Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
  32/* OPP tables with uninitialized required OPPs */
  33LIST_HEAD(lazy_opp_tables);
  34
  35/* Lock to allow exclusive modification to the device and opp lists */
  36DEFINE_MUTEX(opp_table_lock);
  37/* Flag indicating that opp_tables list is being updated at the moment */
  38static bool opp_tables_busy;
  39
  40/* OPP ID allocator */
  41static DEFINE_XARRAY_ALLOC1(opp_configs);
  42
  43static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  44{
  45	struct opp_device *opp_dev;
  46	bool found = false;
  47
  48	mutex_lock(&opp_table->lock);
  49	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  50		if (opp_dev->dev == dev) {
  51			found = true;
  52			break;
  53		}
  54
  55	mutex_unlock(&opp_table->lock);
  56	return found;
  57}
  58
  59static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  60{
  61	struct opp_table *opp_table;
  62
  63	list_for_each_entry(opp_table, &opp_tables, node) {
  64		if (_find_opp_dev(dev, opp_table)) {
  65			_get_opp_table_kref(opp_table);
  66			return opp_table;
  67		}
  68	}
  69
  70	return ERR_PTR(-ENODEV);
  71}
  72
  73/**
  74 * _find_opp_table() - find opp_table struct using device pointer
  75 * @dev:	device pointer used to lookup OPP table
  76 *
  77 * Search OPP table for one containing matching device.
  78 *
  79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  80 * -EINVAL based on type of error.
  81 *
  82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  83 */
  84struct opp_table *_find_opp_table(struct device *dev)
  85{
  86	struct opp_table *opp_table;
  87
  88	if (IS_ERR_OR_NULL(dev)) {
  89		pr_err("%s: Invalid parameters\n", __func__);
  90		return ERR_PTR(-EINVAL);
  91	}
  92
  93	mutex_lock(&opp_table_lock);
  94	opp_table = _find_opp_table_unlocked(dev);
  95	mutex_unlock(&opp_table_lock);
  96
  97	return opp_table;
  98}
  99
 100/*
 101 * Returns true if multiple clocks aren't there, else returns false with WARN.
 102 *
 103 * We don't force clk_count == 1 here as there are users who don't have a clock
 104 * representation in the OPP table and manage the clock configuration themselves
 105 * in an platform specific way.
 106 */
 107static bool assert_single_clk(struct opp_table *opp_table)
 108{
 109	return !WARN_ON(opp_table->clk_count > 1);
 110}
 111
 112/**
 113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 114 * @opp:	opp for which voltage has to be returned for
 115 *
 116 * Return: voltage in micro volt corresponding to the opp, else
 117 * return 0
 118 *
 119 * This is useful only for devices with single power supply.
 120 */
 121unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 122{
 123	if (IS_ERR_OR_NULL(opp)) {
 124		pr_err("%s: Invalid parameters\n", __func__);
 125		return 0;
 126	}
 127
 128	return opp->supplies[0].u_volt;
 129}
 130EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 131
 132/**
 133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 134 * @opp:	opp for which voltage has to be returned for
 135 * @supplies:	Placeholder for copying the supply information.
 136 *
 137 * Return: negative error number on failure, 0 otherwise on success after
 138 * setting @supplies.
 139 *
 140 * This can be used for devices with any number of power supplies. The caller
 141 * must ensure the @supplies array must contain space for each regulator.
 142 */
 143int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 144			    struct dev_pm_opp_supply *supplies)
 145{
 146	if (IS_ERR_OR_NULL(opp) || !supplies) {
 147		pr_err("%s: Invalid parameters\n", __func__);
 148		return -EINVAL;
 149	}
 150
 151	memcpy(supplies, opp->supplies,
 152	       sizeof(*supplies) * opp->opp_table->regulator_count);
 153	return 0;
 154}
 155EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 156
 157/**
 158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 159 * @opp:	opp for which power has to be returned for
 160 *
 161 * Return: power in micro watt corresponding to the opp, else
 162 * return 0
 163 *
 164 * This is useful only for devices with single power supply.
 165 */
 166unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 167{
 168	unsigned long opp_power = 0;
 169	int i;
 170
 171	if (IS_ERR_OR_NULL(opp)) {
 172		pr_err("%s: Invalid parameters\n", __func__);
 173		return 0;
 174	}
 175	for (i = 0; i < opp->opp_table->regulator_count; i++)
 176		opp_power += opp->supplies[i].u_watt;
 177
 178	return opp_power;
 179}
 180EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 181
 182/**
 183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 184 * @opp:	opp for which frequency has to be returned for
 
 
 185 *
 186 * Return: frequency in hertz corresponding to the opp, else
 187 * return 0
 188 */
 189unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 190{
 191	if (IS_ERR_OR_NULL(opp)) {
 192		pr_err("%s: Invalid parameters\n", __func__);
 193		return 0;
 194	}
 195
 196	if (!assert_single_clk(opp->opp_table))
 197		return 0;
 198
 199	return opp->rates[0];
 200}
 201EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 202
 203/**
 204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 205 * @opp:	opp for which level value has to be returned for
 206 *
 207 * Return: level read from device tree corresponding to the opp, else
 208 * return 0.
 209 */
 210unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 211{
 212	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 213		pr_err("%s: Invalid parameters\n", __func__);
 214		return 0;
 215	}
 216
 217	return opp->level;
 218}
 219EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 220
 221/**
 222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 223 *                                    corresponding to an available opp
 224 * @opp:	opp for which performance state has to be returned for
 225 * @index:	index of the required opp
 226 *
 227 * Return: performance state read from device tree corresponding to the
 228 * required opp, else return 0.
 229 */
 230unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 231					    unsigned int index)
 232{
 233	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 234	    index >= opp->opp_table->required_opp_count) {
 235		pr_err("%s: Invalid parameters\n", __func__);
 236		return 0;
 237	}
 238
 239	/* required-opps not fully initialized yet */
 240	if (lazy_linking_pending(opp->opp_table))
 241		return 0;
 242
 243	return opp->required_opps[index]->pstate;
 
 
 
 
 
 
 244}
 245EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 246
 247/**
 248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 249 * @opp: opp for which turbo mode is being verified
 250 *
 251 * Turbo OPPs are not for normal use, and can be enabled (under certain
 252 * conditions) for short duration of times to finish high throughput work
 253 * quickly. Running on them for longer times may overheat the chip.
 254 *
 255 * Return: true if opp is turbo opp, else false.
 256 */
 257bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 258{
 259	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 260		pr_err("%s: Invalid parameters\n", __func__);
 261		return false;
 262	}
 263
 264	return opp->turbo;
 265}
 266EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 267
 268/**
 269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 270 * @dev:	device for which we do this operation
 271 *
 272 * Return: This function returns the max clock latency in nanoseconds.
 273 */
 274unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 275{
 276	struct opp_table *opp_table;
 277	unsigned long clock_latency_ns;
 278
 279	opp_table = _find_opp_table(dev);
 280	if (IS_ERR(opp_table))
 281		return 0;
 282
 283	clock_latency_ns = opp_table->clock_latency_ns_max;
 284
 285	dev_pm_opp_put_opp_table(opp_table);
 286
 287	return clock_latency_ns;
 288}
 289EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 290
 291/**
 292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 293 * @dev: device for which we do this operation
 294 *
 295 * Return: This function returns the max voltage latency in nanoseconds.
 296 */
 297unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 298{
 299	struct opp_table *opp_table;
 300	struct dev_pm_opp *opp;
 301	struct regulator *reg;
 302	unsigned long latency_ns = 0;
 303	int ret, i, count;
 304	struct {
 305		unsigned long min;
 306		unsigned long max;
 307	} *uV;
 308
 309	opp_table = _find_opp_table(dev);
 310	if (IS_ERR(opp_table))
 311		return 0;
 312
 313	/* Regulator may not be required for the device */
 314	if (!opp_table->regulators)
 315		goto put_opp_table;
 316
 317	count = opp_table->regulator_count;
 318
 319	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 320	if (!uV)
 321		goto put_opp_table;
 322
 323	mutex_lock(&opp_table->lock);
 324
 325	for (i = 0; i < count; i++) {
 326		uV[i].min = ~0;
 327		uV[i].max = 0;
 328
 329		list_for_each_entry(opp, &opp_table->opp_list, node) {
 330			if (!opp->available)
 331				continue;
 332
 333			if (opp->supplies[i].u_volt_min < uV[i].min)
 334				uV[i].min = opp->supplies[i].u_volt_min;
 335			if (opp->supplies[i].u_volt_max > uV[i].max)
 336				uV[i].max = opp->supplies[i].u_volt_max;
 337		}
 338	}
 339
 340	mutex_unlock(&opp_table->lock);
 341
 342	/*
 343	 * The caller needs to ensure that opp_table (and hence the regulator)
 344	 * isn't freed, while we are executing this routine.
 345	 */
 346	for (i = 0; i < count; i++) {
 347		reg = opp_table->regulators[i];
 348		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 349		if (ret > 0)
 350			latency_ns += ret * 1000;
 351	}
 352
 353	kfree(uV);
 354put_opp_table:
 355	dev_pm_opp_put_opp_table(opp_table);
 356
 357	return latency_ns;
 358}
 359EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 360
 361/**
 362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 363 *					     nanoseconds
 364 * @dev: device for which we do this operation
 365 *
 366 * Return: This function returns the max transition latency, in nanoseconds, to
 367 * switch from one OPP to other.
 368 */
 369unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 370{
 371	return dev_pm_opp_get_max_volt_latency(dev) +
 372		dev_pm_opp_get_max_clock_latency(dev);
 373}
 374EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 375
 376/**
 377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 378 * @dev:	device for which we do this operation
 379 *
 380 * Return: This function returns the frequency of the OPP marked as suspend_opp
 381 * if one is available, else returns 0;
 382 */
 383unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 384{
 385	struct opp_table *opp_table;
 386	unsigned long freq = 0;
 387
 388	opp_table = _find_opp_table(dev);
 389	if (IS_ERR(opp_table))
 390		return 0;
 391
 392	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 393		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 394
 395	dev_pm_opp_put_opp_table(opp_table);
 396
 397	return freq;
 398}
 399EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 400
 401int _get_opp_count(struct opp_table *opp_table)
 402{
 403	struct dev_pm_opp *opp;
 404	int count = 0;
 405
 406	mutex_lock(&opp_table->lock);
 407
 408	list_for_each_entry(opp, &opp_table->opp_list, node) {
 409		if (opp->available)
 410			count++;
 411	}
 412
 413	mutex_unlock(&opp_table->lock);
 414
 415	return count;
 416}
 417
 418/**
 419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 420 * @dev:	device for which we do this operation
 421 *
 422 * Return: This function returns the number of available opps if there are any,
 423 * else returns 0 if none or the corresponding error value.
 424 */
 425int dev_pm_opp_get_opp_count(struct device *dev)
 426{
 427	struct opp_table *opp_table;
 428	int count;
 429
 430	opp_table = _find_opp_table(dev);
 431	if (IS_ERR(opp_table)) {
 432		count = PTR_ERR(opp_table);
 433		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 434			__func__, count);
 435		return count;
 436	}
 437
 438	count = _get_opp_count(opp_table);
 439	dev_pm_opp_put_opp_table(opp_table);
 440
 441	return count;
 442}
 443EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 444
 445/* Helpers to read keys */
 446static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 447{
 448	return opp->rates[0];
 449}
 450
 451static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 452{
 453	return opp->level;
 454}
 455
 456static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 457{
 458	return opp->bandwidth[index].peak;
 459}
 460
 461/* Generic comparison helpers */
 462static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 463			   unsigned long opp_key, unsigned long key)
 464{
 465	if (opp_key == key) {
 466		*opp = temp_opp;
 467		return true;
 468	}
 469
 470	return false;
 471}
 472
 473static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 474			  unsigned long opp_key, unsigned long key)
 475{
 476	if (opp_key >= key) {
 477		*opp = temp_opp;
 478		return true;
 479	}
 480
 481	return false;
 482}
 483
 484static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 485			   unsigned long opp_key, unsigned long key)
 486{
 487	if (opp_key > key)
 488		return true;
 489
 490	*opp = temp_opp;
 491	return false;
 492}
 493
 494/* Generic key finding helpers */
 495static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 496		unsigned long *key, int index, bool available,
 497		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 498		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 499				unsigned long opp_key, unsigned long key),
 500		bool (*assert)(struct opp_table *opp_table))
 501{
 502	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 503
 504	/* Assert that the requirement is met */
 505	if (assert && !assert(opp_table))
 506		return ERR_PTR(-EINVAL);
 507
 508	mutex_lock(&opp_table->lock);
 509
 510	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 511		if (temp_opp->available == available) {
 512			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 513				break;
 514		}
 515	}
 516
 517	/* Increment the reference count of OPP */
 518	if (!IS_ERR(opp)) {
 519		*key = read(opp, index);
 520		dev_pm_opp_get(opp);
 521	}
 522
 523	mutex_unlock(&opp_table->lock);
 524
 525	return opp;
 526}
 527
 528static struct dev_pm_opp *
 529_find_key(struct device *dev, unsigned long *key, int index, bool available,
 530	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 531	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 532			  unsigned long opp_key, unsigned long key),
 533	  bool (*assert)(struct opp_table *opp_table))
 534{
 535	struct opp_table *opp_table;
 536	struct dev_pm_opp *opp;
 537
 538	opp_table = _find_opp_table(dev);
 539	if (IS_ERR(opp_table)) {
 540		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 541			PTR_ERR(opp_table));
 542		return ERR_CAST(opp_table);
 543	}
 544
 545	opp = _opp_table_find_key(opp_table, key, index, available, read,
 546				  compare, assert);
 547
 548	dev_pm_opp_put_opp_table(opp_table);
 549
 550	return opp;
 551}
 552
 553static struct dev_pm_opp *_find_key_exact(struct device *dev,
 554		unsigned long key, int index, bool available,
 555		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 556		bool (*assert)(struct opp_table *opp_table))
 557{
 558	/*
 559	 * The value of key will be updated here, but will be ignored as the
 560	 * caller doesn't need it.
 561	 */
 562	return _find_key(dev, &key, index, available, read, _compare_exact,
 563			 assert);
 564}
 565
 566static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 567		unsigned long *key, int index, bool available,
 568		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 569		bool (*assert)(struct opp_table *opp_table))
 570{
 571	return _opp_table_find_key(opp_table, key, index, available, read,
 572				   _compare_ceil, assert);
 573}
 574
 575static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 576		int index, bool available,
 577		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 578		bool (*assert)(struct opp_table *opp_table))
 579{
 580	return _find_key(dev, key, index, available, read, _compare_ceil,
 581			 assert);
 582}
 583
 584static struct dev_pm_opp *_find_key_floor(struct device *dev,
 585		unsigned long *key, int index, bool available,
 586		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 587		bool (*assert)(struct opp_table *opp_table))
 588{
 589	return _find_key(dev, key, index, available, read, _compare_floor,
 590			 assert);
 591}
 592
 593/**
 594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 595 * @dev:		device for which we do this operation
 596 * @freq:		frequency to search for
 597 * @available:		true/false - match for available opp
 598 *
 599 * Return: Searches for exact match in the opp table and returns pointer to the
 600 * matching opp if found, else returns ERR_PTR in case of error and should
 601 * be handled using IS_ERR. Error return values can be:
 602 * EINVAL:	for bad pointer
 603 * ERANGE:	no match found for search
 604 * ENODEV:	if device not found in list of registered devices
 605 *
 606 * Note: available is a modifier for the search. if available=true, then the
 607 * match is for exact matching frequency and is available in the stored OPP
 608 * table. if false, the match is for exact frequency which is not available.
 609 *
 610 * This provides a mechanism to enable an opp which is not available currently
 611 * or the opposite as well.
 612 *
 613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 614 * use.
 615 */
 616struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 617		unsigned long freq, bool available)
 618{
 619	return _find_key_exact(dev, freq, 0, available, _read_freq,
 620			       assert_single_clk);
 621}
 622EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 625						   unsigned long *freq)
 626{
 627	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 628					assert_single_clk);
 629}
 630
 631/**
 632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 633 * @dev:	device for which we do this operation
 634 * @freq:	Start frequency
 635 *
 636 * Search for the matching ceil *available* OPP from a starting freq
 637 * for a device.
 638 *
 639 * Return: matching *opp and refreshes *freq accordingly, else returns
 640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 641 * values can be:
 642 * EINVAL:	for bad pointer
 643 * ERANGE:	no match found for search
 644 * ENODEV:	if device not found in list of registered devices
 645 *
 646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 647 * use.
 648 */
 649struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 650					     unsigned long *freq)
 651{
 652	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 653}
 654EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 655
 656/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 658 * @dev:	device for which we do this operation
 659 * @freq:	Start frequency
 660 *
 661 * Search for the matching floor *available* OPP from a starting freq
 662 * for a device.
 663 *
 664 * Return: matching *opp and refreshes *freq accordingly, else returns
 665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 666 * values can be:
 667 * EINVAL:	for bad pointer
 668 * ERANGE:	no match found for search
 669 * ENODEV:	if device not found in list of registered devices
 670 *
 671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 672 * use.
 673 */
 674struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 675					      unsigned long *freq)
 676{
 677	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 678}
 679EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 680
 681/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682 * dev_pm_opp_find_level_exact() - search for an exact level
 683 * @dev:		device for which we do this operation
 684 * @level:		level to search for
 685 *
 686 * Return: Searches for exact match in the opp table and returns pointer to the
 687 * matching opp if found, else returns ERR_PTR in case of error and should
 688 * be handled using IS_ERR. Error return values can be:
 689 * EINVAL:	for bad pointer
 690 * ERANGE:	no match found for search
 691 * ENODEV:	if device not found in list of registered devices
 692 *
 693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 694 * use.
 695 */
 696struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 697					       unsigned int level)
 698{
 699	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 700}
 701EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 702
 703/**
 704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 705 * @dev:		device for which we do this operation
 706 * @level:		level to search for
 707 *
 708 * Return: Searches for rounded up match in the opp table and returns pointer
 709 * to the  matching opp if found, else returns ERR_PTR in case of error and
 710 * should be handled using IS_ERR. Error return values can be:
 711 * EINVAL:	for bad pointer
 712 * ERANGE:	no match found for search
 713 * ENODEV:	if device not found in list of registered devices
 714 *
 715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 716 * use.
 717 */
 718struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 719					      unsigned int *level)
 720{
 721	unsigned long temp = *level;
 722	struct dev_pm_opp *opp;
 723
 724	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 
 
 
 
 
 
 
 
 
 
