Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17#include <linux/static_call.h>
  18
  19#include <asm/hpet.h>
  20#include <asm/timer.h>
  21#include <asm/vgtod.h>
  22#include <asm/time.h>
  23#include <asm/delay.h>
  24#include <asm/hypervisor.h>
  25#include <asm/nmi.h>
  26#include <asm/x86_init.h>
  27#include <asm/geode.h>
  28#include <asm/apic.h>
  29#include <asm/intel-family.h>
  30#include <asm/i8259.h>
  31#include <asm/uv/uv.h>
  32
  33unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  34EXPORT_SYMBOL(cpu_khz);
  35
  36unsigned int __read_mostly tsc_khz;
  37EXPORT_SYMBOL(tsc_khz);
  38
  39#define KHZ	1000
  40
  41/*
  42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  43 */
  44static int __read_mostly tsc_unstable;
  45static unsigned int __initdata tsc_early_khz;
  46
  47static DEFINE_STATIC_KEY_FALSE(__use_tsc);
 
 
 
 
 
  48
  49int tsc_clocksource_reliable;
  50
  51static u32 art_to_tsc_numerator;
  52static u32 art_to_tsc_denominator;
  53static u64 art_to_tsc_offset;
  54static struct clocksource *art_related_clocksource;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56struct cyc2ns {
  57	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
  58	seqcount_latch_t   seq;		/* 32 + 4    = 36 */
  59
  60}; /* fits one cacheline */
  61
  62static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  63
  64static int __init tsc_early_khz_setup(char *buf)
  65{
  66	return kstrtouint(buf, 0, &tsc_early_khz);
 
 
 
 
 
 
 
 
 
 
 
 
 
  67}
  68early_param("tsc_early_khz", tsc_early_khz_setup);
  69
  70__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  71{
  72	int seq, idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74	preempt_disable_notrace();
 
 
 
 
 
 
 
 
 
  75
  76	do {
  77		seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
  78		idx = seq & 1;
  79
  80		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  81		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  82		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  83
  84	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
 
 
 
 
 
 
 
 
  85}
  86
  87__always_inline void cyc2ns_read_end(void)
  88{
  89	preempt_enable_notrace();
 
 
 
 
 
 
 
 
  90}
  91
  92/*
  93 * Accelerators for sched_clock()
  94 * convert from cycles(64bits) => nanoseconds (64bits)
  95 *  basic equation:
  96 *              ns = cycles / (freq / ns_per_sec)
  97 *              ns = cycles * (ns_per_sec / freq)
  98 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  99 *              ns = cycles * (10^6 / cpu_khz)
 100 *
 101 *      Then we use scaling math (suggested by george@mvista.com) to get:
 102 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 103 *              ns = cycles * cyc2ns_scale / SC
 104 *
 105 *      And since SC is a constant power of two, we can convert the div
 106 *  into a shift. The larger SC is, the more accurate the conversion, but
 107 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 108 *  (64-bit result) can be used.
 109 *
 110 *  We can use khz divisor instead of mhz to keep a better precision.
 
 111 *  (mathieu.desnoyers@polymtl.ca)
 112 *
 113 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 114 */
 115
 116static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 117{
 118	struct cyc2ns_data data;
 119	unsigned long long ns;
 120
 121	cyc2ns_read_begin(&data);
 
 
 
 
 
 
 122
 123	ns = data.cyc2ns_offset;
 124	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 
 125
 126	cyc2ns_read_end();
 
 127
 128	return ns;
 
 129}
 130
 131static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 132{
 133	unsigned long long ns_now;
 134	struct cyc2ns_data data;
 135	struct cyc2ns *c2n;
 136
 137	ns_now = cycles_2_ns(tsc_now);
 138
 139	/*
 140	 * Compute a new multiplier as per the above comment and ensure our
 141	 * time function is continuous; see the comment near struct
 142	 * cyc2ns_data.
 
 143	 */
 144	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 145			       NSEC_PER_MSEC, 0);
 146
 147	/*
 148	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 149	 * not expected to be greater than 31 due to the original published
 150	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 151	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 152	 */
 153	if (data.cyc2ns_shift == 32) {
 154		data.cyc2ns_shift = 31;
 155		data.cyc2ns_mul >>= 1;
 156	}
 
 
 
 
 157
 158	data.cyc2ns_offset = ns_now -
 159		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 160
 161	c2n = per_cpu_ptr(&cyc2ns, cpu);
 
 
 
 162
 163	raw_write_seqcount_latch(&c2n->seq);
 164	c2n->data[0] = data;
 165	raw_write_seqcount_latch(&c2n->seq);
 166	c2n->data[1] = data;
 167}
 168
 169static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 
 
 
 170{
 
 
 171	unsigned long flags;
 172
 173	local_irq_save(flags);
 174	sched_clock_idle_sleep_event();
 175
 176	if (khz)
 177		__set_cyc2ns_scale(khz, cpu, tsc_now);
 178
 179	sched_clock_idle_wakeup_event();
 180	local_irq_restore(flags);
 181}
 182
 183/*
 184 * Initialize cyc2ns for boot cpu
 185 */
 186static void __init cyc2ns_init_boot_cpu(void)
 187{
 188	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 189
 190	seqcount_latch_init(&c2n->seq);
 191	__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 192}
 
 
 
 
 
 
 193
 194/*
 195 * Secondary CPUs do not run through tsc_init(), so set up
 196 * all the scale factors for all CPUs, assuming the same
 197 * speed as the bootup CPU.
 198 */
 199static void __init cyc2ns_init_secondary_cpus(void)
 200{
 201	unsigned int cpu, this_cpu = smp_processor_id();
 202	struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 203	struct cyc2ns_data *data = c2n->data;
 204
 205	for_each_possible_cpu(cpu) {
 206		if (cpu != this_cpu) {
 207			seqcount_latch_init(&c2n->seq);
 208			c2n = per_cpu_ptr(&cyc2ns, cpu);
 209			c2n->data[0] = data[0];
 210			c2n->data[1] = data[1];
 211		}
 212	}
 213}
 214
 215/*
 216 * Scheduler clock - returns current time in nanosec units.
 217 */
 218u64 native_sched_clock(void)
 219{
 220	if (static_branch_likely(&__use_tsc)) {
 221		u64 tsc_now = rdtsc();
 222
 223		/* return the value in ns */
 224		return cycles_2_ns(tsc_now);
 225	}
 226
 227	/*
 228	 * Fall back to jiffies if there's no TSC available:
 229	 * ( But note that we still use it if the TSC is marked
 230	 *   unstable. We do this because unlike Time Of Day,
 231	 *   the scheduler clock tolerates small errors and it's
 232	 *   very important for it to be as fast as the platform
 233	 *   can achieve it. )
 234	 */
 
 
 
 
 235
 236	/* No locking but a rare wrong value is not a big deal: */
 237	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 238}
 239
 240/*
 241 * Generate a sched_clock if you already have a TSC value.
 242 */
 243u64 native_sched_clock_from_tsc(u64 tsc)
 244{
 245	return cycles_2_ns(tsc);
 246}
 247
 248/* We need to define a real function for sched_clock, to override the
 249   weak default version */
 250#ifdef CONFIG_PARAVIRT
 251unsigned long long sched_clock(void)
 252{
 253	return paravirt_sched_clock();
 254}
 255
 256bool using_native_sched_clock(void)
 257{
 258	return static_call_query(pv_sched_clock) == native_sched_clock;
 259}
 260#else
 261unsigned long long
 262sched_clock(void) __attribute__((alias("native_sched_clock")));
 263
 264bool using_native_sched_clock(void) { return true; }
 265#endif
 266
 
 
 
 
 
 
 267int check_tsc_unstable(void)
 268{
 269	return tsc_unstable;
 270}
 271EXPORT_SYMBOL_GPL(check_tsc_unstable);
 272
 
 
 
 
 
 
 273#ifdef CONFIG_X86_TSC
 274int __init notsc_setup(char *str)
 275{
 276	mark_tsc_unstable("boot parameter notsc");
 
