Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* OPP tables with uninitialized required OPPs */
33LIST_HEAD(lazy_opp_tables);
34
35/* Lock to allow exclusive modification to the device and opp lists */
36DEFINE_MUTEX(opp_table_lock);
37/* Flag indicating that opp_tables list is being updated at the moment */
38static bool opp_tables_busy;
39
40/* OPP ID allocator */
41static DEFINE_XARRAY_ALLOC1(opp_configs);
42
43static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
44{
45 struct opp_device *opp_dev;
46 bool found = false;
47
48 mutex_lock(&opp_table->lock);
49 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 if (opp_dev->dev == dev) {
51 found = true;
52 break;
53 }
54
55 mutex_unlock(&opp_table->lock);
56 return found;
57}
58
59static struct opp_table *_find_opp_table_unlocked(struct device *dev)
60{
61 struct opp_table *opp_table;
62
63 list_for_each_entry(opp_table, &opp_tables, node) {
64 if (_find_opp_dev(dev, opp_table)) {
65 _get_opp_table_kref(opp_table);
66 return opp_table;
67 }
68 }
69
70 return ERR_PTR(-ENODEV);
71}
72
73/**
74 * _find_opp_table() - find opp_table struct using device pointer
75 * @dev: device pointer used to lookup OPP table
76 *
77 * Search OPP table for one containing matching device.
78 *
79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80 * -EINVAL based on type of error.
81 *
82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
83 */
84struct opp_table *_find_opp_table(struct device *dev)
85{
86 struct opp_table *opp_table;
87
88 if (IS_ERR_OR_NULL(dev)) {
89 pr_err("%s: Invalid parameters\n", __func__);
90 return ERR_PTR(-EINVAL);
91 }
92
93 mutex_lock(&opp_table_lock);
94 opp_table = _find_opp_table_unlocked(dev);
95 mutex_unlock(&opp_table_lock);
96
97 return opp_table;
98}
99
100/*
101 * Returns true if multiple clocks aren't there, else returns false with WARN.
102 *
103 * We don't force clk_count == 1 here as there are users who don't have a clock
104 * representation in the OPP table and manage the clock configuration themselves
105 * in an platform specific way.
106 */
107static bool assert_single_clk(struct opp_table *opp_table)
108{
109 return !WARN_ON(opp_table->clk_count > 1);
110}
111
112/**
113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114 * @opp: opp for which voltage has to be returned for
115 *
116 * Return: voltage in micro volt corresponding to the opp, else
117 * return 0
118 *
119 * This is useful only for devices with single power supply.
120 */
121unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
122{
123 if (IS_ERR_OR_NULL(opp)) {
124 pr_err("%s: Invalid parameters\n", __func__);
125 return 0;
126 }
127
128 return opp->supplies[0].u_volt;
129}
130EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
131
132/**
133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134 * @opp: opp for which voltage has to be returned for
135 * @supplies: Placeholder for copying the supply information.
136 *
137 * Return: negative error number on failure, 0 otherwise on success after
138 * setting @supplies.
139 *
140 * This can be used for devices with any number of power supplies. The caller
141 * must ensure the @supplies array must contain space for each regulator.
142 */
143int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 struct dev_pm_opp_supply *supplies)
145{
146 if (IS_ERR_OR_NULL(opp) || !supplies) {
147 pr_err("%s: Invalid parameters\n", __func__);
148 return -EINVAL;
149 }
150
151 memcpy(supplies, opp->supplies,
152 sizeof(*supplies) * opp->opp_table->regulator_count);
153 return 0;
154}
155EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
156
157/**
158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159 * @opp: opp for which power has to be returned for
160 *
161 * Return: power in micro watt corresponding to the opp, else
162 * return 0
163 *
164 * This is useful only for devices with single power supply.
165 */
166unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
167{
168 unsigned long opp_power = 0;
169 int i;
170
171 if (IS_ERR_OR_NULL(opp)) {
172 pr_err("%s: Invalid parameters\n", __func__);
173 return 0;
174 }
175 for (i = 0; i < opp->opp_table->regulator_count; i++)
176 opp_power += opp->supplies[i].u_watt;
177
178 return opp_power;
179}
180EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
181
182/**
183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184 * @opp: opp for which frequency has to be returned for
185 *
186 * Return: frequency in hertz corresponding to the opp, else
187 * return 0
188 */
189unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
190{
191 if (IS_ERR_OR_NULL(opp)) {
192 pr_err("%s: Invalid parameters\n", __func__);
193 return 0;
194 }
195
196 if (!assert_single_clk(opp->opp_table))
197 return 0;
198
199 return opp->rates[0];
200}
201EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
202
203/**
204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205 * @opp: opp for which level value has to be returned for
206 *
207 * Return: level read from device tree corresponding to the opp, else
208 * return 0.
209 */
210unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
211{
212 if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 pr_err("%s: Invalid parameters\n", __func__);
214 return 0;
215 }
216
217 return opp->level;
218}
219EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
220
221/**
222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
223 * corresponding to an available opp
224 * @opp: opp for which performance state has to be returned for
225 * @index: index of the required opp
226 *
227 * Return: performance state read from device tree corresponding to the
228 * required opp, else return 0.
229 */
230unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
231 unsigned int index)
232{
233 if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 index >= opp->opp_table->required_opp_count) {
235 pr_err("%s: Invalid parameters\n", __func__);
236 return 0;
237 }
238
239 /* required-opps not fully initialized yet */
240 if (lazy_linking_pending(opp->opp_table))
241 return 0;
242
243 return opp->required_opps[index]->pstate;
244}
245EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
246
247/**
248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249 * @opp: opp for which turbo mode is being verified
250 *
251 * Turbo OPPs are not for normal use, and can be enabled (under certain
252 * conditions) for short duration of times to finish high throughput work
253 * quickly. Running on them for longer times may overheat the chip.
254 *
255 * Return: true if opp is turbo opp, else false.
256 */
257bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
258{
259 if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 pr_err("%s: Invalid parameters\n", __func__);
261 return false;
262 }
263
264 return opp->turbo;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
267
268/**
269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270 * @dev: device for which we do this operation
271 *
272 * Return: This function returns the max clock latency in nanoseconds.
273 */
274unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
275{
276 struct opp_table *opp_table;
277 unsigned long clock_latency_ns;
278
279 opp_table = _find_opp_table(dev);
280 if (IS_ERR(opp_table))
281 return 0;
282
283 clock_latency_ns = opp_table->clock_latency_ns_max;
284
285 dev_pm_opp_put_opp_table(opp_table);
286
287 return clock_latency_ns;
288}
289EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
290
291/**
292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293 * @dev: device for which we do this operation
294 *
295 * Return: This function returns the max voltage latency in nanoseconds.
296 */
297unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
298{
299 struct opp_table *opp_table;
300 struct dev_pm_opp *opp;
301 struct regulator *reg;
302 unsigned long latency_ns = 0;
303 int ret, i, count;
304 struct {
305 unsigned long min;
306 unsigned long max;
307 } *uV;
308
309 opp_table = _find_opp_table(dev);
310 if (IS_ERR(opp_table))
311 return 0;
312
313 /* Regulator may not be required for the device */
314 if (!opp_table->regulators)
315 goto put_opp_table;
316
317 count = opp_table->regulator_count;
318
319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
320 if (!uV)
321 goto put_opp_table;
322
323 mutex_lock(&opp_table->lock);
324
325 for (i = 0; i < count; i++) {
326 uV[i].min = ~0;
327 uV[i].max = 0;
328
329 list_for_each_entry(opp, &opp_table->opp_list, node) {
330 if (!opp->available)
331 continue;
332
333 if (opp->supplies[i].u_volt_min < uV[i].min)
334 uV[i].min = opp->supplies[i].u_volt_min;
335 if (opp->supplies[i].u_volt_max > uV[i].max)
336 uV[i].max = opp->supplies[i].u_volt_max;
337 }
338 }
339
340 mutex_unlock(&opp_table->lock);
341
342 /*
343 * The caller needs to ensure that opp_table (and hence the regulator)
344 * isn't freed, while we are executing this routine.
345 */
346 for (i = 0; i < count; i++) {
347 reg = opp_table->regulators[i];
348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
349 if (ret > 0)
350 latency_ns += ret * 1000;
351 }
352
353 kfree(uV);
354put_opp_table:
355 dev_pm_opp_put_opp_table(opp_table);
356
357 return latency_ns;
358}
359EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
360
361/**
362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
363 * nanoseconds
364 * @dev: device for which we do this operation
365 *
366 * Return: This function returns the max transition latency, in nanoseconds, to
367 * switch from one OPP to other.
368 */
369unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
370{
371 return dev_pm_opp_get_max_volt_latency(dev) +
372 dev_pm_opp_get_max_clock_latency(dev);
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
375
376/**
377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378 * @dev: device for which we do this operation
379 *
380 * Return: This function returns the frequency of the OPP marked as suspend_opp
381 * if one is available, else returns 0;
382 */
383unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
384{
385 struct opp_table *opp_table;
386 unsigned long freq = 0;
387
388 opp_table = _find_opp_table(dev);
389 if (IS_ERR(opp_table))
390 return 0;
391
392 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
394
395 dev_pm_opp_put_opp_table(opp_table);
396
397 return freq;
398}
399EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
400
401int _get_opp_count(struct opp_table *opp_table)
402{
403 struct dev_pm_opp *opp;
404 int count = 0;
405
406 mutex_lock(&opp_table->lock);
407
408 list_for_each_entry(opp, &opp_table->opp_list, node) {
409 if (opp->available)
410 count++;
411 }
412
413 mutex_unlock(&opp_table->lock);
414
415 return count;
416}
417
418/**
419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420 * @dev: device for which we do this operation
421 *
422 * Return: This function returns the number of available opps if there are any,
423 * else returns 0 if none or the corresponding error value.
424 */
425int dev_pm_opp_get_opp_count(struct device *dev)
426{
427 struct opp_table *opp_table;
428 int count;
429
430 opp_table = _find_opp_table(dev);
431 if (IS_ERR(opp_table)) {
432 count = PTR_ERR(opp_table);
433 dev_dbg(dev, "%s: OPP table not found (%d)\n",
434 __func__, count);
435 return count;
436 }
437
438 count = _get_opp_count(opp_table);
439 dev_pm_opp_put_opp_table(opp_table);
440
441 return count;
442}
443EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
444
445/* Helpers to read keys */
446static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
447{
448 return opp->rates[0];
449}
450
451static unsigned long _read_level(struct dev_pm_opp *opp, int index)
452{
453 return opp->level;
454}
455
456static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
457{
458 return opp->bandwidth[index].peak;
459}
460
461/* Generic comparison helpers */
462static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 unsigned long opp_key, unsigned long key)
464{
465 if (opp_key == key) {
466 *opp = temp_opp;
467 return true;
468 }
469
470 return false;
471}
472
473static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 unsigned long opp_key, unsigned long key)
475{
476 if (opp_key >= key) {
477 *opp = temp_opp;
478 return true;
479 }
480
481 return false;
482}
483
484static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 unsigned long opp_key, unsigned long key)
486{
487 if (opp_key > key)
488 return true;
489
490 *opp = temp_opp;
491 return false;
492}
493
494/* Generic key finding helpers */
495static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 unsigned long *key, int index, bool available,
497 unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 unsigned long opp_key, unsigned long key),
500 bool (*assert)(struct opp_table *opp_table))
501{
502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
503
504 /* Assert that the requirement is met */
505 if (assert && !assert(opp_table))
506 return ERR_PTR(-EINVAL);
507
508 mutex_lock(&opp_table->lock);
509
510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 if (temp_opp->available == available) {
512 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
513 break;
514 }
515 }
516
517 /* Increment the reference count of OPP */
518 if (!IS_ERR(opp)) {
519 *key = read(opp, index);
520 dev_pm_opp_get(opp);
521 }
522
523 mutex_unlock(&opp_table->lock);
524
525 return opp;
526}
527
528static struct dev_pm_opp *
529_find_key(struct device *dev, unsigned long *key, int index, bool available,
530 unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 unsigned long opp_key, unsigned long key),
533 bool (*assert)(struct opp_table *opp_table))
534{
535 struct opp_table *opp_table;
536 struct dev_pm_opp *opp;
537
538 opp_table = _find_opp_table(dev);
539 if (IS_ERR(opp_table)) {
540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
541 PTR_ERR(opp_table));
542 return ERR_CAST(opp_table);
543 }
544
545 opp = _opp_table_find_key(opp_table, key, index, available, read,
546 compare, assert);
547
548 dev_pm_opp_put_opp_table(opp_table);
549
550 return opp;
551}
552
553static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 unsigned long key, int index, bool available,
555 unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 bool (*assert)(struct opp_table *opp_table))
557{
558 /*
559 * The value of key will be updated here, but will be ignored as the
560 * caller doesn't need it.
561 */
562 return _find_key(dev, &key, index, available, read, _compare_exact,
563 assert);
564}
565
566static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 unsigned long *key, int index, bool available,
568 unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 bool (*assert)(struct opp_table *opp_table))
570{
571 return _opp_table_find_key(opp_table, key, index, available, read,
572 _compare_ceil, assert);
573}
574
575static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 int index, bool available,
577 unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 bool (*assert)(struct opp_table *opp_table))
579{
580 return _find_key(dev, key, index, available, read, _compare_ceil,
581 assert);
582}
583
584static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 unsigned long *key, int index, bool available,
586 unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 bool (*assert)(struct opp_table *opp_table))
588{
589 return _find_key(dev, key, index, available, read, _compare_floor,
590 assert);
591}
592
593/**
594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
595 * @dev: device for which we do this operation
596 * @freq: frequency to search for
597 * @available: true/false - match for available opp
598 *
599 * Return: Searches for exact match in the opp table and returns pointer to the
600 * matching opp if found, else returns ERR_PTR in case of error and should
601 * be handled using IS_ERR. Error return values can be:
602 * EINVAL: for bad pointer
603 * ERANGE: no match found for search
604 * ENODEV: if device not found in list of registered devices
605 *
606 * Note: available is a modifier for the search. if available=true, then the
607 * match is for exact matching frequency and is available in the stored OPP
608 * table. if false, the match is for exact frequency which is not available.
609 *
610 * This provides a mechanism to enable an opp which is not available currently
611 * or the opposite as well.
612 *
613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
614 * use.
615 */
616struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 unsigned long freq, bool available)
618{
619 return _find_key_exact(dev, freq, 0, available, _read_freq,
620 assert_single_clk);
621}
622EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
623
624static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
625 unsigned long *freq)
626{
627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
628 assert_single_clk);
629}
630
631/**
632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633 * @dev: device for which we do this operation
634 * @freq: Start frequency
635 *
636 * Search for the matching ceil *available* OPP from a starting freq
637 * for a device.
638 *
639 * Return: matching *opp and refreshes *freq accordingly, else returns
640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
641 * values can be:
642 * EINVAL: for bad pointer
643 * ERANGE: no match found for search
644 * ENODEV: if device not found in list of registered devices
645 *
646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
647 * use.
648 */
649struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
650 unsigned long *freq)
651{
652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
653}
654EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
655
656/**
657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658 * @dev: device for which we do this operation
659 * @freq: Start frequency
660 *
661 * Search for the matching floor *available* OPP from a starting freq
662 * for a device.
663 *
664 * Return: matching *opp and refreshes *freq accordingly, else returns
665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
666 * values can be:
667 * EINVAL: for bad pointer
668 * ERANGE: no match found for search
669 * ENODEV: if device not found in list of registered devices
670 *
671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
672 * use.
673 */
674struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
675 unsigned long *freq)
676{
677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
678}
679EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
680
681/**
682 * dev_pm_opp_find_level_exact() - search for an exact level
683 * @dev: device for which we do this operation
684 * @level: level to search for
685 *
686 * Return: Searches for exact match in the opp table and returns pointer to the
687 * matching opp if found, else returns ERR_PTR in case of error and should
688 * be handled using IS_ERR. Error return values can be:
689 * EINVAL: for bad pointer
690 * ERANGE: no match found for search
691 * ENODEV: if device not found in list of registered devices
692 *
693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
694 * use.
695 */
696struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
697 unsigned int level)
698{
699 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
700}
701EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
702
703/**
704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
705 * @dev: device for which we do this operation
706 * @level: level to search for
707 *
708 * Return: Searches for rounded up match in the opp table and returns pointer
709 * to the matching opp if found, else returns ERR_PTR in case of error and
710 * should be handled using IS_ERR. Error return values can be:
711 * EINVAL: for bad pointer
712 * ERANGE: no match found for search
713 * ENODEV: if device not found in list of registered devices
714 *
715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
716 * use.
717 */
718struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
719 unsigned int *level)
720{
721 unsigned long temp = *level;
722 struct dev_pm_opp *opp;
723
724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
725 *level = temp;
726 return opp;
727}
728EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
729
730/**
731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732 * @dev: device for which we do this operation
733 * @bw: start bandwidth
734 * @index: which bandwidth to compare, in case of OPPs with several values
735 *
736 * Search for the matching floor *available* OPP from a starting bandwidth
737 * for a device.
738 *
739 * Return: matching *opp and refreshes *bw accordingly, else returns
740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
741 * values can be:
742 * EINVAL: for bad pointer
743 * ERANGE: no match found for search
744 * ENODEV: if device not found in list of registered devices
745 *
746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
747 * use.
748 */
749struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
750 int index)
751{
752 unsigned long temp = *bw;
753 struct dev_pm_opp *opp;
754
755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
756 *bw = temp;
757 return opp;
758}
759EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
760
761/**
762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763 * @dev: device for which we do this operation
764 * @bw: start bandwidth
765 * @index: which bandwidth to compare, in case of OPPs with several values
766 *
767 * Search for the matching floor *available* OPP from a starting bandwidth
768 * for a device.
769 *
770 * Return: matching *opp and refreshes *bw accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 unsigned int *bw, int index)
782{
783 unsigned long temp = *bw;
784 struct dev_pm_opp *opp;
785
786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
787 *bw = temp;
788 return opp;
789}
790EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
791
792static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 struct dev_pm_opp_supply *supply)
794{
795 int ret;
796
797 /* Regulator not available for device */
798 if (IS_ERR(reg)) {
799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
800 PTR_ERR(reg));
801 return 0;
802 }
803
804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
806
807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 supply->u_volt, supply->u_volt_max);
809 if (ret)
810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 __func__, supply->u_volt_min, supply->u_volt,
812 supply->u_volt_max, ret);
813
814 return ret;
815}
816
817static int
818_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 struct dev_pm_opp *opp, void *data, bool scaling_down)
820{
821 unsigned long *target = data;
822 unsigned long freq;
823 int ret;
824
825 /* One of target and opp must be available */
826 if (target) {
827 freq = *target;
828 } else if (opp) {
829 freq = opp->rates[0];
830 } else {
831 WARN_ON(1);
832 return -EINVAL;
833 }
834
835 ret = clk_set_rate(opp_table->clk, freq);
836 if (ret) {
837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
838 ret);
839 } else {
840 opp_table->rate_clk_single = freq;
841 }
842
843 return ret;
844}
845
846/*
847 * Simple implementation for configuring multiple clocks. Configure clocks in
848 * the order in which they are present in the array while scaling up.
849 */
850int dev_pm_opp_config_clks_simple(struct device *dev,
851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
852 bool scaling_down)
853{
854 int ret, i;
855
856 if (scaling_down) {
857 for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
859 if (ret) {
860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
861 ret);
862 return ret;
863 }
864 }
865 } else {
866 for (i = 0; i < opp_table->clk_count; i++) {
867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
868 if (ret) {
869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
870 ret);
871 return ret;
872 }
873 }
874 }
875
876 return 0;
877}
878EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
879
880static int _opp_config_regulator_single(struct device *dev,
881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 struct regulator **regulators, unsigned int count)
883{
884 struct regulator *reg = regulators[0];
885 int ret;
886
887 /* This function only supports single regulator per device */
888 if (WARN_ON(count > 1)) {
889 dev_err(dev, "multiple regulators are not supported\n");
890 return -EINVAL;
891 }
892
893 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
894 if (ret)
895 return ret;
896
897 /*
898 * Enable the regulator after setting its voltages, otherwise it breaks
899 * some boot-enabled regulators.
