Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17#include <linux/static_call.h>
  18
  19#include <asm/hpet.h>
  20#include <asm/timer.h>
  21#include <asm/vgtod.h>
  22#include <asm/time.h>
  23#include <asm/delay.h>
  24#include <asm/hypervisor.h>
  25#include <asm/nmi.h>
  26#include <asm/x86_init.h>
  27#include <asm/geode.h>
  28#include <asm/apic.h>
  29#include <asm/intel-family.h>
  30#include <asm/i8259.h>
  31#include <asm/uv/uv.h>
  32
  33unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  34EXPORT_SYMBOL(cpu_khz);
  35
  36unsigned int __read_mostly tsc_khz;
  37EXPORT_SYMBOL(tsc_khz);
  38
  39#define KHZ	1000
  40
  41/*
  42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  43 */
  44static int __read_mostly tsc_unstable;
  45static unsigned int __initdata tsc_early_khz;
  46
  47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  48
  49int tsc_clocksource_reliable;
  50
 
 
  51static u32 art_to_tsc_numerator;
  52static u32 art_to_tsc_denominator;
  53static u64 art_to_tsc_offset;
  54static struct clocksource *art_related_clocksource;
  55
  56struct cyc2ns {
  57	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
  58	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
  59
  60}; /* fits one cacheline */
  61
  62static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  63
  64static int __init tsc_early_khz_setup(char *buf)
  65{
  66	return kstrtouint(buf, 0, &tsc_early_khz);
  67}
  68early_param("tsc_early_khz", tsc_early_khz_setup);
  69
  70__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  71{
  72	int seq, idx;
  73
  74	preempt_disable_notrace();
  75
  76	do {
  77		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
  78		idx = seq & 1;
  79
  80		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  81		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  82		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  83
  84	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
  85}
  86
 
 
 
 
 
 
  87__always_inline void cyc2ns_read_end(void)
  88{
  89	preempt_enable_notrace();
  90}
  91
  92/*
  93 * Accelerators for sched_clock()
  94 * convert from cycles(64bits) => nanoseconds (64bits)
  95 *  basic equation:
  96 *              ns = cycles / (freq / ns_per_sec)
  97 *              ns = cycles * (ns_per_sec / freq)
  98 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  99 *              ns = cycles * (10^6 / cpu_khz)
 100 *
 101 *      Then we use scaling math (suggested by george@mvista.com) to get:
 102 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 103 *              ns = cycles * cyc2ns_scale / SC
 104 *
 105 *      And since SC is a constant power of two, we can convert the div
 106 *  into a shift. The larger SC is, the more accurate the conversion, but
 107 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 108 *  (64-bit result) can be used.
 109 *
 110 *  We can use khz divisor instead of mhz to keep a better precision.
 111 *  (mathieu.desnoyers@polymtl.ca)
 112 *
 113 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 114 */
 115
 116static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 117{
 118	struct cyc2ns_data data;
 119	unsigned long long ns;
 120
 121	cyc2ns_read_begin(&data);
 122
 123	ns = data.cyc2ns_offset;
 124	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 125
 126	cyc2ns_read_end();
 
 127
 
 
 
 
 
 
 128	return ns;
 129}
 130
 131static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 132{
 133	unsigned long long ns_now;
 134	struct cyc2ns_data data;
 135	struct cyc2ns *c2n;
 136
 137	ns_now = cycles_2_ns(tsc_now);
 138
 139	/*
 140	 * Compute a new multiplier as per the above comment and ensure our
 141	 * time function is continuous; see the comment near struct
 142	 * cyc2ns_data.
 143	 */
 144	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 145			       NSEC_PER_MSEC, 0);
 146
 147	/*
 148	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 149	 * not expected to be greater than 31 due to the original published
 150	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 151	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 152	 */
 153	if (data.cyc2ns_shift == 32) {
 154		data.cyc2ns_shift = 31;
 155		data.cyc2ns_mul >>= 1;
 156	}
 157
 158	data.cyc2ns_offset = ns_now -
 159		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 160
 161	c2n = per_cpu_ptr(&cyc2ns, cpu);
 162
 163	raw_write_seqcount_latch(&c2n->seq);
 164	c2n->data[0] = data;
 165	raw_write_seqcount_latch(&c2n->seq);
 166	c2n->data[1] = data;
 167}
 168
 169static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 170{
 171	unsigned long flags;
 172
 173	local_irq_save(flags);
 174	sched_clock_idle_sleep_event();
 175
 176	if (khz)
 177		__set_cyc2ns_scale(khz, cpu, tsc_now);
 178
 179	sched_clock_idle_wakeup_event();
 180	local_irq_restore(flags);
 181}
 182
 183/*
 184 * Initialize cyc2ns for boot cpu
 185 */
 186static void __init cyc2ns_init_boot_cpu(void)
 187{
 188	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 189
 190	seqcount_latch_init(&c2n->seq);
 191	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 192}
 193
 194/*
 195 * Secondary CPUs do not run through tsc_init(), so set up
 196 * all the scale factors for all CPUs, assuming the same
 197 * speed as the bootup CPU.
 198 */
 199static void __init cyc2ns_init_secondary_cpus(void)
 200{
 201	unsigned int cpu, this_cpu = smp_processor_id();
 202	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 203	struct cyc2ns_data *data = c2n->data;
 204
 205	for_each_possible_cpu(cpu) {
 206		if (cpu != this_cpu) {
 207			seqcount_latch_init(&c2n->seq);
 208			c2n = per_cpu_ptr(&cyc2ns, cpu);
 209			c2n->data[0] = data[0];
 210			c2n->data[1] = data[1];
 211		}
 212	}
 213}
 214
 215/*
 216 * Scheduler clock - returns current time in nanosec units.
 217 */
 218u64 native_sched_clock(void)
 219{
 220	if (static_branch_likely(&__use_tsc)) {
 221		u64 tsc_now = rdtsc();
 222
 223		/* return the value in ns */
 224		return cycles_2_ns(tsc_now);
 225	}
 226
 227	/*
 228	 * Fall back to jiffies if there's no TSC available:
 229	 * ( But note that we still use it if the TSC is marked
 230	 *   unstable. We do this because unlike Time Of Day,
 231	 *   the scheduler clock tolerates small errors and it's
 232	 *   very important for it to be as fast as the platform
 233	 *   can achieve it. )
 234	 */
 235
 236	/* No locking but a rare wrong value is not a big deal: */
 237	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 238}
 239
 240/*
 241 * Generate a sched_clock if you already have a TSC value.
 242 */
 243u64 native_sched_clock_from_tsc(u64 tsc)
 244{
 245	return cycles_2_ns(tsc);
 246}
 247
 248/* We need to define a real function for sched_clock, to override the
 249   weak default version */
 250#ifdef CONFIG_PARAVIRT
 251unsigned long long sched_clock(void)
 252{
 253	return paravirt_sched_clock();
 254}
 255
 256bool using_native_sched_clock(void)
 257{
 258	return static_call_query(pv_sched_clock) == native_sched_clock;
 259}
 260#else
 261unsigned long long
 262sched_clock(void) __attribute__((alias("native_sched_clock")));
 263
 264bool using_native_sched_clock(void) { return true; }
 265#endif
 266
 
 
 
 
 
 
 
 
 
 267int check_tsc_unstable(void)
 268{
 269	return tsc_unstable;
 270}
 271EXPORT_SYMBOL_GPL(check_tsc_unstable);
 272
 273#ifdef CONFIG_X86_TSC
 274int __init notsc_setup(char *str)
 275{
 276	mark_tsc_unstable("boot parameter notsc");
 277	return 1;
 278}
 279#else
 280/*
 281 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 282 * in cpu/common.c
 283 */
 284int __init notsc_setup(char *str)
 285{
 286	setup_clear_cpu_cap(X86_FEATURE_TSC);
 287	return 1;
 288}
 289#endif
 290
 291__setup("notsc", notsc_setup);
 292
 293static int no_sched_irq_time;
 294static int no_tsc_watchdog;
 