 277	return 1;
 278}
 279#else
 280/*
 281 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 282 * in cpu/common.c
 283 */
 284int __init notsc_setup(char *str)
 285{
 286	setup_clear_cpu_cap(X86_FEATURE_TSC);
 287	return 1;
 288}
 289#endif
 290
 291__setup("notsc", notsc_setup);
 292
 293static int no_sched_irq_time;
 294static int no_tsc_watchdog;
 295
 296static int __init tsc_setup(char *str)
 297{
 298	if (!strcmp(str, "reliable"))
 299		tsc_clocksource_reliable = 1;
 300	if (!strncmp(str, "noirqtime", 9))
 301		no_sched_irq_time = 1;
 302	if (!strcmp(str, "unstable"))
 303		mark_tsc_unstable("boot parameter");
 304	if (!strcmp(str, "nowatchdog"))
 305		no_tsc_watchdog = 1;
 306	return 1;
 307}
 308
 309__setup("tsc=", tsc_setup);
 310
 311#define MAX_RETRIES		5
 312#define TSC_DEFAULT_THRESHOLD	0x20000
 313
 314/*
 315 * Read TSC and the reference counters. Take care of any disturbances
 316 */
 317static u64 tsc_read_refs(u64 *p, int hpet)
 318{
 319	u64 t1, t2;
 320	u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 321	int i;
 322
 323	for (i = 0; i < MAX_RETRIES; i++) {
 324		t1 = get_cycles();
 325		if (hpet)
 326			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 327		else
 328			*p = acpi_pm_read_early();
 329		t2 = get_cycles();
 330		if ((t2 - t1) < thresh)
 331			return t2;
 332	}
 333	return ULLONG_MAX;
 334}
 335
 336/*
 337 * Calculate the TSC frequency from HPET reference
 338 */
 339static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 340{
 341	u64 tmp;
 342
 343	if (hpet2 < hpet1)
 344		hpet2 += 0x100000000ULL;
 345	hpet2 -= hpet1;
 346	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 347	do_div(tmp, 1000000);
 348	deltatsc = div64_u64(deltatsc, tmp);
 349
 350	return (unsigned long) deltatsc;
 351}
 352
 353/*
 354 * Calculate the TSC frequency from PMTimer reference
 355 */
 356static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 357{
 358	u64 tmp;
 359
 360	if (!pm1 && !pm2)
 361		return ULONG_MAX;
 362
 363	if (pm2 < pm1)
 364		pm2 += (u64)ACPI_PM_OVRRUN;
 365	pm2 -= pm1;
 366	tmp = pm2 * 1000000000LL;
 367	do_div(tmp, PMTMR_TICKS_PER_SEC);
 368	do_div(deltatsc, tmp);
 369
 370	return (unsigned long) deltatsc;
 371}
 372
 373#define CAL_MS		10
 374#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 375#define CAL_PIT_LOOPS	1000
 376
 377#define CAL2_MS		50
 378#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 379#define CAL2_PIT_LOOPS	5000
 380
 381
 382/*
 383 * Try to calibrate the TSC against the Programmable
 384 * Interrupt Timer and return the frequency of the TSC
 385 * in kHz.
 386 *
 387 * Return ULONG_MAX on failure to calibrate.
 388 */
 389static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 390{
 391	u64 tsc, t1, t2, delta;
 392	unsigned long tscmin, tscmax;
 393	int pitcnt;
 394
 395	if (!has_legacy_pic()) {
 396		/*
 397		 * Relies on tsc_early_delay_calibrate() to have given us semi
 398		 * usable udelay(), wait for the same 50ms we would have with
 399		 * the PIT loop below.
 400		 */
 401		udelay(10 * USEC_PER_MSEC);
 402		udelay(10 * USEC_PER_MSEC);
 403		udelay(10 * USEC_PER_MSEC);
 404		udelay(10 * USEC_PER_MSEC);
 405		udelay(10 * USEC_PER_MSEC);
 406		return ULONG_MAX;
 407	}
 408
 409	/* Set the Gate high, disable speaker */
 410	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 411
 412	/*
 413	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 414	 * count mode), binary count. Set the latch register to 50ms
 415	 * (LSB then MSB) to begin countdown.
 416	 */
 417	outb(0xb0, 0x43);
 418	outb(latch & 0xff, 0x42);
 419	outb(latch >> 8, 0x42);
 420
 421	tsc = t1 = t2 = get_cycles();
 422
 423	pitcnt = 0;
 424	tscmax = 0;
 425	tscmin = ULONG_MAX;
 426	while ((inb(0x61) & 0x20) == 0) {
 427		t2 = get_cycles();
 428		delta = t2 - tsc;
 429		tsc = t2;
 430		if ((unsigned long) delta < tscmin)
 431			tscmin = (unsigned int) delta;
 432		if ((unsigned long) delta > tscmax)
 433			tscmax = (unsigned int) delta;
 434		pitcnt++;
 435	}
 436
 437	/*
 438	 * Sanity checks:
 439	 *
 440	 * If we were not able to read the PIT more than loopmin
 441	 * times, then we have been hit by a massive SMI
 442	 *
 443	 * If the maximum is 10 times larger than the minimum,
 444	 * then we got hit by an SMI as well.
 445	 */
 446	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 447		return ULONG_MAX;
 448
 449	/* Calculate the PIT value */
 450	delta = t2 - t1;
 451	do_div(delta, ms);
 452	return delta;
 453}
 454
 455/*
 456 * This reads the current MSB of the PIT counter, and
 457 * checks if we are running on sufficiently fast and
 458 * non-virtualized hardware.
 459 *
 460 * Our expectations are:
 461 *
 462 *  - the PIT is running at roughly 1.19MHz
 463 *
 464 *  - each IO is going to take about 1us on real hardware,
 465 *    but we allow it to be much faster (by a factor of 10) or
 466 *    _slightly_ slower (ie we allow up to a 2us read+counter
 467 *    update - anything else implies a unacceptably slow CPU
 468 *    or PIT for the fast calibration to work.
 469 *
 470 *  - with 256 PIT ticks to read the value, we have 214us to
 471 *    see the same MSB (and overhead like doing a single TSC
 472 *    read per MSB value etc).
 473 *
 474 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 475 *    them each to take about a microsecond on real hardware.
 476 *    So we expect a count value of around 100. But we'll be
 477 *    generous, and accept anything over 50.
 478 *
 479 *  - if the PIT is stuck, and we see *many* more reads, we
 480 *    return early (and the next caller of pit_expect_msb()
 481 *    then consider it a failure when they don't see the
 482 *    next expected value).
 483 *
 484 * These expectations mean that we know that we have seen the
 485 * transition from one expected value to another with a fairly
 486 * high accuracy, and we didn't miss any events. We can thus
 487 * use the TSC value at the transitions to calculate a pretty
 488 * good value for the TSC frequency.
 489 */
 490static inline int pit_verify_msb(unsigned char val)
 491{
 492	/* Ignore LSB */
 493	inb(0x42);
 494	return inb(0x42) == val;
 495}
 496
 497static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 498{
 499	int count;
 500	u64 tsc = 0, prev_tsc = 0;
 501
 502	for (count = 0; count < 50000; count++) {
 503		if (!pit_verify_msb(val))
 504			break;
 505		prev_tsc = tsc;
 506		tsc = get_cycles();
 507	}
 508	*deltap = get_cycles() - prev_tsc;
 509	*tscp = tsc;
 510
 511	/*
 512	 * We require _some_ success, but the quality control
 513	 * will be based on the error terms on the TSC values.
 514	 */
 515	return count > 5;
 516}
 517
 518/*
 519 * How many MSB values do we want to see? We aim for
 520 * a maximum error rate of 500ppm (in practice the
 521 * real error is much smaller), but refuse to spend
 522 * more than 50ms on it.
 523 */
 524#define MAX_QUICK_PIT_MS 50
 525#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 526
 527static unsigned long quick_pit_calibrate(void)
 528{
 529	int i;
 530	u64 tsc, delta;
 531	unsigned long d1, d2;
 532
 533	if (!has_legacy_pic())
 534		return 0;
 535
 536	/* Set the Gate high, disable speaker */
 537	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 538
 539	/*
 540	 * Counter 2, mode 0 (one-shot), binary count
 541	 *
 542	 * NOTE! Mode 2 decrements by two (and then the
 543	 * output is flipped each time, giving the same
 544	 * final output frequency as a decrement-by-one),
 545	 * so mode 0 is much better when looking at the
 546	 * individual counts.
 547	 */
 548	outb(0xb0, 0x43);
 549
 550	/* Start at 0xffff */
 551	outb(0xff, 0x42);
 552	outb(0xff, 0x42);
 553
 554	/*
 555	 * The PIT starts counting at the next edge, so we
 556	 * need to delay for a microsecond. The easiest way
 557	 * to do that is to just read back the 16-bit counter
 558	 * once from the PIT.
 559	 */
 560	pit_verify_msb(0);
 561
 562	if (pit_expect_msb(0xff, &tsc, &d1)) {
 563		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 564			if (!pit_expect_msb(0xff-i, &delta, &d2))
 565				break;
 566
 567			delta -= tsc;
 568
 569			/*
 570			 * Extrapolate the error and fail fast if the error will
 571			 * never be below 500 ppm.
 572			 */
 573			if (i == 1 &&
 574			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 575				return 0;
 576
 577			/*
 578			 * Iterate until the error is less than 500 ppm
 579			 */
 
 580			if (d1+d2 >= delta >> 11)
 581				continue;
 582
 583			/*
 584			 * Check the PIT one more time to verify that
 585			 * all TSC reads were stable wrt the PIT.
 586			 *
 587			 * This also guarantees serialization of the
 588			 * last cycle read ('d2') in pit_expect_msb.
 589			 */
 590			if (!pit_verify_msb(0xfe - i))
 591				break;
 592			goto success;
 593		}
 594	}
 595	pr_info("Fast TSC calibration failed\n");
 596	return 0;
 597
 598success:
 599	/*
 600	 * Ok, if we get here, then we've seen the
 601	 * MSB of the PIT decrement 'i' times, and the
 602	 * error has shrunk to less than 500 ppm.
 603	 *
 604	 * As a result, we can depend on there not being
 605	 * any odd delays anywhere, and the TSC reads are
 606	 * reliable (within the error).
 607	 *
 608	 * kHz = ticks / time-in-seconds / 1000;
 609	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 610	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 611	 */
 612	delta *= PIT_TICK_RATE;
 613	do_div(delta, i*256*1000);
 614	pr_info("Fast TSC calibration using PIT\n");
 615	return delta;
 616}
 617
 618/**
 619 * native_calibrate_tsc
 620 * Determine TSC frequency via CPUID, else return 0.
 621 */
 622unsigned long native_calibrate_tsc(void)
 623{
 624	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 625	unsigned int crystal_khz;
 626
 627	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 628		return 0;
 629
 630	if (boot_cpu_data.cpuid_level < 0x15)
 631		return 0;
 632
 633	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 634
 635	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 636	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 637
 638	if (ebx_numerator == 0 || eax_denominator == 0)
 639		return 0;
 640
 641	crystal_khz = ecx_hz / 1000;
 642
 643	/*
 644	 * Denverton SoCs don't report crystal clock, and also don't support
 645	 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 646	 * clock.
 647	 */
 648	if (crystal_khz == 0 &&
 649			boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 650		crystal_khz = 25000;
 651
 652	/*
 653	 * TSC frequency reported directly by CPUID is a "hardware reported"
 654	 * frequency and is the most accurate one so far we have. This
 655	 * is considered a known frequency.
 656	 */
 657	if (crystal_khz != 0)
 658		setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 659
 660	/*
 661	 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 662	 * clock, but we can easily calculate it to a high degree of accuracy
 663	 * by considering the crystal ratio and the CPU speed.
 664	 */
 665	if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 666		unsigned int eax_base_mhz, ebx, ecx, edx;
 667
 668		cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 669		crystal_khz = eax_base_mhz * 1000 *
 670			eax_denominator / ebx_numerator;
 671	}
 672
 673	if (crystal_khz == 0)
 674		return 0;
 675
 676	/*
 677	 * For Atom SoCs TSC is the only reliable clocksource.
 678	 * Mark TSC reliable so no watchdog on it.
 679	 */
 680	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 681		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 682
 683#ifdef CONFIG_X86_LOCAL_APIC
 684	/*
 685	 * The local APIC appears to be fed by the core crystal clock
 686	 * (which sounds entirely sensible). We can set the global
 687	 * lapic_timer_period here to avoid having to calibrate the APIC
 688	 * timer later.
 689	 */
 690	lapic_timer_period = crystal_khz * 1000 / HZ;
 691#endif
 692
 693	return crystal_khz * ebx_numerator / eax_denominator;
 694}
 695
 696static unsigned long cpu_khz_from_cpuid(void)
 697{
 698	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 699
 700	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 701		return 0;
 702
 703	if (boot_cpu_data.cpuid_level < 0x16)
 704		return 0;
 705
 706	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 707
 708	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 709
 710	return eax_base_mhz * 1000;
 711}
 712
 713/*
 714 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 715 * later in boot after acpi is initialized.
 716 */
 717static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 718{
 719	u64 tsc1, tsc2, delta, ref1, ref2;
 720	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 721	unsigned long flags, latch, ms;
 722	int hpet = is_hpet_enabled(), i, loopmin;
 723
 
 
 
 
 
 
 
 
 
 
 
 
 