900 */
901 if (unlikely(!new_opp->opp_table->enabled)) {
902 ret = regulator_enable(reg);
903 if (ret < 0)
904 dev_warn(dev, "Failed to enable regulator: %d", ret);
905 }
906
907 return 0;
908}
909
910static int _set_opp_bw(const struct opp_table *opp_table,
911 struct dev_pm_opp *opp, struct device *dev)
912{
913 u32 avg, peak;
914 int i, ret;
915
916 if (!opp_table->paths)
917 return 0;
918
919 for (i = 0; i < opp_table->path_count; i++) {
920 if (!opp) {
921 avg = 0;
922 peak = 0;
923 } else {
924 avg = opp->bandwidth[i].avg;
925 peak = opp->bandwidth[i].peak;
926 }
927 ret = icc_set_bw(opp_table->paths[i], avg, peak);
928 if (ret) {
929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 opp ? "set" : "remove", i, ret);
931 return ret;
932 }
933 }
934
935 return 0;
936}
937
938static int _set_required_opp(struct device *dev, struct device *pd_dev,
939 struct dev_pm_opp *opp, int i)
940{
941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
942 int ret;
943
944 if (!pd_dev)
945 return 0;
946
947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
948 if (ret) {
949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 dev_name(pd_dev), pstate, ret);
951 }
952
953 return ret;
954}
955
956/* This is only called for PM domain for now */
957static int _set_required_opps(struct device *dev,
958 struct opp_table *opp_table,
959 struct dev_pm_opp *opp, bool up)
960{
961 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
962 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
963 int i, ret = 0;
964
965 if (!required_opp_tables)
966 return 0;
967
968 /* required-opps not fully initialized yet */
969 if (lazy_linking_pending(opp_table))
970 return -EBUSY;
971
972 /*
973 * We only support genpd's OPPs in the "required-opps" for now, as we
974 * don't know much about other use cases. Error out if the required OPP
975 * doesn't belong to a genpd.
976 */
977 if (unlikely(!required_opp_tables[0]->is_genpd)) {
978 dev_err(dev, "required-opps don't belong to a genpd\n");
979 return -ENOENT;
980 }
981
982 /* Single genpd case */
983 if (!genpd_virt_devs)
984 return _set_required_opp(dev, dev, opp, 0);
985
986 /* Multiple genpd case */
987
988 /*
989 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
990 * after it is freed from another thread.
991 */
992 mutex_lock(&opp_table->genpd_virt_dev_lock);
993
994 /* Scaling up? Set required OPPs in normal order, else reverse */
995 if (up) {
996 for (i = 0; i < opp_table->required_opp_count; i++) {
997 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
998 if (ret)
999 break;
1000 }
1001 } else {
1002 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004 if (ret)
1005 break;
1006 }
1007 }
1008
1009 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010
1011 return ret;
1012}
1013
1014static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015{
1016 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017 unsigned long freq;
1018
1019 if (!IS_ERR(opp_table->clk)) {
1020 freq = clk_get_rate(opp_table->clk);
1021 opp = _find_freq_ceil(opp_table, &freq);
1022 }
1023
1024 /*
1025 * Unable to find the current OPP ? Pick the first from the list since
1026 * it is in ascending order, otherwise rest of the code will need to
1027 * make special checks to validate current_opp.
1028 */
1029 if (IS_ERR(opp)) {
1030 mutex_lock(&opp_table->lock);
1031 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032 dev_pm_opp_get(opp);
1033 mutex_unlock(&opp_table->lock);
1034 }
1035
1036 opp_table->current_opp = opp;
1037}
1038
1039static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040{
1041 int ret;
1042
1043 if (!opp_table->enabled)
1044 return 0;
1045
1046 /*
1047 * Some drivers need to support cases where some platforms may
1048 * have OPP table for the device, while others don't and
1049 * opp_set_rate() just needs to behave like clk_set_rate().
1050 */
1051 if (!_get_opp_count(opp_table))
1052 return 0;
1053
1054 ret = _set_opp_bw(opp_table, NULL, dev);
1055 if (ret)
1056 return ret;
1057
1058 if (opp_table->regulators)
1059 regulator_disable(opp_table->regulators[0]);
1060
1061 ret = _set_required_opps(dev, opp_table, NULL, false);
1062
1063 opp_table->enabled = false;
1064 return ret;
1065}
1066
1067static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068 struct dev_pm_opp *opp, void *clk_data, bool forced)
1069{
1070 struct dev_pm_opp *old_opp;
1071 int scaling_down, ret;
1072
1073 if (unlikely(!opp))
1074 return _disable_opp_table(dev, opp_table);
1075
1076 /* Find the currently set OPP if we don't know already */
1077 if (unlikely(!opp_table->current_opp))
1078 _find_current_opp(dev, opp_table);
1079
1080 old_opp = opp_table->current_opp;
1081
1082 /* Return early if nothing to do */
1083 if (!forced && old_opp == opp && opp_table->enabled) {
1084 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085 return 0;
1086 }
1087
1088 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092
1093 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094 if (scaling_down == -1)
1095 scaling_down = 0;
1096
1097 /* Scaling up? Configure required OPPs before frequency */
1098 if (!scaling_down) {
1099 ret = _set_required_opps(dev, opp_table, opp, true);
1100 if (ret) {
1101 dev_err(dev, "Failed to set required opps: %d\n", ret);
1102 return ret;
1103 }
1104
1105 ret = _set_opp_bw(opp_table, opp, dev);
1106 if (ret) {
1107 dev_err(dev, "Failed to set bw: %d\n", ret);
1108 return ret;
1109 }
1110
1111 if (opp_table->config_regulators) {
1112 ret = opp_table->config_regulators(dev, old_opp, opp,
1113 opp_table->regulators,
1114 opp_table->regulator_count);
1115 if (ret) {
1116 dev_err(dev, "Failed to set regulator voltages: %d\n",
1117 ret);
1118 return ret;
1119 }
1120 }
1121 }
1122
1123 if (opp_table->config_clks) {
1124 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125 if (ret)
1126 return ret;
1127 }
1128
1129 /* Scaling down? Configure required OPPs after frequency */
1130 if (scaling_down) {
1131 if (opp_table->config_regulators) {
1132 ret = opp_table->config_regulators(dev, old_opp, opp,
1133 opp_table->regulators,
1134 opp_table->regulator_count);
1135 if (ret) {
1136 dev_err(dev, "Failed to set regulator voltages: %d\n",
1137 ret);
1138 return ret;
1139 }
1140 }
1141
1142 ret = _set_opp_bw(opp_table, opp, dev);
1143 if (ret) {
1144 dev_err(dev, "Failed to set bw: %d\n", ret);
1145 return ret;
1146 }
1147
1148 ret = _set_required_opps(dev, opp_table, opp, false);
1149 if (ret) {
1150 dev_err(dev, "Failed to set required opps: %d\n", ret);
1151 return ret;
1152 }
1153 }
1154
1155 opp_table->enabled = true;
1156 dev_pm_opp_put(old_opp);
1157
1158 /* Make sure current_opp doesn't get freed */
1159 dev_pm_opp_get(opp);
1160 opp_table->current_opp = opp;
1161
1162 return ret;
1163}
1164
1165/**
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev: device for which we do this operation
1168 * @target_freq: frequency to achieve
1169 *
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1174 * frequency.
1175 */
1176int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177{
1178 struct opp_table *opp_table;
1179 unsigned long freq = 0, temp_freq;
1180 struct dev_pm_opp *opp = NULL;
1181 bool forced = false;
1182 int ret;
1183
1184 opp_table = _find_opp_table(dev);
1185 if (IS_ERR(opp_table)) {
1186 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187 return PTR_ERR(opp_table);
1188 }
1189
1190 if (target_freq) {
1191 /*
1192 * For IO devices which require an OPP on some platforms/SoCs
1193 * while just needing to scale the clock on some others
1194 * we look for empty OPP tables with just a clock handle and
1195 * scale only the clk. This makes dev_pm_opp_set_rate()
1196 * equivalent to a clk_set_rate()
1197 */
1198 if (!_get_opp_count(opp_table)) {
1199 ret = opp_table->config_clks(dev, opp_table, NULL,
1200 &target_freq, false);
1201 goto put_opp_table;
1202 }
1203
1204 freq = clk_round_rate(opp_table->clk, target_freq);
1205 if ((long)freq <= 0)
1206 freq = target_freq;
1207
1208 /*
1209 * The clock driver may support finer resolution of the
1210 * frequencies than the OPP table, don't update the frequency we
1211 * pass to clk_set_rate() here.
1212 */
1213 temp_freq = freq;
1214 opp = _find_freq_ceil(opp_table, &temp_freq);
1215 if (IS_ERR(opp)) {
1216 ret = PTR_ERR(opp);
1217 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218 __func__, freq, ret);
1219 goto put_opp_table;
1220 }
1221
1222 /*
1223 * An OPP entry specifies the highest frequency at which other
1224 * properties of the OPP entry apply. Even if the new OPP is
1225 * same as the old one, we may still reach here for a different
1226 * value of the frequency. In such a case, do not abort but
1227 * configure the hardware to the desired frequency forcefully.
1228 */
1229 forced = opp_table->rate_clk_single != target_freq;
1230 }
1231
1232 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233
1234 if (target_freq)
1235 dev_pm_opp_put(opp);
1236
1237put_opp_table:
1238 dev_pm_opp_put_opp_table(opp_table);
1239 return ret;
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242
1243/**
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1247 *
1248 * This configures the device based on the properties of the OPP passed to this
1249 * routine.
1250 *
1251 * Return: 0 on success, a negative error number otherwise.
1252 */
1253int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254{
1255 struct opp_table *opp_table;
1256 int ret;
1257
1258 opp_table = _find_opp_table(dev);
1259 if (IS_ERR(opp_table)) {
1260 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261 return PTR_ERR(opp_table);
1262 }
1263
1264 ret = _set_opp(dev, opp_table, opp, NULL, false);
1265 dev_pm_opp_put_opp_table(opp_table);
1266
1267 return ret;
1268}
1269EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270
1271/* OPP-dev Helpers */
1272static void _remove_opp_dev(struct opp_device *opp_dev,
1273 struct opp_table *opp_table)
1274{
1275 opp_debug_unregister(opp_dev, opp_table);
1276 list_del(&opp_dev->node);
1277 kfree(opp_dev);
1278}
1279
1280struct opp_device *_add_opp_dev(const struct device *dev,
1281 struct opp_table *opp_table)
1282{
1283 struct opp_device *opp_dev;
1284
1285 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286 if (!opp_dev)
1287 return NULL;
1288
1289 /* Initialize opp-dev */
1290 opp_dev->dev = dev;
1291
1292 mutex_lock(&opp_table->lock);
1293 list_add(&opp_dev->node, &opp_table->dev_list);
1294 mutex_unlock(&opp_table->lock);
1295
1296 /* Create debugfs entries for the opp_table */
1297 opp_debug_register(opp_dev, opp_table);
1298
1299 return opp_dev;
1300}
1301
1302static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303{
1304 struct opp_table *opp_table;
1305 struct opp_device *opp_dev;
1306 int ret;
1307
1308 /*
1309 * Allocate a new OPP table. In the infrequent case where a new
1310 * device is needed to be added, we pay this penalty.
1311 */
1312 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313 if (!opp_table)
1314 return ERR_PTR(-ENOMEM);
1315
1316 mutex_init(&opp_table->lock);
1317 mutex_init(&opp_table->genpd_virt_dev_lock);
1318 INIT_LIST_HEAD(&opp_table->dev_list);
1319 INIT_LIST_HEAD(&opp_table->lazy);
1320
1321 opp_table->clk = ERR_PTR(-ENODEV);
1322
1323 /* Mark regulator count uninitialized */
1324 opp_table->regulator_count = -1;
1325
1326 opp_dev = _add_opp_dev(dev, opp_table);
1327 if (!opp_dev) {
1328 ret = -ENOMEM;
1329 goto err;
1330 }
1331
1332 _of_init_opp_table(opp_table, dev, index);
1333
1334 /* Find interconnect path(s) for the device */
1335 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336 if (ret) {
1337 if (ret == -EPROBE_DEFER)
1338 goto remove_opp_dev;
1339
1340 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341 __func__, ret);
1342 }
1343
1344 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345 INIT_LIST_HEAD(&opp_table->opp_list);
1346 kref_init(&opp_table->kref);
1347
1348 return opp_table;
1349
1350remove_opp_dev:
1351 _remove_opp_dev(opp_dev, opp_table);
1352err:
1353 kfree(opp_table);
1354 return ERR_PTR(ret);
1355}
1356
1357void _get_opp_table_kref(struct opp_table *opp_table)
1358{
1359 kref_get(&opp_table->kref);
1360}
1361
1362static struct opp_table *_update_opp_table_clk(struct device *dev,
1363 struct opp_table *opp_table,
1364 bool getclk)
1365{
1366 int ret;
1367
1368 /*
1369 * Return early if we don't need to get clk or we have already done it
1370 * earlier.
1371 */
1372 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373 opp_table->clks)
1374 return opp_table;
1375
1376 /* Find clk for the device */
1377 opp_table->clk = clk_get(dev, NULL);
1378
1379 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380 if (!ret) {
1381 opp_table->config_clks = _opp_config_clk_single;
1382 opp_table->clk_count = 1;
1383 return opp_table;
1384 }
1385
1386 if (ret == -ENOENT) {
1387 /*
1388 * There are few platforms which don't want the OPP core to
1389 * manage device's clock settings. In such cases neither the
1390 * platform provides the clks explicitly to us, nor the DT
1391 * contains a valid clk entry. The OPP nodes in DT may still
1392 * contain "opp-hz" property though, which we need to parse and
1393 * allow the platform to find an OPP based on freq later on.
1394 *
1395 * This is a simple solution to take care of such corner cases,
1396 * i.e. make the clk_count 1, which lets us allocate space for
1397 * frequency in opp->rates and also parse the entries in DT.
1398 */
1399 opp_table->clk_count = 1;
1400
1401 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402 return opp_table;
1403 }
1404
1405 dev_pm_opp_put_opp_table(opp_table);
1406 dev_err_probe(dev, ret, "Couldn't find clock\n");
1407
1408 return ERR_PTR(ret);
1409}
1410
1411/*
1412 * We need to make sure that the OPP table for a device doesn't get added twice,
1413 * if this routine gets called in parallel with the same device pointer.
1414 *
1415 * The simplest way to enforce that is to perform everything (find existing
1416 * table and if not found, create a new one) under the opp_table_lock, so only
1417 * one creator gets access to the same. But that expands the critical section
1418 * under the lock and may end up causing circular dependencies with frameworks
1419 * like debugfs, interconnect or clock framework as they may be direct or
1420 * indirect users of OPP core.
1421 *
1422 * And for that reason we have to go for a bit tricky implementation here, which
1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424 * of adding an OPP table and others should wait for it to finish.
1425 */
1426struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427 bool getclk)
1428{
1429 struct opp_table *opp_table;
1430
1431again:
1432 mutex_lock(&opp_table_lock);
1433
1434 opp_table = _find_opp_table_unlocked(dev);
1435 if (!IS_ERR(opp_table))
1436 goto unlock;
1437
1438 /*
1439 * The opp_tables list or an OPP table's dev_list is getting updated by
1440 * another user, wait for it to finish.
1441 */
1442 if (unlikely(opp_tables_busy)) {
1443 mutex_unlock(&opp_table_lock);
1444 cpu_relax();
1445 goto again;
1446 }
1447
1448 opp_tables_busy = true;
1449 opp_table = _managed_opp(dev, index);
1450
1451 /* Drop the lock to reduce the size of critical section */
1452 mutex_unlock(&opp_table_lock);
1453
1454 if (opp_table) {
1455 if (!_add_opp_dev(dev, opp_table)) {
1456 dev_pm_opp_put_opp_table(opp_table);
1457 opp_table = ERR_PTR(-ENOMEM);
1458 }
1459
1460 mutex_lock(&opp_table_lock);
1461 } else {
1462 opp_table = _allocate_opp_table(dev, index);
1463
1464 mutex_lock(&opp_table_lock);
1465 if (!IS_ERR(opp_table))
1466 list_add(&opp_table->node, &opp_tables);
1467 }
1468
1469 opp_tables_busy = false;
1470
1471unlock:
1472 mutex_unlock(&opp_table_lock);
1473
1474 return _update_opp_table_clk(dev, opp_table, getclk);
1475}
1476
1477static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478{
1479 return _add_opp_table_indexed(dev, 0, getclk);
1480}
1481
1482struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483{
1484 return _find_opp_table(dev);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487
1488static void _opp_table_kref_release(struct kref *kref)
1489{
1490 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491 struct opp_device *opp_dev, *temp;
1492 int i;
1493
1494 /* Drop the lock as soon as we can */
1495 list_del(&opp_table->node);
1496 mutex_unlock(&opp_table_lock);
1497
1498 if (opp_table->current_opp)
1499 dev_pm_opp_put(opp_table->current_opp);
1500
1501 _of_clear_opp_table(opp_table);
1502
1503 /* Release automatically acquired single clk */
1504 if (!IS_ERR(opp_table->clk))
1505 clk_put(opp_table->clk);
1506
1507 if (opp_table->paths) {
1508 for (i = 0; i < opp_table->path_count; i++)
1509 icc_put(opp_table->paths[i]);
1510 kfree(opp_table->paths);
1511 }
1512
1513 WARN_ON(!list_empty(&opp_table->opp_list));
1514
1515 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516 /*
1517 * The OPP table is getting removed, drop the performance state
1518 * constraints.
1519 */
1520 if (opp_table->genpd_performance_state)
1521 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522
1523 _remove_opp_dev(opp_dev, opp_table);
1524 }
1525
1526 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527 mutex_destroy(&opp_table->lock);
1528 kfree(opp_table);
1529}
1530
1531void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532{
1533 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534 &opp_table_lock);
1535}
1536EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537
1538void _opp_free(struct dev_pm_opp *opp)
1539{
1540 kfree(opp);
1541}
1542
1543static void _opp_kref_release(struct kref *kref)
1544{
1545 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546 struct opp_table *opp_table = opp->opp_table;
1547
1548 list_del(&opp->node);
1549 mutex_unlock(&opp_table->lock);
1550
1551 /*
1552 * Notify the changes in the availability of the operable
1553 * frequency/voltage list.
1554 */
1555 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556 _of_clear_opp(opp_table, opp);
1557 opp_debug_remove_one(opp);
1558 kfree(opp);
1559}
1560
1561void dev_pm_opp_get(struct dev_pm_opp *opp)
1562{
1563 kref_get(&opp->kref);
1564}
1565
1566void dev_pm_opp_put(struct dev_pm_opp *opp)
1567{
1568 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569}
1570EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571
1572/**
1573 * dev_pm_opp_remove() - Remove an OPP from OPP table
1574 * @dev: device for which we do this operation
1575 * @freq: OPP to remove with matching 'freq'
1576 *
1577 * This function removes an opp from the opp table.
1578 */
1579void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580{
1581 struct dev_pm_opp *opp = NULL, *iter;
1582 struct opp_table *opp_table;
1583
1584 opp_table = _find_opp_table(dev);
1585 if (IS_ERR(opp_table))
1586 return;
1587
1588 if (!assert_single_clk(opp_table))
1589 goto put_table;
1590
1591 mutex_lock(&opp_table->lock);
1592
1593 list_for_each_entry(iter, &opp_table->opp_list, node) {
1594 if (iter->rates[0] == freq) {
1595 opp = iter;
1596 break;
1597 }
1598 }
1599
1600 mutex_unlock(&opp_table->lock);
1601
1602 if (opp) {
1603 dev_pm_opp_put(opp);
1604
1605 /* Drop the reference taken by dev_pm_opp_add() */
1606 dev_pm_opp_put_opp_table(opp_table);
1607 } else {
1608 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609 __func__, freq);
1610 }
1611
1612put_table:
1613 /* Drop the reference taken by _find_opp_table() */
1614 dev_pm_opp_put_opp_table(opp_table);
1615}
1616EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617
1618static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619 bool dynamic)
1620{
1621 struct dev_pm_opp *opp = NULL, *temp;
1622
1623 mutex_lock(&opp_table->lock);
1624 list_for_each_entry(temp, &opp_table->opp_list, node) {
1625 /*
1626 * Refcount must be dropped only once for each OPP by OPP core,
1627 * do that with help of "removed" flag.