 725	*level = temp;
 726	return opp;
 727}
 728EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 729
 730/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 732 * @dev:	device for which we do this operation
 733 * @bw:	start bandwidth
 734 * @index:	which bandwidth to compare, in case of OPPs with several values
 735 *
 736 * Search for the matching floor *available* OPP from a starting bandwidth
 737 * for a device.
 738 *
 739 * Return: matching *opp and refreshes *bw accordingly, else returns
 740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 741 * values can be:
 742 * EINVAL:	for bad pointer
 743 * ERANGE:	no match found for search
 744 * ENODEV:	if device not found in list of registered devices
 745 *
 746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 747 * use.
 748 */
 749struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 750					   int index)
 751{
 752	unsigned long temp = *bw;
 753	struct dev_pm_opp *opp;
 754
 755	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
 756	*bw = temp;
 757	return opp;
 758}
 759EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 760
 761/**
 762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 763 * @dev:	device for which we do this operation
 764 * @bw:	start bandwidth
 765 * @index:	which bandwidth to compare, in case of OPPs with several values
 766 *
 767 * Search for the matching floor *available* OPP from a starting bandwidth
 768 * for a device.
 769 *
 770 * Return: matching *opp and refreshes *bw accordingly, else returns
 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 772 * values can be:
 773 * EINVAL:	for bad pointer
 774 * ERANGE:	no match found for search
 775 * ENODEV:	if device not found in list of registered devices
 776 *
 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 778 * use.
 779 */
 780struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 781					    unsigned int *bw, int index)
 782{
 783	unsigned long temp = *bw;
 784	struct dev_pm_opp *opp;
 785
 786	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
 787	*bw = temp;
 788	return opp;
 789}
 790EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 791
 792static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 793			    struct dev_pm_opp_supply *supply)
 794{
 795	int ret;
 796
 797	/* Regulator not available for device */
 798	if (IS_ERR(reg)) {
 799		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 800			PTR_ERR(reg));
 801		return 0;
 802	}
 803
 804	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 805		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 806
 807	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 808					    supply->u_volt, supply->u_volt_max);
 809	if (ret)
 810		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 811			__func__, supply->u_volt_min, supply->u_volt,
 812			supply->u_volt_max, ret);
 813
 814	return ret;
 815}
 816
 817static int
 818_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 819		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 820{
 821	unsigned long *target = data;
 822	unsigned long freq;
 823	int ret;
 824
 825	/* One of target and opp must be available */
 826	if (target) {
 827		freq = *target;
 828	} else if (opp) {
 829		freq = opp->rates[0];
 830	} else {
 831		WARN_ON(1);
 832		return -EINVAL;
 833	}
 834
 835	ret = clk_set_rate(opp_table->clk, freq);
 836	if (ret) {
 837		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 838			ret);
 839	} else {
 840		opp_table->rate_clk_single = freq;
 841	}
 842
 843	return ret;
 844}
 845
 846/*
 847 * Simple implementation for configuring multiple clocks. Configure clocks in
 848 * the order in which they are present in the array while scaling up.
 849 */
 850int dev_pm_opp_config_clks_simple(struct device *dev,
 851		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
 852		bool scaling_down)
 853{
 854	int ret, i;
 855
 856	if (scaling_down) {
 857		for (i = opp_table->clk_count - 1; i >= 0; i--) {
 858			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 859			if (ret) {
 860				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 861					ret);
 862				return ret;
 863			}
 864		}
 865	} else {
 866		for (i = 0; i < opp_table->clk_count; i++) {
 867			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 868			if (ret) {
 869				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 870					ret);
 871				return ret;
 872			}
 873		}
 874	}
 875
 876	return 0;
 877}
 878EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
 879
 880static int _opp_config_regulator_single(struct device *dev,
 881			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
 882			struct regulator **regulators, unsigned int count)
 883{
 884	struct regulator *reg = regulators[0];
 885	int ret;
 886
 887	/* This function only supports single regulator per device */
 888	if (WARN_ON(count > 1)) {
 889		dev_err(dev, "multiple regulators are not supported\n");
 890		return -EINVAL;
 891	}
 892
 893	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
 894	if (ret)
 895		return ret;
 896
 897	/*
 898	 * Enable the regulator after setting its voltages, otherwise it breaks
 899	 * some boot-enabled regulators.
 900	 */
 901	if (unlikely(!new_opp->opp_table->enabled)) {
 902		ret = regulator_enable(reg);
 903		if (ret < 0)
 904			dev_warn(dev, "Failed to enable regulator: %d", ret);
 905	}
 906
 907	return 0;
 908}
 909
 910static int _set_opp_bw(const struct opp_table *opp_table,
 911		       struct dev_pm_opp *opp, struct device *dev)
 912{
 913	u32 avg, peak;
 914	int i, ret;
 915
 916	if (!opp_table->paths)
 917		return 0;
 918
 919	for (i = 0; i < opp_table->path_count; i++) {
 920		if (!opp) {
 921			avg = 0;
 922			peak = 0;
 923		} else {
 924			avg = opp->bandwidth[i].avg;
 925			peak = opp->bandwidth[i].peak;
 926		}
 927		ret = icc_set_bw(opp_table->paths[i], avg, peak);
 928		if (ret) {
 929			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
 930				opp ? "set" : "remove", i, ret);
 931			return ret;
 932		}
 933	}
 934
 935	return 0;
 936}
 937
 938static int _set_required_opp(struct device *dev, struct device *pd_dev,
 939			     struct dev_pm_opp *opp, int i)
 940{
 941	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 942	int ret;
 943
 944	if (!pd_dev)
 945		return 0;
 946
 947	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
 948	if (ret) {
 949		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
 950			dev_name(pd_dev), pstate, ret);
 951	}
 952
 953	return ret;
 954}
 955
 956/* This is only called for PM domain for now */
 957static int _set_required_opps(struct device *dev,
 958			      struct opp_table *opp_table,
 959			      struct dev_pm_opp *opp, bool up)
 960{
 961	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 962	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 963	int i, ret = 0;
 964
 965	if (!required_opp_tables)
 966		return 0;
 967
 968	/* required-opps not fully initialized yet */
 969	if (lazy_linking_pending(opp_table))
 970		return -EBUSY;
 971
 972	/*
 973	 * We only support genpd's OPPs in the "required-opps" for now, as we
 974	 * don't know much about other use cases. Error out if the required OPP
 975	 * doesn't belong to a genpd.
 976	 */
 977	if (unlikely(!required_opp_tables[0]->is_genpd)) {
 978		dev_err(dev, "required-opps don't belong to a genpd\n");
 979		return -ENOENT;
 980	}
 981
 982	/* Single genpd case */
 983	if (!genpd_virt_devs)
 984		return _set_required_opp(dev, dev, opp, 0);
 985
 986	/* Multiple genpd case */
 987
 988	/*
 989	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 990	 * after it is freed from another thread.
 991	 */
 992	mutex_lock(&opp_table->genpd_virt_dev_lock);
 993
 994	/* Scaling up? Set required OPPs in normal order, else reverse */
 995	if (up) {
 996		for (i = 0; i < opp_table->required_opp_count; i++) {
 997			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
 998			if (ret)
 999				break;
1000		}
1001	} else {
1002		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
 
 
 
 
 
 
 
 
1004			if (ret)
1005				break;
1006		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007	}
1008
1009	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 
 
 
 
1010
1011	return ret;
1012}
1013
1014static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015{
1016	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017	unsigned long freq;
1018
1019	if (!IS_ERR(opp_table->clk)) {
1020		freq = clk_get_rate(opp_table->clk);
1021		opp = _find_freq_ceil(opp_table, &freq);
1022	}
1023
1024	/*
1025	 * Unable to find the current OPP ? Pick the first from the list since
1026	 * it is in ascending order, otherwise rest of the code will need to
1027	 * make special checks to validate current_opp.
1028	 */
1029	if (IS_ERR(opp)) {
1030		mutex_lock(&opp_table->lock);
1031		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032		dev_pm_opp_get(opp);
1033		mutex_unlock(&opp_table->lock);
1034	}
1035
1036	opp_table->current_opp = opp;
1037}
1038
1039static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040{
1041	int ret;
1042
1043	if (!opp_table->enabled)
1044		return 0;
1045
1046	/*
1047	 * Some drivers need to support cases where some platforms may
1048	 * have OPP table for the device, while others don't and
1049	 * opp_set_rate() just needs to behave like clk_set_rate().
1050	 */
1051	if (!_get_opp_count(opp_table))
1052		return 0;
1053
1054	ret = _set_opp_bw(opp_table, NULL, dev);
1055	if (ret)
1056		return ret;
1057
1058	if (opp_table->regulators)
1059		regulator_disable(opp_table->regulators[0]);
1060
 
 
 
 
1061	ret = _set_required_opps(dev, opp_table, NULL, false);
1062
 
1063	opp_table->enabled = false;
1064	return ret;
1065}
1066
1067static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1069{
1070	struct dev_pm_opp *old_opp;
1071	int scaling_down, ret;
1072
1073	if (unlikely(!opp))
1074		return _disable_opp_table(dev, opp_table);
1075
1076	/* Find the currently set OPP if we don't know already */
1077	if (unlikely(!opp_table->current_opp))
1078		_find_current_opp(dev, opp_table);
1079
1080	old_opp = opp_table->current_opp;
1081
1082	/* Return early if nothing to do */
1083	if (!forced && old_opp == opp && opp_table->enabled) {
1084		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085		return 0;
1086	}
1087
1088	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092
1093	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094	if (scaling_down == -1)
1095		scaling_down = 0;
1096
1097	/* Scaling up? Configure required OPPs before frequency */
1098	if (!scaling_down) {
1099		ret = _set_required_opps(dev, opp_table, opp, true);
1100		if (ret) {
1101			dev_err(dev, "Failed to set required opps: %d\n", ret);
1102			return ret;
1103		}
1104
 
 
 
 
1105		ret = _set_opp_bw(opp_table, opp, dev);
1106		if (ret) {
1107			dev_err(dev, "Failed to set bw: %d\n", ret);
1108			return ret;
1109		}
1110
1111		if (opp_table->config_regulators) {
1112			ret = opp_table->config_regulators(dev, old_opp, opp,
1113							   opp_table->regulators,
1114							   opp_table->regulator_count);
1115			if (ret) {
1116				dev_err(dev, "Failed to set regulator voltages: %d\n",
1117					ret);
1118				return ret;
1119			}
1120		}
1121	}
1122
1123	if (opp_table->config_clks) {
1124		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125		if (ret)
1126			return ret;
1127	}
1128
1129	/* Scaling down? Configure required OPPs after frequency */
1130	if (scaling_down) {
1131		if (opp_table->config_regulators) {
1132			ret = opp_table->config_regulators(dev, old_opp, opp,
1133							   opp_table->regulators,
1134							   opp_table->regulator_count);
1135			if (ret) {
1136				dev_err(dev, "Failed to set regulator voltages: %d\n",
1137					ret);
1138				return ret;
1139			}
1140		}
1141
1142		ret = _set_opp_bw(opp_table, opp, dev);
1143		if (ret) {
1144			dev_err(dev, "Failed to set bw: %d\n", ret);
1145			return ret;
1146		}
1147
 
 
 
 
1148		ret = _set_required_opps(dev, opp_table, opp, false);
1149		if (ret) {
1150			dev_err(dev, "Failed to set required opps: %d\n", ret);
1151			return ret;
1152		}
1153	}
1154
1155	opp_table->enabled = true;
1156	dev_pm_opp_put(old_opp);
1157
1158	/* Make sure current_opp doesn't get freed */
1159	dev_pm_opp_get(opp);
1160	opp_table->current_opp = opp;
1161
1162	return ret;
1163}
1164
1165/**
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev:	 device for which we do this operation
1168 * @target_freq: frequency to achieve
1169 *
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1174 * frequency.
1175 */
1176int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177{
1178	struct opp_table *opp_table;
1179	unsigned long freq = 0, temp_freq;
1180	struct dev_pm_opp *opp = NULL;
1181	bool forced = false;
1182	int ret;
1183
1184	opp_table = _find_opp_table(dev);
1185	if (IS_ERR(opp_table)) {
1186		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187		return PTR_ERR(opp_table);
1188	}
1189
1190	if (target_freq) {
1191		/*
1192		 * For IO devices which require an OPP on some platforms/SoCs
1193		 * while just needing to scale the clock on some others
1194		 * we look for empty OPP tables with just a clock handle and
1195		 * scale only the clk. This makes dev_pm_opp_set_rate()
1196		 * equivalent to a clk_set_rate()
1197		 */
1198		if (!_get_opp_count(opp_table)) {
1199			ret = opp_table->config_clks(dev, opp_table, NULL,
1200						     &target_freq, false);
1201			goto put_opp_table;
1202		}
1203
1204		freq = clk_round_rate(opp_table->clk, target_freq);
1205		if ((long)freq <= 0)
1206			freq = target_freq;
1207
1208		/*
1209		 * The clock driver may support finer resolution of the
1210		 * frequencies than the OPP table, don't update the frequency we
1211		 * pass to clk_set_rate() here.
1212		 */
1213		temp_freq = freq;
1214		opp = _find_freq_ceil(opp_table, &temp_freq);
1215		if (IS_ERR(opp)) {
1216			ret = PTR_ERR(opp);
1217			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218				__func__, freq, ret);
1219			goto put_opp_table;
1220		}
1221
1222		/*
1223		 * An OPP entry specifies the highest frequency at which other
1224		 * properties of the OPP entry apply. Even if the new OPP is
1225		 * same as the old one, we may still reach here for a different
1226		 * value of the frequency. In such a case, do not abort but
1227		 * configure the hardware to the desired frequency forcefully.
1228		 */
1229		forced = opp_table->rate_clk_single != target_freq;
1230	}
1231
1232	ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233
1234	if (target_freq)
1235		dev_pm_opp_put(opp);
1236
1237put_opp_table:
1238	dev_pm_opp_put_opp_table(opp_table);
1239	return ret;
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242
1243/**
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1247 *
1248 * This configures the device based on the properties of the OPP passed to this
1249 * routine.
1250 *
1251 * Return: 0 on success, a negative error number otherwise.
1252 */
1253int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254{
1255	struct opp_table *opp_table;
1256	int ret;
1257
1258	opp_table = _find_opp_table(dev);
1259	if (IS_ERR(opp_table)) {
1260		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261		return PTR_ERR(opp_table);
1262	}
1263
1264	ret = _set_opp(dev, opp_table, opp, NULL, false);
1265	dev_pm_opp_put_opp_table(opp_table);
1266
1267	return ret;
1268}
1269EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270
1271/* OPP-dev Helpers */
1272static void _remove_opp_dev(struct opp_device *opp_dev,
1273			    struct opp_table *opp_table)
1274{
1275	opp_debug_unregister(opp_dev, opp_table);
1276	list_del(&opp_dev->node);
1277	kfree(opp_dev);
1278}
1279
1280struct opp_device *_add_opp_dev(const struct device *dev,
1281				struct opp_table *opp_table)
1282{
1283	struct opp_device *opp_dev;
1284
1285	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286	if (!opp_dev)
1287		return NULL;
1288
1289	/* Initialize opp-dev */
1290	opp_dev->dev = dev;
1291
1292	mutex_lock(&opp_table->lock);
1293	list_add(&opp_dev->node, &opp_table->dev_list);
1294	mutex_unlock(&opp_table->lock);
1295
1296	/* Create debugfs entries for the opp_table */
1297	opp_debug_register(opp_dev, opp_table);
1298
1299	return opp_dev;
1300}
1301
1302static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303{
1304	struct opp_table *opp_table;
1305	struct opp_device *opp_dev;
1306	int ret;
1307
1308	/*
1309	 * Allocate a new OPP table. In the infrequent case where a new
1310	 * device is needed to be added, we pay this penalty.
1311	 */
1312	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313	if (!opp_table)
1314		return ERR_PTR(-ENOMEM);
1315
1316	mutex_init(&opp_table->lock);
1317	mutex_init(&opp_table->genpd_virt_dev_lock);
1318	INIT_LIST_HEAD(&opp_table->dev_list);
1319	INIT_LIST_HEAD(&opp_table->lazy);
1320
1321	opp_table->clk = ERR_PTR(-ENODEV);
1322
1323	/* Mark regulator count uninitialized */
1324	opp_table->regulator_count = -1;
1325
1326	opp_dev = _add_opp_dev(dev, opp_table);
1327	if (!opp_dev) {
1328		ret = -ENOMEM;
1329		goto err;
1330	}
1331
1332	_of_init_opp_table(opp_table, dev, index);
1333
1334	/* Find interconnect path(s) for the device */
1335	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336	if (ret) {
1337		if (ret == -EPROBE_DEFER)
1338			goto remove_opp_dev;
1339
1340		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341			 __func__, ret);
1342	}
1343
1344	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345	INIT_LIST_HEAD(&opp_table->opp_list);
1346	kref_init(&opp_table->kref);
1347
1348	return opp_table;
1349
1350remove_opp_dev:
 
1351	_remove_opp_dev(opp_dev, opp_table);
 
1352err:
1353	kfree(opp_table);
1354	return ERR_PTR(ret);
1355}
1356
1357void _get_opp_table_kref(struct opp_table *opp_table)
1358{
1359	kref_get(&opp_table->kref);
1360}
1361
1362static struct opp_table *_update_opp_table_clk(struct device *dev,
1363					       struct opp_table *opp_table,
1364					       bool getclk)
1365{
1366	int ret;
1367
1368	/*
1369	 * Return early if we don't need to get clk or we have already done it
1370	 * earlier.
1371	 */
1372	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373	    opp_table->clks)
1374		return opp_table;
1375
1376	/* Find clk for the device */
1377	opp_table->clk = clk_get(dev, NULL);
1378
1379	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380	if (!ret) {
1381		opp_table->config_clks = _opp_config_clk_single;
1382		opp_table->clk_count = 1;
1383		return opp_table;
1384	}
1385
1386	if (ret == -ENOENT) {
1387		/*
1388		 * There are few platforms which don't want the OPP core to
1389		 * manage device's clock settings. In such cases neither the
1390		 * platform provides the clks explicitly to us, nor the DT
1391		 * contains a valid clk entry. The OPP nodes in DT may still
1392		 * contain "opp-hz" property though, which we need to parse and
1393		 * allow the platform to find an OPP based on freq later on.
1394		 *
1395		 * This is a simple solution to take care of such corner cases,
1396		 * i.e. make the clk_count 1, which lets us allocate space for
1397		 * frequency in opp->rates and also parse the entries in DT.
1398		 */
1399		opp_table->clk_count = 1;
1400
1401		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402		return opp_table;
1403	}
1404
1405	dev_pm_opp_put_opp_table(opp_table);
1406	dev_err_probe(dev, ret, "Couldn't find clock\n");
1407
1408	return ERR_PTR(ret);
1409}
1410
1411/*
1412 * We need to make sure that the OPP table for a device doesn't get added twice,
1413 * if this routine gets called in parallel with the same device pointer.
1414 *
1415 * The simplest way to enforce that is to perform everything (find existing
1416 * table and if not found, create a new one) under the opp_table_lock, so only
1417 * one creator gets access to the same. But that expands the critical section
1418 * under the lock and may end up causing circular dependencies with frameworks
1419 * like debugfs, interconnect or clock framework as they may be direct or
1420 * indirect users of OPP core.
1421 *
1422 * And for that reason we have to go for a bit tricky implementation here, which
1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424 * of adding an OPP table and others should wait for it to finish.
1425 */
1426struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427					 bool getclk)
1428{
1429	struct opp_table *opp_table;
1430
1431again:
1432	mutex_lock(&opp_table_lock);
1433
1434	opp_table = _find_opp_table_unlocked(dev);
1435	if (!IS_ERR(opp_table))
1436		goto unlock;
1437
1438	/*
1439	 * The opp_tables list or an OPP table's dev_list is getting updated by
1440	 * another user, wait for it to finish.
1441	 */
1442	if (unlikely(opp_tables_busy)) {
1443		mutex_unlock(&opp_table_lock);
1444		cpu_relax();
1445		goto again;
1446	}
1447
1448	opp_tables_busy = true;
1449	opp_table = _managed_opp(dev, index);
1450
1451	/* Drop the lock to reduce the size of critical section */
1452	mutex_unlock(&opp_table_lock);
1453
1454	if (opp_table) {
1455		if (!_add_opp_dev(dev, opp_table)) {
1456			dev_pm_opp_put_opp_table(opp_table);
1457			opp_table = ERR_PTR(-ENOMEM);
1458		}
1459
1460		mutex_lock(&opp_table_lock);
1461	} else {
1462		opp_table = _allocate_opp_table(dev, index);
1463
1464		mutex_lock(&opp_table_lock);
1465		if (!IS_ERR(opp_table))
1466			list_add(&opp_table->node, &opp_tables);
1467	}
1468
1469	opp_tables_busy = false;
1470
1471unlock:
1472	mutex_unlock(&opp_table_lock);
1473
1474	return _update_opp_table_clk(dev, opp_table, getclk);
1475}
1476
1477static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478{
1479	return _add_opp_table_indexed(dev, 0, getclk);
1480}
1481
1482struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483{
1484	return _find_opp_table(dev);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487
1488static void _opp_table_kref_release(struct kref *kref)
1489{
1490	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491	struct opp_device *opp_dev, *temp;
1492	int i;
1493
1494	/* Drop the lock as soon as we can */
1495	list_del(&opp_table->node);
1496	mutex_unlock(&opp_table_lock);
1497
1498	if (opp_table->current_opp)
1499		dev_pm_opp_put(opp_table->current_opp);
1500
1501	_of_clear_opp_table(opp_table);
1502
1503	/* Release automatically acquired single clk */
1504	if (!IS_ERR(opp_table->clk))
1505		clk_put(opp_table->clk);
1506
1507	if (opp_table->paths) {
1508		for (i = 0; i < opp_table->path_count; i++)
1509			icc_put(opp_table->paths[i]);
1510		kfree(opp_table->paths);
1511	}
1512
1513	WARN_ON(!list_empty(&opp_table->opp_list));
1514
1515	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516		/*
1517		 * The OPP table is getting removed, drop the performance state
1518		 * constraints.
1519		 */
1520		if (opp_table->genpd_performance_state)
1521			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522
1523		_remove_opp_dev(opp_dev, opp_table);
1524	}
1525
1526	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527	mutex_destroy(&opp_table->lock);
1528	kfree(opp_table);
1529}
1530
1531void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532{
1533	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534		       &opp_table_lock);
1535}
1536EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537
1538void _opp_free(struct dev_pm_opp *opp)
1539{
1540	kfree(opp);
1541}
1542
1543static void _opp_kref_release(struct kref *kref)
1544{
1545	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546	struct opp_table *opp_table = opp->opp_table;
1547
1548	list_del(&opp->node);
1549	mutex_unlock(&opp_table->lock);
1550
1551	/*
1552	 * Notify the changes in the availability of the operable
1553	 * frequency/voltage list.
1554	 */
1555	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556	_of_clear_opp(opp_table, opp);
1557	opp_debug_remove_one(opp);
1558	kfree(opp);
1559}
1560
1561void dev_pm_opp_get(struct dev_pm_opp *opp)
1562{
1563	kref_get(&opp->kref);
1564}
1565
1566void dev_pm_opp_put(struct dev_pm_opp *opp)
1567{
1568	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569}
1570EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571
1572/**
1573 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1574 * @dev:	device for which we do this operation
1575 * @freq:	OPP to remove with matching 'freq'
1576 *
1577 * This function removes an opp from the opp table.
1578 */
1579void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580{
1581	struct dev_pm_opp *opp = NULL, *iter;
1582	struct opp_table *opp_table;
1583
1584	opp_table = _find_opp_table(dev);
1585	if (IS_ERR(opp_table))
1586		return;
1587
1588	if (!assert_single_clk(opp_table))
1589		goto put_table;
1590
1591	mutex_lock(&opp_table->lock);
1592
1593	list_for_each_entry(iter, &opp_table->opp_list, node) {
1594		if (iter->rates[0] == freq) {
1595			opp = iter;
1596			break;
1597		}
1598	}
1599
1600	mutex_unlock(&opp_table->lock);
1601
1602	if (opp) {
1603		dev_pm_opp_put(opp);
1604
1605		/* Drop the reference taken by dev_pm_opp_add() */
1606		dev_pm_opp_put_opp_table(opp_table);
1607	} else {
1608		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609			 __func__, freq);
1610	}
1611
1612put_table:
1613	/* Drop the reference taken by _find_opp_table() */
1614	dev_pm_opp_put_opp_table(opp_table);
1615}
1616EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617
1618static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619					bool dynamic)
1620{
1621	struct dev_pm_opp *opp = NULL, *temp;
1622
1623	mutex_lock(&opp_table->lock);
1624	list_for_each_entry(temp, &opp_table->opp_list, node) {
1625		/*
1626		 * Refcount must be dropped only once for each OPP by OPP core,
1627		 * do that with help of "removed" flag.
1628		 */
1629		if (!temp->removed && dynamic == temp->dynamic) {
1630			opp = temp;
1631			break;
1632		}
1633	}
1634
1635	mutex_unlock(&opp_table->lock);
1636	return opp;
1637}
1638
1639/*
1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641 * happen lock less to avoid circular dependency issues. This routine must be
1642 * called without the opp_table->lock held.
1643 */
1644static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645{
1646	struct dev_pm_opp *opp;
1647
1648	while ((opp = _opp_get_next(opp_table, dynamic))) {
1649		opp->removed = true;
1650		dev_pm_opp_put(opp);
1651
1652		/* Drop the references taken by dev_pm_opp_add() */
1653		if (dynamic)
1654			dev_pm_opp_put_opp_table(opp_table);
1655	}
1656}
1657
1658bool _opp_remove_all_static(struct opp_table *opp_table)
1659{
1660	mutex_lock(&opp_table->lock);
1661
1662	if (!opp_table->parsed_static_opps) {
1663		mutex_unlock(&opp_table->lock);
1664		return false;
1665	}
1666
1667	if (--opp_table->parsed_static_opps) {
1668		mutex_unlock(&opp_table->lock);
1669		return true;
1670	}
1671
1672	mutex_unlock(&opp_table->lock);
1673
1674	_opp_remove_all(opp_table, false);
1675	return true;
1676}
1677
1678/**
1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680 * @dev:	device for which we do this operation
1681 *
1682 * This function removes all dynamically created OPPs from the opp table.
1683 */
1684void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685{
1686	struct opp_table *opp_table;
1687
1688	opp_table = _find_opp_table(dev);
1689	if (IS_ERR(opp_table))
1690		return;
1691
1692	_opp_remove_all(opp_table, true);
1693
1694	/* Drop the reference taken by _find_opp_table() */
1695	dev_pm_opp_put_opp_table(opp_table);
1696}
1697EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698
1699struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700{
1701	struct dev_pm_opp *opp;
1702	int supply_count, supply_size, icc_size, clk_size;
1703
1704	/* Allocate space for at least one supply */
1705	supply_count = opp_table->regulator_count > 0 ?
1706			opp_table->regulator_count : 1;
1707	supply_size = sizeof(*opp->supplies) * supply_count;
1708	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710
1711	/* allocate new OPP node and supplies structures */
1712	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713	if (!opp)
1714		return NULL;
1715
1716	/* Put the supplies, bw and clock at the end of the OPP structure */
1717	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718
1719	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720
1721	if (icc_size)
1722		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723
1724	INIT_LIST_HEAD(&opp->node);
1725
 