 724	/*
 725	 * Run 5 calibration loops to get the lowest frequency value
 726	 * (the best estimate). We use two different calibration modes
 727	 * here:
 728	 *
 729	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 730	 * load a timeout of 50ms. We read the time right after we
 731	 * started the timer and wait until the PIT count down reaches
 732	 * zero. In each wait loop iteration we read the TSC and check
 733	 * the delta to the previous read. We keep track of the min
 734	 * and max values of that delta. The delta is mostly defined
 735	 * by the IO time of the PIT access, so we can detect when
 736	 * any disturbance happened between the two reads. If the
 737	 * maximum time is significantly larger than the minimum time,
 738	 * then we discard the result and have another try.
 739	 *
 740	 * 2) Reference counter. If available we use the HPET or the
 741	 * PMTIMER as a reference to check the sanity of that value.
 742	 * We use separate TSC readouts and check inside of the
 743	 * reference read for any possible disturbance. We discard
 744	 * disturbed values here as well. We do that around the PIT
 745	 * calibration delay loop as we have to wait for a certain
 746	 * amount of time anyway.
 747	 */
 748
 749	/* Preset PIT loop values */
 750	latch = CAL_LATCH;
 751	ms = CAL_MS;
 752	loopmin = CAL_PIT_LOOPS;
 753
 754	for (i = 0; i < 3; i++) {
 755		unsigned long tsc_pit_khz;
 756
 757		/*
 758		 * Read the start value and the reference count of
 759		 * hpet/pmtimer when available. Then do the PIT
 760		 * calibration, which will take at least 50ms, and
 761		 * read the end value.
 762		 */
 763		local_irq_save(flags);
 764		tsc1 = tsc_read_refs(&ref1, hpet);
 765		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 766		tsc2 = tsc_read_refs(&ref2, hpet);
 767		local_irq_restore(flags);
 768
 769		/* Pick the lowest PIT TSC calibration so far */
 770		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 771
 772		/* hpet or pmtimer available ? */
 773		if (ref1 == ref2)
 774			continue;
 775
 776		/* Check, whether the sampling was disturbed */
 777		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 778			continue;
 779
 780		tsc2 = (tsc2 - tsc1) * 1000000LL;
 781		if (hpet)
 782			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 783		else
 784			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 785
 786		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 787
 788		/* Check the reference deviation */
 789		delta = ((u64) tsc_pit_min) * 100;
 790		do_div(delta, tsc_ref_min);
 791
 792		/*
 793		 * If both calibration results are inside a 10% window
 794		 * then we can be sure, that the calibration
 795		 * succeeded. We break out of the loop right away. We
 796		 * use the reference value, as it is more precise.
 797		 */
 798		if (delta >= 90 && delta <= 110) {
 799			pr_info("PIT calibration matches %s. %d loops\n",
 800				hpet ? "HPET" : "PMTIMER", i + 1);
 801			return tsc_ref_min;
 802		}
 803
 804		/*
 805		 * Check whether PIT failed more than once. This
 806		 * happens in virtualized environments. We need to
 807		 * give the virtual PC a slightly longer timeframe for
 808		 * the HPET/PMTIMER to make the result precise.
 809		 */
 810		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 811			latch = CAL2_LATCH;
 812			ms = CAL2_MS;
 813			loopmin = CAL2_PIT_LOOPS;
 814		}
 815	}
 816
 817	/*
 818	 * Now check the results.
 819	 */
 820	if (tsc_pit_min == ULONG_MAX) {
 821		/* PIT gave no useful value */
 822		pr_warn("Unable to calibrate against PIT\n");
 823
 824		/* We don't have an alternative source, disable TSC */
 825		if (!hpet && !ref1 && !ref2) {
 826			pr_notice("No reference (HPET/PMTIMER) available\n");
 827			return 0;
 828		}
 829
 830		/* The alternative source failed as well, disable TSC */
 831		if (tsc_ref_min == ULONG_MAX) {
 832			pr_warn("HPET/PMTIMER calibration failed\n");
 833			return 0;
 834		}
 835
 836		/* Use the alternative source */
 837		pr_info("using %s reference calibration\n",
 838			hpet ? "HPET" : "PMTIMER");
 839
 840		return tsc_ref_min;
 841	}
 842
 843	/* We don't have an alternative source, use the PIT calibration value */
 844	if (!hpet && !ref1 && !ref2) {
 845		pr_info("Using PIT calibration value\n");
 846		return tsc_pit_min;
 847	}
 848
 849	/* The alternative source failed, use the PIT calibration value */
 850	if (tsc_ref_min == ULONG_MAX) {
 851		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 852		return tsc_pit_min;
 853	}
 854
 855	/*
 856	 * The calibration values differ too much. In doubt, we use
 857	 * the PIT value as we know that there are PMTIMERs around
 858	 * running at double speed. At least we let the user know:
 859	 */
 860	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 861		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 862	pr_info("Using PIT calibration value\n");
 863	return tsc_pit_min;
 864}
 865
 866/**
 867 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 868 */
 869unsigned long native_calibrate_cpu_early(void)
 870{
 871	unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 872
 873	if (!fast_calibrate)
 874		fast_calibrate = cpu_khz_from_msr();
 875	if (!fast_calibrate) {
 876		local_irq_save(flags);
 877		fast_calibrate = quick_pit_calibrate();
 878		local_irq_restore(flags);
 879	}
 880	return fast_calibrate;
 881}
 882
 883
 884/**
 885 * native_calibrate_cpu - calibrate the cpu
 886 */
 887static unsigned long native_calibrate_cpu(void)
 888{
 889	unsigned long tsc_freq = native_calibrate_cpu_early();
 890
 891	if (!tsc_freq)
 892		tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 893
 894	return tsc_freq;
 895}
 896
 897void recalibrate_cpu_khz(void)
 898{
 899#ifndef CONFIG_SMP
 900	unsigned long cpu_khz_old = cpu_khz;
 901
 902	if (!boot_cpu_has(X86_FEATURE_TSC))
 903		return;
 904
 905	cpu_khz = x86_platform.calibrate_cpu();
 906	tsc_khz = x86_platform.calibrate_tsc();
 907	if (tsc_khz == 0)
 908		tsc_khz = cpu_khz;
 909	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 910		cpu_khz = tsc_khz;
 911	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 912						    cpu_khz_old, cpu_khz);
 
 
 
 
 
 
 913#endif
 914}
 915
 916EXPORT_SYMBOL(recalibrate_cpu_khz);
 917
 918
 919static unsigned long long cyc2ns_suspend;
 920
 921void tsc_save_sched_clock_state(void)
 922{
 923	if (!sched_clock_stable())
 924		return;
 925
 926	cyc2ns_suspend = sched_clock();
 927}
 928
 929/*
 930 * Even on processors with invariant TSC, TSC gets reset in some the
 931 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 932 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 933 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 934 * that sched_clock() continues from the point where it was left off during
 935 * suspend.
 936 */
 937void tsc_restore_sched_clock_state(void)
 938{
 939	unsigned long long offset;
 940	unsigned long flags;
 941	int cpu;
 942
 943	if (!sched_clock_stable())
 944		return;
 945
 946	local_irq_save(flags);
 947
 948	/*
 949	 * We're coming out of suspend, there's no concurrency yet; don't
 950	 * bother being nice about the RCU stuff, just write to both
 951	 * data fields.
 952	 */
 953
 954	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 955	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 956
 957	offset = cyc2ns_suspend - sched_clock();
 958
 959	for_each_possible_cpu(cpu) {
 960		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 961		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 962	}
 963
 964	local_irq_restore(flags);
 965}
 966
 967#ifdef CONFIG_CPU_FREQ
 968/*
 969 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 970 * changes.
 971 *
 972 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 973 * as unstable and give up in those cases.
 
 974 *
 975 * Should fix up last_tsc too. Currently gettimeofday in the
 976 * first tick after the change will be slightly wrong.
 977 */
 978
 979static unsigned int  ref_freq;
 980static unsigned long loops_per_jiffy_ref;
 981static unsigned long tsc_khz_ref;
 982
 983static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 984				void *data)
 985{
 986	struct cpufreq_freqs *freq = data;
 
 987
 988	if (num_online_cpus() > 1) {
 989		mark_tsc_unstable("cpufreq changes on SMP");
 990		return 0;
 991	}
 
 
 
 
 
 992
 993	if (!ref_freq) {
 994		ref_freq = freq->old;
 995		loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 996		tsc_khz_ref = tsc_khz;
 997	}
 998
 999	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1000	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1001		boot_cpu_data.loops_per_jiffy =
1002			cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1003
1004		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1005		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1006			mark_tsc_unstable("cpufreq changes");
1007
1008		set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1009	}
1010
 