 295
 296static int __init tsc_setup(char *str)
 297{
 298	if (!strcmp(str, "reliable"))
 299		tsc_clocksource_reliable = 1;
 300	if (!strncmp(str, "noirqtime", 9))
 301		no_sched_irq_time = 1;
 302	if (!strcmp(str, "unstable"))
 303		mark_tsc_unstable("boot parameter");
 304	if (!strcmp(str, "nowatchdog"))
 305		no_tsc_watchdog = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306	return 1;
 307}
 308
 309__setup("tsc=", tsc_setup);
 310
 311#define MAX_RETRIES		5
 312#define TSC_DEFAULT_THRESHOLD	0x20000
 313
 314/*
 315 * Read TSC and the reference counters. Take care of any disturbances
 316 */
 317static u64 tsc_read_refs(u64 *p, int hpet)
 318{
 319	u64 t1, t2;
 320	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 321	int i;
 322
 323	for (i = 0; i < MAX_RETRIES; i++) {
 324		t1 = get_cycles();
 325		if (hpet)
 326			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 327		else
 328			*p = acpi_pm_read_early();
 329		t2 = get_cycles();
 330		if ((t2 - t1) < thresh)
 331			return t2;
 332	}
 333	return ULLONG_MAX;
 334}
 335
 336/*
 337 * Calculate the TSC frequency from HPET reference
 338 */
 339static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 340{
 341	u64 tmp;
 342
 343	if (hpet2 < hpet1)
 344		hpet2 += 0x100000000ULL;
 345	hpet2 -= hpet1;
 346	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 347	do_div(tmp, 1000000);
 348	deltatsc = div64_u64(deltatsc, tmp);
 349
 350	return (unsigned long) deltatsc;
 351}
 352
 353/*
 354 * Calculate the TSC frequency from PMTimer reference
 355 */
 356static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 357{
 358	u64 tmp;
 359
 360	if (!pm1 && !pm2)
 361		return ULONG_MAX;
 362
 363	if (pm2 < pm1)
 364		pm2 += (u64)ACPI_PM_OVRRUN;
 365	pm2 -= pm1;
 366	tmp = pm2 * 1000000000LL;
 367	do_div(tmp, PMTMR_TICKS_PER_SEC);
 368	do_div(deltatsc, tmp);
 369
 370	return (unsigned long) deltatsc;
 371}
 372
 373#define CAL_MS		10
 374#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 375#define CAL_PIT_LOOPS	1000
 376
 377#define CAL2_MS		50
 378#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 379#define CAL2_PIT_LOOPS	5000
 380
 381
 382/*
 383 * Try to calibrate the TSC against the Programmable
 384 * Interrupt Timer and return the frequency of the TSC
 385 * in kHz.
 386 *
 387 * Return ULONG_MAX on failure to calibrate.
 388 */
 389static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 390{
 391	u64 tsc, t1, t2, delta;
 392	unsigned long tscmin, tscmax;
 393	int pitcnt;
 394
 395	if (!has_legacy_pic()) {
 396		/*
 397		 * Relies on tsc_early_delay_calibrate() to have given us semi
 398		 * usable udelay(), wait for the same 50ms we would have with
 399		 * the PIT loop below.
 400		 */
 401		udelay(10 * USEC_PER_MSEC);
 402		udelay(10 * USEC_PER_MSEC);
 403		udelay(10 * USEC_PER_MSEC);
 404		udelay(10 * USEC_PER_MSEC);
 405		udelay(10 * USEC_PER_MSEC);
 406		return ULONG_MAX;
 407	}
 408
 409	/* Set the Gate high, disable speaker */
 410	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 411
 412	/*
 413	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 414	 * count mode), binary count. Set the latch register to 50ms
 415	 * (LSB then MSB) to begin countdown.
 416	 */
 417	outb(0xb0, 0x43);
 418	outb(latch & 0xff, 0x42);
 419	outb(latch >> 8, 0x42);
 420
 421	tsc = t1 = t2 = get_cycles();
 422
 423	pitcnt = 0;
 424	tscmax = 0;
 425	tscmin = ULONG_MAX;
 426	while ((inb(0x61) & 0x20) == 0) {
 427		t2 = get_cycles();
 428		delta = t2 - tsc;
 429		tsc = t2;
 430		if ((unsigned long) delta < tscmin)
 431			tscmin = (unsigned int) delta;
 432		if ((unsigned long) delta > tscmax)
 433			tscmax = (unsigned int) delta;
 434		pitcnt++;
 435	}
 436
 437	/*
 438	 * Sanity checks:
 439	 *
 440	 * If we were not able to read the PIT more than loopmin
 441	 * times, then we have been hit by a massive SMI
 442	 *
 443	 * If the maximum is 10 times larger than the minimum,
 444	 * then we got hit by an SMI as well.
 445	 */
 446	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 447		return ULONG_MAX;
 448
 449	/* Calculate the PIT value */
 450	delta = t2 - t1;
 451	do_div(delta, ms);
 452	return delta;
 453}
 454
 455/*
 456 * This reads the current MSB of the PIT counter, and
 457 * checks if we are running on sufficiently fast and
 458 * non-virtualized hardware.
 459 *
 460 * Our expectations are:
 461 *
 462 *  - the PIT is running at roughly 1.19MHz
 463 *
 464 *  - each IO is going to take about 1us on real hardware,
 465 *    but we allow it to be much faster (by a factor of 10) or
 466 *    _slightly_ slower (ie we allow up to a 2us read+counter
 467 *    update - anything else implies a unacceptably slow CPU
 468 *    or PIT for the fast calibration to work.
 469 *
 470 *  - with 256 PIT ticks to read the value, we have 214us to
 471 *    see the same MSB (and overhead like doing a single TSC
 472 *    read per MSB value etc).
 473 *
 474 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 475 *    them each to take about a microsecond on real hardware.
 476 *    So we expect a count value of around 100. But we'll be
 477 *    generous, and accept anything over 50.
 478 *
 479 *  - if the PIT is stuck, and we see *many* more reads, we
 480 *    return early (and the next caller of pit_expect_msb()
 481 *    then consider it a failure when they don't see the
 482 *    next expected value).
 483 *
 484 * These expectations mean that we know that we have seen the
 485 * transition from one expected value to another with a fairly
 486 * high accuracy, and we didn't miss any events. We can thus
 487 * use the TSC value at the transitions to calculate a pretty
 488 * good value for the TSC frequency.
 489 */
 490static inline int pit_verify_msb(unsigned char val)
 491{
 492	/* Ignore LSB */
 493	inb(0x42);
 494	return inb(0x42) == val;
 495}
 496
 497static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 498{
 499	int count;
 500	u64 tsc = 0, prev_tsc = 0;
 501
 502	for (count = 0; count < 50000; count++) {
 503		if (!pit_verify_msb(val))
 504			break;
 505		prev_tsc = tsc;
 506		tsc = get_cycles();
 507	}
 508	*deltap = get_cycles() - prev_tsc;
 509	*tscp = tsc;
 510
 511	/*
 512	 * We require _some_ success, but the quality control
 513	 * will be based on the error terms on the TSC values.
 514	 */
 515	return count > 5;
 516}
 517
 518/*
 519 * How many MSB values do we want to see? We aim for
 520 * a maximum error rate of 500ppm (in practice the
 521 * real error is much smaller), but refuse to spend
 522 * more than 50ms on it.
 523 */
 524#define MAX_QUICK_PIT_MS 50
 525#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 526
 527static unsigned long quick_pit_calibrate(void)
 528{
 529	int i;
 530	u64 tsc, delta;
 531	unsigned long d1, d2;
 532
 533	if (!has_legacy_pic())
 534		return 0;
 535
 536	/* Set the Gate high, disable speaker */
 537	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 538
 539	/*
 540	 * Counter 2, mode 0 (one-shot), binary count
 541	 *
 542	 * NOTE! Mode 2 decrements by two (and then the
 543	 * output is flipped each time, giving the same
 544	 * final output frequency as a decrement-by-one),
 545	 * so mode 0 is much better when looking at the
 546	 * individual counts.
 547	 */
 548	outb(0xb0, 0x43);
 549
 550	/* Start at 0xffff */
 551	outb(0xff, 0x42);
 552	outb(0xff, 0x42);
 553
 554	/*
 555	 * The PIT starts counting at the next edge, so we
 556	 * need to delay for a microsecond. The easiest way
 557	 * to do that is to just read back the 16-bit counter
 558	 * once from the PIT.
 559	 */
 560	pit_verify_msb(0);
 561
 562	if (pit_expect_msb(0xff, &tsc, &d1)) {
 563		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 564			if (!pit_expect_msb(0xff-i, &delta, &d2))
 565				break;
 566
 567			delta -= tsc;
 568
 569			/*
 570			 * Extrapolate the error and fail fast if the error will
 571			 * never be below 500 ppm.
 572			 */
 573			if (i == 1 &&
 574			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 575				return 0;
 576
 577			/*
 578			 * Iterate until the error is less than 500 ppm
 579			 */
 580			if (d1+d2 >= delta >> 11)
 581				continue;
 582
 583			/*
 584			 * Check the PIT one more time to verify that
 585			 * all TSC reads were stable wrt the PIT.
 586			 *
 587			 * This also guarantees serialization of the
 588			 * last cycle read ('d2') in pit_expect_msb.
 589			 */
 590			if (!pit_verify_msb(0xfe - i))
 591				break;
 592			goto success;
 593		}
 594	}
 595	pr_info("Fast TSC calibration failed\n");
 596	return 0;
 597
 598success:
 599	/*
 600	 * Ok, if we get here, then we've seen the
 601	 * MSB of the PIT decrement 'i' times, and the
 602	 * error has shrunk to less than 500 ppm.
 603	 *
 604	 * As a result, we can depend on there not being
 605	 * any odd delays anywhere, and the TSC reads are
 606	 * reliable (within the error).
 607	 *
 608	 * kHz = ticks / time-in-seconds / 1000;
 609	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 610	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 611	 */
 612	delta *= PIT_TICK_RATE;
 613	do_div(delta, i*256*1000);
 614	pr_info("Fast TSC calibration using PIT\n");
 615	return delta;
 616}
 617
 618/**
 619 * native_calibrate_tsc
 620 * Determine TSC frequency via CPUID, else return 0.
 621 */
 622unsigned long native_calibrate_tsc(void)
 623{
 624	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 625	unsigned int crystal_khz;
 626
 627	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 628		return 0;
 629
 630	if (boot_cpu_data.cpuid_level < 0x15)
 631		return 0;
 632
 633	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 634
 635	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 636	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 637
 638	if (ebx_numerator == 0 || eax_denominator == 0)
 639		return 0;
 640
 641	crystal_khz = ecx_hz / 1000;
 642
 643	/*
 644	 * Denverton SoCs don't report crystal clock, and also don't support
 645	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 646	 * clock.
 647	 */
 648	if (crystal_khz == 0 &&
 649			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 650		crystal_khz = 25000;
 651
 652	/*
 653	 * TSC frequency reported directly by CPUID is a "hardware reported"
 654	 * frequency and is the most accurate one so far we have. This
 655	 * is considered a known frequency.
 656	 */
 657	if (crystal_khz != 0)
 658		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 659
 660	/*
 661	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 662	 * clock, but we can easily calculate it to a high degree of accuracy
 663	 * by considering the crystal ratio and the CPU speed.
 664	 */
 665	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 666		unsigned int eax_base_mhz, ebx, ecx, edx;
 667
 668		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 669		crystal_khz = eax_base_mhz * 1000 *
 670			eax_denominator / ebx_numerator;
 671	}
 672
 673	if (crystal_khz == 0)
 674		return 0;
 675
 676	/*
 677	 * For Atom SoCs TSC is the only reliable clocksource.
 678	 * Mark TSC reliable so no watchdog on it.
 679	 */
 680	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 681		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 682
 683#ifdef CONFIG_X86_LOCAL_APIC
 684	/*
 685	 * The local APIC appears to be fed by the core crystal clock
 686	 * (which sounds entirely sensible). We can set the global
 687	 * lapic_timer_period here to avoid having to calibrate the APIC
 688	 * timer later.
 689	 */
 690	lapic_timer_period = crystal_khz * 1000 / HZ;
 691#endif
 692
 693	return crystal_khz * ebx_numerator / eax_denominator;
 694}
 695
 696static unsigned long cpu_khz_from_cpuid(void)
 697{
 698	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 699
 700	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 701		return 0;
 702
 703	if (boot_cpu_data.cpuid_level < 0x16)
 704		return 0;
 705
 706	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 707
 708	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 709
 710	return eax_base_mhz * 1000;
 711}
 712
 713/*
 714 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 715 * later in boot after acpi is initialized.
 716 */
 717static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 718{
 719	u64 tsc1, tsc2, delta, ref1, ref2;
 720	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 721	unsigned long flags, latch, ms;
 722	int hpet = is_hpet_enabled(), i, loopmin;
 723
 724	/*
 725	 * Run 5 calibration loops to get the lowest frequency value
 726	 * (the best estimate). We use two different calibration modes
 727	 * here:
 728	 *
 729	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 730	 * load a timeout of 50ms. We read the time right after we
 731	 * started the timer and wait until the PIT count down reaches
 732	 * zero. In each wait loop iteration we read the TSC and check
 733	 * the delta to the previous read. We keep track of the min
 734	 * and max values of that delta. The delta is mostly defined
 735	 * by the IO time of the PIT access, so we can detect when
 736	 * any disturbance happened between the two reads. If the
 737	 * maximum time is significantly larger than the minimum time,
 738	 * then we discard the result and have another try.
 739	 *
 740	 * 2) Reference counter. If available we use the HPET or the
 741	 * PMTIMER as a reference to check the sanity of that value.
 742	 * We use separate TSC readouts and check inside of the
 743	 * reference read for any possible disturbance. We discard
 744	 * disturbed values here as well. We do that around the PIT
 745	 * calibration delay loop as we have to wait for a certain
 746	 * amount of time anyway.
 747	 */
 748
 749	/* Preset PIT loop values */
 750	latch = CAL_LATCH;
 751	ms = CAL_MS;
 752	loopmin = CAL_PIT_LOOPS;
 753
 754	for (i = 0; i < 3; i++) {
 755		unsigned long tsc_pit_khz;
 756
 757		/*
 758		 * Read the start value and the reference count of
 759		 * hpet/pmtimer when available. Then do the PIT
 760		 * calibration, which will take at least 50ms, and
 761		 * read the end value.
 762		 */
 763		local_irq_save(flags);
 764		tsc1 = tsc_read_refs(&ref1, hpet);
 765		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 766		tsc2 = tsc_read_refs(&ref2, hpet);
 767		local_irq_restore(flags);
 768
 769		/* Pick the lowest PIT TSC calibration so far */
 770		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 771
 772		/* hpet or pmtimer available ? */
 773		if (ref1 == ref2)
 774			continue;
 775
 776		/* Check, whether the sampling was disturbed */
 777		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 778			continue;
 779
 780		tsc2 = (tsc2 - tsc1) * 1000000LL;
 781		if (hpet)
 782			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 783		else
 784			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 785
 786		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 787
 788		/* Check the reference deviation */
 789		delta = ((u64) tsc_pit_min) * 100;
 790		do_div(delta, tsc_ref_min);
 791
 792		/*
 793		 * If both calibration results are inside a 10% window
 794		 * then we can be sure, that the calibration
 795		 * succeeded. We break out of the loop right away. We
 796		 * use the reference value, as it is more precise.
 797		 */
 798		if (delta >= 90 && delta <= 110) {
 799			pr_info("PIT calibration matches %s. %d loops\n",
 800				hpet ? "HPET" : "PMTIMER", i + 1);
 801			return tsc_ref_min;
 802		}
 803
 804		/*
 805		 * Check whether PIT failed more than once. This
 806		 * happens in virtualized environments. We need to
 807		 * give the virtual PC a slightly longer timeframe for
 808		 * the HPET/PMTIMER to make the result precise.
 809		 */
 810		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 811			latch = CAL2_LATCH;
 812			ms = CAL2_MS;
 813			loopmin = CAL2_PIT_LOOPS;
 814		}
 815	}
 816
 817	/*
 818	 * Now check the results.
 819	 */
 820	if (tsc_pit_min == ULONG_MAX) {
 821		/* PIT gave no useful value */
 822		pr_warn("Unable to calibrate against PIT\n");
 823
 824		/* We don't have an alternative source, disable TSC */
 825		if (!hpet && !ref1 && !ref2) {
 826			pr_notice("No reference (HPET/PMTIMER) available\n");
 827			return 0;
 828		}
 829
 830		/* The alternative source failed as well, disable TSC */
 831		if (tsc_ref_min == ULONG_MAX) {
 832			pr_warn("HPET/PMTIMER calibration failed\n");
 833			return 0;
 834		}
 835
 836		/* Use the alternative source */
 837		pr_info("using %s reference calibration\n",
 838			hpet ? "HPET" : "PMTIMER");
 839
 840		return tsc_ref_min;
 841	}
 842
 843	/* We don't have an alternative source, use the PIT calibration value */
 844	if (!hpet && !ref1 && !ref2) {
 845		pr_info("Using PIT calibration value\n");
 846		return tsc_pit_min;
 847	}
 848
 849	/* The alternative source failed, use the PIT calibration value */
 850	if (tsc_ref_min == ULONG_MAX) {
 851		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 852		return tsc_pit_min;
 853	}
 854
 855	/*
 856	 * The calibration values differ too much. In doubt, we use
 857	 * the PIT value as we know that there are PMTIMERs around
 858	 * running at double speed. At least we let the user know:
 859	 */
 860	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 861		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 862	pr_info("Using PIT calibration value\n");
 863	return tsc_pit_min;
 864}
 865
 866/**
 867 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 868 */
 869unsigned long native_calibrate_cpu_early(void)
 870{
 871	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 872
 873	if (!fast_calibrate)
 874		fast_calibrate = cpu_khz_from_msr();
 875	if (!fast_calibrate) {
 876		local_irq_save(flags);
 877		fast_calibrate = quick_pit_calibrate();
 878		local_irq_restore(flags);
 879	}
 880	return fast_calibrate;
 881}
 882
 883
 884/**
 885 * native_calibrate_cpu - calibrate the cpu
 886 */
 887static unsigned long native_calibrate_cpu(void)
 888{
 889	unsigned long tsc_freq = native_calibrate_cpu_early();
 890
 891	if (!tsc_freq)
 892		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 893
 894	return tsc_freq;
 895}
 896
 897void recalibrate_cpu_khz(void)
 898{
 899#ifndef CONFIG_SMP
 900	unsigned long cpu_khz_old = cpu_khz;
 901
 902	if (!boot_cpu_has(X86_FEATURE_TSC))
 903		return;
 904
 905	cpu_khz = x86_platform.calibrate_cpu();
 906	tsc_khz = x86_platform.calibrate_tsc();
 907	if (tsc_khz == 0)
 908		tsc_khz = cpu_khz;
 909	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 910		cpu_khz = tsc_khz;
 911	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 912						    cpu_khz_old, cpu_khz);
 913#endif
 914}
 915
 916EXPORT_SYMBOL(recalibrate_cpu_khz);
 917
 918
 919static unsigned long long cyc2ns_suspend;
 920
 921void tsc_save_sched_clock_state(void)
 922{
 923	if (!sched_clock_stable())
 924		return;
 925
 926	cyc2ns_suspend = sched_clock();
 927}
 928
 929/*
 930 * Even on processors with invariant TSC, TSC gets reset in some the
 931 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 932 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 933 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 934 * that sched_clock() continues from the point where it was left off during
 935 * suspend.
 936 */
 937void tsc_restore_sched_clock_state(void)
 938{
 939	unsigned long long offset;
 940	unsigned long flags;
 941	int cpu;
 942
 943	if (!sched_clock_stable())
 944		return;
 945
 946	local_irq_save(flags);
 947
 948	/*
 949	 * We're coming out of suspend, there's no concurrency yet; don't
 950	 * bother being nice about the RCU stuff, just write to both
 951	 * data fields.
 952	 */
 953
 954	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 955	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 956
 957	offset = cyc2ns_suspend - sched_clock();
 958
 959	for_each_possible_cpu(cpu) {
 960		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 961		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 962	}
 963
 964	local_irq_restore(flags);
 965}
 966
 967#ifdef CONFIG_CPU_FREQ
 968/*
 969 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 970 * changes.
 971 *
 972 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 973 * as unstable and give up in those cases.
 974 *
 975 * Should fix up last_tsc too. Currently gettimeofday in the
 976 * first tick after the change will be slightly wrong.
 977 */
 978
 979static unsigned int  ref_freq;
 980static unsigned long loops_per_jiffy_ref;
 981static unsigned long tsc_khz_ref;
 982
 983static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 984				void *data)
 985{
 986	struct cpufreq_freqs *freq = data;
 987
 988	if (num_online_cpus() > 1) {
 989		mark_tsc_unstable("cpufreq changes on SMP");
 990		return 0;
 991	}
 992
 993	if (!ref_freq) {
 994		ref_freq = freq->old;
 995		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 996		tsc_khz_ref = tsc_khz;
 997	}
 998
 999	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1000	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1001		boot_cpu_data.loops_per_jiffy =
1002			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1003
1004		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1005		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1006			mark_tsc_unstable("cpufreq changes");
1007
1008		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1009	}
1010
1011	return 0;
1012}
1013
1014static struct notifier_block time_cpufreq_notifier_block = {
1015	.notifier_call  = time_cpufreq_notifier
1016};
1017
1018static int __init cpufreq_register_tsc_scaling(void)
1019{
1020	if (!boot_cpu_has(X86_FEATURE_TSC))
1021		return 0;
1022	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1023		return 0;
1024	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1025				CPUFREQ_TRANSITION_NOTIFIER);
1026	return 0;
1027}
1028
1029core_initcall(cpufreq_register_tsc_scaling);
1030
1031#endif /* CONFIG_CPU_FREQ */
1032
1033#define ART_CPUID_LEAF (0x15)
1034#define ART_MIN_DENOMINATOR (1)
1035
1036
1037/*
1038 * If ART is present detect the numerator:denominator to convert to TSC
1039 */
1040static void __init detect_art(void)
1041{
1042	unsigned int unused[2];
1043
1044	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1045		return;
1046
1047	/*
1048	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1049	 * and the TSC counter resets must not occur asynchronously.
1050	 */
1051	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1052	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1053	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1054	    tsc_async_resets)
1055		return;
1056
1057	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1058	      &art_to_tsc_numerator, unused, unused+1);
1059
1060	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1061		return;
1062
1063	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1064
1065	/* Make this sticky over multiple CPU init calls */
1066	setup_force_cpu_cap(X86_FEATURE_ART);
1067}
1068
1069
1070/* clocksource code */
1071
1072static void tsc_resume(struct clocksource *cs)
1073{
1074	tsc_verify_tsc_adjust(true);
1075}
1076
1077/*
1078 * We used to compare the TSC to the cycle_last value in the clocksource
1079 * structure to avoid a nasty time-warp. This can be observed in a
1080 * very small window right after one CPU updated cycle_last under
1081 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1082 * is smaller than the cycle_last reference value due to a TSC which
1083 * is slightly behind. This delta is nowhere else observable, but in
1084 * that case it results in a forward time jump in the range of hours
1085 * due to the unsigned delta calculation of the time keeping core
1086 * code, which is necessary to support wrapping clocksources like pm
1087 * timer.
1088 *
1089 * This sanity check is now done in the core timekeeping code.
1090 * checking the result of read_tsc() - cycle_last for being negative.
1091 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1092 */
1093static u64 read_tsc(struct clocksource *cs)
1094{
1095	return (u64)rdtsc_ordered();
1096}
1097
1098static void tsc_cs_mark_unstable(struct clocksource *cs)
1099{
1100	if (tsc_unstable)
1101		return;
1102
1103	tsc_unstable = 1;
1104	if (using_native_sched_clock())
1105		clear_sched_clock_stable();
1106	disable_sched_clock_irqtime();
1107	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1108}
1109
1110static void tsc_cs_tick_stable(struct clocksource *cs)
1111{
1112	if (tsc_unstable)
1113		return;
1114
1115	if (using_native_sched_clock())
1116		sched_clock_tick_stable();
1117}
1118
1119static int tsc_cs_enable(struct clocksource *cs)
1120{
1121	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1122	return 0;
1123}
1124
1125/*
1126 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1127 */
1128static struct clocksource clocksource_tsc_early = {
1129	.name			= "tsc-early",
1130	.rating			= 299,
1131	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1132	.read			= read_tsc,
1133	.mask			= CLOCKSOURCE_MASK(64),
1134	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1135				  CLOCK_SOURCE_MUST_VERIFY,
 