 
1726	return opp;
1727}
1728
1729static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730					 struct opp_table *opp_table)
1731{
1732	struct regulator *reg;
1733	int i;
1734
1735	if (!opp_table->regulators)
1736		return true;
1737
1738	for (i = 0; i < opp_table->regulator_count; i++) {
1739		reg = opp_table->regulators[i];
1740
1741		if (!regulator_is_supported_voltage(reg,
1742					opp->supplies[i].u_volt_min,
1743					opp->supplies[i].u_volt_max)) {
1744			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745				__func__, opp->supplies[i].u_volt_min,
1746				opp->supplies[i].u_volt_max);
1747			return false;
1748		}
1749	}
1750
1751	return true;
1752}
1753
1754static int _opp_compare_rate(struct opp_table *opp_table,
1755			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756{
1757	int i;
1758
1759	for (i = 0; i < opp_table->clk_count; i++) {
1760		if (opp1->rates[i] != opp2->rates[i])
1761			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762	}
1763
1764	/* Same rates for both OPPs */
1765	return 0;
1766}
1767
1768static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769			   struct dev_pm_opp *opp2)
1770{
1771	int i;
1772
1773	for (i = 0; i < opp_table->path_count; i++) {
1774		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776	}
1777
1778	/* Same bw for both OPPs */
1779	return 0;
1780}
1781
1782/*
1783 * Returns
1784 * 0: opp1 == opp2
1785 * 1: opp1 > opp2
1786 * -1: opp1 < opp2
1787 */
1788int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789		     struct dev_pm_opp *opp2)
1790{
1791	int ret;
1792
1793	ret = _opp_compare_rate(opp_table, opp1, opp2);
1794	if (ret)
1795		return ret;
1796
1797	ret = _opp_compare_bw(opp_table, opp1, opp2);
1798	if (ret)
1799		return ret;
1800
1801	if (opp1->level != opp2->level)
1802		return opp1->level < opp2->level ? -1 : 1;
1803
1804	/* Duplicate OPPs */
1805	return 0;
1806}
1807
1808static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809			     struct opp_table *opp_table,
1810			     struct list_head **head)
1811{
1812	struct dev_pm_opp *opp;
1813	int opp_cmp;
1814
1815	/*
1816	 * Insert new OPP in order of increasing frequency and discard if
1817	 * already present.
1818	 *
1819	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820	 * loop, don't replace it with head otherwise it will become an infinite
1821	 * loop.
1822	 */
1823	list_for_each_entry(opp, &opp_table->opp_list, node) {
1824		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825		if (opp_cmp > 0) {
1826			*head = &opp->node;
1827			continue;
1828		}
1829
1830		if (opp_cmp < 0)
1831			return 0;
1832
1833		/* Duplicate OPPs */
1834		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836			 opp->available, new_opp->rates[0],
1837			 new_opp->supplies[0].u_volt, new_opp->available);
1838
1839		/* Should we compare voltages for all regulators here ? */
1840		return opp->available &&
1841		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842	}
1843
1844	return 0;
1845}
1846
1847void _required_opps_available(struct dev_pm_opp *opp, int count)
1848{
1849	int i;
1850
1851	for (i = 0; i < count; i++) {
1852		if (opp->required_opps[i]->available)
1853			continue;
1854
1855		opp->available = false;
1856		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1858		return;
1859	}
1860}
1861
1862/*
1863 * Returns:
1864 * 0: On success. And appropriate error message for duplicate OPPs.
1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867 *  sure we don't print error messages unnecessarily if different parts of
1868 *  kernel try to initialize the OPP table.
1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870 *  should be considered an error by the callers of _opp_add().
1871 */
1872int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873	     struct opp_table *opp_table)
1874{
1875	struct list_head *head;
1876	int ret;
1877
1878	mutex_lock(&opp_table->lock);
1879	head = &opp_table->opp_list;
1880
1881	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882	if (ret) {
1883		mutex_unlock(&opp_table->lock);
1884		return ret;
1885	}
1886
1887	list_add(&new_opp->node, head);
1888	mutex_unlock(&opp_table->lock);
1889
1890	new_opp->opp_table = opp_table;
1891	kref_init(&new_opp->kref);
1892
1893	opp_debug_create_one(new_opp, opp_table);
1894
1895	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896		new_opp->available = false;
1897		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898			 __func__, new_opp->rates[0]);
1899	}
1900
1901	/* required-opps not fully initialized yet */
1902	if (lazy_linking_pending(opp_table))
1903		return 0;
1904
1905	_required_opps_available(new_opp, opp_table->required_opp_count);
1906
1907	return 0;
1908}
1909
1910/**
1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912 * @opp_table:	OPP table
1913 * @dev:	device for which we do this operation
1914 * @freq:	Frequency in Hz for this OPP
1915 * @u_volt:	Voltage in uVolts for this OPP
1916 * @dynamic:	Dynamically added OPPs.
1917 *
1918 * This function adds an opp definition to the opp table and returns status.
1919 * The opp is made available by default and it can be controlled using
1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921 *
1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923 * and freed by dev_pm_opp_of_remove_table.
1924 *
1925 * Return:
1926 * 0		On success OR
1927 *		Duplicate OPPs (both freq and volt are same) and opp->available
1928 * -EEXIST	Freq are same and volt are different OR
1929 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1930 * -ENOMEM	Memory allocation failure
1931 */
1932int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933		unsigned long freq, long u_volt, bool dynamic)
1934{
1935	struct dev_pm_opp *new_opp;
1936	unsigned long tol;
1937	int ret;
1938
1939	if (!assert_single_clk(opp_table))
1940		return -EINVAL;
1941
1942	new_opp = _opp_allocate(opp_table);
1943	if (!new_opp)
1944		return -ENOMEM;
1945
1946	/* populate the opp table */
1947	new_opp->rates[0] = freq;
 
 
1948	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949	new_opp->supplies[0].u_volt = u_volt;
1950	new_opp->supplies[0].u_volt_min = u_volt - tol;
1951	new_opp->supplies[0].u_volt_max = u_volt + tol;
1952	new_opp->available = true;
1953	new_opp->dynamic = dynamic;
1954
1955	ret = _opp_add(dev, new_opp, opp_table);
1956	if (ret) {
1957		/* Don't return error for duplicate OPPs */
1958		if (ret == -EBUSY)
1959			ret = 0;
1960		goto free_opp;
1961	}
1962
1963	/*
1964	 * Notify the changes in the availability of the operable
1965	 * frequency/voltage list.
1966	 */
1967	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968	return 0;
1969
1970free_opp:
1971	_opp_free(new_opp);
1972
1973	return ret;
1974}
1975
1976/**
1977 * _opp_set_supported_hw() - Set supported platforms
1978 * @dev: Device for which supported-hw has to be set.
1979 * @versions: Array of hierarchy of versions to match.
1980 * @count: Number of elements in the array.
1981 *
1982 * This is required only for the V2 bindings, and it enables a platform to
1983 * specify the hierarchy of versions it supports. OPP layer will then enable
1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985 * property.
1986 */
1987static int _opp_set_supported_hw(struct opp_table *opp_table,
1988				 const u32 *versions, unsigned int count)
1989{
1990	/* Another CPU that shares the OPP table has set the property ? */
1991	if (opp_table->supported_hw)
1992		return 0;
1993
1994	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995					GFP_KERNEL);
1996	if (!opp_table->supported_hw)
1997		return -ENOMEM;
1998
1999	opp_table->supported_hw_count = count;
2000
2001	return 0;
2002}
2003
2004/**
2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006 * @opp_table: OPP table returned by _opp_set_supported_hw().
2007 *
2008 * This is required only for the V2 bindings, and is called for a matching
2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010 * will not be freed.
2011 */
2012static void _opp_put_supported_hw(struct opp_table *opp_table)
2013{
2014	if (opp_table->supported_hw) {
2015		kfree(opp_table->supported_hw);
2016		opp_table->supported_hw = NULL;
2017		opp_table->supported_hw_count = 0;
2018	}
2019}
2020
2021/**
2022 * _opp_set_prop_name() - Set prop-extn name
2023 * @dev: Device for which the prop-name has to be set.
2024 * @name: name to postfix to properties.
2025 *
2026 * This is required only for the V2 bindings, and it enables a platform to
2027 * specify the extn to be used for certain property names. The properties to
2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029 * should postfix the property name with -<name> while looking for them.
2030 */
2031static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032{
2033	/* Another CPU that shares the OPP table has set the property ? */
2034	if (!opp_table->prop_name) {
2035		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036		if (!opp_table->prop_name)
2037			return -ENOMEM;
2038	}
2039
2040	return 0;
2041}
2042
2043/**
2044 * _opp_put_prop_name() - Releases resources blocked for prop-name
2045 * @opp_table: OPP table returned by _opp_set_prop_name().
2046 *
2047 * This is required only for the V2 bindings, and is called for a matching
2048 * _opp_set_prop_name(). Until this is called, the opp_table structure
2049 * will not be freed.
2050 */
2051static void _opp_put_prop_name(struct opp_table *opp_table)
2052{
2053	if (opp_table->prop_name) {
2054		kfree(opp_table->prop_name);
2055		opp_table->prop_name = NULL;
2056	}
2057}
2058
2059/**
2060 * _opp_set_regulators() - Set regulator names for the device
2061 * @dev: Device for which regulator name is being set.
2062 * @names: Array of pointers to the names of the regulator.
2063 * @count: Number of regulators.
2064 *
2065 * In order to support OPP switching, OPP layer needs to know the name of the
2066 * device's regulators, as the core would be required to switch voltages as
2067 * well.
2068 *
2069 * This must be called before any OPPs are initialized for the device.
2070 */
2071static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072			       const char * const names[])
2073{
2074	const char * const *temp = names;
2075	struct regulator *reg;
2076	int count = 0, ret, i;
2077
2078	/* Count number of regulators */
2079	while (*temp++)
2080		count++;
2081
2082	if (!count)
2083		return -EINVAL;
2084
2085	/* Another CPU that shares the OPP table has set the regulators ? */
2086	if (opp_table->regulators)
2087		return 0;
2088
2089	opp_table->regulators = kmalloc_array(count,
2090					      sizeof(*opp_table->regulators),
2091					      GFP_KERNEL);
2092	if (!opp_table->regulators)
2093		return -ENOMEM;
2094
2095	for (i = 0; i < count; i++) {
2096		reg = regulator_get_optional(dev, names[i]);
2097		if (IS_ERR(reg)) {
2098			ret = dev_err_probe(dev, PTR_ERR(reg),
2099					    "%s: no regulator (%s) found\n",
2100					    __func__, names[i]);
2101			goto free_regulators;
2102		}
2103
2104		opp_table->regulators[i] = reg;
2105	}
2106
2107	opp_table->regulator_count = count;
2108
2109	/* Set generic config_regulators() for single regulators here */
2110	if (count == 1)
2111		opp_table->config_regulators = _opp_config_regulator_single;
2112
2113	return 0;
2114
2115free_regulators:
2116	while (i != 0)
2117		regulator_put(opp_table->regulators[--i]);
2118
2119	kfree(opp_table->regulators);
2120	opp_table->regulators = NULL;
2121	opp_table->regulator_count = -1;
2122
2123	return ret;
2124}
2125
2126/**
2127 * _opp_put_regulators() - Releases resources blocked for regulator
2128 * @opp_table: OPP table returned from _opp_set_regulators().
2129 */
2130static void _opp_put_regulators(struct opp_table *opp_table)
2131{
2132	int i;
2133
2134	if (!opp_table->regulators)
2135		return;
2136
2137	if (opp_table->enabled) {
2138		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139			regulator_disable(opp_table->regulators[i]);
2140	}
2141
2142	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143		regulator_put(opp_table->regulators[i]);
2144
2145	kfree(opp_table->regulators);
2146	opp_table->regulators = NULL;
2147	opp_table->regulator_count = -1;
2148}
2149
2150static void _put_clks(struct opp_table *opp_table, int count)
2151{
2152	int i;
2153
2154	for (i = count - 1; i >= 0; i--)
2155		clk_put(opp_table->clks[i]);
2156
2157	kfree(opp_table->clks);
2158	opp_table->clks = NULL;
2159}
2160
2161/**
2162 * _opp_set_clknames() - Set clk names for the device
2163 * @dev: Device for which clk names is being set.
2164 * @names: Clk names.
2165 *
2166 * In order to support OPP switching, OPP layer needs to get pointers to the
2167 * clocks for the device. Simple cases work fine without using this routine
2168 * (i.e. by passing connection-id as NULL), but for a device with multiple
2169 * clocks available, the OPP core needs to know the exact names of the clks to
2170 * use.
2171 *
2172 * This must be called before any OPPs are initialized for the device.
2173 */
2174static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175			     const char * const names[],
2176			     config_clks_t config_clks)
2177{
2178	const char * const *temp = names;
2179	int count = 0, ret, i;
2180	struct clk *clk;
2181
2182	/* Count number of clks */
2183	while (*temp++)
2184		count++;
2185
2186	/*
2187	 * This is a special case where we have a single clock, whose connection
2188	 * id name is NULL, i.e. first two entries are NULL in the array.
2189	 */
2190	if (!count && !names[1])
2191		count = 1;
2192
2193	/* Fail early for invalid configurations */
2194	if (!count || (!config_clks && count > 1))
2195		return -EINVAL;
2196
2197	/* Another CPU that shares the OPP table has set the clkname ? */
2198	if (opp_table->clks)
2199		return 0;
2200
2201	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202					GFP_KERNEL);
2203	if (!opp_table->clks)
2204		return -ENOMEM;
2205
2206	/* Find clks for the device */
2207	for (i = 0; i < count; i++) {
2208		clk = clk_get(dev, names[i]);
2209		if (IS_ERR(clk)) {
2210			ret = dev_err_probe(dev, PTR_ERR(clk),
2211					    "%s: Couldn't find clock with name: %s\n",
2212					    __func__, names[i]);
2213			goto free_clks;
2214		}
2215
2216		opp_table->clks[i] = clk;
2217	}
2218
2219	opp_table->clk_count = count;
2220	opp_table->config_clks = config_clks;
2221
2222	/* Set generic single clk set here */
2223	if (count == 1) {
2224		if (!opp_table->config_clks)
2225			opp_table->config_clks = _opp_config_clk_single;
2226
2227		/*
2228		 * We could have just dropped the "clk" field and used "clks"
2229		 * everywhere. Instead we kept the "clk" field around for
2230		 * following reasons:
2231		 *
2232		 * - avoiding clks[0] everywhere else.
2233		 * - not running single clk helpers for multiple clk usecase by
2234		 *   mistake.
2235		 *
2236		 * Since this is single-clk case, just update the clk pointer
2237		 * too.
2238		 */
2239		opp_table->clk = opp_table->clks[0];
2240	}
2241
2242	return 0;
2243
2244free_clks:
2245	_put_clks(opp_table, i);
2246	return ret;
2247}
2248
2249/**
2250 * _opp_put_clknames() - Releases resources blocked for clks.
2251 * @opp_table: OPP table returned from _opp_set_clknames().
2252 */
2253static void _opp_put_clknames(struct opp_table *opp_table)
2254{
2255	if (!opp_table->clks)
2256		return;
2257
2258	opp_table->config_clks = NULL;
2259	opp_table->clk = ERR_PTR(-ENODEV);
2260
2261	_put_clks(opp_table, opp_table->clk_count);
2262}
2263
2264/**
2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266 * @dev: Device for which the helper is getting registered.
2267 * @config_regulators: Custom set regulator helper.
2268 *
2269 * This is useful to support platforms with multiple regulators per device.
2270 *
2271 * This must be called before any OPPs are initialized for the device.
2272 */
2273static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274		struct device *dev, config_regulators_t config_regulators)
2275{
2276	/* Another CPU that shares the OPP table has set the helper ? */
2277	if (!opp_table->config_regulators)
2278		opp_table->config_regulators = config_regulators;
2279
2280	return 0;
2281}
2282
2283/**
2284 * _opp_put_config_regulators_helper() - Releases resources blocked for
2285 *					 config_regulators helper.
2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287 *
2288 * Release resources blocked for platform specific config_regulators helper.
2289 */
2290static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291{
2292	if (opp_table->config_regulators)
2293		opp_table->config_regulators = NULL;
2294}
2295
2296static void _detach_genpd(struct opp_table *opp_table)
2297{
2298	int index;
2299
2300	if (!opp_table->genpd_virt_devs)
2301		return;
2302
2303	for (index = 0; index < opp_table->required_opp_count; index++) {
2304		if (!opp_table->genpd_virt_devs[index])
2305			continue;
2306
2307		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308		opp_table->genpd_virt_devs[index] = NULL;
2309	}
2310
2311	kfree(opp_table->genpd_virt_devs);
2312	opp_table->genpd_virt_devs = NULL;
2313}
2314
2315/**
2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317 * @dev: Consumer device for which the genpd is getting attached.
2318 * @names: Null terminated array of pointers containing names of genpd to attach.
2319 * @virt_devs: Pointer to return the array of virtual devices.
2320 *
2321 * Multiple generic power domains for a device are supported with the help of
2322 * virtual genpd devices, which are created for each consumer device - genpd
2323 * pair. These are the device structures which are attached to the power domain
2324 * and are required by the OPP core to set the performance state of the genpd.
2325 * The same API also works for the case where single genpd is available and so
2326 * we don't need to support that separately.
2327 *
2328 * This helper will normally be called by the consumer driver of the device
2329 * "dev", as only that has details of the genpd names.
2330 *
2331 * This helper needs to be called once with a list of all genpd to attach.
2332 * Otherwise the original device structure will be used instead by the OPP core.
2333 *
2334 * The order of entries in the names array must match the order in which
2335 * "required-opps" are added in DT.
2336 */
2337static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338			const char * const *names, struct device ***virt_devs)
2339{
2340	struct device *virt_dev;
2341	int index = 0, ret = -EINVAL;
2342	const char * const *name = names;
2343
2344	if (opp_table->genpd_virt_devs)
2345		return 0;
2346
2347	/*
2348	 * If the genpd's OPP table isn't already initialized, parsing of the
2349	 * required-opps fail for dev. We should retry this after genpd's OPP
2350	 * table is added.
2351	 */
2352	if (!opp_table->required_opp_count)
2353		return -EPROBE_DEFER;
2354
2355	mutex_lock(&opp_table->genpd_virt_dev_lock);
 