 
1011	return 0;
1012}
1013
1014static struct notifier_block time_cpufreq_notifier_block = {
1015	.notifier_call  = time_cpufreq_notifier
1016};
1017
1018static int __init cpufreq_register_tsc_scaling(void)
1019{
1020	if (!boot_cpu_has(X86_FEATURE_TSC))
1021		return 0;
1022	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1023		return 0;
1024	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1025				CPUFREQ_TRANSITION_NOTIFIER);
1026	return 0;
1027}
1028
1029core_initcall(cpufreq_register_tsc_scaling);
1030
1031#endif /* CONFIG_CPU_FREQ */
1032
1033#define ART_CPUID_LEAF (0x15)
1034#define ART_MIN_DENOMINATOR (1)
1035
1036
1037/*
1038 * If ART is present detect the numerator:denominator to convert to TSC
1039 */
1040static void __init detect_art(void)
1041{
1042	unsigned int unused[2];
1043
1044	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1045		return;
1046
1047	/*
1048	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1049	 * and the TSC counter resets must not occur asynchronously.
1050	 */
1051	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1052	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1053	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1054	    tsc_async_resets)
1055		return;
1056
1057	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1058	      &art_to_tsc_numerator, unused, unused+1);
1059
1060	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1061		return;
1062
1063	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1064
1065	/* Make this sticky over multiple CPU init calls */
1066	setup_force_cpu_cap(X86_FEATURE_ART);
1067}
1068
1069
1070/* clocksource code */
1071
1072static void tsc_resume(struct clocksource *cs)
1073{
1074	tsc_verify_tsc_adjust(true);
1075}
1076
1077/*
1078 * We used to compare the TSC to the cycle_last value in the clocksource
1079 * structure to avoid a nasty time-warp. This can be observed in a
1080 * very small window right after one CPU updated cycle_last under
1081 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1082 * is smaller than the cycle_last reference value due to a TSC which
1083 * is slightly behind. This delta is nowhere else observable, but in
1084 * that case it results in a forward time jump in the range of hours
1085 * due to the unsigned delta calculation of the time keeping core
1086 * code, which is necessary to support wrapping clocksources like pm
1087 * timer.
1088 *
1089 * This sanity check is now done in the core timekeeping code.
1090 * checking the result of read_tsc() - cycle_last for being negative.
1091 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1092 */
1093static u64 read_tsc(struct clocksource *cs)
1094{
1095	return (u64)rdtsc_ordered();
1096}
1097
1098static void tsc_cs_mark_unstable(struct clocksource *cs)
1099{
1100	if (tsc_unstable)
1101		return;
1102
1103	tsc_unstable = 1;
1104	if (using_native_sched_clock())
1105		clear_sched_clock_stable();
1106	disable_sched_clock_irqtime();
1107	pr_info("Marking TSC unstable due to clocksource watchdog\n");
1108}
1109
1110static void tsc_cs_tick_stable(struct clocksource *cs)
1111{
1112	if (tsc_unstable)
1113		return;
1114
1115	if (using_native_sched_clock())
1116		sched_clock_tick_stable();
1117}
1118
1119static int tsc_cs_enable(struct clocksource *cs)
1120{
1121	vclocks_set_used(VDSO_CLOCKMODE_TSC);
1122	return 0;
1123}
1124
1125/*
1126 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1127 */
1128static struct clocksource clocksource_tsc_early = {
1129	.name			= "tsc-early",
1130	.rating			= 299,
1131	.uncertainty_margin	= 32 * NSEC_PER_MSEC,
1132	.read			= read_tsc,
1133	.mask			= CLOCKSOURCE_MASK(64),
1134	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1135				  CLOCK_SOURCE_MUST_VERIFY,
1136	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1137	.enable			= tsc_cs_enable,
1138	.resume			= tsc_resume,
1139	.mark_unstable		= tsc_cs_mark_unstable,
1140	.tick_stable		= tsc_cs_tick_stable,
1141	.list			= LIST_HEAD_INIT(clocksource_tsc_early.list),
1142};
1143
1144/*
1145 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1146 * this one will immediately take over. We will only register if TSC has
1147 * been found good.
1148 */
1149static struct clocksource clocksource_tsc = {
1150	.name			= "tsc",
1151	.rating			= 300,
1152	.read			= read_tsc,
1153	.mask			= CLOCKSOURCE_MASK(64),
1154	.flags			= CLOCK_SOURCE_IS_CONTINUOUS |
1155				  CLOCK_SOURCE_VALID_FOR_HRES |
1156				  CLOCK_SOURCE_MUST_VERIFY |
1157				  CLOCK_SOURCE_VERIFY_PERCPU,
1158	.vdso_clock_mode	= VDSO_CLOCKMODE_TSC,
1159	.enable			= tsc_cs_enable,
1160	.resume			= tsc_resume,
1161	.mark_unstable		= tsc_cs_mark_unstable,
1162	.tick_stable		= tsc_cs_tick_stable,
1163	.list			= LIST_HEAD_INIT(clocksource_tsc.list),
1164};
1165
1166void mark_tsc_unstable(char *reason)
1167{
1168	if (tsc_unstable)
1169		return;
1170
1171	tsc_unstable = 1;
1172	if (using_native_sched_clock())
1173		clear_sched_clock_stable();
1174	disable_sched_clock_irqtime();
1175	pr_info("Marking TSC unstable due to %s\n", reason);
1176
1177	clocksource_mark_unstable(&clocksource_tsc_early);
1178	clocksource_mark_unstable(&clocksource_tsc);
 
 
 
 
 
1179}
1180
1181EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1182
1183static void __init tsc_disable_clocksource_watchdog(void)
1184{
1185	clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1186	clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1187}
1188
1189static void __init check_system_tsc_reliable(void)
1190{
1191#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1192	if (is_geode_lx()) {
1193		/* RTSC counts during suspend */
1194#define RTSC_SUSP 0x100
1195		unsigned long res_low, res_high;
1196
1197		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1198		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1199		if (res_low & RTSC_SUSP)
1200			tsc_clocksource_reliable = 1;
1201	}
1202#endif
1203	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1204		tsc_clocksource_reliable = 1;
1205
1206	/*
1207	 * Disable the clocksource watchdog when the system has:
1208	 *  - TSC running at constant frequency
1209	 *  - TSC which does not stop in C-States
1210	 *  - the TSC_ADJUST register which allows to detect even minimal
1211	 *    modifications
1212	 *  - not more than two sockets. As the number of sockets cannot be
1213	 *    evaluated at the early boot stage where this has to be
1214	 *    invoked, check the number of online memory nodes as a
1215	 *    fallback solution which is an reasonable estimate.
1216	 */
1217	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1218	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1219	    boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1220	    nr_online_nodes <= 2)
1221		tsc_disable_clocksource_watchdog();
1222}
1223
1224/*
1225 * Make an educated guess if the TSC is trustworthy and synchronized
1226 * over all CPUs.
1227 */
1228int unsynchronized_tsc(void)
1229{
1230	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1231		return 1;
1232
1233#ifdef CONFIG_SMP
1234	if (apic_is_clustered_box())
1235		return 1;
1236#endif
1237
1238	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1239		return 0;
1240
1241	if (tsc_clocksource_reliable)
1242		return 0;
1243	/*
1244	 * Intel systems are normally all synchronized.
1245	 * Exceptions must mark TSC as unstable:
1246	 */
1247	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1248		/* assume multi socket systems are not synchronized: */
1249		if (num_possible_cpus() > 1)
1250			return 1;
1251	}
1252
1253	return 0;
1254}
1255
1256/*
1257 * Convert ART to TSC given numerator/denominator found in detect_art()
1258 */
1259struct system_counterval_t convert_art_to_tsc(u64 art)
1260{
1261	u64 tmp, res, rem;
1262
1263	rem = do_div(art, art_to_tsc_denominator);
1264
1265	res = art * art_to_tsc_numerator;
1266	tmp = rem * art_to_tsc_numerator;
1267
1268	do_div(tmp, art_to_tsc_denominator);
1269	res += tmp + art_to_tsc_offset;
1270
1271	return (struct system_counterval_t) {.cs = art_related_clocksource,
1272			.cycles = res};
1273}
1274EXPORT_SYMBOL(convert_art_to_tsc);
1275
1276/**
1277 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1278 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1279 *
1280 * PTM requires all timestamps to be in units of nanoseconds. When user
1281 * software requests a cross-timestamp, this function converts system timestamp
1282 * to TSC.
1283 *
1284 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1285 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1286 * that this flag is set before conversion to TSC is attempted.
1287 *
1288 * Return:
1289 * struct system_counterval_t - system counter value with the pointer to the
1290 *	corresponding clocksource
1291 *	@cycles:	System counter value
1292 *	@cs:		Clocksource corresponding to system counter value. Used
1293 *			by timekeeping code to verify comparability of two cycle
1294 *			values.
1295 */
1296
1297struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1298{
1299	u64 tmp, res, rem;
1300
1301	rem = do_div(art_ns, USEC_PER_SEC);
1302
1303	res = art_ns * tsc_khz;
1304	tmp = rem * tsc_khz;
1305
1306	do_div(tmp, USEC_PER_SEC);
1307	res += tmp;
1308
1309	return (struct system_counterval_t) { .cs = art_related_clocksource,
1310					      .cycles = res};
1311}
1312EXPORT_SYMBOL(convert_art_ns_to_tsc);
1313
1314
1315static void tsc_refine_calibration_work(struct work_struct *work);
1316static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1317/**
1318 * tsc_refine_calibration_work - Further refine tsc freq calibration
1319 * @work - ignored.
1320 *
1321 * This functions uses delayed work over a period of a
1322 * second to further refine the TSC freq value. Since this is
1323 * timer based, instead of loop based, we don't block the boot
1324 * process while this longer calibration is done.
1325 *
1326 * If there are any calibration anomalies (too many SMIs, etc),
1327 * or the refined calibration is off by 1% of the fast early
1328 * calibration, we throw out the new calibration and use the
1329 * early calibration.
1330 */
1331static void tsc_refine_calibration_work(struct work_struct *work)
1332{
1333	static u64 tsc_start = ULLONG_MAX, ref_start;
1334	static int hpet;
1335	u64 tsc_stop, ref_stop, delta;
1336	unsigned long freq;
1337	int cpu;
1338
1339	/* Don't bother refining TSC on unstable systems */
1340	if (tsc_unstable)
1341		goto unreg;
1342
1343	/*
1344	 * Since the work is started early in boot, we may be
1345	 * delayed the first time we expire. So set the workqueue
1346	 * again once we know timers are working.
1347	 */
1348	if (tsc_start == ULLONG_MAX) {
1349restart:
1350		/*
1351		 * Only set hpet once, to avoid mixing hardware
1352		 * if the hpet becomes enabled later.
1353		 */
1354		hpet = is_hpet_enabled();
1355		tsc_start = tsc_read_refs(&ref_start, hpet);
1356		schedule_delayed_work(&tsc_irqwork, HZ);
 
1357		return;
1358	}
1359
1360	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1361
1362	/* hpet or pmtimer available ? */
1363	if (ref_start == ref_stop)
1364		goto out;
1365
1366	/* Check, whether the sampling was disturbed */
1367	if (tsc_stop == ULLONG_MAX)
1368		goto restart;
1369
1370	delta = tsc_stop - tsc_start;
1371	delta *= 1000000LL;
1372	if (hpet)
1373		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1374	else
1375		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1376
1377	/* Make sure we're within 1% */
1378	if (abs(tsc_khz - freq) > tsc_khz/100)
1379		goto out;
1380
1381	tsc_khz = freq;
1382	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1383		(unsigned long)tsc_khz / 1000,
1384		(unsigned long)tsc_khz % 1000);
1385
1386	/* Inform the TSC deadline clockevent devices about the recalibration */
1387	lapic_update_tsc_freq();
1388
1389	/* Update the sched_clock() rate to match the clocksource one */
1390	for_each_possible_cpu(cpu)
1391		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1392
1393out:
1394	if (tsc_unstable)
1395		goto unreg;
1396
1397	if (boot_cpu_has(X86_FEATURE_ART))
1398		art_related_clocksource = &clocksource_tsc;
1399	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1400unreg:
1401	clocksource_unregister(&clocksource_tsc_early);
1402}
1403
1404
1405static int __init init_tsc_clocksource(void)
1406{
1407	if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1408		return 0;
1409
1410	if (tsc_unstable)
1411		goto unreg;
 
 
 
 
 
