Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#define pr_fmt(fmt)	"rtas: " fmt
  11
 
  12#include <linux/capability.h>
  13#include <linux/delay.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
 
  16#include <linux/kernel.h>
 
  17#include <linux/memblock.h>
 
 
  18#include <linux/of.h>
  19#include <linux/of_fdt.h>
  20#include <linux/reboot.h>
  21#include <linux/sched.h>
  22#include <linux/security.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/stdarg.h>
  26#include <linux/syscalls.h>
  27#include <linux/types.h>
  28#include <linux/uaccess.h>
 
  29
  30#include <asm/delay.h>
  31#include <asm/firmware.h>
  32#include <asm/interrupt.h>
  33#include <asm/machdep.h>
  34#include <asm/mmu.h>
  35#include <asm/page.h>
 
  36#include <asm/rtas.h>
  37#include <asm/time.h>
 
  38#include <asm/udbg.h>
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/* This is here deliberately so it's only used in this file */
  41void enter_rtas(unsigned long);
  42
  43static inline void do_enter_rtas(unsigned long args)
 
 
 
 
 
 
  44{
  45	unsigned long msr;
  46
  47	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48	 * Make sure MSR[RI] is currently enabled as it will be forced later
  49	 * in enter_rtas.
  50	 */
  51	msr = mfmsr();
  52	BUG_ON(!(msr & MSR_RI));
  53
  54	BUG_ON(!irqs_disabled());
  55
  56	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
  57
  58	enter_rtas(args);
  59
  60	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
 
