Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#define pr_fmt(fmt)	"rtas: " fmt
  11
 
  12#include <linux/capability.h>
  13#include <linux/delay.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
 
  16#include <linux/kernel.h>
 
  17#include <linux/memblock.h>
 
  18#include <linux/of.h>
  19#include <linux/of_fdt.h>
  20#include <linux/reboot.h>
  21#include <linux/sched.h>
  22#include <linux/security.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/stdarg.h>
  26#include <linux/syscalls.h>
  27#include <linux/types.h>
  28#include <linux/uaccess.h>
 
  29
  30#include <asm/delay.h>
  31#include <asm/firmware.h>
  32#include <asm/interrupt.h>
  33#include <asm/machdep.h>
  34#include <asm/mmu.h>
  35#include <asm/page.h>
 
  36#include <asm/rtas.h>
  37#include <asm/time.h>
 
  38#include <asm/udbg.h>
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/* This is here deliberately so it's only used in this file */
  41void enter_rtas(unsigned long);
  42
  43static inline void do_enter_rtas(unsigned long args)
 
 
 
 
 
 
  44{
  45	unsigned long msr;
  46
  47	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48	 * Make sure MSR[RI] is currently enabled as it will be forced later
  49	 * in enter_rtas.
  50	 */
  51	msr = mfmsr();
  52	BUG_ON(!(msr & MSR_RI));
  53
  54	BUG_ON(!irqs_disabled());
  55
  56	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
  57
  58	enter_rtas(args);
  59
  60	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
 
  61}
  62
  63struct rtas_t rtas = {
  64	.lock = __ARCH_SPIN_LOCK_UNLOCKED
  65};
  66EXPORT_SYMBOL(rtas);
  67
  68DEFINE_SPINLOCK(rtas_data_buf_lock);
  69EXPORT_SYMBOL(rtas_data_buf_lock);
  70
  71char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
  72EXPORT_SYMBOL(rtas_data_buf);
  73
  74unsigned long rtas_rmo_buf;
  75
  76/*
  77 * If non-NULL, this gets called when the kernel terminates.
  78 * This is done like this so rtas_flash can be a module.
  79 */
  80void (*rtas_flash_term_hook)(int);
  81EXPORT_SYMBOL(rtas_flash_term_hook);
  82
  83/* RTAS use home made raw locking instead of spin_lock_irqsave
  84 * because those can be called from within really nasty contexts
  85 * such as having the timebase stopped which would lockup with
  86 * normal locks and spinlock debugging enabled
  87 */
  88static unsigned long lock_rtas(void)
  89{
  90	unsigned long flags;
  91
  92	local_irq_save(flags);
  93	preempt_disable();
  94	arch_spin_lock(&rtas.lock);
  95	return flags;
  96}
  97
  98static void unlock_rtas(unsigned long flags)
  99{
 100	arch_spin_unlock(&rtas.lock);
 101	local_irq_restore(flags);
 102	preempt_enable();
 103}
 104
 105/*
 106 * call_rtas_display_status and call_rtas_display_status_delay
 107 * are designed only for very early low-level debugging, which
 108 * is why the token is hard-coded to 10.
 109 */
 110static void call_rtas_display_status(unsigned char c)
 111{
 112	unsigned long s;
 113
 114	if (!rtas.base)
 115		return;
 116
 117	s = lock_rtas();
 118	rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
 119	unlock_rtas(s);
 120}
 121
 122static void call_rtas_display_status_delay(char c)
 123{
 124	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 125	static int width = 16;
 126
 127	if (c == '\n') {	
 128		while (width-- > 0)
 129			call_rtas_display_status(' ');
 130		width = 16;
 131		mdelay(500);
 132		pending_newline = 1;
 133	} else {
 134		if (pending_newline) {
 135			call_rtas_display_status('\r');
 136			call_rtas_display_status('\n');
 137		} 
 138		pending_newline = 0;
 139		if (width--) {
 140			call_rtas_display_status(c);
 141			udelay(10000);
 142		}
 143	}
 144}
 145
 146void __init udbg_init_rtas_panel(void)
 147{
 148	udbg_putc = call_rtas_display_status_delay;
 149}
 150
 151#ifdef CONFIG_UDBG_RTAS_CONSOLE
 152
 153/* If you think you're dying before early_init_dt_scan_rtas() does its
 154 * work, you can hard code the token values for your firmware here and
 155 * hardcode rtas.base/entry etc.
 156 */
 157static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 158static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 159
 160static void udbg_rtascon_putc(char c)
 161{
 162	int tries;
 163
 164	if (!rtas.base)
 165		return;
 166
 167	/* Add CRs before LFs */
 168	if (c == '\n')
 169		udbg_rtascon_putc('\r');
 170
 171	/* if there is more than one character to be displayed, wait a bit */
 172	for (tries = 0; tries < 16; tries++) {
 173		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 174			break;
 175		udelay(1000);
 176	}
 177}
 178
 179static int udbg_rtascon_getc_poll(void)
 180{
 181	int c;
 182
 183	if (!rtas.base)
 184		return -1;
 185
 186	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 187		return -1;
 188
 189	return c;
 190}
 191
 192static int udbg_rtascon_getc(void)
 193{
 194	int c;
 195
 196	while ((c = udbg_rtascon_getc_poll()) == -1)
 197		;
 198
 199	return c;
 200}
 201
 202
 203void __init udbg_init_rtas_console(void)
 204{
 205	udbg_putc = udbg_rtascon_putc;
 206	udbg_getc = udbg_rtascon_getc;
 207	udbg_getc_poll = udbg_rtascon_getc_poll;
 208}
 209#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 210
 211void rtas_progress(char *s, unsigned short hex)
 212{
 213	struct device_node *root;
 214	int width;
 215	const __be32 *p;
 216	char *os;
 217	static int display_character, set_indicator;
 218	static int display_width, display_lines, form_feed;
 219	static const int *row_width;
 220	static DEFINE_SPINLOCK(progress_lock);
 221	static int current_line;
 222	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 223
 224	if (!rtas.base)
 225		return;
 226
 227	if (display_width == 0) {
 228		display_width = 0x10;
 229		if ((root = of_find_node_by_path("/rtas"))) {
 230			if ((p = of_get_property(root,
 231					"ibm,display-line-length", NULL)))
 232				display_width = be32_to_cpu(*p);
 233			if ((p = of_get_property(root,
 234					"ibm,form-feed", NULL)))
 235				form_feed = be32_to_cpu(*p);
 236			if ((p = of_get_property(root,
 237					"ibm,display-number-of-lines", NULL)))
 238				display_lines = be32_to_cpu(*p);
 239			row_width = of_get_property(root,
 240					"ibm,display-truncation-length", NULL);
 241			of_node_put(root);
 242		}
 243		display_character = rtas_token("display-character");
 244		set_indicator = rtas_token("set-indicator");
 245	}
 246
 247	if (display_character == RTAS_UNKNOWN_SERVICE) {
 248		/* use hex display if available */
 249		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 250			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 251		return;
 252	}
 253
 254	spin_lock(&progress_lock);
 255
 256	/*
 257	 * Last write ended with newline, but we didn't print it since
 258	 * it would just clear the bottom line of output. Print it now
 259	 * instead.
 260	 *
 261	 * If no newline is pending and form feed is supported, clear the
 262	 * display with a form feed; otherwise, print a CR to start output
 263	 * at the beginning of the line.
 264	 */
 265	if (pending_newline) {
 266		rtas_call(display_character, 1, 1, NULL, '\r');
 267		rtas_call(display_character, 1, 1, NULL, '\n');
 268		pending_newline = 0;
 269	} else {
 270		current_line = 0;
 271		if (form_feed)
 272			rtas_call(display_character, 1, 1, NULL,
 273				  (char)form_feed);
 274		else
 275			rtas_call(display_character, 1, 1, NULL, '\r');
 276	}
 277 
 278	if (row_width)
 279		width = row_width[current_line];
 280	else
 281		width = display_width;
 282	os = s;
 283	while (*os) {
 284		if (*os == '\n' || *os == '\r') {
 285			/* If newline is the last character, save it
 286			 * until next call to avoid bumping up the
 287			 * display output.
 288			 */
 289			if (*os == '\n' && !os[1]) {
 290				pending_newline = 1;
 291				current_line++;
 292				if (current_line > display_lines-1)
 293					current_line = display_lines-1;
 294				spin_unlock(&progress_lock);
 295				return;
 296			}
 297 
 298			/* RTAS wants CR-LF, not just LF */
 299 
 300			if (*os == '\n') {
 301				rtas_call(display_character, 1, 1, NULL, '\r');
 302				rtas_call(display_character, 1, 1, NULL, '\n');
 303			} else {
 304				/* CR might be used to re-draw a line, so we'll
 305				 * leave it alone and not add LF.
 306				 */
 307				rtas_call(display_character, 1, 1, NULL, *os);
 308			}
 309 
 310			if (row_width)
 311				width = row_width[current_line];
 312			else
 313				width = display_width;
 314		} else {
 315			width--;
 316			rtas_call(display_character, 1, 1, NULL, *os);
 317		}
 318 
 319		os++;
 320 
 321		/* if we overwrite the screen length */
 322		if (width <= 0)
 323			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 324				os++;
 325	}
 326 
 327	spin_unlock(&progress_lock);
 328}
 329EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */
 330
 331int rtas_token(const char *service)
 332{
 
 333	const __be32 *tokp;
 
 334	if (rtas.dev == NULL)
 335		return RTAS_UNKNOWN_SERVICE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336	tokp = of_get_property(rtas.dev, service, NULL);
 337	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
 338}
 339EXPORT_SYMBOL(rtas_token);
 340
 341int rtas_service_present(const char *service)
 342{
 343	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
 344}
 345EXPORT_SYMBOL(rtas_service_present);
 346
 347#ifdef CONFIG_RTAS_ERROR_LOGGING
 348
 349static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
 350
 351/*
 352 * Return the firmware-specified size of the error log buffer
 353 *  for all rtas calls that require an error buffer argument.
 354 *  This includes 'check-exception' and 'rtas-last-error'.
 355 */
 356int rtas_get_error_log_max(void)
 357{
 358	return rtas_error_log_max;
 359}
 360EXPORT_SYMBOL(rtas_get_error_log_max);
 361
 362static void __init init_error_log_max(void)
 363{
 364	static const char propname[] __initconst = "rtas-error-log-max";
 365	u32 max;
 366
 367	if (of_property_read_u32(rtas.dev, propname, &max)) {
 368		pr_warn("%s not found, using default of %u\n",
 369			propname, RTAS_ERROR_LOG_MAX);
 370		max = RTAS_ERROR_LOG_MAX;
 371	}
 372
 373	if (max > RTAS_ERROR_LOG_MAX) {
 374		pr_warn("%s = %u, clamping max error log size to %u\n",
 375			propname, max, RTAS_ERROR_LOG_MAX);
 376		max = RTAS_ERROR_LOG_MAX;
 377	}
 378
 379	rtas_error_log_max = max;
 380}
 381
 382
 383static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 384static int rtas_last_error_token;
 385
 386/** Return a copy of the detailed error text associated with the
 387 *  most recent failed call to rtas.  Because the error text
 388 *  might go stale if there are any other intervening rtas calls,
 389 *  this routine must be called atomically with whatever produced
 390 *  the error (i.e. with rtas.lock still held from the previous call).
 391 */
 392static char *__fetch_rtas_last_error(char *altbuf)
 393{
 
 394	struct rtas_args err_args, save_args;
 395	u32 bufsz;
 396	char *buf = NULL;
 397
 398	if (rtas_last_error_token == -1)
 
 
 399		return NULL;
 400
 401	bufsz = rtas_get_error_log_max();
 402
 403	err_args.token = cpu_to_be32(rtas_last_error_token);
 404	err_args.nargs = cpu_to_be32(2);
 405	err_args.nret = cpu_to_be32(1);
 406	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
 407	err_args.args[1] = cpu_to_be32(bufsz);
 408	err_args.args[2] = 0;
 409
 410	save_args = rtas.args;
 411	rtas.args = err_args;
 412
 413	do_enter_rtas(__pa(&rtas.args));
 414
 415	err_args = rtas.args;
 416	rtas.args = save_args;
 417
 418	/* Log the error in the unlikely case that there was one. */
 419	if (unlikely(err_args.args[2] == 0)) {
 420		if (altbuf) {
 421			buf = altbuf;
 422		} else {
 423			buf = rtas_err_buf;
 424			if (slab_is_available())
 425				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
 426		}
 427		if (buf)
 428			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
 429	}
 430
 431	return buf;
 432}
 433
 434#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
 435
 436#else /* CONFIG_RTAS_ERROR_LOGGING */
 437#define __fetch_rtas_last_error(x)	NULL
 438#define get_errorlog_buffer()		NULL
 439static void __init init_error_log_max(void) {}
 440#endif
 441
 442
 443static void
 444va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
 445		      va_list list)
 446{
 447	int i;
 448
 449	args->token = cpu_to_be32(token);
 450	args->nargs = cpu_to_be32(nargs);
 451	args->nret  = cpu_to_be32(nret);
 452	args->rets  = &(args->args[nargs]);
 453
 454	for (i = 0; i < nargs; ++i)
 455		args->args[i] = cpu_to_be32(va_arg(list, __u32));
 456
 457	for (i = 0; i < nret; ++i)
 458		args->rets[i] = 0;
 459
 460	do_enter_rtas(__pa(args));
 461}
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
 464{
 465	va_list list;
 466
 467	va_start(list, nret);
 468	va_rtas_call_unlocked(args, token, nargs, nret, list);
 469	va_end(list);
 470}
 471
 472static int ibm_open_errinjct_token;
 473static int ibm_errinjct_token;
 
 
 