1412
1413	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1414		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1415
1416	/*
1417	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1418	 * the refined calibration and directly register it as a clocksource.
1419	 */
1420	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1421		if (boot_cpu_has(X86_FEATURE_ART))
1422			art_related_clocksource = &clocksource_tsc;
1423		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1424unreg:
1425		clocksource_unregister(&clocksource_tsc_early);
1426		return 0;
1427	}
1428
1429	schedule_delayed_work(&tsc_irqwork, 0);
1430	return 0;
1431}
1432/*
1433 * We use device_initcall here, to ensure we run after the hpet
1434 * is fully initialized, which may occur at fs_initcall time.
1435 */
1436device_initcall(init_tsc_clocksource);
1437
1438static bool __init determine_cpu_tsc_frequencies(bool early)
1439{
1440	/* Make sure that cpu and tsc are not already calibrated */
1441	WARN_ON(cpu_khz || tsc_khz);
1442
1443	if (early) {
1444		cpu_khz = x86_platform.calibrate_cpu();
1445		if (tsc_early_khz)
1446			tsc_khz = tsc_early_khz;
1447		else
1448			tsc_khz = x86_platform.calibrate_tsc();
1449	} else {
1450		/* We should not be here with non-native cpu calibration */
1451		WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1452		cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1453	}
1454
1455	/*
1456	 * Trust non-zero tsc_khz as authoritative,
1457	 * and use it to sanity check cpu_khz,
1458	 * which will be off if system timer is off.
1459	 */
1460	if (tsc_khz == 0)
1461		tsc_khz = cpu_khz;
1462	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1463		cpu_khz = tsc_khz;
1464
1465	if (tsc_khz == 0)
1466		return false;
1467
1468	pr_info("Detected %lu.%03lu MHz processor\n",
1469		(unsigned long)cpu_khz / KHZ,
1470		(unsigned long)cpu_khz % KHZ);
1471
1472	if (cpu_khz != tsc_khz) {
1473		pr_info("Detected %lu.%03lu MHz TSC",
1474			(unsigned long)tsc_khz / KHZ,
1475			(unsigned long)tsc_khz % KHZ);
1476	}
1477	return true;
1478}
1479
1480static unsigned long __init get_loops_per_jiffy(void)
1481{
1482	u64 lpj = (u64)tsc_khz * KHZ;
1483
1484	do_div(lpj, HZ);
1485	return lpj;
1486}
1487
1488static void __init tsc_enable_sched_clock(void)
1489{
1490	loops_per_jiffy = get_loops_per_jiffy();
1491	use_tsc_delay();
1492
1493	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1494	tsc_store_and_check_tsc_adjust(true);
1495	cyc2ns_init_boot_cpu();
1496	static_branch_enable(&__use_tsc);
1497}
1498
1499void __init tsc_early_init(void)
1500{
1501	if (!boot_cpu_has(X86_FEATURE_TSC))
1502		return;
1503	/* Don't change UV TSC multi-chassis synchronization */
1504	if (is_early_uv_system())
1505		return;
1506	if (!determine_cpu_tsc_frequencies(true))
1507		return;
1508	tsc_enable_sched_clock();
1509}
1510
1511void __init tsc_init(void)
1512{
1513	/*
1514	 * native_calibrate_cpu_early can only calibrate using methods that are
1515	 * available early in boot.
 
 
1516	 */
1517	if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1518		x86_platform.calibrate_cpu = native_calibrate_cpu;
 
 
1519
1520	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1521		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1522		return;
1523	}
1524
1525	if (!tsc_khz) {
1526		/* We failed to determine frequencies earlier, try again */
1527		if (!determine_cpu_tsc_frequencies(false)) {
1528			mark_tsc_unstable("could not calculate TSC khz");
1529			setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1530			return;
1531		}
1532		tsc_enable_sched_clock();
1533	}
1534
1535	cyc2ns_init_secondary_cpus();
 
1536
1537	if (!no_sched_irq_time)
1538		enable_sched_clock_irqtime();
1539
1540	lpj_fine = get_loops_per_jiffy();
 
 
1541
1542	check_system_tsc_reliable();
1543
1544	if (unsynchronized_tsc()) {
1545		mark_tsc_unstable("TSCs unsynchronized");
1546		return;
1547	}
1548
1549	if (tsc_clocksource_reliable || no_tsc_watchdog)
1550		tsc_disable_clocksource_watchdog();
1551
1552	clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1553	detect_art();
1554}
1555
1556#ifdef CONFIG_SMP
1557/*
1558 * If we have a constant TSC and are using the TSC for the delay loop,
1559 * we can skip clock calibration if another cpu in the same socket has already
1560 * been calibrated. This assumes that CONSTANT_TSC applies to all
1561 * cpus in the socket - this should be a safe assumption.
1562 */
1563unsigned long calibrate_delay_is_known(void)
1564{
1565	int sibling, cpu = smp_processor_id();
1566	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1567	const struct cpumask *mask = topology_core_cpumask(cpu);
1568
1569	if (!constant_tsc || !mask)
1570		return 0;
1571
1572	sibling = cpumask_any_but(mask, cpu);
1573	if (sibling < nr_cpu_ids)
1574		return cpu_data(sibling).loops_per_jiffy;
1575	return 0;
1576}
1577#endif
v3.15
 
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
 
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
 
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
 
 
 
 
 
  24
  25unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  26EXPORT_SYMBOL(cpu_khz);
  27
  28unsigned int __read_mostly tsc_khz;
  29EXPORT_SYMBOL(tsc_khz);
  30
 
 
  31/*
  32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  33 */
  34static int __read_mostly tsc_unstable;
 
  35
  36/* native_sched_clock() is called before tsc_init(), so
  37   we must start with the TSC soft disabled to prevent
  38   erroneous rdtsc usage on !cpu_has_tsc processors */
  39static int __read_mostly tsc_disabled = -1;
  40
  41static struct static_key __use_tsc = STATIC_KEY_INIT;
  42
  43int tsc_clocksource_reliable;
  44
  45/*
  46 * Use a ring-buffer like data structure, where a writer advances the head by
  47 * writing a new data entry and a reader advances the tail when it observes a
  48 * new entry.
  49 *
  50 * Writers are made to wait on readers until there's space to write a new
  51 * entry.
  52 *
  53 * This means that we can always use an {offset, mul} pair to compute a ns
  54 * value that is 'roughly' in the right direction, even if we're writing a new
  55 * {offset, mul} pair during the clock read.
  56 *
  57 * The down-side is that we can no longer guarantee strict monotonicity anymore
  58 * (assuming the TSC was that to begin with), because while we compute the
  59 * intersection point of the two clock slopes and make sure the time is
  60 * continuous at the point of switching; we can no longer guarantee a reader is
  61 * strictly before or after the switch point.
  62 *
  63 * It does mean a reader no longer needs to disable IRQs in order to avoid
  64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  65 * no longer run the risk of hitting half-written state.
  66 */
  67
  68struct cyc2ns {
  69	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  70	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  71	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  72}; /* exactly fits one cacheline */
  73
  74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  75
  76struct cyc2ns_data *cyc2ns_read_begin(void)
  77{
  78	struct cyc2ns_data *head;
  79
  80	preempt_disable();
  81
  82	head = this_cpu_read(cyc2ns.head);
  83	/*
  84	 * Ensure we observe the entry when we observe the pointer to it.
  85	 * matches the wmb from cyc2ns_write_end().
  86	 */
  87	smp_read_barrier_depends();
  88	head->__count++;
  89	barrier();
  90
  91	return head;
  92}
 
  93
  94void cyc2ns_read_end(struct cyc2ns_data *head)
  95{
  96	barrier();
  97	/*
  98	 * If we're the outer most nested read; update the tail pointer
  99	 * when we're done. This notifies possible pending writers
 100	 * that we've observed the head pointer and that the other
 101	 * entry is now free.
 102	 */
 103	if (!--head->__count) {
 104		/*
 105		 * x86-TSO does not reorder writes with older reads;
 106		 * therefore once this write becomes visible to another
 107		 * cpu, we must be finished reading the cyc2ns_data.
 108		 *
 109		 * matches with cyc2ns_write_begin().
 110		 */
 111		this_cpu_write(cyc2ns.tail, head);
 112	}
 113	preempt_enable();
 114}
 115
 116/*
 117 * Begin writing a new @data entry for @cpu.
 118 *
 119 * Assumes some sort of write side lock; currently 'provided' by the assumption
 120 * that cpufreq will call its notifiers sequentially.
 121 */
 122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 123{
 124	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 125	struct cyc2ns_data *data = c2n->data;
 126
 127	if (data == c2n->head)
 128		data++;
 
 129
 130	/* XXX send an IPI to @cpu in order to guarantee a read? */
 
 
 131
 132	/*
 133	 * When we observe the tail write from cyc2ns_read_end(),
 134	 * the cpu must be done with that entry and its safe
 135	 * to start writing to it.
 136	 */
 137	while (c2n->tail == data)
 138		cpu_relax();
 139
 140	return data;
 141}
 142
 143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 144{
 145	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 146
 147	/*
 148	 * Ensure the @data writes are visible before we publish the
 149	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 150	 */
 151	smp_wmb();
 152
 153	ACCESS_ONCE(c2n->head) = data;
 154}
 155
 156/*
 157 * Accelerators for sched_clock()
 158 * convert from cycles(64bits) => nanoseconds (64bits)
 159 *  basic equation:
 160 *              ns = cycles / (freq / ns_per_sec)
 161 *              ns = cycles * (ns_per_sec / freq)
 162 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 163 *              ns = cycles * (10^6 / cpu_khz)
 164 *
 165 *      Then we use scaling math (suggested by george@mvista.com) to get:
 166 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 167 *              ns = cycles * cyc2ns_scale / SC
 168 *
 169 *      And since SC is a constant power of two, we can convert the div
 170 *  into a shift.
 
