 * should be handled using IS_ERR. Error return values can be:
711 * EINVAL: for bad pointer
712 * ERANGE: no match found for search
713 * ENODEV: if device not found in list of registered devices
714 *
715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
716 * use.
717 */
718struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
719 unsigned int *level)
720{
721 unsigned long temp = *level;
722 struct dev_pm_opp *opp;
723
724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
725 *level = temp;
726 return opp;
727}
728EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
729
730/**
731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732 * @dev: device for which we do this operation
733 * @bw: start bandwidth
734 * @index: which bandwidth to compare, in case of OPPs with several values
735 *
736 * Search for the matching floor *available* OPP from a starting bandwidth
737 * for a device.
738 *
739 * Return: matching *opp and refreshes *bw accordingly, else returns
740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
741 * values can be:
742 * EINVAL: for bad pointer
743 * ERANGE: no match found for search
744 * ENODEV: if device not found in list of registered devices
745 *
746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
747 * use.
748 */
749struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
750 int index)
751{
752 unsigned long temp = *bw;
753 struct dev_pm_opp *opp;
754
755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
756 *bw = temp;
757 return opp;
758}
759EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
760
761/**
762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763 * @dev: device for which we do this operation
764 * @bw: start bandwidth
765 * @index: which bandwidth to compare, in case of OPPs with several values
766 *
767 * Search for the matching floor *available* OPP from a starting bandwidth
768 * for a device.
769 *
770 * Return: matching *opp and refreshes *bw accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 unsigned int *bw, int index)
782{
783 unsigned long temp = *bw;
784 struct dev_pm_opp *opp;
785
786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
787 *bw = temp;
788 return opp;
789}
790EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
791
792static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 struct dev_pm_opp_supply *supply)
794{
795 int ret;
796
797 /* Regulator not available for device */
798 if (IS_ERR(reg)) {
799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
800 PTR_ERR(reg));
801 return 0;
802 }
803
804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
806
807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 supply->u_volt, supply->u_volt_max);
809 if (ret)
810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 __func__, supply->u_volt_min, supply->u_volt,
812 supply->u_volt_max, ret);
813
814 return ret;
815}
816
817static int
818_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 struct dev_pm_opp *opp, void *data, bool scaling_down)
820{
821 unsigned long *target = data;
822 unsigned long freq;
823 int ret;
824
825 /* One of target and opp must be available */
826 if (target) {
827 freq = *target;
828 } else if (opp) {
829 freq = opp->rates[0];
830 } else {
831 WARN_ON(1);
832 return -EINVAL;
833 }
834
835 ret = clk_set_rate(opp_table->clk, freq);
836 if (ret) {
837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
838 ret);
839 } else {
840 opp_table->rate_clk_single = freq;
841 }
842
843 return ret;
844}
845
846/*
847 * Simple implementation for configuring multiple clocks. Configure clocks in
848 * the order in which they are present in the array while scaling up.
849 */
850int dev_pm_opp_config_clks_simple(struct device *dev,
851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
852 bool scaling_down)
853{
854 int ret, i;
855
856 if (scaling_down) {
857 for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
859 if (ret) {
860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
861 ret);
862 return ret;
863 }
864 }
865 } else {
866 for (i = 0; i < opp_table->clk_count; i++) {
867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
868 if (ret) {
869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
870 ret);
871 return ret;
872 }
873 }
874 }
875
876 return 0;
877}
878EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
879
880static int _opp_config_regulator_single(struct device *dev,
881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 struct regulator **regulators, unsigned int count)
883{
884 struct regulator *reg = regulators[0];
885 int ret;
886
887 /* This function only supports single regulator per device */
888 if (WARN_ON(count > 1)) {
889 dev_err(dev, "multiple regulators are not supported\n");
890 return -EINVAL;
891 }
892
893 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
894 if (ret)
895 return ret;
896
897 /*
898 * Enable the regulator after setting its voltages, otherwise it breaks
899 * some boot-enabled regulators.
900 */
901 if (unlikely(!new_opp->opp_table->enabled)) {
902 ret = regulator_enable(reg);
903 if (ret < 0)
904 dev_warn(dev, "Failed to enable regulator: %d", ret);
905 }
906
907 return 0;
908}
909
910static int _set_opp_bw(const struct opp_table *opp_table,
911 struct dev_pm_opp *opp, struct device *dev)
912{
913 u32 avg, peak;
914 int i, ret;
915
916 if (!opp_table->paths)
917 return 0;
918
919 for (i = 0; i < opp_table->path_count; i++) {
920 if (!opp) {
921 avg = 0;
922 peak = 0;
923 } else {
924 avg = opp->bandwidth[i].avg;
925 peak = opp->bandwidth[i].peak;
926 }
927 ret = icc_set_bw(opp_table->paths[i], avg, peak);
928 if (ret) {
929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 opp ? "set" : "remove", i, ret);
931 return ret;
932 }
933 }
934
935 return 0;
936}
937
938static int _set_required_opp(struct device *dev, struct device *pd_dev,
939 struct dev_pm_opp *opp, int i)
940{
941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
942 int ret;
943
944 if (!pd_dev)
945 return 0;
946
947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
948 if (ret) {
949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 dev_name(pd_dev), pstate, ret);
951 }
952
953 return ret;
954}
955
956/* This is only called for PM domain for now */
957static int _set_required_opps(struct device *dev,
958 struct opp_table *opp_table,
959 struct dev_pm_opp *opp, bool up)
960{
961 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
962 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
963 int i, ret = 0;
964
965 if (!required_opp_tables)
966 return 0;
967
968 /* required-opps not fully initialized yet */
969 if (lazy_linking_pending(opp_table))
970 return -EBUSY;
971
972 /*
973 * We only support genpd's OPPs in the "required-opps" for now, as we
974 * don't know much about other use cases. Error out if the required OPP
975 * doesn't belong to a genpd.
976 */
977 if (unlikely(!required_opp_tables[0]->is_genpd)) {
978 dev_err(dev, "required-opps don't belong to a genpd\n");
979 return -ENOENT;
980 }
981
982 /* Single genpd case */
983 if (!genpd_virt_devs)
984 return _set_required_opp(dev, dev, opp, 0);
985
986 /* Multiple genpd case */
987
988 /*
989 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
990 * after it is freed from another thread.
991 */
992 mutex_lock(&opp_table->genpd_virt_dev_lock);
993
994 /* Scaling up? Set required OPPs in normal order, else reverse */
995 if (up) {
996 for (i = 0; i < opp_table->required_opp_count; i++) {
997 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
998 if (ret)
999 break;
1000 }
1001 } else {
1002 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004 if (ret)
1005 break;
1006 }
1007 }
1008
1009 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010
1011 return ret;
1012}
1013
1014static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015{
1016 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017 unsigned long freq;
1018
1019 if (!IS_ERR(opp_table->clk)) {
1020 freq = clk_get_rate(opp_table->clk);
1021 opp = _find_freq_ceil(opp_table, &freq);
1022 }
1023
1024 /*
1025 * Unable to find the current OPP ? Pick the first from the list since
1026 * it is in ascending order, otherwise rest of the code will need to
1027 * make special checks to validate current_opp.
1028 */
1029 if (IS_ERR(opp)) {
1030 mutex_lock(&opp_table->lock);
1031 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032 dev_pm_opp_get(opp);
1033 mutex_unlock(&opp_table->lock);
1034 }
1035
1036 opp_table->current_opp = opp;
1037}
1038
1039static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040{
1041 int ret;
1042
1043 if (!opp_table->enabled)
1044 return 0;
1045
1046 /*
1047 * Some drivers need to support cases where some platforms may
1048 * have OPP table for the device, while others don't and
1049 * opp_set_rate() just needs to behave like clk_set_rate().
1050 */
1051 if (!_get_opp_count(opp_table))
1052 return 0;
1053
1054 ret = _set_opp_bw(opp_table, NULL, dev);
1055 if (ret)
1056 return ret;
1057
1058 if (opp_table->regulators)
1059 regulator_disable(opp_table->regulators[0]);
1060
1061 ret = _set_required_opps(dev, opp_table, NULL, false);
1062
1063 opp_table->enabled = false;
1064 return ret;
1065}
1066
1067static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068 struct dev_pm_opp *opp, void *clk_data, bool forced)
1069{
1070 struct dev_pm_opp *old_opp;
1071 int scaling_down, ret;
1072
1073 if (unlikely(!opp))
1074 return _disable_opp_table(dev, opp_table);
1075
1076 /* Find the currently set OPP if we don't know already */
1077 if (unlikely(!opp_table->current_opp))
1078 _find_current_opp(dev, opp_table);
1079
1080 old_opp = opp_table->current_opp;
1081
1082 /* Return early if nothing to do */
1083 if (!forced && old_opp == opp && opp_table->enabled) {
1084 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085 return 0;
1086 }
1087
1088 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092
1093 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094 if (scaling_down == -1)
1095 scaling_down = 0;
1096
1097 /* Scaling up? Configure required OPPs before frequency */
1098 if (!scaling_down) {
1099 ret = _set_required_opps(dev, opp_table, opp, true);
1100 if (ret) {
1101 dev_err(dev, "Failed to set required opps: %d\n", ret);
1102 return ret;
1103 }
1104
1105 ret = _set_opp_bw(opp_table, opp, dev);
1106 if (ret) {
1107 dev_err(dev, "Failed to set bw: %d\n", ret);
1108 return ret;
1109 }
1110
1111 if (opp_table->config_regulators) {
1112 ret = opp_table->config_regulators(dev, old_opp, opp,
1113 opp_table->regulators,
1114 opp_table->regulator_count);
1115 if (ret) {
1116 dev_err(dev, "Failed to set regulator voltages: %d\n",
1117 ret);
1118 return ret;
1119 }
1120 }
1121 }
1122
1123 if (opp_table->config_clks) {
1124 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125 if (ret)
1126 return ret;
1127 }
1128
1129 /* Scaling down? Configure required OPPs after frequency */
1130 if (scaling_down) {
1131 if (opp_table->config_regulators) {
1132 ret = opp_table->config_regulators(dev, old_opp, opp,
1133 opp_table->regulators,
1134 opp_table->regulator_count);
1135 if (ret) {
1136 dev_err(dev, "Failed to set regulator voltages: %d\n",
1137 ret);
1138 return ret;
1139 }
1140 }
1141
1142 ret = _set_opp_bw(opp_table, opp, dev);
1143 if (ret) {
1144 dev_err(dev, "Failed to set bw: %d\n", ret);
1145 return ret;
1146 }
1147
1148 ret = _set_required_opps(dev, opp_table, opp, false);
1149 if (ret) {
1150 dev_err(dev, "Failed to set required opps: %d\n", ret);
1151 return ret;
1152 }
1153 }
1154
1155 opp_table->enabled = true;
1156 dev_pm_opp_put(old_opp);
1157
1158 /* Make sure current_opp doesn't get freed */
1159 dev_pm_opp_get(opp);
1160 opp_table->current_opp = opp;
1161
1162 return ret;
1163}
1164
1165/**
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev: device for which we do this operation
1168 * @target_freq: frequency to achieve
1169 *
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1174 * frequency.
1175 */
1176int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177{
1178 struct opp_table *opp_table;
1179 unsigned long freq = 0, temp_freq;
1180 struct dev_pm_opp *opp = NULL;
1181 bool forced = false;
1182 int ret;
1183
1184 opp_table = _find_opp_table(dev);
1185 if (IS_ERR(opp_table)) {
1186 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187 return PTR_ERR(opp_table);
1188 }
1189
1190 if (target_freq) {
1191 /*
1192 * For IO devices which require an OPP on some platforms/SoCs
1193 * while just needing to scale the clock on some others
1194 * we look for empty OPP tables with just a clock handle and
1195 * scale only the clk. This makes dev_pm_opp_set_rate()
1196 * equivalent to a clk_set_rate()
1197 */
1198 if (!_get_opp_count(opp_table)) {
1199 ret = opp_table->config_clks(dev, opp_table, NULL,
1200 &target_freq, false);
1201 goto put_opp_table;
1202 }
1203
1204 freq = clk_round_rate(opp_table->clk, target_freq);
1205 if ((long)freq <= 0)
1206 freq = target_freq;
1207
1208 /*
1209 * The clock driver may support finer resolution of the
1210 * frequencies than the OPP table, don't update the frequency we
1211 * pass to clk_set_rate() here.
1212 */
1213 temp_freq = freq;
1214 opp = _find_freq_ceil(opp_table, &temp_freq);
1215 if (IS_ERR(opp)) {
1216 ret = PTR_ERR(opp);
1217 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218 __func__, freq, ret);
1219 goto put_opp_table;
1220 }
1221
1222 /*
1223 * An OPP entry specifies the highest frequency at which other
1224 * properties of the OPP entry apply. Even if the new OPP is
1225 * same as the old one, we may still reach here for a different
1226 * value of the frequency. In such a case, do not abort but
1227 * configure the hardware to the desired frequency forcefully.
1228 */
1229 forced = opp_table->rate_clk_single != target_freq;
1230 }
1231
1232 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233
1234 if (target_freq)
1235 dev_pm_opp_put(opp);
1236
1237put_opp_table:
1238 dev_pm_opp_put_opp_table(opp_table);
1239 return ret;
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242
1243/**
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1247 *
1248 * This configures the device based on the properties of the OPP passed to this
1249 * routine.
1250 *
1251 * Return: 0 on success, a negative error number otherwise.
1252 */
1253int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254{
1255 struct opp_table *opp_table;
1256 int ret;
1257
1258 opp_table = _find_opp_table(dev);
1259 if (IS_ERR(opp_table)) {
1260 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261 return PTR_ERR(opp_table);
1262 }
1263
1264 ret = _set_opp(dev, opp_table, opp, NULL, false);
1265 dev_pm_opp_put_opp_table(opp_table);
1266
1267 return ret;
1268}
1269EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270
1271/* OPP-dev Helpers */
1272static void _remove_opp_dev(struct opp_device *opp_dev,
1273 struct opp_table *opp_table)
1274{
1275 opp_debug_unregister(opp_dev, opp_table);
1276 list_del(&opp_dev->node);
1277 kfree(opp_dev);
1278}
1279
1280struct opp_device *_add_opp_dev(const struct device *dev,
1281 struct opp_table *opp_table)
1282{
1283 struct opp_device *opp_dev;
1284
1285 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286 if (!opp_dev)
1287 return NULL;
1288
1289 /* Initialize opp-dev */
1290 opp_dev->dev = dev;
1291
1292 mutex_lock(&opp_table->lock);
1293 list_add(&opp_dev->node, &opp_table->dev_list);
1294 mutex_unlock(&opp_table->lock);
1295
1296 /* Create debugfs entries for the opp_table */
1297 opp_debug_register(opp_dev, opp_table);
1298
1299 return opp_dev;
1300}
1301
1302static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303{
1304 struct opp_table *opp_table;
1305 struct opp_device *opp_dev;
1306 int ret;
1307
1308 /*
1309 * Allocate a new OPP table. In the infrequent case where a new
1310 * device is needed to be added, we pay this penalty.