  61}
  62
  63struct rtas_t rtas = {
  64	.lock = __ARCH_SPIN_LOCK_UNLOCKED
  65};
  66EXPORT_SYMBOL(rtas);
  67
  68DEFINE_SPINLOCK(rtas_data_buf_lock);
  69EXPORT_SYMBOL(rtas_data_buf_lock);
  70
  71char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
  72EXPORT_SYMBOL(rtas_data_buf);
  73
  74unsigned long rtas_rmo_buf;
  75
  76/*
  77 * If non-NULL, this gets called when the kernel terminates.
  78 * This is done like this so rtas_flash can be a module.
  79 */
  80void (*rtas_flash_term_hook)(int);
  81EXPORT_SYMBOL(rtas_flash_term_hook);
  82
  83/* RTAS use home made raw locking instead of spin_lock_irqsave
  84 * because those can be called from within really nasty contexts
  85 * such as having the timebase stopped which would lockup with
  86 * normal locks and spinlock debugging enabled
  87 */
  88static unsigned long lock_rtas(void)
  89{
  90	unsigned long flags;
  91
  92	local_irq_save(flags);
  93	preempt_disable();
  94	arch_spin_lock(&rtas.lock);
  95	return flags;
  96}
  97
  98static void unlock_rtas(unsigned long flags)
  99{
 100	arch_spin_unlock(&rtas.lock);
 101	local_irq_restore(flags);
 102	preempt_enable();
 103}
 104
 105/*
 106 * call_rtas_display_status and call_rtas_display_status_delay
 107 * are designed only for very early low-level debugging, which
 108 * is why the token is hard-coded to 10.
 109 */
 110static void call_rtas_display_status(unsigned char c)
 111{
 112	unsigned long s;
 113
 114	if (!rtas.base)
 115		return;
 116
 117	s = lock_rtas();
 118	rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
 119	unlock_rtas(s);
 120}
 121
 122static void call_rtas_display_status_delay(char c)
 123{
 124	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 125	static int width = 16;
 126
 127	if (c == '\n') {	
 128		while (width-- > 0)
 129			call_rtas_display_status(' ');
 130		width = 16;
 131		mdelay(500);
 132		pending_newline = 1;
 133	} else {
 134		if (pending_newline) {
 135			call_rtas_display_status('\r');
 136			call_rtas_display_status('\n');
 137		} 
 138		pending_newline = 0;
 139		if (width--) {
 140			call_rtas_display_status(c);
 141			udelay(10000);
 142		}
 143	}
 144}
 145
 146void __init udbg_init_rtas_panel(void)
 147{
 148	udbg_putc = call_rtas_display_status_delay;
 149}
 150
 151#ifdef CONFIG_UDBG_RTAS_CONSOLE
 152
 153/* If you think you're dying before early_init_dt_scan_rtas() does its
 154 * work, you can hard code the token values for your firmware here and
 155 * hardcode rtas.base/entry etc.
 156 */
 157static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 158static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 159
 160static void udbg_rtascon_putc(char c)
 161{
 162	int tries;
 163
 164	if (!rtas.base)
 165		return;
 166
 167	/* Add CRs before LFs */
 168	if (c == '\n')
 169		udbg_rtascon_putc('\r');
 170
 171	/* if there is more than one character to be displayed, wait a bit */
 172	for (tries = 0; tries < 16; tries++) {
 173		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 174			break;
 175		udelay(1000);
 176	}
 177}
 178
 179static int udbg_rtascon_getc_poll(void)
 180{
 181	int c;
 182
 183	if (!rtas.base)
 184		return -1;
 185
 186	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 187		return -1;
 188
 189	return c;
 190}
 191
 192static int udbg_rtascon_getc(void)
 193{
 194	int c;
 195
 196	while ((c = udbg_rtascon_getc_poll()) == -1)
 197		;
 198
 199	return c;
 200}
 201
 202
 203void __init udbg_init_rtas_console(void)
 204{
 205	udbg_putc = udbg_rtascon_putc;
 206	udbg_getc = udbg_rtascon_getc;
 207	udbg_getc_poll = udbg_rtascon_getc_poll;
 208}
 209#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 210
 211void rtas_progress(char *s, unsigned short hex)
 212{
 213	struct device_node *root;
 214	int width;
 215	const __be32 *p;
 216	char *os;
 217	static int display_character, set_indicator;
 218	static int display_width, display_lines, form_feed;
 219	static const int *row_width;
 220	static DEFINE_SPINLOCK(progress_lock);
 221	static int current_line;
 222	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 223
 224	if (!rtas.base)
 225		return;
 226
 227	if (display_width == 0) {
 228		display_width = 0x10;
 229		if ((root = of_find_node_by_path("/rtas"))) {
 230			if ((p = of_get_property(root,
 231					"ibm,display-line-length", NULL)))
 232				display_width = be32_to_cpu(*p);
 233			if ((p = of_get_property(root,
 234					"ibm,form-feed", NULL)))
 235				form_feed = be32_to_cpu(*p);
 236			if ((p = of_get_property(root,
 237					"ibm,display-number-of-lines", NULL)))
 238				display_lines = be32_to_cpu(*p);
 239			row_width = of_get_property(root,
 240					"ibm,display-truncation-length", NULL);
 241			of_node_put(root);
 242		}
 243		display_character = rtas_token("display-character");
 244		set_indicator = rtas_token("set-indicator");
 245	}
 246
 247	if (display_character == RTAS_UNKNOWN_SERVICE) {
 248		/* use hex display if available */
 249		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 250			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 251		return;
 252	}
 253
 254	spin_lock(&progress_lock);
 255
 256	/*
 257	 * Last write ended with newline, but we didn't print it since
 258	 * it would just clear the bottom line of output. Print it now
 259	 * instead.
 260	 *
 261	 * If no newline is pending and form feed is supported, clear the
 262	 * display with a form feed; otherwise, print a CR to start output
 263	 * at the beginning of the line.
 264	 */
 265	if (pending_newline) {
 266		rtas_call(display_character, 1, 1, NULL, '\r');
 267		rtas_call(display_character, 1, 1, NULL, '\n');
 268		pending_newline = 0;
 269	} else {
 270		current_line = 0;
 271		if (form_feed)
 272			rtas_call(display_character, 1, 1, NULL,
 273				  (char)form_feed);
 274		else
 275			rtas_call(display_character, 1, 1, NULL, '\r');
 276	}
 277 
 278	if (row_width)
 279		width = row_width[current_line];
 280	else
 281		width = display_width;
 282	os = s;
 283	while (*os) {
 284		if (*os == '\n' || *os == '\r') {
 285			/* If newline is the last character, save it
 286			 * until next call to avoid bumping up the
 287			 * display output.
 288			 */
 289			if (*os == '\n' && !os[1]) {
 290				pending_newline = 1;
 291				current_line++;
 292				if (current_line > display_lines-1)
 293					current_line = display_lines-1;
 294				spin_unlock(&progress_lock);
 295				return;
 296			}
 297 
 298			/* RTAS wants CR-LF, not just LF */
 299 
 300			if (*os == '\n') {
 301				rtas_call(display_character, 1, 1, NULL, '\r');
 302				rtas_call(display_character, 1, 1, NULL, '\n');
 303			} else {
 304				/* CR might be used to re-draw a line, so we'll
 305				 * leave it alone and not add LF.
 306				 */
 307				rtas_call(display_character, 1, 1, NULL, *os);
 308			}
 309 
 310			if (row_width)
 311				width = row_width[current_line];
 312			else
 313				width = display_width;
 314		} else {
 315			width--;
 316			rtas_call(display_character, 1, 1, NULL, *os);
 317		}
 318 
 319		os++;
 320 
 321		/* if we overwrite the screen length */
 322		if (width <= 0)
 323			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 324				os++;
 325	}
 326 
 327	spin_unlock(&progress_lock);
 328}
 329EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */
 330
 331int rtas_token(const char *service)
 332{
 