 474
 475/**
 476 * rtas_call() - Invoke an RTAS firmware function.
 477 * @token: Identifies the function being invoked.
 478 * @nargs: Number of input parameters. Does not include token.
 479 * @nret: Number of output parameters, including the call status.
 480 * @outputs: Array of @nret output words.
 481 * @....: List of @nargs input parameters.
 482 *
 483 * Invokes the RTAS function indicated by @token, which the caller
 484 * should obtain via rtas_token().
 485 *
 486 * The @nargs and @nret arguments must match the number of input and
 487 * output parameters specified for the RTAS function.
 488 *
 489 * rtas_call() returns RTAS status codes, not conventional Linux errno
 490 * values. Callers must translate any failure to an appropriate errno
 491 * in syscall context. Most callers of RTAS functions that can return
 492 * -2 or 990x should use rtas_busy_delay() to correctly handle those
 493 * statuses before calling again.
 494 *
 495 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
 496 * Codes of the PAPR and CHRP specifications.
 497 *
 498 * Context: Process context preferably, interrupt context if
 499 *          necessary.  Acquires an internal spinlock and may perform
 500 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
 501 *          context.
 502 * Return:
 503 * *                          0 - RTAS function call succeeded.
 504 * *                         -1 - RTAS function encountered a hardware or
 505 *                                platform error, or the token is invalid,
 506 *                                or the function is restricted by kernel policy.
 507 * *                         -2 - Specs say "A necessary hardware device was busy,
 508 *                                and the requested function could not be
 509 *                                performed. The operation should be retried at
 510 *                                a later time." This is misleading, at least with
 511 *                                respect to current RTAS implementations. What it
 512 *                                usually means in practice is that the function
 513 *                                could not be completed while meeting RTAS's
 514 *                                deadline for returning control to the OS (250us
 515 *                                for PAPR/PowerVM, typically), but the call may be
 516 *                                immediately reattempted to resume work on it.
 517 * *                         -3 - Parameter error.
 518 * *                         -7 - Unexpected state change.
 519 * *                9000...9899 - Vendor-specific success codes.
 520 * *                9900...9905 - Advisory extended delay. Caller should try
 521 *                                again after ~10^x ms has elapsed, where x is
 522 *                                the last digit of the status [0-5]. Again going
 523 *                                beyond the PAPR text, 990x on PowerVM indicates
 524 *                                contention for RTAS-internal resources. Other
 525 *                                RTAS call sequences in progress should be
 526 *                                allowed to complete before reattempting the
 527 *                                call.
 528 * *                      -9000 - Multi-level isolation error.
 529 * *              -9999...-9004 - Vendor-specific error codes.
 530 * * Additional negative values - Function-specific error.
 531 * * Additional positive values - Function-specific success.
 532 */
 533int rtas_call(int token, int nargs, int nret, int *outputs, ...)
 534{
 
 535	va_list list;
 536	int i;
 537	unsigned long s;
 538	struct rtas_args *rtas_args;
 539	char *buff_copy = NULL;
 540	int ret;
 541
 542	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
 543		return -1;
 544
 545	if (token == ibm_open_errinjct_token || token == ibm_errinjct_token) {
 546		/*
 547		 * It would be nicer to not discard the error value
 548		 * from security_locked_down(), but callers expect an
 549		 * RTAS status, not an errno.
 550		 */
 551		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
 552			return -1;
 553	}
 554
 555	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
 556		WARN_ON_ONCE(1);
 557		return -1;
 558	}
 559
 560	s = lock_rtas();
 
 561
 562	/* We use the global rtas args buffer */
 563	rtas_args = &rtas.args;
 564
 565	va_start(list, outputs);
 566	va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
 567	va_end(list);
 568
 569	/* A -1 return code indicates that the last command couldn't
 570	   be completed due to a hardware error. */
 571	if (be32_to_cpu(rtas_args->rets[0]) == -1)
 572		buff_copy = __fetch_rtas_last_error(NULL);
 573
 574	if (nret > 1 && outputs != NULL)
 575		for (i = 0; i < nret-1; ++i)
 576			outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
 577	ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
 578
 579	unlock_rtas(s);
 
 580
 581	if (buff_copy) {
 582		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
 583		if (slab_is_available())
 584			kfree(buff_copy);
 585	}
 586	return ret;
 587}
 588EXPORT_SYMBOL(rtas_call);
 589
 590/**
 591 * rtas_busy_delay_time() - From an RTAS status value, calculate the
 592 *                          suggested delay time in milliseconds.
 593 *
 594 * @status: a value returned from rtas_call() or similar APIs which return
 595 *          the status of a RTAS function call.
 596 *
 597 * Context: Any context.
 598 *
 599 * Return:
 600 * * 100000 - If @status is 9905.
 601 * * 10000  - If @status is 9904.
 602 * * 1000   - If @status is 9903.
 603 * * 100    - If @status is 9902.
 604 * * 10     - If @status is 9901.
 605 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
 606 *            some callers depend on this behavior, and the worst outcome
 607 *            is that they will delay for longer than necessary.
 608 * * 0      - If @status is not a busy or extended delay value.
 609 */
 610unsigned int rtas_busy_delay_time(int status)
 611{
 612	int order;
 613	unsigned int ms = 0;
 614
 615	if (status == RTAS_BUSY) {
 616		ms = 1;
 617	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
 618		   status <= RTAS_EXTENDED_DELAY_MAX) {
 619		order = status - RTAS_EXTENDED_DELAY_MIN;
 620		for (ms = 1; order > 0; order--)
 621			ms *= 10;
 622	}
 623
 624	return ms;
 625}
 626EXPORT_SYMBOL(rtas_busy_delay_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627
 628/**
 629 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
 630 *
 631 * @status: a value returned from rtas_call() or similar APIs which return
 632 *          the status of a RTAS function call.
 633 *
 634 * Context: Process context. May sleep or schedule.
 635 *
 636 * Return:
 637 * * true  - @status is RTAS_BUSY or an extended delay hint. The
 638 *           caller may assume that the CPU has been yielded if necessary,
 639 *           and that an appropriate delay for @status has elapsed.
 640 *           Generally the caller should reattempt the RTAS call which
 641 *           yielded @status.
 642 *
 643 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
 644 *           caller is responsible for handling @status.
 645 */
 646bool rtas_busy_delay(int status)
 647{
 648	unsigned int ms;
 649	bool ret;
 650
 
 
 
 
 
 
 651	switch (status) {
 652	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
 653		ret = true;
 654		ms = rtas_busy_delay_time(status);
 655		/*
 656		 * The extended delay hint can be as high as 100 seconds.
 657		 * Surely any function returning such a status is either
 658		 * buggy or isn't going to be significantly slowed by us
 659		 * polling at 1HZ. Clamp the sleep time to one second.
 660		 */
 661		ms = clamp(ms, 1U, 1000U);
 662		/*
 663		 * The delay hint is an order-of-magnitude suggestion, not
 664		 * a minimum. It is fine, possibly even advantageous, for
 665		 * us to pause for less time than hinted. For small values,
 666		 * use usleep_range() to ensure we don't sleep much longer
 667		 * than actually needed.
 668		 *
 669		 * See Documentation/timers/timers-howto.rst for
 670		 * explanation of the threshold used here. In effect we use
 671		 * usleep_range() for 9900 and 9901, msleep() for
 672		 * 9902-9905.
 673		 */
 674		if (ms <= 20)
 675			usleep_range(ms * 100, ms * 1000);
 676		else
 677			msleep(ms);
 678		break;
 679	case RTAS_BUSY:
 680		ret = true;
 681		/*
 682		 * We should call again immediately if there's no other
 683		 * work to do.
 684		 */
 685		cond_resched();
 686		break;
 687	default:
 688		ret = false;
 689		/*
 690		 * Not a busy or extended delay status; the caller should
 691		 * handle @status itself. Ensure we warn on misuses in
 692		 * atomic context regardless.
 693		 */
 694		might_sleep();
 695		break;
 696	}
 697
 698	return ret;
 699}
 700EXPORT_SYMBOL(rtas_busy_delay);
 701
 702static int rtas_error_rc(int rtas_rc)
 703{
 704	int rc;
 705
 706	switch (rtas_rc) {
 707		case -1: 		/* Hardware Error */
 708			rc = -EIO;
 709			break;
 710		case -3:		/* Bad indicator/domain/etc */
 711			rc = -EINVAL;
 712			break;
 713		case -9000:		/* Isolation error */
 714			rc = -EFAULT;
 715			break;
 716		case -9001:		/* Outstanding TCE/PTE */
 717			rc = -EEXIST;
 718			break;
 719		case -9002:		/* No usable slot */
 720			rc = -ENODEV;
 721			break;
 722		default:
 723			pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
 724			rc = -ERANGE;
 725			break;
 726	}
 727	return rc;
 728}
 
 729
 730int rtas_get_power_level(int powerdomain, int *level)
 731{
 732	int token = rtas_token("get-power-level");
 733	int rc;
 734
 735	if (token == RTAS_UNKNOWN_SERVICE)
 736		return -ENOENT;
 737
 738	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
 739		udelay(1);
 740
 741	if (rc < 0)
 742		return rtas_error_rc(rc);
 743	return rc;
 744}
 745EXPORT_SYMBOL(rtas_get_power_level);
 746
 747int rtas_set_power_level(int powerdomain, int level, int *setlevel)
 748{
 749	int token = rtas_token("set-power-level");
 750	int rc;
 751
 752	if (token == RTAS_UNKNOWN_SERVICE)
 753		return -ENOENT;
 754
 755	do {
 756		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
 757	} while (rtas_busy_delay(rc));
 758
 759	if (rc < 0)
 760		return rtas_error_rc(rc);
 761	return rc;
 762}
 763EXPORT_SYMBOL(rtas_set_power_level);
 764
 765int rtas_get_sensor(int sensor, int index, int *state)
 766{
 767	int token = rtas_token("get-sensor-state");
 768	int rc;
 769
 770	if (token == RTAS_UNKNOWN_SERVICE)
 771		return -ENOENT;
 772
 773	do {
 774		rc = rtas_call(token, 2, 2, state, sensor, index);
 775	} while (rtas_busy_delay(rc));
 776
 777	if (rc < 0)
 778		return rtas_error_rc(rc);
 779	return rc;
 780}
 781EXPORT_SYMBOL(rtas_get_sensor);
 782
 783int rtas_get_sensor_fast(int sensor, int index, int *state)
 784{
 785	int token = rtas_token("get-sensor-state");
 786	int rc;
 787
 788	if (token == RTAS_UNKNOWN_SERVICE)
 789		return -ENOENT;
 790
 791	rc = rtas_call(token, 2, 2, state, sensor, index);
 792	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 793				    rc <= RTAS_EXTENDED_DELAY_MAX));
 794
 795	if (rc < 0)
 796		return rtas_error_rc(rc);
 797	return rc;
 798}
 799
 800bool rtas_indicator_present(int token, int *maxindex)
 801{
 802	int proplen, count, i;
 803	const struct indicator_elem {
 804		__be32 token;
 805		__be32 maxindex;
 806	} *indicators;
 807
 808	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
 809	if (!indicators)
 810		return false;
 811
 812	count = proplen / sizeof(struct indicator_elem);
 813
 814	for (i = 0; i < count; i++) {
 815		if (__be32_to_cpu(indicators[i].token) != token)
 816			continue;
 817		if (maxindex)
 818			*maxindex = __be32_to_cpu(indicators[i].maxindex);
 819		return true;
 820	}
 821
 822	return false;
 823}
 824EXPORT_SYMBOL(rtas_indicator_present);
 825
 826int rtas_set_indicator(int indicator, int index, int new_value)
 827{
 828	int token = rtas_token("set-indicator");
 829	int rc;
 830
 831	if (token == RTAS_UNKNOWN_SERVICE)
 832		return -ENOENT;
 833
 834	do {
 835		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 836	} while (rtas_busy_delay(rc));
 837
 838	if (rc < 0)
 839		return rtas_error_rc(rc);
 840	return rc;
 841}
 842EXPORT_SYMBOL(rtas_set_indicator);
 843
 844/*
 845 * Ignoring RTAS extended delay
 846 */
 847int rtas_set_indicator_fast(int indicator, int index, int new_value)
 848{
 
 849	int rc;
 850	int token = rtas_token("set-indicator");
 851
 852	if (token == RTAS_UNKNOWN_SERVICE)
 853		return -ENOENT;
 854
 855	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 856
 857	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 858				    rc <= RTAS_EXTENDED_DELAY_MAX));
 859
 860	if (rc < 0)
 861		return rtas_error_rc(rc);
 862
 863	return rc;
 864}
 865
 866/**
 867 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
 868 *
 869 * @fw_status: RTAS call status will be placed here if not NULL.
 870 *
 871 * rtas_ibm_suspend_me() should be called only on a CPU which has
 872 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
 873 * should be waiting to return from H_JOIN.
 874 *
 875 * rtas_ibm_suspend_me() may suspend execution of the OS
 876 * indefinitely. Callers should take appropriate measures upon return, such as
 877 * resetting watchdog facilities.
 878 *
 879 * Callers may choose to retry this call if @fw_status is
 880 * %RTAS_THREADS_ACTIVE.
 881 *
 882 * Return:
 883 * 0          - The partition has resumed from suspend, possibly after
 884 *              migration to a different host.
 885 * -ECANCELED - The operation was aborted.
 886 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
 887 * -EBUSY     - Some other condition prevented the suspend from succeeding.
 888 * -EIO       - Hardware/platform error.
 889 */
 890int rtas_ibm_suspend_me(int *fw_status)
 891{
 