1311 */
1312 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313 if (!opp_table)
1314 return ERR_PTR(-ENOMEM);
1315
1316 mutex_init(&opp_table->lock);
1317 mutex_init(&opp_table->genpd_virt_dev_lock);
1318 INIT_LIST_HEAD(&opp_table->dev_list);
1319 INIT_LIST_HEAD(&opp_table->lazy);
1320
1321 opp_table->clk = ERR_PTR(-ENODEV);
1322
1323 /* Mark regulator count uninitialized */
1324 opp_table->regulator_count = -1;
1325
1326 opp_dev = _add_opp_dev(dev, opp_table);
1327 if (!opp_dev) {
1328 ret = -ENOMEM;
1329 goto err;
1330 }
1331
1332 _of_init_opp_table(opp_table, dev, index);
1333
1334 /* Find interconnect path(s) for the device */
1335 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336 if (ret) {
1337 if (ret == -EPROBE_DEFER)
1338 goto remove_opp_dev;
1339
1340 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341 __func__, ret);
1342 }
1343
1344 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345 INIT_LIST_HEAD(&opp_table->opp_list);
1346 kref_init(&opp_table->kref);
1347
1348 return opp_table;
1349
1350remove_opp_dev:
1351 _remove_opp_dev(opp_dev, opp_table);
1352err:
1353 kfree(opp_table);
1354 return ERR_PTR(ret);
1355}
1356
1357void _get_opp_table_kref(struct opp_table *opp_table)
1358{
1359 kref_get(&opp_table->kref);
1360}
1361
1362static struct opp_table *_update_opp_table_clk(struct device *dev,
1363 struct opp_table *opp_table,
1364 bool getclk)
1365{
1366 int ret;
1367
1368 /*
1369 * Return early if we don't need to get clk or we have already done it
1370 * earlier.
1371 */
1372 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373 opp_table->clks)
1374 return opp_table;
1375
1376 /* Find clk for the device */
1377 opp_table->clk = clk_get(dev, NULL);
1378
1379 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380 if (!ret) {
1381 opp_table->config_clks = _opp_config_clk_single;
1382 opp_table->clk_count = 1;
1383 return opp_table;
1384 }
1385
1386 if (ret == -ENOENT) {
1387 /*
1388 * There are few platforms which don't want the OPP core to
1389 * manage device's clock settings. In such cases neither the
1390 * platform provides the clks explicitly to us, nor the DT
1391 * contains a valid clk entry. The OPP nodes in DT may still
1392 * contain "opp-hz" property though, which we need to parse and
1393 * allow the platform to find an OPP based on freq later on.
1394 *
1395 * This is a simple solution to take care of such corner cases,
1396 * i.e. make the clk_count 1, which lets us allocate space for
1397 * frequency in opp->rates and also parse the entries in DT.
1398 */
1399 opp_table->clk_count = 1;
1400
1401 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402 return opp_table;
1403 }
1404
1405 dev_pm_opp_put_opp_table(opp_table);
1406 dev_err_probe(dev, ret, "Couldn't find clock\n");
1407
1408 return ERR_PTR(ret);
1409}
1410
1411/*
1412 * We need to make sure that the OPP table for a device doesn't get added twice,
1413 * if this routine gets called in parallel with the same device pointer.
1414 *
1415 * The simplest way to enforce that is to perform everything (find existing
1416 * table and if not found, create a new one) under the opp_table_lock, so only
1417 * one creator gets access to the same. But that expands the critical section
1418 * under the lock and may end up causing circular dependencies with frameworks
1419 * like debugfs, interconnect or clock framework as they may be direct or
1420 * indirect users of OPP core.
1421 *
1422 * And for that reason we have to go for a bit tricky implementation here, which
1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424 * of adding an OPP table and others should wait for it to finish.
1425 */
1426struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427 bool getclk)
1428{
1429 struct opp_table *opp_table;
1430
1431again:
1432 mutex_lock(&opp_table_lock);
1433
1434 opp_table = _find_opp_table_unlocked(dev);
1435 if (!IS_ERR(opp_table))
1436 goto unlock;
1437
1438 /*
1439 * The opp_tables list or an OPP table's dev_list is getting updated by
1440 * another user, wait for it to finish.
1441 */
1442 if (unlikely(opp_tables_busy)) {
1443 mutex_unlock(&opp_table_lock);
1444 cpu_relax();
1445 goto again;
1446 }
1447
1448 opp_tables_busy = true;
1449 opp_table = _managed_opp(dev, index);
1450
1451 /* Drop the lock to reduce the size of critical section */
1452 mutex_unlock(&opp_table_lock);
1453
1454 if (opp_table) {
1455 if (!_add_opp_dev(dev, opp_table)) {
1456 dev_pm_opp_put_opp_table(opp_table);
1457 opp_table = ERR_PTR(-ENOMEM);
1458 }
1459
1460 mutex_lock(&opp_table_lock);
1461 } else {
1462 opp_table = _allocate_opp_table(dev, index);
1463
1464 mutex_lock(&opp_table_lock);
1465 if (!IS_ERR(opp_table))
1466 list_add(&opp_table->node, &opp_tables);
1467 }
1468
1469 opp_tables_busy = false;
1470
1471unlock:
1472 mutex_unlock(&opp_table_lock);
1473
1474 return _update_opp_table_clk(dev, opp_table, getclk);
1475}
1476
1477static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478{
1479 return _add_opp_table_indexed(dev, 0, getclk);
1480}
1481
1482struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483{
1484 return _find_opp_table(dev);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487
1488static void _opp_table_kref_release(struct kref *kref)
1489{
1490 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491 struct opp_device *opp_dev, *temp;
1492 int i;
1493
1494 /* Drop the lock as soon as we can */
1495 list_del(&opp_table->node);
1496 mutex_unlock(&opp_table_lock);
1497
1498 if (opp_table->current_opp)
1499 dev_pm_opp_put(opp_table->current_opp);
1500
1501 _of_clear_opp_table(opp_table);
1502
1503 /* Release automatically acquired single clk */
1504 if (!IS_ERR(opp_table->clk))
1505 clk_put(opp_table->clk);
1506
1507 if (opp_table->paths) {
1508 for (i = 0; i < opp_table->path_count; i++)
1509 icc_put(opp_table->paths[i]);
1510 kfree(opp_table->paths);
1511 }
1512
1513 WARN_ON(!list_empty(&opp_table->opp_list));
1514
1515 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516 /*
1517 * The OPP table is getting removed, drop the performance state
1518 * constraints.
1519 */
1520 if (opp_table->genpd_performance_state)
1521 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522
1523 _remove_opp_dev(opp_dev, opp_table);
1524 }
1525
1526 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527 mutex_destroy(&opp_table->lock);
1528 kfree(opp_table);
1529}
1530
1531void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532{
1533 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534 &opp_table_lock);
1535}
1536EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537
1538void _opp_free(struct dev_pm_opp *opp)
1539{
1540 kfree(opp);
1541}
1542
1543static void _opp_kref_release(struct kref *kref)
1544{
1545 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546 struct opp_table *opp_table = opp->opp_table;
1547
1548 list_del(&opp->node);
1549 mutex_unlock(&opp_table->lock);
1550
1551 /*
1552 * Notify the changes in the availability of the operable
1553 * frequency/voltage list.
1554 */
1555 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556 _of_clear_opp(opp_table, opp);
1557 opp_debug_remove_one(opp);
1558 kfree(opp);
1559}
1560
1561void dev_pm_opp_get(struct dev_pm_opp *opp)
1562{
1563 kref_get(&opp->kref);
1564}
1565
1566void dev_pm_opp_put(struct dev_pm_opp *opp)
1567{
1568 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569}
1570EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571
1572/**
1573 * dev_pm_opp_remove() - Remove an OPP from OPP table
1574 * @dev: device for which we do this operation
1575 * @freq: OPP to remove with matching 'freq'
1576 *
1577 * This function removes an opp from the opp table.
1578 */
1579void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580{
1581 struct dev_pm_opp *opp = NULL, *iter;
1582 struct opp_table *opp_table;
1583
1584 opp_table = _find_opp_table(dev);
1585 if (IS_ERR(opp_table))
1586 return;
1587
1588 if (!assert_single_clk(opp_table))
1589 goto put_table;
1590
1591 mutex_lock(&opp_table->lock);
1592
1593 list_for_each_entry(iter, &opp_table->opp_list, node) {
1594 if (iter->rates[0] == freq) {
1595 opp = iter;
1596 break;
1597 }
1598 }
1599
1600 mutex_unlock(&opp_table->lock);
1601
1602 if (opp) {
1603 dev_pm_opp_put(opp);
1604
1605 /* Drop the reference taken by dev_pm_opp_add() */
1606 dev_pm_opp_put_opp_table(opp_table);
1607 } else {
1608 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609 __func__, freq);
1610 }
1611
1612put_table:
1613 /* Drop the reference taken by _find_opp_table() */
1614 dev_pm_opp_put_opp_table(opp_table);
1615}
1616EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617
1618static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619 bool dynamic)
1620{
1621 struct dev_pm_opp *opp = NULL, *temp;
1622
1623 mutex_lock(&opp_table->lock);
1624 list_for_each_entry(temp, &opp_table->opp_list, node) {
1625 /*
1626 * Refcount must be dropped only once for each OPP by OPP core,
1627 * do that with help of "removed" flag.
1628 */
1629 if (!temp->removed && dynamic == temp->dynamic) {
1630 opp = temp;
1631 break;
1632 }
1633 }
1634
1635 mutex_unlock(&opp_table->lock);
1636 return opp;
1637}
1638
1639/*
1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641 * happen lock less to avoid circular dependency issues. This routine must be
1642 * called without the opp_table->lock held.
1643 */
1644static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645{
1646 struct dev_pm_opp *opp;
1647
1648 while ((opp = _opp_get_next(opp_table, dynamic))) {
1649 opp->removed = true;
1650 dev_pm_opp_put(opp);
1651
1652 /* Drop the references taken by dev_pm_opp_add() */
1653 if (dynamic)
1654 dev_pm_opp_put_opp_table(opp_table);
1655 }
1656}
1657
1658bool _opp_remove_all_static(struct opp_table *opp_table)
1659{
1660 mutex_lock(&opp_table->lock);
1661
1662 if (!opp_table->parsed_static_opps) {
1663 mutex_unlock(&opp_table->lock);
1664 return false;
1665 }
1666
1667 if (--opp_table->parsed_static_opps) {
1668 mutex_unlock(&opp_table->lock);
1669 return true;
1670 }
1671
1672 mutex_unlock(&opp_table->lock);
1673
1674 _opp_remove_all(opp_table, false);
1675 return true;
1676}
1677
1678/**
1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680 * @dev: device for which we do this operation
1681 *
1682 * This function removes all dynamically created OPPs from the opp table.
1683 */
1684void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685{
1686 struct opp_table *opp_table;
1687
1688 opp_table = _find_opp_table(dev);
1689 if (IS_ERR(opp_table))
1690 return;
1691
1692 _opp_remove_all(opp_table, true);
1693
1694 /* Drop the reference taken by _find_opp_table() */
1695 dev_pm_opp_put_opp_table(opp_table);
1696}
1697EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698
1699struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700{
1701 struct dev_pm_opp *opp;
1702 int supply_count, supply_size, icc_size, clk_size;
1703
1704 /* Allocate space for at least one supply */
1705 supply_count = opp_table->regulator_count > 0 ?
1706 opp_table->regulator_count : 1;
1707 supply_size = sizeof(*opp->supplies) * supply_count;
1708 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710
1711 /* allocate new OPP node and supplies structures */
1712 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713 if (!opp)
1714 return NULL;
1715
1716 /* Put the supplies, bw and clock at the end of the OPP structure */
1717 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718
1719 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720
1721 if (icc_size)
1722 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723
1724 INIT_LIST_HEAD(&opp->node);
1725
1726 return opp;
1727}
1728
1729static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730 struct opp_table *opp_table)
1731{
1732 struct regulator *reg;
1733 int i;
1734
1735 if (!opp_table->regulators)
1736 return true;
1737
1738 for (i = 0; i < opp_table->regulator_count; i++) {
1739 reg = opp_table->regulators[i];
1740
1741 if (!regulator_is_supported_voltage(reg,
1742 opp->supplies[i].u_volt_min,
1743 opp->supplies[i].u_volt_max)) {
1744 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745 __func__, opp->supplies[i].u_volt_min,
1746 opp->supplies[i].u_volt_max);
1747 return false;
1748 }
1749 }
1750
1751 return true;
1752}
1753
1754static int _opp_compare_rate(struct opp_table *opp_table,
1755 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756{
1757 int i;
1758
1759 for (i = 0; i < opp_table->clk_count; i++) {
1760 if (opp1->rates[i] != opp2->rates[i])
1761 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762 }
1763
1764 /* Same rates for both OPPs */
1765 return 0;
1766}
1767
1768static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769 struct dev_pm_opp *opp2)
1770{
1771 int i;
1772
1773 for (i = 0; i < opp_table->path_count; i++) {
1774 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776 }
1777
1778 /* Same bw for both OPPs */
1779 return 0;
1780}
1781
1782/*
1783 * Returns
1784 * 0: opp1 == opp2
1785 * 1: opp1 > opp2
1786 * -1: opp1 < opp2
1787 */
1788int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789 struct dev_pm_opp *opp2)
1790{
1791 int ret;
1792
1793 ret = _opp_compare_rate(opp_table, opp1, opp2);
1794 if (ret)
1795 return ret;
1796
1797 ret = _opp_compare_bw(opp_table, opp1, opp2);
1798 if (ret)
1799 return ret;
1800
1801 if (opp1->level != opp2->level)
1802 return opp1->level < opp2->level ? -1 : 1;
1803
1804 /* Duplicate OPPs */
1805 return 0;
1806}
1807
1808static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809 struct opp_table *opp_table,
1810 struct list_head **head)
1811{
1812 struct dev_pm_opp *opp;
1813 int opp_cmp;
1814
1815 /*
1816 * Insert new OPP in order of increasing frequency and discard if
1817 * already present.
1818 *
1819 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820 * loop, don't replace it with head otherwise it will become an infinite
1821 * loop.
1822 */
1823 list_for_each_entry(opp, &opp_table->opp_list, node) {
1824 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825 if (opp_cmp > 0) {
1826 *head = &opp->node;
1827 continue;
1828 }
1829
1830 if (opp_cmp < 0)
1831 return 0;
1832
1833 /* Duplicate OPPs */
1834 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836 opp->available, new_opp->rates[0],
1837 new_opp->supplies[0].u_volt, new_opp->available);
1838
1839 /* Should we compare voltages for all regulators here ? */
1840 return opp->available &&
1841 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842 }
1843
1844 return 0;
1845}
1846
1847void _required_opps_available(struct dev_pm_opp *opp, int count)
1848{
1849 int i;
1850
1851 for (i = 0; i < count; i++) {
1852 if (opp->required_opps[i]->available)
1853 continue;
1854
1855 opp->available = false;
1856 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857 __func__, opp->required_opps[i]->np, opp->rates[0]);
1858 return;
1859 }
1860}
1861
1862/*
1863 * Returns:
1864 * 0: On success. And appropriate error message for duplicate OPPs.
1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867 * sure we don't print error messages unnecessarily if different parts of
1868 * kernel try to initialize the OPP table.
1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870 * should be considered an error by the callers of _opp_add().
1871 */
1872int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873 struct opp_table *opp_table)
1874{
1875 struct list_head *head;
1876 int ret;
1877
1878 mutex_lock(&opp_table->lock);
1879 head = &opp_table->opp_list;
1880
1881 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882 if (ret) {
1883 mutex_unlock(&opp_table->lock);
1884 return ret;
1885 }
1886
1887 list_add(&new_opp->node, head);
1888 mutex_unlock(&opp_table->lock);
1889
1890 new_opp->opp_table = opp_table;
1891 kref_init(&new_opp->kref);
1892
1893 opp_debug_create_one(new_opp, opp_table);
1894
1895 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896 new_opp->available = false;
1897 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898 __func__, new_opp->rates[0]);
1899 }
1900
1901 /* required-opps not fully initialized yet */
1902 if (lazy_linking_pending(opp_table))
1903 return 0;
1904
1905 _required_opps_available(new_opp, opp_table->required_opp_count);
1906
1907 return 0;
1908}
1909
1910/**
1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912 * @opp_table: OPP table
1913 * @dev: device for which we do this operation
1914 * @freq: Frequency in Hz for this OPP
1915 * @u_volt: Voltage in uVolts for this OPP
1916 * @dynamic: Dynamically added OPPs.