 333	const __be32 *tokp;
 
 334	if (rtas.dev == NULL)
 335		return RTAS_UNKNOWN_SERVICE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336	tokp = of_get_property(rtas.dev, service, NULL);
 337	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
 338}
 339EXPORT_SYMBOL(rtas_token);
 340
 341int rtas_service_present(const char *service)
 342{
 343	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
 344}
 345EXPORT_SYMBOL(rtas_service_present);
 346
 347#ifdef CONFIG_RTAS_ERROR_LOGGING
 348
 349static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
 350
 351/*
 352 * Return the firmware-specified size of the error log buffer
 353 *  for all rtas calls that require an error buffer argument.
 354 *  This includes 'check-exception' and 'rtas-last-error'.
 355 */
 356int rtas_get_error_log_max(void)
 357{
 358	return rtas_error_log_max;
 359}
 360EXPORT_SYMBOL(rtas_get_error_log_max);
 361
 362static void __init init_error_log_max(void)
 363{
 364	static const char propname[] __initconst = "rtas-error-log-max";
 365	u32 max;
 366
 367	if (of_property_read_u32(rtas.dev, propname, &max)) {
 368		pr_warn("%s not found, using default of %u\n",
 369			propname, RTAS_ERROR_LOG_MAX);
 370		max = RTAS_ERROR_LOG_MAX;
 371	}
 372
 373	if (max > RTAS_ERROR_LOG_MAX) {
 374		pr_warn("%s = %u, clamping max error log size to %u\n",
 375			propname, max, RTAS_ERROR_LOG_MAX);
 376		max = RTAS_ERROR_LOG_MAX;
 377	}
 378
 379	rtas_error_log_max = max;
 380}
 381
 382
 383static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 384static int rtas_last_error_token;
 385
 386/** Return a copy of the detailed error text associated with the
 387 *  most recent failed call to rtas.  Because the error text
 388 *  might go stale if there are any other intervening rtas calls,
 389 *  this routine must be called atomically with whatever produced
 390 *  the error (i.e. with rtas.lock still held from the previous call).
 391 */
 392static char *__fetch_rtas_last_error(char *altbuf)
 393{
 
 394	struct rtas_args err_args, save_args;
 395	u32 bufsz;
 396	char *buf = NULL;
 397
 398	if (rtas_last_error_token == -1)
 
 
 399		return NULL;
 400
 401	bufsz = rtas_get_error_log_max();
 402
 403	err_args.token = cpu_to_be32(rtas_last_error_token);
 404	err_args.nargs = cpu_to_be32(2);
 405	err_args.nret = cpu_to_be32(1);
 406	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
 407	err_args.args[1] = cpu_to_be32(bufsz);
 408	err_args.args[2] = 0;
 409
 410	save_args = rtas.args;
 411	rtas.args = err_args;
 412
 413	do_enter_rtas(__pa(&rtas.args));
 414
 415	err_args = rtas.args;
 416	rtas.args = save_args;
 417
 418	/* Log the error in the unlikely case that there was one. */
 419	if (unlikely(err_args.args[2] == 0)) {
 420		if (altbuf) {
 421			buf = altbuf;
 422		} else {
 423			buf = rtas_err_buf;
 424			if (slab_is_available())
 425				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
 426		}
 427		if (buf)
 428			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
 429	}
 430
 431	return buf;
 432}
 433
 434#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
 435
 436#else /* CONFIG_RTAS_ERROR_LOGGING */
 437#define __fetch_rtas_last_error(x)	NULL
 438#define get_errorlog_buffer()		NULL
 439static void __init init_error_log_max(void) {}
 440#endif
 441
 442
 443static void
 444va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
 445		      va_list list)
 446{
 447	int i;
 448
 449	args->token = cpu_to_be32(token);
 450	args->nargs = cpu_to_be32(nargs);
 451	args->nret  = cpu_to_be32(nret);
 452	args->rets  = &(args->args[nargs]);
 453
 454	for (i = 0; i < nargs; ++i)
 455		args->args[i] = cpu_to_be32(va_arg(list, __u32));
 456
 457	for (i = 0; i < nret; ++i)
 458		args->rets[i] = 0;
 459
 460	do_enter_rtas(__pa(args));
 461}
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
 464{
 465	va_list list;
 466
 467	va_start(list, nret);
 468	va_rtas_call_unlocked(args, token, nargs, nret, list);
 469	va_end(list);
 470}
 471
 472static int ibm_open_errinjct_token;
 473static int ibm_errinjct_token;
 