 
 
 
2356
2357	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358					     sizeof(*opp_table->genpd_virt_devs),
2359					     GFP_KERNEL);
2360	if (!opp_table->genpd_virt_devs)
2361		goto unlock;
2362
2363	while (*name) {
2364		if (index >= opp_table->required_opp_count) {
2365			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366				*name, opp_table->required_opp_count, index);
2367			goto err;
2368		}
2369
2370		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371		if (IS_ERR_OR_NULL(virt_dev)) {
2372			ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374			goto err;
2375		}
2376
2377		opp_table->genpd_virt_devs[index] = virt_dev;
 
 
 
 
 
 
 
 
 
 
 
 
2378		index++;
2379		name++;
2380	}
2381
2382	if (virt_devs)
2383		*virt_devs = opp_table->genpd_virt_devs;
2384	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385
2386	return 0;
2387
2388err:
2389	_detach_genpd(opp_table);
2390unlock:
2391	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392	return ret;
2393
2394}
2395
2396/**
2397 * _opp_detach_genpd() - Detach genpd(s) from the device.
2398 * @opp_table: OPP table returned by _opp_attach_genpd().
2399 *
2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401 * OPP table.
2402 */
2403static void _opp_detach_genpd(struct opp_table *opp_table)
2404{
2405	/*
2406	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407	 * used in parallel.
2408	 */
2409	mutex_lock(&opp_table->genpd_virt_dev_lock);
2410	_detach_genpd(opp_table);
2411	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2412}
2413
2414static void _opp_clear_config(struct opp_config_data *data)
2415{
2416	if (data->flags & OPP_CONFIG_GENPD)
 
 
2417		_opp_detach_genpd(data->opp_table);
 
2418	if (data->flags & OPP_CONFIG_REGULATOR)
2419		_opp_put_regulators(data->opp_table);
2420	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421		_opp_put_supported_hw(data->opp_table);
2422	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423		_opp_put_config_regulators_helper(data->opp_table);
2424	if (data->flags & OPP_CONFIG_PROP_NAME)
2425		_opp_put_prop_name(data->opp_table);
2426	if (data->flags & OPP_CONFIG_CLK)
2427		_opp_put_clknames(data->opp_table);
2428
2429	dev_pm_opp_put_opp_table(data->opp_table);
2430	kfree(data);
2431}
2432
2433/**
2434 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435 * @dev: Device for which configuration is being set.
2436 * @config: OPP configuration.
2437 *
2438 * This allows all device OPP configurations to be performed at once.
2439 *
2440 * This must be called before any OPPs are initialized for the device. This may
2441 * be called multiple times for the same OPP table, for example once for each
2442 * CPU that share the same table. This must be balanced by the same number of
2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444 *
2445 * This returns a token to the caller, which must be passed to
2446 * dev_pm_opp_clear_config() to free the resources later. The value of the
2447 * returned token will be >= 1 for success and negative for errors. The minimum
2448 * value of 1 is chosen here to make it easy for callers to manage the resource.
2449 */
2450int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451{
2452	struct opp_table *opp_table;
2453	struct opp_config_data *data;
2454	unsigned int id;
2455	int ret;
2456
2457	data = kmalloc(sizeof(*data), GFP_KERNEL);
2458	if (!data)
2459		return -ENOMEM;
2460
2461	opp_table = _add_opp_table(dev, false);
2462	if (IS_ERR(opp_table)) {
2463		kfree(data);
2464		return PTR_ERR(opp_table);
2465	}
2466
2467	data->opp_table = opp_table;
2468	data->flags = 0;
2469
2470	/* This should be called before OPPs are initialized */
2471	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472		ret = -EBUSY;
2473		goto err;
2474	}
2475
2476	/* Configure clocks */
2477	if (config->clk_names) {
2478		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479					config->config_clks);
2480		if (ret)
2481			goto err;
2482
2483		data->flags |= OPP_CONFIG_CLK;
2484	} else if (config->config_clks) {
2485		/* Don't allow config callback without clocks */
2486		ret = -EINVAL;
2487		goto err;
2488	}
2489
2490	/* Configure property names */
2491	if (config->prop_name) {
2492		ret = _opp_set_prop_name(opp_table, config->prop_name);
2493		if (ret)
2494			goto err;
2495
2496		data->flags |= OPP_CONFIG_PROP_NAME;
2497	}
2498
2499	/* Configure config_regulators helper */
2500	if (config->config_regulators) {
2501		ret = _opp_set_config_regulators_helper(opp_table, dev,
2502						config->config_regulators);
2503		if (ret)
2504			goto err;
2505
2506		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507	}
2508
2509	/* Configure supported hardware */
2510	if (config->supported_hw) {
2511		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512					    config->supported_hw_count);
2513		if (ret)
2514			goto err;
2515
2516		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517	}
2518
2519	/* Configure supplies */
2520	if (config->regulator_names) {
2521		ret = _opp_set_regulators(opp_table, dev,
2522					  config->regulator_names);
2523		if (ret)
2524			goto err;
2525
2526		data->flags |= OPP_CONFIG_REGULATOR;
2527	}
2528
2529	/* Attach genpds */
2530	if (config->genpd_names) {
 
 
 
2531		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532					config->virt_devs);
2533		if (ret)
2534			goto err;
2535
2536		data->flags |= OPP_CONFIG_GENPD;
 
 
 
 
 
 
 
2537	}
2538
2539	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540		       GFP_KERNEL);
2541	if (ret)
2542		goto err;
2543
2544	return id;
2545
2546err:
2547	_opp_clear_config(data);
2548	return ret;
2549}
2550EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551
2552/**
2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555 *
2556 * This allows all device OPP configurations to be cleared at once. This must be
2557 * called once for each call made to dev_pm_opp_set_config(), in order to free
2558 * the OPPs properly.
2559 *
2560 * Currently the first call itself ends up freeing all the OPP configurations,
2561 * while the later ones only drop the OPP table reference. This works well for
2562 * now as we would never want to use an half initialized OPP table and want to
2563 * remove the configurations together.
2564 */
2565void dev_pm_opp_clear_config(int token)
2566{
2567	struct opp_config_data *data;
2568
2569	/*
2570	 * This lets the callers call this unconditionally and keep their code
2571	 * simple.
2572	 */
2573	if (unlikely(token <= 0))
2574		return;
2575
2576	data = xa_erase(&opp_configs, token);
2577	if (WARN_ON(!data))
2578		return;
2579
2580	_opp_clear_config(data);
2581}
2582EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583
2584static void devm_pm_opp_config_release(void *token)
2585{
2586	dev_pm_opp_clear_config((unsigned long)token);
2587}
2588
2589/**
2590 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591 * @dev: Device for which configuration is being set.
2592 * @config: OPP configuration.
2593 *
2594 * This allows all device OPP configurations to be performed at once.
2595 * This is a resource-managed variant of dev_pm_opp_set_config().
2596 *
2597 * Return: 0 on success and errorno otherwise.
2598 */
2599int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600{
2601	int token = dev_pm_opp_set_config(dev, config);
2602
2603	if (token < 0)
2604		return token;
2605
2606	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607					(void *) ((unsigned long) token));
2608}
2609EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610
2611/**
2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614 * @dst_table: Required OPP table of the @src_table.
2615 * @src_opp: OPP from the @src_table.
2616 *
2617 * This function returns the OPP (present in @dst_table) pointed out by the
2618 * "required-opps" property of the @src_opp (present in @src_table).
2619 *
2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621 * use.
2622 *
2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624 */
2625struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626						 struct opp_table *dst_table,
2627						 struct dev_pm_opp *src_opp)
2628{
2629	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630	int i;
2631
2632	if (!src_table || !dst_table || !src_opp ||
2633	    !src_table->required_opp_tables)
2634		return ERR_PTR(-EINVAL);
2635
2636	/* required-opps not fully initialized yet */
2637	if (lazy_linking_pending(src_table))
2638		return ERR_PTR(-EBUSY);
2639
2640	for (i = 0; i < src_table->required_opp_count; i++) {
2641		if (src_table->required_opp_tables[i] == dst_table) {
2642			mutex_lock(&src_table->lock);
2643
2644			list_for_each_entry(opp, &src_table->opp_list, node) {
2645				if (opp == src_opp) {
2646					dest_opp = opp->required_opps[i];
2647					dev_pm_opp_get(dest_opp);
2648					break;
2649				}
2650			}
2651
2652			mutex_unlock(&src_table->lock);
2653			break;
2654		}
2655	}
2656
2657	if (IS_ERR(dest_opp)) {
2658		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659		       src_table, dst_table);
2660	}
2661
2662	return dest_opp;
2663}
2664EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665
2666/**
2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668 * @src_table: OPP table which has dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the src_table.
2670 * @pstate: Current performance state of the src_table.
2671 *
2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the OPP (present in @src_table) which has
2674 * performance state set to @pstate.
2675 *
2676 * Return: Zero or positive performance state on success, otherwise negative
2677 * value on errors.
2678 */
2679int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680				       struct opp_table *dst_table,
2681				       unsigned int pstate)
2682{
2683	struct dev_pm_opp *opp;
2684	int dest_pstate = -EINVAL;
2685	int i;
2686
2687	/*
2688	 * Normally the src_table will have the "required_opps" property set to
2689	 * point to one of the OPPs in the dst_table, but in some cases the
2690	 * genpd and its master have one to one mapping of performance states
2691	 * and so none of them have the "required-opps" property set. Return the
2692	 * pstate of the src_table as it is in such cases.
2693	 */
2694	if (!src_table || !src_table->required_opp_count)
2695		return pstate;
2696
 
 
 
 
 
 
2697	/* required-opps not fully initialized yet */
2698	if (lazy_linking_pending(src_table))
2699		return -EBUSY;
2700
2701	for (i = 0; i < src_table->required_opp_count; i++) {
2702		if (src_table->required_opp_tables[i]->np == dst_table->np)
2703			break;
2704	}
2705
2706	if (unlikely(i == src_table->required_opp_count)) {
2707		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708		       __func__, src_table, dst_table);
2709		return -EINVAL;
2710	}
2711
2712	mutex_lock(&src_table->lock);
2713
2714	list_for_each_entry(opp, &src_table->opp_list, node) {
2715		if (opp->pstate == pstate) {
2716			dest_pstate = opp->required_opps[i]->pstate;
2717			goto unlock;
2718		}
2719	}
2720
2721	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722	       dst_table);
2723
2724unlock:
2725	mutex_unlock(&src_table->lock);
2726
2727	return dest_pstate;
2728}
2729
2730/**
2731 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2732 * @dev:	device for which we do this operation
2733 * @freq:	Frequency in Hz for this OPP
2734 * @u_volt:	Voltage in uVolts for this OPP
2735 *
2736 * This function adds an opp definition to the opp table and returns status.
2737 * The opp is made available by default and it can be controlled using
2738 * dev_pm_opp_enable/disable functions.
2739 *
2740 * Return:
2741 * 0		On success OR
2742 *		Duplicate OPPs (both freq and volt are same) and opp->available
2743 * -EEXIST	Freq are same and volt are different OR
2744 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2745 * -ENOMEM	Memory allocation failure
2746 */
2747int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748{
2749	struct opp_table *opp_table;
2750	int ret;
2751
2752	opp_table = _add_opp_table(dev, true);
2753	if (IS_ERR(opp_table))
2754		return PTR_ERR(opp_table);
2755
2756	/* Fix regulator count for dynamic OPPs */
2757	opp_table->regulator_count = 1;
2758
2759	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760	if (ret)
2761		dev_pm_opp_put_opp_table(opp_table);
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766
2767/**
2768 * _opp_set_availability() - helper to set the availability of an opp
2769 * @dev:		device for which we do this operation
2770 * @freq:		OPP frequency to modify availability
2771 * @availability_req:	availability status requested for this opp
2772 *
2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774 * which is isolated here.
2775 *
2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777 * copy operation, returns 0 if no modification was done OR modification was
2778 * successful.
2779 */
2780static int _opp_set_availability(struct device *dev, unsigned long freq,
2781				 bool availability_req)
2782{
2783	struct opp_table *opp_table;
2784	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785	int r = 0;
2786
2787	/* Find the opp_table */
2788	opp_table = _find_opp_table(dev);
2789	if (IS_ERR(opp_table)) {
2790		r = PTR_ERR(opp_table);
2791		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792		return r;
2793	}
2794
2795	if (!assert_single_clk(opp_table)) {
2796		r = -EINVAL;
2797		goto put_table;
2798	}
2799
2800	mutex_lock(&opp_table->lock);
2801
2802	/* Do we have the frequency? */
2803	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804		if (tmp_opp->rates[0] == freq) {
2805			opp = tmp_opp;
2806			break;
2807		}
2808	}
2809
2810	if (IS_ERR(opp)) {
2811		r = PTR_ERR(opp);
2812		goto unlock;
2813	}
2814
2815	/* Is update really needed? */
2816	if (opp->available == availability_req)
2817		goto unlock;
2818
2819	opp->available = availability_req;
2820
2821	dev_pm_opp_get(opp);
2822	mutex_unlock(&opp_table->lock);
2823
2824	/* Notify the change of the OPP availability */
2825	if (availability_req)
2826		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827					     opp);
2828	else
2829		blocking_notifier_call_chain(&opp_table->head,
2830					     OPP_EVENT_DISABLE, opp);
2831
2832	dev_pm_opp_put(opp);
2833	goto put_table;
2834
2835unlock:
2836	mutex_unlock(&opp_table->lock);
2837put_table:
2838	dev_pm_opp_put_opp_table(opp_table);
2839	return r;
2840}
2841
2842/**
2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844 * @dev:		device for which we do this operation
2845 * @freq:		OPP frequency to adjust voltage of
2846 * @u_volt:		new OPP target voltage
2847 * @u_volt_min:		new OPP min voltage
2848 * @u_volt_max:		new OPP max voltage
2849 *
2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851 * copy operation, returns 0 if no modifcation was done OR modification was
2852 * successful.
2853 */
2854int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855			      unsigned long u_volt, unsigned long u_volt_min,
2856			      unsigned long u_volt_max)
2857
2858{
2859	struct opp_table *opp_table;
2860	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861	int r = 0;
2862
2863	/* Find the opp_table */
2864	opp_table = _find_opp_table(dev);
2865	if (IS_ERR(opp_table)) {
2866		r = PTR_ERR(opp_table);
2867		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868		return r;
2869	}
2870
2871	if (!assert_single_clk(opp_table)) {
2872		r = -EINVAL;
2873		goto put_table;
2874	}
2875
2876	mutex_lock(&opp_table->lock);
2877
2878	/* Do we have the frequency? */
2879	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880		if (tmp_opp->rates[0] == freq) {
2881			opp = tmp_opp;
2882			break;
2883		}
2884	}
2885
2886	if (IS_ERR(opp)) {
2887		r = PTR_ERR(opp);
2888		goto adjust_unlock;
2889	}
2890
2891	/* Is update really needed? */
2892	if (opp->supplies->u_volt == u_volt)
2893		goto adjust_unlock;
2894
2895	opp->supplies->u_volt = u_volt;
2896	opp->supplies->u_volt_min = u_volt_min;
2897	opp->supplies->u_volt_max = u_volt_max;
2898
2899	dev_pm_opp_get(opp);
2900	mutex_unlock(&opp_table->lock);
2901
2902	/* Notify the voltage change of the OPP */
2903	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904				     opp);
2905
2906	dev_pm_opp_put(opp);
2907	goto put_table;
2908
2909adjust_unlock:
2910	mutex_unlock(&opp_table->lock);
2911put_table:
2912	dev_pm_opp_put_opp_table(opp_table);
2913	return r;
2914}
2915EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916
2917/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2918 * dev_pm_opp_enable() - Enable a specific OPP
2919 * @dev:	device for which we do this operation
2920 * @freq:	OPP frequency to enable
2921 *
2922 * Enables a provided opp. If the operation is valid, this returns 0, else the
2923 * corresponding error value. It is meant to be used for users an OPP available
2924 * after being temporarily made unavailable with dev_pm_opp_disable.
2925 *
2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927 * copy operation, returns 0 if no modification was done OR modification was
2928 * successful.
2929 */
2930int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931{
2932	return _opp_set_availability(dev, freq, true);
2933}
2934EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935
2936/**
2937 * dev_pm_opp_disable() - Disable a specific OPP
2938 * @dev:	device for which we do this operation
2939 * @freq:	OPP frequency to disable
2940 *
2941 * Disables a provided opp. If the operation is valid, this returns
2942 * 0, else the corresponding error value. It is meant to be a temporary
2943 * control by users to make this OPP not available until the circumstances are
2944 * right to make it available again (with a call to dev_pm_opp_enable).
2945 *
2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947 * copy operation, returns 0 if no modification was done OR modification was
2948 * successful.
2949 */
2950int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951{
2952	return _opp_set_availability(dev, freq, false);
2953}
2954EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955
2956/**
2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958 * @dev:	Device for which notifier needs to be registered
2959 * @nb:		Notifier block to be registered
2960 *
2961 * Return: 0 on success or a negative error value.
2962 */
2963int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964{
2965	struct opp_table *opp_table;
2966	int ret;
2967
2968	opp_table = _find_opp_table(dev);
2969	if (IS_ERR(opp_table))
2970		return PTR_ERR(opp_table);
2971
2972	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973
2974	dev_pm_opp_put_opp_table(opp_table);
2975
2976	return ret;
2977}
2978EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979
2980/**
2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982 * @dev:	Device for which notifier needs to be unregistered
2983 * @nb:		Notifier block to be unregistered
2984 *
2985 * Return: 0 on success or a negative error value.
2986 */
2987int dev_pm_opp_unregister_notifier(struct device *dev,
2988				   struct notifier_block *nb)
2989{
2990	struct opp_table *opp_table;
2991	int ret;
2992
2993	opp_table = _find_opp_table(dev);
2994	if (IS_ERR(opp_table))
2995		return PTR_ERR(opp_table);
2996
2997	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998
2999	dev_pm_opp_put_opp_table(opp_table);
3000
3001	return ret;
3002}
3003EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004
3005/**
3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007 * @dev:	device pointer used to lookup OPP table.
3008 *
3009 * Free both OPPs created using static entries present in DT and the
3010 * dynamically added entries.
3011 */
3012void dev_pm_opp_remove_table(struct device *dev)
3013{
3014	struct opp_table *opp_table;
3015
3016	/* Check for existing table for 'dev' */
3017	opp_table = _find_opp_table(dev);
3018	if (IS_ERR(opp_table)) {
3019		int error = PTR_ERR(opp_table);
3020
3021		if (error != -ENODEV)
3022			WARN(1, "%s: opp_table: %d\n",
3023			     IS_ERR_OR_NULL(dev) ?
3024					"Invalid device" : dev_name(dev),
3025			     error);
3026		return;
3027	}
3028
3029	/*
3030	 * Drop the extra reference only if the OPP table was successfully added
3031	 * with dev_pm_opp_of_add_table() earlier.
3032	 **/
3033	if (_opp_remove_all_static(opp_table))
3034		dev_pm_opp_put_opp_table(opp_table);
3035
3036	/* Drop reference taken by _find_opp_table() */
3037	dev_pm_opp_put_opp_table(opp_table);
3038}
3039EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040
3041/**
3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043 * @dev:	device for which we do this operation
3044 *
3045 * Sync voltage state of the OPP table regulators.
3046 *
3047 * Return: 0 on success or a negative error value.
3048 */
3049int dev_pm_opp_sync_regulators(struct device *dev)
3050{
3051	struct opp_table *opp_table;
3052	struct regulator *reg;
3053	int i, ret = 0;
3054
3055	/* Device may not have OPP table */
3056	opp_table = _find_opp_table(dev);
3057	if (IS_ERR(opp_table))
3058		return 0;
3059
3060	/* Regulator may not be required for the device */
3061	if (unlikely(!opp_table->regulators))
3062		goto put_table;
3063
3064	/* Nothing to sync if voltage wasn't changed */
3065	if (!opp_table->enabled)
3066		goto put_table;
3067
3068	for (i = 0; i < opp_table->regulator_count; i++) {
3069		reg = opp_table->regulators[i];
3070		ret = regulator_sync_voltage(reg);
3071		if (ret)
3072			break;
3073	}
3074put_table:
3075	/* Drop reference taken by _find_opp_table() */
3076	dev_pm_opp_put_opp_table(opp_table);
3077
3078	return ret;
3079}
3080EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
 