 892	int fwrc;
 893	int ret;
 894
 895	fwrc = rtas_call(rtas_token("ibm,suspend-me"), 0, 1, NULL);
 896
 897	switch (fwrc) {
 898	case 0:
 899		ret = 0;
 900		break;
 901	case RTAS_SUSPEND_ABORTED:
 902		ret = -ECANCELED;
 903		break;
 904	case RTAS_THREADS_ACTIVE:
 905		ret = -EAGAIN;
 906		break;
 907	case RTAS_NOT_SUSPENDABLE:
 908	case RTAS_OUTSTANDING_COPROC:
 909		ret = -EBUSY;
 910		break;
 911	case -1:
 912	default:
 913		ret = -EIO;
 914		break;
 915	}
 916
 917	if (fw_status)
 918		*fw_status = fwrc;
 919
 920	return ret;
 921}
 922
 923void __noreturn rtas_restart(char *cmd)
 924{
 925	if (rtas_flash_term_hook)
 926		rtas_flash_term_hook(SYS_RESTART);
 927	pr_emerg("system-reboot returned %d\n",
 928		 rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
 929	for (;;);
 930}
 931
 932void rtas_power_off(void)
 933{
 934	if (rtas_flash_term_hook)
 935		rtas_flash_term_hook(SYS_POWER_OFF);
 936	/* allow power on only with power button press */
 937	pr_emerg("power-off returned %d\n",
 938		 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 939	for (;;);
 940}
 941
 942void __noreturn rtas_halt(void)
 943{
 944	if (rtas_flash_term_hook)
 945		rtas_flash_term_hook(SYS_HALT);
 946	/* allow power on only with power button press */
 947	pr_emerg("power-off returned %d\n",
 948		 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 949	for (;;);
 950}
 951
 952/* Must be in the RMO region, so we place it here */
 953static char rtas_os_term_buf[2048];
 954static s32 ibm_os_term_token = RTAS_UNKNOWN_SERVICE;
 955
 956void rtas_os_term(char *str)
 957{
 
 
 958	int status;
 959
 960	/*
 961	 * Firmware with the ibm,extended-os-term property is guaranteed
 962	 * to always return from an ibm,os-term call. Earlier versions without
 963	 * this property may terminate the partition which we want to avoid
 964	 * since it interferes with panic_timeout.
 965	 */
 966	if (ibm_os_term_token == RTAS_UNKNOWN_SERVICE)
 
 967		return;
 968
 969	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
 970
 971	/*
 972	 * Keep calling as long as RTAS returns a "try again" status,
 973	 * but don't use rtas_busy_delay(), which potentially
 974	 * schedules.
 975	 */
 976	do {
 977		status = rtas_call(ibm_os_term_token, 1, 1, NULL,
 978				   __pa(rtas_os_term_buf));
 979	} while (rtas_busy_delay_time(status));
 980
 981	if (status != 0)
 982		pr_emerg("ibm,os-term call failed %d\n", status);
 983}
 984
 985/**
 986 * rtas_activate_firmware() - Activate a new version of firmware.
 987 *
 988 * Context: This function may sleep.
 989 *
 990 * Activate a new version of partition firmware. The OS must call this
 991 * after resuming from a partition hibernation or migration in order
 992 * to maintain the ability to perform live firmware updates. It's not
 993 * catastrophic for this method to be absent or to fail; just log the
 994 * condition in that case.
 995 */
 996void rtas_activate_firmware(void)
 997{
 998	int token;
 999	int fwrc;
1000
1001	token = rtas_token("ibm,activate-firmware");
1002	if (token == RTAS_UNKNOWN_SERVICE) {
1003		pr_notice("ibm,activate-firmware method unavailable\n");
1004		return;
1005	}
1006
 
 
1007	do {
1008		fwrc = rtas_call(token, 0, 1, NULL);
1009	} while (rtas_busy_delay(fwrc));
1010
 
 
1011	if (fwrc)
1012		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1013}
1014
1015/**
1016 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1017 *                          extended event log.
1018 * @log: RTAS error/event log
1019 * @section_id: two character section identifier
1020 *
1021 * Return: A pointer to the specified errorlog or NULL if not found.
1022 */
1023noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1024						      uint16_t section_id)
1025{
1026	struct rtas_ext_event_log_v6 *ext_log =
1027		(struct rtas_ext_event_log_v6 *)log->buffer;
1028	struct pseries_errorlog *sect;
1029	unsigned char *p, *log_end;
1030	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1031	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1032	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1033
1034	/* Check that we understand the format */
1035	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1036	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1037	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1038		return NULL;
1039
1040	log_end = log->buffer + ext_log_length;
1041	p = ext_log->vendor_log;
1042
1043	while (p < log_end) {
1044		sect = (struct pseries_errorlog *)p;
1045		if (pseries_errorlog_id(sect) == section_id)
1046			return sect;
1047		p += pseries_errorlog_length(sect);
1048	}
1049
1050	return NULL;
1051}
1052
1053/*
1054 * The sys_rtas syscall, as originally designed, allows root to pass
1055 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1056 * can be abused to write to arbitrary memory and do other things that
1057 * are potentially harmful to system integrity, and thus should only
1058 * be used inside the kernel and not exposed to userspace.
1059 *
1060 * All known legitimate users of the sys_rtas syscall will only ever
1061 * pass addresses that fall within the RMO buffer, and use a known
1062 * subset of RTAS calls.
1063 *
1064 * Accordingly, we filter RTAS requests to check that the call is
1065 * permitted, and that provided pointers fall within the RMO buffer.
1066 * The rtas_filters list contains an entry for each permitted call,
1067 * with the indexes of the parameters which are expected to contain
1068 * addresses and sizes of buffers allocated inside the RMO buffer.
 
 
1069 */
1070struct rtas_filter {
1071	const char *name;
1072	int token;
1073	/* Indexes into the args buffer, -1 if not used */
1074	int buf_idx1;
1075	int size_idx1;
1076	int buf_idx2;
1077	int size_idx2;
1078
1079	int fixed_size;
1080};
1081
1082static struct rtas_filter rtas_filters[] __ro_after_init = {
1083	{ "ibm,activate-firmware", -1, -1, -1, -1, -1 },
1084	{ "ibm,configure-connector", -1, 0, -1, 1, -1, 4096 },	/* Special cased */
1085	{ "display-character", -1, -1, -1, -1, -1 },
1086	{ "ibm,display-message", -1, 0, -1, -1, -1 },
1087	{ "ibm,errinjct", -1, 2, -1, -1, -1, 1024 },
1088	{ "ibm,close-errinjct", -1, -1, -1, -1, -1 },
1089	{ "ibm,open-errinjct", -1, -1, -1, -1, -1 },
1090	{ "ibm,get-config-addr-info2", -1, -1, -1, -1, -1 },
1091	{ "ibm,get-dynamic-sensor-state", -1, 1, -1, -1, -1 },
1092	{ "ibm,get-indices", -1, 2, 3, -1, -1 },
1093	{ "get-power-level", -1, -1, -1, -1, -1 },
1094	{ "get-sensor-state", -1, -1, -1, -1, -1 },
1095	{ "ibm,get-system-parameter", -1, 1, 2, -1, -1 },
1096	{ "get-time-of-day", -1, -1, -1, -1, -1 },
1097	{ "ibm,get-vpd", -1, 0, -1, 1, 2 },
1098	{ "ibm,lpar-perftools", -1, 2, 3, -1, -1 },
1099	{ "ibm,platform-dump", -1, 4, 5, -1, -1 },		/* Special cased */
1100	{ "ibm,read-slot-reset-state", -1, -1, -1, -1, -1 },
1101	{ "ibm,scan-log-dump", -1, 0, 1, -1, -1 },
1102	{ "ibm,set-dynamic-indicator", -1, 2, -1, -1, -1 },
1103	{ "ibm,set-eeh-option", -1, -1, -1, -1, -1 },
1104	{ "set-indicator", -1, -1, -1, -1, -1 },
1105	{ "set-power-level", -1, -1, -1, -1, -1 },
1106	{ "set-time-for-power-on", -1, -1, -1, -1, -1 },
1107	{ "ibm,set-system-parameter", -1, 1, -1, -1, -1 },
1108	{ "set-time-of-day", -1, -1, -1, -1, -1 },
1109#ifdef CONFIG_CPU_BIG_ENDIAN
1110	{ "ibm,suspend-me", -1, -1, -1, -1, -1 },
1111	{ "ibm,update-nodes", -1, 0, -1, -1, -1, 4096 },
1112	{ "ibm,update-properties", -1, 0, -1, -1, -1, 4096 },
1113#endif
1114	{ "ibm,physical-attestation", -1, 0, 1, -1, -1 },
1115};
1116
1117static bool in_rmo_buf(u32 base, u32 end)
1118{
1119	return base >= rtas_rmo_buf &&
1120		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1121		base <= end &&
1122		end >= rtas_rmo_buf &&
1123		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1124}
1125
1126static bool block_rtas_call(int token, int nargs,
1127			    struct rtas_args *args)
1128{
1129	int i;
1130
1131	for (i = 0; i < ARRAY_SIZE(rtas_filters); i++) {
1132		struct rtas_filter *f = &rtas_filters[i];
1133		u32 base, size, end;
1134
1135		if (token != f->token)
1136			continue;
1137
1138		if (f->buf_idx1 != -1) {
1139			base = be32_to_cpu(args->args[f->buf_idx1]);
1140			if (f->size_idx1 != -1)
1141				size = be32_to_cpu(args->args[f->size_idx1]);
1142			else if (f->fixed_size)
1143				size = f->fixed_size;
1144			else
1145				size = 1;
 
 
 
1146
1147			end = base + size - 1;
 
 
 
 
 
 
 
1148
1149			/*
1150			 * Special case for ibm,platform-dump - NULL buffer
1151			 * address is used to indicate end of dump processing
1152			 */
1153			if (!strcmp(f->name, "ibm,platform-dump") &&
1154			    base == 0)
1155				return false;
1156
1157			if (!in_rmo_buf(base, end))
1158				goto err;
1159		}
 
 
 
1160
1161		if (f->buf_idx2 != -1) {
1162			base = be32_to_cpu(args->args[f->buf_idx2]);
1163			if (f->size_idx2 != -1)
1164				size = be32_to_cpu(args->args[f->size_idx2]);
1165			else if (f->fixed_size)
1166				size = f->fixed_size;
1167			else
1168				size = 1;
1169			end = base + size - 1;
1170
1171			/*
1172			 * Special case for ibm,configure-connector where the
1173			 * address can be 0
1174			 */
1175			if (!strcmp(f->name, "ibm,configure-connector") &&
1176			    base == 0)
1177				return false;
 
 
1178
1179			if (!in_rmo_buf(base, end))
1180				goto err;
1181		}
 
 
 
1182
1183		return false;
 
1184	}
1185
 
1186err:
1187	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1188	pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1189			   token, nargs, current->comm);
1190	return true;
1191}
1192
1193static void __init rtas_syscall_filter_init(void)
1194{
1195	unsigned int i;
1196
1197	for (i = 0; i < ARRAY_SIZE(rtas_filters); i++)
1198		rtas_filters[i].token = rtas_token(rtas_filters[i].name);
1199}
1200
1201/* We assume to be passed big endian arguments */
1202SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1203{
 
 
1204	struct rtas_args args;
1205	unsigned long flags;
1206	char *buff_copy, *errbuf = NULL;
1207	int nargs, nret, token;
1208
1209	if (!capable(CAP_SYS_ADMIN))
1210		return -EPERM;
1211
1212	if (!rtas.entry)
1213		return -EINVAL;
1214
1215	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1216		return -EFAULT;
1217
1218	nargs = be32_to_cpu(args.nargs);
1219	nret  = be32_to_cpu(args.nret);
1220	token = be32_to_cpu(args.token);
1221
1222	if (nargs >= ARRAY_SIZE(args.args)
1223	    || nret > ARRAY_SIZE(args.args)
1224	    || nargs + nret > ARRAY_SIZE(args.args))
1225		return -EINVAL;
1226
1227	/* Copy in args. */
1228	if (copy_from_user(args.args, uargs->args,
1229			   nargs * sizeof(rtas_arg_t)) != 0)
1230		return -EFAULT;
1231
1232	if (token == RTAS_UNKNOWN_SERVICE)
 
 
 
 
 
1233		return -EINVAL;
1234
1235	args.rets = &args.args[nargs];
1236	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1237
1238	if (block_rtas_call(token, nargs, &args))
1239		return -EINVAL;
1240
1241	if (token == ibm_open_errinjct_token || token == ibm_errinjct_token) {
1242		int err;
1243
1244		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1245		if (err)
1246			return err;
1247	}
1248
1249	/* Need to handle ibm,suspend_me call specially */
1250	if (token == rtas_token("ibm,suspend-me")) {
1251
1252		/*
1253		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1254		 * endian, or at least the hcall within it requires it.
1255		 */
1256		int rc = 0;
1257		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1258		              | be32_to_cpu(args.args[1]);
1259		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1260		if (rc == -EAGAIN)
1261			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1262		else if (rc == -EIO)
1263			args.rets[0] = cpu_to_be32(-1);
1264		else if (rc)
1265			return rc;
1266		goto copy_return;
1267	}
1268
1269	buff_copy = get_errorlog_buffer();
1270
1271	flags = lock_rtas();
 
 
 
 
 
 
 
 
 
 
1272
1273	rtas.args = args;
1274	do_enter_rtas(__pa(&rtas.args));
1275	args = rtas.args;
1276
1277	/* A -1 return code indicates that the last command couldn't
1278	   be completed due to a hardware error. */
1279	if (be32_to_cpu(args.rets[0]) == -1)
1280		errbuf = __fetch_rtas_last_error(buff_copy);
1281
1282	unlock_rtas(flags);
 
 
 
 
1283
1284	if (buff_copy) {
1285		if (errbuf)
1286			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1287		kfree(buff_copy);
1288	}
1289
1290 copy_return:
1291	/* Copy out args. */
1292	if (copy_to_user(uargs->args + nargs,
1293			 args.args + nargs,
1294			 nret * sizeof(rtas_arg_t)) != 0)
1295		return -EFAULT;
1296
1297	return 0;
1298}
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300/*
1301 * Call early during boot, before mem init, to retrieve the RTAS
1302 * information from the device-tree and allocate the RMO buffer for userland
1303 * accesses.
1304 */
1305void __init rtas_initialize(void)
1306{
1307	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1308	u32 base, size, entry;
1309	int no_base, no_size, no_entry;
1310
1311	/* Get RTAS dev node and fill up our "rtas" structure with infos
1312	 * about it.
1313	 */
1314	rtas.dev = of_find_node_by_name(NULL, "rtas");
1315	if (!rtas.dev)
1316		return;
1317
1318	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1319	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1320	if (no_base || no_size) {
1321		of_node_put(rtas.dev);
1322		rtas.dev = NULL;
1323		return;
1324	}
1325
1326	rtas.base = base;
1327	rtas.size = size;
1328	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1329	rtas.entry = no_entry ? rtas.base : entry;
1330
1331	init_error_log_max();
1332
 