1917 *
1918 * This function adds an opp definition to the opp table and returns status.
1919 * The opp is made available by default and it can be controlled using
1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921 *
1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923 * and freed by dev_pm_opp_of_remove_table.
1924 *
1925 * Return:
1926 * 0 On success OR
1927 * Duplicate OPPs (both freq and volt are same) and opp->available
1928 * -EEXIST Freq are same and volt are different OR
1929 * Duplicate OPPs (both freq and volt are same) and !opp->available
1930 * -ENOMEM Memory allocation failure
1931 */
1932int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933 unsigned long freq, long u_volt, bool dynamic)
1934{
1935 struct dev_pm_opp *new_opp;
1936 unsigned long tol;
1937 int ret;
1938
1939 if (!assert_single_clk(opp_table))
1940 return -EINVAL;
1941
1942 new_opp = _opp_allocate(opp_table);
1943 if (!new_opp)
1944 return -ENOMEM;
1945
1946 /* populate the opp table */
1947 new_opp->rates[0] = freq;
1948 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949 new_opp->supplies[0].u_volt = u_volt;
1950 new_opp->supplies[0].u_volt_min = u_volt - tol;
1951 new_opp->supplies[0].u_volt_max = u_volt + tol;
1952 new_opp->available = true;
1953 new_opp->dynamic = dynamic;
1954
1955 ret = _opp_add(dev, new_opp, opp_table);
1956 if (ret) {
1957 /* Don't return error for duplicate OPPs */
1958 if (ret == -EBUSY)
1959 ret = 0;
1960 goto free_opp;
1961 }
1962
1963 /*
1964 * Notify the changes in the availability of the operable
1965 * frequency/voltage list.
1966 */
1967 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968 return 0;
1969
1970free_opp:
1971 _opp_free(new_opp);
1972
1973 return ret;
1974}
1975
1976/**
1977 * _opp_set_supported_hw() - Set supported platforms
1978 * @dev: Device for which supported-hw has to be set.
1979 * @versions: Array of hierarchy of versions to match.
1980 * @count: Number of elements in the array.
1981 *
1982 * This is required only for the V2 bindings, and it enables a platform to
1983 * specify the hierarchy of versions it supports. OPP layer will then enable
1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985 * property.
1986 */
1987static int _opp_set_supported_hw(struct opp_table *opp_table,
1988 const u32 *versions, unsigned int count)
1989{
1990 /* Another CPU that shares the OPP table has set the property ? */
1991 if (opp_table->supported_hw)
1992 return 0;
1993
1994 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995 GFP_KERNEL);
1996 if (!opp_table->supported_hw)
1997 return -ENOMEM;
1998
1999 opp_table->supported_hw_count = count;
2000
2001 return 0;
2002}
2003
2004/**
2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006 * @opp_table: OPP table returned by _opp_set_supported_hw().
2007 *
2008 * This is required only for the V2 bindings, and is called for a matching
2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010 * will not be freed.
2011 */
2012static void _opp_put_supported_hw(struct opp_table *opp_table)
2013{
2014 if (opp_table->supported_hw) {
2015 kfree(opp_table->supported_hw);
2016 opp_table->supported_hw = NULL;
2017 opp_table->supported_hw_count = 0;
2018 }
2019}
2020
2021/**
2022 * _opp_set_prop_name() - Set prop-extn name
2023 * @dev: Device for which the prop-name has to be set.
2024 * @name: name to postfix to properties.
2025 *
2026 * This is required only for the V2 bindings, and it enables a platform to
2027 * specify the extn to be used for certain property names. The properties to
2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029 * should postfix the property name with -<name> while looking for them.
2030 */
2031static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032{
2033 /* Another CPU that shares the OPP table has set the property ? */
2034 if (!opp_table->prop_name) {
2035 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036 if (!opp_table->prop_name)
2037 return -ENOMEM;
2038 }
2039
2040 return 0;
2041}
2042
2043/**
2044 * _opp_put_prop_name() - Releases resources blocked for prop-name
2045 * @opp_table: OPP table returned by _opp_set_prop_name().
2046 *
2047 * This is required only for the V2 bindings, and is called for a matching
2048 * _opp_set_prop_name(). Until this is called, the opp_table structure
2049 * will not be freed.
2050 */
2051static void _opp_put_prop_name(struct opp_table *opp_table)
2052{
2053 if (opp_table->prop_name) {
2054 kfree(opp_table->prop_name);
2055 opp_table->prop_name = NULL;
2056 }
2057}
2058
2059/**
2060 * _opp_set_regulators() - Set regulator names for the device
2061 * @dev: Device for which regulator name is being set.
2062 * @names: Array of pointers to the names of the regulator.
2063 * @count: Number of regulators.
2064 *
2065 * In order to support OPP switching, OPP layer needs to know the name of the
2066 * device's regulators, as the core would be required to switch voltages as
2067 * well.
2068 *
2069 * This must be called before any OPPs are initialized for the device.
2070 */
2071static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072 const char * const names[])
2073{
2074 const char * const *temp = names;
2075 struct regulator *reg;
2076 int count = 0, ret, i;
2077
2078 /* Count number of regulators */
2079 while (*temp++)
2080 count++;
2081
2082 if (!count)
2083 return -EINVAL;
2084
2085 /* Another CPU that shares the OPP table has set the regulators ? */
2086 if (opp_table->regulators)
2087 return 0;
2088
2089 opp_table->regulators = kmalloc_array(count,
2090 sizeof(*opp_table->regulators),
2091 GFP_KERNEL);
2092 if (!opp_table->regulators)
2093 return -ENOMEM;
2094
2095 for (i = 0; i < count; i++) {
2096 reg = regulator_get_optional(dev, names[i]);
2097 if (IS_ERR(reg)) {
2098 ret = dev_err_probe(dev, PTR_ERR(reg),
2099 "%s: no regulator (%s) found\n",
2100 __func__, names[i]);
2101 goto free_regulators;
2102 }
2103
2104 opp_table->regulators[i] = reg;
2105 }
2106
2107 opp_table->regulator_count = count;
2108
2109 /* Set generic config_regulators() for single regulators here */
2110 if (count == 1)
2111 opp_table->config_regulators = _opp_config_regulator_single;
2112
2113 return 0;
2114
2115free_regulators:
2116 while (i != 0)
2117 regulator_put(opp_table->regulators[--i]);
2118
2119 kfree(opp_table->regulators);
2120 opp_table->regulators = NULL;
2121 opp_table->regulator_count = -1;
2122
2123 return ret;
2124}
2125
2126/**
2127 * _opp_put_regulators() - Releases resources blocked for regulator
2128 * @opp_table: OPP table returned from _opp_set_regulators().
2129 */
2130static void _opp_put_regulators(struct opp_table *opp_table)
2131{
2132 int i;
2133
2134 if (!opp_table->regulators)
2135 return;
2136
2137 if (opp_table->enabled) {
2138 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139 regulator_disable(opp_table->regulators[i]);
2140 }
2141
2142 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143 regulator_put(opp_table->regulators[i]);
2144
2145 kfree(opp_table->regulators);
2146 opp_table->regulators = NULL;
2147 opp_table->regulator_count = -1;
2148}
2149
2150static void _put_clks(struct opp_table *opp_table, int count)
2151{
2152 int i;
2153
2154 for (i = count - 1; i >= 0; i--)
2155 clk_put(opp_table->clks[i]);
2156
2157 kfree(opp_table->clks);
2158 opp_table->clks = NULL;
2159}
2160
2161/**
2162 * _opp_set_clknames() - Set clk names for the device
2163 * @dev: Device for which clk names is being set.
2164 * @names: Clk names.
2165 *
2166 * In order to support OPP switching, OPP layer needs to get pointers to the
2167 * clocks for the device. Simple cases work fine without using this routine
2168 * (i.e. by passing connection-id as NULL), but for a device with multiple
2169 * clocks available, the OPP core needs to know the exact names of the clks to
2170 * use.
2171 *
2172 * This must be called before any OPPs are initialized for the device.
2173 */
2174static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175 const char * const names[],
2176 config_clks_t config_clks)
2177{
2178 const char * const *temp = names;
2179 int count = 0, ret, i;
2180 struct clk *clk;
2181
2182 /* Count number of clks */
2183 while (*temp++)
2184 count++;
2185
2186 /*
2187 * This is a special case where we have a single clock, whose connection
2188 * id name is NULL, i.e. first two entries are NULL in the array.
2189 */
2190 if (!count && !names[1])
2191 count = 1;
2192
2193 /* Fail early for invalid configurations */
2194 if (!count || (!config_clks && count > 1))
2195 return -EINVAL;
2196
2197 /* Another CPU that shares the OPP table has set the clkname ? */
2198 if (opp_table->clks)
2199 return 0;
2200
2201 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202 GFP_KERNEL);
2203 if (!opp_table->clks)
2204 return -ENOMEM;
2205
2206 /* Find clks for the device */
2207 for (i = 0; i < count; i++) {
2208 clk = clk_get(dev, names[i]);
2209 if (IS_ERR(clk)) {
2210 ret = dev_err_probe(dev, PTR_ERR(clk),
2211 "%s: Couldn't find clock with name: %s\n",
2212 __func__, names[i]);
2213 goto free_clks;
2214 }
2215
2216 opp_table->clks[i] = clk;
2217 }
2218
2219 opp_table->clk_count = count;
2220 opp_table->config_clks = config_clks;
2221
2222 /* Set generic single clk set here */
2223 if (count == 1) {
2224 if (!opp_table->config_clks)
2225 opp_table->config_clks = _opp_config_clk_single;
2226
2227 /*
2228 * We could have just dropped the "clk" field and used "clks"
2229 * everywhere. Instead we kept the "clk" field around for
2230 * following reasons:
2231 *
2232 * - avoiding clks[0] everywhere else.
2233 * - not running single clk helpers for multiple clk usecase by
2234 * mistake.
2235 *
2236 * Since this is single-clk case, just update the clk pointer
2237 * too.
2238 */
2239 opp_table->clk = opp_table->clks[0];
2240 }
2241
2242 return 0;
2243
2244free_clks:
2245 _put_clks(opp_table, i);
2246 return ret;
2247}
2248
2249/**
2250 * _opp_put_clknames() - Releases resources blocked for clks.
2251 * @opp_table: OPP table returned from _opp_set_clknames().
2252 */
2253static void _opp_put_clknames(struct opp_table *opp_table)
2254{
2255 if (!opp_table->clks)
2256 return;
2257
2258 opp_table->config_clks = NULL;
2259 opp_table->clk = ERR_PTR(-ENODEV);
2260
2261 _put_clks(opp_table, opp_table->clk_count);
2262}
2263
2264/**
2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266 * @dev: Device for which the helper is getting registered.
2267 * @config_regulators: Custom set regulator helper.
2268 *
2269 * This is useful to support platforms with multiple regulators per device.
2270 *
2271 * This must be called before any OPPs are initialized for the device.
2272 */
2273static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274 struct device *dev, config_regulators_t config_regulators)
2275{
2276 /* Another CPU that shares the OPP table has set the helper ? */
2277 if (!opp_table->config_regulators)
2278 opp_table->config_regulators = config_regulators;
2279
2280 return 0;
2281}
2282
2283/**
2284 * _opp_put_config_regulators_helper() - Releases resources blocked for
2285 * config_regulators helper.
2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287 *
2288 * Release resources blocked for platform specific config_regulators helper.
2289 */
2290static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291{
2292 if (opp_table->config_regulators)
2293 opp_table->config_regulators = NULL;
2294}
2295
2296static void _detach_genpd(struct opp_table *opp_table)
2297{
2298 int index;
2299
2300 if (!opp_table->genpd_virt_devs)
2301 return;
2302
2303 for (index = 0; index < opp_table->required_opp_count; index++) {
2304 if (!opp_table->genpd_virt_devs[index])
2305 continue;
2306
2307 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308 opp_table->genpd_virt_devs[index] = NULL;
2309 }
2310
2311 kfree(opp_table->genpd_virt_devs);
2312 opp_table->genpd_virt_devs = NULL;
2313}
2314
2315/**
2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317 * @dev: Consumer device for which the genpd is getting attached.
2318 * @names: Null terminated array of pointers containing names of genpd to attach.
2319 * @virt_devs: Pointer to return the array of virtual devices.
2320 *
2321 * Multiple generic power domains for a device are supported with the help of
2322 * virtual genpd devices, which are created for each consumer device - genpd
2323 * pair. These are the device structures which are attached to the power domain
2324 * and are required by the OPP core to set the performance state of the genpd.
2325 * The same API also works for the case where single genpd is available and so
2326 * we don't need to support that separately.
2327 *
2328 * This helper will normally be called by the consumer driver of the device
2329 * "dev", as only that has details of the genpd names.
2330 *
2331 * This helper needs to be called once with a list of all genpd to attach.
2332 * Otherwise the original device structure will be used instead by the OPP core.
2333 *
2334 * The order of entries in the names array must match the order in which
2335 * "required-opps" are added in DT.
2336 */
2337static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338 const char * const *names, struct device ***virt_devs)
2339{
2340 struct device *virt_dev;
2341 int index = 0, ret = -EINVAL;
2342 const char * const *name = names;
2343
2344 if (opp_table->genpd_virt_devs)
2345 return 0;
2346
2347 /*
2348 * If the genpd's OPP table isn't already initialized, parsing of the
2349 * required-opps fail for dev. We should retry this after genpd's OPP
2350 * table is added.
2351 */
2352 if (!opp_table->required_opp_count)
2353 return -EPROBE_DEFER;
2354
2355 mutex_lock(&opp_table->genpd_virt_dev_lock);
2356
2357 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358 sizeof(*opp_table->genpd_virt_devs),
2359 GFP_KERNEL);
2360 if (!opp_table->genpd_virt_devs)
2361 goto unlock;
2362
2363 while (*name) {
2364 if (index >= opp_table->required_opp_count) {
2365 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366 *name, opp_table->required_opp_count, index);
2367 goto err;
2368 }
2369
2370 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371 if (IS_ERR_OR_NULL(virt_dev)) {
2372 ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374 goto err;
2375 }
2376
2377 opp_table->genpd_virt_devs[index] = virt_dev;
2378 index++;
2379 name++;
2380 }
2381
2382 if (virt_devs)
2383 *virt_devs = opp_table->genpd_virt_devs;
2384 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385
2386 return 0;
2387
2388err:
2389 _detach_genpd(opp_table);
2390unlock:
2391 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392 return ret;
2393
2394}
2395
2396/**
2397 * _opp_detach_genpd() - Detach genpd(s) from the device.
2398 * @opp_table: OPP table returned by _opp_attach_genpd().
2399 *
2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401 * OPP table.
2402 */
2403static void _opp_detach_genpd(struct opp_table *opp_table)
2404{
2405 /*
2406 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407 * used in parallel.
2408 */
2409 mutex_lock(&opp_table->genpd_virt_dev_lock);
2410 _detach_genpd(opp_table);
2411 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412}
2413
2414static void _opp_clear_config(struct opp_config_data *data)
2415{
2416 if (data->flags & OPP_CONFIG_GENPD)
2417 _opp_detach_genpd(data->opp_table);
2418 if (data->flags & OPP_CONFIG_REGULATOR)
2419 _opp_put_regulators(data->opp_table);
2420 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421 _opp_put_supported_hw(data->opp_table);
2422 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423 _opp_put_config_regulators_helper(data->opp_table);
2424 if (data->flags & OPP_CONFIG_PROP_NAME)
2425 _opp_put_prop_name(data->opp_table);
2426 if (data->flags & OPP_CONFIG_CLK)
2427 _opp_put_clknames(data->opp_table);
2428
2429 dev_pm_opp_put_opp_table(data->opp_table);
2430 kfree(data);
2431}
2432
2433/**
2434 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435 * @dev: Device for which configuration is being set.