1136	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1137	.enable			= tsc_cs_enable,
1138	.resume			= tsc_resume,
1139	.mark_unstable		= tsc_cs_mark_unstable,
1140	.tick_stable		= tsc_cs_tick_stable,
1141	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1142};
1143
1144/*
1145 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1146 * this one will immediately take over. We will only register if TSC has
1147 * been found good.
1148 */
1149static struct clocksource clocksource_tsc = {
1150	.name			= "tsc",
1151	.rating			= 300,
1152	.read			= read_tsc,
1153	.mask			= CLOCKSOURCE_MASK(64),
1154	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1155				  CLOCK_SOURCE_VALID_FOR_HRES |
1156				  CLOCK_SOURCE_MUST_VERIFY |
1157				  CLOCK_SOURCE_VERIFY_PERCPU,
 
1158	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1159	.enable			= tsc_cs_enable,
1160	.resume			= tsc_resume,
1161	.mark_unstable		= tsc_cs_mark_unstable,
1162	.tick_stable		= tsc_cs_tick_stable,
1163	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1164};
1165
1166void mark_tsc_unstable(char *reason)
1167{
1168	if (tsc_unstable)
1169		return;
1170
1171	tsc_unstable = 1;
1172	if (using_native_sched_clock())
1173		clear_sched_clock_stable();
1174	disable_sched_clock_irqtime();
1175	pr_info("Marking TSC unstable due to %s\n", reason);
1176
1177	clocksource_mark_unstable(&clocksource_tsc_early);
1178	clocksource_mark_unstable(&clocksource_tsc);
1179}
1180
1181EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1182
1183static void __init tsc_disable_clocksource_watchdog(void)
1184{
1185	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1186	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1187}
1188
 
 
 
 
 