 
 
  32/* Lock to allow exclusive modification to the device and opp lists */
  33DEFINE_MUTEX(opp_table_lock);
  34/* Flag indicating that opp_tables list is being updated at the moment */
  35static bool opp_tables_busy;
  36
  37/* OPP ID allocator */
  38static DEFINE_XARRAY_ALLOC1(opp_configs);
  39
  40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  41{
  42	struct opp_device *opp_dev;
  43	bool found = false;
  44
  45	mutex_lock(&opp_table->lock);
  46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  47		if (opp_dev->dev == dev) {
  48			found = true;
  49			break;
  50		}
  51
  52	mutex_unlock(&opp_table->lock);
  53	return found;
  54}
  55
  56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  57{
  58	struct opp_table *opp_table;
  59
  60	list_for_each_entry(opp_table, &opp_tables, node) {
  61		if (_find_opp_dev(dev, opp_table)) {
  62			_get_opp_table_kref(opp_table);
  63			return opp_table;
  64		}
  65	}
  66
  67	return ERR_PTR(-ENODEV);
  68}
  69
  70/**
  71 * _find_opp_table() - find opp_table struct using device pointer
  72 * @dev:	device pointer used to lookup OPP table
  73 *
  74 * Search OPP table for one containing matching device.
  75 *
  76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  77 * -EINVAL based on type of error.
  78 *
  79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  80 */
  81struct opp_table *_find_opp_table(struct device *dev)
  82{
  83	struct opp_table *opp_table;
  84
  85	if (IS_ERR_OR_NULL(dev)) {
  86		pr_err("%s: Invalid parameters\n", __func__);
  87		return ERR_PTR(-EINVAL);
  88	}
  89
  90	mutex_lock(&opp_table_lock);
  91	opp_table = _find_opp_table_unlocked(dev);
  92	mutex_unlock(&opp_table_lock);
  93
  94	return opp_table;
  95}
  96
  97/*
  98 * Returns true if multiple clocks aren't there, else returns false with WARN.
  99 *
 100 * We don't force clk_count == 1 here as there are users who don't have a clock
 101 * representation in the OPP table and manage the clock configuration themselves
 102 * in an platform specific way.
 103 */
 104static bool assert_single_clk(struct opp_table *opp_table)
 105{
 106	return !WARN_ON(opp_table->clk_count > 1);
 107}
 108
 109/**
 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 111 * @opp:	opp for which voltage has to be returned for
 112 *
 113 * Return: voltage in micro volt corresponding to the opp, else
 114 * return 0
 115 *
 116 * This is useful only for devices with single power supply.
 117 */
 118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 119{
 120	if (IS_ERR_OR_NULL(opp)) {
 121		pr_err("%s: Invalid parameters\n", __func__);
 122		return 0;
 123	}
 124
 125	return opp->supplies[0].u_volt;
 126}
 127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 128
 129/**
 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 131 * @opp:	opp for which voltage has to be returned for
 132 * @supplies:	Placeholder for copying the supply information.
 133 *
 134 * Return: negative error number on failure, 0 otherwise on success after
 135 * setting @supplies.
 136 *
 137 * This can be used for devices with any number of power supplies. The caller
 138 * must ensure the @supplies array must contain space for each regulator.
 139 */
 140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 141			    struct dev_pm_opp_supply *supplies)
 142{
 143	if (IS_ERR_OR_NULL(opp) || !supplies) {
 144		pr_err("%s: Invalid parameters\n", __func__);
 145		return -EINVAL;
 146	}
 147
 148	memcpy(supplies, opp->supplies,
 149	       sizeof(*supplies) * opp->opp_table->regulator_count);
 150	return 0;
 151}
 152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 153
 154/**
 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 156 * @opp:	opp for which power has to be returned for
 157 *
 158 * Return: power in micro watt corresponding to the opp, else
 159 * return 0
 160 *
 161 * This is useful only for devices with single power supply.
 162 */
 163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 164{
 165	unsigned long opp_power = 0;
 166	int i;
 167
 168	if (IS_ERR_OR_NULL(opp)) {
 169		pr_err("%s: Invalid parameters\n", __func__);
 170		return 0;
 171	}
 172	for (i = 0; i < opp->opp_table->regulator_count; i++)
 173		opp_power += opp->supplies[i].u_watt;
 174
 175	return opp_power;
 176}
 177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 178
 179/**
 180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 181 *				   available opp with specified index
 182 * @opp: opp for which frequency has to be returned for
 183 * @index: index of the frequency within the required opp
 184 *
 185 * Return: frequency in hertz corresponding to the opp with specified index,
 186 * else return 0
 187 */
 188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
 189{
 190	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
 191		pr_err("%s: Invalid parameters\n", __func__);
 192		return 0;
 193	}
 194
 195	return opp->rates[index];
 
 
 
 196}
 197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
 198
 199/**
 200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 201 * @opp:	opp for which level value has to be returned for
 202 *
 203 * Return: level read from device tree corresponding to the opp, else
 204 * return U32_MAX.
 205 */
 206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 207{
 208	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 209		pr_err("%s: Invalid parameters\n", __func__);
 210		return 0;
 211	}
 212
 213	return opp->level;
 214}
 215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 216
 217/**
 218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 219 *                                    corresponding to an available opp
 220 * @opp:	opp for which performance state has to be returned for
 221 * @index:	index of the required opp
 222 *
 223 * Return: performance state read from device tree corresponding to the
 224 * required opp, else return U32_MAX.
 225 */
 226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 227					    unsigned int index)
 228{
 229	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 230	    index >= opp->opp_table->required_opp_count) {
 231		pr_err("%s: Invalid parameters\n", __func__);
 232		return 0;
 233	}
 234
 235	/* required-opps not fully initialized yet */
 236	if (lazy_linking_pending(opp->opp_table))
 237		return 0;
 238
 239	/* The required OPP table must belong to a genpd */
 240	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
 241		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
 242		return 0;
 243	}
 244
 245	return opp->required_opps[index]->level;
 246}
 247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 248
 249/**
 250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 251 * @opp: opp for which turbo mode is being verified
 252 *
 253 * Turbo OPPs are not for normal use, and can be enabled (under certain
 254 * conditions) for short duration of times to finish high throughput work
 255 * quickly. Running on them for longer times may overheat the chip.
 256 *
 257 * Return: true if opp is turbo opp, else false.
 258 */
 259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 260{
 261	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 262		pr_err("%s: Invalid parameters\n", __func__);
 263		return false;
 264	}
 265
 266	return opp->turbo;
 267}
 268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 269
 270/**
 271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 272 * @dev:	device for which we do this operation
 273 *
 274 * Return: This function returns the max clock latency in nanoseconds.
 275 */
 276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 277{
 278	struct opp_table *opp_table;
 279	unsigned long clock_latency_ns;
 280
 281	opp_table = _find_opp_table(dev);
 282	if (IS_ERR(opp_table))
 283		return 0;
 284
 285	clock_latency_ns = opp_table->clock_latency_ns_max;
 286
 287	dev_pm_opp_put_opp_table(opp_table);
 288
 289	return clock_latency_ns;
 290}
 291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 292
 293/**
 294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 295 * @dev: device for which we do this operation
 296 *
 297 * Return: This function returns the max voltage latency in nanoseconds.
 298 */
 299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 300{
 301	struct opp_table *opp_table;
 302	struct dev_pm_opp *opp;
 303	struct regulator *reg;
 304	unsigned long latency_ns = 0;
 305	int ret, i, count;
 306	struct {
 307		unsigned long min;
 308		unsigned long max;
 309	} *uV;
 310
 311	opp_table = _find_opp_table(dev);
 312	if (IS_ERR(opp_table))
 313		return 0;
 314
 315	/* Regulator may not be required for the device */
 316	if (!opp_table->regulators)
 317		goto put_opp_table;
 318
 319	count = opp_table->regulator_count;
 320
 321	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 322	if (!uV)
 323		goto put_opp_table;
 324
 325	mutex_lock(&opp_table->lock);
 326
 327	for (i = 0; i < count; i++) {
 328		uV[i].min = ~0;
 329		uV[i].max = 0;
 330
 331		list_for_each_entry(opp, &opp_table->opp_list, node) {
 332			if (!opp->available)
 333				continue;
 334
 335			if (opp->supplies[i].u_volt_min < uV[i].min)
 336				uV[i].min = opp->supplies[i].u_volt_min;
 337			if (opp->supplies[i].u_volt_max > uV[i].max)
 338				uV[i].max = opp->supplies[i].u_volt_max;
 339		}
 340	}
 341
 342	mutex_unlock(&opp_table->lock);
 343
 344	/*
 345	 * The caller needs to ensure that opp_table (and hence the regulator)
 346	 * isn't freed, while we are executing this routine.
 347	 */
 348	for (i = 0; i < count; i++) {
 349		reg = opp_table->regulators[i];
 350		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 351		if (ret > 0)
 352			latency_ns += ret * 1000;
 353	}
 354
 355	kfree(uV);
 356put_opp_table:
 357	dev_pm_opp_put_opp_table(opp_table);
 358
 359	return latency_ns;
 360}
 361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 362
 363/**
 364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 365 *					     nanoseconds
 366 * @dev: device for which we do this operation
 367 *
 368 * Return: This function returns the max transition latency, in nanoseconds, to
 369 * switch from one OPP to other.
 370 */
 371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 372{
 373	return dev_pm_opp_get_max_volt_latency(dev) +
 374		dev_pm_opp_get_max_clock_latency(dev);
 375}
 376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 377
 378/**
 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 380 * @dev:	device for which we do this operation
 381 *
 382 * Return: This function returns the frequency of the OPP marked as suspend_opp
 383 * if one is available, else returns 0;
 384 */
 385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 386{
 387	struct opp_table *opp_table;
 388	unsigned long freq = 0;
 389
 390	opp_table = _find_opp_table(dev);
 391	if (IS_ERR(opp_table))
 392		return 0;
 393
 394	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 395		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 396
 397	dev_pm_opp_put_opp_table(opp_table);
 398
 399	return freq;
 400}
 401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 402
 403int _get_opp_count(struct opp_table *opp_table)
 404{
 405	struct dev_pm_opp *opp;
 406	int count = 0;
 407
 408	mutex_lock(&opp_table->lock);
 409
 410	list_for_each_entry(opp, &opp_table->opp_list, node) {
 411		if (opp->available)
 412			count++;
 413	}
 414
 415	mutex_unlock(&opp_table->lock);
 416
 417	return count;
 418}
 419
 420/**
 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 422 * @dev:	device for which we do this operation
 423 *
 424 * Return: This function returns the number of available opps if there are any,
 425 * else returns 0 if none or the corresponding error value.
 426 */
 427int dev_pm_opp_get_opp_count(struct device *dev)
 428{
 429	struct opp_table *opp_table;
 430	int count;
 431
 432	opp_table = _find_opp_table(dev);
 433	if (IS_ERR(opp_table)) {
 434		count = PTR_ERR(opp_table);
 435		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 436			__func__, count);
 437		return count;
 438	}
 439
 440	count = _get_opp_count(opp_table);
 441	dev_pm_opp_put_opp_table(opp_table);
 442
 443	return count;
 444}
 445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 446
 447/* Helpers to read keys */
 448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 449{
 450	return opp->rates[index];
 451}
 452
 453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 454{
 455	return opp->level;
 456}
 457
 458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 459{
 460	return opp->bandwidth[index].peak;
 461}
 462
 463/* Generic comparison helpers */
 464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 465			   unsigned long opp_key, unsigned long key)
 466{
 467	if (opp_key == key) {
 468		*opp = temp_opp;
 469		return true;
 470	}
 471
 472	return false;
 473}
 474
 475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 476			  unsigned long opp_key, unsigned long key)
 477{
 478	if (opp_key >= key) {
 479		*opp = temp_opp;
 480		return true;
 481	}
 482
 483	return false;
 484}
 485
 486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 487			   unsigned long opp_key, unsigned long key)
 488{
 489	if (opp_key > key)
 490		return true;
 491
 492	*opp = temp_opp;
 493	return false;
 494}
 495
 496/* Generic key finding helpers */
 497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 498		unsigned long *key, int index, bool available,
 499		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 500		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 501				unsigned long opp_key, unsigned long key),
 502		bool (*assert)(struct opp_table *opp_table))
 503{
 504	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 505
 506	/* Assert that the requirement is met */
 507	if (assert && !assert(opp_table))
 508		return ERR_PTR(-EINVAL);
 509
 510	mutex_lock(&opp_table->lock);
 511
 512	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 513		if (temp_opp->available == available) {
 514			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 515				break;
 516		}
 517	}
 518
 519	/* Increment the reference count of OPP */
 520	if (!IS_ERR(opp)) {
 521		*key = read(opp, index);
 522		dev_pm_opp_get(opp);
 523	}
 524
 525	mutex_unlock(&opp_table->lock);
 526
 527	return opp;
 528}
 529
 530static struct dev_pm_opp *
 531_find_key(struct device *dev, unsigned long *key, int index, bool available,
 532	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 533	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 534			  unsigned long opp_key, unsigned long key),
 535	  bool (*assert)(struct opp_table *opp_table))
 536{
 537	struct opp_table *opp_table;
 538	struct dev_pm_opp *opp;
 539
 540	opp_table = _find_opp_table(dev);
 541	if (IS_ERR(opp_table)) {
 542		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 543			PTR_ERR(opp_table));
 544		return ERR_CAST(opp_table);
 545	}
 546
 547	opp = _opp_table_find_key(opp_table, key, index, available, read,
 548				  compare, assert);
 549
 550	dev_pm_opp_put_opp_table(opp_table);
 551
 552	return opp;
 553}
 554
 555static struct dev_pm_opp *_find_key_exact(struct device *dev,
 556		unsigned long key, int index, bool available,
 557		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 558		bool (*assert)(struct opp_table *opp_table))
 559{
 560	/*
 561	 * The value of key will be updated here, but will be ignored as the
 562	 * caller doesn't need it.
 563	 */
 564	return _find_key(dev, &key, index, available, read, _compare_exact,
 565			 assert);
 566}
 567
 568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 569		unsigned long *key, int index, bool available,
 570		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 571		bool (*assert)(struct opp_table *opp_table))
 572{
 573	return _opp_table_find_key(opp_table, key, index, available, read,
 574				   _compare_ceil, assert);
 575}
 576
 577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 578		int index, bool available,
 579		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 580		bool (*assert)(struct opp_table *opp_table))
 581{
 582	return _find_key(dev, key, index, available, read, _compare_ceil,
 583			 assert);
 584}
 585
 586static struct dev_pm_opp *_find_key_floor(struct device *dev,
 587		unsigned long *key, int index, bool available,
 588		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 589		bool (*assert)(struct opp_table *opp_table))
 590{
 591	return _find_key(dev, key, index, available, read, _compare_floor,
 592			 assert);
 593}
 594
 595/**
 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 597 * @dev:		device for which we do this operation
 598 * @freq:		frequency to search for
 599 * @available:		true/false - match for available opp
 600 *
 601 * Return: Searches for exact match in the opp table and returns pointer to the
 602 * matching opp if found, else returns ERR_PTR in case of error and should
 603 * be handled using IS_ERR. Error return values can be:
 604 * EINVAL:	for bad pointer
 605 * ERANGE:	no match found for search
 606 * ENODEV:	if device not found in list of registered devices
 607 *
 608 * Note: available is a modifier for the search. if available=true, then the
 609 * match is for exact matching frequency and is available in the stored OPP
 610 * table. if false, the match is for exact frequency which is not available.
 611 *
 612 * This provides a mechanism to enable an opp which is not available currently
 613 * or the opposite as well.
 614 *
 615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 616 * use.
 617 */
 618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 619		unsigned long freq, bool available)
 620{
 621	return _find_key_exact(dev, freq, 0, available, _read_freq,
 622			       assert_single_clk);
 623}
 624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 625
 626/**
 627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 628 *					 clock corresponding to the index
 629 * @dev:	Device for which we do this operation
 630 * @freq:	frequency to search for
 631 * @index:	Clock index
 632 * @available:	true/false - match for available opp
 633 *
 634 * Search for the matching exact OPP for the clock corresponding to the
 635 * specified index from a starting freq for a device.
 636 *
 637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 638 * handled using IS_ERR. Error return values can be:
 639 * EINVAL:	for bad pointer
 640 * ERANGE:	no match found for search
 641 * ENODEV:	if device not found in list of registered devices
 642 *
 643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 644 * use.
 645 */
 646struct dev_pm_opp *
 647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
 648				   u32 index, bool available)
 649{
 650	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
 651}
 652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
 653
 654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 655						   unsigned long *freq)
 656{
 657	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 658					assert_single_clk);
 659}
 660
 661/**
 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 663 * @dev:	device for which we do this operation
 664 * @freq:	Start frequency
 665 *
 666 * Search for the matching ceil *available* OPP from a starting freq
 667 * for a device.
 668 *
 669 * Return: matching *opp and refreshes *freq accordingly, else returns
 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 671 * values can be:
 672 * EINVAL:	for bad pointer
 673 * ERANGE:	no match found for search
 674 * ENODEV:	if device not found in list of registered devices
 675 *
 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 677 * use.
 678 */
 679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 680					     unsigned long *freq)
 681{
 682	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 683}
 684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 685
 686/**
 687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 688 *					 clock corresponding to the index
 689 * @dev:	Device for which we do this operation
 690 * @freq:	Start frequency
 691 * @index:	Clock index
 692 *
 693 * Search for the matching ceil *available* OPP for the clock corresponding to
 694 * the specified index from a starting freq for a device.
 695 *
 696 * Return: matching *opp and refreshes *freq accordingly, else returns
 697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 698 * values can be:
 699 * EINVAL:	for bad pointer
 700 * ERANGE:	no match found for search
 701 * ENODEV:	if device not found in list of registered devices
 702 *
 703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 704 * use.
 705 */
 706struct dev_pm_opp *
 707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
 708				  u32 index)
 709{
 710	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
 711}
 712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
 713
 714/**
 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 716 * @dev:	device for which we do this operation
 717 * @freq:	Start frequency
 718 *
 719 * Search for the matching floor *available* OPP from a starting freq
 720 * for a device.
 721 *
 722 * Return: matching *opp and refreshes *freq accordingly, else returns
 723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 724 * values can be:
 725 * EINVAL:	for bad pointer
 726 * ERANGE:	no match found for search
 727 * ENODEV:	if device not found in list of registered devices
 728 *
 729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 730 * use.
 731 */
 732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 733					      unsigned long *freq)
 734{
 735	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 736}
 737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 738
 739/**
 740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 741 *					  clock corresponding to the index
 742 * @dev:	Device for which we do this operation
 743 * @freq:	Start frequency
 744 * @index:	Clock index
 745 *
 746 * Search for the matching floor *available* OPP for the clock corresponding to
 747 * the specified index from a starting freq for a device.
 748 *
 749 * Return: matching *opp and refreshes *freq accordingly, else returns
 750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 751 * values can be:
 752 * EINVAL:	for bad pointer
 753 * ERANGE:	no match found for search
 754 * ENODEV:	if device not found in list of registered devices
 755 *
 756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 757 * use.
 758 */
 759struct dev_pm_opp *
 760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
 761				   u32 index)
 762{
 763	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
 764}
 765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
 766
 767/**
 768 * dev_pm_opp_find_level_exact() - search for an exact level
 769 * @dev:		device for which we do this operation
 770 * @level:		level to search for
 771 *
 772 * Return: Searches for exact match in the opp table and returns pointer to the
 773 * matching opp if found, else returns ERR_PTR in case of error and should
 774 * be handled using IS_ERR. Error return values can be:
 775 * EINVAL:	for bad pointer
 776 * ERANGE:	no match found for search
 777 * ENODEV:	if device not found in list of registered devices
 778 *
 779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 780 * use.
 781 */
 782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 783					       unsigned int level)
 784{
 785	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 786}
 787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 788
 789/**
 790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 791 * @dev:		device for which we do this operation
 792 * @level:		level to search for
 793 *
 794 * Return: Searches for rounded up match in the opp table and returns pointer
 795 * to the  matching opp if found, else returns ERR_PTR in case of error and
 796 * should be handled using IS_ERR. Error return values can be:
 797 * EINVAL:	for bad pointer
 798 * ERANGE:	no match found for search
 799 * ENODEV:	if device not found in list of registered devices
 800 *
 801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 802 * use.
 803 */
 804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 805					      unsigned int *level)
 806{
 807	unsigned long temp = *level;
 808	struct dev_pm_opp *opp;
 809
 810	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 811	if (IS_ERR(opp))
 812		return opp;
 813
 814	/* False match */
 815	if (temp == OPP_LEVEL_UNSET) {
 816		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
 817		dev_pm_opp_put(opp);
 818		return ERR_PTR(-ENODEV);
 819	}
 820
 821	*level = temp;
 822	return opp;
 823}
 824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 825
 826/**
 827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 828 * @dev:	device for which we do this operation
 829 * @level:	Start level
 830 *
 831 * Search for the matching floor *available* OPP from a starting level
 832 * for a device.
 833 *
 834 * Return: matching *opp and refreshes *level accordingly, else returns
 835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 836 * values can be:
 837 * EINVAL:	for bad pointer
 838 * ERANGE:	no match found for search
 839 * ENODEV:	if device not found in list of registered devices
 840 *
 841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 842 * use.
 843 */
 844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
 845					       unsigned int *level)
 846{
 847	unsigned long temp = *level;
 848	struct dev_pm_opp *opp;
 849
 850	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
 851	*level = temp;
 852	return opp;
 853}
 854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
 855
 856/**
 857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 858 * @dev:	device for which we do this operation
 859 * @bw:	start bandwidth
 860 * @index:	which bandwidth to compare, in case of OPPs with several values
 861 *
 862 * Search for the matching floor *available* OPP from a starting bandwidth
 863 * for a device.
 864 *
 865 * Return: matching *opp and refreshes *bw accordingly, else returns
 866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 867 * values can be:
 868 * EINVAL:	for bad pointer
 869 * ERANGE:	no match found for search
 870 * ENODEV:	if device not found in list of registered devices
 871 *
 872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 873 * use.
 874 */
 875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 876					   int index)
 877{
 878	unsigned long temp = *bw;
 879	struct dev_pm_opp *opp;
 880
 881	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
 882	*bw = temp;
 883	return opp;
 884}
 885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 886
 887/**
 888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 889 * @dev:	device for which we do this operation
 890 * @bw:	start bandwidth
 891 * @index:	which bandwidth to compare, in case of OPPs with several values
 892 *
 893 * Search for the matching floor *available* OPP from a starting bandwidth
 894 * for a device.
 895 *
 896 * Return: matching *opp and refreshes *bw accordingly, else returns
 897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 898 * values can be:
 899 * EINVAL:	for bad pointer
 900 * ERANGE:	no match found for search
 901 * ENODEV:	if device not found in list of registered devices
 902 *
 903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 904 * use.
 905 */
 906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 907					    unsigned int *bw, int index)
 908{
 909	unsigned long temp = *bw;
 910	struct dev_pm_opp *opp;
 911
 912	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
 913	*bw = temp;
 914	return opp;
 915}
 916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 917
 918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 919			    struct dev_pm_opp_supply *supply)
 920{
 921	int ret;
 922
 923	/* Regulator not available for device */
 924	if (IS_ERR(reg)) {
 925		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 926			PTR_ERR(reg));
 927		return 0;
 928	}
 929
 930	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 931		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 932
 933	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 934					    supply->u_volt, supply->u_volt_max);
 935	if (ret)
 936		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 937			__func__, supply->u_volt_min, supply->u_volt,
 938			supply->u_volt_max, ret);
 939
 940	return ret;
 941}
 942
 943static int
 944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 945		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 946{
 947	unsigned long *target = data;
 948	unsigned long freq;
 949	int ret;
 950
 951	/* One of target and opp must be available */
 952	if (target) {
 953		freq = *target;
 954	} else if (opp) {
 955		freq = opp->rates[0];
 956	} else {
 957		WARN_ON(1);
 958		return -EINVAL;
 959	}
 960
 961	ret = clk_set_rate(opp_table->clk, freq);
 962	if (ret) {
 963		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 964			ret);
 965	} else {
 966		opp_table->current_rate_single_clk = freq;
 967	}
 968
 969	return ret;
 970}
 971
 972/*
 973 * Simple implementation for configuring multiple clocks. Configure clocks in
 974 * the order in which they are present in the array while scaling up.
 975 */
 976int dev_pm_opp_config_clks_simple(struct device *dev,
 977		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
 978		bool scaling_down)
 979{
 980	int ret, i;
 981
 982	if (scaling_down) {
 983		for (i = opp_table->clk_count - 1; i >= 0; i--) {
 984			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 985			if (ret) {
 986				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 987					ret);
 988				return ret;
 989			}
 990		}
 991	} else {
 992		for (i = 0; i < opp_table->clk_count; i++) {
 993			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 994			if (ret) {
 995				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 996					ret);
 997				return ret;
 998			}
 999		}
1000	}
1001
1002	return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008			struct regulator **regulators, unsigned int count)
1009{
1010	struct regulator *reg = regulators[0];
1011	int ret;
1012
1013	/* This function only supports single regulator per device */
1014	if (WARN_ON(count > 1)) {
1015		dev_err(dev, "multiple regulators are not supported\n");
1016		return -EINVAL;
1017	}
1018
1019	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020	if (ret)
1021		return ret;
1022
1023	/*
1024	 * Enable the regulator after setting its voltages, otherwise it breaks
1025	 * some boot-enabled regulators.
1026	 */
1027	if (unlikely(!new_opp->opp_table->enabled)) {
1028		ret = regulator_enable(reg);
1029		if (ret < 0)
1030			dev_warn(dev, "Failed to enable regulator: %d", ret);
1031	}
1032
1033	return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037		       struct dev_pm_opp *opp, struct device *dev)
1038{
1039	u32 avg, peak;
1040	int i, ret;
1041
1042	if (!opp_table->paths)
1043		return 0;
1044
1045	for (i = 0; i < opp_table->path_count; i++) {
1046		if (!opp) {
1047			avg = 0;
1048			peak = 0;
1049		} else {
1050			avg = opp->bandwidth[i].avg;
1051			peak = opp->bandwidth[i].peak;
1052		}
1053		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054		if (ret) {
1055			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056				opp ? "set" : "remove", i, ret);
1057			return ret;
1058		}
1059	}
1060
1061	return 0;
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
 