1628 */
1629 if (!temp->removed && dynamic == temp->dynamic) {
1630 opp = temp;
1631 break;
1632 }
1633 }
1634
1635 mutex_unlock(&opp_table->lock);
1636 return opp;
1637}
1638
1639/*
1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641 * happen lock less to avoid circular dependency issues. This routine must be
1642 * called without the opp_table->lock held.
1643 */
1644static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645{
1646 struct dev_pm_opp *opp;
1647
1648 while ((opp = _opp_get_next(opp_table, dynamic))) {
1649 opp->removed = true;
1650 dev_pm_opp_put(opp);
1651
1652 /* Drop the references taken by dev_pm_opp_add() */
1653 if (dynamic)
1654 dev_pm_opp_put_opp_table(opp_table);
1655 }
1656}
1657
1658bool _opp_remove_all_static(struct opp_table *opp_table)
1659{
1660 mutex_lock(&opp_table->lock);
1661
1662 if (!opp_table->parsed_static_opps) {
1663 mutex_unlock(&opp_table->lock);
1664 return false;
1665 }
1666
1667 if (--opp_table->parsed_static_opps) {
1668 mutex_unlock(&opp_table->lock);
1669 return true;
1670 }
1671
1672 mutex_unlock(&opp_table->lock);
1673
1674 _opp_remove_all(opp_table, false);
1675 return true;
1676}
1677
1678/**
1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680 * @dev: device for which we do this operation
1681 *
1682 * This function removes all dynamically created OPPs from the opp table.
1683 */
1684void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685{
1686 struct opp_table *opp_table;
1687
1688 opp_table = _find_opp_table(dev);
1689 if (IS_ERR(opp_table))
1690 return;
1691
1692 _opp_remove_all(opp_table, true);
1693
1694 /* Drop the reference taken by _find_opp_table() */
1695 dev_pm_opp_put_opp_table(opp_table);
1696}
1697EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698
1699struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700{
1701 struct dev_pm_opp *opp;
1702 int supply_count, supply_size, icc_size, clk_size;
1703
1704 /* Allocate space for at least one supply */
1705 supply_count = opp_table->regulator_count > 0 ?
1706 opp_table->regulator_count : 1;
1707 supply_size = sizeof(*opp->supplies) * supply_count;
1708 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710
1711 /* allocate new OPP node and supplies structures */
1712 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713 if (!opp)
1714 return NULL;
1715
1716 /* Put the supplies, bw and clock at the end of the OPP structure */
1717 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718
1719 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720
1721 if (icc_size)
1722 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723
1724 INIT_LIST_HEAD(&opp->node);
1725
1726 return opp;
1727}
1728
1729static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730 struct opp_table *opp_table)
1731{
1732 struct regulator *reg;
1733 int i;
1734
1735 if (!opp_table->regulators)
1736 return true;
1737
1738 for (i = 0; i < opp_table->regulator_count; i++) {
1739 reg = opp_table->regulators[i];
1740
1741 if (!regulator_is_supported_voltage(reg,
1742 opp->supplies[i].u_volt_min,
1743 opp->supplies[i].u_volt_max)) {
1744 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745 __func__, opp->supplies[i].u_volt_min,
1746 opp->supplies[i].u_volt_max);
1747 return false;
1748 }
1749 }
1750
1751 return true;
1752}
1753
1754static int _opp_compare_rate(struct opp_table *opp_table,
1755 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756{
1757 int i;
1758
1759 for (i = 0; i < opp_table->clk_count; i++) {
1760 if (opp1->rates[i] != opp2->rates[i])
1761 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762 }
1763
1764 /* Same rates for both OPPs */
1765 return 0;
1766}
1767
1768static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769 struct dev_pm_opp *opp2)
1770{
1771 int i;
1772
1773 for (i = 0; i < opp_table->path_count; i++) {
1774 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776 }
1777
1778 /* Same bw for both OPPs */
1779 return 0;
1780}
1781
1782/*
1783 * Returns
1784 * 0: opp1 == opp2
1785 * 1: opp1 > opp2
1786 * -1: opp1 < opp2
1787 */
1788int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789 struct dev_pm_opp *opp2)
1790{
1791 int ret;
1792
1793 ret = _opp_compare_rate(opp_table, opp1, opp2);
1794 if (ret)
1795 return ret;
1796
1797 ret = _opp_compare_bw(opp_table, opp1, opp2);
1798 if (ret)
1799 return ret;
1800
1801 if (opp1->level != opp2->level)
1802 return opp1->level < opp2->level ? -1 : 1;
1803
1804 /* Duplicate OPPs */
1805 return 0;
1806}
1807
1808static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809 struct opp_table *opp_table,
1810 struct list_head **head)
1811{
1812 struct dev_pm_opp *opp;
1813 int opp_cmp;
1814
1815 /*
1816 * Insert new OPP in order of increasing frequency and discard if
1817 * already present.
1818 *
1819 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820 * loop, don't replace it with head otherwise it will become an infinite
1821 * loop.
1822 */
1823 list_for_each_entry(opp, &opp_table->opp_list, node) {
1824 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825 if (opp_cmp > 0) {
1826 *head = &opp->node;
1827 continue;
1828 }
1829
1830 if (opp_cmp < 0)
1831 return 0;
1832
1833 /* Duplicate OPPs */
1834 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836 opp->available, new_opp->rates[0],
1837 new_opp->supplies[0].u_volt, new_opp->available);
1838
1839 /* Should we compare voltages for all regulators here ? */
1840 return opp->available &&
1841 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842 }
1843
1844 return 0;
1845}
1846
1847void _required_opps_available(struct dev_pm_opp *opp, int count)
1848{
1849 int i;
1850
1851 for (i = 0; i < count; i++) {
1852 if (opp->required_opps[i]->available)
1853 continue;
1854
1855 opp->available = false;
1856 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857 __func__, opp->required_opps[i]->np, opp->rates[0]);
1858 return;
1859 }
1860}
1861
1862/*
1863 * Returns:
1864 * 0: On success. And appropriate error message for duplicate OPPs.
1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867 * sure we don't print error messages unnecessarily if different parts of
1868 * kernel try to initialize the OPP table.
1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870 * should be considered an error by the callers of _opp_add().
1871 */
1872int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873 struct opp_table *opp_table)
1874{
1875 struct list_head *head;
1876 int ret;
1877
1878 mutex_lock(&opp_table->lock);
1879 head = &opp_table->opp_list;
1880
1881 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882 if (ret) {
1883 mutex_unlock(&opp_table->lock);
1884 return ret;
1885 }
1886
1887 list_add(&new_opp->node, head);
1888 mutex_unlock(&opp_table->lock);
1889
1890 new_opp->opp_table = opp_table;
1891 kref_init(&new_opp->kref);
1892
1893 opp_debug_create_one(new_opp, opp_table);
1894
1895 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896 new_opp->available = false;
1897 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898 __func__, new_opp->rates[0]);
1899 }
1900
1901 /* required-opps not fully initialized yet */
1902 if (lazy_linking_pending(opp_table))
1903 return 0;
1904
1905 _required_opps_available(new_opp, opp_table->required_opp_count);
1906
1907 return 0;
1908}
1909
1910/**
1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912 * @opp_table: OPP table
1913 * @dev: device for which we do this operation
1914 * @freq: Frequency in Hz for this OPP
1915 * @u_volt: Voltage in uVolts for this OPP
1916 * @dynamic: Dynamically added OPPs.
1917 *
1918 * This function adds an opp definition to the opp table and returns status.
1919 * The opp is made available by default and it can be controlled using
1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921 *
1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923 * and freed by dev_pm_opp_of_remove_table.
1924 *
1925 * Return:
1926 * 0 On success OR
1927 * Duplicate OPPs (both freq and volt are same) and opp->available
1928 * -EEXIST Freq are same and volt are different OR
1929 * Duplicate OPPs (both freq and volt are same) and !opp->available
1930 * -ENOMEM Memory allocation failure
1931 */
1932int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933 unsigned long freq, long u_volt, bool dynamic)
1934{
1935 struct dev_pm_opp *new_opp;
1936 unsigned long tol;
1937 int ret;
1938
1939 if (!assert_single_clk(opp_table))
1940 return -EINVAL;
1941
1942 new_opp = _opp_allocate(opp_table);
1943 if (!new_opp)
1944 return -ENOMEM;
1945
1946 /* populate the opp table */
1947 new_opp->rates[0] = freq;
1948 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949 new_opp->supplies[0].u_volt = u_volt;
1950 new_opp->supplies[0].u_volt_min = u_volt - tol;
1951 new_opp->supplies[0].u_volt_max = u_volt + tol;
1952 new_opp->available = true;
1953 new_opp->dynamic = dynamic;
1954
1955 ret = _opp_add(dev, new_opp, opp_table);
1956 if (ret) {
1957 /* Don't return error for duplicate OPPs */
1958 if (ret == -EBUSY)
1959 ret = 0;
1960 goto free_opp;
1961 }
1962
1963 /*
1964 * Notify the changes in the availability of the operable
1965 * frequency/voltage list.
1966 */
1967 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968 return 0;
1969
1970free_opp:
1971 _opp_free(new_opp);
1972
1973 return ret;
1974}
1975
1976/**
1977 * _opp_set_supported_hw() - Set supported platforms
1978 * @dev: Device for which supported-hw has to be set.
1979 * @versions: Array of hierarchy of versions to match.
1980 * @count: Number of elements in the array.
1981 *
1982 * This is required only for the V2 bindings, and it enables a platform to
1983 * specify the hierarchy of versions it supports. OPP layer will then enable
1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985 * property.
1986 */
1987static int _opp_set_supported_hw(struct opp_table *opp_table,
1988 const u32 *versions, unsigned int count)
1989{
1990 /* Another CPU that shares the OPP table has set the property ? */
1991 if (opp_table->supported_hw)
1992 return 0;
1993
1994 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995 GFP_KERNEL);
1996 if (!opp_table->supported_hw)
1997 return -ENOMEM;
1998
1999 opp_table->supported_hw_count = count;
2000
2001 return 0;
2002}
2003
2004/**
2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006 * @opp_table: OPP table returned by _opp_set_supported_hw().
2007 *
2008 * This is required only for the V2 bindings, and is called for a matching
2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010 * will not be freed.
2011 */
2012static void _opp_put_supported_hw(struct opp_table *opp_table)
2013{
2014 if (opp_table->supported_hw) {
2015 kfree(opp_table->supported_hw);
2016 opp_table->supported_hw = NULL;
2017 opp_table->supported_hw_count = 0;
2018 }
2019}
2020
2021/**
2022 * _opp_set_prop_name() - Set prop-extn name
2023 * @dev: Device for which the prop-name has to be set.
2024 * @name: name to postfix to properties.
2025 *
2026 * This is required only for the V2 bindings, and it enables a platform to
2027 * specify the extn to be used for certain property names. The properties to
2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029 * should postfix the property name with -<name> while looking for them.
2030 */
2031static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032{
2033 /* Another CPU that shares the OPP table has set the property ? */
2034 if (!opp_table->prop_name) {
2035 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036 if (!opp_table->prop_name)
2037 return -ENOMEM;
2038 }
2039
2040 return 0;
2041}
2042
2043/**
2044 * _opp_put_prop_name() - Releases resources blocked for prop-name
2045 * @opp_table: OPP table returned by _opp_set_prop_name().
2046 *
2047 * This is required only for the V2 bindings, and is called for a matching
2048 * _opp_set_prop_name(). Until this is called, the opp_table structure
2049 * will not be freed.
2050 */
2051static void _opp_put_prop_name(struct opp_table *opp_table)
2052{
2053 if (opp_table->prop_name) {
2054 kfree(opp_table->prop_name);
2055 opp_table->prop_name = NULL;
2056 }
2057}
2058
2059/**
2060 * _opp_set_regulators() - Set regulator names for the device
2061 * @dev: Device for which regulator name is being set.
2062 * @names: Array of pointers to the names of the regulator.
2063 * @count: Number of regulators.
2064 *
2065 * In order to support OPP switching, OPP layer needs to know the name of the
2066 * device's regulators, as the core would be required to switch voltages as
2067 * well.
2068 *
2069 * This must be called before any OPPs are initialized for the device.
2070 */
2071static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072 const char * const names[])
2073{
2074 const char * const *temp = names;
2075 struct regulator *reg;
2076 int count = 0, ret, i;
2077
2078 /* Count number of regulators */
2079 while (*temp++)
2080 count++;
2081
2082 if (!count)
2083 return -EINVAL;
2084
2085 /* Another CPU that shares the OPP table has set the regulators ? */
2086 if (opp_table->regulators)
2087 return 0;
2088
2089 opp_table->regulators = kmalloc_array(count,
2090 sizeof(*opp_table->regulators),
2091 GFP_KERNEL);
2092 if (!opp_table->regulators)
2093 return -ENOMEM;
2094
2095 for (i = 0; i < count; i++) {
2096 reg = regulator_get_optional(dev, names[i]);
2097 if (IS_ERR(reg)) {
2098 ret = dev_err_probe(dev, PTR_ERR(reg),
2099 "%s: no regulator (%s) found\n",
2100 __func__, names[i]);
2101 goto free_regulators;
2102 }
2103
2104 opp_table->regulators[i] = reg;
2105 }
2106
2107 opp_table->regulator_count = count;
2108
2109 /* Set generic config_regulators() for single regulators here */
2110 if (count == 1)
2111 opp_table->config_regulators = _opp_config_regulator_single;
2112
2113 return 0;
2114
2115free_regulators:
2116 while (i != 0)
2117 regulator_put(opp_table->regulators[--i]);
2118
2119 kfree(opp_table->regulators);
2120 opp_table->regulators = NULL;
2121 opp_table->regulator_count = -1;
2122
2123 return ret;
2124}
2125
2126/**
2127 * _opp_put_regulators() - Releases resources blocked for regulator
2128 * @opp_table: OPP table returned from _opp_set_regulators().
2129 */
2130static void _opp_put_regulators(struct opp_table *opp_table)
2131{
2132 int i;
2133
2134 if (!opp_table->regulators)
2135 return;
2136
2137 if (opp_table->enabled) {
2138 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139 regulator_disable(opp_table->regulators[i]);
2140 }
2141
2142 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143 regulator_put(opp_table->regulators[i]);
2144
2145 kfree(opp_table->regulators);
2146 opp_table->regulators = NULL;
2147 opp_table->regulator_count = -1;
2148}
2149
2150static void _put_clks(struct opp_table *opp_table, int count)
2151{
2152 int i;
2153
2154 for (i = count - 1; i >= 0; i--)
2155 clk_put(opp_table->clks[i]);
2156
2157 kfree(opp_table->clks);
2158 opp_table->clks = NULL;
2159}
2160
2161/**
2162 * _opp_set_clknames() - Set clk names for the device
2163 * @dev: Device for which clk names is being set.
2164 * @names: Clk names.
2165 *
2166 * In order to support OPP switching, OPP layer needs to get pointers to the
2167 * clocks for the device. Simple cases work fine without using this routine
2168 * (i.e. by passing connection-id as NULL), but for a device with multiple
2169 * clocks available, the OPP core needs to know the exact names of the clks to
2170 * use.
2171 *
2172 * This must be called before any OPPs are initialized for the device.
2173 */
2174static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175 const char * const names[],
2176 config_clks_t config_clks)
2177{
2178 const char * const *temp = names;
2179 int count = 0, ret, i;
2180 struct clk *clk;
2181
2182 /* Count number of clks */
2183 while (*temp++)
2184 count++;
2185
2186 /*
2187 * This is a special case where we have a single clock, whose connection
2188 * id name is NULL, i.e. first two entries are NULL in the array.
2189 */
2190 if (!count && !names[1])
2191 count = 1;
2192
2193 /* Fail early for invalid configurations */
2194 if (!count || (!config_clks && count > 1))
2195 return -EINVAL;
2196
2197 /* Another CPU that shares the OPP table has set the clkname ? */
2198 if (opp_table->clks)
2199 return 0;
2200
2201 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202 GFP_KERNEL);
2203 if (!opp_table->clks)
2204 return -ENOMEM;
2205
2206 /* Find clks for the device */
2207 for (i = 0; i < count; i++) {
2208 clk = clk_get(dev, names[i]);
2209 if (IS_ERR(clk)) {
2210 ret = dev_err_probe(dev, PTR_ERR(clk),
2211 "%s: Couldn't find clock with name: %s\n",
2212 __func__, names[i]);
2213 goto free_clks;
2214 }
2215
2216 opp_table->clks[i] = clk;
2217 }
2218
2219 opp_table->clk_count = count;
2220 opp_table->config_clks = config_clks;
2221
2222 /* Set generic single clk set here */
2223 if (count == 1) {
2224 if (!opp_table->config_clks)
2225 opp_table->config_clks = _opp_config_clk_single;
2226
2227 /*
2228 * We could have just dropped the "clk" field and used "clks"
2229 * everywhere. Instead we kept the "clk" field around for
2230 * following reasons:
2231 *
2232 * - avoiding clks[0] everywhere else.
2233 * - not running single clk helpers for multiple clk usecase by
2234 * mistake.
2235 *
2236 * Since this is single-clk case, just update the clk pointer
2237 * too.
2238 */
2239 opp_table->clk = opp_table->clks[0];
2240 }
2241
2242 return 0;
2243
2244free_clks:
2245 _put_clks(opp_table, i);
2246 return ret;
2247}
2248
2249/**
2250 * _opp_put_clknames() - Releases resources blocked for clks.
2251 * @opp_table: OPP table returned from _opp_set_clknames().
2252 */
2253static void _opp_put_clknames(struct opp_table *opp_table)
2254{
2255 if (!opp_table->clks)
2256 return;
2257
2258 opp_table->config_clks = NULL;
2259 opp_table->clk = ERR_PTR(-ENODEV);
2260
2261 _put_clks(opp_table, opp_table->clk_count);
2262}
2263
2264/**
2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266 * @dev: Device for which the helper is getting registered.
2267 * @config_regulators: Custom set regulator helper.
2268 *
2269 * This is useful to support platforms with multiple regulators per device.
2270 *
2271 * This must be called before any OPPs are initialized for the device.
2272 */
2273static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274 struct device *dev, config_regulators_t config_regulators)
2275{
2276 /* Another CPU that shares the OPP table has set the helper ? */
2277 if (!opp_table->config_regulators)
2278 opp_table->config_regulators = config_regulators;
2279
2280 return 0;
2281}
2282
2283/**
2284 * _opp_put_config_regulators_helper() - Releases resources blocked for
2285 * config_regulators helper.
2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287 *
2288 * Release resources blocked for platform specific config_regulators helper.
2289 */
2290static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291{
2292 if (opp_table->config_regulators)
2293 opp_table->config_regulators = NULL;
2294}
2295
2296static void _detach_genpd(struct opp_table *opp_table)
2297{
2298 int index;
2299
2300 if (!opp_table->genpd_virt_devs)
2301 return;
2302
2303 for (index = 0; index < opp_table->required_opp_count; index++) {
2304 if (!opp_table->genpd_virt_devs[index])
2305 continue;
2306
2307 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308 opp_table->genpd_virt_devs[index] = NULL;
2309 }
2310
2311 kfree(opp_table->genpd_virt_devs);
2312 opp_table->genpd_virt_devs = NULL;
2313}
2314
2315/**
2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317 * @dev: Consumer device for which the genpd is getting attached.
2318 * @names: Null terminated array of pointers containing names of genpd to attach.
2319 * @virt_devs: Pointer to return the array of virtual devices.
2320 *
2321 * Multiple generic power domains for a device are supported with the help of
2322 * virtual genpd devices, which are created for each consumer device - genpd
2323 * pair. These are the device structures which are attached to the power domain
2324 * and are required by the OPP core to set the performance state of the genpd.