 
 
 474
 475/**
 476 * rtas_call() - Invoke an RTAS firmware function.
 477 * @token: Identifies the function being invoked.
 478 * @nargs: Number of input parameters. Does not include token.
 479 * @nret: Number of output parameters, including the call status.
 480 * @outputs: Array of @nret output words.
 481 * @....: List of @nargs input parameters.
 482 *
 483 * Invokes the RTAS function indicated by @token, which the caller
 484 * should obtain via rtas_token().
 485 *
 486 * The @nargs and @nret arguments must match the number of input and
 487 * output parameters specified for the RTAS function.
 488 *
 489 * rtas_call() returns RTAS status codes, not conventional Linux errno
 490 * values. Callers must translate any failure to an appropriate errno
 491 * in syscall context. Most callers of RTAS functions that can return
 492 * -2 or 990x should use rtas_busy_delay() to correctly handle those
 493 * statuses before calling again.
 494 *
 495 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
 496 * Codes of the PAPR and CHRP specifications.
 497 *
 498 * Context: Process context preferably, interrupt context if
 499 *          necessary.  Acquires an internal spinlock and may perform
 500 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
 501 *          context.
 502 * Return:
 503 * *                          0 - RTAS function call succeeded.
 504 * *                         -1 - RTAS function encountered a hardware or
 505 *                                platform error, or the token is invalid,
 506 *                                or the function is restricted by kernel policy.
 507 * *                         -2 - Specs say "A necessary hardware device was busy,
 508 *                                and the requested function could not be
 509 *                                performed. The operation should be retried at
 510 *                                a later time." This is misleading, at least with
 511 *                                respect to current RTAS implementations. What it
 512 *                                usually means in practice is that the function
 513 *                                could not be completed while meeting RTAS's
 514 *                                deadline for returning control to the OS (250us
 515 *                                for PAPR/PowerVM, typically), but the call may be
 516 *                                immediately reattempted to resume work on it.
 517 * *                         -3 - Parameter error.
 518 * *                         -7 - Unexpected state change.
 519 * *                9000...9899 - Vendor-specific success codes.
 520 * *                9900...9905 - Advisory extended delay. Caller should try
 521 *                                again after ~10^x ms has elapsed, where x is
 522 *                                the last digit of the status [0-5]. Again going
 523 *                                beyond the PAPR text, 990x on PowerVM indicates
 524 *                                contention for RTAS-internal resources. Other
 525 *                                RTAS call sequences in progress should be
 526 *                                allowed to complete before reattempting the
 527 *                                call.
 528 * *                      -9000 - Multi-level isolation error.
 529 * *              -9999...-9004 - Vendor-specific error codes.
 530 * * Additional negative values - Function-specific error.
 531 * * Additional positive values - Function-specific success.
 532 */
 533int rtas_call(int token, int nargs, int nret, int *outputs, ...)
 534{
 
 535	va_list list;
 536	int i;
 537	unsigned long s;
 538	struct rtas_args *rtas_args;
 539	char *buff_copy = NULL;
 540	int ret;
 541
 542	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
 543		return -1;
 544
 545	if (token == ibm_open_errinjct_token || token == ibm_errinjct_token) {
 546		/*
 547		 * It would be nicer to not discard the error value
 548		 * from security_locked_down(), but callers expect an
 549		 * RTAS status, not an errno.
 550		 */
 551		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
 552			return -1;
 553	}
 554
 555	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
 556		WARN_ON_ONCE(1);
 557		return -1;
 558	}
 559
 560	s = lock_rtas();
 
 561
 562	/* We use the global rtas args buffer */
 563	rtas_args = &rtas.args;
 564
 565	va_start(list, outputs);
 566	va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
 567	va_end(list);
 568
 569	/* A -1 return code indicates that the last command couldn't
 570	   be completed due to a hardware error. */
 571	if (be32_to_cpu(rtas_args->rets[0]) == -1)
 572		buff_copy = __fetch_rtas_last_error(NULL);
 573
 574	if (nret > 1 && outputs != NULL)
 575		for (i = 0; i < nret-1; ++i)
 576			outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
 577	ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
 578
 579	unlock_rtas(s);
 