 
1189static void __init check_system_tsc_reliable(void)
1190{
1191#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1192	if (is_geode_lx()) {
1193		/* RTSC counts during suspend */
1194#define RTSC_SUSP 0x100
1195		unsigned long res_low, res_high;
1196
1197		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1198		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1199		if (res_low & RTSC_SUSP)
1200			tsc_clocksource_reliable = 1;
1201	}
1202#endif
1203	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1204		tsc_clocksource_reliable = 1;
1205
1206	/*
1207	 * Disable the clocksource watchdog when the system has:
1208	 *  - TSC running at constant frequency
1209	 *  - TSC which does not stop in C-States
1210	 *  - the TSC_ADJUST register which allows to detect even minimal
1211	 *    modifications
1212	 *  - not more than two sockets. As the number of sockets cannot be
1213	 *    evaluated at the early boot stage where this has to be
1214	 *    invoked, check the number of online memory nodes as a
1215	 *    fallback solution which is an reasonable estimate.
1216	 */
1217	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1218	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1219	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1220	    nr_online_nodes <= 2)
1221		tsc_disable_clocksource_watchdog();
1222}
1223
1224/*
1225 * Make an educated guess if the TSC is trustworthy and synchronized
1226 * over all CPUs.
1227 */
1228int unsynchronized_tsc(void)
1229{
1230	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1231		return 1;
1232
1233#ifdef CONFIG_SMP
1234	if (apic_is_clustered_box())
1235		return 1;
1236#endif
1237
1238	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1239		return 0;
1240
1241	if (tsc_clocksource_reliable)
1242		return 0;
1243	/*
1244	 * Intel systems are normally all synchronized.
1245	 * Exceptions must mark TSC as unstable:
1246	 */
1247	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1248		/* assume multi socket systems are not synchronized: */
1249		if (num_possible_cpus() > 1)
1250			return 1;
1251	}
1252
1253	return 0;
1254}
1255
1256/*
1257 * Convert ART to TSC given numerator/denominator found in detect_art()
1258 */
1259struct system_counterval_t convert_art_to_tsc(u64 art)
1260{
1261	u64 tmp, res, rem;
1262
1263	rem = do_div(art, art_to_tsc_denominator);
1264
1265	res = art * art_to_tsc_numerator;
1266	tmp = rem * art_to_tsc_numerator;
1267
1268	do_div(tmp, art_to_tsc_denominator);
1269	res += tmp + art_to_tsc_offset;
1270
1271	return (struct system_counterval_t) {.cs = art_related_clocksource,
1272			.cycles = res};
 
 
1273}
1274EXPORT_SYMBOL(convert_art_to_tsc);
1275
1276/**
1277 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1278 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1279 *
1280 * PTM requires all timestamps to be in units of nanoseconds. When user
1281 * software requests a cross-timestamp, this function converts system timestamp
1282 * to TSC.
1283 *
1284 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1285 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1286 * that this flag is set before conversion to TSC is attempted.
1287 *
1288 * Return:
1289 * struct system_counterval_t - system counter value with the pointer to the
1290 *	corresponding clocksource
1291 *	@cycles:	System counter value
1292 *	@cs:		Clocksource corresponding to system counter value. Used
1293 *			by timekeeping code to verify comparability of two cycle
1294 *			values.
1295 */
1296
1297struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1298{
1299	u64 tmp, res, rem;
1300
1301	rem = do_div(art_ns, USEC_PER_SEC);
1302
1303	res = art_ns * tsc_khz;
1304	tmp = rem * tsc_khz;
1305
1306	do_div(tmp, USEC_PER_SEC);
1307	res += tmp;
1308
1309	return (struct system_counterval_t) { .cs = art_related_clocksource,
1310					      .cycles = res};
 
 
1311}
1312EXPORT_SYMBOL(convert_art_ns_to_tsc);
1313
1314
1315static void tsc_refine_calibration_work(struct work_struct *work);
1316static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1317/**
1318 * tsc_refine_calibration_work - Further refine tsc freq calibration
1319 * @work - ignored.
1320 *
1321 * This functions uses delayed work over a period of a
1322 * second to further refine the TSC freq value. Since this is
1323 * timer based, instead of loop based, we don't block the boot
1324 * process while this longer calibration is done.
1325 *
1326 * If there are any calibration anomalies (too many SMIs, etc),
1327 * or the refined calibration is off by 1% of the fast early
1328 * calibration, we throw out the new calibration and use the
1329 * early calibration.
1330 */
1331static void tsc_refine_calibration_work(struct work_struct *work)
1332{
1333	static u64 tsc_start = ULLONG_MAX, ref_start;
1334	static int hpet;
1335	u64 tsc_stop, ref_stop, delta;
1336	unsigned long freq;
1337	int cpu;
1338
1339	/* Don't bother refining TSC on unstable systems */
1340	if (tsc_unstable)
1341		goto unreg;
1342
1343	/*
1344	 * Since the work is started early in boot, we may be
1345	 * delayed the first time we expire. So set the workqueue
1346	 * again once we know timers are working.
1347	 */
1348	if (tsc_start == ULLONG_MAX) {
1349restart:
1350		/*
1351		 * Only set hpet once, to avoid mixing hardware
1352		 * if the hpet becomes enabled later.
1353		 */
1354		hpet = is_hpet_enabled();
1355		tsc_start = tsc_read_refs(&ref_start, hpet);
1356		schedule_delayed_work(&tsc_irqwork, HZ);
1357		return;
1358	}
1359
1360	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1361
1362	/* hpet or pmtimer available ? */
1363	if (ref_start == ref_stop)
1364		goto out;
1365
1366	/* Check, whether the sampling was disturbed */
1367	if (tsc_stop == ULLONG_MAX)
1368		goto restart;
1369
1370	delta = tsc_stop - tsc_start;
1371	delta *= 1000000LL;
1372	if (hpet)
1373		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1374	else
1375		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377	/* Make sure we're within 1% */
1378	if (abs(tsc_khz - freq) > tsc_khz/100)
1379		goto out;
1380
1381	tsc_khz = freq;
1382	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1383		(unsigned long)tsc_khz / 1000,
1384		(unsigned long)tsc_khz % 1000);
1385
1386	/* Inform the TSC deadline clockevent devices about the recalibration */
1387	lapic_update_tsc_freq();
1388
1389	/* Update the sched_clock() rate to match the clocksource one */
1390	for_each_possible_cpu(cpu)
1391		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1392
1393out:
1394	if (tsc_unstable)
1395		goto unreg;
1396
1397	if (boot_cpu_has(X86_FEATURE_ART))
1398		art_related_clocksource = &clocksource_tsc;
1399	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1400unreg:
1401	clocksource_unregister(&clocksource_tsc_early);
1402}
1403
1404
1405static int __init init_tsc_clocksource(void)
1406{
1407	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1408		return 0;
1409
1410	if (tsc_unstable)
1411		goto unreg;
 
 
1412
1413	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1414		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1415
1416	/*
1417	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1418	 * the refined calibration and directly register it as a clocksource.
1419	 */
1420	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1421		if (boot_cpu_has(X86_FEATURE_ART))
1422			art_related_clocksource = &clocksource_tsc;
1423		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1424unreg:
1425		clocksource_unregister(&clocksource_tsc_early);
1426		return 0;
 
 
1427	}
1428
1429	schedule_delayed_work(&tsc_irqwork, 0);
1430	return 0;
1431}
1432/*
1433 * We use device_initcall here, to ensure we run after the hpet
1434 * is fully initialized, which may occur at fs_initcall time.
1435 */
1436device_initcall(init_tsc_clocksource);
1437
1438static bool __init determine_cpu_tsc_frequencies(bool early)
1439{
1440	/* Make sure that cpu and tsc are not already calibrated */
1441	WARN_ON(cpu_khz || tsc_khz);
1442
1443	if (early) {
1444		cpu_khz = x86_platform.calibrate_cpu();
1445		if (tsc_early_khz)
1446			tsc_khz = tsc_early_khz;
1447		else
1448			tsc_khz = x86_platform.calibrate_tsc();
1449	} else {
1450		/* We should not be here with non-native cpu calibration */
1451		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1452		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1453	}
1454
1455	/*
1456	 * Trust non-zero tsc_khz as authoritative,
1457	 * and use it to sanity check cpu_khz,
1458	 * which will be off if system timer is off.
1459	 */
1460	if (tsc_khz == 0)
1461		tsc_khz = cpu_khz;
1462	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1463		cpu_khz = tsc_khz;
1464
1465	if (tsc_khz == 0)
1466		return false;
1467
1468	pr_info("Detected %lu.%03lu MHz processor\n",
1469		(unsigned long)cpu_khz / KHZ,
1470		(unsigned long)cpu_khz % KHZ);
1471
1472	if (cpu_khz != tsc_khz) {
1473		pr_info("Detected %lu.%03lu MHz TSC",
1474			(unsigned long)tsc_khz / KHZ,
1475			(unsigned long)tsc_khz % KHZ);
1476	}
1477	return true;
1478}
1479
1480static unsigned long __init get_loops_per_jiffy(void)
1481{
1482	u64 lpj = (u64)tsc_khz * KHZ;
1483
1484	do_div(lpj, HZ);
1485	return lpj;
1486}
1487
1488static void __init tsc_enable_sched_clock(void)
1489{
1490	loops_per_jiffy = get_loops_per_jiffy();
1491	use_tsc_delay();
1492
1493	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1494	tsc_store_and_check_tsc_adjust(true);
1495	cyc2ns_init_boot_cpu();
1496	static_branch_enable(&__use_tsc);
1497}
1498
1499void __init tsc_early_init(void)
1500{
1501	if (!boot_cpu_has(X86_FEATURE_TSC))
1502		return;
1503	/* Don't change UV TSC multi-chassis synchronization */
1504	if (is_early_uv_system())
1505		return;
1506	if (!determine_cpu_tsc_frequencies(true))
1507		return;
1508	tsc_enable_sched_clock();
1509}
1510
1511void __init tsc_init(void)
1512{
 
 
 
 
 
1513	/*
1514	 * native_calibrate_cpu_early can only calibrate using methods that are
1515	 * available early in boot.
1516	 */
1517	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1518		x86_platform.calibrate_cpu = native_calibrate_cpu;
1519
1520	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1521		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1522		return;
1523	}
1524
1525	if (!tsc_khz) {
1526		/* We failed to determine frequencies earlier, try again */
1527		if (!determine_cpu_tsc_frequencies(false)) {
1528			mark_tsc_unstable("could not calculate TSC khz");
1529			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1530			return;
1531		}
1532		tsc_enable_sched_clock();
1533	}
1534
1535	cyc2ns_init_secondary_cpus();
1536
1537	if (!no_sched_irq_time)
1538		enable_sched_clock_irqtime();
1539
1540	lpj_fine = get_loops_per_jiffy();
1541
1542	check_system_tsc_reliable();
1543
1544	if (unsynchronized_tsc()) {
1545		mark_tsc_unstable("TSCs unsynchronized");
1546		return;
1547	}
1548
1549	if (tsc_clocksource_reliable || no_tsc_watchdog)
1550		tsc_disable_clocksource_watchdog();
1551
1552	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1553	detect_art();
1554}
1555
1556#ifdef CONFIG_SMP
1557/*
1558 * If we have a constant TSC and are using the TSC for the delay loop,
1559 * we can skip clock calibration if another cpu in the same socket has already
1560 * been calibrated. This assumes that CONSTANT_TSC applies to all
1561 * cpus in the socket - this should be a safe assumption.
1562 */
1563unsigned long calibrate_delay_is_known(void)
1564{
1565	int sibling, cpu = smp_processor_id();
1566	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1567	const struct cpumask *mask = topology_core_cpumask(cpu);
1568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569	if (!constant_tsc || !mask)
1570		return 0;
1571
1572	sibling = cpumask_any_but(mask, cpu);
1573	if (sibling < nr_cpu_ids)
1574		return cpu_data(sibling).loops_per_jiffy;
1575	return 0;
1576}
1577#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17#include <linux/static_call.h>
  18
  19#include <asm/hpet.h>
  20#include <asm/timer.h>
  21#include <asm/vgtod.h>
  22#include <asm/time.h>
  23#include <asm/delay.h>
  24#include <asm/hypervisor.h>
  25#include <asm/nmi.h>
  26#include <asm/x86_init.h>
  27#include <asm/geode.h>
  28#include <asm/apic.h>
  29#include <asm/intel-family.h>
  30#include <asm/i8259.h>
  31#include <asm/uv/uv.h>
  32
  33unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  34EXPORT_SYMBOL(cpu_khz);
  35
  36unsigned int __read_mostly tsc_khz;
  37EXPORT_SYMBOL(tsc_khz);
  38
  39#define KHZ	1000
  40
  41/*
  42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  43 */
  44static int __read_mostly tsc_unstable;
  45static unsigned int __initdata tsc_early_khz;
  46
  47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  48
  49int tsc_clocksource_reliable;
  50
  51static int __read_mostly tsc_force_recalibrate;
  52
  53static u32 art_to_tsc_numerator;
  54static u32 art_to_tsc_denominator;
  55static u64 art_to_tsc_offset;
  56static bool have_art;
  57
  58struct cyc2ns {
  59	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
  60	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
  61
  62}; /* fits one cacheline */
  63
  64static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  65
  66static int __init tsc_early_khz_setup(char *buf)
  67{
  68	return kstrtouint(buf, 0, &tsc_early_khz);
  69}
  70early_param("tsc_early_khz", tsc_early_khz_setup);
  71
  72__always_inline void __cyc2ns_read(struct cyc2ns_data *data)
  73{
  74	int seq, idx;
  75
 