1066			      struct dev_pm_opp *opp, bool up)
1067{
1068	struct device **devs = opp_table->required_devs;
1069	struct dev_pm_opp *required_opp;
1070	int index, target, delta, ret;
1071
1072	if (!devs)
1073		return 0;
1074
1075	/* required-opps not fully initialized yet */
1076	if (lazy_linking_pending(opp_table))
1077		return -EBUSY;
1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079	/* Scaling up? Set required OPPs in normal order, else reverse */
1080	if (up) {
1081		index = 0;
1082		target = opp_table->required_opp_count;
1083		delta = 1;
 
 
1084	} else {
1085		index = opp_table->required_opp_count - 1;
1086		target = -1;
1087		delta = -1;
1088	}
1089
1090	while (index != target) {
1091		if (devs[index]) {
1092			required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094			ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095			if (ret)
1096				return ret;
1097		}
1098
1099		index += delta;
1100	}
1101
1102	return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106			  struct dev_pm_opp *opp)
1107{
1108	unsigned int level = 0;
1109	int ret = 0;
1110
1111	if (opp) {
1112		if (opp->level == OPP_LEVEL_UNSET)
1113			return 0;
1114
1115		level = opp->level;
1116	}
1117
1118	/* Request a new performance state through the device's PM domain. */
1119	ret = dev_pm_domain_set_performance_state(dev, level);
1120	if (ret)
1121		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122			ret);
1123
1124	return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130	unsigned long freq;
1131
1132	if (!IS_ERR(opp_table->clk)) {
1133		freq = clk_get_rate(opp_table->clk);
1134		opp = _find_freq_ceil(opp_table, &freq);
1135	}
1136
1137	/*
1138	 * Unable to find the current OPP ? Pick the first from the list since
1139	 * it is in ascending order, otherwise rest of the code will need to
1140	 * make special checks to validate current_opp.
1141	 */
1142	if (IS_ERR(opp)) {
1143		mutex_lock(&opp_table->lock);
1144		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145		dev_pm_opp_get(opp);
1146		mutex_unlock(&opp_table->lock);
1147	}
1148
1149	opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154	int ret;
1155
1156	if (!opp_table->enabled)
1157		return 0;
1158
1159	/*
1160	 * Some drivers need to support cases where some platforms may
1161	 * have OPP table for the device, while others don't and
1162	 * opp_set_rate() just needs to behave like clk_set_rate().
1163	 */
1164	if (!_get_opp_count(opp_table))
1165		return 0;
1166
1167	ret = _set_opp_bw(opp_table, NULL, dev);
1168	if (ret)
1169		return ret;
1170
1171	if (opp_table->regulators)
1172		regulator_disable(opp_table->regulators[0]);
1173
1174	ret = _set_opp_level(dev, opp_table, NULL);
1175	if (ret)
1176		goto out;
1177
1178	ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181	opp_table->enabled = false;
1182	return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188	struct dev_pm_opp *old_opp;
1189	int scaling_down, ret;
1190
1191	if (unlikely(!opp))
1192		return _disable_opp_table(dev, opp_table);
1193
1194	/* Find the currently set OPP if we don't know already */
1195	if (unlikely(!opp_table->current_opp))
1196		_find_current_opp(dev, opp_table);
1197
1198	old_opp = opp_table->current_opp;
1199
1200	/* Return early if nothing to do */
1201	if (!forced && old_opp == opp && opp_table->enabled) {
1202		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203		return 0;
1204	}
1205
1206	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212	if (scaling_down == -1)
1213		scaling_down = 0;
1214
1215	/* Scaling up? Configure required OPPs before frequency */
1216	if (!scaling_down) {
1217		ret = _set_required_opps(dev, opp_table, opp, true);
1218		if (ret) {
1219			dev_err(dev, "Failed to set required opps: %d\n", ret);
1220			return ret;
1221		}
1222
1223		ret = _set_opp_level(dev, opp_table, opp);
1224		if (ret)
1225			return ret;
1226
1227		ret = _set_opp_bw(opp_table, opp, dev);
1228		if (ret) {
1229			dev_err(dev, "Failed to set bw: %d\n", ret);
1230			return ret;
1231		}
1232
1233		if (opp_table->config_regulators) {
1234			ret = opp_table->config_regulators(dev, old_opp, opp,
1235							   opp_table->regulators,
1236							   opp_table->regulator_count);
1237			if (ret) {
1238				dev_err(dev, "Failed to set regulator voltages: %d\n",
1239					ret);
1240				return ret;
1241			}
1242		}
1243	}
1244
1245	if (opp_table->config_clks) {
1246		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247		if (ret)
1248			return ret;
1249	}
1250
1251	/* Scaling down? Configure required OPPs after frequency */
1252	if (scaling_down) {
1253		if (opp_table->config_regulators) {
1254			ret = opp_table->config_regulators(dev, old_opp, opp,
1255							   opp_table->regulators,
1256							   opp_table->regulator_count);
1257			if (ret) {
1258				dev_err(dev, "Failed to set regulator voltages: %d\n",
1259					ret);
1260				return ret;
1261			}
1262		}
1263
1264		ret = _set_opp_bw(opp_table, opp, dev);
1265		if (ret) {
1266			dev_err(dev, "Failed to set bw: %d\n", ret);
1267			return ret;
1268		}
1269
1270		ret = _set_opp_level(dev, opp_table, opp);
1271		if (ret)
1272			return ret;
1273
1274		ret = _set_required_opps(dev, opp_table, opp, false);
1275		if (ret) {
1276			dev_err(dev, "Failed to set required opps: %d\n", ret);
1277			return ret;
1278		}
1279	}
1280
1281	opp_table->enabled = true;
1282	dev_pm_opp_put(old_opp);
1283
1284	/* Make sure current_opp doesn't get freed */
1285	dev_pm_opp_get(opp);
1286	opp_table->current_opp = opp;
1287
1288	return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev:	 device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304	struct opp_table *opp_table;
1305	unsigned long freq = 0, temp_freq;
1306	struct dev_pm_opp *opp = NULL;
1307	bool forced = false;
1308	int ret;
1309
1310	opp_table = _find_opp_table(dev);
1311	if (IS_ERR(opp_table)) {
1312		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313		return PTR_ERR(opp_table);
1314	}
1315
1316	if (target_freq) {
1317		/*
1318		 * For IO devices which require an OPP on some platforms/SoCs
1319		 * while just needing to scale the clock on some others
1320		 * we look for empty OPP tables with just a clock handle and
1321		 * scale only the clk. This makes dev_pm_opp_set_rate()
1322		 * equivalent to a clk_set_rate()
1323		 */
1324		if (!_get_opp_count(opp_table)) {
1325			ret = opp_table->config_clks(dev, opp_table, NULL,
1326						     &target_freq, false);
1327			goto put_opp_table;
1328		}
1329
1330		freq = clk_round_rate(opp_table->clk, target_freq);
1331		if ((long)freq <= 0)
1332			freq = target_freq;
1333
1334		/*
1335		 * The clock driver may support finer resolution of the
1336		 * frequencies than the OPP table, don't update the frequency we
1337		 * pass to clk_set_rate() here.
1338		 */
1339		temp_freq = freq;
1340		opp = _find_freq_ceil(opp_table, &temp_freq);
1341		if (IS_ERR(opp)) {
1342			ret = PTR_ERR(opp);
1343			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344				__func__, freq, ret);
1345			goto put_opp_table;
1346		}
1347
1348		/*
1349		 * An OPP entry specifies the highest frequency at which other
1350		 * properties of the OPP entry apply. Even if the new OPP is
1351		 * same as the old one, we may still reach here for a different
1352		 * value of the frequency. In such a case, do not abort but
1353		 * configure the hardware to the desired frequency forcefully.
1354		 */
1355		forced = opp_table->current_rate_single_clk != freq;
1356	}
1357
1358	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359
1360	if (freq)
1361		dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364	dev_pm_opp_put_opp_table(opp_table);
1365	return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381	struct opp_table *opp_table;
1382	int ret;
1383
1384	opp_table = _find_opp_table(dev);
1385	if (IS_ERR(opp_table)) {
1386		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387		return PTR_ERR(opp_table);
1388	}
1389
1390	ret = _set_opp(dev, opp_table, opp, NULL, false);
1391	dev_pm_opp_put_opp_table(opp_table);
1392
1393	return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399			    struct opp_table *opp_table)
1400{
1401	opp_debug_unregister(opp_dev, opp_table);
1402	list_del(&opp_dev->node);
1403	kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407				struct opp_table *opp_table)
1408{
1409	struct opp_device *opp_dev;
1410
1411	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412	if (!opp_dev)
1413		return NULL;
1414
1415	/* Initialize opp-dev */
1416	opp_dev->dev = dev;
1417
1418	mutex_lock(&opp_table->lock);
1419	list_add(&opp_dev->node, &opp_table->dev_list);
1420	mutex_unlock(&opp_table->lock);
1421
1422	/* Create debugfs entries for the opp_table */
1423	opp_debug_register(opp_dev, opp_table);
1424
1425	return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430	struct opp_table *opp_table;
1431	struct opp_device *opp_dev;
1432	int ret;
1433
1434	/*
1435	 * Allocate a new OPP table. In the infrequent case where a new
1436	 * device is needed to be added, we pay this penalty.
1437	 */
1438	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439	if (!opp_table)
1440		return ERR_PTR(-ENOMEM);
1441
1442	mutex_init(&opp_table->lock);
 
1443	INIT_LIST_HEAD(&opp_table->dev_list);
1444	INIT_LIST_HEAD(&opp_table->lazy);
1445
1446	opp_table->clk = ERR_PTR(-ENODEV);
1447
1448	/* Mark regulator count uninitialized */
1449	opp_table->regulator_count = -1;
1450
1451	opp_dev = _add_opp_dev(dev, opp_table);
1452	if (!opp_dev) {
1453		ret = -ENOMEM;
1454		goto err;
1455	}
1456
1457	_of_init_opp_table(opp_table, dev, index);
1458
1459	/* Find interconnect path(s) for the device */
1460	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461	if (ret) {
1462		if (ret == -EPROBE_DEFER)
1463			goto remove_opp_dev;
1464
1465		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466			 __func__, ret);
1467	}
1468
1469	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470	INIT_LIST_HEAD(&opp_table->opp_list);
1471	kref_init(&opp_table->kref);
1472
1473	return opp_table;
1474
1475remove_opp_dev:
1476	_of_clear_opp_table(opp_table);
1477	_remove_opp_dev(opp_dev, opp_table);
1478	mutex_destroy(&opp_table->lock);
1479err:
1480	kfree(opp_table);
1481	return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486	kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490					       struct opp_table *opp_table,
1491					       bool getclk)
1492{
1493	int ret;
1494
1495	/*
1496	 * Return early if we don't need to get clk or we have already done it
1497	 * earlier.
1498	 */
1499	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500	    opp_table->clks)
1501		return opp_table;
1502
1503	/* Find clk for the device */
1504	opp_table->clk = clk_get(dev, NULL);
1505
1506	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507	if (!ret) {
1508		opp_table->config_clks = _opp_config_clk_single;
1509		opp_table->clk_count = 1;
1510		return opp_table;
1511	}
1512
1513	if (ret == -ENOENT) {
1514		/*
1515		 * There are few platforms which don't want the OPP core to
1516		 * manage device's clock settings. In such cases neither the
1517		 * platform provides the clks explicitly to us, nor the DT
1518		 * contains a valid clk entry. The OPP nodes in DT may still
1519		 * contain "opp-hz" property though, which we need to parse and
1520		 * allow the platform to find an OPP based on freq later on.
1521		 *
1522		 * This is a simple solution to take care of such corner cases,
1523		 * i.e. make the clk_count 1, which lets us allocate space for
1524		 * frequency in opp->rates and also parse the entries in DT.
1525		 */
1526		opp_table->clk_count = 1;
1527
1528		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529		return opp_table;
1530	}
1531
1532	dev_pm_opp_put_opp_table(opp_table);
1533	dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535	return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554					 bool getclk)
1555{
1556	struct opp_table *opp_table;
1557
1558again:
1559	mutex_lock(&opp_table_lock);
1560
1561	opp_table = _find_opp_table_unlocked(dev);
1562	if (!IS_ERR(opp_table))
1563		goto unlock;
1564
1565	/*
1566	 * The opp_tables list or an OPP table's dev_list is getting updated by
1567	 * another user, wait for it to finish.
1568	 */
1569	if (unlikely(opp_tables_busy)) {
1570		mutex_unlock(&opp_table_lock);
1571		cpu_relax();
1572		goto again;
1573	}
1574
1575	opp_tables_busy = true;
1576	opp_table = _managed_opp(dev, index);
1577
1578	/* Drop the lock to reduce the size of critical section */
1579	mutex_unlock(&opp_table_lock);
1580
1581	if (opp_table) {
1582		if (!_add_opp_dev(dev, opp_table)) {
1583			dev_pm_opp_put_opp_table(opp_table);
1584			opp_table = ERR_PTR(-ENOMEM);
1585		}
1586
1587		mutex_lock(&opp_table_lock);
1588	} else {
1589		opp_table = _allocate_opp_table(dev, index);
1590
1591		mutex_lock(&opp_table_lock);
1592		if (!IS_ERR(opp_table))
1593			list_add(&opp_table->node, &opp_tables);
1594	}
1595
1596	opp_tables_busy = false;
1597
1598unlock:
1599	mutex_unlock(&opp_table_lock);
1600
1601	return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606	return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611	return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618	struct opp_device *opp_dev, *temp;
1619	int i;
1620
1621	/* Drop the lock as soon as we can */
1622	list_del(&opp_table->node);
1623	mutex_unlock(&opp_table_lock);
1624
1625	if (opp_table->current_opp)
1626		dev_pm_opp_put(opp_table->current_opp);
1627
1628	_of_clear_opp_table(opp_table);
1629
1630	/* Release automatically acquired single clk */
1631	if (!IS_ERR(opp_table->clk))
1632		clk_put(opp_table->clk);
1633
1634	if (opp_table->paths) {
1635		for (i = 0; i < opp_table->path_count; i++)
1636			icc_put(opp_table->paths[i]);
1637		kfree(opp_table->paths);
1638	}
1639
1640	WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
 