2436 * @config: OPP configuration.
2437 *
2438 * This allows all device OPP configurations to be performed at once.
2439 *
2440 * This must be called before any OPPs are initialized for the device. This may
2441 * be called multiple times for the same OPP table, for example once for each
2442 * CPU that share the same table. This must be balanced by the same number of
2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444 *
2445 * This returns a token to the caller, which must be passed to
2446 * dev_pm_opp_clear_config() to free the resources later. The value of the
2447 * returned token will be >= 1 for success and negative for errors. The minimum
2448 * value of 1 is chosen here to make it easy for callers to manage the resource.
2449 */
2450int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451{
2452 struct opp_table *opp_table;
2453 struct opp_config_data *data;
2454 unsigned int id;
2455 int ret;
2456
2457 data = kmalloc(sizeof(*data), GFP_KERNEL);
2458 if (!data)
2459 return -ENOMEM;
2460
2461 opp_table = _add_opp_table(dev, false);
2462 if (IS_ERR(opp_table)) {
2463 kfree(data);
2464 return PTR_ERR(opp_table);
2465 }
2466
2467 data->opp_table = opp_table;
2468 data->flags = 0;
2469
2470 /* This should be called before OPPs are initialized */
2471 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472 ret = -EBUSY;
2473 goto err;
2474 }
2475
2476 /* Configure clocks */
2477 if (config->clk_names) {
2478 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479 config->config_clks);
2480 if (ret)
2481 goto err;
2482
2483 data->flags |= OPP_CONFIG_CLK;
2484 } else if (config->config_clks) {
2485 /* Don't allow config callback without clocks */
2486 ret = -EINVAL;
2487 goto err;
2488 }
2489
2490 /* Configure property names */
2491 if (config->prop_name) {
2492 ret = _opp_set_prop_name(opp_table, config->prop_name);
2493 if (ret)
2494 goto err;
2495
2496 data->flags |= OPP_CONFIG_PROP_NAME;
2497 }
2498
2499 /* Configure config_regulators helper */
2500 if (config->config_regulators) {
2501 ret = _opp_set_config_regulators_helper(opp_table, dev,
2502 config->config_regulators);
2503 if (ret)
2504 goto err;
2505
2506 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507 }
2508
2509 /* Configure supported hardware */
2510 if (config->supported_hw) {
2511 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512 config->supported_hw_count);
2513 if (ret)
2514 goto err;
2515
2516 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517 }
2518
2519 /* Configure supplies */
2520 if (config->regulator_names) {
2521 ret = _opp_set_regulators(opp_table, dev,
2522 config->regulator_names);
2523 if (ret)
2524 goto err;
2525
2526 data->flags |= OPP_CONFIG_REGULATOR;
2527 }
2528
2529 /* Attach genpds */
2530 if (config->genpd_names) {
2531 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532 config->virt_devs);
2533 if (ret)
2534 goto err;
2535
2536 data->flags |= OPP_CONFIG_GENPD;
2537 }
2538
2539 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540 GFP_KERNEL);
2541 if (ret)
2542 goto err;
2543
2544 return id;
2545
2546err:
2547 _opp_clear_config(data);
2548 return ret;
2549}
2550EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551
2552/**
2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555 *
2556 * This allows all device OPP configurations to be cleared at once. This must be
2557 * called once for each call made to dev_pm_opp_set_config(), in order to free
2558 * the OPPs properly.
2559 *
2560 * Currently the first call itself ends up freeing all the OPP configurations,
2561 * while the later ones only drop the OPP table reference. This works well for
2562 * now as we would never want to use an half initialized OPP table and want to
2563 * remove the configurations together.
2564 */
2565void dev_pm_opp_clear_config(int token)
2566{
2567 struct opp_config_data *data;
2568
2569 /*
2570 * This lets the callers call this unconditionally and keep their code
2571 * simple.
2572 */
2573 if (unlikely(token <= 0))
2574 return;
2575
2576 data = xa_erase(&opp_configs, token);
2577 if (WARN_ON(!data))
2578 return;
2579
2580 _opp_clear_config(data);
2581}
2582EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583
2584static void devm_pm_opp_config_release(void *token)
2585{
2586 dev_pm_opp_clear_config((unsigned long)token);
2587}
2588
2589/**
2590 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591 * @dev: Device for which configuration is being set.
2592 * @config: OPP configuration.
2593 *
2594 * This allows all device OPP configurations to be performed at once.
2595 * This is a resource-managed variant of dev_pm_opp_set_config().
2596 *
2597 * Return: 0 on success and errorno otherwise.
2598 */
2599int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600{
2601 int token = dev_pm_opp_set_config(dev, config);
2602
2603 if (token < 0)
2604 return token;
2605
2606 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607 (void *) ((unsigned long) token));
2608}
2609EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610
2611/**
2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614 * @dst_table: Required OPP table of the @src_table.
2615 * @src_opp: OPP from the @src_table.
2616 *
2617 * This function returns the OPP (present in @dst_table) pointed out by the
2618 * "required-opps" property of the @src_opp (present in @src_table).
2619 *
2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621 * use.
2622 *
2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624 */
2625struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626 struct opp_table *dst_table,
2627 struct dev_pm_opp *src_opp)
2628{
2629 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630 int i;
2631
2632 if (!src_table || !dst_table || !src_opp ||
2633 !src_table->required_opp_tables)
2634 return ERR_PTR(-EINVAL);
2635
2636 /* required-opps not fully initialized yet */
2637 if (lazy_linking_pending(src_table))
2638 return ERR_PTR(-EBUSY);
2639
2640 for (i = 0; i < src_table->required_opp_count; i++) {
2641 if (src_table->required_opp_tables[i] == dst_table) {
2642 mutex_lock(&src_table->lock);
2643
2644 list_for_each_entry(opp, &src_table->opp_list, node) {
2645 if (opp == src_opp) {
2646 dest_opp = opp->required_opps[i];
2647 dev_pm_opp_get(dest_opp);
2648 break;
2649 }
2650 }
2651
2652 mutex_unlock(&src_table->lock);
2653 break;
2654 }
2655 }
2656
2657 if (IS_ERR(dest_opp)) {
2658 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659 src_table, dst_table);
2660 }
2661
2662 return dest_opp;
2663}
2664EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665
2666/**
2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668 * @src_table: OPP table which has dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the src_table.
2670 * @pstate: Current performance state of the src_table.
2671 *
2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the OPP (present in @src_table) which has
2674 * performance state set to @pstate.
2675 *
2676 * Return: Zero or positive performance state on success, otherwise negative
2677 * value on errors.
2678 */
2679int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680 struct opp_table *dst_table,
2681 unsigned int pstate)
2682{
2683 struct dev_pm_opp *opp;
2684 int dest_pstate = -EINVAL;
2685 int i;
2686
2687 /*
2688 * Normally the src_table will have the "required_opps" property set to
2689 * point to one of the OPPs in the dst_table, but in some cases the
2690 * genpd and its master have one to one mapping of performance states
2691 * and so none of them have the "required-opps" property set. Return the
2692 * pstate of the src_table as it is in such cases.
2693 */
2694 if (!src_table || !src_table->required_opp_count)
2695 return pstate;
2696
2697 /* required-opps not fully initialized yet */
2698 if (lazy_linking_pending(src_table))
2699 return -EBUSY;
2700
2701 for (i = 0; i < src_table->required_opp_count; i++) {
2702 if (src_table->required_opp_tables[i]->np == dst_table->np)
2703 break;
2704 }
2705
2706 if (unlikely(i == src_table->required_opp_count)) {
2707 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708 __func__, src_table, dst_table);
2709 return -EINVAL;
2710 }
2711
2712 mutex_lock(&src_table->lock);
2713
2714 list_for_each_entry(opp, &src_table->opp_list, node) {
2715 if (opp->pstate == pstate) {
2716 dest_pstate = opp->required_opps[i]->pstate;
2717 goto unlock;
2718 }
2719 }
2720
2721 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722 dst_table);
2723
2724unlock:
2725 mutex_unlock(&src_table->lock);
2726
2727 return dest_pstate;
2728}
2729
2730/**
2731 * dev_pm_opp_add() - Add an OPP table from a table definitions
2732 * @dev: device for which we do this operation
2733 * @freq: Frequency in Hz for this OPP
2734 * @u_volt: Voltage in uVolts for this OPP
2735 *
2736 * This function adds an opp definition to the opp table and returns status.
2737 * The opp is made available by default and it can be controlled using
2738 * dev_pm_opp_enable/disable functions.
2739 *
2740 * Return:
2741 * 0 On success OR
2742 * Duplicate OPPs (both freq and volt are same) and opp->available
2743 * -EEXIST Freq are same and volt are different OR
2744 * Duplicate OPPs (both freq and volt are same) and !opp->available
2745 * -ENOMEM Memory allocation failure
2746 */
2747int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748{
2749 struct opp_table *opp_table;
2750 int ret;
2751
2752 opp_table = _add_opp_table(dev, true);
2753 if (IS_ERR(opp_table))
2754 return PTR_ERR(opp_table);
2755
2756 /* Fix regulator count for dynamic OPPs */
2757 opp_table->regulator_count = 1;
2758
2759 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760 if (ret)
2761 dev_pm_opp_put_opp_table(opp_table);
2762
2763 return ret;
2764}
2765EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766
2767/**
2768 * _opp_set_availability() - helper to set the availability of an opp
2769 * @dev: device for which we do this operation
2770 * @freq: OPP frequency to modify availability
2771 * @availability_req: availability status requested for this opp
2772 *
2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774 * which is isolated here.
2775 *
2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777 * copy operation, returns 0 if no modification was done OR modification was
2778 * successful.
2779 */
2780static int _opp_set_availability(struct device *dev, unsigned long freq,
2781 bool availability_req)
2782{
2783 struct opp_table *opp_table;
2784 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785 int r = 0;
2786
2787 /* Find the opp_table */
2788 opp_table = _find_opp_table(dev);
2789 if (IS_ERR(opp_table)) {
2790 r = PTR_ERR(opp_table);
2791 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792 return r;
2793 }
2794
2795 if (!assert_single_clk(opp_table)) {
2796 r = -EINVAL;
2797 goto put_table;
2798 }
2799
2800 mutex_lock(&opp_table->lock);
2801
2802 /* Do we have the frequency? */
2803 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804 if (tmp_opp->rates[0] == freq) {
2805 opp = tmp_opp;
2806 break;
2807 }
2808 }
2809
2810 if (IS_ERR(opp)) {
2811 r = PTR_ERR(opp);
2812 goto unlock;
2813 }
2814
2815 /* Is update really needed? */
2816 if (opp->available == availability_req)
2817 goto unlock;
2818
2819 opp->available = availability_req;
2820
2821 dev_pm_opp_get(opp);
2822 mutex_unlock(&opp_table->lock);
2823
2824 /* Notify the change of the OPP availability */
2825 if (availability_req)
2826 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827 opp);
2828 else
2829 blocking_notifier_call_chain(&opp_table->head,
2830 OPP_EVENT_DISABLE, opp);
2831
2832 dev_pm_opp_put(opp);
2833 goto put_table;
2834
2835unlock:
2836 mutex_unlock(&opp_table->lock);
2837put_table:
2838 dev_pm_opp_put_opp_table(opp_table);
2839 return r;
2840}
2841
2842/**
2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844 * @dev: device for which we do this operation
2845 * @freq: OPP frequency to adjust voltage of
2846 * @u_volt: new OPP target voltage
2847 * @u_volt_min: new OPP min voltage
2848 * @u_volt_max: new OPP max voltage
2849 *
2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851 * copy operation, returns 0 if no modifcation was done OR modification was
2852 * successful.
2853 */
2854int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855 unsigned long u_volt, unsigned long u_volt_min,
2856 unsigned long u_volt_max)
2857
2858{
2859 struct opp_table *opp_table;
2860 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861 int r = 0;
2862
2863 /* Find the opp_table */
2864 opp_table = _find_opp_table(dev);
2865 if (IS_ERR(opp_table)) {
2866 r = PTR_ERR(opp_table);
2867 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868 return r;
2869 }
2870
2871 if (!assert_single_clk(opp_table)) {
2872 r = -EINVAL;
2873 goto put_table;
2874 }
2875
2876 mutex_lock(&opp_table->lock);
2877
2878 /* Do we have the frequency? */
2879 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880 if (tmp_opp->rates[0] == freq) {
2881 opp = tmp_opp;
2882 break;
2883 }
2884 }
2885
2886 if (IS_ERR(opp)) {
2887 r = PTR_ERR(opp);
2888 goto adjust_unlock;
2889 }
2890
2891 /* Is update really needed? */
2892 if (opp->supplies->u_volt == u_volt)
2893 goto adjust_unlock;
2894
2895 opp->supplies->u_volt = u_volt;
2896 opp->supplies->u_volt_min = u_volt_min;
2897 opp->supplies->u_volt_max = u_volt_max;
2898
2899 dev_pm_opp_get(opp);
2900 mutex_unlock(&opp_table->lock);
2901
2902 /* Notify the voltage change of the OPP */
2903 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904 opp);
2905
2906 dev_pm_opp_put(opp);
2907 goto put_table;
2908
2909adjust_unlock:
2910 mutex_unlock(&opp_table->lock);
2911put_table:
2912 dev_pm_opp_put_opp_table(opp_table);
2913 return r;
2914}
2915EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916
2917/**
2918 * dev_pm_opp_enable() - Enable a specific OPP
2919 * @dev: device for which we do this operation
2920 * @freq: OPP frequency to enable
2921 *
2922 * Enables a provided opp. If the operation is valid, this returns 0, else the
2923 * corresponding error value. It is meant to be used for users an OPP available
2924 * after being temporarily made unavailable with dev_pm_opp_disable.
2925 *
2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927 * copy operation, returns 0 if no modification was done OR modification was
2928 * successful.
2929 */
2930int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931{
2932 return _opp_set_availability(dev, freq, true);
2933}
2934EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935
2936/**
2937 * dev_pm_opp_disable() - Disable a specific OPP
2938 * @dev: device for which we do this operation
2939 * @freq: OPP frequency to disable
2940 *
2941 * Disables a provided opp. If the operation is valid, this returns
2942 * 0, else the corresponding error value. It is meant to be a temporary
2943 * control by users to make this OPP not available until the circumstances are
2944 * right to make it available again (with a call to dev_pm_opp_enable).
2945 *
2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947 * copy operation, returns 0 if no modification was done OR modification was
2948 * successful.
2949 */
2950int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951{
2952 return _opp_set_availability(dev, freq, false);
2953}
2954EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955
2956/**
2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958 * @dev: Device for which notifier needs to be registered
2959 * @nb: Notifier block to be registered
2960 *
2961 * Return: 0 on success or a negative error value.
2962 */
2963int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964{
2965 struct opp_table *opp_table;
2966 int ret;
2967
2968 opp_table = _find_opp_table(dev);
2969 if (IS_ERR(opp_table))
2970 return PTR_ERR(opp_table);
2971
2972 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973
2974 dev_pm_opp_put_opp_table(opp_table);
2975
2976 return ret;
2977}
2978EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979
2980/**
2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982 * @dev: Device for which notifier needs to be unregistered
2983 * @nb: Notifier block to be unregistered
2984 *
2985 * Return: 0 on success or a negative error value.
2986 */
2987int dev_pm_opp_unregister_notifier(struct device *dev,
2988 struct notifier_block *nb)
2989{
2990 struct opp_table *opp_table;
2991 int ret;
2992
2993 opp_table = _find_opp_table(dev);
2994 if (IS_ERR(opp_table))
2995 return PTR_ERR(opp_table);
2996
2997 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998
2999 dev_pm_opp_put_opp_table(opp_table);
3000
3001 return ret;
3002}
3003EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004
3005/**
3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007 * @dev: device pointer used to lookup OPP table.