 
 
1333	/*
1334	 * Discover these now to avoid device tree lookups in the
1335	 * panic path.
1336	 */
1337	if (of_property_read_bool(rtas.dev, "ibm,extended-os-term"))
1338		ibm_os_term_token = rtas_token("ibm,os-term");
1339
1340	/* If RTAS was found, allocate the RMO buffer for it and look for
1341	 * the stop-self token if any
1342	 */
1343#ifdef CONFIG_PPC64
1344	if (firmware_has_feature(FW_FEATURE_LPAR))
1345		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1346#endif
1347	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
1348						 0, rtas_region);
1349	if (!rtas_rmo_buf)
1350		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1351		      PAGE_SIZE, &rtas_region);
1352
1353#ifdef CONFIG_RTAS_ERROR_LOGGING
1354	rtas_last_error_token = rtas_token("rtas-last-error");
1355#endif
1356	ibm_open_errinjct_token = rtas_token("ibm,open-errinjct");
1357	ibm_errinjct_token = rtas_token("ibm,errinjct");
1358	rtas_syscall_filter_init();
1359}
1360
1361int __init early_init_dt_scan_rtas(unsigned long node,
1362		const char *uname, int depth, void *data)
1363{
1364	const u32 *basep, *entryp, *sizep;
1365
1366	if (depth != 1 || strcmp(uname, "rtas") != 0)
1367		return 0;
1368
1369	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1370	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1371	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
1372
1373#ifdef CONFIG_PPC64
1374	/* need this feature to decide the crashkernel offset */
1375	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
1376		powerpc_firmware_features |= FW_FEATURE_LPAR;
1377#endif
1378
1379	if (basep && entryp && sizep) {
1380		rtas.base = *basep;
1381		rtas.entry = *entryp;
1382		rtas.size = *sizep;
1383	}
1384
1385#ifdef CONFIG_UDBG_RTAS_CONSOLE
1386	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1387	if (basep)
1388		rtas_putchar_token = *basep;
1389
1390	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
1391	if (basep)
1392		rtas_getchar_token = *basep;
1393
1394	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
1395	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
1396		udbg_init_rtas_console();
1397
1398#endif
1399
1400	/* break now */
1401	return 1;
1402}
1403
1404static arch_spinlock_t timebase_lock;
1405static u64 timebase = 0;
1406
1407void rtas_give_timebase(void)
1408{
1409	unsigned long flags;
1410
1411	local_irq_save(flags);
1412	hard_irq_disable();
1413	arch_spin_lock(&timebase_lock);
1414	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
1415	timebase = get_tb();
1416	arch_spin_unlock(&timebase_lock);
1417
1418	while (timebase)
1419		barrier();
1420	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
1421	local_irq_restore(flags);
1422}
1423
1424void rtas_take_timebase(void)
1425{
1426	while (!timebase)
1427		barrier();
1428	arch_spin_lock(&timebase_lock);
1429	set_tb(timebase >> 32, timebase & 0xffffffff);
1430	timebase = 0;
1431	arch_spin_unlock(&timebase_lock);
1432}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#define pr_fmt(fmt)	"rtas: " fmt
  11
  12#include <linux/bsearch.h>
  13#include <linux/capability.h>
  14#include <linux/delay.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/kconfig.h>
  18#include <linux/kernel.h>
  19#include <linux/lockdep.h>
  20#include <linux/memblock.h>
  21#include <linux/mutex.h>
  22#include <linux/of.h>
  23#include <linux/of_fdt.h>
  24#include <linux/reboot.h>
  25#include <linux/sched.h>
  26#include <linux/security.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/stdarg.h>
  30#include <linux/syscalls.h>
  31#include <linux/types.h>
  32#include <linux/uaccess.h>
  33#include <linux/xarray.h>
  34
  35#include <asm/delay.h>
  36#include <asm/firmware.h>
  37#include <asm/interrupt.h>
  38#include <asm/machdep.h>
  39#include <asm/mmu.h>
  40#include <asm/page.h>
  41#include <asm/rtas-work-area.h>
  42#include <asm/rtas.h>
  43#include <asm/time.h>
  44#include <asm/trace.h>
  45#include <asm/udbg.h>
  46
  47struct rtas_filter {
  48	/* Indexes into the args buffer, -1 if not used */
  49	const int buf_idx1;
  50	const int size_idx1;
  51	const int buf_idx2;
  52	const int size_idx2;
  53	/*
  54	 * Assumed buffer size per the spec if the function does not
  55	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
  56	 */
  57	const int fixed_size;
  58};
  59
  60/**
  61 * struct rtas_function - Descriptor for RTAS functions.
  62 *
  63 * @token: Value of @name if it exists under the /rtas node.
  64 * @name: Function name.
  65 * @filter: If non-NULL, invoking this function via the rtas syscall is
  66 *          generally allowed, and @filter describes constraints on the
  67 *          arguments. See also @banned_for_syscall_on_le.
  68 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
  69 *                            but specifically restricted on ppc64le. Such
  70 *                            functions are believed to have no users on
  71 *                            ppc64le, and we want to keep it that way. It does
  72 *                            not make sense for this to be set when @filter
  73 *                            is NULL.
  74 * @lock: Pointer to an optional dedicated per-function mutex. This
  75 *        should be set for functions that require multiple calls in
  76 *        sequence to complete a single operation, and such sequences
  77 *        will disrupt each other if allowed to interleave. Users of
  78 *        this function are required to hold the associated lock for
  79 *        the duration of the call sequence. Add an explanatory
  80 *        comment to the function table entry if setting this member.
  81 */
  82struct rtas_function {
  83	s32 token;
  84	const bool banned_for_syscall_on_le:1;
  85	const char * const name;
  86	const struct rtas_filter *filter;
  87	struct mutex *lock;
  88};
  89
  90/*
  91 * Per-function locks for sequence-based RTAS functions.
  92 */
  93static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
  94static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
  95static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
  96static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
  97static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
  98static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
  99DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
 100
 101static struct rtas_function rtas_function_table[] __ro_after_init = {
 102	[RTAS_FNIDX__CHECK_EXCEPTION] = {
 103		.name = "check-exception",
 104	},
 105	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
 106		.name = "display-character",
 107		.filter = &(const struct rtas_filter) {
 108			.buf_idx1 = -1, .size_idx1 = -1,
 109			.buf_idx2 = -1, .size_idx2 = -1,
 110		},
 111	},
 112	[RTAS_FNIDX__EVENT_SCAN] = {
 113		.name = "event-scan",
 114	},
 115	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
 116		.name = "freeze-time-base",
 117	},
 118	[RTAS_FNIDX__GET_POWER_LEVEL] = {
 119		.name = "get-power-level",
 120		.filter = &(const struct rtas_filter) {
 121			.buf_idx1 = -1, .size_idx1 = -1,
 122			.buf_idx2 = -1, .size_idx2 = -1,
 123		},
 124	},
 125	[RTAS_FNIDX__GET_SENSOR_STATE] = {
 126		.name = "get-sensor-state",
 127		.filter = &(const struct rtas_filter) {
 128			.buf_idx1 = -1, .size_idx1 = -1,
 129			.buf_idx2 = -1, .size_idx2 = -1,
 130		},
 131	},
 132	[RTAS_FNIDX__GET_TERM_CHAR] = {
 133		.name = "get-term-char",
 134	},
 135	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
 136		.name = "get-time-of-day",
 137		.filter = &(const struct rtas_filter) {
 138			.buf_idx1 = -1, .size_idx1 = -1,
 139			.buf_idx2 = -1, .size_idx2 = -1,
 140		},
 141	},
 142	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
 143		.name = "ibm,activate-firmware",
 144		.filter = &(const struct rtas_filter) {
 145			.buf_idx1 = -1, .size_idx1 = -1,
 146			.buf_idx2 = -1, .size_idx2 = -1,
 147		},
 148		/*
 149		 * PAPR+ as of v2.13 doesn't explicitly impose any
 150		 * restriction, but this typically requires multiple
 151		 * calls before success, and there's no reason to
 152		 * allow sequences to interleave.
 153		 */
 154		.lock = &rtas_ibm_activate_firmware_lock,
 155	},
 156	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
 157		.name = "ibm,cbe-start-ptcal",
 158	},
 159	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
 160		.name = "ibm,cbe-stop-ptcal",
 161	},
 162	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
 163		.name = "ibm,change-msi",
 164	},
 165	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
 166		.name = "ibm,close-errinjct",
 167		.filter = &(const struct rtas_filter) {
 168			.buf_idx1 = -1, .size_idx1 = -1,
 169			.buf_idx2 = -1, .size_idx2 = -1,
 170		},
 171	},
 172	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
 173		.name = "ibm,configure-bridge",
 174	},
 175	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
 176		.name = "ibm,configure-connector",
 177		.filter = &(const struct rtas_filter) {
 178			.buf_idx1 = 0, .size_idx1 = -1,
 179			.buf_idx2 = 1, .size_idx2 = -1,
 180			.fixed_size = 4096,
 181		},
 182	},
 183	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
 184		.name = "ibm,configure-kernel-dump",
 185	},
 186	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
 187		.name = "ibm,configure-pe",
 188	},
 189	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
 190		.name = "ibm,create-pe-dma-window",
 191	},
 192	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
 193		.name = "ibm,display-message",
 194		.filter = &(const struct rtas_filter) {
 195			.buf_idx1 = 0, .size_idx1 = -1,
 196			.buf_idx2 = -1, .size_idx2 = -1,
 197		},
 198	},
 199	[RTAS_FNIDX__IBM_ERRINJCT] = {
 200		.name = "ibm,errinjct",
 201		.filter = &(const struct rtas_filter) {
 202			.buf_idx1 = 2, .size_idx1 = -1,
 203			.buf_idx2 = -1, .size_idx2 = -1,
 204			.fixed_size = 1024,
 205		},
 206	},
 207	[RTAS_FNIDX__IBM_EXTI2C] = {
 208		.name = "ibm,exti2c",
 209	},
 210	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
 211		.name = "ibm,get-config-addr-info",
 212	},
 213	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
 214		.name = "ibm,get-config-addr-info2",
 215		.filter = &(const struct rtas_filter) {
 216			.buf_idx1 = -1, .size_idx1 = -1,
 217			.buf_idx2 = -1, .size_idx2 = -1,
 218		},
 219	},
 220	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
 221		.name = "ibm,get-dynamic-sensor-state",
 222		.filter = &(const struct rtas_filter) {
 223			.buf_idx1 = 1, .size_idx1 = -1,
 224			.buf_idx2 = -1, .size_idx2 = -1,
 225		},
 226		/*
 227		 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
 228		 * must not call ibm,get-dynamic-sensor-state with
 229		 * different inputs until a non-retry status has been
 230		 * returned.
 231		 */
 232		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
 233	},
 234	[RTAS_FNIDX__IBM_GET_INDICES] = {
 235		.name = "ibm,get-indices",
 236		.filter = &(const struct rtas_filter) {
 237			.buf_idx1 = 2, .size_idx1 = 3,
 238			.buf_idx2 = -1, .size_idx2 = -1,
 239		},
 240		/*
 241		 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
 242		 * interleave ibm,get-indices call sequences with
 243		 * different inputs.
 244		 */
 245		.lock = &rtas_ibm_get_indices_lock,
 246	},
 247	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
 248		.name = "ibm,get-rio-topology",
 249	},
 250	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
 251		.name = "ibm,get-system-parameter",
 252		.filter = &(const struct rtas_filter) {
 253			.buf_idx1 = 1, .size_idx1 = 2,
 254			.buf_idx2 = -1, .size_idx2 = -1,
 255		},
 256	},
 257	[RTAS_FNIDX__IBM_GET_VPD] = {
 258		.name = "ibm,get-vpd",
 259		.filter = &(const struct rtas_filter) {
 260			.buf_idx1 = 0, .size_idx1 = -1,
 261			.buf_idx2 = 1, .size_idx2 = 2,
 262		},
 263		/*
 264		 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
 265		 * should not be allowed to interleave.
 266		 */
 267		.lock = &rtas_ibm_get_vpd_lock,
 268	},
 269	[RTAS_FNIDX__IBM_GET_XIVE] = {
 270		.name = "ibm,get-xive",
 271	},
 272	[RTAS_FNIDX__IBM_INT_OFF] = {
 273		.name = "ibm,int-off",
 274	},
 275	[RTAS_FNIDX__IBM_INT_ON] = {
 276		.name = "ibm,int-on",
 277	},
 278	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
 279		.name = "ibm,io-quiesce-ack",
 280	},
 281	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
 282		.name = "ibm,lpar-perftools",
 283		.filter = &(const struct rtas_filter) {
 284			.buf_idx1 = 2, .size_idx1 = 3,
 285			.buf_idx2 = -1, .size_idx2 = -1,
 286		},
 287		/*
 288		 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
 289		 * only one call sequence in progress at a time.
 290		 */
 291		.lock = &rtas_ibm_lpar_perftools_lock,
 292	},
 293	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
 294		.name = "ibm,manage-flash-image",
 295	},
 296	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
 297		.name = "ibm,manage-storage-preservation",
 298	},
 299	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
 300		.name = "ibm,nmi-interlock",
 301	},
 302	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
 303		.name = "ibm,nmi-register",
 304	},
 305	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
 306		.name = "ibm,open-errinjct",
 307		.filter = &(const struct rtas_filter) {
 308			.buf_idx1 = -1, .size_idx1 = -1,
 309			.buf_idx2 = -1, .size_idx2 = -1,