 
 
 
 
 
 
1643		_remove_opp_dev(opp_dev, opp_table);
 
1644
 
1645	mutex_destroy(&opp_table->lock);
1646	kfree(opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652		       &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658	kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664	struct opp_table *opp_table = opp->opp_table;
1665
1666	list_del(&opp->node);
1667	mutex_unlock(&opp_table->lock);
1668
1669	/*
1670	 * Notify the changes in the availability of the operable
1671	 * frequency/voltage list.
1672	 */
1673	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674	_of_clear_opp(opp_table, opp);
1675	opp_debug_remove_one(opp);
1676	kfree(opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681	kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1692 * @dev:	device for which we do this operation
1693 * @freq:	OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699	struct dev_pm_opp *opp = NULL, *iter;
1700	struct opp_table *opp_table;
1701
1702	opp_table = _find_opp_table(dev);
1703	if (IS_ERR(opp_table))
1704		return;
1705
1706	if (!assert_single_clk(opp_table))
1707		goto put_table;
1708
1709	mutex_lock(&opp_table->lock);
1710
1711	list_for_each_entry(iter, &opp_table->opp_list, node) {
1712		if (iter->rates[0] == freq) {
1713			opp = iter;
1714			break;
1715		}
1716	}
1717
1718	mutex_unlock(&opp_table->lock);
1719
1720	if (opp) {
1721		dev_pm_opp_put(opp);
1722
1723		/* Drop the reference taken by dev_pm_opp_add() */
1724		dev_pm_opp_put_opp_table(opp_table);
1725	} else {
1726		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727			 __func__, freq);
1728	}
1729
1730put_table:
1731	/* Drop the reference taken by _find_opp_table() */
1732	dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737					bool dynamic)
1738{
1739	struct dev_pm_opp *opp = NULL, *temp;
1740
1741	mutex_lock(&opp_table->lock);
1742	list_for_each_entry(temp, &opp_table->opp_list, node) {
1743		/*
1744		 * Refcount must be dropped only once for each OPP by OPP core,
1745		 * do that with help of "removed" flag.
1746		 */
1747		if (!temp->removed && dynamic == temp->dynamic) {
1748			opp = temp;
1749			break;
1750		}
1751	}
1752
1753	mutex_unlock(&opp_table->lock);
1754	return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764	struct dev_pm_opp *opp;
1765
1766	while ((opp = _opp_get_next(opp_table, dynamic))) {
1767		opp->removed = true;
1768		dev_pm_opp_put(opp);
1769
1770		/* Drop the references taken by dev_pm_opp_add() */
1771		if (dynamic)
1772			dev_pm_opp_put_opp_table(opp_table);
1773	}
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778	mutex_lock(&opp_table->lock);
1779
1780	if (!opp_table->parsed_static_opps) {
1781		mutex_unlock(&opp_table->lock);
1782		return false;
1783	}
1784
1785	if (--opp_table->parsed_static_opps) {
1786		mutex_unlock(&opp_table->lock);
1787		return true;
1788	}
1789
1790	mutex_unlock(&opp_table->lock);
1791
1792	_opp_remove_all(opp_table, false);
1793	return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev:	device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804	struct opp_table *opp_table;
1805
1806	opp_table = _find_opp_table(dev);
1807	if (IS_ERR(opp_table))
1808		return;
1809
1810	_opp_remove_all(opp_table, true);
1811
1812	/* Drop the reference taken by _find_opp_table() */
1813	dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819	struct dev_pm_opp *opp;
1820	int supply_count, supply_size, icc_size, clk_size;
1821
1822	/* Allocate space for at least one supply */
1823	supply_count = opp_table->regulator_count > 0 ?
1824			opp_table->regulator_count : 1;
1825	supply_size = sizeof(*opp->supplies) * supply_count;
1826	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829	/* allocate new OPP node and supplies structures */
1830	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831	if (!opp)
1832		return NULL;
1833
1834	/* Put the supplies, bw and clock at the end of the OPP structure */
1835	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839	if (icc_size)
1840		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842	INIT_LIST_HEAD(&opp->node);
1843
1844	opp->level = OPP_LEVEL_UNSET;
1845
1846	return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850					 struct opp_table *opp_table)
1851{
1852	struct regulator *reg;
1853	int i;
1854
1855	if (!opp_table->regulators)
1856		return true;
1857
1858	for (i = 0; i < opp_table->regulator_count; i++) {
1859		reg = opp_table->regulators[i];
1860
1861		if (!regulator_is_supported_voltage(reg,
1862					opp->supplies[i].u_volt_min,
1863					opp->supplies[i].u_volt_max)) {
1864			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865				__func__, opp->supplies[i].u_volt_min,
1866				opp->supplies[i].u_volt_max);
1867			return false;
1868		}
1869	}
1870
1871	return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877	int i;
1878
1879	for (i = 0; i < opp_table->clk_count; i++) {
1880		if (opp1->rates[i] != opp2->rates[i])
1881			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882	}
1883
1884	/* Same rates for both OPPs */
1885	return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889			   struct dev_pm_opp *opp2)
1890{
1891	int i;
1892
1893	for (i = 0; i < opp_table->path_count; i++) {
1894		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896	}
1897
1898	/* Same bw for both OPPs */
1899	return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909		     struct dev_pm_opp *opp2)
1910{
1911	int ret;
1912
1913	ret = _opp_compare_rate(opp_table, opp1, opp2);
1914	if (ret)
1915		return ret;
1916
1917	ret = _opp_compare_bw(opp_table, opp1, opp2);
1918	if (ret)
1919		return ret;
1920
1921	if (opp1->level != opp2->level)
1922		return opp1->level < opp2->level ? -1 : 1;
1923
1924	/* Duplicate OPPs */
1925	return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929			     struct opp_table *opp_table,
1930			     struct list_head **head)
1931{
1932	struct dev_pm_opp *opp;
1933	int opp_cmp;
1934
1935	/*
1936	 * Insert new OPP in order of increasing frequency and discard if
1937	 * already present.
1938	 *
1939	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940	 * loop, don't replace it with head otherwise it will become an infinite
1941	 * loop.
1942	 */
1943	list_for_each_entry(opp, &opp_table->opp_list, node) {
1944		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945		if (opp_cmp > 0) {
1946			*head = &opp->node;
1947			continue;
1948		}
1949
1950		if (opp_cmp < 0)
1951			return 0;
1952
1953		/* Duplicate OPPs */
1954		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956			 opp->available, new_opp->rates[0],
1957			 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959		/* Should we compare voltages for all regulators here ? */
1960		return opp->available &&
1961		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962	}
1963
1964	return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969	int i;
1970
1971	for (i = 0; i < count; i++) {
1972		if (opp->required_opps[i]->available)
1973			continue;
1974
1975		opp->available = false;
1976		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978		return;
1979	}
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 *  sure we don't print error messages unnecessarily if different parts of
1988 *  kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 *  should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993	     struct opp_table *opp_table)
1994{
1995	struct list_head *head;
1996	int ret;
1997
1998	mutex_lock(&opp_table->lock);
1999	head = &opp_table->opp_list;
2000
2001	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002	if (ret) {
2003		mutex_unlock(&opp_table->lock);
2004		return ret;
2005	}
2006
2007	list_add(&new_opp->node, head);
2008	mutex_unlock(&opp_table->lock);
2009
2010	new_opp->opp_table = opp_table;
2011	kref_init(&new_opp->kref);
2012
2013	opp_debug_create_one(new_opp, opp_table);
2014
2015	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016		new_opp->available = false;
2017		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018			 __func__, new_opp->rates[0]);
2019	}
2020
2021	/* required-opps not fully initialized yet */
2022	if (lazy_linking_pending(opp_table))
2023		return 0;
2024
2025	_required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027	return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table:	OPP table
2033 * @dev:	device for which we do this operation
2034 * @data:	The OPP data for the OPP to add
 
2035 * @dynamic:	Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0		On success OR
2046 *		Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST	Freq are same and volt are different OR
2048 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM	Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052		struct dev_pm_opp_data *data, bool dynamic)
2053{
2054	struct dev_pm_opp *new_opp;
2055	unsigned long tol, u_volt = data->u_volt;
2056	int ret;
2057
2058	if (!assert_single_clk(opp_table))
2059		return -EINVAL;
2060
2061	new_opp = _opp_allocate(opp_table);
2062	if (!new_opp)
2063		return -ENOMEM;
2064
2065	/* populate the opp table */
2066	new_opp->rates[0] = data->freq;
2067	new_opp->level = data->level;
2068	new_opp->turbo = data->turbo;
2069	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2070	new_opp->supplies[0].u_volt = u_volt;
2071	new_opp->supplies[0].u_volt_min = u_volt - tol;
2072	new_opp->supplies[0].u_volt_max = u_volt + tol;
2073	new_opp->available = true;
2074	new_opp->dynamic = dynamic;
2075
2076	ret = _opp_add(dev, new_opp, opp_table);
2077	if (ret) {
2078		/* Don't return error for duplicate OPPs */
2079		if (ret == -EBUSY)
2080			ret = 0;
2081		goto free_opp;
2082	}
2083
2084	/*
2085	 * Notify the changes in the availability of the operable
2086	 * frequency/voltage list.
2087	 */
2088	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2089	return 0;
2090
2091free_opp:
2092	_opp_free(new_opp);
2093
2094	return ret;
2095}
2096
2097/*
 
 
 
 
 
2098 * This is required only for the V2 bindings, and it enables a platform to
2099 * specify the hierarchy of versions it supports. OPP layer will then enable
2100 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2101 * property.
2102 */
2103static int _opp_set_supported_hw(struct opp_table *opp_table,
2104				 const u32 *versions, unsigned int count)
2105{
2106	/* Another CPU that shares the OPP table has set the property ? */
2107	if (opp_table->supported_hw)
2108		return 0;
2109
2110	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2111					GFP_KERNEL);
2112	if (!opp_table->supported_hw)
2113		return -ENOMEM;
2114
2115	opp_table->supported_hw_count = count;
2116
2117	return 0;
2118}
2119
 
 
 
 
 
 
 
 
2120static void _opp_put_supported_hw(struct opp_table *opp_table)
2121{
2122	if (opp_table->supported_hw) {
2123		kfree(opp_table->supported_hw);
2124		opp_table->supported_hw = NULL;
2125		opp_table->supported_hw_count = 0;
2126	}
2127}
2128
2129/*
 
 
 
 
2130 * This is required only for the V2 bindings, and it enables a platform to
2131 * specify the extn to be used for certain property names. The properties to
2132 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2133 * should postfix the property name with -<name> while looking for them.
2134 */
2135static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2136{
2137	/* Another CPU that shares the OPP table has set the property ? */
2138	if (!opp_table->prop_name) {
2139		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2140		if (!opp_table->prop_name)
2141			return -ENOMEM;
2142	}
2143
2144	return 0;
2145}
2146
 
 
 
 
 
 
 
 
2147static void _opp_put_prop_name(struct opp_table *opp_table)
2148{
2149	if (opp_table->prop_name) {
2150		kfree(opp_table->prop_name);
2151		opp_table->prop_name = NULL;
2152	}
2153}
2154
2155/*
 
 
 
 
 
2156 * In order to support OPP switching, OPP layer needs to know the name of the
2157 * device's regulators, as the core would be required to switch voltages as
2158 * well.
2159 *
2160 * This must be called before any OPPs are initialized for the device.
2161 */
2162static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163			       const char * const names[])
2164{
2165	const char * const *temp = names;
2166	struct regulator *reg;
2167	int count = 0, ret, i;
2168
2169	/* Count number of regulators */
2170	while (*temp++)
2171		count++;
2172
2173	if (!count)
2174		return -EINVAL;
2175
2176	/* Another CPU that shares the OPP table has set the regulators ? */
2177	if (opp_table->regulators)
2178		return 0;
2179
2180	opp_table->regulators = kmalloc_array(count,
2181					      sizeof(*opp_table->regulators),
2182					      GFP_KERNEL);
2183	if (!opp_table->regulators)
2184		return -ENOMEM;
2185
2186	for (i = 0; i < count; i++) {
2187		reg = regulator_get_optional(dev, names[i]);
2188		if (IS_ERR(reg)) {
2189			ret = dev_err_probe(dev, PTR_ERR(reg),
2190					    "%s: no regulator (%s) found\n",
2191					    __func__, names[i]);
2192			goto free_regulators;
2193		}
2194
2195		opp_table->regulators[i] = reg;
2196	}
2197
2198	opp_table->regulator_count = count;
2199
2200	/* Set generic config_regulators() for single regulators here */
2201	if (count == 1)
2202		opp_table->config_regulators = _opp_config_regulator_single;
2203
2204	return 0;
2205
2206free_regulators:
2207	while (i != 0)
2208		regulator_put(opp_table->regulators[--i]);
2209
2210	kfree(opp_table->regulators);
2211	opp_table->regulators = NULL;
2212	opp_table->regulator_count = -1;
2213
2214	return ret;
2215}
2216
 
 
 
 
2217static void _opp_put_regulators(struct opp_table *opp_table)
2218{
2219	int i;
2220
2221	if (!opp_table->regulators)
2222		return;
2223
2224	if (opp_table->enabled) {
2225		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2226			regulator_disable(opp_table->regulators[i]);
2227	}
2228
2229	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230		regulator_put(opp_table->regulators[i]);
2231
2232	kfree(opp_table->regulators);
2233	opp_table->regulators = NULL;
2234	opp_table->regulator_count = -1;
2235}
2236
2237static void _put_clks(struct opp_table *opp_table, int count)
2238{
2239	int i;
2240
2241	for (i = count - 1; i >= 0; i--)
2242		clk_put(opp_table->clks[i]);
2243
2244	kfree(opp_table->clks);
2245	opp_table->clks = NULL;
2246}
2247
2248/*
 
 
 
 
2249 * In order to support OPP switching, OPP layer needs to get pointers to the
2250 * clocks for the device. Simple cases work fine without using this routine
2251 * (i.e. by passing connection-id as NULL), but for a device with multiple
2252 * clocks available, the OPP core needs to know the exact names of the clks to
2253 * use.
2254 *
2255 * This must be called before any OPPs are initialized for the device.
2256 */
2257static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2258			     const char * const names[],
2259			     config_clks_t config_clks)
2260{
2261	const char * const *temp = names;
2262	int count = 0, ret, i;
2263	struct clk *clk;
2264
2265	/* Count number of clks */
2266	while (*temp++)
2267		count++;
2268
2269	/*
2270	 * This is a special case where we have a single clock, whose connection
2271	 * id name is NULL, i.e. first two entries are NULL in the array.
2272	 */
2273	if (!count && !names[1])
2274		count = 1;
2275
2276	/* Fail early for invalid configurations */
2277	if (!count || (!config_clks && count > 1))
2278		return -EINVAL;
2279
2280	/* Another CPU that shares the OPP table has set the clkname ? */
2281	if (opp_table->clks)
2282		return 0;
2283
2284	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2285					GFP_KERNEL);
2286	if (!opp_table->clks)
2287		return -ENOMEM;
2288
2289	/* Find clks for the device */
2290	for (i = 0; i < count; i++) {
2291		clk = clk_get(dev, names[i]);
2292		if (IS_ERR(clk)) {
2293			ret = dev_err_probe(dev, PTR_ERR(clk),
2294					    "%s: Couldn't find clock with name: %s\n",
2295					    __func__, names[i]);
2296			goto free_clks;
2297		}
2298
2299		opp_table->clks[i] = clk;
2300	}
2301
2302	opp_table->clk_count = count;
2303	opp_table->config_clks = config_clks;
2304
2305	/* Set generic single clk set here */
2306	if (count == 1) {
2307		if (!opp_table->config_clks)
2308			opp_table->config_clks = _opp_config_clk_single;
2309
2310		/*
2311		 * We could have just dropped the "clk" field and used "clks"
2312		 * everywhere. Instead we kept the "clk" field around for
2313		 * following reasons:
2314		 *
2315		 * - avoiding clks[0] everywhere else.
2316		 * - not running single clk helpers for multiple clk usecase by
2317		 *   mistake.
2318		 *
2319		 * Since this is single-clk case, just update the clk pointer
2320		 * too.
2321		 */
2322		opp_table->clk = opp_table->clks[0];
2323	}
2324
2325	return 0;
2326
2327free_clks:
2328	_put_clks(opp_table, i);
2329	return ret;
2330}
2331
 
 
 
 
2332static void _opp_put_clknames(struct opp_table *opp_table)
2333{
2334	if (!opp_table->clks)
2335		return;
2336
2337	opp_table->config_clks = NULL;
2338	opp_table->clk = ERR_PTR(-ENODEV);
2339
2340	_put_clks(opp_table, opp_table->clk_count);
2341}
2342
2343/*
 
 
 
 
2344 * This is useful to support platforms with multiple regulators per device.
2345 *
2346 * This must be called before any OPPs are initialized for the device.
2347 */
2348static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2349		struct device *dev, config_regulators_t config_regulators)
2350{
2351	/* Another CPU that shares the OPP table has set the helper ? */
2352	if (!opp_table->config_regulators)
2353		opp_table->config_regulators = config_regulators;
2354
2355	return 0;
2356}
2357
 
 
 
 
 
 
 
2358static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2359{
2360	if (opp_table->config_regulators)
2361		opp_table->config_regulators = NULL;
2362}
2363
2364static void _opp_detach_genpd(struct opp_table *opp_table)
2365{
2366	int index;
2367
 
 
 
2368	for (index = 0; index < opp_table->required_opp_count; index++) {
2369		if (!opp_table->required_devs[index])
2370			continue;
2371
2372		dev_pm_domain_detach(opp_table->required_devs[index], false);
2373		opp_table->required_devs[index] = NULL;
2374	}
 
 
 
2375}
2376
2377/*
 
 
 
 
 
2378 * Multiple generic power domains for a device are supported with the help of
2379 * virtual genpd devices, which are created for each consumer device - genpd
2380 * pair. These are the device structures which are attached to the power domain
2381 * and are required by the OPP core to set the performance state of the genpd.
2382 * The same API also works for the case where single genpd is available and so
2383 * we don't need to support that separately.
2384 *
2385 * This helper will normally be called by the consumer driver of the device
2386 * "dev", as only that has details of the genpd names.
2387 *
2388 * This helper needs to be called once with a list of all genpd to attach.
2389 * Otherwise the original device structure will be used instead by the OPP core.
2390 *
2391 * The order of entries in the names array must match the order in which
2392 * "required-opps" are added in DT.
2393 */
2394static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2395			const char * const *names, struct device ***virt_devs)
2396{
2397	struct device *virt_dev;
2398	int index = 0, ret = -EINVAL;
2399	const char * const *name = names;
2400
2401	if (!opp_table->required_devs) {
2402		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2403		return -EINVAL;
2404	}
 
 
 
 
 
 
2405
2406	/* Genpd core takes care of propagation to parent genpd */
2407	if (opp_table->is_genpd) {
2408		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2409		return -EOPNOTSUPP;
2410	}
2411
2412	/* Checking only the first one is enough ? */
2413	if (opp_table->required_devs[0])
2414		return 0;
 
 
2415
2416	while (*name) {
2417		if (index >= opp_table->required_opp_count) {
2418			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2419				*name, opp_table->required_opp_count, index);
2420			goto err;
2421		}
2422
2423		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2424		if (IS_ERR_OR_NULL(virt_dev)) {
2425			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2426			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2427			goto err;
2428		}
2429
2430		/*
2431		 * Add the virtual genpd device as a user of the OPP table, so
2432		 * we can call dev_pm_opp_set_opp() on it directly.
2433		 *
2434		 * This will be automatically removed when the OPP table is
2435		 * removed, don't need to handle that here.
2436		 */
2437		if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2438			ret = -ENOMEM;
2439			goto err;
2440		}
2441
2442		opp_table->required_devs[index] = virt_dev;
2443		index++;
2444		name++;
2445	}
2446
2447	if (virt_devs)
2448		*virt_devs = opp_table->required_devs;
 
2449
2450	return 0;
2451
2452err:
2453	_opp_detach_genpd(opp_table);
 
 
2454	return ret;
2455
2456}
2457
2458static int _opp_set_required_devs(struct opp_table *opp_table,
2459				  struct device *dev,
2460				  struct device **required_devs)
 