3008 *
3009 * Free both OPPs created using static entries present in DT and the
3010 * dynamically added entries.
3011 */
3012void dev_pm_opp_remove_table(struct device *dev)
3013{
3014 struct opp_table *opp_table;
3015
3016 /* Check for existing table for 'dev' */
3017 opp_table = _find_opp_table(dev);
3018 if (IS_ERR(opp_table)) {
3019 int error = PTR_ERR(opp_table);
3020
3021 if (error != -ENODEV)
3022 WARN(1, "%s: opp_table: %d\n",
3023 IS_ERR_OR_NULL(dev) ?
3024 "Invalid device" : dev_name(dev),
3025 error);
3026 return;
3027 }
3028
3029 /*
3030 * Drop the extra reference only if the OPP table was successfully added
3031 * with dev_pm_opp_of_add_table() earlier.
3032 **/
3033 if (_opp_remove_all_static(opp_table))
3034 dev_pm_opp_put_opp_table(opp_table);
3035
3036 /* Drop reference taken by _find_opp_table() */
3037 dev_pm_opp_put_opp_table(opp_table);
3038}
3039EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040
3041/**
3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043 * @dev: device for which we do this operation
3044 *
3045 * Sync voltage state of the OPP table regulators.
3046 *
3047 * Return: 0 on success or a negative error value.
3048 */
3049int dev_pm_opp_sync_regulators(struct device *dev)
3050{
3051 struct opp_table *opp_table;
3052 struct regulator *reg;
3053 int i, ret = 0;
3054
3055 /* Device may not have OPP table */
3056 opp_table = _find_opp_table(dev);
3057 if (IS_ERR(opp_table))
3058 return 0;
3059
3060 /* Regulator may not be required for the device */
3061 if (unlikely(!opp_table->regulators))
3062 goto put_table;
3063
3064 /* Nothing to sync if voltage wasn't changed */
3065 if (!opp_table->enabled)
3066 goto put_table;
3067
3068 for (i = 0; i < opp_table->regulator_count; i++) {
3069 reg = opp_table->regulators[i];
3070 ret = regulator_sync_voltage(reg);
3071 if (ret)
3072 break;
3073 }
3074put_table:
3075 /* Drop reference taken by _find_opp_table() */
3076 dev_pm_opp_put_opp_table(opp_table);
3077
3078 return ret;
3079}
3080EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106 return !WARN_ON(opp_table->clk_count > 1);
107}
108
109/**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119{
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126}
127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142{
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return U32_MAX.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return U32_MAX.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228{
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(&opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(uV);
356put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378/**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386{
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
403int _get_opp_count(struct opp_table *opp_table)
404{
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418}
419
420/**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
427int dev_pm_opp_get_opp_count(struct device *dev)
428{
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444}
445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
450 return opp->rates[index];
451}
452
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455 return opp->level;
456}
457
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460 return opp->bandwidth[index].peak;
461}
462
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466{
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477{
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488{
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503{
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559{
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572{
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581{
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590{
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
593}
594
595/**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620{
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
623}
624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649{
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656{
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 assert_single_clk);
659}
660
661/**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681{
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683}
684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709{
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714/**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734{
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736}
737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762{
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784{
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806{
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 if (IS_ERR(opp))
812 return opp;
813
814 /* False match */
815 if (temp == OPP_LEVEL_UNSET) {
816 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 dev_pm_opp_put(opp);
818 return ERR_PTR(-ENODEV);
819 }
820
821 *level = temp;
822 return opp;
823}
824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825
826/**
827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828 * @dev: device for which we do this operation
829 * @level: Start level
830 *
831 * Search for the matching floor *available* OPP from a starting level
832 * for a device.
833 *
834 * Return: matching *opp and refreshes *level accordingly, else returns
835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836 * values can be:
837 * EINVAL: for bad pointer
838 * ERANGE: no match found for search
839 * ENODEV: if device not found in list of registered devices
840 *
841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
842 * use.
843 */
844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 unsigned int *level)
846{
847 unsigned long temp = *level;
848 struct dev_pm_opp *opp;
849
850 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851 *level = temp;
852 return opp;
853}
854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855
856/**
857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858 * @dev: device for which we do this operation
859 * @bw: start bandwidth
860 * @index: which bandwidth to compare, in case of OPPs with several values
861 *
862 * Search for the matching floor *available* OPP from a starting bandwidth
863 * for a device.
864 *
865 * Return: matching *opp and refreshes *bw accordingly, else returns
866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867 * values can be:
868 * EINVAL: for bad pointer
869 * ERANGE: no match found for search
870 * ENODEV: if device not found in list of registered devices
871 *
872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
873 * use.
874 */
875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 int index)
877{
878 unsigned long temp = *bw;
879 struct dev_pm_opp *opp;
880
881 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882 *bw = temp;
883 return opp;
884}
885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886
887/**
888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889 * @dev: device for which we do this operation
890 * @bw: start bandwidth
891 * @index: which bandwidth to compare, in case of OPPs with several values
892 *
893 * Search for the matching floor *available* OPP from a starting bandwidth
894 * for a device.
895 *
896 * Return: matching *opp and refreshes *bw accordingly, else returns
897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898 * values can be:
899 * EINVAL: for bad pointer
900 * ERANGE: no match found for search
901 * ENODEV: if device not found in list of registered devices
902 *
903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
904 * use.
905 */
906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 unsigned int *bw, int index)
908{
909 unsigned long temp = *bw;
910 struct dev_pm_opp *opp;
911
912 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913 *bw = temp;
914 return opp;
915}
916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917
918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 struct dev_pm_opp_supply *supply)
920{
921 int ret;
922
923 /* Regulator not available for device */
924 if (IS_ERR(reg)) {
925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 PTR_ERR(reg));
927 return 0;
928 }
929
930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932
933 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934 supply->u_volt, supply->u_volt_max);
935 if (ret)
936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 __func__, supply->u_volt_min, supply->u_volt,
938 supply->u_volt_max, ret);
939
940 return ret;
941}
942
943static int
944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 struct dev_pm_opp *opp, void *data, bool scaling_down)
946{
947 unsigned long *target = data;
948 unsigned long freq;
949 int ret;
950
951 /* One of target and opp must be available */
952 if (target) {
953 freq = *target;
954 } else if (opp) {
955 freq = opp->rates[0];
956 } else {
957 WARN_ON(1);
958 return -EINVAL;
959 }
960
961 ret = clk_set_rate(opp_table->clk, freq);
962 if (ret) {
963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 ret);
965 } else {
966 opp_table->current_rate_single_clk = freq;
967 }
968
969 return ret;
970}
971
972/*
973 * Simple implementation for configuring multiple clocks. Configure clocks in
974 * the order in which they are present in the array while scaling up.
975 */
976int dev_pm_opp_config_clks_simple(struct device *dev,
977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 bool scaling_down)
979{
980 int ret, i;
981
982 if (scaling_down) {
983 for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 return ret;
989 }
990 }
991 } else {
992 for (i = 0; i < opp_table->clk_count; i++) {
993 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994 if (ret) {
995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 ret);
997 return ret;
998 }
999 }
1000 }
1001
1002 return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 struct regulator **regulators, unsigned int count)
1009{
1010 struct regulator *reg = regulators[0];
1011 int ret;
1012
1013 /* This function only supports single regulator per device */
1014 if (WARN_ON(count > 1)) {
1015 dev_err(dev, "multiple regulators are not supported\n");
1016 return -EINVAL;
1017 }
1018
1019 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020 if (ret)
1021 return ret;
1022
1023 /*
1024 * Enable the regulator after setting its voltages, otherwise it breaks
1025 * some boot-enabled regulators.
1026 */
1027 if (unlikely(!new_opp->opp_table->enabled)) {
1028 ret = regulator_enable(reg);
1029 if (ret < 0)
1030 dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 }
1032
1033 return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037 struct dev_pm_opp *opp, struct device *dev)
1038{
1039 u32 avg, peak;
1040 int i, ret;
1041
1042 if (!opp_table->paths)
1043 return 0;
1044
1045 for (i = 0; i < opp_table->path_count; i++) {
1046 if (!opp) {
1047 avg = 0;
1048 peak = 0;
1049 } else {
1050 avg = opp->bandwidth[i].avg;
1051 peak = opp->bandwidth[i].peak;
1052 }
1053 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054 if (ret) {
1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 opp ? "set" : "remove", i, ret);
1057 return ret;
1058 }
1059 }
1060
1061 return 0;
1062}
1063
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066 struct dev_pm_opp *opp, bool up)
1067{
1068 struct device **devs = opp_table->required_devs;
1069 struct dev_pm_opp *required_opp;
1070 int index, target, delta, ret;
1071
1072 if (!devs)
1073 return 0;
1074
1075 /* required-opps not fully initialized yet */
1076 if (lazy_linking_pending(opp_table))
1077 return -EBUSY;
1078
1079 /* Scaling up? Set required OPPs in normal order, else reverse */
1080 if (up) {
1081 index = 0;
1082 target = opp_table->required_opp_count;
1083 delta = 1;
1084 } else {
1085 index = opp_table->required_opp_count - 1;
1086 target = -1;
1087 delta = -1;
1088 }
1089
1090 while (index != target) {
1091 if (devs[index]) {
1092 required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094 ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095 if (ret)
1096 return ret;
1097 }
1098
1099 index += delta;
1100 }
1101
1102 return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106 struct dev_pm_opp *opp)
1107{
1108 unsigned int level = 0;
1109 int ret = 0;
1110
1111 if (opp) {
1112 if (opp->level == OPP_LEVEL_UNSET)
1113 return 0;
1114
1115 level = opp->level;
1116 }
1117
1118 /* Request a new performance state through the device's PM domain. */
1119 ret = dev_pm_domain_set_performance_state(dev, level);
1120 if (ret)
1121 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122 ret);
1123
1124 return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130 unsigned long freq;
1131
1132 if (!IS_ERR(opp_table->clk)) {
1133 freq = clk_get_rate(opp_table->clk);
1134 opp = _find_freq_ceil(opp_table, &freq);
1135 }
1136
1137 /*
1138 * Unable to find the current OPP ? Pick the first from the list since
1139 * it is in ascending order, otherwise rest of the code will need to
1140 * make special checks to validate current_opp.
1141 */
1142 if (IS_ERR(opp)) {
1143 mutex_lock(&opp_table->lock);
1144 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145 dev_pm_opp_get(opp);
1146 mutex_unlock(&opp_table->lock);
1147 }
1148
1149 opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154 int ret;
1155
1156 if (!opp_table->enabled)
1157 return 0;
1158
1159 /*
1160 * Some drivers need to support cases where some platforms may
1161 * have OPP table for the device, while others don't and
1162 * opp_set_rate() just needs to behave like clk_set_rate().
1163 */
1164 if (!_get_opp_count(opp_table))
1165 return 0;
1166
1167 ret = _set_opp_bw(opp_table, NULL, dev);
1168 if (ret)
1169 return ret;
1170
1171 if (opp_table->regulators)
1172 regulator_disable(opp_table->regulators[0]);
1173
1174 ret = _set_opp_level(dev, opp_table, NULL);
1175 if (ret)
1176 goto out;
1177
1178 ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181 opp_table->enabled = false;
1182 return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186 struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188 struct dev_pm_opp *old_opp;
1189 int scaling_down, ret;
1190
1191 if (unlikely(!opp))
1192 return _disable_opp_table(dev, opp_table);
1193
1194 /* Find the currently set OPP if we don't know already */
1195 if (unlikely(!opp_table->current_opp))
1196 _find_current_opp(dev, opp_table);
1197
1198 old_opp = opp_table->current_opp;
1199
1200 /* Return early if nothing to do */
1201 if (!forced && old_opp == opp && opp_table->enabled) {
1202 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203 return 0;
1204 }
1205
1206 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212 if (scaling_down == -1)
1213 scaling_down = 0;
1214
1215 /* Scaling up? Configure required OPPs before frequency */
1216 if (!scaling_down) {
1217 ret = _set_required_opps(dev, opp_table, opp, true);
1218 if (ret) {
1219 dev_err(dev, "Failed to set required opps: %d\n", ret);
1220 return ret;
1221 }
1222
1223 ret = _set_opp_level(dev, opp_table, opp);
1224 if (ret)
1225 return ret;
1226
1227 ret = _set_opp_bw(opp_table, opp, dev);
1228 if (ret) {
1229 dev_err(dev, "Failed to set bw: %d\n", ret);
1230 return ret;
1231 }
1232
1233 if (opp_table->config_regulators) {
1234 ret = opp_table->config_regulators(dev, old_opp, opp,
1235 opp_table->regulators,
1236 opp_table->regulator_count);
1237 if (ret) {
1238 dev_err(dev, "Failed to set regulator voltages: %d\n",
1239 ret);
1240 return ret;
1241 }
1242 }
1243 }
1244
1245 if (opp_table->config_clks) {
1246 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247 if (ret)
1248 return ret;
1249 }
1250
1251 /* Scaling down? Configure required OPPs after frequency */
1252 if (scaling_down) {
1253 if (opp_table->config_regulators) {
1254 ret = opp_table->config_regulators(dev, old_opp, opp,
1255 opp_table->regulators,
1256 opp_table->regulator_count);
1257 if (ret) {
1258 dev_err(dev, "Failed to set regulator voltages: %d\n",
1259 ret);
1260 return ret;
1261 }
1262 }
1263
1264 ret = _set_opp_bw(opp_table, opp, dev);
1265 if (ret) {
1266 dev_err(dev, "Failed to set bw: %d\n", ret);
1267 return ret;
1268 }
1269
1270 ret = _set_opp_level(dev, opp_table, opp);
1271 if (ret)
1272 return ret;
1273
1274 ret = _set_required_opps(dev, opp_table, opp, false);
1275 if (ret) {
1276 dev_err(dev, "Failed to set required opps: %d\n", ret);
1277 return ret;
1278 }
1279 }
1280
1281 opp_table->enabled = true;
1282 dev_pm_opp_put(old_opp);
1283
1284 /* Make sure current_opp doesn't get freed */
1285 dev_pm_opp_get(opp);
1286 opp_table->current_opp = opp;
1287
1288 return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev: device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304 struct opp_table *opp_table;
1305 unsigned long freq = 0, temp_freq;
1306 struct dev_pm_opp *opp = NULL;
1307 bool forced = false;
1308 int ret;
1309
1310 opp_table = _find_opp_table(dev);
1311 if (IS_ERR(opp_table)) {
1312 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313 return PTR_ERR(opp_table);
1314 }
1315
1316 if (target_freq) {
1317 /*
1318 * For IO devices which require an OPP on some platforms/SoCs
1319 * while just needing to scale the clock on some others
1320 * we look for empty OPP tables with just a clock handle and
1321 * scale only the clk. This makes dev_pm_opp_set_rate()
1322 * equivalent to a clk_set_rate()
1323 */
1324 if (!_get_opp_count(opp_table)) {
1325 ret = opp_table->config_clks(dev, opp_table, NULL,
1326 &target_freq, false);
1327 goto put_opp_table;
1328 }
1329
1330 freq = clk_round_rate(opp_table->clk, target_freq);
1331 if ((long)freq <= 0)
1332 freq = target_freq;
1333
1334 /*
1335 * The clock driver may support finer resolution of the
1336 * frequencies than the OPP table, don't update the frequency we
1337 * pass to clk_set_rate() here.