 580
 581	if (buff_copy) {
 582		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
 583		if (slab_is_available())
 584			kfree(buff_copy);
 585	}
 586	return ret;
 587}
 588EXPORT_SYMBOL(rtas_call);
 589
 590/**
 591 * rtas_busy_delay_time() - From an RTAS status value, calculate the
 592 *                          suggested delay time in milliseconds.
 593 *
 594 * @status: a value returned from rtas_call() or similar APIs which return
 595 *          the status of a RTAS function call.
 596 *
 597 * Context: Any context.
 598 *
 599 * Return:
 600 * * 100000 - If @status is 9905.
 601 * * 10000  - If @status is 9904.
 602 * * 1000   - If @status is 9903.
 603 * * 100    - If @status is 9902.
 604 * * 10     - If @status is 9901.
 605 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
 606 *            some callers depend on this behavior, and the worst outcome
 607 *            is that they will delay for longer than necessary.
 608 * * 0      - If @status is not a busy or extended delay value.
 609 */
 610unsigned int rtas_busy_delay_time(int status)
 611{
 612	int order;
 613	unsigned int ms = 0;
 614
 615	if (status == RTAS_BUSY) {
 616		ms = 1;
 617	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
 618		   status <= RTAS_EXTENDED_DELAY_MAX) {
 619		order = status - RTAS_EXTENDED_DELAY_MIN;
 620		for (ms = 1; order > 0; order--)
 621			ms *= 10;
 622	}
 623
 624	return ms;
 625}
 626EXPORT_SYMBOL(rtas_busy_delay_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627
 628/**
 629 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
 630 *
 631 * @status: a value returned from rtas_call() or similar APIs which return
 632 *          the status of a RTAS function call.
 633 *
 634 * Context: Process context. May sleep or schedule.
 635 *
 636 * Return:
 637 * * true  - @status is RTAS_BUSY or an extended delay hint. The
 638 *           caller may assume that the CPU has been yielded if necessary,
 639 *           and that an appropriate delay for @status has elapsed.
 640 *           Generally the caller should reattempt the RTAS call which
 641 *           yielded @status.
 642 *
 643 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
 644 *           caller is responsible for handling @status.
 645 */
 646bool rtas_busy_delay(int status)
 647{
 648	unsigned int ms;
 649	bool ret;
 650
 
 
 
 
 
 
 651	switch (status) {
 652	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
 653		ret = true;
 654		ms = rtas_busy_delay_time(status);
 655		/*
 656		 * The extended delay hint can be as high as 100 seconds.
 657		 * Surely any function returning such a status is either
 658		 * buggy or isn't going to be significantly slowed by us
 659		 * polling at 1HZ. Clamp the sleep time to one second.
 660		 */
 661		ms = clamp(ms, 1U, 1000U);
 662		/*
 663		 * The delay hint is an order-of-magnitude suggestion, not
 664		 * a minimum. It is fine, possibly even advantageous, for
 665		 * us to pause for less time than hinted. For small values,
 666		 * use usleep_range() to ensure we don't sleep much longer
 667		 * than actually needed.
 668		 *
 669		 * See Documentation/timers/timers-howto.rst for
 670		 * explanation of the threshold used here. In effect we use
 671		 * usleep_range() for 9900 and 9901, msleep() for
 672		 * 9902-9905.
 673		 */
 674		if (ms <= 20)
 675			usleep_range(ms * 100, ms * 1000);
 676		else
 677			msleep(ms);
 678		break;
 679	case RTAS_BUSY:
 680		ret = true;
 681		/*
 682		 * We should call again immediately if there's no other
 683		 * work to do.
 684		 */
 685		cond_resched();
 686		break;
 687	default:
 688		ret = false;
 689		/*
 690		 * Not a busy or extended delay status; the caller should
 691		 * handle @status itself. Ensure we warn on misuses in
 692		 * atomic context regardless.
 693		 */
 694		might_sleep();
 695		break;
 696	}
 697
 698	return ret;
 699}
 700EXPORT_SYMBOL(rtas_busy_delay);
 701
 702static int rtas_error_rc(int rtas_rc)
 703{
 704	int rc;
 705
 706	switch (rtas_rc) {
 707		case -1: 		/* Hardware Error */
 708			rc = -EIO;
 709			break;
 710		case -3:		/* Bad indicator/domain/etc */
 711			rc = -EINVAL;
 712			break;
 713		case -9000:		/* Isolation error */
 714			rc = -EFAULT;
 715			break;
 716		case -9001:		/* Outstanding TCE/PTE */
 717			rc = -EEXIST;
 718			break;
 719		case -9002:		/* No usable slot */
 720			rc = -ENODEV;
 721			break;
 722		default:
 723			pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
 724			rc = -ERANGE;
 725			break;
 726	}
 727	return rc;
 728}
 