 
  76	do {
  77		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
  78		idx = seq & 1;
  79
  80		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  81		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  82		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  83
  84	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
  85}
  86
  87__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  88{
  89	preempt_disable_notrace();
  90	__cyc2ns_read(data);
  91}
  92
  93__always_inline void cyc2ns_read_end(void)
  94{
  95	preempt_enable_notrace();
  96}
  97
  98/*
  99 * Accelerators for sched_clock()
 100 * convert from cycles(64bits) => nanoseconds (64bits)
 101 *  basic equation:
 102 *              ns = cycles / (freq / ns_per_sec)
 103 *              ns = cycles * (ns_per_sec / freq)
 104 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 105 *              ns = cycles * (10^6 / cpu_khz)
 106 *
 107 *      Then we use scaling math (suggested by george@mvista.com) to get:
 108 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 109 *              ns = cycles * cyc2ns_scale / SC
 110 *
 111 *      And since SC is a constant power of two, we can convert the div
 112 *  into a shift. The larger SC is, the more accurate the conversion, but
 113 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 114 *  (64-bit result) can be used.
 115 *
 116 *  We can use khz divisor instead of mhz to keep a better precision.
 117 *  (mathieu.desnoyers@polymtl.ca)
 118 *
 119 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 120 */
 121
 122static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc)
 123{
 124	struct cyc2ns_data data;
 125	unsigned long long ns;
 126
 127	__cyc2ns_read(&data);
 128
 129	ns = data.cyc2ns_offset;
 130	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 131
 132	return ns;
 133}
 134
 135static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 136{
 137	unsigned long long ns;
 138	preempt_disable_notrace();
 139	ns = __cycles_2_ns(cyc);
 140	preempt_enable_notrace();
 141	return ns;
 142}
 143
 144static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 145{
 146	unsigned long long ns_now;
 147	struct cyc2ns_data data;
 148	struct cyc2ns *c2n;
 149
 150	ns_now = cycles_2_ns(tsc_now);
 151
 152	/*
 153	 * Compute a new multiplier as per the above comment and ensure our
 154	 * time function is continuous; see the comment near struct
 155	 * cyc2ns_data.
 156	 */
 157	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 158			       NSEC_PER_MSEC, 0);
 159
 160	/*
 161	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 162	 * not expected to be greater than 31 due to the original published
 163	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 164	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 165	 */
 166	if (data.cyc2ns_shift == 32) {
 167		data.cyc2ns_shift = 31;
 168		data.cyc2ns_mul >>= 1;
 169	}
 170
 171	data.cyc2ns_offset = ns_now -
 172		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 173
 174	c2n = per_cpu_ptr(&cyc2ns, cpu);
 175
 176	raw_write_seqcount_latch(&c2n->seq);
 177	c2n->data[0] = data;
 178	raw_write_seqcount_latch(&c2n->seq);
 179	c2n->data[1] = data;
 180}
 181
 182static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 183{
 184	unsigned long flags;
 185
 186	local_irq_save(flags);
 187	sched_clock_idle_sleep_event();
 188
 189	if (khz)
 190		__set_cyc2ns_scale(khz, cpu, tsc_now);
 191
 192	sched_clock_idle_wakeup_event();
 193	local_irq_restore(flags);
 194}
 195
 196/*
 197 * Initialize cyc2ns for boot cpu
 198 */
 199static void __init cyc2ns_init_boot_cpu(void)
 200{
 201	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 202
 203	seqcount_latch_init(&c2n->seq);
 204	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 205}
 206
 207/*
 208 * Secondary CPUs do not run through tsc_init(), so set up
 209 * all the scale factors for all CPUs, assuming the same
 210 * speed as the bootup CPU.
 211 */
 212static void __init cyc2ns_init_secondary_cpus(void)
 213{
 214	unsigned int cpu, this_cpu = smp_processor_id();
 215	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 216	struct cyc2ns_data *data = c2n->data;
 217
 218	for_each_possible_cpu(cpu) {
 219		if (cpu != this_cpu) {
 220			seqcount_latch_init(&c2n->seq);
 221			c2n = per_cpu_ptr(&cyc2ns, cpu);
 222			c2n->data[0] = data[0];
 223			c2n->data[1] = data[1];
 224		}
 225	}
 226}
 227
 228/*
 229 * Scheduler clock - returns current time in nanosec units.
 230 */
 231noinstr u64 native_sched_clock(void)
 232{
 233	if (static_branch_likely(&__use_tsc)) {
 234		u64 tsc_now = rdtsc();
 235
 236		/* return the value in ns */
 237		return __cycles_2_ns(tsc_now);
 238	}
 239
 240	/*
 241	 * Fall back to jiffies if there's no TSC available:
 242	 * ( But note that we still use it if the TSC is marked
 243	 *   unstable. We do this because unlike Time Of Day,
 244	 *   the scheduler clock tolerates small errors and it's
 245	 *   very important for it to be as fast as the platform
 246	 *   can achieve it. )
 247	 */
 248
 249	/* No locking but a rare wrong value is not a big deal: */
 250	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 251}
 252
 253/*
 254 * Generate a sched_clock if you already have a TSC value.
 255 */
 256u64 native_sched_clock_from_tsc(u64 tsc)
 257{
 258	return cycles_2_ns(tsc);
 259}
 260
 261/* We need to define a real function for sched_clock, to override the
 262   weak default version */
 263#ifdef CONFIG_PARAVIRT
 264noinstr u64 sched_clock_noinstr(void)
 265{
 266	return paravirt_sched_clock();
 267}
 268
 269bool using_native_sched_clock(void)
 270{
 271	return static_call_query(pv_sched_clock) == native_sched_clock;
 272}
 273#else
 274u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock")));
 