 
 171 *
 172 *  We can use khz divisor instead of mhz to keep a better precision, since
 173 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 174 *  (mathieu.desnoyers@polymtl.ca)
 175 *
 176 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 177 */
 178
 179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
 
 
 
 180
 181static void cyc2ns_data_init(struct cyc2ns_data *data)
 182{
 183	data->cyc2ns_mul = 0;
 184	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 185	data->cyc2ns_offset = 0;
 186	data->__count = 0;
 187}
 188
 189static void cyc2ns_init(int cpu)
 190{
 191	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 192
 193	cyc2ns_data_init(&c2n->data[0]);
 194	cyc2ns_data_init(&c2n->data[1]);
 195
 196	c2n->head = c2n->data;
 197	c2n->tail = c2n->data;
 198}
 199
 200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 201{
 202	struct cyc2ns_data *data, *tail;
 203	unsigned long long ns;
 
 
 
 204
 205	/*
 206	 * See cyc2ns_read_*() for details; replicated in order to avoid
 207	 * an extra few instructions that came with the abstraction.
 208	 * Notable, it allows us to only do the __count and tail update
 209	 * dance when its actually needed.
 210	 */
 
 
 211
 212	preempt_disable_notrace();
 213	data = this_cpu_read(cyc2ns.head);
 214	tail = this_cpu_read(cyc2ns.tail);
 215
 216	if (likely(data == tail)) {
 217		ns = data->cyc2ns_offset;
 218		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 219	} else {
 220		data->__count++;
 221
 222		barrier();
 223
 224		ns = data->cyc2ns_offset;
 225		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 226
 227		barrier();
 
 228
 229		if (!--data->__count)
 230			this_cpu_write(cyc2ns.tail, data);
 231	}
 232	preempt_enable_notrace();
 233
 234	return ns;
 
 
 
 235}
 236
 237/* XXX surely we already have this someplace in the kernel?! */
 238#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
 239
 240static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 241{
 242	unsigned long long tsc_now, ns_now;
 243	struct cyc2ns_data *data;
 244	unsigned long flags;
 245
 246	local_irq_save(flags);
 247	sched_clock_idle_sleep_event();
 248
 249	if (!cpu_khz)
 250		goto done;
 251
 252	data = cyc2ns_write_begin(cpu);
 
 
 253
 254	rdtscll(tsc_now);
 255	ns_now = cycles_2_ns(tsc_now);
 
 
 
 
 256
 257	/*
 258	 * Compute a new multiplier as per the above comment and ensure our
 259	 * time function is continuous; see the comment near struct
 260	 * cyc2ns_data.
 261	 */
 262	data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
 263	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
 264	data->cyc2ns_offset = ns_now -
 265		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
 266
 267	cyc2ns_write_end(cpu, data);
 
 
 
 
 
 
 
 
 
 268
 269done:
 270	sched_clock_idle_wakeup_event(0);
 271	local_irq_restore(flags);
 
 
 
 
 
 272}
 
 273/*
 274 * Scheduler clock - returns current time in nanosec units.
 275 */
 276u64 native_sched_clock(void)
 277{
 278	u64 tsc_now;
 
 
 
 
 
 279
 280	/*
 281	 * Fall back to jiffies if there's no TSC available:
 282	 * ( But note that we still use it if the TSC is marked
 283	 *   unstable. We do this because unlike Time Of Day,
 284	 *   the scheduler clock tolerates small errors and it's
 285	 *   very important for it to be as fast as the platform
 286	 *   can achieve it. )
 287	 */
 288	if (!static_key_false(&__use_tsc)) {
 289		/* No locking but a rare wrong value is not a big deal: */
 290		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 291	}
 292
 293	/* read the Time Stamp Counter: */
 294	rdtscll(tsc_now);
 
 295
 296	/* return the value in ns */
 297	return cycles_2_ns(tsc_now);
 
 
 
 
 298}
 299
 300/* We need to define a real function for sched_clock, to override the
 301   weak default version */
 302#ifdef CONFIG_PARAVIRT
 303unsigned long long sched_clock(void)
 304{
 305	return paravirt_sched_clock();
 306}
 
 
 
 
 
 307#else
 308unsigned long long
 309sched_clock(void) __attribute__((alias("native_sched_clock")));
 
 
 310#endif
 311
 312unsigned long long native_read_tsc(void)
 313{
 314	return __native_read_tsc();
 315}
 316EXPORT_SYMBOL(native_read_tsc);
 317
 318int check_tsc_unstable(void)
 319{
 320	return tsc_unstable;
 321}
 322EXPORT_SYMBOL_GPL(check_tsc_unstable);
 323
 324int check_tsc_disabled(void)
 325{
 326	return tsc_disabled;
 327}
 328EXPORT_SYMBOL_GPL(check_tsc_disabled);
 329
 330#ifdef CONFIG_X86_TSC
 331int __init notsc_setup(char *str)
 332{
 333	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 334	tsc_disabled = 1;
 335	return 1;
 336}
 337#else
 338/*
 339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 340 * in cpu/common.c
 341 */
 342int __init notsc_setup(char *str)
 343{
 344	setup_clear_cpu_cap(X86_FEATURE_TSC);
 345	return 1;
 346}
 347#endif
 348
 349__setup("notsc", notsc_setup);
 350
 351static int no_sched_irq_time;
 
 352
 353static int __init tsc_setup(char *str)
 354{
 355	if (!strcmp(str, "reliable"))
 356		tsc_clocksource_reliable = 1;
 357	if (!strncmp(str, "noirqtime", 9))
 358		no_sched_irq_time = 1;
 
 
 
 
 359	return 1;
 360}
 361
 362__setup("tsc=", tsc_setup);
 363
 364#define MAX_RETRIES     5
 365#define SMI_TRESHOLD    50000
 366
 367/*
 368 * Read TSC and the reference counters. Take care of SMI disturbance
 369 */
 370static u64 tsc_read_refs(u64 *p, int hpet)
 371{
 372	u64 t1, t2;
 
 373	int i;
 374
 375	for (i = 0; i < MAX_RETRIES; i++) {
 376		t1 = get_cycles();
 377		if (hpet)
 378			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 379		else
 380			*p = acpi_pm_read_early();
 381		t2 = get_cycles();
 382		if ((t2 - t1) < SMI_TRESHOLD)
 383			return t2;
 384	}
 385	return ULLONG_MAX;
 386}
 387
 388/*
 389 * Calculate the TSC frequency from HPET reference
 390 */
 391static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 392{
 393	u64 tmp;
 394
 395	if (hpet2 < hpet1)
 396		hpet2 += 0x100000000ULL;
 397	hpet2 -= hpet1;
 398	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 399	do_div(tmp, 1000000);
 400	do_div(deltatsc, tmp);
 401
 402	return (unsigned long) deltatsc;
 403}
 404
 405/*
 406 * Calculate the TSC frequency from PMTimer reference
 407 */
 408static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 409{
 410	u64 tmp;
 411
 412	if (!pm1 && !pm2)
 413		return ULONG_MAX;
 414
 415	if (pm2 < pm1)
 416		pm2 += (u64)ACPI_PM_OVRRUN;
 417	pm2 -= pm1;
 418	tmp = pm2 * 1000000000LL;
 419	do_div(tmp, PMTMR_TICKS_PER_SEC);
 420	do_div(deltatsc, tmp);
 421
 422	return (unsigned long) deltatsc;
 423}
 424
 425#define CAL_MS		10
 426#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 427#define CAL_PIT_LOOPS	1000
 428
 429#define CAL2_MS		50
 430#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 431#define CAL2_PIT_LOOPS	5000
 432
 433
 434/*
 435 * Try to calibrate the TSC against the Programmable
 436 * Interrupt Timer and return the frequency of the TSC
 437 * in kHz.
 438 *
 439 * Return ULONG_MAX on failure to calibrate.
 440 */
 441static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 442{
 443	u64 tsc, t1, t2, delta;
 444	unsigned long tscmin, tscmax;
 445	int pitcnt;
 446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	/* Set the Gate high, disable speaker */
 448	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 449
 450	/*
 451	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 452	 * count mode), binary count. Set the latch register to 50ms
 453	 * (LSB then MSB) to begin countdown.
 454	 */
 455	outb(0xb0, 0x43);
 456	outb(latch & 0xff, 0x42);
 457	outb(latch >> 8, 0x42);
 458
 459	tsc = t1 = t2 = get_cycles();
 460
 461	pitcnt = 0;
 462	tscmax = 0;
 463	tscmin = ULONG_MAX;
 464	while ((inb(0x61) & 0x20) == 0) {
 465		t2 = get_cycles();
 466		delta = t2 - tsc;
 467		tsc = t2;
 468		if ((unsigned long) delta < tscmin)
 469			tscmin = (unsigned int) delta;
 470		if ((unsigned long) delta > tscmax)
 471			tscmax = (unsigned int) delta;
 472		pitcnt++;
 473	}
 474
 475	/*
 476	 * Sanity checks:
 477	 *
 478	 * If we were not able to read the PIT more than loopmin
 479	 * times, then we have been hit by a massive SMI
 480	 *
 481	 * If the maximum is 10 times larger than the minimum,
 482	 * then we got hit by an SMI as well.
 483	 */
 484	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 485		return ULONG_MAX;
 486
 487	/* Calculate the PIT value */
 488	delta = t2 - t1;
 489	do_div(delta, ms);
 490	return delta;
 491}
 492
 493/*
 494 * This reads the current MSB of the PIT counter, and
 495 * checks if we are running on sufficiently fast and
 496 * non-virtualized hardware.
 497 *
 498 * Our expectations are:
 499 *
 500 *  - the PIT is running at roughly 1.19MHz
 501 *
 502 *  - each IO is going to take about 1us on real hardware,
 503 *    but we allow it to be much faster (by a factor of 10) or
 504 *    _slightly_ slower (ie we allow up to a 2us read+counter
 505 *    update - anything else implies a unacceptably slow CPU
 506 *    or PIT for the fast calibration to work.
 507 *
 508 *  - with 256 PIT ticks to read the value, we have 214us to
 509 *    see the same MSB (and overhead like doing a single TSC
 510 *    read per MSB value etc).
 511 *
 512 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 513 *    them each to take about a microsecond on real hardware.
 514 *    So we expect a count value of around 100. But we'll be
 515 *    generous, and accept anything over 50.
 516 *
 517 *  - if the PIT is stuck, and we see *many* more reads, we
 518 *    return early (and the next caller of pit_expect_msb()
 519 *    then consider it a failure when they don't see the
 520 *    next expected value).
 521 *
 522 * These expectations mean that we know that we have seen the
 523 * transition from one expected value to another with a fairly
 524 * high accuracy, and we didn't miss any events. We can thus
 525 * use the TSC value at the transitions to calculate a pretty
 526 * good value for the TSC frequencty.
 527 */
 528static inline int pit_verify_msb(unsigned char val)
 529{
 530	/* Ignore LSB */
 531	inb(0x42);
 532	return inb(0x42) == val;
 533}
 534
 535static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 536{
 537	int count;
 538	u64 tsc = 0, prev_tsc = 0;
 539
 540	for (count = 0; count < 50000; count++) {
 541		if (!pit_verify_msb(val))
 542			break;
 543		prev_tsc = tsc;
 544		tsc = get_cycles();
 545	}
 546	*deltap = get_cycles() - prev_tsc;
 547	*tscp = tsc;
 548
 549	/*
 550	 * We require _some_ success, but the quality control
 551	 * will be based on the error terms on the TSC values.
 552	 */
 553	return count > 5;
 554}
 555
 556/*
 557 * How many MSB values do we want to see? We aim for
 558 * a maximum error rate of 500ppm (in practice the
 559 * real error is much smaller), but refuse to spend
 560 * more than 50ms on it.
 561 */
 562#define MAX_QUICK_PIT_MS 50
 563#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 564
 565static unsigned long quick_pit_calibrate(void)
 566{
 567	int i;
 568	u64 tsc, delta;
 569	unsigned long d1, d2;
 570
 