 310		},
 311	},
 312	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
 313		.name = "ibm,open-sriov-allow-unfreeze",
 314	},
 315	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
 316		.name = "ibm,open-sriov-map-pe-number",
 317	},
 318	[RTAS_FNIDX__IBM_OS_TERM] = {
 319		.name = "ibm,os-term",
 320	},
 321	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
 322		.name = "ibm,partner-control",
 323	},
 324	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
 325		.name = "ibm,physical-attestation",
 326		.filter = &(const struct rtas_filter) {
 327			.buf_idx1 = 0, .size_idx1 = 1,
 328			.buf_idx2 = -1, .size_idx2 = -1,
 329		},
 330		/*
 331		 * This follows a sequence-based pattern similar to
 332		 * ibm,get-vpd et al. Since PAPR+ restricts
 333		 * interleaving call sequences for other functions of
 334		 * this style, assume the restriction applies here,
 335		 * even though it's not explicit in the spec.
 336		 */
 337		.lock = &rtas_ibm_physical_attestation_lock,
 338	},
 339	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
 340		.name = "ibm,platform-dump",
 341		.filter = &(const struct rtas_filter) {
 342			.buf_idx1 = 4, .size_idx1 = 5,
 343			.buf_idx2 = -1, .size_idx2 = -1,
 344		},
 345		/*
 346		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
 347		 * sequences of ibm,platform-dump are allowed if they
 348		 * are operating on different dump tags. So leave the
 349		 * lock pointer unset for now. This may need
 350		 * reconsideration if kernel-internal users appear.
 351		 */
 352	},
 353	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
 354		.name = "ibm,power-off-ups",
 355	},
 356	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
 357		.name = "ibm,query-interrupt-source-number",
 358	},
 359	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
 360		.name = "ibm,query-pe-dma-window",
 361	},
 362	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
 363		.name = "ibm,read-pci-config",
 364	},
 365	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
 366		.name = "ibm,read-slot-reset-state",
 367		.filter = &(const struct rtas_filter) {
 368			.buf_idx1 = -1, .size_idx1 = -1,
 369			.buf_idx2 = -1, .size_idx2 = -1,
 370		},
 371	},
 372	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
 373		.name = "ibm,read-slot-reset-state2",
 374	},
 375	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
 376		.name = "ibm,remove-pe-dma-window",
 377	},
 378	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
 379		/*
 380		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
 381		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
 382		 * implementations use the singular form in practice.
 383		 */
 384		.name = "ibm,reset-pe-dma-window",
 385	},
 386	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
 387		.name = "ibm,scan-log-dump",
 388		.filter = &(const struct rtas_filter) {
 389			.buf_idx1 = 0, .size_idx1 = 1,
 390			.buf_idx2 = -1, .size_idx2 = -1,
 391		},
 392	},
 393	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
 394		.name = "ibm,set-dynamic-indicator",
 395		.filter = &(const struct rtas_filter) {
 396			.buf_idx1 = 2, .size_idx1 = -1,
 397			.buf_idx2 = -1, .size_idx2 = -1,
 398		},
 399		/*
 400		 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
 401		 * this function with different inputs until a
 402		 * non-retry status has been returned.
 403		 */
 404		.lock = &rtas_ibm_set_dynamic_indicator_lock,
 405	},
 406	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
 407		.name = "ibm,set-eeh-option",
 408		.filter = &(const struct rtas_filter) {
 409			.buf_idx1 = -1, .size_idx1 = -1,
 410			.buf_idx2 = -1, .size_idx2 = -1,
 411		},
 412	},
 413	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
 414		.name = "ibm,set-slot-reset",
 415	},
 416	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
 417		.name = "ibm,set-system-parameter",
 418		.filter = &(const struct rtas_filter) {
 419			.buf_idx1 = 1, .size_idx1 = -1,
 420			.buf_idx2 = -1, .size_idx2 = -1,
 421		},
 422	},
 423	[RTAS_FNIDX__IBM_SET_XIVE] = {
 424		.name = "ibm,set-xive",
 425	},
 426	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
 427		.name = "ibm,slot-error-detail",
 428	},
 429	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
 430		.name = "ibm,suspend-me",
 431		.banned_for_syscall_on_le = true,
 432		.filter = &(const struct rtas_filter) {
 433			.buf_idx1 = -1, .size_idx1 = -1,
 434			.buf_idx2 = -1, .size_idx2 = -1,
 435		},
 436	},
 437	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
 438		.name = "ibm,tune-dma-parms",
 439	},
 440	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
 441		.name = "ibm,update-flash-64-and-reboot",
 442	},
 443	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
 444		.name = "ibm,update-nodes",
 445		.banned_for_syscall_on_le = true,
 446		.filter = &(const struct rtas_filter) {
 447			.buf_idx1 = 0, .size_idx1 = -1,
 448			.buf_idx2 = -1, .size_idx2 = -1,
 449			.fixed_size = 4096,
 450		},
 451	},
 452	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
 453		.name = "ibm,update-properties",
 454		.banned_for_syscall_on_le = true,
 455		.filter = &(const struct rtas_filter) {
 456			.buf_idx1 = 0, .size_idx1 = -1,
 457			.buf_idx2 = -1, .size_idx2 = -1,
 458			.fixed_size = 4096,
 459		},
 460	},
 461	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
 462		.name = "ibm,validate-flash-image",
 463	},
 464	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
 465		.name = "ibm,write-pci-config",
 466	},
 467	[RTAS_FNIDX__NVRAM_FETCH] = {
 468		.name = "nvram-fetch",
 469	},
 470	[RTAS_FNIDX__NVRAM_STORE] = {
 471		.name = "nvram-store",
 472	},
 473	[RTAS_FNIDX__POWER_OFF] = {
 474		.name = "power-off",
 475	},
 476	[RTAS_FNIDX__PUT_TERM_CHAR] = {
 477		.name = "put-term-char",
 478	},
 479	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
 480		.name = "query-cpu-stopped-state",
 481	},
 482	[RTAS_FNIDX__READ_PCI_CONFIG] = {
 483		.name = "read-pci-config",
 484	},
 485	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
 486		.name = "rtas-last-error",
 487	},
 488	[RTAS_FNIDX__SET_INDICATOR] = {
 489		.name = "set-indicator",
 490		.filter = &(const struct rtas_filter) {
 491			.buf_idx1 = -1, .size_idx1 = -1,
 492			.buf_idx2 = -1, .size_idx2 = -1,
 493		},
 494	},
 495	[RTAS_FNIDX__SET_POWER_LEVEL] = {
 496		.name = "set-power-level",
 497		.filter = &(const struct rtas_filter) {
 498			.buf_idx1 = -1, .size_idx1 = -1,
 499			.buf_idx2 = -1, .size_idx2 = -1,
 500		},
 501	},
 502	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
 503		.name = "set-time-for-power-on",
 504		.filter = &(const struct rtas_filter) {
 505			.buf_idx1 = -1, .size_idx1 = -1,
 506			.buf_idx2 = -1, .size_idx2 = -1,
 507		},
 508	},
 509	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
 510		.name = "set-time-of-day",
 511		.filter = &(const struct rtas_filter) {
 512			.buf_idx1 = -1, .size_idx1 = -1,
 513			.buf_idx2 = -1, .size_idx2 = -1,
 514		},
 515	},
 516	[RTAS_FNIDX__START_CPU] = {
 517		.name = "start-cpu",
 518	},
 519	[RTAS_FNIDX__STOP_SELF] = {
 520		.name = "stop-self",
 521	},
 522	[RTAS_FNIDX__SYSTEM_REBOOT] = {
 523		.name = "system-reboot",
 524	},
 525	[RTAS_FNIDX__THAW_TIME_BASE] = {
 526		.name = "thaw-time-base",
 527	},
 528	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
 529		.name = "write-pci-config",
 530	},
 531};
 532
 533#define for_each_rtas_function(funcp)                                       \
 534	for (funcp = &rtas_function_table[0];                               \
 535	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
 536	     ++funcp)
 537
 538/*
 539 * Nearly all RTAS calls need to be serialized. All uses of the
 540 * default rtas_args block must hold rtas_lock.
 541 *
 542 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
 543 * must use a separate rtas_args structure.
 544 */
 545static DEFINE_RAW_SPINLOCK(rtas_lock);
 546static struct rtas_args rtas_args;
 547
 548/**
 549 * rtas_function_token() - RTAS function token lookup.
 550 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
 551 *
 552 * Context: Any context.
 553 * Return: the token value for the function if implemented by this platform,
 554 *         otherwise RTAS_UNKNOWN_SERVICE.
 555 */
 556s32 rtas_function_token(const rtas_fn_handle_t handle)
 557{
 558	const size_t index = handle.index;
 559	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
 560
 561	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
 562		return RTAS_UNKNOWN_SERVICE;
 563	/*
 564	 * Various drivers attempt token lookups on non-RTAS
 565	 * platforms.
 566	 */
 567	if (!rtas.dev)
 568		return RTAS_UNKNOWN_SERVICE;
 569
 570	return rtas_function_table[index].token;
 571}
 572EXPORT_SYMBOL_GPL(rtas_function_token);
 573
 574static int rtas_function_cmp(const void *a, const void *b)
 575{
 576	const struct rtas_function *f1 = a;
 577	const struct rtas_function *f2 = b;
 578
 579	return strcmp(f1->name, f2->name);
 580}
 581
 582/*
 583 * Boot-time initialization of the function table needs the lookup to
 584 * return a non-const-qualified object. Use rtas_name_to_function()
 585 * in all other contexts.
 586 */
 587static struct rtas_function *__rtas_name_to_function(const char *name)
 588{
 589	const struct rtas_function key = {
 590		.name = name,
 591	};
 592	struct rtas_function *found;
 593
 594	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
 595			sizeof(rtas_function_table[0]), rtas_function_cmp);
 596
 597	return found;
 598}
 599
 600static const struct rtas_function *rtas_name_to_function(const char *name)
 601{
 602	return __rtas_name_to_function(name);
 603}
 604
 605static DEFINE_XARRAY(rtas_token_to_function_xarray);
 606
 607static int __init rtas_token_to_function_xarray_init(void)
 608{
 609	const struct rtas_function *func;
 610	int err = 0;
 611
 612	for_each_rtas_function(func) {
 613		const s32 token = func->token;
 614
 615		if (token == RTAS_UNKNOWN_SERVICE)
 616			continue;
 617
 618		err = xa_err(xa_store(&rtas_token_to_function_xarray,
 619				      token, (void *)func, GFP_KERNEL));
 620		if (err)
 621			break;
 622	}
 623
 624	return err;
 625}
 626arch_initcall(rtas_token_to_function_xarray_init);
 627
 628/*
 629 * For use by sys_rtas(), where the token value is provided by user
 630 * space and we don't want to warn on failed lookups.
 631 */
 632static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
 633{
 634	return xa_load(&rtas_token_to_function_xarray, token);
 635}
 636
 637/*
 638 * Reverse lookup for deriving the function descriptor from a
 639 * known-good token value in contexts where the former is not already
 640 * available. @token must be valid, e.g. derived from the result of a
 641 * prior lookup against the function table.
 642 */
 643static const struct rtas_function *rtas_token_to_function(s32 token)
 644{
 645	const struct rtas_function *func;
 646
 647	if (WARN_ONCE(token < 0, "invalid token %d", token))
 648		return NULL;
 649
 650	func = rtas_token_to_function_untrusted(token);
 651	if (func)
 652		return func;
 653	/*
 654	 * Fall back to linear scan in case the reverse mapping hasn't
 655	 * been initialized yet.
 656	 */
 657	if (xa_empty(&rtas_token_to_function_xarray)) {
 658		for_each_rtas_function(func) {
 659			if (func->token == token)
 660				return func;
 661		}
 662	}
 663
 664	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
 665	return NULL;
 666}
 667
 668/* This is here deliberately so it's only used in this file */
 669void enter_rtas(unsigned long);
 670
 671static void __do_enter_rtas(struct rtas_args *args)
 672{
 673	enter_rtas(__pa(args));
 674	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
 675}
 676
 677static void __do_enter_rtas_trace(struct rtas_args *args)
 678{
 679	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
 680
 681	/*
 682	 * If there is a per-function lock, it must be held by the
 683	 * caller.
 684	 */
 685	if (func->lock)
 686		lockdep_assert_held(func->lock);
 687
 688	if (args == &rtas_args)
 689		lockdep_assert_held(&rtas_lock);
 690
 691	trace_rtas_input(args, func->name);
 692	trace_rtas_ll_entry(args);
 693
 694	__do_enter_rtas(args);
 695
 696	trace_rtas_ll_exit(args);
 697	trace_rtas_output(args, func->name);
 698}
 699
 700static void do_enter_rtas(struct rtas_args *args)
 701{
 702	const unsigned long msr = mfmsr();
 703	/*
 704	 * Situations where we want to skip any active tracepoints for
 705	 * safety reasons:
 706	 *
 707	 * 1. The last code executed on an offline CPU as it stops,
 708	 *    i.e. we're about to call stop-self. The tracepoints'
 709	 *    function name lookup uses xarray, which uses RCU, which
 710	 *    isn't valid to call on an offline CPU.  Any events
 711	 *    emitted on an offline CPU will be discarded anyway.
 712	 *
 713	 * 2. In real mode, as when invoking ibm,nmi-interlock from
 714	 *    the pseries MCE handler. We cannot count on trace
 715	 *    buffers or the entries in rtas_token_to_function_xarray
 716	 *    to be contained in the RMO.
 717	 */
 718	const unsigned long mask = MSR_IR | MSR_DR;
 719	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
 720				      (msr & mask) == mask);
 721	/*
 722	 * Make sure MSR[RI] is currently enabled as it will be forced later
 723	 * in enter_rtas.
 724	 */
 