 275
 276bool using_native_sched_clock(void) { return true; }
 277#endif
 278
 279notrace u64 sched_clock(void)
 280{
 281	u64 now;
 282	preempt_disable_notrace();
 283	now = sched_clock_noinstr();
 284	preempt_enable_notrace();
 285	return now;
 286}
 287
 288int check_tsc_unstable(void)
 289{
 290	return tsc_unstable;
 291}
 292EXPORT_SYMBOL_GPL(check_tsc_unstable);
 293
 294#ifdef CONFIG_X86_TSC
 295int __init notsc_setup(char *str)
 296{
 297	mark_tsc_unstable("boot parameter notsc");
 298	return 1;
 299}
 300#else
 301/*
 302 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 303 * in cpu/common.c
 304 */
 305int __init notsc_setup(char *str)
 306{
 307	setup_clear_cpu_cap(X86_FEATURE_TSC);
 308	return 1;
 309}
 310#endif
 311
 312__setup("notsc", notsc_setup);
 313
 314static int no_sched_irq_time;
 315static int no_tsc_watchdog;
 316static int tsc_as_watchdog;
 317
 318static int __init tsc_setup(char *str)
 319{
 320	if (!strcmp(str, "reliable"))
 321		tsc_clocksource_reliable = 1;
 322	if (!strncmp(str, "noirqtime", 9))
 323		no_sched_irq_time = 1;
 324	if (!strcmp(str, "unstable"))
 325		mark_tsc_unstable("boot parameter");
 326	if (!strcmp(str, "nowatchdog")) {
 327		no_tsc_watchdog = 1;
 328		if (tsc_as_watchdog)
 329			pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
 330				 __func__);
 331		tsc_as_watchdog = 0;
 332	}
 333	if (!strcmp(str, "recalibrate"))
 334		tsc_force_recalibrate = 1;
 335	if (!strcmp(str, "watchdog")) {
 336		if (no_tsc_watchdog)
 337			pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
 338				 __func__);
 339		else
 340			tsc_as_watchdog = 1;
 341	}
 342	return 1;
 343}
 344
 345__setup("tsc=", tsc_setup);
 346
 347#define MAX_RETRIES		5
 348#define TSC_DEFAULT_THRESHOLD	0x20000
 349
 350/*
 351 * Read TSC and the reference counters. Take care of any disturbances
 352 */
 353static u64 tsc_read_refs(u64 *p, int hpet)
 354{
 355	u64 t1, t2;
 356	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 357	int i;
 358
 359	for (i = 0; i < MAX_RETRIES; i++) {
 360		t1 = get_cycles();
 361		if (hpet)
 362			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 363		else
 364			*p = acpi_pm_read_early();
 365		t2 = get_cycles();
 366		if ((t2 - t1) < thresh)
 367			return t2;
 368	}
 369	return ULLONG_MAX;
 370}
 371
 372/*
 373 * Calculate the TSC frequency from HPET reference
 374 */
 375static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 376{
 377	u64 tmp;
 378
 379	if (hpet2 < hpet1)
 380		hpet2 += 0x100000000ULL;
 381	hpet2 -= hpet1;
 382	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 383	do_div(tmp, 1000000);
 384	deltatsc = div64_u64(deltatsc, tmp);
 385
 386	return (unsigned long) deltatsc;
 387}
 388
 389/*
 390 * Calculate the TSC frequency from PMTimer reference
 391 */
 392static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 393{
 394	u64 tmp;
 395
 396	if (!pm1 && !pm2)
 397		return ULONG_MAX;
 398
 399	if (pm2 < pm1)
 400		pm2 += (u64)ACPI_PM_OVRRUN;
 401	pm2 -= pm1;
 402	tmp = pm2 * 1000000000LL;
 403	do_div(tmp, PMTMR_TICKS_PER_SEC);
 404	do_div(deltatsc, tmp);
 405
 406	return (unsigned long) deltatsc;
 407}
 408
 409#define CAL_MS		10
 410#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 411#define CAL_PIT_LOOPS	1000
 412
 413#define CAL2_MS		50
 414#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 415#define CAL2_PIT_LOOPS	5000
 416
 417
 418/*
 419 * Try to calibrate the TSC against the Programmable
 420 * Interrupt Timer and return the frequency of the TSC
 421 * in kHz.
 422 *
 423 * Return ULONG_MAX on failure to calibrate.
 424 */
 425static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 426{
 427	u64 tsc, t1, t2, delta;
 428	unsigned long tscmin, tscmax;
 429	int pitcnt;
 430
 431	if (!has_legacy_pic()) {
 432		/*
 433		 * Relies on tsc_early_delay_calibrate() to have given us semi
 434		 * usable udelay(), wait for the same 50ms we would have with
 435		 * the PIT loop below.
 436		 */
 437		udelay(10 * USEC_PER_MSEC);
 438		udelay(10 * USEC_PER_MSEC);
 439		udelay(10 * USEC_PER_MSEC);
 440		udelay(10 * USEC_PER_MSEC);
 441		udelay(10 * USEC_PER_MSEC);
 442		return ULONG_MAX;
 443	}
 444
 445	/* Set the Gate high, disable speaker */
 446	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 447
 448	/*
 449	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 450	 * count mode), binary count. Set the latch register to 50ms
 451	 * (LSB then MSB) to begin countdown.
 452	 */
 453	outb(0xb0, 0x43);
 454	outb(latch & 0xff, 0x42);
 455	outb(latch >> 8, 0x42);
 456
 457	tsc = t1 = t2 = get_cycles();
 458
 459	pitcnt = 0;
 460	tscmax = 0;
 461	tscmin = ULONG_MAX;
 462	while ((inb(0x61) & 0x20) == 0) {
 463		t2 = get_cycles();
 464		delta = t2 - tsc;
 465		tsc = t2;
 466		if ((unsigned long) delta < tscmin)
 467			tscmin = (unsigned int) delta;
 468		if ((unsigned long) delta > tscmax)
 469			tscmax = (unsigned int) delta;
 470		pitcnt++;
 471	}
 472
 473	/*
 474	 * Sanity checks:
 475	 *
 476	 * If we were not able to read the PIT more than loopmin
 477	 * times, then we have been hit by a massive SMI
 478	 *
 479	 * If the maximum is 10 times larger than the minimum,
 480	 * then we got hit by an SMI as well.
 481	 */
 482	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 483		return ULONG_MAX;
 484
 485	/* Calculate the PIT value */
 486	delta = t2 - t1;
 487	do_div(delta, ms);
 488	return delta;
 489}
 490
 491/*
 492 * This reads the current MSB of the PIT counter, and
 493 * checks if we are running on sufficiently fast and
 494 * non-virtualized hardware.
 495 *
 496 * Our expectations are:
 497 *
 498 *  - the PIT is running at roughly 1.19MHz
 499 *
 500 *  - each IO is going to take about 1us on real hardware,
 501 *    but we allow it to be much faster (by a factor of 10) or
 502 *    _slightly_ slower (ie we allow up to a 2us read+counter
 503 *    update - anything else implies a unacceptably slow CPU
 504 *    or PIT for the fast calibration to work.
 505 *
 506 *  - with 256 PIT ticks to read the value, we have 214us to
 507 *    see the same MSB (and overhead like doing a single TSC
 508 *    read per MSB value etc).
 509 *
 510 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 511 *    them each to take about a microsecond on real hardware.
 512 *    So we expect a count value of around 100. But we'll be
 513 *    generous, and accept anything over 50.
 514 *
 515 *  - if the PIT is stuck, and we see *many* more reads, we
 516 *    return early (and the next caller of pit_expect_msb()
 517 *    then consider it a failure when they don't see the
 518 *    next expected value).
 519 *
 520 * These expectations mean that we know that we have seen the
 521 * transition from one expected value to another with a fairly
 522 * high accuracy, and we didn't miss any events. We can thus
 523 * use the TSC value at the transitions to calculate a pretty
 524 * good value for the TSC frequency.
 525 */
 526static inline int pit_verify_msb(unsigned char val)
 527{
 528	/* Ignore LSB */
 529	inb(0x42);
 530	return inb(0x42) == val;
 531}
 532
 533static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 534{
 535	int count;
 536	u64 tsc = 0, prev_tsc = 0;
 537
 538	for (count = 0; count < 50000; count++) {
 539		if (!pit_verify_msb(val))
 540			break;
 541		prev_tsc = tsc;
 542		tsc = get_cycles();
 543	}
 544	*deltap = get_cycles() - prev_tsc;
 545	*tscp = tsc;
 546
 547	/*
 548	 * We require _some_ success, but the quality control
 549	 * will be based on the error terms on the TSC values.
 550	 */
 551	return count > 5;
 552}
 553
 554/*
 555 * How many MSB values do we want to see? We aim for
 556 * a maximum error rate of 500ppm (in practice the
 557 * real error is much smaller), but refuse to spend
 558 * more than 50ms on it.
 559 */
 560#define MAX_QUICK_PIT_MS 50
 561#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 562
 563static unsigned long quick_pit_calibrate(void)
 564{
 565	int i;
 566	u64 tsc, delta;
 567	unsigned long d1, d2;
 568
 569	if (!has_legacy_pic())
 570		return 0;
 571
 572	/* Set the Gate high, disable speaker */
 573	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 574
 575	/*
 576	 * Counter 2, mode 0 (one-shot), binary count
 577	 *
 578	 * NOTE! Mode 2 decrements by two (and then the
 579	 * output is flipped each time, giving the same
 580	 * final output frequency as a decrement-by-one),
 581	 * so mode 0 is much better when looking at the
 582	 * individual counts.
 583	 */
 584	outb(0xb0, 0x43);
 585
 586	/* Start at 0xffff */
 587	outb(0xff, 0x42);
 588	outb(0xff, 0x42);
 589
 590	/*
 591	 * The PIT starts counting at the next edge, so we
 592	 * need to delay for a microsecond. The easiest way
 593	 * to do that is to just read back the 16-bit counter
 594	 * once from the PIT.
 595	 */
 596	pit_verify_msb(0);
 597
 598	if (pit_expect_msb(0xff, &tsc, &d1)) {
 599		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 600			if (!pit_expect_msb(0xff-i, &delta, &d2))
 601				break;
 602
 603			delta -= tsc;
 604
 605			/*
 606			 * Extrapolate the error and fail fast if the error will
 607			 * never be below 500 ppm.
 608			 */
 609			if (i == 1 &&
 610			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 611				return 0;
 612
 613			/*
 614			 * Iterate until the error is less than 500 ppm
 615			 */
 616			if (d1+d2 >= delta >> 11)
 617				continue;
 618
 619			/*
 620			 * Check the PIT one more time to verify that
 621			 * all TSC reads were stable wrt the PIT.
 622			 *
 623			 * This also guarantees serialization of the
 624			 * last cycle read ('d2') in pit_expect_msb.
 625			 */
 626			if (!pit_verify_msb(0xfe - i))
 627				break;
 628			goto success;
 629		}
 630	}
 631	pr_info("Fast TSC calibration failed\n");
 632	return 0;
 633
 634success:
 635	/*
 636	 * Ok, if we get here, then we've seen the
 637	 * MSB of the PIT decrement 'i' times, and the
 638	 * error has shrunk to less than 500 ppm.
 639	 *
 640	 * As a result, we can depend on there not being
 641	 * any odd delays anywhere, and the TSC reads are
 642	 * reliable (within the error).
 643	 *
 644	 * kHz = ticks / time-in-seconds / 1000;
 645	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 646	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 647	 */
 648	delta *= PIT_TICK_RATE;
 649	do_div(delta, i*256*1000);
 650	pr_info("Fast TSC calibration using PIT\n");
 651	return delta;
 652}
 653
 654/**
 655 * native_calibrate_tsc - determine TSC frequency
 656 * Determine TSC frequency via CPUID, else return 0.
 657 */
 658unsigned long native_calibrate_tsc(void)
 659{
 660	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 661	unsigned int crystal_khz;
 662
 663	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 664		return 0;
 665
 666	if (boot_cpu_data.cpuid_level < 0x15)
 667		return 0;
 668
 669	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 670
 671	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 672	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 673
 674	if (ebx_numerator == 0 || eax_denominator == 0)
 675		return 0;
 676
 677	crystal_khz = ecx_hz / 1000;
 678
 679	/*
 680	 * Denverton SoCs don't report crystal clock, and also don't support
 681	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 682	 * clock.
 683	 */
 684	if (crystal_khz == 0 &&
 685			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 686		crystal_khz = 25000;
 687
 688	/*
 689	 * TSC frequency reported directly by CPUID is a "hardware reported"
 690	 * frequency and is the most accurate one so far we have. This
 691	 * is considered a known frequency.
 692	 */
 693	if (crystal_khz != 0)
 694		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 695
 696	/*
 697	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 698	 * clock, but we can easily calculate it to a high degree of accuracy
 699	 * by considering the crystal ratio and the CPU speed.
 700	 */
 701	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 702		unsigned int eax_base_mhz, ebx, ecx, edx;
 703
 704		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 705		crystal_khz = eax_base_mhz * 1000 *
 706			eax_denominator / ebx_numerator;
 707	}
 708
 709	if (crystal_khz == 0)
 710		return 0;
 711
 712	/*
 713	 * For Atom SoCs TSC is the only reliable clocksource.
 714	 * Mark TSC reliable so no watchdog on it.
 715	 */
 716	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 717		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 718
 719#ifdef CONFIG_X86_LOCAL_APIC
 720	/*
 721	 * The local APIC appears to be fed by the core crystal clock
 722	 * (which sounds entirely sensible). We can set the global
 723	 * lapic_timer_period here to avoid having to calibrate the APIC
 724	 * timer later.
 725	 */
 726	lapic_timer_period = crystal_khz * 1000 / HZ;
 727#endif
 728
 729	return crystal_khz * ebx_numerator / eax_denominator;
 730}
 731
 732static unsigned long cpu_khz_from_cpuid(void)
 733{
 734	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 735
 736	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 737		return 0;
 738
 739	if (boot_cpu_data.cpuid_level < 0x16)
 740		return 0;
 741
 742	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 743
 744	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 745
 746	return eax_base_mhz * 1000;
 747}
 748
 749/*
 750 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 751 * later in boot after acpi is initialized.
 752 */
 753static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 754{
 755	u64 tsc1, tsc2, delta, ref1, ref2;
 756	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 757	unsigned long flags, latch, ms;
 758	int hpet = is_hpet_enabled(), i, loopmin;
 759
 760	/*
 761	 * Run 5 calibration loops to get the lowest frequency value
 762	 * (the best estimate). We use two different calibration modes
 763	 * here:
 764	 *
 765	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 766	 * load a timeout of 50ms. We read the time right after we
 767	 * started the timer and wait until the PIT count down reaches
 768	 * zero. In each wait loop iteration we read the TSC and check
 769	 * the delta to the previous read. We keep track of the min
 770	 * and max values of that delta. The delta is mostly defined
 771	 * by the IO time of the PIT access, so we can detect when
 772	 * any disturbance happened between the two reads. If the
 773	 * maximum time is significantly larger than the minimum time,
 774	 * then we discard the result and have another try.
 775	 *
 776	 * 2) Reference counter. If available we use the HPET or the
 777	 * PMTIMER as a reference to check the sanity of that value.
 778	 * We use separate TSC readouts and check inside of the
 779	 * reference read for any possible disturbance. We discard
 780	 * disturbed values here as well. We do that around the PIT
 781	 * calibration delay loop as we have to wait for a certain
 782	 * amount of time anyway.
 783	 */
 784
 785	/* Preset PIT loop values */
 786	latch = CAL_LATCH;
 787	ms = CAL_MS;
 788	loopmin = CAL_PIT_LOOPS;
 789
 790	for (i = 0; i < 3; i++) {
 791		unsigned long tsc_pit_khz;
 792
 793		/*
 794		 * Read the start value and the reference count of
 795		 * hpet/pmtimer when available. Then do the PIT
 796		 * calibration, which will take at least 50ms, and
 797		 * read the end value.
 798		 */
 799		local_irq_save(flags);
 800		tsc1 = tsc_read_refs(&ref1, hpet);
 801		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 802		tsc2 = tsc_read_refs(&ref2, hpet);
 803		local_irq_restore(flags);
 804
 805		/* Pick the lowest PIT TSC calibration so far */
 806		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 807
 808		/* hpet or pmtimer available ? */
 809		if (ref1 == ref2)
 810			continue;
 811
 812		/* Check, whether the sampling was disturbed */
 813		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 814			continue;
 815
 816		tsc2 = (tsc2 - tsc1) * 1000000LL;
 817		if (hpet)
 818			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 819		else
 820			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 821
 822		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 823
 824		/* Check the reference deviation */
 825		delta = ((u64) tsc_pit_min) * 100;
 826		do_div(delta, tsc_ref_min);
 827
 828		/*
 829		 * If both calibration results are inside a 10% window
 830		 * then we can be sure, that the calibration
 831		 * succeeded. We break out of the loop right away. We
 832		 * use the reference value, as it is more precise.
 833		 */
 834		if (delta >= 90 && delta <= 110) {
 835			pr_info("PIT calibration matches %s. %d loops\n",
 836				hpet ? "HPET" : "PMTIMER", i + 1);
 837			return tsc_ref_min;
 838		}
 839
 840		/*
 841		 * Check whether PIT failed more than once. This
 842		 * happens in virtualized environments. We need to
 843		 * give the virtual PC a slightly longer timeframe for
 844		 * the HPET/PMTIMER to make the result precise.
 845		 */
 846		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 847			latch = CAL2_LATCH;
 848			ms = CAL2_MS;
 849			loopmin = CAL2_PIT_LOOPS;
 850		}
 851	}
 852
 853	/*
 854	 * Now check the results.
 855	 */
 856	if (tsc_pit_min == ULONG_MAX) {
 857		/* PIT gave no useful value */
 858		pr_warn("Unable to calibrate against PIT\n");
 859
 860		/* We don't have an alternative source, disable TSC */
 861		if (!hpet && !ref1 && !ref2) {
 862			pr_notice("No reference (HPET/PMTIMER) available\n");
 863			return 0;
 864		}
 865
 866		/* The alternative source failed as well, disable TSC */
 867		if (tsc_ref_min == ULONG_MAX) {
 868			pr_warn("HPET/PMTIMER calibration failed\n");
 869			return 0;
 870		}
 871
 872		/* Use the alternative source */
 873		pr_info("using %s reference calibration\n",
 874			hpet ? "HPET" : "PMTIMER");
 875
 876		return tsc_ref_min;
 877	}
 878
 879	/* We don't have an alternative source, use the PIT calibration value */
 880	if (!hpet && !ref1 && !ref2) {
 881		pr_info("Using PIT calibration value\n");
 882		return tsc_pit_min;
 883	}
 884
 885	/* The alternative source failed, use the PIT calibration value */
 886	if (tsc_ref_min == ULONG_MAX) {
 887		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 888		return tsc_pit_min;
 889	}
 890
 891	/*
 892	 * The calibration values differ too much. In doubt, we use
 893	 * the PIT value as we know that there are PMTIMERs around
 894	 * running at double speed. At least we let the user know:
 895	 */
 896	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 897		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 898	pr_info("Using PIT calibration value\n");
 899	return tsc_pit_min;
 900}
 901
 902/**
 903 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 904 */
 905unsigned long native_calibrate_cpu_early(void)
 906{
 907	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 908
 909	if (!fast_calibrate)
 910		fast_calibrate = cpu_khz_from_msr();
 911	if (!fast_calibrate) {
 912		local_irq_save(flags);
 913		fast_calibrate = quick_pit_calibrate();
 914		local_irq_restore(flags);
 915	}
 916	return fast_calibrate;
 917}
 918
 919
 920/**
 921 * native_calibrate_cpu - calibrate the cpu
 922 */
 923static unsigned long native_calibrate_cpu(void)
 924{
 925	unsigned long tsc_freq = native_calibrate_cpu_early();
 926
 927	if (!tsc_freq)
 928		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 929
 930	return tsc_freq;
 931}
 932
 933void recalibrate_cpu_khz(void)
 934{
 935#ifndef CONFIG_SMP
 936	unsigned long cpu_khz_old = cpu_khz;
 937
 938	if (!boot_cpu_has(X86_FEATURE_TSC))
 939		return;
 940
 941	cpu_khz = x86_platform.calibrate_cpu();
 942	tsc_khz = x86_platform.calibrate_tsc();
 943	if (tsc_khz == 0)
 944		tsc_khz = cpu_khz;
 945	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 946		cpu_khz = tsc_khz;
 947	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 948						    cpu_khz_old, cpu_khz);
 949#endif
 950}
 951EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
 