 
 
 
 
2461{
2462	int i;
2463
2464	if (!opp_table->required_devs) {
2465		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2466		return -EINVAL;
2467	}
2468
2469	/* Another device that shares the OPP table has set the required devs ? */
2470	if (opp_table->required_devs[0])
2471		return 0;
2472
2473	for (i = 0; i < opp_table->required_opp_count; i++) {
2474		/* Genpd core takes care of propagation to parent genpd */
2475		if (required_devs[i] && opp_table->is_genpd &&
2476		    opp_table->required_opp_tables[i]->is_genpd) {
2477			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2478			return -EOPNOTSUPP;
2479		}
2480
2481		opp_table->required_devs[i] = required_devs[i];
2482	}
2483
2484	return 0;
2485}
2486
2487static void _opp_put_required_devs(struct opp_table *opp_table)
2488{
2489	int i;
2490
2491	for (i = 0; i < opp_table->required_opp_count; i++)
2492		opp_table->required_devs[i] = NULL;
2493}
2494
2495static void _opp_clear_config(struct opp_config_data *data)
2496{
2497	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2498		_opp_put_required_devs(data->opp_table);
2499	else if (data->flags & OPP_CONFIG_GENPD)
2500		_opp_detach_genpd(data->opp_table);
2501
2502	if (data->flags & OPP_CONFIG_REGULATOR)
2503		_opp_put_regulators(data->opp_table);
2504	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2505		_opp_put_supported_hw(data->opp_table);
2506	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2507		_opp_put_config_regulators_helper(data->opp_table);
2508	if (data->flags & OPP_CONFIG_PROP_NAME)
2509		_opp_put_prop_name(data->opp_table);
2510	if (data->flags & OPP_CONFIG_CLK)
2511		_opp_put_clknames(data->opp_table);
2512
2513	dev_pm_opp_put_opp_table(data->opp_table);
2514	kfree(data);
2515}
2516
2517/**
2518 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2519 * @dev: Device for which configuration is being set.
2520 * @config: OPP configuration.
2521 *
2522 * This allows all device OPP configurations to be performed at once.
2523 *
2524 * This must be called before any OPPs are initialized for the device. This may
2525 * be called multiple times for the same OPP table, for example once for each
2526 * CPU that share the same table. This must be balanced by the same number of
2527 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2528 *
2529 * This returns a token to the caller, which must be passed to
2530 * dev_pm_opp_clear_config() to free the resources later. The value of the
2531 * returned token will be >= 1 for success and negative for errors. The minimum
2532 * value of 1 is chosen here to make it easy for callers to manage the resource.
2533 */
2534int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2535{
2536	struct opp_table *opp_table;
2537	struct opp_config_data *data;
2538	unsigned int id;
2539	int ret;
2540
2541	data = kmalloc(sizeof(*data), GFP_KERNEL);
2542	if (!data)
2543		return -ENOMEM;
2544
2545	opp_table = _add_opp_table(dev, false);
2546	if (IS_ERR(opp_table)) {
2547		kfree(data);
2548		return PTR_ERR(opp_table);
2549	}
2550
2551	data->opp_table = opp_table;
2552	data->flags = 0;
2553
2554	/* This should be called before OPPs are initialized */
2555	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2556		ret = -EBUSY;
2557		goto err;
2558	}
2559
2560	/* Configure clocks */
2561	if (config->clk_names) {
2562		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2563					config->config_clks);
2564		if (ret)
2565			goto err;
2566
2567		data->flags |= OPP_CONFIG_CLK;
2568	} else if (config->config_clks) {
2569		/* Don't allow config callback without clocks */
2570		ret = -EINVAL;
2571		goto err;
2572	}
2573
2574	/* Configure property names */
2575	if (config->prop_name) {
2576		ret = _opp_set_prop_name(opp_table, config->prop_name);
2577		if (ret)
2578			goto err;
2579
2580		data->flags |= OPP_CONFIG_PROP_NAME;
2581	}
2582
2583	/* Configure config_regulators helper */
2584	if (config->config_regulators) {
2585		ret = _opp_set_config_regulators_helper(opp_table, dev,
2586						config->config_regulators);
2587		if (ret)
2588			goto err;
2589
2590		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2591	}
2592
2593	/* Configure supported hardware */
2594	if (config->supported_hw) {
2595		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2596					    config->supported_hw_count);
2597		if (ret)
2598			goto err;
2599
2600		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2601	}
2602
2603	/* Configure supplies */
2604	if (config->regulator_names) {
2605		ret = _opp_set_regulators(opp_table, dev,
2606					  config->regulator_names);
2607		if (ret)
2608			goto err;
2609
2610		data->flags |= OPP_CONFIG_REGULATOR;
2611	}
2612
2613	/* Attach genpds */
2614	if (config->genpd_names) {
2615		if (config->required_devs)
2616			goto err;
2617
2618		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2619					config->virt_devs);
2620		if (ret)
2621			goto err;
2622
2623		data->flags |= OPP_CONFIG_GENPD;
2624	} else if (config->required_devs) {
2625		ret = _opp_set_required_devs(opp_table, dev,
2626					     config->required_devs);
2627		if (ret)
2628			goto err;
2629
2630		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2631	}
2632
2633	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2634		       GFP_KERNEL);
2635	if (ret)
2636		goto err;
2637
2638	return id;
2639
2640err:
2641	_opp_clear_config(data);
2642	return ret;
2643}
2644EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2645
2646/**
2647 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2648 * @token: The token returned by dev_pm_opp_set_config() previously.
2649 *
2650 * This allows all device OPP configurations to be cleared at once. This must be
2651 * called once for each call made to dev_pm_opp_set_config(), in order to free
2652 * the OPPs properly.
2653 *
2654 * Currently the first call itself ends up freeing all the OPP configurations,
2655 * while the later ones only drop the OPP table reference. This works well for
2656 * now as we would never want to use an half initialized OPP table and want to
2657 * remove the configurations together.
2658 */
2659void dev_pm_opp_clear_config(int token)
2660{
2661	struct opp_config_data *data;
2662
2663	/*
2664	 * This lets the callers call this unconditionally and keep their code
2665	 * simple.
2666	 */
2667	if (unlikely(token <= 0))
2668		return;
2669
2670	data = xa_erase(&opp_configs, token);
2671	if (WARN_ON(!data))
2672		return;
2673
2674	_opp_clear_config(data);
2675}
2676EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2677
2678static void devm_pm_opp_config_release(void *token)
2679{
2680	dev_pm_opp_clear_config((unsigned long)token);
2681}
2682
2683/**
2684 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2685 * @dev: Device for which configuration is being set.
2686 * @config: OPP configuration.
2687 *
2688 * This allows all device OPP configurations to be performed at once.
2689 * This is a resource-managed variant of dev_pm_opp_set_config().
2690 *
2691 * Return: 0 on success and errorno otherwise.
2692 */
2693int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2694{
2695	int token = dev_pm_opp_set_config(dev, config);
2696
2697	if (token < 0)
2698		return token;
2699
2700	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2701					(void *) ((unsigned long) token));
2702}
2703EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2704
2705/**
2706 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2707 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2708 * @dst_table: Required OPP table of the @src_table.
2709 * @src_opp: OPP from the @src_table.
2710 *
2711 * This function returns the OPP (present in @dst_table) pointed out by the
2712 * "required-opps" property of the @src_opp (present in @src_table).
2713 *
2714 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2715 * use.
2716 *
2717 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2718 */
2719struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2720						 struct opp_table *dst_table,
2721						 struct dev_pm_opp *src_opp)
2722{
2723	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2724	int i;
2725
2726	if (!src_table || !dst_table || !src_opp ||
2727	    !src_table->required_opp_tables)
2728		return ERR_PTR(-EINVAL);
2729
2730	/* required-opps not fully initialized yet */
2731	if (lazy_linking_pending(src_table))
2732		return ERR_PTR(-EBUSY);
2733
2734	for (i = 0; i < src_table->required_opp_count; i++) {
2735		if (src_table->required_opp_tables[i] == dst_table) {
2736			mutex_lock(&src_table->lock);
2737
2738			list_for_each_entry(opp, &src_table->opp_list, node) {
2739				if (opp == src_opp) {
2740					dest_opp = opp->required_opps[i];
2741					dev_pm_opp_get(dest_opp);
2742					break;
2743				}
2744			}
2745
2746			mutex_unlock(&src_table->lock);
2747			break;
2748		}
2749	}
2750
2751	if (IS_ERR(dest_opp)) {
2752		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2753		       src_table, dst_table);
2754	}
2755
2756	return dest_opp;
2757}
2758EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2759
2760/**
2761 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2762 * @src_table: OPP table which has dst_table as one of its required OPP table.
2763 * @dst_table: Required OPP table of the src_table.
2764 * @pstate: Current performance state of the src_table.
2765 *
2766 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2767 * "required-opps" property of the OPP (present in @src_table) which has
2768 * performance state set to @pstate.
2769 *
2770 * Return: Zero or positive performance state on success, otherwise negative
2771 * value on errors.
2772 */
2773int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2774				       struct opp_table *dst_table,
2775				       unsigned int pstate)
2776{
2777	struct dev_pm_opp *opp;
2778	int dest_pstate = -EINVAL;
2779	int i;
2780
2781	/*
2782	 * Normally the src_table will have the "required_opps" property set to
2783	 * point to one of the OPPs in the dst_table, but in some cases the
2784	 * genpd and its master have one to one mapping of performance states
2785	 * and so none of them have the "required-opps" property set. Return the
2786	 * pstate of the src_table as it is in such cases.
2787	 */
2788	if (!src_table || !src_table->required_opp_count)
2789		return pstate;
2790
2791	/* Both OPP tables must belong to genpds */
2792	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2793		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2794		return -EINVAL;
2795	}
2796
2797	/* required-opps not fully initialized yet */
2798	if (lazy_linking_pending(src_table))
2799		return -EBUSY;
2800
2801	for (i = 0; i < src_table->required_opp_count; i++) {
2802		if (src_table->required_opp_tables[i]->np == dst_table->np)
2803			break;
2804	}
2805
2806	if (unlikely(i == src_table->required_opp_count)) {
2807		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2808		       __func__, src_table, dst_table);
2809		return -EINVAL;
2810	}
2811
2812	mutex_lock(&src_table->lock);
2813
2814	list_for_each_entry(opp, &src_table->opp_list, node) {
2815		if (opp->level == pstate) {
2816			dest_pstate = opp->required_opps[i]->level;
2817			goto unlock;
2818		}
2819	}
2820
2821	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2822	       dst_table);
2823
2824unlock:
2825	mutex_unlock(&src_table->lock);
2826
2827	return dest_pstate;
2828}
2829
2830/**
2831 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2832 * @dev:	The device for which we do this operation
2833 * @data:	The OPP data for the OPP to add
 
2834 *
2835 * This function adds an opp definition to the opp table and returns status.
2836 * The opp is made available by default and it can be controlled using
2837 * dev_pm_opp_enable/disable functions.
2838 *
2839 * Return:
2840 * 0		On success OR
2841 *		Duplicate OPPs (both freq and volt are same) and opp->available
2842 * -EEXIST	Freq are same and volt are different OR
2843 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2844 * -ENOMEM	Memory allocation failure
2845 */
2846int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2847{
2848	struct opp_table *opp_table;
2849	int ret;
2850
2851	opp_table = _add_opp_table(dev, true);
2852	if (IS_ERR(opp_table))
2853		return PTR_ERR(opp_table);
2854
2855	/* Fix regulator count for dynamic OPPs */
2856	opp_table->regulator_count = 1;
2857
2858	ret = _opp_add_v1(opp_table, dev, data, true);
2859	if (ret)
2860		dev_pm_opp_put_opp_table(opp_table);
2861
2862	return ret;
2863}
2864EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2865
2866/**
2867 * _opp_set_availability() - helper to set the availability of an opp
2868 * @dev:		device for which we do this operation
2869 * @freq:		OPP frequency to modify availability
2870 * @availability_req:	availability status requested for this opp
2871 *
2872 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2873 * which is isolated here.
2874 *
2875 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2876 * copy operation, returns 0 if no modification was done OR modification was
2877 * successful.
2878 */
2879static int _opp_set_availability(struct device *dev, unsigned long freq,
2880				 bool availability_req)
2881{
2882	struct opp_table *opp_table;
2883	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2884	int r = 0;
2885
2886	/* Find the opp_table */
2887	opp_table = _find_opp_table(dev);
2888	if (IS_ERR(opp_table)) {
2889		r = PTR_ERR(opp_table);
2890		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2891		return r;
2892	}
2893
2894	if (!assert_single_clk(opp_table)) {
2895		r = -EINVAL;
2896		goto put_table;
2897	}
2898
2899	mutex_lock(&opp_table->lock);
2900
2901	/* Do we have the frequency? */
2902	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2903		if (tmp_opp->rates[0] == freq) {
2904			opp = tmp_opp;
2905			break;
2906		}
2907	}
2908
2909	if (IS_ERR(opp)) {
2910		r = PTR_ERR(opp);
2911		goto unlock;
2912	}
2913
2914	/* Is update really needed? */
2915	if (opp->available == availability_req)
2916		goto unlock;
2917
2918	opp->available = availability_req;
2919
2920	dev_pm_opp_get(opp);
2921	mutex_unlock(&opp_table->lock);
2922
2923	/* Notify the change of the OPP availability */
2924	if (availability_req)
2925		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2926					     opp);
2927	else
2928		blocking_notifier_call_chain(&opp_table->head,
2929					     OPP_EVENT_DISABLE, opp);
2930
2931	dev_pm_opp_put(opp);
2932	goto put_table;
2933
2934unlock:
2935	mutex_unlock(&opp_table->lock);
2936put_table:
2937	dev_pm_opp_put_opp_table(opp_table);
2938	return r;
2939}
2940
2941/**
2942 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2943 * @dev:		device for which we do this operation
2944 * @freq:		OPP frequency to adjust voltage of
2945 * @u_volt:		new OPP target voltage
2946 * @u_volt_min:		new OPP min voltage
2947 * @u_volt_max:		new OPP max voltage
2948 *
2949 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2950 * copy operation, returns 0 if no modifcation was done OR modification was
2951 * successful.
2952 */
2953int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2954			      unsigned long u_volt, unsigned long u_volt_min,
2955			      unsigned long u_volt_max)
2956
2957{
2958	struct opp_table *opp_table;
2959	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2960	int r = 0;
2961
2962	/* Find the opp_table */
2963	opp_table = _find_opp_table(dev);
2964	if (IS_ERR(opp_table)) {
2965		r = PTR_ERR(opp_table);
2966		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2967		return r;
2968	}
2969
2970	if (!assert_single_clk(opp_table)) {
2971		r = -EINVAL;
2972		goto put_table;
2973	}
2974
2975	mutex_lock(&opp_table->lock);
2976
2977	/* Do we have the frequency? */
2978	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2979		if (tmp_opp->rates[0] == freq) {
2980			opp = tmp_opp;
2981			break;
2982		}
2983	}
2984
2985	if (IS_ERR(opp)) {
2986		r = PTR_ERR(opp);
2987		goto adjust_unlock;
2988	}
2989
2990	/* Is update really needed? */
2991	if (opp->supplies->u_volt == u_volt)
2992		goto adjust_unlock;
2993
2994	opp->supplies->u_volt = u_volt;
2995	opp->supplies->u_volt_min = u_volt_min;
2996	opp->supplies->u_volt_max = u_volt_max;
2997
2998	dev_pm_opp_get(opp);
2999	mutex_unlock(&opp_table->lock);
3000
3001	/* Notify the voltage change of the OPP */
3002	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3003				     opp);
3004
3005	dev_pm_opp_put(opp);
3006	goto put_table;
3007
3008adjust_unlock:
3009	mutex_unlock(&opp_table->lock);
3010put_table:
3011	dev_pm_opp_put_opp_table(opp_table);
3012	return r;
3013}
3014EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3015
3016/**
3017 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3018 * @dev:	device for which we do this operation
3019 *
3020 * Sync voltage state of the OPP table regulators.
3021 *
3022 * Return: 0 on success or a negative error value.
3023 */
3024int dev_pm_opp_sync_regulators(struct device *dev)
3025{
3026	struct opp_table *opp_table;
3027	struct regulator *reg;
3028	int i, ret = 0;
3029
3030	/* Device may not have OPP table */
3031	opp_table = _find_opp_table(dev);
3032	if (IS_ERR(opp_table))
3033		return 0;
3034
3035	/* Regulator may not be required for the device */
3036	if (unlikely(!opp_table->regulators))
3037		goto put_table;
3038
3039	/* Nothing to sync if voltage wasn't changed */
3040	if (!opp_table->enabled)
3041		goto put_table;
3042
3043	for (i = 0; i < opp_table->regulator_count; i++) {
3044		reg = opp_table->regulators[i];
3045		ret = regulator_sync_voltage(reg);
3046		if (ret)
3047			break;
3048	}
3049put_table:
3050	/* Drop reference taken by _find_opp_table() */
3051	dev_pm_opp_put_opp_table(opp_table);
3052
3053	return ret;
3054}
3055EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3056
3057/**
3058 * dev_pm_opp_enable() - Enable a specific OPP
3059 * @dev:	device for which we do this operation
3060 * @freq:	OPP frequency to enable
3061 *
3062 * Enables a provided opp. If the operation is valid, this returns 0, else the
3063 * corresponding error value. It is meant to be used for users an OPP available
3064 * after being temporarily made unavailable with dev_pm_opp_disable.
3065 *
3066 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3067 * copy operation, returns 0 if no modification was done OR modification was
3068 * successful.
3069 */
3070int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3071{
3072	return _opp_set_availability(dev, freq, true);
3073}
3074EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3075
3076/**
3077 * dev_pm_opp_disable() - Disable a specific OPP
3078 * @dev:	device for which we do this operation
3079 * @freq:	OPP frequency to disable
3080 *
3081 * Disables a provided opp. If the operation is valid, this returns
3082 * 0, else the corresponding error value. It is meant to be a temporary
3083 * control by users to make this OPP not available until the circumstances are
3084 * right to make it available again (with a call to dev_pm_opp_enable).
3085 *
3086 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3087 * copy operation, returns 0 if no modification was done OR modification was
3088 * successful.
3089 */
3090int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3091{
3092	return _opp_set_availability(dev, freq, false);
3093}
3094EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3095
3096/**
3097 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3098 * @dev:	Device for which notifier needs to be registered
3099 * @nb:		Notifier block to be registered
3100 *
3101 * Return: 0 on success or a negative error value.
3102 */
3103int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3104{
3105	struct opp_table *opp_table;
3106	int ret;
3107
3108	opp_table = _find_opp_table(dev);
3109	if (IS_ERR(opp_table))
3110		return PTR_ERR(opp_table);
3111
3112	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3113
3114	dev_pm_opp_put_opp_table(opp_table);
3115
3116	return ret;
3117}
3118EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3119
3120/**
3121 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3122 * @dev:	Device for which notifier needs to be unregistered
3123 * @nb:		Notifier block to be unregistered
3124 *
3125 * Return: 0 on success or a negative error value.
3126 */
3127int dev_pm_opp_unregister_notifier(struct device *dev,
3128				   struct notifier_block *nb)
3129{
3130	struct opp_table *opp_table;
3131	int ret;
3132
3133	opp_table = _find_opp_table(dev);
3134	if (IS_ERR(opp_table))
3135		return PTR_ERR(opp_table);
3136
3137	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3138
3139	dev_pm_opp_put_opp_table(opp_table);
3140
3141	return ret;
3142}
3143EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3144
3145/**
3146 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3147 * @dev:	device pointer used to lookup OPP table.
3148 *
3149 * Free both OPPs created using static entries present in DT and the
3150 * dynamically added entries.
3151 */
3152void dev_pm_opp_remove_table(struct device *dev)
3153{
3154	struct opp_table *opp_table;
3155
3156	/* Check for existing table for 'dev' */
3157	opp_table = _find_opp_table(dev);
3158	if (IS_ERR(opp_table)) {
3159		int error = PTR_ERR(opp_table);
3160
3161		if (error != -ENODEV)
3162			WARN(1, "%s: opp_table: %d\n",
3163			     IS_ERR_OR_NULL(dev) ?
3164					"Invalid device" : dev_name(dev),
3165			     error);
3166		return;
3167	}
3168
3169	/*
3170	 * Drop the extra reference only if the OPP table was successfully added
3171	 * with dev_pm_opp_of_add_table() earlier.
3172	 **/
3173	if (_opp_remove_all_static(opp_table))
3174		dev_pm_opp_put_opp_table(opp_table);
3175
3176	/* Drop reference taken by _find_opp_table() */
3177	dev_pm_opp_put_opp_table(opp_table);
3178}
3179EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);