2325 * The same API also works for the case where single genpd is available and so
2326 * we don't need to support that separately.
2327 *
2328 * This helper will normally be called by the consumer driver of the device
2329 * "dev", as only that has details of the genpd names.
2330 *
2331 * This helper needs to be called once with a list of all genpd to attach.
2332 * Otherwise the original device structure will be used instead by the OPP core.
2333 *
2334 * The order of entries in the names array must match the order in which
2335 * "required-opps" are added in DT.
2336 */
2337static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338 const char * const *names, struct device ***virt_devs)
2339{
2340 struct device *virt_dev;
2341 int index = 0, ret = -EINVAL;
2342 const char * const *name = names;
2343
2344 if (opp_table->genpd_virt_devs)
2345 return 0;
2346
2347 /*
2348 * If the genpd's OPP table isn't already initialized, parsing of the
2349 * required-opps fail for dev. We should retry this after genpd's OPP
2350 * table is added.
2351 */
2352 if (!opp_table->required_opp_count)
2353 return -EPROBE_DEFER;
2354
2355 mutex_lock(&opp_table->genpd_virt_dev_lock);
2356
2357 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358 sizeof(*opp_table->genpd_virt_devs),
2359 GFP_KERNEL);
2360 if (!opp_table->genpd_virt_devs)
2361 goto unlock;
2362
2363 while (*name) {
2364 if (index >= opp_table->required_opp_count) {
2365 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366 *name, opp_table->required_opp_count, index);
2367 goto err;
2368 }
2369
2370 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371 if (IS_ERR_OR_NULL(virt_dev)) {
2372 ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374 goto err;
2375 }
2376
2377 opp_table->genpd_virt_devs[index] = virt_dev;
2378 index++;
2379 name++;
2380 }
2381
2382 if (virt_devs)
2383 *virt_devs = opp_table->genpd_virt_devs;
2384 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385
2386 return 0;
2387
2388err:
2389 _detach_genpd(opp_table);
2390unlock:
2391 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392 return ret;
2393
2394}
2395
2396/**
2397 * _opp_detach_genpd() - Detach genpd(s) from the device.
2398 * @opp_table: OPP table returned by _opp_attach_genpd().
2399 *
2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401 * OPP table.
2402 */
2403static void _opp_detach_genpd(struct opp_table *opp_table)
2404{
2405 /*
2406 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407 * used in parallel.
2408 */
2409 mutex_lock(&opp_table->genpd_virt_dev_lock);
2410 _detach_genpd(opp_table);
2411 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412}
2413
2414static void _opp_clear_config(struct opp_config_data *data)
2415{
2416 if (data->flags & OPP_CONFIG_GENPD)
2417 _opp_detach_genpd(data->opp_table);
2418 if (data->flags & OPP_CONFIG_REGULATOR)
2419 _opp_put_regulators(data->opp_table);
2420 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421 _opp_put_supported_hw(data->opp_table);
2422 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423 _opp_put_config_regulators_helper(data->opp_table);
2424 if (data->flags & OPP_CONFIG_PROP_NAME)
2425 _opp_put_prop_name(data->opp_table);
2426 if (data->flags & OPP_CONFIG_CLK)
2427 _opp_put_clknames(data->opp_table);
2428
2429 dev_pm_opp_put_opp_table(data->opp_table);
2430 kfree(data);
2431}
2432
2433/**
2434 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435 * @dev: Device for which configuration is being set.
2436 * @config: OPP configuration.
2437 *
2438 * This allows all device OPP configurations to be performed at once.
2439 *
2440 * This must be called before any OPPs are initialized for the device. This may
2441 * be called multiple times for the same OPP table, for example once for each
2442 * CPU that share the same table. This must be balanced by the same number of
2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444 *
2445 * This returns a token to the caller, which must be passed to
2446 * dev_pm_opp_clear_config() to free the resources later. The value of the
2447 * returned token will be >= 1 for success and negative for errors. The minimum
2448 * value of 1 is chosen here to make it easy for callers to manage the resource.
2449 */
2450int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451{
2452 struct opp_table *opp_table;
2453 struct opp_config_data *data;
2454 unsigned int id;
2455 int ret;
2456
2457 data = kmalloc(sizeof(*data), GFP_KERNEL);
2458 if (!data)
2459 return -ENOMEM;
2460
2461 opp_table = _add_opp_table(dev, false);
2462 if (IS_ERR(opp_table)) {
2463 kfree(data);
2464 return PTR_ERR(opp_table);
2465 }
2466
2467 data->opp_table = opp_table;
2468 data->flags = 0;
2469
2470 /* This should be called before OPPs are initialized */
2471 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472 ret = -EBUSY;
2473 goto err;
2474 }
2475
2476 /* Configure clocks */
2477 if (config->clk_names) {
2478 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479 config->config_clks);
2480 if (ret)
2481 goto err;
2482
2483 data->flags |= OPP_CONFIG_CLK;
2484 } else if (config->config_clks) {
2485 /* Don't allow config callback without clocks */
2486 ret = -EINVAL;
2487 goto err;
2488 }
2489
2490 /* Configure property names */
2491 if (config->prop_name) {
2492 ret = _opp_set_prop_name(opp_table, config->prop_name);
2493 if (ret)
2494 goto err;
2495
2496 data->flags |= OPP_CONFIG_PROP_NAME;
2497 }
2498
2499 /* Configure config_regulators helper */
2500 if (config->config_regulators) {
2501 ret = _opp_set_config_regulators_helper(opp_table, dev,
2502 config->config_regulators);
2503 if (ret)
2504 goto err;
2505
2506 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507 }
2508
2509 /* Configure supported hardware */
2510 if (config->supported_hw) {
2511 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512 config->supported_hw_count);
2513 if (ret)
2514 goto err;
2515
2516 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517 }
2518
2519 /* Configure supplies */
2520 if (config->regulator_names) {
2521 ret = _opp_set_regulators(opp_table, dev,
2522 config->regulator_names);
2523 if (ret)
2524 goto err;
2525
2526 data->flags |= OPP_CONFIG_REGULATOR;
2527 }
2528
2529 /* Attach genpds */
2530 if (config->genpd_names) {
2531 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532 config->virt_devs);
2533 if (ret)
2534 goto err;
2535
2536 data->flags |= OPP_CONFIG_GENPD;
2537 }
2538
2539 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540 GFP_KERNEL);
2541 if (ret)
2542 goto err;
2543
2544 return id;
2545
2546err:
2547 _opp_clear_config(data);
2548 return ret;
2549}
2550EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551
2552/**
2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555 *
2556 * This allows all device OPP configurations to be cleared at once. This must be
2557 * called once for each call made to dev_pm_opp_set_config(), in order to free
2558 * the OPPs properly.
2559 *
2560 * Currently the first call itself ends up freeing all the OPP configurations,
2561 * while the later ones only drop the OPP table reference. This works well for
2562 * now as we would never want to use an half initialized OPP table and want to
2563 * remove the configurations together.
2564 */
2565void dev_pm_opp_clear_config(int token)
2566{
2567 struct opp_config_data *data;
2568
2569 /*
2570 * This lets the callers call this unconditionally and keep their code
2571 * simple.
2572 */
2573 if (unlikely(token <= 0))
2574 return;
2575
2576 data = xa_erase(&opp_configs, token);
2577 if (WARN_ON(!data))
2578 return;
2579
2580 _opp_clear_config(data);
2581}
2582EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583
2584static void devm_pm_opp_config_release(void *token)
2585{
2586 dev_pm_opp_clear_config((unsigned long)token);
2587}
2588
2589/**
2590 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591 * @dev: Device for which configuration is being set.
2592 * @config: OPP configuration.
2593 *
2594 * This allows all device OPP configurations to be performed at once.
2595 * This is a resource-managed variant of dev_pm_opp_set_config().
2596 *
2597 * Return: 0 on success and errorno otherwise.
2598 */
2599int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600{
2601 int token = dev_pm_opp_set_config(dev, config);
2602
2603 if (token < 0)
2604 return token;
2605
2606 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607 (void *) ((unsigned long) token));
2608}
2609EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610
2611/**
2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614 * @dst_table: Required OPP table of the @src_table.
2615 * @src_opp: OPP from the @src_table.
2616 *
2617 * This function returns the OPP (present in @dst_table) pointed out by the
2618 * "required-opps" property of the @src_opp (present in @src_table).
2619 *
2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621 * use.
2622 *
2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624 */
2625struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626 struct opp_table *dst_table,
2627 struct dev_pm_opp *src_opp)
2628{
2629 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630 int i;
2631
2632 if (!src_table || !dst_table || !src_opp ||
2633 !src_table->required_opp_tables)
2634 return ERR_PTR(-EINVAL);
2635
2636 /* required-opps not fully initialized yet */
2637 if (lazy_linking_pending(src_table))
2638 return ERR_PTR(-EBUSY);
2639
2640 for (i = 0; i < src_table->required_opp_count; i++) {
2641 if (src_table->required_opp_tables[i] == dst_table) {
2642 mutex_lock(&src_table->lock);
2643
2644 list_for_each_entry(opp, &src_table->opp_list, node) {
2645 if (opp == src_opp) {
2646 dest_opp = opp->required_opps[i];
2647 dev_pm_opp_get(dest_opp);
2648 break;
2649 }
2650 }
2651
2652 mutex_unlock(&src_table->lock);
2653 break;
2654 }
2655 }
2656
2657 if (IS_ERR(dest_opp)) {
2658 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659 src_table, dst_table);
2660 }
2661
2662 return dest_opp;
2663}
2664EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665
2666/**
2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668 * @src_table: OPP table which has dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the src_table.
2670 * @pstate: Current performance state of the src_table.
2671 *
2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the OPP (present in @src_table) which has
2674 * performance state set to @pstate.
2675 *
2676 * Return: Zero or positive performance state on success, otherwise negative
2677 * value on errors.
2678 */
2679int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680 struct opp_table *dst_table,
2681 unsigned int pstate)
2682{
2683 struct dev_pm_opp *opp;
2684 int dest_pstate = -EINVAL;
2685 int i;
2686
2687 /*
2688 * Normally the src_table will have the "required_opps" property set to
2689 * point to one of the OPPs in the dst_table, but in some cases the
2690 * genpd and its master have one to one mapping of performance states
2691 * and so none of them have the "required-opps" property set. Return the
2692 * pstate of the src_table as it is in such cases.
2693 */
2694 if (!src_table || !src_table->required_opp_count)
2695 return pstate;
2696
2697 /* required-opps not fully initialized yet */
2698 if (lazy_linking_pending(src_table))
2699 return -EBUSY;
2700
2701 for (i = 0; i < src_table->required_opp_count; i++) {
2702 if (src_table->required_opp_tables[i]->np == dst_table->np)
2703 break;
2704 }
2705
2706 if (unlikely(i == src_table->required_opp_count)) {
2707 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708 __func__, src_table, dst_table);
2709 return -EINVAL;
2710 }
2711
2712 mutex_lock(&src_table->lock);
2713
2714 list_for_each_entry(opp, &src_table->opp_list, node) {
2715 if (opp->pstate == pstate) {
2716 dest_pstate = opp->required_opps[i]->pstate;
2717 goto unlock;
2718 }
2719 }
2720
2721 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722 dst_table);
2723
2724unlock:
2725 mutex_unlock(&src_table->lock);
2726
2727 return dest_pstate;
2728}
2729
2730/**
2731 * dev_pm_opp_add() - Add an OPP table from a table definitions
2732 * @dev: device for which we do this operation
2733 * @freq: Frequency in Hz for this OPP
2734 * @u_volt: Voltage in uVolts for this OPP
2735 *
2736 * This function adds an opp definition to the opp table and returns status.
2737 * The opp is made available by default and it can be controlled using
2738 * dev_pm_opp_enable/disable functions.
2739 *
2740 * Return:
2741 * 0 On success OR
2742 * Duplicate OPPs (both freq and volt are same) and opp->available
2743 * -EEXIST Freq are same and volt are different OR
2744 * Duplicate OPPs (both freq and volt are same) and !opp->available
2745 * -ENOMEM Memory allocation failure
2746 */
2747int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748{
2749 struct opp_table *opp_table;
2750 int ret;
2751
2752 opp_table = _add_opp_table(dev, true);
2753 if (IS_ERR(opp_table))
2754 return PTR_ERR(opp_table);
2755
2756 /* Fix regulator count for dynamic OPPs */
2757 opp_table->regulator_count = 1;
2758
2759 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760 if (ret)
2761 dev_pm_opp_put_opp_table(opp_table);
2762
2763 return ret;
2764}
2765EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766
2767/**
2768 * _opp_set_availability() - helper to set the availability of an opp
2769 * @dev: device for which we do this operation
2770 * @freq: OPP frequency to modify availability
2771 * @availability_req: availability status requested for this opp
2772 *
2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774 * which is isolated here.
2775 *
2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777 * copy operation, returns 0 if no modification was done OR modification was
2778 * successful.
2779 */
2780static int _opp_set_availability(struct device *dev, unsigned long freq,
2781 bool availability_req)
2782{
2783 struct opp_table *opp_table;
2784 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785 int r = 0;
2786
2787 /* Find the opp_table */
2788 opp_table = _find_opp_table(dev);
2789 if (IS_ERR(opp_table)) {
2790 r = PTR_ERR(opp_table);
2791 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792 return r;
2793 }
2794
2795 if (!assert_single_clk(opp_table)) {
2796 r = -EINVAL;
2797 goto put_table;
2798 }
2799
2800 mutex_lock(&opp_table->lock);
2801
2802 /* Do we have the frequency? */
2803 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804 if (tmp_opp->rates[0] == freq) {
2805 opp = tmp_opp;
2806 break;
2807 }
2808 }
2809
2810 if (IS_ERR(opp)) {
2811 r = PTR_ERR(opp);
2812 goto unlock;
2813 }
2814
2815 /* Is update really needed? */
2816 if (opp->available == availability_req)
2817 goto unlock;
2818
2819 opp->available = availability_req;
2820
2821 dev_pm_opp_get(opp);
2822 mutex_unlock(&opp_table->lock);
2823
2824 /* Notify the change of the OPP availability */
2825 if (availability_req)
2826 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827 opp);
2828 else
2829 blocking_notifier_call_chain(&opp_table->head,
2830 OPP_EVENT_DISABLE, opp);
2831
2832 dev_pm_opp_put(opp);
2833 goto put_table;
2834
2835unlock:
2836 mutex_unlock(&opp_table->lock);
2837put_table:
2838 dev_pm_opp_put_opp_table(opp_table);
2839 return r;
2840}
2841
2842/**
2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844 * @dev: device for which we do this operation
2845 * @freq: OPP frequency to adjust voltage of
2846 * @u_volt: new OPP target voltage
2847 * @u_volt_min: new OPP min voltage
2848 * @u_volt_max: new OPP max voltage
2849 *
2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851 * copy operation, returns 0 if no modifcation was done OR modification was
2852 * successful.
2853 */
2854int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855 unsigned long u_volt, unsigned long u_volt_min,
2856 unsigned long u_volt_max)
2857
2858{
2859 struct opp_table *opp_table;
2860 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861 int r = 0;
2862
2863 /* Find the opp_table */
2864 opp_table = _find_opp_table(dev);
2865 if (IS_ERR(opp_table)) {
2866 r = PTR_ERR(opp_table);
2867 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868 return r;
2869 }
2870
2871 if (!assert_single_clk(opp_table)) {
2872 r = -EINVAL;
2873 goto put_table;
2874 }
2875
2876 mutex_lock(&opp_table->lock);
2877
2878 /* Do we have the frequency? */
2879 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880 if (tmp_opp->rates[0] == freq) {
2881 opp = tmp_opp;
2882 break;
2883 }
2884 }
2885
2886 if (IS_ERR(opp)) {
2887 r = PTR_ERR(opp);
2888 goto adjust_unlock;
2889 }
2890
2891 /* Is update really needed? */
2892 if (opp->supplies->u_volt == u_volt)
2893 goto adjust_unlock;
2894
2895 opp->supplies->u_volt = u_volt;
2896 opp->supplies->u_volt_min = u_volt_min;
2897 opp->supplies->u_volt_max = u_volt_max;
2898
2899 dev_pm_opp_get(opp);
2900 mutex_unlock(&opp_table->lock);
2901
2902 /* Notify the voltage change of the OPP */
2903 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904 opp);
2905
2906 dev_pm_opp_put(opp);
2907 goto put_table;
2908
2909adjust_unlock:
2910 mutex_unlock(&opp_table->lock);
2911put_table:
2912 dev_pm_opp_put_opp_table(opp_table);
2913 return r;
2914}
2915EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916
2917/**
2918 * dev_pm_opp_enable() - Enable a specific OPP
2919 * @dev: device for which we do this operation
2920 * @freq: OPP frequency to enable
2921 *
2922 * Enables a provided opp. If the operation is valid, this returns 0, else the
2923 * corresponding error value. It is meant to be used for users an OPP available
2924 * after being temporarily made unavailable with dev_pm_opp_disable.
2925 *
2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927 * copy operation, returns 0 if no modification was done OR modification was
2928 * successful.
2929 */
2930int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931{
2932 return _opp_set_availability(dev, freq, true);
2933}
2934EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935
2936/**
2937 * dev_pm_opp_disable() - Disable a specific OPP
2938 * @dev: device for which we do this operation
2939 * @freq: OPP frequency to disable
2940 *
2941 * Disables a provided opp. If the operation is valid, this returns
2942 * 0, else the corresponding error value. It is meant to be a temporary
2943 * control by users to make this OPP not available until the circumstances are
2944 * right to make it available again (with a call to dev_pm_opp_enable).
2945 *
2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947 * copy operation, returns 0 if no modification was done OR modification was
2948 * successful.
2949 */
2950int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951{
2952 return _opp_set_availability(dev, freq, false);
2953}
2954EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955
2956/**
2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958 * @dev: Device for which notifier needs to be registered
2959 * @nb: Notifier block to be registered
2960 *
2961 * Return: 0 on success or a negative error value.
2962 */
2963int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964{
2965 struct opp_table *opp_table;
2966 int ret;
2967
2968 opp_table = _find_opp_table(dev);
2969 if (IS_ERR(opp_table))
2970 return PTR_ERR(opp_table);
2971
2972 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973
2974 dev_pm_opp_put_opp_table(opp_table);
2975
2976 return ret;
2977}
2978EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979
2980/**
2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982 * @dev: Device for which notifier needs to be unregistered
2983 * @nb: Notifier block to be unregistered
2984 *
2985 * Return: 0 on success or a negative error value.
2986 */
2987int dev_pm_opp_unregister_notifier(struct device *dev,
2988 struct notifier_block *nb)
2989{
2990 struct opp_table *opp_table;
2991 int ret;
2992
2993 opp_table = _find_opp_table(dev);
2994 if (IS_ERR(opp_table))
2995 return PTR_ERR(opp_table);
2996
2997 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998
2999 dev_pm_opp_put_opp_table(opp_table);
3000
3001 return ret;
3002}
3003EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004
3005/**
3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007 * @dev: device pointer used to lookup OPP table.
3008 *
3009 * Free both OPPs created using static entries present in DT and the
3010 * dynamically added entries.
3011 */
3012void dev_pm_opp_remove_table(struct device *dev)
3013{
3014 struct opp_table *opp_table;
3015
3016 /* Check for existing table for 'dev' */
3017 opp_table = _find_opp_table(dev);
3018 if (IS_ERR(opp_table)) {
3019 int error = PTR_ERR(opp_table);
3020
3021 if (error != -ENODEV)
3022 WARN(1, "%s: opp_table: %d\n",
3023 IS_ERR_OR_NULL(dev) ?
3024 "Invalid device" : dev_name(dev),
3025 error);
3026 return;
3027 }
3028
3029 /*
3030 * Drop the extra reference only if the OPP table was successfully added
3031 * with dev_pm_opp_of_add_table() earlier.
3032 **/
3033 if (_opp_remove_all_static(opp_table))
3034 dev_pm_opp_put_opp_table(opp_table);
3035
3036 /* Drop reference taken by _find_opp_table() */
3037 dev_pm_opp_put_opp_table(opp_table);
3038}
3039EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040
3041/**
3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043 * @dev: device for which we do this operation
3044 *
3045 * Sync voltage state of the OPP table regulators.