 952
 953
 954static unsigned long long cyc2ns_suspend;
 955
 956void tsc_save_sched_clock_state(void)
 957{
 958	if (!sched_clock_stable())
 959		return;
 960
 961	cyc2ns_suspend = sched_clock();
 962}
 963
 964/*
 965 * Even on processors with invariant TSC, TSC gets reset in some the
 966 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 967 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 968 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 969 * that sched_clock() continues from the point where it was left off during
 970 * suspend.
 971 */
 972void tsc_restore_sched_clock_state(void)
 973{
 974	unsigned long long offset;
 975	unsigned long flags;
 976	int cpu;
 977
 978	if (!sched_clock_stable())
 979		return;
 980
 981	local_irq_save(flags);
 982
 983	/*
 984	 * We're coming out of suspend, there's no concurrency yet; don't
 985	 * bother being nice about the RCU stuff, just write to both
 986	 * data fields.
 987	 */
 988
 989	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 990	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 991
 992	offset = cyc2ns_suspend - sched_clock();
 993
 994	for_each_possible_cpu(cpu) {
 995		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 996		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 997	}
 998
 999	local_irq_restore(flags);
1000}
1001
1002#ifdef CONFIG_CPU_FREQ
1003/*
1004 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
1005 * changes.
1006 *
1007 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
1008 * as unstable and give up in those cases.
1009 *
1010 * Should fix up last_tsc too. Currently gettimeofday in the
1011 * first tick after the change will be slightly wrong.
1012 */
1013
1014static unsigned int  ref_freq;
1015static unsigned long loops_per_jiffy_ref;
1016static unsigned long tsc_khz_ref;
1017
1018static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
1019				void *data)
1020{
1021	struct cpufreq_freqs *freq = data;
1022
1023	if (num_online_cpus() > 1) {
1024		mark_tsc_unstable("cpufreq changes on SMP");
1025		return 0;
1026	}
1027
1028	if (!ref_freq) {
1029		ref_freq = freq->old;
1030		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1031		tsc_khz_ref = tsc_khz;
1032	}
1033
1034	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1035	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1036		boot_cpu_data.loops_per_jiffy =
1037			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1038
1039		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1040		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1041			mark_tsc_unstable("cpufreq changes");
1042
1043		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1044	}
1045
1046	return 0;
1047}
1048
1049static struct notifier_block time_cpufreq_notifier_block = {
1050	.notifier_call  = time_cpufreq_notifier
1051};
1052
1053static int __init cpufreq_register_tsc_scaling(void)
1054{
1055	if (!boot_cpu_has(X86_FEATURE_TSC))
1056		return 0;
1057	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1058		return 0;
1059	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1060				CPUFREQ_TRANSITION_NOTIFIER);
1061	return 0;
1062}
1063
1064core_initcall(cpufreq_register_tsc_scaling);
1065
1066#endif /* CONFIG_CPU_FREQ */
1067
1068#define ART_CPUID_LEAF (0x15)
1069#define ART_MIN_DENOMINATOR (1)
1070
1071
1072/*
1073 * If ART is present detect the numerator:denominator to convert to TSC
1074 */
1075static void __init detect_art(void)
1076{
1077	unsigned int unused[2];
1078
1079	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1080		return;
1081
1082	/*
1083	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1084	 * and the TSC counter resets must not occur asynchronously.
1085	 */
1086	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1087	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1088	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1089	    tsc_async_resets)
1090		return;
1091
1092	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1093	      &art_to_tsc_numerator, unused, unused+1);
1094
1095	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1096		return;
1097
1098	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1099
1100	/* Make this sticky over multiple CPU init calls */
1101	setup_force_cpu_cap(X86_FEATURE_ART);
1102}
1103
1104
1105/* clocksource code */
1106
1107static void tsc_resume(struct clocksource *cs)
1108{
1109	tsc_verify_tsc_adjust(true);
1110}
1111
1112/*
1113 * We used to compare the TSC to the cycle_last value in the clocksource
1114 * structure to avoid a nasty time-warp. This can be observed in a
1115 * very small window right after one CPU updated cycle_last under
1116 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1117 * is smaller than the cycle_last reference value due to a TSC which
1118 * is slightly behind. This delta is nowhere else observable, but in
1119 * that case it results in a forward time jump in the range of hours
1120 * due to the unsigned delta calculation of the time keeping core
1121 * code, which is necessary to support wrapping clocksources like pm
1122 * timer.
1123 *
1124 * This sanity check is now done in the core timekeeping code.
1125 * checking the result of read_tsc() - cycle_last for being negative.
1126 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1127 */
1128static u64 read_tsc(struct clocksource *cs)
1129{
1130	return (u64)rdtsc_ordered();
1131}
1132
1133static void tsc_cs_mark_unstable(struct clocksource *cs)
1134{
1135	if (tsc_unstable)
1136		return;
1137
1138	tsc_unstable = 1;
1139	if (using_native_sched_clock())
1140		clear_sched_clock_stable();
1141	disable_sched_clock_irqtime();
1142	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1143}
1144
1145static void tsc_cs_tick_stable(struct clocksource *cs)
1146{
1147	if (tsc_unstable)
1148		return;
1149
1150	if (using_native_sched_clock())
1151		sched_clock_tick_stable();
1152}
1153
1154static int tsc_cs_enable(struct clocksource *cs)
1155{
1156	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1157	return 0;
1158}
1159
1160/*
1161 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1162 */
1163static struct clocksource clocksource_tsc_early = {
1164	.name			= "tsc-early",
1165	.rating			= 299,
1166	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1167	.read			= read_tsc,
1168	.mask			= CLOCKSOURCE_MASK(64),
1169	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1170				  CLOCK_SOURCE_MUST_VERIFY,
1171	.id			= CSID_X86_TSC_EARLY,
1172	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1173	.enable			= tsc_cs_enable,
1174	.resume			= tsc_resume,
1175	.mark_unstable		= tsc_cs_mark_unstable,
1176	.tick_stable		= tsc_cs_tick_stable,
1177	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1178};
1179
1180/*
1181 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1182 * this one will immediately take over. We will only register if TSC has
1183 * been found good.
1184 */
1185static struct clocksource clocksource_tsc = {
1186	.name			= "tsc",
1187	.rating			= 300,
1188	.read			= read_tsc,
1189	.mask			= CLOCKSOURCE_MASK(64),
1190	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1191				  CLOCK_SOURCE_VALID_FOR_HRES |
1192				  CLOCK_SOURCE_MUST_VERIFY |
1193				  CLOCK_SOURCE_VERIFY_PERCPU,
1194	.id			= CSID_X86_TSC,
1195	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1196	.enable			= tsc_cs_enable,
1197	.resume			= tsc_resume,
1198	.mark_unstable		= tsc_cs_mark_unstable,
1199	.tick_stable		= tsc_cs_tick_stable,
1200	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1201};
1202
1203void mark_tsc_unstable(char *reason)
1204{
1205	if (tsc_unstable)
1206		return;
1207
1208	tsc_unstable = 1;
1209	if (using_native_sched_clock())
1210		clear_sched_clock_stable();
1211	disable_sched_clock_irqtime();
1212	pr_info("Marking TSC unstable due to %s\n", reason);
1213
1214	clocksource_mark_unstable(&clocksource_tsc_early);
1215	clocksource_mark_unstable(&clocksource_tsc);
1216}
1217
1218EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1219
1220static void __init tsc_disable_clocksource_watchdog(void)
1221{
1222	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1223	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1224}
1225
1226bool tsc_clocksource_watchdog_disabled(void)
1227{
1228	return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1229	       tsc_as_watchdog && !no_tsc_watchdog;
1230}
1231
1232static void __init check_system_tsc_reliable(void)
1233{
1234#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1235	if (is_geode_lx()) {
1236		/* RTSC counts during suspend */
1237#define RTSC_SUSP 0x100
1238		unsigned long res_low, res_high;
1239
1240		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1241		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1242		if (res_low & RTSC_SUSP)
1243			tsc_clocksource_reliable = 1;
1244	}
1245#endif
1246	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1247		tsc_clocksource_reliable = 1;
1248
1249	/*
1250	 * Disable the clocksource watchdog when the system has:
1251	 *  - TSC running at constant frequency
1252	 *  - TSC which does not stop in C-States
1253	 *  - the TSC_ADJUST register which allows to detect even minimal
1254	 *    modifications
1255	 *  - not more than two sockets. As the number of sockets cannot be
1256	 *    evaluated at the early boot stage where this has to be
1257	 *    invoked, check the number of online memory nodes as a
1258	 *    fallback solution which is an reasonable estimate.
1259	 */
1260	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1261	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1262	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1263	    nr_online_nodes <= 4)
1264		tsc_disable_clocksource_watchdog();
1265}
1266
1267/*
1268 * Make an educated guess if the TSC is trustworthy and synchronized
1269 * over all CPUs.
1270 */
1271int unsynchronized_tsc(void)
1272{
1273	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1274		return 1;
1275
1276#ifdef CONFIG_SMP
1277	if (apic_is_clustered_box())
1278		return 1;
1279#endif
1280
1281	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1282		return 0;
1283
1284	if (tsc_clocksource_reliable)
1285		return 0;
1286	/*
1287	 * Intel systems are normally all synchronized.
1288	 * Exceptions must mark TSC as unstable:
1289	 */
1290	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1291		/* assume multi socket systems are not synchronized: */
1292		if (num_possible_cpus() > 1)
1293			return 1;
1294	}
1295
1296	return 0;
1297}
1298
1299/*
1300 * Convert ART to TSC given numerator/denominator found in detect_art()
1301 */
1302struct system_counterval_t convert_art_to_tsc(u64 art)
1303{
1304	u64 tmp, res, rem;
1305
1306	rem = do_div(art, art_to_tsc_denominator);
1307
1308	res = art * art_to_tsc_numerator;
1309	tmp = rem * art_to_tsc_numerator;
1310
1311	do_div(tmp, art_to_tsc_denominator);
1312	res += tmp + art_to_tsc_offset;
1313
1314	return (struct system_counterval_t) {
1315		.cs_id	= have_art ? CSID_X86_TSC : CSID_GENERIC,
1316		.cycles	= res,
1317	};
1318}
1319EXPORT_SYMBOL(convert_art_to_tsc);
1320
1321/**
1322 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1323 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1324 *
1325 * PTM requires all timestamps to be in units of nanoseconds. When user
1326 * software requests a cross-timestamp, this function converts system timestamp
1327 * to TSC.
1328 *
1329 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1330 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1331 * that this flag is set before conversion to TSC is attempted.
1332 *
1333 * Return:
1334 * struct system_counterval_t - system counter value with the ID of the
1335 *	corresponding clocksource:
1336 *	cycles:		System counter value
1337 *	cs_id:		The clocksource ID for validating comparability
 