 729
 730int rtas_get_power_level(int powerdomain, int *level)
 731{
 732	int token = rtas_token("get-power-level");
 733	int rc;
 734
 735	if (token == RTAS_UNKNOWN_SERVICE)
 736		return -ENOENT;
 737
 738	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
 739		udelay(1);
 740
 741	if (rc < 0)
 742		return rtas_error_rc(rc);
 743	return rc;
 744}
 745EXPORT_SYMBOL(rtas_get_power_level);
 746
 747int rtas_set_power_level(int powerdomain, int level, int *setlevel)
 748{
 749	int token = rtas_token("set-power-level");
 750	int rc;
 751
 752	if (token == RTAS_UNKNOWN_SERVICE)
 753		return -ENOENT;
 754
 755	do {
 756		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
 757	} while (rtas_busy_delay(rc));
 758
 759	if (rc < 0)
 760		return rtas_error_rc(rc);
 761	return rc;
 762}
 763EXPORT_SYMBOL(rtas_set_power_level);
 764
 765int rtas_get_sensor(int sensor, int index, int *state)
 766{
 767	int token = rtas_token("get-sensor-state");
 768	int rc;
 769
 770	if (token == RTAS_UNKNOWN_SERVICE)
 771		return -ENOENT;
 772
 773	do {
 774		rc = rtas_call(token, 2, 2, state, sensor, index);
 775	} while (rtas_busy_delay(rc));
 776
 777	if (rc < 0)
 778		return rtas_error_rc(rc);
 779	return rc;
 780}
 781EXPORT_SYMBOL(rtas_get_sensor);
 782
 783int rtas_get_sensor_fast(int sensor, int index, int *state)
 784{
 785	int token = rtas_token("get-sensor-state");
 786	int rc;
 787
 788	if (token == RTAS_UNKNOWN_SERVICE)
 789		return -ENOENT;
 790
 791	rc = rtas_call(token, 2, 2, state, sensor, index);
 792	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 793				    rc <= RTAS_EXTENDED_DELAY_MAX));
 794
 795	if (rc < 0)
 796		return rtas_error_rc(rc);
 797	return rc;
 798}
 799
 800bool rtas_indicator_present(int token, int *maxindex)
 801{
 802	int proplen, count, i;
 803	const struct indicator_elem {
 804		__be32 token;
 805		__be32 maxindex;
 806	} *indicators;
 807
 808	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
 809	if (!indicators)
 810		return false;
 811
 812	count = proplen / sizeof(struct indicator_elem);
 813
 814	for (i = 0; i < count; i++) {
 815		if (__be32_to_cpu(indicators[i].token) != token)
 816			continue;
 817		if (maxindex)
 818			*maxindex = __be32_to_cpu(indicators[i].maxindex);
 819		return true;
 820	}
 821
 822	return false;
 823}
 824EXPORT_SYMBOL(rtas_indicator_present);
 825
 826int rtas_set_indicator(int indicator, int index, int new_value)
 827{
 828	int token = rtas_token("set-indicator");
 829	int rc;
 830
 831	if (token == RTAS_UNKNOWN_SERVICE)
 832		return -ENOENT;
 833
 834	do {
 835		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 836	} while (rtas_busy_delay(rc));
 837
 838	if (rc < 0)
 839		return rtas_error_rc(rc);
 840	return rc;
 841}
 842EXPORT_SYMBOL(rtas_set_indicator);
 843
 844/*
 845 * Ignoring RTAS extended delay
 846 */
 847int rtas_set_indicator_fast(int indicator, int index, int new_value)
 848{
 