 725	BUG_ON(!(msr & MSR_RI));
 726
 727	BUG_ON(!irqs_disabled());
 728
 729	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
 730
 731	if (can_trace)
 732		__do_enter_rtas_trace(args);
 733	else
 734		__do_enter_rtas(args);
 735}
 736
 737struct rtas_t rtas;
 
 
 
 738
 739DEFINE_SPINLOCK(rtas_data_buf_lock);
 740EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
 741
 742char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
 743EXPORT_SYMBOL_GPL(rtas_data_buf);
 744
 745unsigned long rtas_rmo_buf;
 746
 747/*
 748 * If non-NULL, this gets called when the kernel terminates.
 749 * This is done like this so rtas_flash can be a module.
 750 */
 751void (*rtas_flash_term_hook)(int);
 752EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754/*
 755 * call_rtas_display_status and call_rtas_display_status_delay
 756 * are designed only for very early low-level debugging, which
 757 * is why the token is hard-coded to 10.
 758 */
 759static void call_rtas_display_status(unsigned char c)
 760{
 761	unsigned long flags;
 762
 763	if (!rtas.base)
 764		return;
 765
 766	raw_spin_lock_irqsave(&rtas_lock, flags);
 767	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
 768	raw_spin_unlock_irqrestore(&rtas_lock, flags);
 769}
 770
 771static void call_rtas_display_status_delay(char c)
 772{
 773	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 774	static int width = 16;
 775
 776	if (c == '\n') {
 777		while (width-- > 0)
 778			call_rtas_display_status(' ');
 779		width = 16;
 780		mdelay(500);
 781		pending_newline = 1;
 782	} else {
 783		if (pending_newline) {
 784			call_rtas_display_status('\r');
 785			call_rtas_display_status('\n');
 786		}
 787		pending_newline = 0;
 788		if (width--) {
 789			call_rtas_display_status(c);
 790			udelay(10000);
 791		}
 792	}
 793}
 794
 795void __init udbg_init_rtas_panel(void)
 796{
 797	udbg_putc = call_rtas_display_status_delay;
 798}
 799
 800#ifdef CONFIG_UDBG_RTAS_CONSOLE
 801
 802/* If you think you're dying before early_init_dt_scan_rtas() does its
 803 * work, you can hard code the token values for your firmware here and
 804 * hardcode rtas.base/entry etc.
 805 */
 806static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 807static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 808
 809static void udbg_rtascon_putc(char c)
 810{
 811	int tries;
 812
 813	if (!rtas.base)
 814		return;
 815
 816	/* Add CRs before LFs */
 817	if (c == '\n')
 818		udbg_rtascon_putc('\r');
 819
 820	/* if there is more than one character to be displayed, wait a bit */
 821	for (tries = 0; tries < 16; tries++) {
 822		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 823			break;
 824		udelay(1000);
 825	}
 826}
 827
 828static int udbg_rtascon_getc_poll(void)
 829{
 830	int c;
 831
 832	if (!rtas.base)
 833		return -1;
 834
 835	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 836		return -1;
 837
 838	return c;
 839}
 840
 841static int udbg_rtascon_getc(void)
 842{
 843	int c;
 844
 845	while ((c = udbg_rtascon_getc_poll()) == -1)
 846		;
 847
 848	return c;
 849}
 850
 851
 852void __init udbg_init_rtas_console(void)
 853{
 854	udbg_putc = udbg_rtascon_putc;
 855	udbg_getc = udbg_rtascon_getc;
 856	udbg_getc_poll = udbg_rtascon_getc_poll;
 857}
 858#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 859
 860void rtas_progress(char *s, unsigned short hex)
 861{
 862	struct device_node *root;
 863	int width;
 864	const __be32 *p;
 865	char *os;
 866	static int display_character, set_indicator;
 867	static int display_width, display_lines, form_feed;
 868	static const int *row_width;
 869	static DEFINE_SPINLOCK(progress_lock);
 870	static int current_line;
 871	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 872
 873	if (!rtas.base)
 874		return;
 875
 876	if (display_width == 0) {
 877		display_width = 0x10;
 878		if ((root = of_find_node_by_path("/rtas"))) {
 879			if ((p = of_get_property(root,
 880					"ibm,display-line-length", NULL)))
 881				display_width = be32_to_cpu(*p);
 882			if ((p = of_get_property(root,
 883					"ibm,form-feed", NULL)))
 884				form_feed = be32_to_cpu(*p);
 885			if ((p = of_get_property(root,
 886					"ibm,display-number-of-lines", NULL)))
 887				display_lines = be32_to_cpu(*p);
 888			row_width = of_get_property(root,
 889					"ibm,display-truncation-length", NULL);
 890			of_node_put(root);
 891		}
 892		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
 893		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
 894	}
 895
 896	if (display_character == RTAS_UNKNOWN_SERVICE) {
 897		/* use hex display if available */
 898		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 899			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 900		return;
 901	}
 902
 903	spin_lock(&progress_lock);
 904
 905	/*
 906	 * Last write ended with newline, but we didn't print it since
 907	 * it would just clear the bottom line of output. Print it now
 908	 * instead.
 909	 *
 910	 * If no newline is pending and form feed is supported, clear the
 911	 * display with a form feed; otherwise, print a CR to start output
 912	 * at the beginning of the line.
 913	 */
 914	if (pending_newline) {
 915		rtas_call(display_character, 1, 1, NULL, '\r');
 916		rtas_call(display_character, 1, 1, NULL, '\n');
 917		pending_newline = 0;
 918	} else {
 919		current_line = 0;
 920		if (form_feed)
 921			rtas_call(display_character, 1, 1, NULL,
 922				  (char)form_feed);
 923		else
 924			rtas_call(display_character, 1, 1, NULL, '\r');
 925	}
 926
 927	if (row_width)
 928		width = row_width[current_line];
 929	else
 930		width = display_width;
 931	os = s;
 932	while (*os) {
 933		if (*os == '\n' || *os == '\r') {
 934			/* If newline is the last character, save it
 935			 * until next call to avoid bumping up the
 936			 * display output.
 937			 */
 938			if (*os == '\n' && !os[1]) {
 939				pending_newline = 1;
 940				current_line++;
 941				if (current_line > display_lines-1)
 942					current_line = display_lines-1;
 943				spin_unlock(&progress_lock);
 944				return;
 945			}
 946
 947			/* RTAS wants CR-LF, not just LF */
 948
 949			if (*os == '\n') {
 950				rtas_call(display_character, 1, 1, NULL, '\r');
 951				rtas_call(display_character, 1, 1, NULL, '\n');
 952			} else {
 953				/* CR might be used to re-draw a line, so we'll
 954				 * leave it alone and not add LF.
 955				 */
 956				rtas_call(display_character, 1, 1, NULL, *os);
 957			}
 958
 959			if (row_width)
 960				width = row_width[current_line];
 961			else
 962				width = display_width;
 963		} else {
 964			width--;
 965			rtas_call(display_character, 1, 1, NULL, *os);
 966		}
 967
 968		os++;
 969
 970		/* if we overwrite the screen length */
 971		if (width <= 0)
 972			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 973				os++;
 974	}
 975
 976	spin_unlock(&progress_lock);
 977}
 978EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
 979
 980int rtas_token(const char *service)
 981{
 982	const struct rtas_function *func;
 983	const __be32 *tokp;
 984
 985	if (rtas.dev == NULL)
 986		return RTAS_UNKNOWN_SERVICE;
 987
 988	func = rtas_name_to_function(service);
 989	if (func)
 990		return func->token;
 991	/*
 992	 * The caller is looking up a name that is not known to be an
 993	 * RTAS function. Either it's a function that needs to be
 994	 * added to the table, or they're misusing rtas_token() to
 995	 * access non-function properties of the /rtas node. Warn and
 996	 * fall back to the legacy behavior.
 997	 */
 998	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
 999		  service);
1000
1001	tokp = of_get_property(rtas.dev, service, NULL);
1002	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1003}
1004EXPORT_SYMBOL_GPL(rtas_token);
 
 
 
 
 
 
1005
1006#ifdef CONFIG_RTAS_ERROR_LOGGING
1007
1008static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1009
1010/*
1011 * Return the firmware-specified size of the error log buffer
1012 *  for all rtas calls that require an error buffer argument.
1013 *  This includes 'check-exception' and 'rtas-last-error'.
1014 */
1015int rtas_get_error_log_max(void)
1016{
1017	return rtas_error_log_max;
1018}
 