1338 */
1339 temp_freq = freq;
1340 opp = _find_freq_ceil(opp_table, &temp_freq);
1341 if (IS_ERR(opp)) {
1342 ret = PTR_ERR(opp);
1343 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344 __func__, freq, ret);
1345 goto put_opp_table;
1346 }
1347
1348 /*
1349 * An OPP entry specifies the highest frequency at which other
1350 * properties of the OPP entry apply. Even if the new OPP is
1351 * same as the old one, we may still reach here for a different
1352 * value of the frequency. In such a case, do not abort but
1353 * configure the hardware to the desired frequency forcefully.
1354 */
1355 forced = opp_table->current_rate_single_clk != freq;
1356 }
1357
1358 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359
1360 if (freq)
1361 dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364 dev_pm_opp_put_opp_table(opp_table);
1365 return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381 struct opp_table *opp_table;
1382 int ret;
1383
1384 opp_table = _find_opp_table(dev);
1385 if (IS_ERR(opp_table)) {
1386 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387 return PTR_ERR(opp_table);
1388 }
1389
1390 ret = _set_opp(dev, opp_table, opp, NULL, false);
1391 dev_pm_opp_put_opp_table(opp_table);
1392
1393 return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399 struct opp_table *opp_table)
1400{
1401 opp_debug_unregister(opp_dev, opp_table);
1402 list_del(&opp_dev->node);
1403 kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407 struct opp_table *opp_table)
1408{
1409 struct opp_device *opp_dev;
1410
1411 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412 if (!opp_dev)
1413 return NULL;
1414
1415 /* Initialize opp-dev */
1416 opp_dev->dev = dev;
1417
1418 mutex_lock(&opp_table->lock);
1419 list_add(&opp_dev->node, &opp_table->dev_list);
1420 mutex_unlock(&opp_table->lock);
1421
1422 /* Create debugfs entries for the opp_table */
1423 opp_debug_register(opp_dev, opp_table);
1424
1425 return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430 struct opp_table *opp_table;
1431 struct opp_device *opp_dev;
1432 int ret;
1433
1434 /*
1435 * Allocate a new OPP table. In the infrequent case where a new
1436 * device is needed to be added, we pay this penalty.
1437 */
1438 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439 if (!opp_table)
1440 return ERR_PTR(-ENOMEM);
1441
1442 mutex_init(&opp_table->lock);
1443 INIT_LIST_HEAD(&opp_table->dev_list);
1444 INIT_LIST_HEAD(&opp_table->lazy);
1445
1446 opp_table->clk = ERR_PTR(-ENODEV);
1447
1448 /* Mark regulator count uninitialized */
1449 opp_table->regulator_count = -1;
1450
1451 opp_dev = _add_opp_dev(dev, opp_table);
1452 if (!opp_dev) {
1453 ret = -ENOMEM;
1454 goto err;
1455 }
1456
1457 _of_init_opp_table(opp_table, dev, index);
1458
1459 /* Find interconnect path(s) for the device */
1460 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461 if (ret) {
1462 if (ret == -EPROBE_DEFER)
1463 goto remove_opp_dev;
1464
1465 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466 __func__, ret);
1467 }
1468
1469 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470 INIT_LIST_HEAD(&opp_table->opp_list);
1471 kref_init(&opp_table->kref);
1472
1473 return opp_table;
1474
1475remove_opp_dev:
1476 _of_clear_opp_table(opp_table);
1477 _remove_opp_dev(opp_dev, opp_table);
1478 mutex_destroy(&opp_table->lock);
1479err:
1480 kfree(opp_table);
1481 return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486 kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490 struct opp_table *opp_table,
1491 bool getclk)
1492{
1493 int ret;
1494
1495 /*
1496 * Return early if we don't need to get clk or we have already done it
1497 * earlier.
1498 */
1499 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500 opp_table->clks)
1501 return opp_table;
1502
1503 /* Find clk for the device */
1504 opp_table->clk = clk_get(dev, NULL);
1505
1506 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507 if (!ret) {
1508 opp_table->config_clks = _opp_config_clk_single;
1509 opp_table->clk_count = 1;
1510 return opp_table;
1511 }
1512
1513 if (ret == -ENOENT) {
1514 /*
1515 * There are few platforms which don't want the OPP core to
1516 * manage device's clock settings. In such cases neither the
1517 * platform provides the clks explicitly to us, nor the DT
1518 * contains a valid clk entry. The OPP nodes in DT may still
1519 * contain "opp-hz" property though, which we need to parse and
1520 * allow the platform to find an OPP based on freq later on.
1521 *
1522 * This is a simple solution to take care of such corner cases,
1523 * i.e. make the clk_count 1, which lets us allocate space for
1524 * frequency in opp->rates and also parse the entries in DT.
1525 */
1526 opp_table->clk_count = 1;
1527
1528 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529 return opp_table;
1530 }
1531
1532 dev_pm_opp_put_opp_table(opp_table);
1533 dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535 return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554 bool getclk)
1555{
1556 struct opp_table *opp_table;
1557
1558again:
1559 mutex_lock(&opp_table_lock);
1560
1561 opp_table = _find_opp_table_unlocked(dev);
1562 if (!IS_ERR(opp_table))
1563 goto unlock;
1564
1565 /*
1566 * The opp_tables list or an OPP table's dev_list is getting updated by
1567 * another user, wait for it to finish.
1568 */
1569 if (unlikely(opp_tables_busy)) {
1570 mutex_unlock(&opp_table_lock);
1571 cpu_relax();
1572 goto again;
1573 }
1574
1575 opp_tables_busy = true;
1576 opp_table = _managed_opp(dev, index);
1577
1578 /* Drop the lock to reduce the size of critical section */
1579 mutex_unlock(&opp_table_lock);
1580
1581 if (opp_table) {
1582 if (!_add_opp_dev(dev, opp_table)) {
1583 dev_pm_opp_put_opp_table(opp_table);
1584 opp_table = ERR_PTR(-ENOMEM);
1585 }
1586
1587 mutex_lock(&opp_table_lock);
1588 } else {
1589 opp_table = _allocate_opp_table(dev, index);
1590
1591 mutex_lock(&opp_table_lock);
1592 if (!IS_ERR(opp_table))
1593 list_add(&opp_table->node, &opp_tables);
1594 }
1595
1596 opp_tables_busy = false;
1597
1598unlock:
1599 mutex_unlock(&opp_table_lock);
1600
1601 return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606 return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611 return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618 struct opp_device *opp_dev, *temp;
1619 int i;
1620
1621 /* Drop the lock as soon as we can */
1622 list_del(&opp_table->node);
1623 mutex_unlock(&opp_table_lock);
1624
1625 if (opp_table->current_opp)
1626 dev_pm_opp_put(opp_table->current_opp);
1627
1628 _of_clear_opp_table(opp_table);
1629
1630 /* Release automatically acquired single clk */
1631 if (!IS_ERR(opp_table->clk))
1632 clk_put(opp_table->clk);
1633
1634 if (opp_table->paths) {
1635 for (i = 0; i < opp_table->path_count; i++)
1636 icc_put(opp_table->paths[i]);
1637 kfree(opp_table->paths);
1638 }
1639
1640 WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643 _remove_opp_dev(opp_dev, opp_table);
1644
1645 mutex_destroy(&opp_table->lock);
1646 kfree(opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652 &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658 kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664 struct opp_table *opp_table = opp->opp_table;
1665
1666 list_del(&opp->node);
1667 mutex_unlock(&opp_table->lock);
1668
1669 /*
1670 * Notify the changes in the availability of the operable
1671 * frequency/voltage list.
1672 */
1673 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674 _of_clear_opp(opp_table, opp);
1675 opp_debug_remove_one(opp);
1676 kfree(opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681 kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove() - Remove an OPP from OPP table
1692 * @dev: device for which we do this operation
1693 * @freq: OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699 struct dev_pm_opp *opp = NULL, *iter;
1700 struct opp_table *opp_table;
1701
1702 opp_table = _find_opp_table(dev);
1703 if (IS_ERR(opp_table))
1704 return;
1705
1706 if (!assert_single_clk(opp_table))
1707 goto put_table;
1708
1709 mutex_lock(&opp_table->lock);
1710
1711 list_for_each_entry(iter, &opp_table->opp_list, node) {
1712 if (iter->rates[0] == freq) {
1713 opp = iter;
1714 break;
1715 }
1716 }
1717
1718 mutex_unlock(&opp_table->lock);
1719
1720 if (opp) {
1721 dev_pm_opp_put(opp);
1722
1723 /* Drop the reference taken by dev_pm_opp_add() */
1724 dev_pm_opp_put_opp_table(opp_table);
1725 } else {
1726 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727 __func__, freq);
1728 }
1729
1730put_table:
1731 /* Drop the reference taken by _find_opp_table() */
1732 dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737 bool dynamic)
1738{
1739 struct dev_pm_opp *opp = NULL, *temp;
1740
1741 mutex_lock(&opp_table->lock);
1742 list_for_each_entry(temp, &opp_table->opp_list, node) {
1743 /*
1744 * Refcount must be dropped only once for each OPP by OPP core,
1745 * do that with help of "removed" flag.
1746 */
1747 if (!temp->removed && dynamic == temp->dynamic) {
1748 opp = temp;
1749 break;
1750 }
1751 }
1752
1753 mutex_unlock(&opp_table->lock);
1754 return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764 struct dev_pm_opp *opp;
1765
1766 while ((opp = _opp_get_next(opp_table, dynamic))) {
1767 opp->removed = true;
1768 dev_pm_opp_put(opp);
1769
1770 /* Drop the references taken by dev_pm_opp_add() */
1771 if (dynamic)
1772 dev_pm_opp_put_opp_table(opp_table);
1773 }
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778 mutex_lock(&opp_table->lock);
1779
1780 if (!opp_table->parsed_static_opps) {
1781 mutex_unlock(&opp_table->lock);
1782 return false;
1783 }
1784
1785 if (--opp_table->parsed_static_opps) {
1786 mutex_unlock(&opp_table->lock);
1787 return true;
1788 }
1789
1790 mutex_unlock(&opp_table->lock);
1791
1792 _opp_remove_all(opp_table, false);
1793 return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev: device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804 struct opp_table *opp_table;
1805
1806 opp_table = _find_opp_table(dev);
1807 if (IS_ERR(opp_table))
1808 return;
1809
1810 _opp_remove_all(opp_table, true);
1811
1812 /* Drop the reference taken by _find_opp_table() */
1813 dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819 struct dev_pm_opp *opp;
1820 int supply_count, supply_size, icc_size, clk_size;
1821
1822 /* Allocate space for at least one supply */
1823 supply_count = opp_table->regulator_count > 0 ?
1824 opp_table->regulator_count : 1;
1825 supply_size = sizeof(*opp->supplies) * supply_count;
1826 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829 /* allocate new OPP node and supplies structures */
1830 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831 if (!opp)
1832 return NULL;
1833
1834 /* Put the supplies, bw and clock at the end of the OPP structure */
1835 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839 if (icc_size)
1840 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842 INIT_LIST_HEAD(&opp->node);
1843
1844 opp->level = OPP_LEVEL_UNSET;
1845
1846 return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850 struct opp_table *opp_table)
1851{
1852 struct regulator *reg;
1853 int i;
1854
1855 if (!opp_table->regulators)
1856 return true;
1857
1858 for (i = 0; i < opp_table->regulator_count; i++) {
1859 reg = opp_table->regulators[i];
1860
1861 if (!regulator_is_supported_voltage(reg,
1862 opp->supplies[i].u_volt_min,
1863 opp->supplies[i].u_volt_max)) {
1864 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865 __func__, opp->supplies[i].u_volt_min,
1866 opp->supplies[i].u_volt_max);
1867 return false;
1868 }
1869 }
1870
1871 return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877 int i;
1878
1879 for (i = 0; i < opp_table->clk_count; i++) {
1880 if (opp1->rates[i] != opp2->rates[i])
1881 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882 }
1883
1884 /* Same rates for both OPPs */
1885 return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889 struct dev_pm_opp *opp2)
1890{
1891 int i;
1892
1893 for (i = 0; i < opp_table->path_count; i++) {
1894 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896 }
1897
1898 /* Same bw for both OPPs */
1899 return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909 struct dev_pm_opp *opp2)
1910{
1911 int ret;
1912
1913 ret = _opp_compare_rate(opp_table, opp1, opp2);
1914 if (ret)
1915 return ret;
1916
1917 ret = _opp_compare_bw(opp_table, opp1, opp2);
1918 if (ret)
1919 return ret;
1920
1921 if (opp1->level != opp2->level)
1922 return opp1->level < opp2->level ? -1 : 1;
1923
1924 /* Duplicate OPPs */
1925 return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929 struct opp_table *opp_table,
1930 struct list_head **head)
1931{
1932 struct dev_pm_opp *opp;
1933 int opp_cmp;
1934
1935 /*
1936 * Insert new OPP in order of increasing frequency and discard if
1937 * already present.
1938 *
1939 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940 * loop, don't replace it with head otherwise it will become an infinite
1941 * loop.
1942 */
1943 list_for_each_entry(opp, &opp_table->opp_list, node) {
1944 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945 if (opp_cmp > 0) {
1946 *head = &opp->node;
1947 continue;
1948 }
1949
1950 if (opp_cmp < 0)
1951 return 0;
1952
1953 /* Duplicate OPPs */
1954 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956 opp->available, new_opp->rates[0],
1957 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959 /* Should we compare voltages for all regulators here ? */
1960 return opp->available &&
1961 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962 }
1963
1964 return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969 int i;
1970
1971 for (i = 0; i < count; i++) {
1972 if (opp->required_opps[i]->available)
1973 continue;
1974
1975 opp->available = false;
1976 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978 return;
1979 }
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 * sure we don't print error messages unnecessarily if different parts of
1988 * kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 * should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993 struct opp_table *opp_table)
1994{
1995 struct list_head *head;
1996 int ret;
1997
1998 mutex_lock(&opp_table->lock);
1999 head = &opp_table->opp_list;
2000
2001 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002 if (ret) {
2003 mutex_unlock(&opp_table->lock);
2004 return ret;
2005 }
2006
2007 list_add(&new_opp->node, head);
2008 mutex_unlock(&opp_table->lock);
2009
2010 new_opp->opp_table = opp_table;
2011 kref_init(&new_opp->kref);
2012
2013 opp_debug_create_one(new_opp, opp_table);
2014
2015 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016 new_opp->available = false;
2017 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018 __func__, new_opp->rates[0]);
2019 }
2020
2021 /* required-opps not fully initialized yet */
2022 if (lazy_linking_pending(opp_table))
2023 return 0;
2024
2025 _required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027 return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table: OPP table
2033 * @dev: device for which we do this operation
2034 * @data: The OPP data for the OPP to add
2035 * @dynamic: Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0 On success OR
2046 * Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST Freq are same and volt are different OR
2048 * Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052 struct dev_pm_opp_data *data, bool dynamic)
2053{
2054 struct dev_pm_opp *new_opp;
2055 unsigned long tol, u_volt = data->u_volt;
2056 int ret;
2057
2058 if (!assert_single_clk(opp_table))
2059 return -EINVAL;
2060
2061 new_opp = _opp_allocate(opp_table);
2062 if (!new_opp)
2063 return -ENOMEM;
2064
2065 /* populate the opp table */
2066 new_opp->rates[0] = data->freq;
2067 new_opp->level = data->level;
2068 new_opp->turbo = data->turbo;
2069 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2070 new_opp->supplies[0].u_volt = u_volt;
2071 new_opp->supplies[0].u_volt_min = u_volt - tol;
2072 new_opp->supplies[0].u_volt_max = u_volt + tol;
2073 new_opp->available = true;
2074 new_opp->dynamic = dynamic;
2075
2076 ret = _opp_add(dev, new_opp, opp_table);
2077 if (ret) {
2078 /* Don't return error for duplicate OPPs */
2079 if (ret == -EBUSY)
2080 ret = 0;
2081 goto free_opp;
2082 }
2083
2084 /*
2085 * Notify the changes in the availability of the operable
2086 * frequency/voltage list.