3046 *
3047 * Return: 0 on success or a negative error value.
3048 */
3049int dev_pm_opp_sync_regulators(struct device *dev)
3050{
3051 struct opp_table *opp_table;
3052 struct regulator *reg;
3053 int i, ret = 0;
3054
3055 /* Device may not have OPP table */
3056 opp_table = _find_opp_table(dev);
3057 if (IS_ERR(opp_table))
3058 return 0;
3059
3060 /* Regulator may not be required for the device */
3061 if (unlikely(!opp_table->regulators))
3062 goto put_table;
3063
3064 /* Nothing to sync if voltage wasn't changed */
3065 if (!opp_table->enabled)
3066 goto put_table;
3067
3068 for (i = 0; i < opp_table->regulator_count; i++) {
3069 reg = opp_table->regulators[i];
3070 ret = regulator_sync_voltage(reg);
3071 if (ret)
3072 break;
3073 }
3074put_table:
3075 /* Drop reference taken by _find_opp_table() */
3076 dev_pm_opp_put_opp_table(opp_table);
3077
3078 return ret;
3079}
3080EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30
31/* OPP tables with uninitialized required OPPs */
32LIST_HEAD(lazy_opp_tables);
33
34/* Lock to allow exclusive modification to the device and opp lists */
35DEFINE_MUTEX(opp_table_lock);
36/* Flag indicating that opp_tables list is being updated at the moment */
37static bool opp_tables_busy;
38
39static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40{
41 struct opp_device *opp_dev;
42 bool found = false;
43
44 mutex_lock(&opp_table->lock);
45 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 if (opp_dev->dev == dev) {
47 found = true;
48 break;
49 }
50
51 mutex_unlock(&opp_table->lock);
52 return found;
53}
54
55static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56{
57 struct opp_table *opp_table;
58
59 list_for_each_entry(opp_table, &opp_tables, node) {
60 if (_find_opp_dev(dev, opp_table)) {
61 _get_opp_table_kref(opp_table);
62 return opp_table;
63 }
64 }
65
66 return ERR_PTR(-ENODEV);
67}
68
69/**
70 * _find_opp_table() - find opp_table struct using device pointer
71 * @dev: device pointer used to lookup OPP table
72 *
73 * Search OPP table for one containing matching device.
74 *
75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76 * -EINVAL based on type of error.
77 *
78 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79 */
80struct opp_table *_find_opp_table(struct device *dev)
81{
82 struct opp_table *opp_table;
83
84 if (IS_ERR_OR_NULL(dev)) {
85 pr_err("%s: Invalid parameters\n", __func__);
86 return ERR_PTR(-EINVAL);
87 }
88
89 mutex_lock(&opp_table_lock);
90 opp_table = _find_opp_table_unlocked(dev);
91 mutex_unlock(&opp_table_lock);
92
93 return opp_table;
94}
95
96/**
97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98 * @opp: opp for which voltage has to be returned for
99 *
100 * Return: voltage in micro volt corresponding to the opp, else
101 * return 0
102 *
103 * This is useful only for devices with single power supply.
104 */
105unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106{
107 if (IS_ERR_OR_NULL(opp)) {
108 pr_err("%s: Invalid parameters\n", __func__);
109 return 0;
110 }
111
112 return opp->supplies[0].u_volt;
113}
114EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115
116/**
117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118 * @opp: opp for which frequency has to be returned for
119 *
120 * Return: frequency in hertz corresponding to the opp, else
121 * return 0
122 */
123unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124{
125 if (IS_ERR_OR_NULL(opp)) {
126 pr_err("%s: Invalid parameters\n", __func__);
127 return 0;
128 }
129
130 return opp->rate;
131}
132EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133
134/**
135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136 * @opp: opp for which level value has to be returned for
137 *
138 * Return: level read from device tree corresponding to the opp, else
139 * return 0.
140 */
141unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142{
143 if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return 0;
146 }
147
148 return opp->level;
149}
150EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151
152/**
153 * dev_pm_opp_get_required_pstate() - Gets the required performance state
154 * corresponding to an available opp
155 * @opp: opp for which performance state has to be returned for
156 * @index: index of the required opp
157 *
158 * Return: performance state read from device tree corresponding to the
159 * required opp, else return 0.
160 */
161unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 unsigned int index)
163{
164 if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 index >= opp->opp_table->required_opp_count) {
166 pr_err("%s: Invalid parameters\n", __func__);
167 return 0;
168 }
169
170 /* required-opps not fully initialized yet */
171 if (lazy_linking_pending(opp->opp_table))
172 return 0;
173
174 return opp->required_opps[index]->pstate;
175}
176EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177
178/**
179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180 * @opp: opp for which turbo mode is being verified
181 *
182 * Turbo OPPs are not for normal use, and can be enabled (under certain
183 * conditions) for short duration of times to finish high throughput work
184 * quickly. Running on them for longer times may overheat the chip.
185 *
186 * Return: true if opp is turbo opp, else false.
187 */
188bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189{
190 if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return false;
193 }
194
195 return opp->turbo;
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198
199/**
200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201 * @dev: device for which we do this operation
202 *
203 * Return: This function returns the max clock latency in nanoseconds.
204 */
205unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206{
207 struct opp_table *opp_table;
208 unsigned long clock_latency_ns;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 clock_latency_ns = opp_table->clock_latency_ns_max;
215
216 dev_pm_opp_put_opp_table(opp_table);
217
218 return clock_latency_ns;
219}
220EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221
222/**
223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224 * @dev: device for which we do this operation
225 *
226 * Return: This function returns the max voltage latency in nanoseconds.
227 */
228unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229{
230 struct opp_table *opp_table;
231 struct dev_pm_opp *opp;
232 struct regulator *reg;
233 unsigned long latency_ns = 0;
234 int ret, i, count;
235 struct {
236 unsigned long min;
237 unsigned long max;
238 } *uV;
239
240 opp_table = _find_opp_table(dev);
241 if (IS_ERR(opp_table))
242 return 0;
243
244 /* Regulator may not be required for the device */
245 if (!opp_table->regulators)
246 goto put_opp_table;
247
248 count = opp_table->regulator_count;
249
250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 if (!uV)
252 goto put_opp_table;
253
254 mutex_lock(&opp_table->lock);
255
256 for (i = 0; i < count; i++) {
257 uV[i].min = ~0;
258 uV[i].max = 0;
259
260 list_for_each_entry(opp, &opp_table->opp_list, node) {
261 if (!opp->available)
262 continue;
263
264 if (opp->supplies[i].u_volt_min < uV[i].min)
265 uV[i].min = opp->supplies[i].u_volt_min;
266 if (opp->supplies[i].u_volt_max > uV[i].max)
267 uV[i].max = opp->supplies[i].u_volt_max;
268 }
269 }
270
271 mutex_unlock(&opp_table->lock);
272
273 /*
274 * The caller needs to ensure that opp_table (and hence the regulator)
275 * isn't freed, while we are executing this routine.
276 */
277 for (i = 0; i < count; i++) {
278 reg = opp_table->regulators[i];
279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 if (ret > 0)
281 latency_ns += ret * 1000;
282 }
283
284 kfree(uV);
285put_opp_table:
286 dev_pm_opp_put_opp_table(opp_table);
287
288 return latency_ns;
289}
290EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291
292/**
293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294 * nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max transition latency, in nanoseconds, to
298 * switch from one OPP to other.
299 */
300unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301{
302 return dev_pm_opp_get_max_volt_latency(dev) +
303 dev_pm_opp_get_max_clock_latency(dev);
304}
305EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306
307/**
308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309 * @dev: device for which we do this operation
310 *
311 * Return: This function returns the frequency of the OPP marked as suspend_opp
312 * if one is available, else returns 0;
313 */
314unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315{
316 struct opp_table *opp_table;
317 unsigned long freq = 0;
318
319 opp_table = _find_opp_table(dev);
320 if (IS_ERR(opp_table))
321 return 0;
322
323 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325
326 dev_pm_opp_put_opp_table(opp_table);
327
328 return freq;
329}
330EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331
332int _get_opp_count(struct opp_table *opp_table)
333{
334 struct dev_pm_opp *opp;
335 int count = 0;
336
337 mutex_lock(&opp_table->lock);
338
339 list_for_each_entry(opp, &opp_table->opp_list, node) {
340 if (opp->available)
341 count++;
342 }
343
344 mutex_unlock(&opp_table->lock);
345
346 return count;
347}
348
349/**
350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351 * @dev: device for which we do this operation
352 *
353 * Return: This function returns the number of available opps if there are any,
354 * else returns 0 if none or the corresponding error value.
355 */
356int dev_pm_opp_get_opp_count(struct device *dev)
357{
358 struct opp_table *opp_table;
359 int count;
360
361 opp_table = _find_opp_table(dev);
362 if (IS_ERR(opp_table)) {
363 count = PTR_ERR(opp_table);
364 dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 __func__, count);
366 return count;
367 }
368
369 count = _get_opp_count(opp_table);
370 dev_pm_opp_put_opp_table(opp_table);
371
372 return count;
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375
376/**
377 * dev_pm_opp_find_freq_exact() - search for an exact frequency
378 * @dev: device for which we do this operation
379 * @freq: frequency to search for
380 * @available: true/false - match for available opp
381 *
382 * Return: Searches for exact match in the opp table and returns pointer to the
383 * matching opp if found, else returns ERR_PTR in case of error and should
384 * be handled using IS_ERR. Error return values can be:
385 * EINVAL: for bad pointer
386 * ERANGE: no match found for search
387 * ENODEV: if device not found in list of registered devices
388 *
389 * Note: available is a modifier for the search. if available=true, then the
390 * match is for exact matching frequency and is available in the stored OPP
391 * table. if false, the match is for exact frequency which is not available.
392 *
393 * This provides a mechanism to enable an opp which is not available currently
394 * or the opposite as well.
395 *
396 * The callers are required to call dev_pm_opp_put() for the returned OPP after
397 * use.
398 */
399struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 unsigned long freq,
401 bool available)
402{
403 struct opp_table *opp_table;
404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405
406 opp_table = _find_opp_table(dev);
407 if (IS_ERR(opp_table)) {
408 int r = PTR_ERR(opp_table);
409
410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 return ERR_PTR(r);
412 }
413
414 mutex_lock(&opp_table->lock);
415
416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 if (temp_opp->available == available &&
418 temp_opp->rate == freq) {
419 opp = temp_opp;
420
421 /* Increment the reference count of OPP */
422 dev_pm_opp_get(opp);
423 break;
424 }
425 }
426
427 mutex_unlock(&opp_table->lock);
428 dev_pm_opp_put_opp_table(opp_table);
429
430 return opp;
431}
432EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433
434/**
435 * dev_pm_opp_find_level_exact() - search for an exact level
436 * @dev: device for which we do this operation
437 * @level: level to search for
438 *
439 * Return: Searches for exact match in the opp table and returns pointer to the
440 * matching opp if found, else returns ERR_PTR in case of error and should
441 * be handled using IS_ERR. Error return values can be:
442 * EINVAL: for bad pointer
443 * ERANGE: no match found for search
444 * ENODEV: if device not found in list of registered devices
445 *
446 * The callers are required to call dev_pm_opp_put() for the returned OPP after
447 * use.
448 */
449struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 unsigned int level)
451{
452 struct opp_table *opp_table;
453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454
455 opp_table = _find_opp_table(dev);
456 if (IS_ERR(opp_table)) {
457 int r = PTR_ERR(opp_table);
458
459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 return ERR_PTR(r);
461 }
462
463 mutex_lock(&opp_table->lock);
464
465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 if (temp_opp->level == level) {
467 opp = temp_opp;
468
469 /* Increment the reference count of OPP */
470 dev_pm_opp_get(opp);
471 break;
472 }
473 }
474
475 mutex_unlock(&opp_table->lock);
476 dev_pm_opp_put_opp_table(opp_table);
477
478 return opp;
479}
480EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481
482/**
483 * dev_pm_opp_find_level_ceil() - search for an rounded up level
484 * @dev: device for which we do this operation
485 * @level: level to search for
486 *
487 * Return: Searches for rounded up match in the opp table and returns pointer
488 * to the matching opp if found, else returns ERR_PTR in case of error and
489 * should be handled using IS_ERR. Error return values can be:
490 * EINVAL: for bad pointer
491 * ERANGE: no match found for search
492 * ENODEV: if device not found in list of registered devices
493 *
494 * The callers are required to call dev_pm_opp_put() for the returned OPP after
495 * use.
496 */
497struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 unsigned int *level)
499{
500 struct opp_table *opp_table;
501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502
503 opp_table = _find_opp_table(dev);
504 if (IS_ERR(opp_table)) {
505 int r = PTR_ERR(opp_table);
506
507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 return ERR_PTR(r);
509 }
510
511 mutex_lock(&opp_table->lock);
512
513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 if (temp_opp->available && temp_opp->level >= *level) {
515 opp = temp_opp;
516 *level = opp->level;
517
518 /* Increment the reference count of OPP */
519 dev_pm_opp_get(opp);
520 break;
521 }
522 }
523
524 mutex_unlock(&opp_table->lock);
525 dev_pm_opp_put_opp_table(opp_table);
526
527 return opp;
528}
529EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530
531static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 unsigned long *freq)
533{
534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535
536 mutex_lock(&opp_table->lock);
537
538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 if (temp_opp->available && temp_opp->rate >= *freq) {
540 opp = temp_opp;
541 *freq = opp->rate;
542
543 /* Increment the reference count of OPP */
544 dev_pm_opp_get(opp);
545 break;
546 }
547 }
548
549 mutex_unlock(&opp_table->lock);
550
551 return opp;
552}
553
554/**
555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556 * @dev: device for which we do this operation
557 * @freq: Start frequency
558 *
559 * Search for the matching ceil *available* OPP from a starting freq
560 * for a device.
561 *
562 * Return: matching *opp and refreshes *freq accordingly, else returns
563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564 * values can be:
565 * EINVAL: for bad pointer
566 * ERANGE: no match found for search
567 * ENODEV: if device not found in list of registered devices
568 *
569 * The callers are required to call dev_pm_opp_put() for the returned OPP after
570 * use.
571 */
572struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 unsigned long *freq)
574{
575 struct opp_table *opp_table;
576 struct dev_pm_opp *opp;
577
578 if (!dev || !freq) {
579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 return ERR_PTR(-EINVAL);
581 }
582
583 opp_table = _find_opp_table(dev);
584 if (IS_ERR(opp_table))
585 return ERR_CAST(opp_table);
586
587 opp = _find_freq_ceil(opp_table, freq);
588
589 dev_pm_opp_put_opp_table(opp_table);
590
591 return opp;
592}
593EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594
595/**
596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597 * @dev: device for which we do this operation
598 * @freq: Start frequency
599 *
600 * Search for the matching floor *available* OPP from a starting freq
601 * for a device.
602 *
603 * Return: matching *opp and refreshes *freq accordingly, else returns
604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605 * values can be:
606 * EINVAL: for bad pointer
607 * ERANGE: no match found for search
608 * ENODEV: if device not found in list of registered devices
609 *
610 * The callers are required to call dev_pm_opp_put() for the returned OPP after
611 * use.
612 */
613struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 unsigned long *freq)
615{
616 struct opp_table *opp_table;
617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618
619 if (!dev || !freq) {
620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 return ERR_PTR(-EINVAL);
622 }
623
624 opp_table = _find_opp_table(dev);
625 if (IS_ERR(opp_table))
626 return ERR_CAST(opp_table);
627
628 mutex_lock(&opp_table->lock);
629
630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 if (temp_opp->available) {
632 /* go to the next node, before choosing prev */
633 if (temp_opp->rate > *freq)
634 break;
635 else
636 opp = temp_opp;
637 }
638 }
639
640 /* Increment the reference count of OPP */
641 if (!IS_ERR(opp))
642 dev_pm_opp_get(opp);
643 mutex_unlock(&opp_table->lock);
644 dev_pm_opp_put_opp_table(opp_table);
645
646 if (!IS_ERR(opp))
647 *freq = opp->rate;
648
649 return opp;
650}
651EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652
653/**
654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655 * target voltage.
656 * @dev: Device for which we do this operation.
657 * @u_volt: Target voltage.
658 *
659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660 *
661 * Return: matching *opp, else returns ERR_PTR in case of error which should be
662 * handled using IS_ERR.
663 *
664 * Error return values can be:
665 * EINVAL: bad parameters
666 *
667 * The callers are required to call dev_pm_opp_put() for the returned OPP after
668 * use.
669 */
670struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 unsigned long u_volt)
672{
673 struct opp_table *opp_table;
674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675
676 if (!dev || !u_volt) {
677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 u_volt);
679 return ERR_PTR(-EINVAL);
680 }
681
682 opp_table = _find_opp_table(dev);
683 if (IS_ERR(opp_table))
684 return ERR_CAST(opp_table);
685
686 mutex_lock(&opp_table->lock);
687
688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 if (temp_opp->available) {
690 if (temp_opp->supplies[0].u_volt > u_volt)
691 break;
692 opp = temp_opp;
693 }
694 }
695
696 /* Increment the reference count of OPP */
697 if (!IS_ERR(opp))
698 dev_pm_opp_get(opp);
699
700 mutex_unlock(&opp_table->lock);
701 dev_pm_opp_put_opp_table(opp_table);
702
703 return opp;
704}
705EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706
707static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 struct dev_pm_opp_supply *supply)
709{
710 int ret;
711
712 /* Regulator not available for device */
713 if (IS_ERR(reg)) {
714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 PTR_ERR(reg));
716 return 0;
717 }
718
719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721
722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 supply->u_volt, supply->u_volt_max);
724 if (ret)
725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 __func__, supply->u_volt_min, supply->u_volt,
727 supply->u_volt_max, ret);
728
729 return ret;
730}
731
732static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 unsigned long freq)
734{
735 int ret;
736
737 /* We may reach here for devices which don't change frequency */
738 if (IS_ERR(clk))
739 return 0;
740
741 ret = clk_set_rate(clk, freq);
742 if (ret) {
743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 ret);
745 }
746
747 return ret;
748}
749
750static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 struct device *dev,
752 struct dev_pm_opp *opp,
753 unsigned long freq,
754 int scaling_down)
755{
756 struct regulator *reg = opp_table->regulators[0];
757 struct dev_pm_opp *old_opp = opp_table->current_opp;
758 int ret;
759
760 /* This function only supports single regulator per device */
761 if (WARN_ON(opp_table->regulator_count > 1)) {
762 dev_err(dev, "multiple regulators are not supported\n");
763 return -EINVAL;
764 }
765
766 /* Scaling up? Scale voltage before frequency */
767 if (!scaling_down) {
768 ret = _set_opp_voltage(dev, reg, opp->supplies);
769 if (ret)
770 goto restore_voltage;
771 }
772
773 /* Change frequency */
774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 if (ret)
776 goto restore_voltage;
777
778 /* Scaling down? Scale voltage after frequency */
779 if (scaling_down) {
780 ret = _set_opp_voltage(dev, reg, opp->supplies);
781 if (ret)
782 goto restore_freq;
783 }
784
785 /*
786 * Enable the regulator after setting its voltages, otherwise it breaks
787 * some boot-enabled regulators.
788 */
789 if (unlikely(!opp_table->enabled)) {
790 ret = regulator_enable(reg);
791 if (ret < 0)
792 dev_warn(dev, "Failed to enable regulator: %d", ret);
793 }
794
795 return 0;
796
797restore_freq:
798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 __func__, old_opp->rate);
801restore_voltage:
802 /* This shouldn't harm even if the voltages weren't updated earlier */
803 _set_opp_voltage(dev, reg, old_opp->supplies);
804
805 return ret;
806}
807
808static int _set_opp_bw(const struct opp_table *opp_table,
809 struct dev_pm_opp *opp, struct device *dev)
810{
811 u32 avg, peak;
812 int i, ret;
813
814 if (!opp_table->paths)
815 return 0;
816
817 for (i = 0; i < opp_table->path_count; i++) {
818 if (!opp) {
819 avg = 0;
820 peak = 0;
821 } else {
822 avg = opp->bandwidth[i].avg;
823 peak = opp->bandwidth[i].peak;
824 }
825 ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 if (ret) {
827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 opp ? "set" : "remove", i, ret);
829 return ret;
830 }
831 }
832
833 return 0;
834}
835
836static int _set_opp_custom(const struct opp_table *opp_table,
837 struct device *dev, struct dev_pm_opp *opp,
838 unsigned long freq)
839{
840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 struct dev_pm_opp *old_opp = opp_table->current_opp;
842 int size;
843
844 /*
845 * We support this only if dev_pm_opp_set_regulators() was called
846 * earlier.