1019
1020static void __init init_error_log_max(void)
1021{
1022	static const char propname[] __initconst = "rtas-error-log-max";
1023	u32 max;
1024
1025	if (of_property_read_u32(rtas.dev, propname, &max)) {
1026		pr_warn("%s not found, using default of %u\n",
1027			propname, RTAS_ERROR_LOG_MAX);
1028		max = RTAS_ERROR_LOG_MAX;
1029	}
1030
1031	if (max > RTAS_ERROR_LOG_MAX) {
1032		pr_warn("%s = %u, clamping max error log size to %u\n",
1033			propname, max, RTAS_ERROR_LOG_MAX);
1034		max = RTAS_ERROR_LOG_MAX;
1035	}
1036
1037	rtas_error_log_max = max;
1038}
1039
1040
1041static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 
1042
1043/** Return a copy of the detailed error text associated with the
1044 *  most recent failed call to rtas.  Because the error text
1045 *  might go stale if there are any other intervening rtas calls,
1046 *  this routine must be called atomically with whatever produced
1047 *  the error (i.e. with rtas_lock still held from the previous call).
1048 */
1049static char *__fetch_rtas_last_error(char *altbuf)
1050{
1051	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1052	struct rtas_args err_args, save_args;
1053	u32 bufsz;
1054	char *buf = NULL;
1055
1056	lockdep_assert_held(&rtas_lock);
1057
1058	if (token == -1)
1059		return NULL;
1060
1061	bufsz = rtas_get_error_log_max();
1062
1063	err_args.token = cpu_to_be32(token);
1064	err_args.nargs = cpu_to_be32(2);
1065	err_args.nret = cpu_to_be32(1);
1066	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1067	err_args.args[1] = cpu_to_be32(bufsz);
1068	err_args.args[2] = 0;
1069
1070	save_args = rtas_args;
1071	rtas_args = err_args;
1072
1073	do_enter_rtas(&rtas_args);
1074
1075	err_args = rtas_args;
1076	rtas_args = save_args;
1077
1078	/* Log the error in the unlikely case that there was one. */
1079	if (unlikely(err_args.args[2] == 0)) {
1080		if (altbuf) {
1081			buf = altbuf;
1082		} else {
1083			buf = rtas_err_buf;
1084			if (slab_is_available())
1085				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1086		}
1087		if (buf)
1088			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1089	}
1090
1091	return buf;
1092}
1093
1094#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1095
1096#else /* CONFIG_RTAS_ERROR_LOGGING */
1097#define __fetch_rtas_last_error(x)	NULL
1098#define get_errorlog_buffer()		NULL
1099static void __init init_error_log_max(void) {}
1100#endif
1101
1102
1103static void
1104va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1105		      va_list list)
1106{
1107	int i;
1108
1109	args->token = cpu_to_be32(token);
1110	args->nargs = cpu_to_be32(nargs);
1111	args->nret  = cpu_to_be32(nret);
1112	args->rets  = &(args->args[nargs]);
1113
1114	for (i = 0; i < nargs; ++i)
1115		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1116
1117	for (i = 0; i < nret; ++i)
1118		args->rets[i] = 0;
1119
1120	do_enter_rtas(args);
1121}
1122
1123/**
1124 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1125 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1126 *        constraints.
1127 * @token: Identifies the function being invoked.
1128 * @nargs: Number of input parameters. Does not include token.
1129 * @nret: Number of output parameters, including the call status.
1130 * @....: List of @nargs input parameters.
1131 *
1132 * Invokes the RTAS function indicated by @token, which the caller
1133 * should obtain via rtas_function_token().
1134 *
1135 * This function is similar to rtas_call(), but must be used with a
1136 * limited set of RTAS calls specifically exempted from the general
1137 * requirement that only one RTAS call may be in progress at any
1138 * time. Examples include stop-self and ibm,nmi-interlock.
1139 */
1140void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1141{
1142	va_list list;
1143
1144	va_start(list, nret);
1145	va_rtas_call_unlocked(args, token, nargs, nret, list);
1146	va_end(list);
1147}
1148
1149static bool token_is_restricted_errinjct(s32 token)
1150{
1151	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1152	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1153}
1154
1155/**
1156 * rtas_call() - Invoke an RTAS firmware function.
1157 * @token: Identifies the function being invoked.
1158 * @nargs: Number of input parameters. Does not include token.
1159 * @nret: Number of output parameters, including the call status.
1160 * @outputs: Array of @nret output words.
1161 * @....: List of @nargs input parameters.
1162 *
1163 * Invokes the RTAS function indicated by @token, which the caller
1164 * should obtain via rtas_function_token().
1165 *
1166 * The @nargs and @nret arguments must match the number of input and
1167 * output parameters specified for the RTAS function.
1168 *
1169 * rtas_call() returns RTAS status codes, not conventional Linux errno
1170 * values. Callers must translate any failure to an appropriate errno
1171 * in syscall context. Most callers of RTAS functions that can return
1172 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1173 * statuses before calling again.
1174 *
1175 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1176 * Codes of the PAPR and CHRP specifications.
1177 *
1178 * Context: Process context preferably, interrupt context if
1179 *          necessary.  Acquires an internal spinlock and may perform
1180 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1181 *          context.
1182 * Return:
1183 * *                          0 - RTAS function call succeeded.
1184 * *                         -1 - RTAS function encountered a hardware or
1185 *                                platform error, or the token is invalid,
1186 *                                or the function is restricted by kernel policy.
1187 * *                         -2 - Specs say "A necessary hardware device was busy,
1188 *                                and the requested function could not be
1189 *                                performed. The operation should be retried at
1190 *                                a later time." This is misleading, at least with
1191 *                                respect to current RTAS implementations. What it
1192 *                                usually means in practice is that the function
1193 *                                could not be completed while meeting RTAS's
1194 *                                deadline for returning control to the OS (250us
1195 *                                for PAPR/PowerVM, typically), but the call may be
1196 *                                immediately reattempted to resume work on it.
1197 * *                         -3 - Parameter error.
1198 * *                         -7 - Unexpected state change.
1199 * *                9000...9899 - Vendor-specific success codes.
1200 * *                9900...9905 - Advisory extended delay. Caller should try
1201 *                                again after ~10^x ms has elapsed, where x is
1202 *                                the last digit of the status [0-5]. Again going
1203 *                                beyond the PAPR text, 990x on PowerVM indicates
1204 *                                contention for RTAS-internal resources. Other
1205 *                                RTAS call sequences in progress should be
1206 *                                allowed to complete before reattempting the
1207 *                                call.
1208 * *                      -9000 - Multi-level isolation error.
1209 * *              -9999...-9004 - Vendor-specific error codes.
1210 * * Additional negative values - Function-specific error.
1211 * * Additional positive values - Function-specific success.
1212 */
1213int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1214{
1215	struct pin_cookie cookie;
1216	va_list list;
1217	int i;
1218	unsigned long flags;
1219	struct rtas_args *args;
1220	char *buff_copy = NULL;
1221	int ret;
1222
1223	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1224		return -1;
1225
1226	if (token_is_restricted_errinjct(token)) {
1227		/*
1228		 * It would be nicer to not discard the error value
1229		 * from security_locked_down(), but callers expect an
1230		 * RTAS status, not an errno.
1231		 */
1232		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1233			return -1;
1234	}
1235
1236	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1237		WARN_ON_ONCE(1);
1238		return -1;
1239	}
1240
1241	raw_spin_lock_irqsave(&rtas_lock, flags);
1242	cookie = lockdep_pin_lock(&rtas_lock);
1243
1244	/* We use the global rtas args buffer */
1245	args = &rtas_args;
1246
1247	va_start(list, outputs);
1248	va_rtas_call_unlocked(args, token, nargs, nret, list);
1249	va_end(list);
1250
1251	/* A -1 return code indicates that the last command couldn't
1252	   be completed due to a hardware error. */
1253	if (be32_to_cpu(args->rets[0]) == -1)
1254		buff_copy = __fetch_rtas_last_error(NULL);
1255
1256	if (nret > 1 && outputs != NULL)
1257		for (i = 0; i < nret-1; ++i)
1258			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1259	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1260
1261	lockdep_unpin_lock(&rtas_lock, cookie);
1262	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1263
1264	if (buff_copy) {
1265		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1266		if (slab_is_available())
1267			kfree(buff_copy);
1268	}
1269	return ret;
1270}
1271EXPORT_SYMBOL_GPL(rtas_call);
1272
1273/**
1274 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1275 *                          suggested delay time in milliseconds.
1276 *
1277 * @status: a value returned from rtas_call() or similar APIs which return
1278 *          the status of a RTAS function call.
1279 *
1280 * Context: Any context.
1281 *
1282 * Return:
1283 * * 100000 - If @status is 9905.
1284 * * 10000  - If @status is 9904.
1285 * * 1000   - If @status is 9903.
1286 * * 100    - If @status is 9902.
1287 * * 10     - If @status is 9901.
1288 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1289 *            some callers depend on this behavior, and the worst outcome
1290 *            is that they will delay for longer than necessary.
1291 * * 0      - If @status is not a busy or extended delay value.
1292 */
1293unsigned int rtas_busy_delay_time(int status)
1294{
1295	int order;
1296	unsigned int ms = 0;
1297
1298	if (status == RTAS_BUSY) {
1299		ms = 1;
1300	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1301		   status <= RTAS_EXTENDED_DELAY_MAX) {
1302		order = status - RTAS_EXTENDED_DELAY_MIN;
1303		for (ms = 1; order > 0; order--)
1304			ms *= 10;
1305	}
1306
1307	return ms;
1308}
1309
1310/*
1311 * Early boot fallback for rtas_busy_delay().
1312 */
1313static bool __init rtas_busy_delay_early(int status)
1314{
1315	static size_t successive_ext_delays __initdata;
1316	bool retry;
1317
1318	switch (status) {
1319	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1320		/*
1321		 * In the unlikely case that we receive an extended
1322		 * delay status in early boot, the OS is probably not
1323		 * the cause, and there's nothing we can do to clear
1324		 * the condition. Best we can do is delay for a bit
1325		 * and hope it's transient. Lie to the caller if it
1326		 * seems like we're stuck in a retry loop.
1327		 */
1328		mdelay(1);
1329		retry = true;
1330		successive_ext_delays += 1;
1331		if (successive_ext_delays > 1000) {
1332			pr_err("too many extended delays, giving up\n");
1333			dump_stack();
1334			retry = false;
1335			successive_ext_delays = 0;
1336		}
1337		break;
1338	case RTAS_BUSY:
1339		retry = true;
1340		successive_ext_delays = 0;
1341		break;
1342	default:
1343		retry = false;
1344		successive_ext_delays = 0;
1345		break;
1346	}
1347
1348	return retry;
1349}
1350
1351/**
1352 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1353 *
1354 * @status: a value returned from rtas_call() or similar APIs which return
1355 *          the status of a RTAS function call.
1356 *
1357 * Context: Process context. May sleep or schedule.
1358 *
1359 * Return:
1360 * * true  - @status is RTAS_BUSY or an extended delay hint. The
1361 *           caller may assume that the CPU has been yielded if necessary,
1362 *           and that an appropriate delay for @status has elapsed.
1363 *           Generally the caller should reattempt the RTAS call which
1364 *           yielded @status.
1365 *
1366 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1367 *           caller is responsible for handling @status.
1368 */
1369bool __ref rtas_busy_delay(int status)
1370{
1371	unsigned int ms;
1372	bool ret;
1373
1374	/*
1375	 * Can't do timed sleeps before timekeeping is up.
1376	 */
1377	if (system_state < SYSTEM_SCHEDULING)
1378		return rtas_busy_delay_early(status);
1379
1380	switch (status) {
1381	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1382		ret = true;
1383		ms = rtas_busy_delay_time(status);
1384		/*
1385		 * The extended delay hint can be as high as 100 seconds.
1386		 * Surely any function returning such a status is either
1387		 * buggy or isn't going to be significantly slowed by us
1388		 * polling at 1HZ. Clamp the sleep time to one second.
1389		 */
1390		ms = clamp(ms, 1U, 1000U);
1391		/*
1392		 * The delay hint is an order-of-magnitude suggestion, not
1393		 * a minimum. It is fine, possibly even advantageous, for
1394		 * us to pause for less time than hinted. For small values,
1395		 * use usleep_range() to ensure we don't sleep much longer
1396		 * than actually needed.
1397		 *
1398		 * See Documentation/timers/timers-howto.rst for
1399		 * explanation of the threshold used here. In effect we use
1400		 * usleep_range() for 9900 and 9901, msleep() for
1401		 * 9902-9905.
1402		 */
1403		if (ms <= 20)
1404			usleep_range(ms * 100, ms * 1000);
1405		else
1406			msleep(ms);
1407		break;
1408	case RTAS_BUSY:
1409		ret = true;
1410		/*
1411		 * We should call again immediately if there's no other
1412		 * work to do.
1413		 */
1414		cond_resched();
1415		break;
1416	default:
1417		ret = false;
1418		/*
1419		 * Not a busy or extended delay status; the caller should
1420		 * handle @status itself. Ensure we warn on misuses in
1421		 * atomic context regardless.
1422		 */
1423		might_sleep();
1424		break;
1425	}
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(rtas_busy_delay);
1430
1431int rtas_error_rc(int rtas_rc)
1432{
1433	int rc;
1434
1435	switch (rtas_rc) {
1436	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1437		rc = -EIO;
1438		break;
1439	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1440		rc = -EINVAL;
1441		break;
1442	case -9000:			/* Isolation error */
1443		rc = -EFAULT;
1444		break;
1445	case -9001:			/* Outstanding TCE/PTE */
1446		rc = -EEXIST;
1447		break;
1448	case -9002:			/* No usable slot */
1449		rc = -ENODEV;
1450		break;
1451	default:
1452		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1453		rc = -ERANGE;
1454		break;
1455	}
1456	return rc;
1457}
1458EXPORT_SYMBOL_GPL(rtas_error_rc);
1459
1460int rtas_get_power_level(int powerdomain, int *level)
1461{
1462	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1463	int rc;
1464
1465	if (token == RTAS_UNKNOWN_SERVICE)
1466		return -ENOENT;
1467
1468	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1469		udelay(1);
1470
1471	if (rc < 0)
1472		return rtas_error_rc(rc);
1473	return rc;
1474}
1475EXPORT_SYMBOL_GPL(rtas_get_power_level);
1476
1477int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1478{
1479	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1480	int rc;
1481
1482	if (token == RTAS_UNKNOWN_SERVICE)
1483		return -ENOENT;
1484
1485	do {
1486		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1487	} while (rtas_busy_delay(rc));
1488
1489	if (rc < 0)
1490		return rtas_error_rc(rc);
1491	return rc;
1492}
1493EXPORT_SYMBOL_GPL(rtas_set_power_level);
1494
1495int rtas_get_sensor(int sensor, int index, int *state)
1496{
1497	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1498	int rc;
1499
1500	if (token == RTAS_UNKNOWN_SERVICE)
1501		return -ENOENT;
1502
1503	do {
1504		rc = rtas_call(token, 2, 2, state, sensor, index);
1505	} while (rtas_busy_delay(rc));
1506
1507	if (rc < 0)
1508		return rtas_error_rc(rc);
1509	return rc;
1510}
1511EXPORT_SYMBOL_GPL(rtas_get_sensor);
1512
1513int rtas_get_sensor_fast(int sensor, int index, int *state)
1514{
1515	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1516	int rc;
1517
1518	if (token == RTAS_UNKNOWN_SERVICE)
1519		return -ENOENT;
1520
1521	rc = rtas_call(token, 2, 2, state, sensor, index);
1522	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1523				    rc <= RTAS_EXTENDED_DELAY_MAX));
1524
1525	if (rc < 0)
1526		return rtas_error_rc(rc);
1527	return rc;
1528}
1529
1530bool rtas_indicator_present(int token, int *maxindex)
1531{
1532	int proplen, count, i;
1533	const struct indicator_elem {
1534		__be32 token;
1535		__be32 maxindex;
1536	} *indicators;
1537
1538	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1539	if (!indicators)
1540		return false;
1541
1542	count = proplen / sizeof(struct indicator_elem);
1543
1544	for (i = 0; i < count; i++) {
1545		if (__be32_to_cpu(indicators[i].token) != token)
1546			continue;
1547		if (maxindex)
1548			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1549		return true;
1550	}
1551
1552	return false;
1553}
 
1554
1555int rtas_set_indicator(int indicator, int index, int new_value)
1556{
1557	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1558	int rc;
1559
1560	if (token == RTAS_UNKNOWN_SERVICE)
1561		return -ENOENT;
1562
1563	do {
1564		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1565	} while (rtas_busy_delay(rc));
1566
1567	if (rc < 0)
1568		return rtas_error_rc(rc);
1569	return rc;
1570}
1571EXPORT_SYMBOL_GPL(rtas_set_indicator);
1572
1573/*
1574 * Ignoring RTAS extended delay
1575 */
1576int rtas_set_indicator_fast(int indicator, int index, int new_value)
1577{
1578	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1579	int rc;
 
1580
1581	if (token == RTAS_UNKNOWN_SERVICE)
1582		return -ENOENT;
1583
1584	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1585
1586	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1587				    rc <= RTAS_EXTENDED_DELAY_MAX));
1588
1589	if (rc < 0)
1590		return rtas_error_rc(rc);
1591
1592	return rc;
1593}
1594
1595/**
1596 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1597 *
1598 * @fw_status: RTAS call status will be placed here if not NULL.
1599 *
1600 * rtas_ibm_suspend_me() should be called only on a CPU which has
1601 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1602 * should be waiting to return from H_JOIN.
1603 *
1604 * rtas_ibm_suspend_me() may suspend execution of the OS
1605 * indefinitely. Callers should take appropriate measures upon return, such as
1606 * resetting watchdog facilities.
1607 *
1608 * Callers may choose to retry this call if @fw_status is
1609 * %RTAS_THREADS_ACTIVE.
1610 *
1611 * Return:
1612 * 0          - The partition has resumed from suspend, possibly after
1613 *              migration to a different host.
1614 * -ECANCELED - The operation was aborted.
1615 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1616 * -EBUSY     - Some other condition prevented the suspend from succeeding.
1617 * -EIO       - Hardware/platform error.
1618 */
1619int rtas_ibm_suspend_me(int *fw_status)
1620{
1621	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1622	int fwrc;
1623	int ret;
1624
1625	fwrc = rtas_call(token, 0, 1, NULL);
1626
1627	switch (fwrc) {
1628	case 0:
1629		ret = 0;
1630		break;
1631	case RTAS_SUSPEND_ABORTED:
1632		ret = -ECANCELED;
1633		break;
1634	case RTAS_THREADS_ACTIVE:
1635		ret = -EAGAIN;
1636		break;
1637	case RTAS_NOT_SUSPENDABLE:
1638	case RTAS_OUTSTANDING_COPROC:
1639		ret = -EBUSY;
1640		break;
1641	case -1:
1642	default:
1643		ret = -EIO;
1644		break;
1645	}
1646
1647	if (fw_status)
1648		*fw_status = fwrc;
1649
1650	return ret;
1651}
1652
1653void __noreturn rtas_restart(char *cmd)
1654{
1655	if (rtas_flash_term_hook)
1656		rtas_flash_term_hook(SYS_RESTART);
1657	pr_emerg("system-reboot returned %d\n",
1658		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1659	for (;;);
1660}
1661
1662void rtas_power_off(void)
1663{
1664	if (rtas_flash_term_hook)
1665		rtas_flash_term_hook(SYS_POWER_OFF);
1666	/* allow power on only with power button press */
1667	pr_emerg("power-off returned %d\n",
1668		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1669	for (;;);
1670}
1671
1672void __noreturn rtas_halt(void)
1673{
1674	if (rtas_flash_term_hook)
1675		rtas_flash_term_hook(SYS_HALT);
1676	/* allow power on only with power button press */
1677	pr_emerg("power-off returned %d\n",
1678		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1679	for (;;);
1680}
1681
1682/* Must be in the RMO region, so we place it here */
1683static char rtas_os_term_buf[2048];
1684static bool ibm_extended_os_term;
1685
1686void rtas_os_term(char *str)
1687{
1688	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1689	static struct rtas_args args;
1690	int status;
1691
1692	/*
1693	 * Firmware with the ibm,extended-os-term property is guaranteed
1694	 * to always return from an ibm,os-term call. Earlier versions without
1695	 * this property may terminate the partition which we want to avoid
1696	 * since it interferes with panic_timeout.
1697	 */
1698
1699	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1700		return;
1701
1702	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1703
1704	/*
1705	 * Keep calling as long as RTAS returns a "try again" status,
1706	 * but don't use rtas_busy_delay(), which potentially
1707	 * schedules.
1708	 */
1709	do {
1710		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1711		status = be32_to_cpu(args.rets[0]);
1712	} while (rtas_busy_delay_time(status));
1713
1714	if (status != 0)
1715		pr_emerg("ibm,os-term call failed %d\n", status);
1716}
1717
1718/**
1719 * rtas_activate_firmware() - Activate a new version of firmware.
1720 *
1721 * Context: This function may sleep.
1722 *
1723 * Activate a new version of partition firmware. The OS must call this
1724 * after resuming from a partition hibernation or migration in order
1725 * to maintain the ability to perform live firmware updates. It's not
1726 * catastrophic for this method to be absent or to fail; just log the
1727 * condition in that case.
1728 */
1729void rtas_activate_firmware(void)
1730{
1731	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1732	int fwrc;
1733
 