2087 */
2088 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2089 return 0;
2090
2091free_opp:
2092 _opp_free(new_opp);
2093
2094 return ret;
2095}
2096
2097/*
2098 * This is required only for the V2 bindings, and it enables a platform to
2099 * specify the hierarchy of versions it supports. OPP layer will then enable
2100 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2101 * property.
2102 */
2103static int _opp_set_supported_hw(struct opp_table *opp_table,
2104 const u32 *versions, unsigned int count)
2105{
2106 /* Another CPU that shares the OPP table has set the property ? */
2107 if (opp_table->supported_hw)
2108 return 0;
2109
2110 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2111 GFP_KERNEL);
2112 if (!opp_table->supported_hw)
2113 return -ENOMEM;
2114
2115 opp_table->supported_hw_count = count;
2116
2117 return 0;
2118}
2119
2120static void _opp_put_supported_hw(struct opp_table *opp_table)
2121{
2122 if (opp_table->supported_hw) {
2123 kfree(opp_table->supported_hw);
2124 opp_table->supported_hw = NULL;
2125 opp_table->supported_hw_count = 0;
2126 }
2127}
2128
2129/*
2130 * This is required only for the V2 bindings, and it enables a platform to
2131 * specify the extn to be used for certain property names. The properties to
2132 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2133 * should postfix the property name with -<name> while looking for them.
2134 */
2135static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2136{
2137 /* Another CPU that shares the OPP table has set the property ? */
2138 if (!opp_table->prop_name) {
2139 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2140 if (!opp_table->prop_name)
2141 return -ENOMEM;
2142 }
2143
2144 return 0;
2145}
2146
2147static void _opp_put_prop_name(struct opp_table *opp_table)
2148{
2149 if (opp_table->prop_name) {
2150 kfree(opp_table->prop_name);
2151 opp_table->prop_name = NULL;
2152 }
2153}
2154
2155/*
2156 * In order to support OPP switching, OPP layer needs to know the name of the
2157 * device's regulators, as the core would be required to switch voltages as
2158 * well.
2159 *
2160 * This must be called before any OPPs are initialized for the device.
2161 */
2162static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163 const char * const names[])
2164{
2165 const char * const *temp = names;
2166 struct regulator *reg;
2167 int count = 0, ret, i;
2168
2169 /* Count number of regulators */
2170 while (*temp++)
2171 count++;
2172
2173 if (!count)
2174 return -EINVAL;
2175
2176 /* Another CPU that shares the OPP table has set the regulators ? */
2177 if (opp_table->regulators)
2178 return 0;
2179
2180 opp_table->regulators = kmalloc_array(count,
2181 sizeof(*opp_table->regulators),
2182 GFP_KERNEL);
2183 if (!opp_table->regulators)
2184 return -ENOMEM;
2185
2186 for (i = 0; i < count; i++) {
2187 reg = regulator_get_optional(dev, names[i]);
2188 if (IS_ERR(reg)) {
2189 ret = dev_err_probe(dev, PTR_ERR(reg),
2190 "%s: no regulator (%s) found\n",
2191 __func__, names[i]);
2192 goto free_regulators;
2193 }
2194
2195 opp_table->regulators[i] = reg;
2196 }
2197
2198 opp_table->regulator_count = count;
2199
2200 /* Set generic config_regulators() for single regulators here */
2201 if (count == 1)
2202 opp_table->config_regulators = _opp_config_regulator_single;
2203
2204 return 0;
2205
2206free_regulators:
2207 while (i != 0)
2208 regulator_put(opp_table->regulators[--i]);
2209
2210 kfree(opp_table->regulators);
2211 opp_table->regulators = NULL;
2212 opp_table->regulator_count = -1;
2213
2214 return ret;
2215}
2216
2217static void _opp_put_regulators(struct opp_table *opp_table)
2218{
2219 int i;
2220
2221 if (!opp_table->regulators)
2222 return;
2223
2224 if (opp_table->enabled) {
2225 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2226 regulator_disable(opp_table->regulators[i]);
2227 }
2228
2229 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230 regulator_put(opp_table->regulators[i]);
2231
2232 kfree(opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235}
2236
2237static void _put_clks(struct opp_table *opp_table, int count)
2238{
2239 int i;
2240
2241 for (i = count - 1; i >= 0; i--)
2242 clk_put(opp_table->clks[i]);
2243
2244 kfree(opp_table->clks);
2245 opp_table->clks = NULL;
2246}
2247
2248/*
2249 * In order to support OPP switching, OPP layer needs to get pointers to the
2250 * clocks for the device. Simple cases work fine without using this routine
2251 * (i.e. by passing connection-id as NULL), but for a device with multiple
2252 * clocks available, the OPP core needs to know the exact names of the clks to
2253 * use.
2254 *
2255 * This must be called before any OPPs are initialized for the device.
2256 */
2257static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2258 const char * const names[],
2259 config_clks_t config_clks)
2260{
2261 const char * const *temp = names;
2262 int count = 0, ret, i;
2263 struct clk *clk;
2264
2265 /* Count number of clks */
2266 while (*temp++)
2267 count++;
2268
2269 /*
2270 * This is a special case where we have a single clock, whose connection
2271 * id name is NULL, i.e. first two entries are NULL in the array.
2272 */
2273 if (!count && !names[1])
2274 count = 1;
2275
2276 /* Fail early for invalid configurations */
2277 if (!count || (!config_clks && count > 1))
2278 return -EINVAL;
2279
2280 /* Another CPU that shares the OPP table has set the clkname ? */
2281 if (opp_table->clks)
2282 return 0;
2283
2284 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2285 GFP_KERNEL);
2286 if (!opp_table->clks)
2287 return -ENOMEM;
2288
2289 /* Find clks for the device */
2290 for (i = 0; i < count; i++) {
2291 clk = clk_get(dev, names[i]);
2292 if (IS_ERR(clk)) {
2293 ret = dev_err_probe(dev, PTR_ERR(clk),
2294 "%s: Couldn't find clock with name: %s\n",
2295 __func__, names[i]);
2296 goto free_clks;
2297 }
2298
2299 opp_table->clks[i] = clk;
2300 }
2301
2302 opp_table->clk_count = count;
2303 opp_table->config_clks = config_clks;
2304
2305 /* Set generic single clk set here */
2306 if (count == 1) {
2307 if (!opp_table->config_clks)
2308 opp_table->config_clks = _opp_config_clk_single;
2309
2310 /*
2311 * We could have just dropped the "clk" field and used "clks"
2312 * everywhere. Instead we kept the "clk" field around for
2313 * following reasons:
2314 *
2315 * - avoiding clks[0] everywhere else.
2316 * - not running single clk helpers for multiple clk usecase by
2317 * mistake.
2318 *
2319 * Since this is single-clk case, just update the clk pointer
2320 * too.
2321 */
2322 opp_table->clk = opp_table->clks[0];
2323 }
2324
2325 return 0;
2326
2327free_clks:
2328 _put_clks(opp_table, i);
2329 return ret;
2330}
2331
2332static void _opp_put_clknames(struct opp_table *opp_table)
2333{
2334 if (!opp_table->clks)
2335 return;
2336
2337 opp_table->config_clks = NULL;
2338 opp_table->clk = ERR_PTR(-ENODEV);
2339
2340 _put_clks(opp_table, opp_table->clk_count);
2341}
2342
2343/*
2344 * This is useful to support platforms with multiple regulators per device.
2345 *
2346 * This must be called before any OPPs are initialized for the device.
2347 */
2348static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2349 struct device *dev, config_regulators_t config_regulators)
2350{
2351 /* Another CPU that shares the OPP table has set the helper ? */
2352 if (!opp_table->config_regulators)
2353 opp_table->config_regulators = config_regulators;
2354
2355 return 0;
2356}
2357
2358static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2359{
2360 if (opp_table->config_regulators)
2361 opp_table->config_regulators = NULL;
2362}
2363
2364static void _opp_detach_genpd(struct opp_table *opp_table)
2365{
2366 int index;
2367
2368 for (index = 0; index < opp_table->required_opp_count; index++) {
2369 if (!opp_table->required_devs[index])
2370 continue;
2371
2372 dev_pm_domain_detach(opp_table->required_devs[index], false);
2373 opp_table->required_devs[index] = NULL;
2374 }
2375}
2376
2377/*
2378 * Multiple generic power domains for a device are supported with the help of
2379 * virtual genpd devices, which are created for each consumer device - genpd
2380 * pair. These are the device structures which are attached to the power domain
2381 * and are required by the OPP core to set the performance state of the genpd.
2382 * The same API also works for the case where single genpd is available and so
2383 * we don't need to support that separately.
2384 *
2385 * This helper will normally be called by the consumer driver of the device
2386 * "dev", as only that has details of the genpd names.
2387 *
2388 * This helper needs to be called once with a list of all genpd to attach.
2389 * Otherwise the original device structure will be used instead by the OPP core.
2390 *
2391 * The order of entries in the names array must match the order in which
2392 * "required-opps" are added in DT.
2393 */
2394static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2395 const char * const *names, struct device ***virt_devs)
2396{
2397 struct device *virt_dev;
2398 int index = 0, ret = -EINVAL;
2399 const char * const *name = names;
2400
2401 if (!opp_table->required_devs) {
2402 dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2403 return -EINVAL;
2404 }
2405
2406 /* Genpd core takes care of propagation to parent genpd */
2407 if (opp_table->is_genpd) {
2408 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2409 return -EOPNOTSUPP;
2410 }
2411
2412 /* Checking only the first one is enough ? */
2413 if (opp_table->required_devs[0])
2414 return 0;
2415
2416 while (*name) {
2417 if (index >= opp_table->required_opp_count) {
2418 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2419 *name, opp_table->required_opp_count, index);
2420 goto err;
2421 }
2422
2423 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2424 if (IS_ERR_OR_NULL(virt_dev)) {
2425 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2426 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2427 goto err;
2428 }
2429
2430 /*
2431 * Add the virtual genpd device as a user of the OPP table, so
2432 * we can call dev_pm_opp_set_opp() on it directly.
2433 *
2434 * This will be automatically removed when the OPP table is
2435 * removed, don't need to handle that here.
2436 */
2437 if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2438 ret = -ENOMEM;
2439 goto err;
2440 }
2441
2442 opp_table->required_devs[index] = virt_dev;
2443 index++;
2444 name++;
2445 }
2446
2447 if (virt_devs)
2448 *virt_devs = opp_table->required_devs;
2449
2450 return 0;
2451
2452err:
2453 _opp_detach_genpd(opp_table);
2454 return ret;
2455
2456}
2457
2458static int _opp_set_required_devs(struct opp_table *opp_table,
2459 struct device *dev,
2460 struct device **required_devs)
2461{
2462 int i;
2463
2464 if (!opp_table->required_devs) {
2465 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2466 return -EINVAL;
2467 }
2468
2469 /* Another device that shares the OPP table has set the required devs ? */
2470 if (opp_table->required_devs[0])
2471 return 0;
2472
2473 for (i = 0; i < opp_table->required_opp_count; i++) {
2474 /* Genpd core takes care of propagation to parent genpd */
2475 if (required_devs[i] && opp_table->is_genpd &&
2476 opp_table->required_opp_tables[i]->is_genpd) {
2477 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2478 return -EOPNOTSUPP;
2479 }
2480
2481 opp_table->required_devs[i] = required_devs[i];
2482 }
2483
2484 return 0;
2485}
2486
2487static void _opp_put_required_devs(struct opp_table *opp_table)
2488{
2489 int i;
2490
2491 for (i = 0; i < opp_table->required_opp_count; i++)
2492 opp_table->required_devs[i] = NULL;
2493}
2494
2495static void _opp_clear_config(struct opp_config_data *data)
2496{
2497 if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2498 _opp_put_required_devs(data->opp_table);
2499 else if (data->flags & OPP_CONFIG_GENPD)
2500 _opp_detach_genpd(data->opp_table);
2501
2502 if (data->flags & OPP_CONFIG_REGULATOR)
2503 _opp_put_regulators(data->opp_table);
2504 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2505 _opp_put_supported_hw(data->opp_table);
2506 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2507 _opp_put_config_regulators_helper(data->opp_table);
2508 if (data->flags & OPP_CONFIG_PROP_NAME)
2509 _opp_put_prop_name(data->opp_table);
2510 if (data->flags & OPP_CONFIG_CLK)
2511 _opp_put_clknames(data->opp_table);
2512
2513 dev_pm_opp_put_opp_table(data->opp_table);
2514 kfree(data);
2515}
2516
2517/**
2518 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2519 * @dev: Device for which configuration is being set.
2520 * @config: OPP configuration.
2521 *
2522 * This allows all device OPP configurations to be performed at once.
2523 *
2524 * This must be called before any OPPs are initialized for the device. This may
2525 * be called multiple times for the same OPP table, for example once for each
2526 * CPU that share the same table. This must be balanced by the same number of
2527 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2528 *
2529 * This returns a token to the caller, which must be passed to
2530 * dev_pm_opp_clear_config() to free the resources later. The value of the
2531 * returned token will be >= 1 for success and negative for errors. The minimum
2532 * value of 1 is chosen here to make it easy for callers to manage the resource.
2533 */
2534int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2535{
2536 struct opp_table *opp_table;
2537 struct opp_config_data *data;
2538 unsigned int id;
2539 int ret;
2540
2541 data = kmalloc(sizeof(*data), GFP_KERNEL);
2542 if (!data)
2543 return -ENOMEM;
2544
2545 opp_table = _add_opp_table(dev, false);
2546 if (IS_ERR(opp_table)) {
2547 kfree(data);
2548 return PTR_ERR(opp_table);
2549 }
2550
2551 data->opp_table = opp_table;
2552 data->flags = 0;
2553
2554 /* This should be called before OPPs are initialized */
2555 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2556 ret = -EBUSY;
2557 goto err;
2558 }
2559
2560 /* Configure clocks */
2561 if (config->clk_names) {
2562 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2563 config->config_clks);
2564 if (ret)
2565 goto err;
2566
2567 data->flags |= OPP_CONFIG_CLK;
2568 } else if (config->config_clks) {
2569 /* Don't allow config callback without clocks */
2570 ret = -EINVAL;
2571 goto err;
2572 }
2573
2574 /* Configure property names */
2575 if (config->prop_name) {
2576 ret = _opp_set_prop_name(opp_table, config->prop_name);
2577 if (ret)
2578 goto err;
2579
2580 data->flags |= OPP_CONFIG_PROP_NAME;
2581 }
2582
2583 /* Configure config_regulators helper */
2584 if (config->config_regulators) {
2585 ret = _opp_set_config_regulators_helper(opp_table, dev,
2586 config->config_regulators);
2587 if (ret)
2588 goto err;
2589
2590 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2591 }
2592
2593 /* Configure supported hardware */
2594 if (config->supported_hw) {
2595 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2596 config->supported_hw_count);
2597 if (ret)
2598 goto err;
2599
2600 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2601 }
2602
2603 /* Configure supplies */
2604 if (config->regulator_names) {
2605 ret = _opp_set_regulators(opp_table, dev,
2606 config->regulator_names);
2607 if (ret)
2608 goto err;
2609
2610 data->flags |= OPP_CONFIG_REGULATOR;
2611 }
2612
2613 /* Attach genpds */
2614 if (config->genpd_names) {
2615 if (config->required_devs)
2616 goto err;
2617
2618 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2619 config->virt_devs);
2620 if (ret)
2621 goto err;
2622
2623 data->flags |= OPP_CONFIG_GENPD;
2624 } else if (config->required_devs) {
2625 ret = _opp_set_required_devs(opp_table, dev,
2626 config->required_devs);
2627 if (ret)
2628 goto err;
2629
2630 data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2631 }
2632
2633 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2634 GFP_KERNEL);
2635 if (ret)
2636 goto err;
2637
2638 return id;
2639
2640err:
2641 _opp_clear_config(data);
2642 return ret;
2643}
2644EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2645
2646/**
2647 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2648 * @token: The token returned by dev_pm_opp_set_config() previously.