847 */
848 if (opp_table->sod_supplies) {
849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 memcpy(data->new_opp.supplies, opp->supplies, size);
852 data->regulator_count = opp_table->regulator_count;
853 } else {
854 data->regulator_count = 0;
855 }
856
857 data->regulators = opp_table->regulators;
858 data->clk = opp_table->clk;
859 data->dev = dev;
860 data->old_opp.rate = old_opp->rate;
861 data->new_opp.rate = freq;
862
863 return opp_table->set_opp(data);
864}
865
866static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 struct dev_pm_opp *opp, int i)
868{
869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 int ret;
871
872 if (!pd_dev)
873 return 0;
874
875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 if (ret) {
877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 dev_name(pd_dev), pstate, ret);
879 }
880
881 return ret;
882}
883
884/* This is only called for PM domain for now */
885static int _set_required_opps(struct device *dev,
886 struct opp_table *opp_table,
887 struct dev_pm_opp *opp, bool up)
888{
889 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 int i, ret = 0;
892
893 if (!required_opp_tables)
894 return 0;
895
896 /* required-opps not fully initialized yet */
897 if (lazy_linking_pending(opp_table))
898 return -EBUSY;
899
900 /*
901 * We only support genpd's OPPs in the "required-opps" for now, as we
902 * don't know much about other use cases. Error out if the required OPP
903 * doesn't belong to a genpd.
904 */
905 if (unlikely(!required_opp_tables[0]->is_genpd)) {
906 dev_err(dev, "required-opps don't belong to a genpd\n");
907 return -ENOENT;
908 }
909
910 /* Single genpd case */
911 if (!genpd_virt_devs)
912 return _set_required_opp(dev, dev, opp, 0);
913
914 /* Multiple genpd case */
915
916 /*
917 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
918 * after it is freed from another thread.
919 */
920 mutex_lock(&opp_table->genpd_virt_dev_lock);
921
922 /* Scaling up? Set required OPPs in normal order, else reverse */
923 if (up) {
924 for (i = 0; i < opp_table->required_opp_count; i++) {
925 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
926 if (ret)
927 break;
928 }
929 } else {
930 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
931 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
932 if (ret)
933 break;
934 }
935 }
936
937 mutex_unlock(&opp_table->genpd_virt_dev_lock);
938
939 return ret;
940}
941
942static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
943{
944 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
945 unsigned long freq;
946
947 if (!IS_ERR(opp_table->clk)) {
948 freq = clk_get_rate(opp_table->clk);
949 opp = _find_freq_ceil(opp_table, &freq);
950 }
951
952 /*
953 * Unable to find the current OPP ? Pick the first from the list since
954 * it is in ascending order, otherwise rest of the code will need to
955 * make special checks to validate current_opp.
956 */
957 if (IS_ERR(opp)) {
958 mutex_lock(&opp_table->lock);
959 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
960 dev_pm_opp_get(opp);
961 mutex_unlock(&opp_table->lock);
962 }
963
964 opp_table->current_opp = opp;
965}
966
967static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
968{
969 int ret;
970
971 if (!opp_table->enabled)
972 return 0;
973
974 /*
975 * Some drivers need to support cases where some platforms may
976 * have OPP table for the device, while others don't and
977 * opp_set_rate() just needs to behave like clk_set_rate().
978 */
979 if (!_get_opp_count(opp_table))
980 return 0;
981
982 ret = _set_opp_bw(opp_table, NULL, dev);
983 if (ret)
984 return ret;
985
986 if (opp_table->regulators)
987 regulator_disable(opp_table->regulators[0]);
988
989 ret = _set_required_opps(dev, opp_table, NULL, false);
990
991 opp_table->enabled = false;
992 return ret;
993}
994
995static int _set_opp(struct device *dev, struct opp_table *opp_table,
996 struct dev_pm_opp *opp, unsigned long freq)
997{
998 struct dev_pm_opp *old_opp;
999 int scaling_down, ret;
1000
1001 if (unlikely(!opp))
1002 return _disable_opp_table(dev, opp_table);
1003
1004 /* Find the currently set OPP if we don't know already */
1005 if (unlikely(!opp_table->current_opp))
1006 _find_current_opp(dev, opp_table);
1007
1008 old_opp = opp_table->current_opp;
1009
1010 /* Return early if nothing to do */
1011 if (old_opp == opp && opp_table->current_rate == freq &&
1012 opp_table->enabled) {
1013 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1014 return 0;
1015 }
1016
1017 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1018 __func__, opp_table->current_rate, freq, old_opp->level,
1019 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1020 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1021
1022 scaling_down = _opp_compare_key(old_opp, opp);
1023 if (scaling_down == -1)
1024 scaling_down = 0;
1025
1026 /* Scaling up? Configure required OPPs before frequency */
1027 if (!scaling_down) {
1028 ret = _set_required_opps(dev, opp_table, opp, true);
1029 if (ret) {
1030 dev_err(dev, "Failed to set required opps: %d\n", ret);
1031 return ret;
1032 }
1033
1034 ret = _set_opp_bw(opp_table, opp, dev);
1035 if (ret) {
1036 dev_err(dev, "Failed to set bw: %d\n", ret);
1037 return ret;
1038 }
1039 }
1040
1041 if (opp_table->set_opp) {
1042 ret = _set_opp_custom(opp_table, dev, opp, freq);
1043 } else if (opp_table->regulators) {
1044 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1045 scaling_down);
1046 } else {
1047 /* Only frequency scaling */
1048 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1049 }
1050
1051 if (ret)
1052 return ret;
1053
1054 /* Scaling down? Configure required OPPs after frequency */
1055 if (scaling_down) {
1056 ret = _set_opp_bw(opp_table, opp, dev);
1057 if (ret) {
1058 dev_err(dev, "Failed to set bw: %d\n", ret);
1059 return ret;
1060 }
1061
1062 ret = _set_required_opps(dev, opp_table, opp, false);
1063 if (ret) {
1064 dev_err(dev, "Failed to set required opps: %d\n", ret);
1065 return ret;
1066 }
1067 }
1068
1069 opp_table->enabled = true;
1070 dev_pm_opp_put(old_opp);
1071
1072 /* Make sure current_opp doesn't get freed */
1073 dev_pm_opp_get(opp);
1074 opp_table->current_opp = opp;
1075 opp_table->current_rate = freq;
1076
1077 return ret;
1078}
1079
1080/**
1081 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1082 * @dev: device for which we do this operation
1083 * @target_freq: frequency to achieve
1084 *
1085 * This configures the power-supplies to the levels specified by the OPP
1086 * corresponding to the target_freq, and programs the clock to a value <=
1087 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1088 * provided by the opp, should have already rounded to the target OPP's
1089 * frequency.
1090 */
1091int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1092{
1093 struct opp_table *opp_table;
1094 unsigned long freq = 0, temp_freq;
1095 struct dev_pm_opp *opp = NULL;
1096 int ret;
1097
1098 opp_table = _find_opp_table(dev);
1099 if (IS_ERR(opp_table)) {
1100 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1101 return PTR_ERR(opp_table);
1102 }
1103
1104 if (target_freq) {
1105 /*
1106 * For IO devices which require an OPP on some platforms/SoCs
1107 * while just needing to scale the clock on some others
1108 * we look for empty OPP tables with just a clock handle and
1109 * scale only the clk. This makes dev_pm_opp_set_rate()
1110 * equivalent to a clk_set_rate()
1111 */
1112 if (!_get_opp_count(opp_table)) {
1113 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1114 goto put_opp_table;
1115 }
1116
1117 freq = clk_round_rate(opp_table->clk, target_freq);
1118 if ((long)freq <= 0)
1119 freq = target_freq;
1120
1121 /*
1122 * The clock driver may support finer resolution of the
1123 * frequencies than the OPP table, don't update the frequency we
1124 * pass to clk_set_rate() here.
1125 */
1126 temp_freq = freq;
1127 opp = _find_freq_ceil(opp_table, &temp_freq);
1128 if (IS_ERR(opp)) {
1129 ret = PTR_ERR(opp);
1130 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1131 __func__, freq, ret);
1132 goto put_opp_table;
1133 }
1134 }
1135
1136 ret = _set_opp(dev, opp_table, opp, freq);
1137
1138 if (target_freq)
1139 dev_pm_opp_put(opp);
1140put_opp_table:
1141 dev_pm_opp_put_opp_table(opp_table);
1142 return ret;
1143}
1144EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1145
1146/**
1147 * dev_pm_opp_set_opp() - Configure device for OPP
1148 * @dev: device for which we do this operation
1149 * @opp: OPP to set to
1150 *
1151 * This configures the device based on the properties of the OPP passed to this
1152 * routine.
1153 *
1154 * Return: 0 on success, a negative error number otherwise.
1155 */
1156int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1157{
1158 struct opp_table *opp_table;
1159 int ret;
1160
1161 opp_table = _find_opp_table(dev);
1162 if (IS_ERR(opp_table)) {
1163 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1164 return PTR_ERR(opp_table);
1165 }
1166
1167 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1168 dev_pm_opp_put_opp_table(opp_table);
1169
1170 return ret;
1171}
1172EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1173
1174/* OPP-dev Helpers */
1175static void _remove_opp_dev(struct opp_device *opp_dev,
1176 struct opp_table *opp_table)
1177{
1178 opp_debug_unregister(opp_dev, opp_table);
1179 list_del(&opp_dev->node);
1180 kfree(opp_dev);
1181}
1182
1183struct opp_device *_add_opp_dev(const struct device *dev,
1184 struct opp_table *opp_table)
1185{
1186 struct opp_device *opp_dev;
1187
1188 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1189 if (!opp_dev)
1190 return NULL;
1191
1192 /* Initialize opp-dev */
1193 opp_dev->dev = dev;
1194
1195 mutex_lock(&opp_table->lock);
1196 list_add(&opp_dev->node, &opp_table->dev_list);
1197 mutex_unlock(&opp_table->lock);
1198
1199 /* Create debugfs entries for the opp_table */
1200 opp_debug_register(opp_dev, opp_table);
1201
1202 return opp_dev;
1203}
1204
1205static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1206{
1207 struct opp_table *opp_table;
1208 struct opp_device *opp_dev;
1209 int ret;
1210
1211 /*
1212 * Allocate a new OPP table. In the infrequent case where a new
1213 * device is needed to be added, we pay this penalty.
1214 */
1215 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1216 if (!opp_table)
1217 return ERR_PTR(-ENOMEM);
1218
1219 mutex_init(&opp_table->lock);
1220 mutex_init(&opp_table->genpd_virt_dev_lock);
1221 INIT_LIST_HEAD(&opp_table->dev_list);
1222 INIT_LIST_HEAD(&opp_table->lazy);
1223
1224 /* Mark regulator count uninitialized */
1225 opp_table->regulator_count = -1;
1226
1227 opp_dev = _add_opp_dev(dev, opp_table);
1228 if (!opp_dev) {
1229 ret = -ENOMEM;
1230 goto err;
1231 }
1232
1233 _of_init_opp_table(opp_table, dev, index);
1234
1235 /* Find interconnect path(s) for the device */
1236 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1237 if (ret) {
1238 if (ret == -EPROBE_DEFER)
1239 goto remove_opp_dev;
1240
1241 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1242 __func__, ret);
1243 }
1244
1245 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1246 INIT_LIST_HEAD(&opp_table->opp_list);
1247 kref_init(&opp_table->kref);
1248
1249 return opp_table;
1250
1251remove_opp_dev:
1252 _remove_opp_dev(opp_dev, opp_table);
1253err:
1254 kfree(opp_table);
1255 return ERR_PTR(ret);
1256}
1257
1258void _get_opp_table_kref(struct opp_table *opp_table)
1259{
1260 kref_get(&opp_table->kref);
1261}
1262
1263static struct opp_table *_update_opp_table_clk(struct device *dev,
1264 struct opp_table *opp_table,
1265 bool getclk)
1266{
1267 int ret;
1268
1269 /*
1270 * Return early if we don't need to get clk or we have already tried it
1271 * earlier.
1272 */
1273 if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1274 return opp_table;
1275
1276 /* Find clk for the device */
1277 opp_table->clk = clk_get(dev, NULL);
1278
1279 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1280 if (!ret)
1281 return opp_table;
1282
1283 if (ret == -ENOENT) {
1284 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1285 return opp_table;
1286 }
1287
1288 dev_pm_opp_put_opp_table(opp_table);
1289 dev_err_probe(dev, ret, "Couldn't find clock\n");
1290
1291 return ERR_PTR(ret);
1292}
1293
1294/*
1295 * We need to make sure that the OPP table for a device doesn't get added twice,
1296 * if this routine gets called in parallel with the same device pointer.
1297 *
1298 * The simplest way to enforce that is to perform everything (find existing
1299 * table and if not found, create a new one) under the opp_table_lock, so only
1300 * one creator gets access to the same. But that expands the critical section
1301 * under the lock and may end up causing circular dependencies with frameworks
1302 * like debugfs, interconnect or clock framework as they may be direct or
1303 * indirect users of OPP core.
1304 *
1305 * And for that reason we have to go for a bit tricky implementation here, which
1306 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1307 * of adding an OPP table and others should wait for it to finish.
1308 */
1309struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1310 bool getclk)
1311{
1312 struct opp_table *opp_table;
1313
1314again:
1315 mutex_lock(&opp_table_lock);
1316
1317 opp_table = _find_opp_table_unlocked(dev);
1318 if (!IS_ERR(opp_table))
1319 goto unlock;
1320
1321 /*
1322 * The opp_tables list or an OPP table's dev_list is getting updated by
1323 * another user, wait for it to finish.
1324 */
1325 if (unlikely(opp_tables_busy)) {
1326 mutex_unlock(&opp_table_lock);
1327 cpu_relax();
1328 goto again;
1329 }
1330
1331 opp_tables_busy = true;
1332 opp_table = _managed_opp(dev, index);
1333
1334 /* Drop the lock to reduce the size of critical section */
1335 mutex_unlock(&opp_table_lock);
1336
1337 if (opp_table) {
1338 if (!_add_opp_dev(dev, opp_table)) {
1339 dev_pm_opp_put_opp_table(opp_table);
1340 opp_table = ERR_PTR(-ENOMEM);
1341 }
1342
1343 mutex_lock(&opp_table_lock);
1344 } else {
1345 opp_table = _allocate_opp_table(dev, index);
1346
1347 mutex_lock(&opp_table_lock);
1348 if (!IS_ERR(opp_table))
1349 list_add(&opp_table->node, &opp_tables);
1350 }
1351
1352 opp_tables_busy = false;
1353
1354unlock:
1355 mutex_unlock(&opp_table_lock);
1356
1357 return _update_opp_table_clk(dev, opp_table, getclk);
1358}
1359
1360static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1361{
1362 return _add_opp_table_indexed(dev, 0, getclk);
1363}
1364
1365struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1366{
1367 return _find_opp_table(dev);
1368}
1369EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1370
1371static void _opp_table_kref_release(struct kref *kref)
1372{
1373 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1374 struct opp_device *opp_dev, *temp;
1375 int i;
1376
1377 /* Drop the lock as soon as we can */
1378 list_del(&opp_table->node);
1379 mutex_unlock(&opp_table_lock);
1380
1381 if (opp_table->current_opp)
1382 dev_pm_opp_put(opp_table->current_opp);
1383
1384 _of_clear_opp_table(opp_table);
1385
1386 /* Release clk */
1387 if (!IS_ERR(opp_table->clk))
1388 clk_put(opp_table->clk);
1389
1390 if (opp_table->paths) {
1391 for (i = 0; i < opp_table->path_count; i++)
1392 icc_put(opp_table->paths[i]);
1393 kfree(opp_table->paths);
1394 }
1395
1396 WARN_ON(!list_empty(&opp_table->opp_list));
1397
1398 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1399 /*
1400 * The OPP table is getting removed, drop the performance state
1401 * constraints.
1402 */
1403 if (opp_table->genpd_performance_state)
1404 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1405
1406 _remove_opp_dev(opp_dev, opp_table);
1407 }
1408
1409 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1410 mutex_destroy(&opp_table->lock);
1411 kfree(opp_table);
1412}
1413
1414void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1415{
1416 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1417 &opp_table_lock);
1418}
1419EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1420
1421void _opp_free(struct dev_pm_opp *opp)
1422{
1423 kfree(opp);
1424}
1425
1426static void _opp_kref_release(struct kref *kref)
1427{
1428 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1429 struct opp_table *opp_table = opp->opp_table;
1430
1431 list_del(&opp->node);
1432 mutex_unlock(&opp_table->lock);
1433
1434 /*
1435 * Notify the changes in the availability of the operable
1436 * frequency/voltage list.
1437 */
1438 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1439 _of_opp_free_required_opps(opp_table, opp);
1440 opp_debug_remove_one(opp);
1441 kfree(opp);
1442}
1443
1444void dev_pm_opp_get(struct dev_pm_opp *opp)
1445{
1446 kref_get(&opp->kref);
1447}
1448
1449void dev_pm_opp_put(struct dev_pm_opp *opp)
1450{
1451 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1452}
1453EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1454
1455/**
1456 * dev_pm_opp_remove() - Remove an OPP from OPP table
1457 * @dev: device for which we do this operation
1458 * @freq: OPP to remove with matching 'freq'
1459 *
1460 * This function removes an opp from the opp table.
1461 */
1462void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1463{
1464 struct dev_pm_opp *opp;
1465 struct opp_table *opp_table;
1466 bool found = false;
1467
1468 opp_table = _find_opp_table(dev);
1469 if (IS_ERR(opp_table))
1470 return;
1471
1472 mutex_lock(&opp_table->lock);
1473
1474 list_for_each_entry(opp, &opp_table->opp_list, node) {
1475 if (opp->rate == freq) {
1476 found = true;
1477 break;
1478 }
1479 }
1480
1481 mutex_unlock(&opp_table->lock);
1482
1483 if (found) {
1484 dev_pm_opp_put(opp);
1485
1486 /* Drop the reference taken by dev_pm_opp_add() */
1487 dev_pm_opp_put_opp_table(opp_table);
1488 } else {
1489 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1490 __func__, freq);
1491 }
1492
1493 /* Drop the reference taken by _find_opp_table() */
1494 dev_pm_opp_put_opp_table(opp_table);
1495}
1496EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1497
1498static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1499 bool dynamic)
1500{
1501 struct dev_pm_opp *opp = NULL, *temp;
1502
1503 mutex_lock(&opp_table->lock);
1504 list_for_each_entry(temp, &opp_table->opp_list, node) {
1505 /*
1506 * Refcount must be dropped only once for each OPP by OPP core,
1507 * do that with help of "removed" flag.
1508 */
1509 if (!temp->removed && dynamic == temp->dynamic) {
1510 opp = temp;
1511 break;
1512 }
1513 }
1514
1515 mutex_unlock(&opp_table->lock);
1516 return opp;
1517}
1518
1519/*
1520 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1521 * happen lock less to avoid circular dependency issues. This routine must be
1522 * called without the opp_table->lock held.