1734	if (token == RTAS_UNKNOWN_SERVICE) {
1735		pr_notice("ibm,activate-firmware method unavailable\n");
1736		return;
1737	}
1738
1739	mutex_lock(&rtas_ibm_activate_firmware_lock);
1740
1741	do {
1742		fwrc = rtas_call(token, 0, 1, NULL);
1743	} while (rtas_busy_delay(fwrc));
1744
1745	mutex_unlock(&rtas_ibm_activate_firmware_lock);
1746
1747	if (fwrc)
1748		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1749}
1750
1751/**
1752 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1753 *                          extended event log.
1754 * @log: RTAS error/event log
1755 * @section_id: two character section identifier
1756 *
1757 * Return: A pointer to the specified errorlog or NULL if not found.
1758 */
1759noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1760						      uint16_t section_id)
1761{
1762	struct rtas_ext_event_log_v6 *ext_log =
1763		(struct rtas_ext_event_log_v6 *)log->buffer;
1764	struct pseries_errorlog *sect;
1765	unsigned char *p, *log_end;
1766	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1767	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1768	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1769
1770	/* Check that we understand the format */
1771	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1772	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1773	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1774		return NULL;
1775
1776	log_end = log->buffer + ext_log_length;
1777	p = ext_log->vendor_log;
1778
1779	while (p < log_end) {
1780		sect = (struct pseries_errorlog *)p;
1781		if (pseries_errorlog_id(sect) == section_id)
1782			return sect;
1783		p += pseries_errorlog_length(sect);
1784	}
1785
1786	return NULL;
1787}
1788
1789/*
1790 * The sys_rtas syscall, as originally designed, allows root to pass
1791 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1792 * can be abused to write to arbitrary memory and do other things that
1793 * are potentially harmful to system integrity, and thus should only
1794 * be used inside the kernel and not exposed to userspace.
1795 *
1796 * All known legitimate users of the sys_rtas syscall will only ever
1797 * pass addresses that fall within the RMO buffer, and use a known
1798 * subset of RTAS calls.
1799 *
1800 * Accordingly, we filter RTAS requests to check that the call is
1801 * permitted, and that provided pointers fall within the RMO buffer.
1802 * If a function is allowed to be invoked via the syscall, then its
1803 * entry in the rtas_functions table points to a rtas_filter that
1804 * describes its constraints, with the indexes of the parameters which
1805 * are expected to contain addresses and sizes of buffers allocated
1806 * inside the RMO buffer.
1807 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
1809static bool in_rmo_buf(u32 base, u32 end)
1810{
1811	return base >= rtas_rmo_buf &&
1812		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1813		base <= end &&
1814		end >= rtas_rmo_buf &&
1815		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1816}
1817
1818static bool block_rtas_call(const struct rtas_function *func, int nargs,
1819			    struct rtas_args *args)
1820{
1821	const struct rtas_filter *f;
1822	const bool is_platform_dump =
1823		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1824	const bool is_config_conn =
1825		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1826	u32 base, size, end;
 
 
1827
1828	/*
1829	 * Only functions with filters attached are allowed.
1830	 */
1831	f = func->filter;
1832	if (!f)
1833		goto err;
1834	/*
1835	 * And some functions aren't allowed on LE.
1836	 */
1837	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1838		goto err;
1839
1840	if (f->buf_idx1 != -1) {
1841		base = be32_to_cpu(args->args[f->buf_idx1]);
1842		if (f->size_idx1 != -1)
1843			size = be32_to_cpu(args->args[f->size_idx1]);
1844		else if (f->fixed_size)
1845			size = f->fixed_size;
1846		else
1847			size = 1;
1848
1849		end = base + size - 1;
 
 
 
 
 
 
1850
1851		/*
1852		 * Special case for ibm,platform-dump - NULL buffer
1853		 * address is used to indicate end of dump processing
1854		 */
1855		if (is_platform_dump && base == 0)
1856			return false;
1857
1858		if (!in_rmo_buf(base, end))
1859			goto err;
1860	}
 
 
 
 
 
 
1861
1862	if (f->buf_idx2 != -1) {
1863		base = be32_to_cpu(args->args[f->buf_idx2]);
1864		if (f->size_idx2 != -1)
1865			size = be32_to_cpu(args->args[f->size_idx2]);
1866		else if (f->fixed_size)
1867			size = f->fixed_size;
1868		else
1869			size = 1;
1870		end = base + size - 1;
1871
1872		/*
1873		 * Special case for ibm,configure-connector where the
1874		 * address can be 0
1875		 */
1876		if (is_config_conn && base == 0)
1877			return false;
1878
1879		if (!in_rmo_buf(base, end))
1880			goto err;
1881	}
1882
1883	return false;
1884err:
1885	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1886	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1887			   func->name, nargs, current->comm);
1888	return true;
1889}
1890
 
 
 
 
 
 
 
 
1891/* We assume to be passed big endian arguments */
1892SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1893{
1894	const struct rtas_function *func;
1895	struct pin_cookie cookie;
1896	struct rtas_args args;
1897	unsigned long flags;
1898	char *buff_copy, *errbuf = NULL;
1899	int nargs, nret, token;
1900
1901	if (!capable(CAP_SYS_ADMIN))
1902		return -EPERM;
1903
1904	if (!rtas.entry)
1905		return -EINVAL;
1906
1907	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1908		return -EFAULT;
1909
1910	nargs = be32_to_cpu(args.nargs);
1911	nret  = be32_to_cpu(args.nret);
1912	token = be32_to_cpu(args.token);
1913
1914	if (nargs >= ARRAY_SIZE(args.args)
1915	    || nret > ARRAY_SIZE(args.args)
1916	    || nargs + nret > ARRAY_SIZE(args.args))
1917		return -EINVAL;
1918
1919	/* Copy in args. */
1920	if (copy_from_user(args.args, uargs->args,
1921			   nargs * sizeof(rtas_arg_t)) != 0)
1922		return -EFAULT;
1923
1924	/*
1925	 * If this token doesn't correspond to a function the kernel
1926	 * understands, you're not allowed to call it.
1927	 */
1928	func = rtas_token_to_function_untrusted(token);
1929	if (!func)
1930		return -EINVAL;
1931
1932	args.rets = &args.args[nargs];
1933	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1934
1935	if (block_rtas_call(func, nargs, &args))
1936		return -EINVAL;
1937
1938	if (token_is_restricted_errinjct(token)) {
1939		int err;
1940
1941		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1942		if (err)
1943			return err;
1944	}
1945
1946	/* Need to handle ibm,suspend_me call specially */
1947	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1948
1949		/*
1950		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1951		 * endian, or at least the hcall within it requires it.
1952		 */
1953		int rc = 0;
1954		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1955		              | be32_to_cpu(args.args[1]);
1956		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1957		if (rc == -EAGAIN)
1958			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1959		else if (rc == -EIO)
1960			args.rets[0] = cpu_to_be32(-1);
1961		else if (rc)
1962			return rc;
1963		goto copy_return;
1964	}
1965
1966	buff_copy = get_errorlog_buffer();
1967
1968	/*
1969	 * If this function has a mutex assigned to it, we must
1970	 * acquire it to avoid interleaving with any kernel-based uses
1971	 * of the same function. Kernel-based sequences acquire the
1972	 * appropriate mutex explicitly.
1973	 */
1974	if (func->lock)
1975		mutex_lock(func->lock);
1976
1977	raw_spin_lock_irqsave(&rtas_lock, flags);
1978	cookie = lockdep_pin_lock(&rtas_lock);
1979
1980	rtas_args = args;
1981	do_enter_rtas(&rtas_args);
1982	args = rtas_args;
1983
1984	/* A -1 return code indicates that the last command couldn't
1985	   be completed due to a hardware error. */
1986	if (be32_to_cpu(args.rets[0]) == -1)
1987		errbuf = __fetch_rtas_last_error(buff_copy);
1988
1989	lockdep_unpin_lock(&rtas_lock, cookie);
1990	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1991
1992	if (func->lock)
1993		mutex_unlock(func->lock);
1994
1995	if (buff_copy) {
1996		if (errbuf)
1997			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1998		kfree(buff_copy);
1999	}
2000
2001 copy_return:
2002	/* Copy out args. */
2003	if (copy_to_user(uargs->args + nargs,
2004			 args.args + nargs,
2005			 nret * sizeof(rtas_arg_t)) != 0)
2006		return -EFAULT;
2007
2008	return 0;
2009}
2010
2011static void __init rtas_function_table_init(void)
2012{
2013	struct property *prop;
2014
2015	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2016		struct rtas_function *curr = &rtas_function_table[i];
2017		struct rtas_function *prior;
2018		int cmp;
2019
2020		curr->token = RTAS_UNKNOWN_SERVICE;
2021
2022		if (i == 0)
2023			continue;
2024		/*
2025		 * Ensure table is sorted correctly for binary search
2026		 * on function names.
2027		 */
2028		prior = &rtas_function_table[i - 1];
2029
2030		cmp = strcmp(prior->name, curr->name);
2031		if (cmp < 0)
2032			continue;
2033
2034		if (cmp == 0) {
2035			pr_err("'%s' has duplicate function table entries\n",
2036			       curr->name);
2037		} else {
2038			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2039			       prior->name, curr->name);
2040		}
2041	}
2042
2043	for_each_property_of_node(rtas.dev, prop) {
2044		struct rtas_function *func;
2045
2046		if (prop->length != sizeof(u32))
2047			continue;
2048
2049		func = __rtas_name_to_function(prop->name);
2050		if (!func)
2051			continue;
2052
2053		func->token = be32_to_cpup((__be32 *)prop->value);
2054
2055		pr_debug("function %s has token %u\n", func->name, func->token);
2056	}
2057}
2058
2059/*
2060 * Call early during boot, before mem init, to retrieve the RTAS
2061 * information from the device-tree and allocate the RMO buffer for userland
2062 * accesses.
2063 */
2064void __init rtas_initialize(void)
2065{
2066	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2067	u32 base, size, entry;
2068	int no_base, no_size, no_entry;
2069
2070	/* Get RTAS dev node and fill up our "rtas" structure with infos
2071	 * about it.
2072	 */
2073	rtas.dev = of_find_node_by_name(NULL, "rtas");
2074	if (!rtas.dev)
2075		return;
2076
2077	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2078	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2079	if (no_base || no_size) {
2080		of_node_put(rtas.dev);
2081		rtas.dev = NULL;
2082		return;
2083	}
2084
2085	rtas.base = base;
2086	rtas.size = size;
2087	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2088	rtas.entry = no_entry ? rtas.base : entry;
2089
2090	init_error_log_max();
2091
2092	/* Must be called before any function token lookups */
2093	rtas_function_table_init();
2094
2095	/*
2096	 * Discover this now to avoid a device tree lookup in the
2097	 * panic path.
2098	 */
2099	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
 
2100
2101	/* If RTAS was found, allocate the RMO buffer for it and look for
2102	 * the stop-self token if any
2103	 */
2104#ifdef CONFIG_PPC64
2105	if (firmware_has_feature(FW_FEATURE_LPAR))
2106		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2107#endif
2108	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2109						 0, rtas_region);
2110	if (!rtas_rmo_buf)
2111		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2112		      PAGE_SIZE, &rtas_region);
2113
2114	rtas_work_area_reserve_arena(rtas_region);
 
 
 
 
 
2115}
2116
2117int __init early_init_dt_scan_rtas(unsigned long node,
2118		const char *uname, int depth, void *data)
2119{
2120	const u32 *basep, *entryp, *sizep;
2121
2122	if (depth != 1 || strcmp(uname, "rtas") != 0)
2123		return 0;
2124
2125	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2126	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2127	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2128
2129#ifdef CONFIG_PPC64
2130	/* need this feature to decide the crashkernel offset */
2131	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2132		powerpc_firmware_features |= FW_FEATURE_LPAR;
2133#endif
2134
2135	if (basep && entryp && sizep) {
2136		rtas.base = *basep;
2137		rtas.entry = *entryp;
2138		rtas.size = *sizep;
2139	}
2140
2141#ifdef CONFIG_UDBG_RTAS_CONSOLE
2142	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2143	if (basep)
2144		rtas_putchar_token = *basep;
2145
2146	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2147	if (basep)
2148		rtas_getchar_token = *basep;
2149
2150	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2151	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2152		udbg_init_rtas_console();
2153
2154#endif
2155
2156	/* break now */
2157	return 1;
2158}
2159
2160static DEFINE_RAW_SPINLOCK(timebase_lock);
2161static u64 timebase = 0;
2162
2163void rtas_give_timebase(void)
2164{
2165	unsigned long flags;
2166
2167	raw_spin_lock_irqsave(&timebase_lock, flags);
2168	hard_irq_disable();
2169	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
 
2170	timebase = get_tb();
2171	raw_spin_unlock(&timebase_lock);
2172
2173	while (timebase)
2174		barrier();
2175	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2176	local_irq_restore(flags);
2177}
2178
2179void rtas_take_timebase(void)
2180{
2181	while (!timebase)
2182		barrier();
2183	raw_spin_lock(&timebase_lock);
2184	set_tb(timebase >> 32, timebase & 0xffffffff);
2185	timebase = 0;
2186	raw_spin_unlock(&timebase_lock);
2187}