2649 *
2650 * This allows all device OPP configurations to be cleared at once. This must be
2651 * called once for each call made to dev_pm_opp_set_config(), in order to free
2652 * the OPPs properly.
2653 *
2654 * Currently the first call itself ends up freeing all the OPP configurations,
2655 * while the later ones only drop the OPP table reference. This works well for
2656 * now as we would never want to use an half initialized OPP table and want to
2657 * remove the configurations together.
2658 */
2659void dev_pm_opp_clear_config(int token)
2660{
2661 struct opp_config_data *data;
2662
2663 /*
2664 * This lets the callers call this unconditionally and keep their code
2665 * simple.
2666 */
2667 if (unlikely(token <= 0))
2668 return;
2669
2670 data = xa_erase(&opp_configs, token);
2671 if (WARN_ON(!data))
2672 return;
2673
2674 _opp_clear_config(data);
2675}
2676EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2677
2678static void devm_pm_opp_config_release(void *token)
2679{
2680 dev_pm_opp_clear_config((unsigned long)token);
2681}
2682
2683/**
2684 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2685 * @dev: Device for which configuration is being set.
2686 * @config: OPP configuration.
2687 *
2688 * This allows all device OPP configurations to be performed at once.
2689 * This is a resource-managed variant of dev_pm_opp_set_config().
2690 *
2691 * Return: 0 on success and errorno otherwise.
2692 */
2693int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2694{
2695 int token = dev_pm_opp_set_config(dev, config);
2696
2697 if (token < 0)
2698 return token;
2699
2700 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2701 (void *) ((unsigned long) token));
2702}
2703EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2704
2705/**
2706 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2707 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2708 * @dst_table: Required OPP table of the @src_table.
2709 * @src_opp: OPP from the @src_table.
2710 *
2711 * This function returns the OPP (present in @dst_table) pointed out by the
2712 * "required-opps" property of the @src_opp (present in @src_table).
2713 *
2714 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2715 * use.
2716 *
2717 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2718 */
2719struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2720 struct opp_table *dst_table,
2721 struct dev_pm_opp *src_opp)
2722{
2723 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2724 int i;
2725
2726 if (!src_table || !dst_table || !src_opp ||
2727 !src_table->required_opp_tables)
2728 return ERR_PTR(-EINVAL);
2729
2730 /* required-opps not fully initialized yet */
2731 if (lazy_linking_pending(src_table))
2732 return ERR_PTR(-EBUSY);
2733
2734 for (i = 0; i < src_table->required_opp_count; i++) {
2735 if (src_table->required_opp_tables[i] == dst_table) {
2736 mutex_lock(&src_table->lock);
2737
2738 list_for_each_entry(opp, &src_table->opp_list, node) {
2739 if (opp == src_opp) {
2740 dest_opp = opp->required_opps[i];
2741 dev_pm_opp_get(dest_opp);
2742 break;
2743 }
2744 }
2745
2746 mutex_unlock(&src_table->lock);
2747 break;
2748 }
2749 }
2750
2751 if (IS_ERR(dest_opp)) {
2752 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2753 src_table, dst_table);
2754 }
2755
2756 return dest_opp;
2757}
2758EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2759
2760/**
2761 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2762 * @src_table: OPP table which has dst_table as one of its required OPP table.
2763 * @dst_table: Required OPP table of the src_table.
2764 * @pstate: Current performance state of the src_table.
2765 *
2766 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2767 * "required-opps" property of the OPP (present in @src_table) which has
2768 * performance state set to @pstate.
2769 *
2770 * Return: Zero or positive performance state on success, otherwise negative
2771 * value on errors.
2772 */
2773int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2774 struct opp_table *dst_table,
2775 unsigned int pstate)
2776{
2777 struct dev_pm_opp *opp;
2778 int dest_pstate = -EINVAL;
2779 int i;
2780
2781 /*
2782 * Normally the src_table will have the "required_opps" property set to
2783 * point to one of the OPPs in the dst_table, but in some cases the
2784 * genpd and its master have one to one mapping of performance states
2785 * and so none of them have the "required-opps" property set. Return the
2786 * pstate of the src_table as it is in such cases.
2787 */
2788 if (!src_table || !src_table->required_opp_count)
2789 return pstate;
2790
2791 /* Both OPP tables must belong to genpds */
2792 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2793 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2794 return -EINVAL;
2795 }
2796
2797 /* required-opps not fully initialized yet */
2798 if (lazy_linking_pending(src_table))
2799 return -EBUSY;
2800
2801 for (i = 0; i < src_table->required_opp_count; i++) {
2802 if (src_table->required_opp_tables[i]->np == dst_table->np)
2803 break;
2804 }
2805
2806 if (unlikely(i == src_table->required_opp_count)) {
2807 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2808 __func__, src_table, dst_table);
2809 return -EINVAL;
2810 }
2811
2812 mutex_lock(&src_table->lock);
2813
2814 list_for_each_entry(opp, &src_table->opp_list, node) {
2815 if (opp->level == pstate) {
2816 dest_pstate = opp->required_opps[i]->level;
2817 goto unlock;
2818 }
2819 }
2820
2821 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2822 dst_table);
2823
2824unlock:
2825 mutex_unlock(&src_table->lock);
2826
2827 return dest_pstate;
2828}
2829
2830/**
2831 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2832 * @dev: The device for which we do this operation
2833 * @data: The OPP data for the OPP to add
2834 *
2835 * This function adds an opp definition to the opp table and returns status.
2836 * The opp is made available by default and it can be controlled using
2837 * dev_pm_opp_enable/disable functions.
2838 *
2839 * Return:
2840 * 0 On success OR
2841 * Duplicate OPPs (both freq and volt are same) and opp->available
2842 * -EEXIST Freq are same and volt are different OR
2843 * Duplicate OPPs (both freq and volt are same) and !opp->available
2844 * -ENOMEM Memory allocation failure
2845 */
2846int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2847{
2848 struct opp_table *opp_table;
2849 int ret;
2850
2851 opp_table = _add_opp_table(dev, true);
2852 if (IS_ERR(opp_table))
2853 return PTR_ERR(opp_table);
2854
2855 /* Fix regulator count for dynamic OPPs */
2856 opp_table->regulator_count = 1;
2857
2858 ret = _opp_add_v1(opp_table, dev, data, true);
2859 if (ret)
2860 dev_pm_opp_put_opp_table(opp_table);
2861
2862 return ret;
2863}
2864EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2865
2866/**
2867 * _opp_set_availability() - helper to set the availability of an opp
2868 * @dev: device for which we do this operation
2869 * @freq: OPP frequency to modify availability
2870 * @availability_req: availability status requested for this opp
2871 *
2872 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2873 * which is isolated here.
2874 *
2875 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2876 * copy operation, returns 0 if no modification was done OR modification was
2877 * successful.
2878 */
2879static int _opp_set_availability(struct device *dev, unsigned long freq,
2880 bool availability_req)
2881{
2882 struct opp_table *opp_table;
2883 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2884 int r = 0;
2885
2886 /* Find the opp_table */
2887 opp_table = _find_opp_table(dev);
2888 if (IS_ERR(opp_table)) {
2889 r = PTR_ERR(opp_table);
2890 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2891 return r;
2892 }
2893
2894 if (!assert_single_clk(opp_table)) {
2895 r = -EINVAL;
2896 goto put_table;
2897 }
2898
2899 mutex_lock(&opp_table->lock);
2900
2901 /* Do we have the frequency? */
2902 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2903 if (tmp_opp->rates[0] == freq) {
2904 opp = tmp_opp;
2905 break;
2906 }
2907 }
2908
2909 if (IS_ERR(opp)) {
2910 r = PTR_ERR(opp);
2911 goto unlock;
2912 }
2913
2914 /* Is update really needed? */
2915 if (opp->available == availability_req)
2916 goto unlock;
2917
2918 opp->available = availability_req;
2919
2920 dev_pm_opp_get(opp);
2921 mutex_unlock(&opp_table->lock);
2922
2923 /* Notify the change of the OPP availability */
2924 if (availability_req)
2925 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2926 opp);
2927 else
2928 blocking_notifier_call_chain(&opp_table->head,
2929 OPP_EVENT_DISABLE, opp);
2930
2931 dev_pm_opp_put(opp);
2932 goto put_table;
2933
2934unlock:
2935 mutex_unlock(&opp_table->lock);
2936put_table:
2937 dev_pm_opp_put_opp_table(opp_table);
2938 return r;
2939}
2940
2941/**
2942 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2943 * @dev: device for which we do this operation
2944 * @freq: OPP frequency to adjust voltage of
2945 * @u_volt: new OPP target voltage
2946 * @u_volt_min: new OPP min voltage
2947 * @u_volt_max: new OPP max voltage
2948 *
2949 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2950 * copy operation, returns 0 if no modifcation was done OR modification was
2951 * successful.
2952 */
2953int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2954 unsigned long u_volt, unsigned long u_volt_min,
2955 unsigned long u_volt_max)
2956
2957{
2958 struct opp_table *opp_table;
2959 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2960 int r = 0;
2961
2962 /* Find the opp_table */
2963 opp_table = _find_opp_table(dev);
2964 if (IS_ERR(opp_table)) {
2965 r = PTR_ERR(opp_table);
2966 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2967 return r;
2968 }
2969
2970 if (!assert_single_clk(opp_table)) {
2971 r = -EINVAL;
2972 goto put_table;
2973 }
2974
2975 mutex_lock(&opp_table->lock);
2976
2977 /* Do we have the frequency? */
2978 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2979 if (tmp_opp->rates[0] == freq) {
2980 opp = tmp_opp;
2981 break;
2982 }
2983 }
2984
2985 if (IS_ERR(opp)) {
2986 r = PTR_ERR(opp);
2987 goto adjust_unlock;
2988 }
2989
2990 /* Is update really needed? */
2991 if (opp->supplies->u_volt == u_volt)
2992 goto adjust_unlock;
2993
2994 opp->supplies->u_volt = u_volt;
2995 opp->supplies->u_volt_min = u_volt_min;
2996 opp->supplies->u_volt_max = u_volt_max;
2997
2998 dev_pm_opp_get(opp);
2999 mutex_unlock(&opp_table->lock);
3000
3001 /* Notify the voltage change of the OPP */
3002 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3003 opp);
3004
3005 dev_pm_opp_put(opp);
3006 goto put_table;
3007
3008adjust_unlock:
3009 mutex_unlock(&opp_table->lock);
3010put_table:
3011 dev_pm_opp_put_opp_table(opp_table);
3012 return r;
3013}
3014EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3015
3016/**
3017 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3018 * @dev: device for which we do this operation
3019 *
3020 * Sync voltage state of the OPP table regulators.
3021 *
3022 * Return: 0 on success or a negative error value.
3023 */
3024int dev_pm_opp_sync_regulators(struct device *dev)
3025{
3026 struct opp_table *opp_table;
3027 struct regulator *reg;
3028 int i, ret = 0;
3029
3030 /* Device may not have OPP table */
3031 opp_table = _find_opp_table(dev);
3032 if (IS_ERR(opp_table))
3033 return 0;
3034
3035 /* Regulator may not be required for the device */
3036 if (unlikely(!opp_table->regulators))
3037 goto put_table;
3038
3039 /* Nothing to sync if voltage wasn't changed */
3040 if (!opp_table->enabled)
3041 goto put_table;
3042
3043 for (i = 0; i < opp_table->regulator_count; i++) {
3044 reg = opp_table->regulators[i];
3045 ret = regulator_sync_voltage(reg);
3046 if (ret)
3047 break;
3048 }
3049put_table:
3050 /* Drop reference taken by _find_opp_table() */
3051 dev_pm_opp_put_opp_table(opp_table);
3052
3053 return ret;
3054}
3055EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3056
3057/**
3058 * dev_pm_opp_enable() - Enable a specific OPP
3059 * @dev: device for which we do this operation
3060 * @freq: OPP frequency to enable
3061 *
3062 * Enables a provided opp. If the operation is valid, this returns 0, else the
3063 * corresponding error value. It is meant to be used for users an OPP available
3064 * after being temporarily made unavailable with dev_pm_opp_disable.
3065 *
3066 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3067 * copy operation, returns 0 if no modification was done OR modification was
3068 * successful.
3069 */
3070int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3071{
3072 return _opp_set_availability(dev, freq, true);
3073}
3074EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3075
3076/**
3077 * dev_pm_opp_disable() - Disable a specific OPP
3078 * @dev: device for which we do this operation
3079 * @freq: OPP frequency to disable
3080 *
3081 * Disables a provided opp. If the operation is valid, this returns
3082 * 0, else the corresponding error value. It is meant to be a temporary
3083 * control by users to make this OPP not available until the circumstances are
3084 * right to make it available again (with a call to dev_pm_opp_enable).
3085 *
3086 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3087 * copy operation, returns 0 if no modification was done OR modification was
3088 * successful.
3089 */
3090int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3091{
3092 return _opp_set_availability(dev, freq, false);
3093}
3094EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3095
3096/**
3097 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3098 * @dev: Device for which notifier needs to be registered
3099 * @nb: Notifier block to be registered
3100 *
3101 * Return: 0 on success or a negative error value.
3102 */
3103int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3104{
3105 struct opp_table *opp_table;
3106 int ret;
3107
3108 opp_table = _find_opp_table(dev);
3109 if (IS_ERR(opp_table))
3110 return PTR_ERR(opp_table);
3111
3112 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3113
3114 dev_pm_opp_put_opp_table(opp_table);
3115
3116 return ret;
3117}
3118EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3119
3120/**
3121 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3122 * @dev: Device for which notifier needs to be unregistered
3123 * @nb: Notifier block to be unregistered
3124 *
3125 * Return: 0 on success or a negative error value.
3126 */
3127int dev_pm_opp_unregister_notifier(struct device *dev,
3128 struct notifier_block *nb)
3129{
3130 struct opp_table *opp_table;
3131 int ret;
3132
3133 opp_table = _find_opp_table(dev);
3134 if (IS_ERR(opp_table))
3135 return PTR_ERR(opp_table);
3136
3137 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3138
3139 dev_pm_opp_put_opp_table(opp_table);
3140
3141 return ret;
3142}
3143EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3144
3145/**
3146 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3147 * @dev: device pointer used to lookup OPP table.
3148 *
3149 * Free both OPPs created using static entries present in DT and the
3150 * dynamically added entries.
3151 */
3152void dev_pm_opp_remove_table(struct device *dev)
3153{
3154 struct opp_table *opp_table;
3155
3156 /* Check for existing table for 'dev' */
3157 opp_table = _find_opp_table(dev);
3158 if (IS_ERR(opp_table)) {
3159 int error = PTR_ERR(opp_table);
3160
3161 if (error != -ENODEV)
3162 WARN(1, "%s: opp_table: %d\n",
3163 IS_ERR_OR_NULL(dev) ?
3164 "Invalid device" : dev_name(dev),
3165 error);
3166 return;
3167 }
3168
3169 /*
3170 * Drop the extra reference only if the OPP table was successfully added
3171 * with dev_pm_opp_of_add_table() earlier.
3172 **/
3173 if (_opp_remove_all_static(opp_table))
3174 dev_pm_opp_put_opp_table(opp_table);
3175
3176 /* Drop reference taken by _find_opp_table() */
3177 dev_pm_opp_put_opp_table(opp_table);
3178}
3179EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);