1523 */
1524static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1525{
1526 struct dev_pm_opp *opp;
1527
1528 while ((opp = _opp_get_next(opp_table, dynamic))) {
1529 opp->removed = true;
1530 dev_pm_opp_put(opp);
1531
1532 /* Drop the references taken by dev_pm_opp_add() */
1533 if (dynamic)
1534 dev_pm_opp_put_opp_table(opp_table);
1535 }
1536}
1537
1538bool _opp_remove_all_static(struct opp_table *opp_table)
1539{
1540 mutex_lock(&opp_table->lock);
1541
1542 if (!opp_table->parsed_static_opps) {
1543 mutex_unlock(&opp_table->lock);
1544 return false;
1545 }
1546
1547 if (--opp_table->parsed_static_opps) {
1548 mutex_unlock(&opp_table->lock);
1549 return true;
1550 }
1551
1552 mutex_unlock(&opp_table->lock);
1553
1554 _opp_remove_all(opp_table, false);
1555 return true;
1556}
1557
1558/**
1559 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1560 * @dev: device for which we do this operation
1561 *
1562 * This function removes all dynamically created OPPs from the opp table.
1563 */
1564void dev_pm_opp_remove_all_dynamic(struct device *dev)
1565{
1566 struct opp_table *opp_table;
1567
1568 opp_table = _find_opp_table(dev);
1569 if (IS_ERR(opp_table))
1570 return;
1571
1572 _opp_remove_all(opp_table, true);
1573
1574 /* Drop the reference taken by _find_opp_table() */
1575 dev_pm_opp_put_opp_table(opp_table);
1576}
1577EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1578
1579struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1580{
1581 struct dev_pm_opp *opp;
1582 int supply_count, supply_size, icc_size;
1583
1584 /* Allocate space for at least one supply */
1585 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1586 supply_size = sizeof(*opp->supplies) * supply_count;
1587 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1588
1589 /* allocate new OPP node and supplies structures */
1590 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1591
1592 if (!opp)
1593 return NULL;
1594
1595 /* Put the supplies at the end of the OPP structure as an empty array */
1596 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1597 if (icc_size)
1598 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1599 INIT_LIST_HEAD(&opp->node);
1600
1601 return opp;
1602}
1603
1604static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1605 struct opp_table *opp_table)
1606{
1607 struct regulator *reg;
1608 int i;
1609
1610 if (!opp_table->regulators)
1611 return true;
1612
1613 for (i = 0; i < opp_table->regulator_count; i++) {
1614 reg = opp_table->regulators[i];
1615
1616 if (!regulator_is_supported_voltage(reg,
1617 opp->supplies[i].u_volt_min,
1618 opp->supplies[i].u_volt_max)) {
1619 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1620 __func__, opp->supplies[i].u_volt_min,
1621 opp->supplies[i].u_volt_max);
1622 return false;
1623 }
1624 }
1625
1626 return true;
1627}
1628
1629int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1630{
1631 if (opp1->rate != opp2->rate)
1632 return opp1->rate < opp2->rate ? -1 : 1;
1633 if (opp1->bandwidth && opp2->bandwidth &&
1634 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1635 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1636 if (opp1->level != opp2->level)
1637 return opp1->level < opp2->level ? -1 : 1;
1638 return 0;
1639}
1640
1641static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1642 struct opp_table *opp_table,
1643 struct list_head **head)
1644{
1645 struct dev_pm_opp *opp;
1646 int opp_cmp;
1647
1648 /*
1649 * Insert new OPP in order of increasing frequency and discard if
1650 * already present.
1651 *
1652 * Need to use &opp_table->opp_list in the condition part of the 'for'
1653 * loop, don't replace it with head otherwise it will become an infinite
1654 * loop.
1655 */
1656 list_for_each_entry(opp, &opp_table->opp_list, node) {
1657 opp_cmp = _opp_compare_key(new_opp, opp);
1658 if (opp_cmp > 0) {
1659 *head = &opp->node;
1660 continue;
1661 }
1662
1663 if (opp_cmp < 0)
1664 return 0;
1665
1666 /* Duplicate OPPs */
1667 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1668 __func__, opp->rate, opp->supplies[0].u_volt,
1669 opp->available, new_opp->rate,
1670 new_opp->supplies[0].u_volt, new_opp->available);
1671
1672 /* Should we compare voltages for all regulators here ? */
1673 return opp->available &&
1674 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1675 }
1676
1677 return 0;
1678}
1679
1680void _required_opps_available(struct dev_pm_opp *opp, int count)
1681{
1682 int i;
1683
1684 for (i = 0; i < count; i++) {
1685 if (opp->required_opps[i]->available)
1686 continue;
1687
1688 opp->available = false;
1689 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1690 __func__, opp->required_opps[i]->np, opp->rate);
1691 return;
1692 }
1693}
1694
1695/*
1696 * Returns:
1697 * 0: On success. And appropriate error message for duplicate OPPs.
1698 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1699 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1700 * sure we don't print error messages unnecessarily if different parts of
1701 * kernel try to initialize the OPP table.
1702 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1703 * should be considered an error by the callers of _opp_add().
1704 */
1705int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1706 struct opp_table *opp_table, bool rate_not_available)
1707{
1708 struct list_head *head;
1709 int ret;
1710
1711 mutex_lock(&opp_table->lock);
1712 head = &opp_table->opp_list;
1713
1714 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1715 if (ret) {
1716 mutex_unlock(&opp_table->lock);
1717 return ret;
1718 }
1719
1720 list_add(&new_opp->node, head);
1721 mutex_unlock(&opp_table->lock);
1722
1723 new_opp->opp_table = opp_table;
1724 kref_init(&new_opp->kref);
1725
1726 opp_debug_create_one(new_opp, opp_table);
1727
1728 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1729 new_opp->available = false;
1730 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1731 __func__, new_opp->rate);
1732 }
1733
1734 /* required-opps not fully initialized yet */
1735 if (lazy_linking_pending(opp_table))
1736 return 0;
1737
1738 _required_opps_available(new_opp, opp_table->required_opp_count);
1739
1740 return 0;
1741}
1742
1743/**
1744 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1745 * @opp_table: OPP table
1746 * @dev: device for which we do this operation
1747 * @freq: Frequency in Hz for this OPP
1748 * @u_volt: Voltage in uVolts for this OPP
1749 * @dynamic: Dynamically added OPPs.
1750 *
1751 * This function adds an opp definition to the opp table and returns status.
1752 * The opp is made available by default and it can be controlled using
1753 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1754 *
1755 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1756 * and freed by dev_pm_opp_of_remove_table.
1757 *
1758 * Return:
1759 * 0 On success OR
1760 * Duplicate OPPs (both freq and volt are same) and opp->available
1761 * -EEXIST Freq are same and volt are different OR
1762 * Duplicate OPPs (both freq and volt are same) and !opp->available
1763 * -ENOMEM Memory allocation failure
1764 */
1765int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1766 unsigned long freq, long u_volt, bool dynamic)
1767{
1768 struct dev_pm_opp *new_opp;
1769 unsigned long tol;
1770 int ret;
1771
1772 new_opp = _opp_allocate(opp_table);
1773 if (!new_opp)
1774 return -ENOMEM;
1775
1776 /* populate the opp table */
1777 new_opp->rate = freq;
1778 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1779 new_opp->supplies[0].u_volt = u_volt;
1780 new_opp->supplies[0].u_volt_min = u_volt - tol;
1781 new_opp->supplies[0].u_volt_max = u_volt + tol;
1782 new_opp->available = true;
1783 new_opp->dynamic = dynamic;
1784
1785 ret = _opp_add(dev, new_opp, opp_table, false);
1786 if (ret) {
1787 /* Don't return error for duplicate OPPs */
1788 if (ret == -EBUSY)
1789 ret = 0;
1790 goto free_opp;
1791 }
1792
1793 /*
1794 * Notify the changes in the availability of the operable
1795 * frequency/voltage list.
1796 */
1797 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1798 return 0;
1799
1800free_opp:
1801 _opp_free(new_opp);
1802
1803 return ret;
1804}
1805
1806/**
1807 * dev_pm_opp_set_supported_hw() - Set supported platforms
1808 * @dev: Device for which supported-hw has to be set.
1809 * @versions: Array of hierarchy of versions to match.
1810 * @count: Number of elements in the array.
1811 *
1812 * This is required only for the V2 bindings, and it enables a platform to
1813 * specify the hierarchy of versions it supports. OPP layer will then enable
1814 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1815 * property.
1816 */
1817struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1818 const u32 *versions, unsigned int count)
1819{
1820 struct opp_table *opp_table;
1821
1822 opp_table = _add_opp_table(dev, false);
1823 if (IS_ERR(opp_table))
1824 return opp_table;
1825
1826 /* Make sure there are no concurrent readers while updating opp_table */
1827 WARN_ON(!list_empty(&opp_table->opp_list));
1828
1829 /* Another CPU that shares the OPP table has set the property ? */
1830 if (opp_table->supported_hw)
1831 return opp_table;
1832
1833 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1834 GFP_KERNEL);
1835 if (!opp_table->supported_hw) {
1836 dev_pm_opp_put_opp_table(opp_table);
1837 return ERR_PTR(-ENOMEM);
1838 }
1839
1840 opp_table->supported_hw_count = count;
1841
1842 return opp_table;
1843}
1844EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1845
1846/**
1847 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1848 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1849 *
1850 * This is required only for the V2 bindings, and is called for a matching
1851 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1852 * will not be freed.
1853 */
1854void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1855{
1856 if (unlikely(!opp_table))
1857 return;
1858
1859 kfree(opp_table->supported_hw);
1860 opp_table->supported_hw = NULL;
1861 opp_table->supported_hw_count = 0;
1862
1863 dev_pm_opp_put_opp_table(opp_table);
1864}
1865EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1866
1867static void devm_pm_opp_supported_hw_release(void *data)
1868{
1869 dev_pm_opp_put_supported_hw(data);
1870}
1871
1872/**
1873 * devm_pm_opp_set_supported_hw() - Set supported platforms
1874 * @dev: Device for which supported-hw has to be set.
1875 * @versions: Array of hierarchy of versions to match.
1876 * @count: Number of elements in the array.
1877 *
1878 * This is a resource-managed variant of dev_pm_opp_set_supported_hw().
1879 *
1880 * Return: 0 on success and errorno otherwise.
1881 */
1882int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
1883 unsigned int count)
1884{
1885 struct opp_table *opp_table;
1886
1887 opp_table = dev_pm_opp_set_supported_hw(dev, versions, count);
1888 if (IS_ERR(opp_table))
1889 return PTR_ERR(opp_table);
1890
1891 return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release,
1892 opp_table);
1893}
1894EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw);
1895
1896/**
1897 * dev_pm_opp_set_prop_name() - Set prop-extn name
1898 * @dev: Device for which the prop-name has to be set.
1899 * @name: name to postfix to properties.
1900 *
1901 * This is required only for the V2 bindings, and it enables a platform to
1902 * specify the extn to be used for certain property names. The properties to
1903 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1904 * should postfix the property name with -<name> while looking for them.
1905 */
1906struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1907{
1908 struct opp_table *opp_table;
1909
1910 opp_table = _add_opp_table(dev, false);
1911 if (IS_ERR(opp_table))
1912 return opp_table;
1913
1914 /* Make sure there are no concurrent readers while updating opp_table */
1915 WARN_ON(!list_empty(&opp_table->opp_list));
1916
1917 /* Another CPU that shares the OPP table has set the property ? */
1918 if (opp_table->prop_name)
1919 return opp_table;
1920
1921 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1922 if (!opp_table->prop_name) {
1923 dev_pm_opp_put_opp_table(opp_table);
1924 return ERR_PTR(-ENOMEM);
1925 }
1926
1927 return opp_table;
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1930
1931/**
1932 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1933 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1934 *
1935 * This is required only for the V2 bindings, and is called for a matching
1936 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1937 * will not be freed.
1938 */
1939void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1940{
1941 if (unlikely(!opp_table))
1942 return;
1943
1944 kfree(opp_table->prop_name);
1945 opp_table->prop_name = NULL;
1946
1947 dev_pm_opp_put_opp_table(opp_table);
1948}
1949EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1950
1951/**
1952 * dev_pm_opp_set_regulators() - Set regulator names for the device
1953 * @dev: Device for which regulator name is being set.
1954 * @names: Array of pointers to the names of the regulator.
1955 * @count: Number of regulators.
1956 *
1957 * In order to support OPP switching, OPP layer needs to know the name of the
1958 * device's regulators, as the core would be required to switch voltages as
1959 * well.
1960 *
1961 * This must be called before any OPPs are initialized for the device.
1962 */
1963struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1964 const char * const names[],
1965 unsigned int count)
1966{
1967 struct dev_pm_opp_supply *supplies;
1968 struct opp_table *opp_table;
1969 struct regulator *reg;
1970 int ret, i;
1971
1972 opp_table = _add_opp_table(dev, false);
1973 if (IS_ERR(opp_table))
1974 return opp_table;
1975
1976 /* This should be called before OPPs are initialized */
1977 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1978 ret = -EBUSY;
1979 goto err;
1980 }
1981
1982 /* Another CPU that shares the OPP table has set the regulators ? */
1983 if (opp_table->regulators)
1984 return opp_table;
1985
1986 opp_table->regulators = kmalloc_array(count,
1987 sizeof(*opp_table->regulators),
1988 GFP_KERNEL);
1989 if (!opp_table->regulators) {
1990 ret = -ENOMEM;
1991 goto err;
1992 }
1993
1994 for (i = 0; i < count; i++) {
1995 reg = regulator_get_optional(dev, names[i]);
1996 if (IS_ERR(reg)) {
1997 ret = PTR_ERR(reg);
1998 if (ret != -EPROBE_DEFER)
1999 dev_err(dev, "%s: no regulator (%s) found: %d\n",
2000 __func__, names[i], ret);
2001 goto free_regulators;
2002 }
2003
2004 opp_table->regulators[i] = reg;
2005 }
2006
2007 opp_table->regulator_count = count;
2008
2009 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
2010 if (!supplies) {
2011 ret = -ENOMEM;
2012 goto free_regulators;
2013 }
2014
2015 mutex_lock(&opp_table->lock);
2016 opp_table->sod_supplies = supplies;
2017 if (opp_table->set_opp_data) {
2018 opp_table->set_opp_data->old_opp.supplies = supplies;
2019 opp_table->set_opp_data->new_opp.supplies = supplies + count;
2020 }
2021 mutex_unlock(&opp_table->lock);
2022
2023 return opp_table;
2024
2025free_regulators:
2026 while (i != 0)
2027 regulator_put(opp_table->regulators[--i]);
2028
2029 kfree(opp_table->regulators);
2030 opp_table->regulators = NULL;
2031 opp_table->regulator_count = -1;
2032err:
2033 dev_pm_opp_put_opp_table(opp_table);
2034
2035 return ERR_PTR(ret);
2036}
2037EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2038
2039/**
2040 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2041 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2042 */
2043void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2044{
2045 int i;
2046
2047 if (unlikely(!opp_table))
2048 return;
2049
2050 if (!opp_table->regulators)
2051 goto put_opp_table;
2052
2053 if (opp_table->enabled) {
2054 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2055 regulator_disable(opp_table->regulators[i]);
2056 }
2057
2058 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2059 regulator_put(opp_table->regulators[i]);
2060
2061 mutex_lock(&opp_table->lock);
2062 if (opp_table->set_opp_data) {
2063 opp_table->set_opp_data->old_opp.supplies = NULL;
2064 opp_table->set_opp_data->new_opp.supplies = NULL;
2065 }
2066
2067 kfree(opp_table->sod_supplies);
2068 opp_table->sod_supplies = NULL;
2069 mutex_unlock(&opp_table->lock);
2070
2071 kfree(opp_table->regulators);
2072 opp_table->regulators = NULL;
2073 opp_table->regulator_count = -1;
2074
2075put_opp_table:
2076 dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2079
2080static void devm_pm_opp_regulators_release(void *data)
2081{
2082 dev_pm_opp_put_regulators(data);
2083}
2084
2085/**
2086 * devm_pm_opp_set_regulators() - Set regulator names for the device
2087 * @dev: Device for which regulator name is being set.
2088 * @names: Array of pointers to the names of the regulator.
2089 * @count: Number of regulators.
2090 *
2091 * This is a resource-managed variant of dev_pm_opp_set_regulators().
2092 *
2093 * Return: 0 on success and errorno otherwise.
2094 */
2095int devm_pm_opp_set_regulators(struct device *dev,
2096 const char * const names[],
2097 unsigned int count)
2098{
2099 struct opp_table *opp_table;
2100
2101 opp_table = dev_pm_opp_set_regulators(dev, names, count);
2102 if (IS_ERR(opp_table))
2103 return PTR_ERR(opp_table);
2104
2105 return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release,
2106 opp_table);
2107}
2108EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators);
2109
2110/**
2111 * dev_pm_opp_set_clkname() - Set clk name for the device
2112 * @dev: Device for which clk name is being set.
2113 * @name: Clk name.
2114 *
2115 * In order to support OPP switching, OPP layer needs to get pointer to the
2116 * clock for the device. Simple cases work fine without using this routine (i.e.
2117 * by passing connection-id as NULL), but for a device with multiple clocks
2118 * available, the OPP core needs to know the exact name of the clk to use.
2119 *
2120 * This must be called before any OPPs are initialized for the device.
2121 */
2122struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2123{
2124 struct opp_table *opp_table;
2125 int ret;
2126
2127 opp_table = _add_opp_table(dev, false);
2128 if (IS_ERR(opp_table))
2129 return opp_table;
2130
2131 /* This should be called before OPPs are initialized */
2132 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2133 ret = -EBUSY;
2134 goto err;
2135 }
2136
2137 /* clk shouldn't be initialized at this point */
2138 if (WARN_ON(opp_table->clk)) {
2139 ret = -EBUSY;
2140 goto err;
2141 }
2142
2143 /* Find clk for the device */
2144 opp_table->clk = clk_get(dev, name);
2145 if (IS_ERR(opp_table->clk)) {
2146 ret = PTR_ERR(opp_table->clk);
2147 if (ret != -EPROBE_DEFER) {
2148 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2149 ret);
2150 }
2151 goto err;
2152 }
2153
2154 return opp_table;
2155
2156err:
2157 dev_pm_opp_put_opp_table(opp_table);
2158
2159 return ERR_PTR(ret);
2160}
2161EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2162
2163/**
2164 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2165 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2166 */
2167void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2168{
2169 if (unlikely(!opp_table))
2170 return;
2171
2172 clk_put(opp_table->clk);
2173 opp_table->clk = ERR_PTR(-EINVAL);
2174
2175 dev_pm_opp_put_opp_table(opp_table);
2176}
2177EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2178
2179static void devm_pm_opp_clkname_release(void *data)
2180{
2181 dev_pm_opp_put_clkname(data);
2182}
2183
2184/**
2185 * devm_pm_opp_set_clkname() - Set clk name for the device
2186 * @dev: Device for which clk name is being set.
2187 * @name: Clk name.
2188 *
2189 * This is a resource-managed variant of dev_pm_opp_set_clkname().
2190 *
2191 * Return: 0 on success and errorno otherwise.
2192 */
2193int devm_pm_opp_set_clkname(struct device *dev, const char *name)
2194{
2195 struct opp_table *opp_table;
2196
2197 opp_table = dev_pm_opp_set_clkname(dev, name);
2198 if (IS_ERR(opp_table))
2199 return PTR_ERR(opp_table);
2200
2201 return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release,
2202 opp_table);
2203}
2204EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname);
2205
2206/**
2207 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2208 * @dev: Device for which the helper is getting registered.
2209 * @set_opp: Custom set OPP helper.
2210 *
2211 * This is useful to support complex platforms (like platforms with multiple
2212 * regulators per device), instead of the generic OPP set rate helper.
2213 *
2214 * This must be called before any OPPs are initialized for the device.