 849	int rc;
 850	int token = rtas_token("set-indicator");
 851
 852	if (token == RTAS_UNKNOWN_SERVICE)
 853		return -ENOENT;
 854
 855	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
 856
 857	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
 858				    rc <= RTAS_EXTENDED_DELAY_MAX));
 859
 860	if (rc < 0)
 861		return rtas_error_rc(rc);
 862
 863	return rc;
 864}
 865
 866/**
 867 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
 868 *
 869 * @fw_status: RTAS call status will be placed here if not NULL.
 870 *
 871 * rtas_ibm_suspend_me() should be called only on a CPU which has
 872 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
 873 * should be waiting to return from H_JOIN.
 874 *
 875 * rtas_ibm_suspend_me() may suspend execution of the OS
 876 * indefinitely. Callers should take appropriate measures upon return, such as
 877 * resetting watchdog facilities.
 878 *
 879 * Callers may choose to retry this call if @fw_status is
 880 * %RTAS_THREADS_ACTIVE.
 881 *
 882 * Return:
 883 * 0          - The partition has resumed from suspend, possibly after
 884 *              migration to a different host.
 885 * -ECANCELED - The operation was aborted.
 886 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
 887 * -EBUSY     - Some other condition prevented the suspend from succeeding.
 888 * -EIO       - Hardware/platform error.
 889 */
 890int rtas_ibm_suspend_me(int *fw_status)
 891{
 
 892	int fwrc;
 893	int ret;
 894
 895	fwrc = rtas_call(rtas_token("ibm,suspend-me"), 0, 1, NULL);
 896
 897	switch (fwrc) {
 898	case 0:
 899		ret = 0;
 900		break;
 901	case RTAS_SUSPEND_ABORTED:
 902		ret = -ECANCELED;
 903		break;
 904	case RTAS_THREADS_ACTIVE:
 905		ret = -EAGAIN;
 906		break;
 907	case RTAS_NOT_SUSPENDABLE:
 908	case RTAS_OUTSTANDING_COPROC:
 909		ret = -EBUSY;
 910		break;
 911	case -1:
 912	default:
 913		ret = -EIO;
 914		break;
 915	}
 916
 917	if (fw_status)
 918		*fw_status = fwrc;
 919
 920	return ret;
 921}
 922
 923void __noreturn rtas_restart(char *cmd)
 924{
 925	if (rtas_flash_term_hook)
 926		rtas_flash_term_hook(SYS_RESTART);
 927	pr_emerg("system-reboot returned %d\n",
 928		 rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
 929	for (;;);
 930}
 931
 932void rtas_power_off(void)
 933{
 934	if (rtas_flash_term_hook)
 935		rtas_flash_term_hook(SYS_POWER_OFF);
 936	/* allow power on only with power button press */
 937	pr_emerg("power-off returned %d\n",
 938		 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 939	for (;;);
 940}
 941
 942void __noreturn rtas_halt(void)
 943{
 944	if (rtas_flash_term_hook)
 945		rtas_flash_term_hook(SYS_HALT);
 946	/* allow power on only with power button press */
 947	pr_emerg("power-off returned %d\n",
 948		 rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
 949	for (;;);
 950}
 951
 952/* Must be in the RMO region, so we place it here */
 953static char rtas_os_term_buf[2048];
 954static s32 ibm_os_term_token = RTAS_UNKNOWN_SERVICE;
 955
 956void rtas_os_term(char *str)
 957{
 
 
 958	int status;
 959
 960	/*
 961	 * Firmware with the ibm,extended-os-term property is guaranteed
 962	 * to always return from an ibm,os-term call. Earlier versions without
 963	 * this property may terminate the partition which we want to avoid
 964	 * since it interferes with panic_timeout.
 965	 */
 966	if (ibm_os_term_token == RTAS_UNKNOWN_SERVICE)
 
 967		return;
 968
 969	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
 970
 971	/*
 972	 * Keep calling as long as RTAS returns a "try again" status,
 973	 * but don't use rtas_busy_delay(), which potentially
 974	 * schedules.
 975	 */
 976	do {
 977		status = rtas_call(ibm_os_term_token, 1, 1, NULL,
 978				   __pa(rtas_os_term_buf));
 979	} while (rtas_busy_delay_time(status));
 980
 981	if (status != 0)
 982		pr_emerg("ibm,os-term call failed %d\n", status);
 983}
 984
 985/**
 986 * rtas_activate_firmware() - Activate a new version of firmware.
 987 *
 988 * Context: This function may sleep.
 989 *
 990 * Activate a new version of partition firmware. The OS must call this
 991 * after resuming from a partition hibernation or migration in order
 992 * to maintain the ability to perform live firmware updates. It's not
 993 * catastrophic for this method to be absent or to fail; just log the
 994 * condition in that case.
 995 */
 996void rtas_activate_firmware(void)
 997{
 998	int token;
 999	int fwrc;
1000
1001	token = rtas_token("ibm,activate-firmware");
1002	if (token == RTAS_UNKNOWN_SERVICE) {
1003		pr_notice("ibm,activate-firmware method unavailable\n");
1004		return;
1005	}
1006
 