 
 
 571	/* Set the Gate high, disable speaker */
 572	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 573
 574	/*
 575	 * Counter 2, mode 0 (one-shot), binary count
 576	 *
 577	 * NOTE! Mode 2 decrements by two (and then the
 578	 * output is flipped each time, giving the same
 579	 * final output frequency as a decrement-by-one),
 580	 * so mode 0 is much better when looking at the
 581	 * individual counts.
 582	 */
 583	outb(0xb0, 0x43);
 584
 585	/* Start at 0xffff */
 586	outb(0xff, 0x42);
 587	outb(0xff, 0x42);
 588
 589	/*
 590	 * The PIT starts counting at the next edge, so we
 591	 * need to delay for a microsecond. The easiest way
 592	 * to do that is to just read back the 16-bit counter
 593	 * once from the PIT.
 594	 */
 595	pit_verify_msb(0);
 596
 597	if (pit_expect_msb(0xff, &tsc, &d1)) {
 598		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 599			if (!pit_expect_msb(0xff-i, &delta, &d2))
 600				break;
 601
 
 
 
 
 
 
 
 
 
 
 602			/*
 603			 * Iterate until the error is less than 500 ppm
 604			 */
 605			delta -= tsc;
 606			if (d1+d2 >= delta >> 11)
 607				continue;
 608
 609			/*
 610			 * Check the PIT one more time to verify that
 611			 * all TSC reads were stable wrt the PIT.
 612			 *
 613			 * This also guarantees serialization of the
 614			 * last cycle read ('d2') in pit_expect_msb.
 615			 */
 616			if (!pit_verify_msb(0xfe - i))
 617				break;
 618			goto success;
 619		}
 620	}
 621	pr_err("Fast TSC calibration failed\n");
 622	return 0;
 623
 624success:
 625	/*
 626	 * Ok, if we get here, then we've seen the
 627	 * MSB of the PIT decrement 'i' times, and the
 628	 * error has shrunk to less than 500 ppm.
 629	 *
 630	 * As a result, we can depend on there not being
 631	 * any odd delays anywhere, and the TSC reads are
 632	 * reliable (within the error).
 633	 *
 634	 * kHz = ticks / time-in-seconds / 1000;
 635	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 636	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 637	 */
 638	delta *= PIT_TICK_RATE;
 639	do_div(delta, i*256*1000);
 640	pr_info("Fast TSC calibration using PIT\n");
 641	return delta;
 642}
 643
 644/**
 645 * native_calibrate_tsc - calibrate the tsc on boot
 
 646 */
 647unsigned long native_calibrate_tsc(void)
 648{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649	u64 tsc1, tsc2, delta, ref1, ref2;
 650	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 651	unsigned long flags, latch, ms, fast_calibrate;
 652	int hpet = is_hpet_enabled(), i, loopmin;
 653
 654	/* Calibrate TSC using MSR for Intel Atom SoCs */
 655	local_irq_save(flags);
 656	fast_calibrate = try_msr_calibrate_tsc();
 657	local_irq_restore(flags);
 658	if (fast_calibrate)
 659		return fast_calibrate;
 660
 661	local_irq_save(flags);
 662	fast_calibrate = quick_pit_calibrate();
 663	local_irq_restore(flags);
 664	if (fast_calibrate)
 665		return fast_calibrate;
 666
 667	/*
 668	 * Run 5 calibration loops to get the lowest frequency value
 669	 * (the best estimate). We use two different calibration modes
 670	 * here:
 671	 *
 672	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 673	 * load a timeout of 50ms. We read the time right after we
 674	 * started the timer and wait until the PIT count down reaches
 675	 * zero. In each wait loop iteration we read the TSC and check
 676	 * the delta to the previous read. We keep track of the min
 677	 * and max values of that delta. The delta is mostly defined
 678	 * by the IO time of the PIT access, so we can detect when a
 679	 * SMI/SMM disturbance happened between the two reads. If the
 680	 * maximum time is significantly larger than the minimum time,
 681	 * then we discard the result and have another try.
 682	 *
 683	 * 2) Reference counter. If available we use the HPET or the
 684	 * PMTIMER as a reference to check the sanity of that value.
 685	 * We use separate TSC readouts and check inside of the
 686	 * reference read for a SMI/SMM disturbance. We dicard
 687	 * disturbed values here as well. We do that around the PIT
 688	 * calibration delay loop as we have to wait for a certain
 689	 * amount of time anyway.
 690	 */
 691
 692	/* Preset PIT loop values */
 693	latch = CAL_LATCH;
 694	ms = CAL_MS;
 695	loopmin = CAL_PIT_LOOPS;
 696
 697	for (i = 0; i < 3; i++) {
 698		unsigned long tsc_pit_khz;
 699
 700		/*
 701		 * Read the start value and the reference count of
 702		 * hpet/pmtimer when available. Then do the PIT
 703		 * calibration, which will take at least 50ms, and
 704		 * read the end value.
 705		 */
 706		local_irq_save(flags);
 707		tsc1 = tsc_read_refs(&ref1, hpet);
 708		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 709		tsc2 = tsc_read_refs(&ref2, hpet);
 710		local_irq_restore(flags);
 711
 712		/* Pick the lowest PIT TSC calibration so far */
 713		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 714
 715		/* hpet or pmtimer available ? */
 716		if (ref1 == ref2)
 717			continue;
 718
 719		/* Check, whether the sampling was disturbed by an SMI */
 720		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 721			continue;
 722
 723		tsc2 = (tsc2 - tsc1) * 1000000LL;
 724		if (hpet)
 725			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 726		else
 727			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 728
 729		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 730
 731		/* Check the reference deviation */
 732		delta = ((u64) tsc_pit_min) * 100;
 733		do_div(delta, tsc_ref_min);
 734
 735		/*
 736		 * If both calibration results are inside a 10% window
 737		 * then we can be sure, that the calibration
 738		 * succeeded. We break out of the loop right away. We
 739		 * use the reference value, as it is more precise.
 740		 */
 741		if (delta >= 90 && delta <= 110) {
 742			pr_info("PIT calibration matches %s. %d loops\n",
 743				hpet ? "HPET" : "PMTIMER", i + 1);
 744			return tsc_ref_min;
 745		}
 746
 747		/*
 748		 * Check whether PIT failed more than once. This
 749		 * happens in virtualized environments. We need to
 750		 * give the virtual PC a slightly longer timeframe for
 751		 * the HPET/PMTIMER to make the result precise.
 752		 */
 753		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 754			latch = CAL2_LATCH;
 755			ms = CAL2_MS;
 756			loopmin = CAL2_PIT_LOOPS;
 757		}
 758	}
 759
 760	/*
 761	 * Now check the results.
 762	 */
 763	if (tsc_pit_min == ULONG_MAX) {
 764		/* PIT gave no useful value */
 765		pr_warn("Unable to calibrate against PIT\n");
 766
 767		/* We don't have an alternative source, disable TSC */
 768		if (!hpet && !ref1 && !ref2) {
 769			pr_notice("No reference (HPET/PMTIMER) available\n");
 770			return 0;
 771		}
 772
 773		/* The alternative source failed as well, disable TSC */
 774		if (tsc_ref_min == ULONG_MAX) {
 775			pr_warn("HPET/PMTIMER calibration failed\n");
 776			return 0;
 777		}
 778
 779		/* Use the alternative source */
 780		pr_info("using %s reference calibration\n",
 781			hpet ? "HPET" : "PMTIMER");
 782
 783		return tsc_ref_min;
 784	}
 785
 786	/* We don't have an alternative source, use the PIT calibration value */
 787	if (!hpet && !ref1 && !ref2) {
 788		pr_info("Using PIT calibration value\n");
 789		return tsc_pit_min;
 790	}
 791
 792	/* The alternative source failed, use the PIT calibration value */
 793	if (tsc_ref_min == ULONG_MAX) {
 794		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 795		return tsc_pit_min;
 796	}
 797
 798	/*
 799	 * The calibration values differ too much. In doubt, we use
 800	 * the PIT value as we know that there are PMTIMERs around
 801	 * running at double speed. At least we let the user know:
 802	 */
 803	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 804		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 805	pr_info("Using PIT calibration value\n");
 806	return tsc_pit_min;
 807}
 808
 809int recalibrate_cpu_khz(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810{
 811#ifndef CONFIG_SMP
 812	unsigned long cpu_khz_old = cpu_khz;
 813
 814	if (cpu_has_tsc) {
 815		tsc_khz = x86_platform.calibrate_tsc();
 
 
 
 
 
 
 816		cpu_khz = tsc_khz;
 817		cpu_data(0).loops_per_jiffy =
 818			cpufreq_scale(cpu_data(0).loops_per_jiffy,
 819					cpu_khz_old, cpu_khz);
 820		return 0;
 821	} else
 822		return -ENODEV;
 823#else
 824	return -ENODEV;
 825#endif
 826}
 827
 828EXPORT_SYMBOL(recalibrate_cpu_khz);
 829
 830
 831static unsigned long long cyc2ns_suspend;
 832
 833void tsc_save_sched_clock_state(void)
 834{
 835	if (!sched_clock_stable())
 836		return;
 837
 838	cyc2ns_suspend = sched_clock();
 839}
 840
 841/*
 842 * Even on processors with invariant TSC, TSC gets reset in some the
 843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 844 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 846 * that sched_clock() continues from the point where it was left off during
 847 * suspend.
 848 */
 849void tsc_restore_sched_clock_state(void)
 850{
 851	unsigned long long offset;
 852	unsigned long flags;
 853	int cpu;
 854
 855	if (!sched_clock_stable())
 856		return;
 857
 858	local_irq_save(flags);
 859
 860	/*
 861	 * We're comming out of suspend, there's no concurrency yet; don't
 862	 * bother being nice about the RCU stuff, just write to both
 863	 * data fields.
 864	 */
 865
 866	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 867	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 868
 869	offset = cyc2ns_suspend - sched_clock();
 870
 871	for_each_possible_cpu(cpu) {
 872		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 873		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 874	}
 875
 876	local_irq_restore(flags);
 877}
 878
 879#ifdef CONFIG_CPU_FREQ
 880
 881/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 882 * changes.
 883 *
 884 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 885 * not that important because current Opteron setups do not support
 886 * scaling on SMP anyroads.
 887 *
 888 * Should fix up last_tsc too. Currently gettimeofday in the
 889 * first tick after the change will be slightly wrong.
 890 */
 891
 892static unsigned int  ref_freq;
 893static unsigned long loops_per_jiffy_ref;
 894static unsigned long tsc_khz_ref;
 895
 896static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 897				void *data)
 898{
 899	struct cpufreq_freqs *freq = data;
 900	unsigned long *lpj;
 901
 902	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 
 903		return 0;
 904
 905	lpj = &boot_cpu_data.loops_per_jiffy;
 906#ifdef CONFIG_SMP
 907	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 908		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 909#endif
 910
 911	if (!ref_freq) {
 912		ref_freq = freq->old;
 913		loops_per_jiffy_ref = *lpj;
 914		tsc_khz_ref = tsc_khz;
 915	}
 