2215 */
2216struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2217 int (*set_opp)(struct dev_pm_set_opp_data *data))
2218{
2219 struct dev_pm_set_opp_data *data;
2220 struct opp_table *opp_table;
2221
2222 if (!set_opp)
2223 return ERR_PTR(-EINVAL);
2224
2225 opp_table = _add_opp_table(dev, false);
2226 if (IS_ERR(opp_table))
2227 return opp_table;
2228
2229 /* This should be called before OPPs are initialized */
2230 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2231 dev_pm_opp_put_opp_table(opp_table);
2232 return ERR_PTR(-EBUSY);
2233 }
2234
2235 /* Another CPU that shares the OPP table has set the helper ? */
2236 if (opp_table->set_opp)
2237 return opp_table;
2238
2239 data = kzalloc(sizeof(*data), GFP_KERNEL);
2240 if (!data)
2241 return ERR_PTR(-ENOMEM);
2242
2243 mutex_lock(&opp_table->lock);
2244 opp_table->set_opp_data = data;
2245 if (opp_table->sod_supplies) {
2246 data->old_opp.supplies = opp_table->sod_supplies;
2247 data->new_opp.supplies = opp_table->sod_supplies +
2248 opp_table->regulator_count;
2249 }
2250 mutex_unlock(&opp_table->lock);
2251
2252 opp_table->set_opp = set_opp;
2253
2254 return opp_table;
2255}
2256EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2257
2258/**
2259 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2260 * set_opp helper
2261 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2262 *
2263 * Release resources blocked for platform specific set_opp helper.
2264 */
2265void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2266{
2267 if (unlikely(!opp_table))
2268 return;
2269
2270 opp_table->set_opp = NULL;
2271
2272 mutex_lock(&opp_table->lock);
2273 kfree(opp_table->set_opp_data);
2274 opp_table->set_opp_data = NULL;
2275 mutex_unlock(&opp_table->lock);
2276
2277 dev_pm_opp_put_opp_table(opp_table);
2278}
2279EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2280
2281static void devm_pm_opp_unregister_set_opp_helper(void *data)
2282{
2283 dev_pm_opp_unregister_set_opp_helper(data);
2284}
2285
2286/**
2287 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2288 * @dev: Device for which the helper is getting registered.
2289 * @set_opp: Custom set OPP helper.
2290 *
2291 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2292 *
2293 * Return: 0 on success and errorno otherwise.
2294 */
2295int devm_pm_opp_register_set_opp_helper(struct device *dev,
2296 int (*set_opp)(struct dev_pm_set_opp_data *data))
2297{
2298 struct opp_table *opp_table;
2299
2300 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2301 if (IS_ERR(opp_table))
2302 return PTR_ERR(opp_table);
2303
2304 return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2305 opp_table);
2306}
2307EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2308
2309static void _opp_detach_genpd(struct opp_table *opp_table)
2310{
2311 int index;
2312
2313 if (!opp_table->genpd_virt_devs)
2314 return;
2315
2316 for (index = 0; index < opp_table->required_opp_count; index++) {
2317 if (!opp_table->genpd_virt_devs[index])
2318 continue;
2319
2320 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2321 opp_table->genpd_virt_devs[index] = NULL;
2322 }
2323
2324 kfree(opp_table->genpd_virt_devs);
2325 opp_table->genpd_virt_devs = NULL;
2326}
2327
2328/**
2329 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2330 * @dev: Consumer device for which the genpd is getting attached.
2331 * @names: Null terminated array of pointers containing names of genpd to attach.
2332 * @virt_devs: Pointer to return the array of virtual devices.
2333 *
2334 * Multiple generic power domains for a device are supported with the help of
2335 * virtual genpd devices, which are created for each consumer device - genpd
2336 * pair. These are the device structures which are attached to the power domain
2337 * and are required by the OPP core to set the performance state of the genpd.
2338 * The same API also works for the case where single genpd is available and so
2339 * we don't need to support that separately.
2340 *
2341 * This helper will normally be called by the consumer driver of the device
2342 * "dev", as only that has details of the genpd names.
2343 *
2344 * This helper needs to be called once with a list of all genpd to attach.
2345 * Otherwise the original device structure will be used instead by the OPP core.
2346 *
2347 * The order of entries in the names array must match the order in which
2348 * "required-opps" are added in DT.
2349 */
2350struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2351 const char **names, struct device ***virt_devs)
2352{
2353 struct opp_table *opp_table;
2354 struct device *virt_dev;
2355 int index = 0, ret = -EINVAL;
2356 const char **name = names;
2357
2358 opp_table = _add_opp_table(dev, false);
2359 if (IS_ERR(opp_table))
2360 return opp_table;
2361
2362 if (opp_table->genpd_virt_devs)
2363 return opp_table;
2364
2365 /*
2366 * If the genpd's OPP table isn't already initialized, parsing of the
2367 * required-opps fail for dev. We should retry this after genpd's OPP
2368 * table is added.
2369 */
2370 if (!opp_table->required_opp_count) {
2371 ret = -EPROBE_DEFER;
2372 goto put_table;
2373 }
2374
2375 mutex_lock(&opp_table->genpd_virt_dev_lock);
2376
2377 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2378 sizeof(*opp_table->genpd_virt_devs),
2379 GFP_KERNEL);
2380 if (!opp_table->genpd_virt_devs)
2381 goto unlock;
2382
2383 while (*name) {
2384 if (index >= opp_table->required_opp_count) {
2385 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2386 *name, opp_table->required_opp_count, index);
2387 goto err;
2388 }
2389
2390 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2391 if (IS_ERR(virt_dev)) {
2392 ret = PTR_ERR(virt_dev);
2393 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2394 goto err;
2395 }
2396
2397 opp_table->genpd_virt_devs[index] = virt_dev;
2398 index++;
2399 name++;
2400 }
2401
2402 if (virt_devs)
2403 *virt_devs = opp_table->genpd_virt_devs;
2404 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2405
2406 return opp_table;
2407
2408err:
2409 _opp_detach_genpd(opp_table);
2410unlock:
2411 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412
2413put_table:
2414 dev_pm_opp_put_opp_table(opp_table);
2415
2416 return ERR_PTR(ret);
2417}
2418EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2419
2420/**
2421 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2422 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2423 *
2424 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2425 * OPP table.
2426 */
2427void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2428{
2429 if (unlikely(!opp_table))
2430 return;
2431
2432 /*
2433 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2434 * used in parallel.
2435 */
2436 mutex_lock(&opp_table->genpd_virt_dev_lock);
2437 _opp_detach_genpd(opp_table);
2438 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2439
2440 dev_pm_opp_put_opp_table(opp_table);
2441}
2442EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2443
2444static void devm_pm_opp_detach_genpd(void *data)
2445{
2446 dev_pm_opp_detach_genpd(data);
2447}
2448
2449/**
2450 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2451 * device pointer
2452 * @dev: Consumer device for which the genpd is getting attached.
2453 * @names: Null terminated array of pointers containing names of genpd to attach.
2454 * @virt_devs: Pointer to return the array of virtual devices.
2455 *
2456 * This is a resource-managed version of dev_pm_opp_attach_genpd().
2457 *
2458 * Return: 0 on success and errorno otherwise.
2459 */
2460int devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2461 struct device ***virt_devs)
2462{
2463 struct opp_table *opp_table;
2464
2465 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2466 if (IS_ERR(opp_table))
2467 return PTR_ERR(opp_table);
2468
2469 return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2470 opp_table);
2471}
2472EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2473
2474/**
2475 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2476 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2477 * @dst_table: Required OPP table of the @src_table.
2478 * @src_opp: OPP from the @src_table.
2479 *
2480 * This function returns the OPP (present in @dst_table) pointed out by the
2481 * "required-opps" property of the @src_opp (present in @src_table).
2482 *
2483 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2484 * use.
2485 *
2486 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2487 */
2488struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2489 struct opp_table *dst_table,
2490 struct dev_pm_opp *src_opp)
2491{
2492 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2493 int i;
2494
2495 if (!src_table || !dst_table || !src_opp ||
2496 !src_table->required_opp_tables)
2497 return ERR_PTR(-EINVAL);
2498
2499 /* required-opps not fully initialized yet */
2500 if (lazy_linking_pending(src_table))
2501 return ERR_PTR(-EBUSY);
2502
2503 for (i = 0; i < src_table->required_opp_count; i++) {
2504 if (src_table->required_opp_tables[i] == dst_table) {
2505 mutex_lock(&src_table->lock);
2506
2507 list_for_each_entry(opp, &src_table->opp_list, node) {
2508 if (opp == src_opp) {
2509 dest_opp = opp->required_opps[i];
2510 dev_pm_opp_get(dest_opp);
2511 break;
2512 }
2513 }
2514
2515 mutex_unlock(&src_table->lock);
2516 break;
2517 }
2518 }
2519
2520 if (IS_ERR(dest_opp)) {
2521 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2522 src_table, dst_table);
2523 }
2524
2525 return dest_opp;
2526}
2527EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2528
2529/**
2530 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2531 * @src_table: OPP table which has dst_table as one of its required OPP table.
2532 * @dst_table: Required OPP table of the src_table.
2533 * @pstate: Current performance state of the src_table.
2534 *
2535 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2536 * "required-opps" property of the OPP (present in @src_table) which has
2537 * performance state set to @pstate.
2538 *
2539 * Return: Zero or positive performance state on success, otherwise negative
2540 * value on errors.
2541 */
2542int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2543 struct opp_table *dst_table,
2544 unsigned int pstate)
2545{
2546 struct dev_pm_opp *opp;
2547 int dest_pstate = -EINVAL;
2548 int i;
2549
2550 /*
2551 * Normally the src_table will have the "required_opps" property set to
2552 * point to one of the OPPs in the dst_table, but in some cases the
2553 * genpd and its master have one to one mapping of performance states
2554 * and so none of them have the "required-opps" property set. Return the
2555 * pstate of the src_table as it is in such cases.
2556 */
2557 if (!src_table || !src_table->required_opp_count)
2558 return pstate;
2559
2560 /* required-opps not fully initialized yet */
2561 if (lazy_linking_pending(src_table))
2562 return -EBUSY;
2563
2564 for (i = 0; i < src_table->required_opp_count; i++) {
2565 if (src_table->required_opp_tables[i]->np == dst_table->np)
2566 break;
2567 }
2568
2569 if (unlikely(i == src_table->required_opp_count)) {
2570 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2571 __func__, src_table, dst_table);
2572 return -EINVAL;
2573 }
2574
2575 mutex_lock(&src_table->lock);
2576
2577 list_for_each_entry(opp, &src_table->opp_list, node) {
2578 if (opp->pstate == pstate) {
2579 dest_pstate = opp->required_opps[i]->pstate;
2580 goto unlock;
2581 }
2582 }
2583
2584 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2585 dst_table);
2586
2587unlock:
2588 mutex_unlock(&src_table->lock);
2589
2590 return dest_pstate;
2591}
2592
2593/**
2594 * dev_pm_opp_add() - Add an OPP table from a table definitions
2595 * @dev: device for which we do this operation
2596 * @freq: Frequency in Hz for this OPP
2597 * @u_volt: Voltage in uVolts for this OPP
2598 *
2599 * This function adds an opp definition to the opp table and returns status.
2600 * The opp is made available by default and it can be controlled using
2601 * dev_pm_opp_enable/disable functions.
2602 *
2603 * Return:
2604 * 0 On success OR
2605 * Duplicate OPPs (both freq and volt are same) and opp->available
2606 * -EEXIST Freq are same and volt are different OR
2607 * Duplicate OPPs (both freq and volt are same) and !opp->available
2608 * -ENOMEM Memory allocation failure
2609 */
2610int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2611{
2612 struct opp_table *opp_table;
2613 int ret;
2614
2615 opp_table = _add_opp_table(dev, true);
2616 if (IS_ERR(opp_table))
2617 return PTR_ERR(opp_table);
2618
2619 /* Fix regulator count for dynamic OPPs */
2620 opp_table->regulator_count = 1;
2621
2622 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2623 if (ret)
2624 dev_pm_opp_put_opp_table(opp_table);
2625
2626 return ret;
2627}
2628EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2629
2630/**
2631 * _opp_set_availability() - helper to set the availability of an opp
2632 * @dev: device for which we do this operation
2633 * @freq: OPP frequency to modify availability
2634 * @availability_req: availability status requested for this opp
2635 *
2636 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2637 * which is isolated here.
2638 *
2639 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2640 * copy operation, returns 0 if no modification was done OR modification was
2641 * successful.
2642 */
2643static int _opp_set_availability(struct device *dev, unsigned long freq,
2644 bool availability_req)
2645{
2646 struct opp_table *opp_table;
2647 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2648 int r = 0;
2649
2650 /* Find the opp_table */
2651 opp_table = _find_opp_table(dev);
2652 if (IS_ERR(opp_table)) {
2653 r = PTR_ERR(opp_table);
2654 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2655 return r;
2656 }
2657
2658 mutex_lock(&opp_table->lock);
2659
2660 /* Do we have the frequency? */
2661 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2662 if (tmp_opp->rate == freq) {
2663 opp = tmp_opp;
2664 break;
2665 }
2666 }
2667
2668 if (IS_ERR(opp)) {
2669 r = PTR_ERR(opp);
2670 goto unlock;
2671 }
2672
2673 /* Is update really needed? */
2674 if (opp->available == availability_req)
2675 goto unlock;
2676
2677 opp->available = availability_req;
2678
2679 dev_pm_opp_get(opp);
2680 mutex_unlock(&opp_table->lock);
2681
2682 /* Notify the change of the OPP availability */
2683 if (availability_req)
2684 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2685 opp);
2686 else
2687 blocking_notifier_call_chain(&opp_table->head,
2688 OPP_EVENT_DISABLE, opp);
2689
2690 dev_pm_opp_put(opp);
2691 goto put_table;
2692
2693unlock:
2694 mutex_unlock(&opp_table->lock);
2695put_table:
2696 dev_pm_opp_put_opp_table(opp_table);
2697 return r;
2698}
2699
2700/**
2701 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2702 * @dev: device for which we do this operation
2703 * @freq: OPP frequency to adjust voltage of
2704 * @u_volt: new OPP target voltage
2705 * @u_volt_min: new OPP min voltage
2706 * @u_volt_max: new OPP max voltage
2707 *
2708 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2709 * copy operation, returns 0 if no modifcation was done OR modification was
2710 * successful.
2711 */
2712int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2713 unsigned long u_volt, unsigned long u_volt_min,
2714 unsigned long u_volt_max)
2715
2716{
2717 struct opp_table *opp_table;
2718 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2719 int r = 0;
2720
2721 /* Find the opp_table */
2722 opp_table = _find_opp_table(dev);
2723 if (IS_ERR(opp_table)) {
2724 r = PTR_ERR(opp_table);
2725 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2726 return r;
2727 }
2728
2729 mutex_lock(&opp_table->lock);
2730
2731 /* Do we have the frequency? */
2732 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2733 if (tmp_opp->rate == freq) {
2734 opp = tmp_opp;
2735 break;
2736 }
2737 }
2738
2739 if (IS_ERR(opp)) {
2740 r = PTR_ERR(opp);
2741 goto adjust_unlock;
2742 }
2743
2744 /* Is update really needed? */
2745 if (opp->supplies->u_volt == u_volt)
2746 goto adjust_unlock;
2747
2748 opp->supplies->u_volt = u_volt;
2749 opp->supplies->u_volt_min = u_volt_min;
2750 opp->supplies->u_volt_max = u_volt_max;
2751
2752 dev_pm_opp_get(opp);
2753 mutex_unlock(&opp_table->lock);
2754
2755 /* Notify the voltage change of the OPP */
2756 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2757 opp);
2758
2759 dev_pm_opp_put(opp);
2760 goto adjust_put_table;
2761
2762adjust_unlock:
2763 mutex_unlock(&opp_table->lock);
2764adjust_put_table:
2765 dev_pm_opp_put_opp_table(opp_table);
2766 return r;
2767}
2768EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2769
2770/**
2771 * dev_pm_opp_enable() - Enable a specific OPP
2772 * @dev: device for which we do this operation
2773 * @freq: OPP frequency to enable
2774 *
2775 * Enables a provided opp. If the operation is valid, this returns 0, else the
2776 * corresponding error value. It is meant to be used for users an OPP available
2777 * after being temporarily made unavailable with dev_pm_opp_disable.
2778 *
2779 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2780 * copy operation, returns 0 if no modification was done OR modification was
2781 * successful.
2782 */
2783int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2784{
2785 return _opp_set_availability(dev, freq, true);
2786}
2787EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2788
2789/**
2790 * dev_pm_opp_disable() - Disable a specific OPP
2791 * @dev: device for which we do this operation
2792 * @freq: OPP frequency to disable
2793 *
2794 * Disables a provided opp. If the operation is valid, this returns
2795 * 0, else the corresponding error value. It is meant to be a temporary
2796 * control by users to make this OPP not available until the circumstances are
2797 * right to make it available again (with a call to dev_pm_opp_enable).
2798 *
2799 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2800 * copy operation, returns 0 if no modification was done OR modification was
2801 * successful.
2802 */
2803int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2804{
2805 return _opp_set_availability(dev, freq, false);
2806}
2807EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2808
2809/**
2810 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2811 * @dev: Device for which notifier needs to be registered
2812 * @nb: Notifier block to be registered
2813 *
2814 * Return: 0 on success or a negative error value.
2815 */
2816int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2817{
2818 struct opp_table *opp_table;
2819 int ret;
2820
2821 opp_table = _find_opp_table(dev);
2822 if (IS_ERR(opp_table))
2823 return PTR_ERR(opp_table);
2824
2825 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2826
2827 dev_pm_opp_put_opp_table(opp_table);
2828
2829 return ret;
2830}
2831EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2832
2833/**
2834 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2835 * @dev: Device for which notifier needs to be unregistered
2836 * @nb: Notifier block to be unregistered
2837 *
2838 * Return: 0 on success or a negative error value.
2839 */
2840int dev_pm_opp_unregister_notifier(struct device *dev,
2841 struct notifier_block *nb)
2842{
2843 struct opp_table *opp_table;
2844 int ret;
2845
2846 opp_table = _find_opp_table(dev);
2847 if (IS_ERR(opp_table))
2848 return PTR_ERR(opp_table);
2849
2850 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2851
2852 dev_pm_opp_put_opp_table(opp_table);
2853
2854 return ret;
2855}
2856EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2857
2858/**
2859 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2860 * @dev: device pointer used to lookup OPP table.
2861 *
2862 * Free both OPPs created using static entries present in DT and the
2863 * dynamically added entries.
2864 */
2865void dev_pm_opp_remove_table(struct device *dev)
2866{
2867 struct opp_table *opp_table;
2868
2869 /* Check for existing table for 'dev' */
2870 opp_table = _find_opp_table(dev);
2871 if (IS_ERR(opp_table)) {
2872 int error = PTR_ERR(opp_table);
2873
2874 if (error != -ENODEV)
2875 WARN(1, "%s: opp_table: %d\n",
2876 IS_ERR_OR_NULL(dev) ?
2877 "Invalid device" : dev_name(dev),
2878 error);
2879 return;
2880 }
2881
2882 /*
2883 * Drop the extra reference only if the OPP table was successfully added
2884 * with dev_pm_opp_of_add_table() earlier.
2885 **/
2886 if (_opp_remove_all_static(opp_table))
2887 dev_pm_opp_put_opp_table(opp_table);
2888
2889 /* Drop reference taken by _find_opp_table() */
2890 dev_pm_opp_put_opp_table(opp_table);
2891}
2892EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2893
2894/**
2895 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2896 * @dev: device for which we do this operation
2897 *
2898 * Sync voltage state of the OPP table regulators.
2899 *
2900 * Return: 0 on success or a negative error value.
2901 */
2902int dev_pm_opp_sync_regulators(struct device *dev)
2903{
2904 struct opp_table *opp_table;
2905 struct regulator *reg;
2906 int i, ret = 0;
2907
2908 /* Device may not have OPP table */
2909 opp_table = _find_opp_table(dev);
2910 if (IS_ERR(opp_table))
2911 return 0;
2912
2913 /* Regulator may not be required for the device */
2914 if (unlikely(!opp_table->regulators))
2915 goto put_table;
2916
2917 /* Nothing to sync if voltage wasn't changed */
2918 if (!opp_table->enabled)
2919 goto put_table;
2920
2921 for (i = 0; i < opp_table->regulator_count; i++) {
2922 reg = opp_table->regulators[i];
2923 ret = regulator_sync_voltage(reg);
2924 if (ret)
2925 break;
2926 }
2927put_table:
2928 /* Drop reference taken by _find_opp_table() */
2929 dev_pm_opp_put_opp_table(opp_table);
2930
2931 return ret;
2932}
2933EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);