 
1338 */
1339
1340struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1341{
1342	u64 tmp, res, rem;
1343
1344	rem = do_div(art_ns, USEC_PER_SEC);
1345
1346	res = art_ns * tsc_khz;
1347	tmp = rem * tsc_khz;
1348
1349	do_div(tmp, USEC_PER_SEC);
1350	res += tmp;
1351
1352	return (struct system_counterval_t) {
1353		.cs_id	= have_art ? CSID_X86_TSC : CSID_GENERIC,
1354		.cycles	= res,
1355	};
1356}
1357EXPORT_SYMBOL(convert_art_ns_to_tsc);
1358
1359
1360static void tsc_refine_calibration_work(struct work_struct *work);
1361static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1362/**
1363 * tsc_refine_calibration_work - Further refine tsc freq calibration
1364 * @work: ignored.
1365 *
1366 * This functions uses delayed work over a period of a
1367 * second to further refine the TSC freq value. Since this is
1368 * timer based, instead of loop based, we don't block the boot
1369 * process while this longer calibration is done.
1370 *
1371 * If there are any calibration anomalies (too many SMIs, etc),
1372 * or the refined calibration is off by 1% of the fast early
1373 * calibration, we throw out the new calibration and use the
1374 * early calibration.
1375 */
1376static void tsc_refine_calibration_work(struct work_struct *work)
1377{
1378	static u64 tsc_start = ULLONG_MAX, ref_start;
1379	static int hpet;
1380	u64 tsc_stop, ref_stop, delta;
1381	unsigned long freq;
1382	int cpu;
1383
1384	/* Don't bother refining TSC on unstable systems */
1385	if (tsc_unstable)
1386		goto unreg;
1387
1388	/*
1389	 * Since the work is started early in boot, we may be
1390	 * delayed the first time we expire. So set the workqueue
1391	 * again once we know timers are working.
1392	 */
1393	if (tsc_start == ULLONG_MAX) {
1394restart:
1395		/*
1396		 * Only set hpet once, to avoid mixing hardware
1397		 * if the hpet becomes enabled later.
1398		 */
1399		hpet = is_hpet_enabled();
1400		tsc_start = tsc_read_refs(&ref_start, hpet);
1401		schedule_delayed_work(&tsc_irqwork, HZ);
1402		return;
1403	}
1404
1405	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1406
1407	/* hpet or pmtimer available ? */
1408	if (ref_start == ref_stop)
1409		goto out;
1410
1411	/* Check, whether the sampling was disturbed */
1412	if (tsc_stop == ULLONG_MAX)
1413		goto restart;
1414
1415	delta = tsc_stop - tsc_start;
1416	delta *= 1000000LL;
1417	if (hpet)
1418		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1419	else
1420		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1421
1422	/* Will hit this only if tsc_force_recalibrate has been set */
1423	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1424
1425		/* Warn if the deviation exceeds 500 ppm */
1426		if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1427			pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1428			pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1429				(unsigned long)tsc_khz / 1000,
1430				(unsigned long)tsc_khz % 1000);
1431		}
1432
1433		pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1434			hpet ? "HPET" : "PM_TIMER",
1435			(unsigned long)freq / 1000,
1436			(unsigned long)freq % 1000);
1437
1438		return;
1439	}
1440
1441	/* Make sure we're within 1% */
1442	if (abs(tsc_khz - freq) > tsc_khz/100)
1443		goto out;
1444
1445	tsc_khz = freq;
1446	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1447		(unsigned long)tsc_khz / 1000,
1448		(unsigned long)tsc_khz % 1000);
1449
1450	/* Inform the TSC deadline clockevent devices about the recalibration */
1451	lapic_update_tsc_freq();
1452
1453	/* Update the sched_clock() rate to match the clocksource one */
1454	for_each_possible_cpu(cpu)
1455		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1456
1457out:
1458	if (tsc_unstable)
1459		goto unreg;
1460
1461	if (boot_cpu_has(X86_FEATURE_ART))
1462		have_art = true;
1463	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1464unreg:
1465	clocksource_unregister(&clocksource_tsc_early);
1466}
1467
1468
1469static int __init init_tsc_clocksource(void)
1470{
1471	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1472		return 0;
1473
1474	if (tsc_unstable) {
1475		clocksource_unregister(&clocksource_tsc_early);
1476		return 0;
1477	}
1478
1479	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1480		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1481
1482	/*
1483	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1484	 * the refined calibration and directly register it as a clocksource.
1485	 */
1486	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1487		if (boot_cpu_has(X86_FEATURE_ART))
1488			have_art = true;
1489		clocksource_register_khz(&clocksource_tsc, tsc_khz);
 
1490		clocksource_unregister(&clocksource_tsc_early);
1491
1492		if (!tsc_force_recalibrate)
1493			return 0;
1494	}
1495
1496	schedule_delayed_work(&tsc_irqwork, 0);
1497	return 0;
1498}
1499/*
1500 * We use device_initcall here, to ensure we run after the hpet
1501 * is fully initialized, which may occur at fs_initcall time.
1502 */
1503device_initcall(init_tsc_clocksource);
1504
1505static bool __init determine_cpu_tsc_frequencies(bool early)
1506{
1507	/* Make sure that cpu and tsc are not already calibrated */
1508	WARN_ON(cpu_khz || tsc_khz);
1509
1510	if (early) {
1511		cpu_khz = x86_platform.calibrate_cpu();
1512		if (tsc_early_khz)
1513			tsc_khz = tsc_early_khz;
1514		else
1515			tsc_khz = x86_platform.calibrate_tsc();
1516	} else {
1517		/* We should not be here with non-native cpu calibration */
1518		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1519		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1520	}
1521
1522	/*
1523	 * Trust non-zero tsc_khz as authoritative,
1524	 * and use it to sanity check cpu_khz,
1525	 * which will be off if system timer is off.
1526	 */
1527	if (tsc_khz == 0)
1528		tsc_khz = cpu_khz;
1529	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1530		cpu_khz = tsc_khz;
1531
1532	if (tsc_khz == 0)
1533		return false;
1534
1535	pr_info("Detected %lu.%03lu MHz processor\n",
1536		(unsigned long)cpu_khz / KHZ,
1537		(unsigned long)cpu_khz % KHZ);
1538
1539	if (cpu_khz != tsc_khz) {
1540		pr_info("Detected %lu.%03lu MHz TSC",
1541			(unsigned long)tsc_khz / KHZ,
1542			(unsigned long)tsc_khz % KHZ);
1543	}
1544	return true;
1545}
1546
1547static unsigned long __init get_loops_per_jiffy(void)
1548{
1549	u64 lpj = (u64)tsc_khz * KHZ;
1550
1551	do_div(lpj, HZ);
1552	return lpj;
1553}
1554
1555static void __init tsc_enable_sched_clock(void)
1556{
1557	loops_per_jiffy = get_loops_per_jiffy();
1558	use_tsc_delay();
1559
1560	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1561	tsc_store_and_check_tsc_adjust(true);
1562	cyc2ns_init_boot_cpu();
1563	static_branch_enable(&__use_tsc);
1564}
1565
1566void __init tsc_early_init(void)
1567{
1568	if (!boot_cpu_has(X86_FEATURE_TSC))
1569		return;
1570	/* Don't change UV TSC multi-chassis synchronization */
1571	if (is_early_uv_system())
1572		return;
1573	if (!determine_cpu_tsc_frequencies(true))
1574		return;
1575	tsc_enable_sched_clock();
1576}
1577
1578void __init tsc_init(void)
1579{
1580	if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1581		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1582		return;
1583	}
1584
1585	/*
1586	 * native_calibrate_cpu_early can only calibrate using methods that are
1587	 * available early in boot.
1588	 */
1589	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1590		x86_platform.calibrate_cpu = native_calibrate_cpu;
1591
 
 
 
 
 
1592	if (!tsc_khz) {
1593		/* We failed to determine frequencies earlier, try again */
1594		if (!determine_cpu_tsc_frequencies(false)) {
1595			mark_tsc_unstable("could not calculate TSC khz");
1596			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1597			return;
1598		}
1599		tsc_enable_sched_clock();
1600	}
1601
1602	cyc2ns_init_secondary_cpus();
1603
1604	if (!no_sched_irq_time)
1605		enable_sched_clock_irqtime();
1606
1607	lpj_fine = get_loops_per_jiffy();
1608
1609	check_system_tsc_reliable();
1610
1611	if (unsynchronized_tsc()) {
1612		mark_tsc_unstable("TSCs unsynchronized");
1613		return;
1614	}
1615
1616	if (tsc_clocksource_reliable || no_tsc_watchdog)
1617		tsc_disable_clocksource_watchdog();
1618
1619	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1620	detect_art();
1621}
1622
1623#ifdef CONFIG_SMP
1624/*
1625 * Check whether existing calibration data can be reused.
 
 
 
1626 */
1627unsigned long calibrate_delay_is_known(void)
1628{
1629	int sibling, cpu = smp_processor_id();
1630	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1631	const struct cpumask *mask = topology_core_cpumask(cpu);
1632
1633	/*
1634	 * If TSC has constant frequency and TSC is synchronized across
1635	 * sockets then reuse CPU0 calibration.
1636	 */
1637	if (constant_tsc && !tsc_unstable)
1638		return cpu_data(0).loops_per_jiffy;
1639
1640	/*
1641	 * If TSC has constant frequency and TSC is not synchronized across
1642	 * sockets and this is not the first CPU in the socket, then reuse
1643	 * the calibration value of an already online CPU on that socket.
1644	 *
1645	 * This assumes that CONSTANT_TSC is consistent for all CPUs in a
1646	 * socket.
1647	 */
1648	if (!constant_tsc || !mask)
1649		return 0;
1650
1651	sibling = cpumask_any_but(mask, cpu);
1652	if (sibling < nr_cpu_ids)
1653		return cpu_data(sibling).loops_per_jiffy;
1654	return 0;
1655}
1656#endif