 916	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 917			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 918		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 
 919
 920		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 921		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 922			mark_tsc_unstable("cpufreq changes");
 
 
 923	}
 924
 925	set_cyc2ns_scale(tsc_khz, freq->cpu);
 926
 927	return 0;
 928}
 929
 930static struct notifier_block time_cpufreq_notifier_block = {
 931	.notifier_call  = time_cpufreq_notifier
 932};
 933
 934static int __init cpufreq_tsc(void)
 935{
 936	if (!cpu_has_tsc)
 937		return 0;
 938	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 939		return 0;
 940	cpufreq_register_notifier(&time_cpufreq_notifier_block,
 941				CPUFREQ_TRANSITION_NOTIFIER);
 942	return 0;
 943}
 944
 945core_initcall(cpufreq_tsc);
 946
 947#endif /* CONFIG_CPU_FREQ */
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949/* clocksource code */
 950
 951static struct clocksource clocksource_tsc;
 
 
 
 952
 953/*
 954 * We compare the TSC to the cycle_last value in the clocksource
 955 * structure to avoid a nasty time-warp. This can be observed in a
 956 * very small window right after one CPU updated cycle_last under
 957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 958 * is smaller than the cycle_last reference value due to a TSC which
 959 * is slighty behind. This delta is nowhere else observable, but in
 960 * that case it results in a forward time jump in the range of hours
 961 * due to the unsigned delta calculation of the time keeping core
 962 * code, which is necessary to support wrapping clocksources like pm
 963 * timer.
 
 
 
 
 964 */
 965static cycle_t read_tsc(struct clocksource *cs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966{
 967	cycle_t ret = (cycle_t)get_cycles();
 
 968
 969	return ret >= clocksource_tsc.cycle_last ?
 970		ret : clocksource_tsc.cycle_last;
 971}
 972
 973static void resume_tsc(struct clocksource *cs)
 974{
 975	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
 976		clocksource_tsc.cycle_last = 0;
 977}
 978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979static struct clocksource clocksource_tsc = {
 980	.name                   = "tsc",
 981	.rating                 = 300,
 982	.read                   = read_tsc,
 983	.resume			= resume_tsc,
 984	.mask                   = CLOCKSOURCE_MASK(64),
 985	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
 986				  CLOCK_SOURCE_MUST_VERIFY,
 987	.archdata               = { .vclock_mode = VCLOCK_TSC },
 
 
 
 
 
 
 988};
 989
 990void mark_tsc_unstable(char *reason)
 991{
 992	if (!tsc_unstable) {
 993		tsc_unstable = 1;
 
 
 
 994		clear_sched_clock_stable();
 995		disable_sched_clock_irqtime();
 996		pr_info("Marking TSC unstable due to %s\n", reason);
 997		/* Change only the rating, when not registered */
 998		if (clocksource_tsc.mult)
 999			clocksource_mark_unstable(&clocksource_tsc);
1000		else {
1001			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1002			clocksource_tsc.rating = 0;
1003		}
1004	}
1005}
1006
1007EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1008
 
 
 
 
 
 
1009static void __init check_system_tsc_reliable(void)
1010{
1011#ifdef CONFIG_MGEODE_LX
1012	/* RTSC counts during suspend */
 
1013#define RTSC_SUSP 0x100
1014	unsigned long res_low, res_high;
1015
1016	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1017	/* Geode_LX - the OLPC CPU has a very reliable TSC */
1018	if (res_low & RTSC_SUSP)
1019		tsc_clocksource_reliable = 1;
 
1020#endif
1021	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1022		tsc_clocksource_reliable = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023}
1024
1025/*
1026 * Make an educated guess if the TSC is trustworthy and synchronized
1027 * over all CPUs.
1028 */
1029int unsynchronized_tsc(void)
1030{
1031	if (!cpu_has_tsc || tsc_unstable)
1032		return 1;
1033
1034#ifdef CONFIG_SMP
1035	if (apic_is_clustered_box())
1036		return 1;
1037#endif
1038
1039	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1040		return 0;
1041
1042	if (tsc_clocksource_reliable)
1043		return 0;
1044	/*
1045	 * Intel systems are normally all synchronized.
1046	 * Exceptions must mark TSC as unstable:
1047	 */
1048	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1049		/* assume multi socket systems are not synchronized: */
1050		if (num_possible_cpus() > 1)
1051			return 1;
1052	}
1053
1054	return 0;
1055}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058static void tsc_refine_calibration_work(struct work_struct *work);
1059static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1060/**
1061 * tsc_refine_calibration_work - Further refine tsc freq calibration
1062 * @work - ignored.
1063 *
1064 * This functions uses delayed work over a period of a
1065 * second to further refine the TSC freq value. Since this is
1066 * timer based, instead of loop based, we don't block the boot
1067 * process while this longer calibration is done.
1068 *
1069 * If there are any calibration anomalies (too many SMIs, etc),
1070 * or the refined calibration is off by 1% of the fast early
1071 * calibration, we throw out the new calibration and use the
1072 * early calibration.
1073 */
1074static void tsc_refine_calibration_work(struct work_struct *work)
1075{
1076	static u64 tsc_start = -1, ref_start;
1077	static int hpet;
1078	u64 tsc_stop, ref_stop, delta;
1079	unsigned long freq;
 
1080
1081	/* Don't bother refining TSC on unstable systems */
1082	if (check_tsc_unstable())
1083		goto out;
1084
1085	/*
1086	 * Since the work is started early in boot, we may be
1087	 * delayed the first time we expire. So set the workqueue
1088	 * again once we know timers are working.
1089	 */
1090	if (tsc_start == -1) {
 
1091		/*
1092		 * Only set hpet once, to avoid mixing hardware
1093		 * if the hpet becomes enabled later.
1094		 */
1095		hpet = is_hpet_enabled();
 
1096		schedule_delayed_work(&tsc_irqwork, HZ);
1097		tsc_start = tsc_read_refs(&ref_start, hpet);
1098		return;
1099	}
1100
1101	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1102
1103	/* hpet or pmtimer available ? */
1104	if (ref_start == ref_stop)
1105		goto out;
1106
1107	/* Check, whether the sampling was disturbed by an SMI */
1108	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1109		goto out;
1110
1111	delta = tsc_stop - tsc_start;
1112	delta *= 1000000LL;
1113	if (hpet)
1114		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1115	else
1116		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1117
1118	/* Make sure we're within 1% */
1119	if (abs(tsc_khz - freq) > tsc_khz/100)
1120		goto out;
1121
1122	tsc_khz = freq;
1123	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1124		(unsigned long)tsc_khz / 1000,
1125		(unsigned long)tsc_khz % 1000);
1126
 
 
 
 
 
 
 
1127out:
 
 
 
 
 
1128	clocksource_register_khz(&clocksource_tsc, tsc_khz);
 
 
1129}
1130
1131
1132static int __init init_tsc_clocksource(void)
1133{
1134	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1135		return 0;
1136
1137	if (tsc_clocksource_reliable)
1138		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1139	/* lower the rating if we already know its unstable: */
1140	if (check_tsc_unstable()) {
1141		clocksource_tsc.rating = 0;
1142		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1143	}
1144
1145	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1146		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1147
1148	/*
1149	 * Trust the results of the earlier calibration on systems
1150	 * exporting a reliable TSC.
1151	 */
1152	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 
 
1153		clocksource_register_khz(&clocksource_tsc, tsc_khz);
 
 
1154		return 0;
1155	}
1156
1157	schedule_delayed_work(&tsc_irqwork, 0);
1158	return 0;
1159}
1160/*
1161 * We use device_initcall here, to ensure we run after the hpet
1162 * is fully initialized, which may occur at fs_initcall time.
1163 */
1164device_initcall(init_tsc_clocksource);
1165
1166void __init tsc_init(void)
1167{
1168	u64 lpj;
1169	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
1170
1171	x86_init.timers.tsc_pre_init();
 
 
 
 
 
 
 
 
1172
1173	if (!cpu_has_tsc)
1174		return;
1175
1176	tsc_khz = x86_platform.calibrate_tsc();
1177	cpu_khz = tsc_khz;
 
1178
1179	if (!tsc_khz) {
1180		mark_tsc_unstable("could not calculate TSC khz");
1181		return;
 
1182	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183
1184	pr_info("Detected %lu.%03lu MHz processor\n",
1185		(unsigned long)cpu_khz / 1000,
1186		(unsigned long)cpu_khz % 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187
 
 
1188	/*
1189	 * Secondary CPUs do not run through tsc_init(), so set up
1190	 * all the scale factors for all CPUs, assuming the same
1191	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1192	 * up if their speed diverges)
1193	 */
1194	for_each_possible_cpu(cpu) {
1195		cyc2ns_init(cpu);
1196		set_cyc2ns_scale(cpu_khz, cpu);
1197	}
1198
1199	if (tsc_disabled > 0)
 
1200		return;
 
1201
1202	/* now allow native_sched_clock() to use rdtsc */
 
 
 
 
 
 
 
 
1203
1204	tsc_disabled = 0;
1205	static_key_slow_inc(&__use_tsc);
1206
1207	if (!no_sched_irq_time)
1208		enable_sched_clock_irqtime();
1209
1210	lpj = ((u64)tsc_khz * 1000);
1211	do_div(lpj, HZ);
1212	lpj_fine = lpj;
1213
1214	use_tsc_delay();
1215
1216	if (unsynchronized_tsc())
1217		mark_tsc_unstable("TSCs unsynchronized");
 
 
1218
1219	check_system_tsc_reliable();
 
 
 
 
1220}
1221
1222#ifdef CONFIG_SMP
1223/*
1224 * If we have a constant TSC and are using the TSC for the delay loop,
1225 * we can skip clock calibration if another cpu in the same socket has already
1226 * been calibrated. This assumes that CONSTANT_TSC applies to all
1227 * cpus in the socket - this should be a safe assumption.
1228 */
1229unsigned long calibrate_delay_is_known(void)
1230{
1231	int i, cpu = smp_processor_id();
 
 
1232
1233	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1234		return 0;
1235
1236	for_each_online_cpu(i)
1237		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1238			return cpu_data(i).loops_per_jiffy;
1239	return 0;
1240}
1241#endif