 
1007	do {
1008		fwrc = rtas_call(token, 0, 1, NULL);
1009	} while (rtas_busy_delay(fwrc));
1010
 
 
1011	if (fwrc)
1012		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1013}
1014
1015/**
1016 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1017 *                          extended event log.
1018 * @log: RTAS error/event log
1019 * @section_id: two character section identifier
1020 *
1021 * Return: A pointer to the specified errorlog or NULL if not found.
1022 */
1023noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1024						      uint16_t section_id)
1025{
1026	struct rtas_ext_event_log_v6 *ext_log =
1027		(struct rtas_ext_event_log_v6 *)log->buffer;
1028	struct pseries_errorlog *sect;
1029	unsigned char *p, *log_end;
1030	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1031	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1032	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1033
1034	/* Check that we understand the format */
1035	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1036	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1037	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1038		return NULL;
1039
1040	log_end = log->buffer + ext_log_length;
1041	p = ext_log->vendor_log;
1042
1043	while (p < log_end) {
1044		sect = (struct pseries_errorlog *)p;
1045		if (pseries_errorlog_id(sect) == section_id)
1046			return sect;
1047		p += pseries_errorlog_length(sect);
1048	}
1049
1050	return NULL;
1051}
1052
1053/*
1054 * The sys_rtas syscall, as originally designed, allows root to pass
1055 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1056 * can be abused to write to arbitrary memory and do other things that
1057 * are potentially harmful to system integrity, and thus should only
1058 * be used inside the kernel and not exposed to userspace.
1059 *
1060 * All known legitimate users of the sys_rtas syscall will only ever
1061 * pass addresses that fall within the RMO buffer, and use a known
1062 * subset of RTAS calls.
1063 *
1064 * Accordingly, we filter RTAS requests to check that the call is
1065 * permitted, and that provided pointers fall within the RMO buffer.
1066 * The rtas_filters list contains an entry for each permitted call,
1067 * with the indexes of the parameters which are expected to contain
1068 * addresses and sizes of buffers allocated inside the RMO buffer.
 
 
1069 */
1070struct rtas_filter {
1071	const char *name;
1072	int token;
1073	/* Indexes into the args buffer, -1 if not used */
1074	int buf_idx1;
1075	int size_idx1;
1076	int buf_idx2;
1077	int size_idx2;
1078
1079	int fixed_size;
1080};
1081
1082static struct rtas_filter rtas_filters[] __ro_after_init = {
1083	{ "ibm,activate-firmware", -1, -1, -1, -1, -1 },
1084	{ "ibm,configure-connector", -1, 0, -1, 1, -1, 4096 },	/* Special cased */
1085	{ "display-character", -1, -1, -1, -1, -1 },
1086	{ "ibm,display-message", -1, 0, -1, -1, -1 },
1087	{ "ibm,errinjct", -1, 2, -1, -1, -1, 1024 },
1088	{ "ibm,close-errinjct", -1, -1, -1, -1, -1 },
1089	{ "ibm,open-errinjct", -1, -1, -1, -1, -1 },
1090	{ "ibm,get-config-addr-info2", -1, -1, -1, -1, -1 },
1091	{ "ibm,get-dynamic-sensor-state", -1, 1, -1, -1, -1 },
1092	{ "ibm,get-indices", -1, 2, 3, -1, -1 },
1093	{ "get-power-level", -1, -1, -1, -1, -1 },
1094	{ "get-sensor-state", -1, -1, -1, -1, -1 },
1095	{ "ibm,get-system-parameter", -1, 1, 2, -1, -1 },
1096	{ "get-time-of-day", -1, -1, -1, -1, -1 },
1097	{ "ibm,get-vpd", -1, 0, -1, 1, 2 },
1098	{ "ibm,lpar-perftools", -1, 2, 3, -1, -1 },
1099	{ "ibm,platform-dump", -1, 4, 5, -1, -1 },		/* Special cased */
1100	{ "ibm,read-slot-reset-state", -1, -1, -1, -1, -1 },
1101	{ "ibm,scan-log-dump", -1, 0, 1, -1, -1 },
1102	{ "ibm,set-dynamic-indicator", -1, 2, -1, -1, -1 },
1103	{ "ibm,set-eeh-option", -1, -1, -1, -1, -1 },
1104	{ "set-indicator", -1, -1, -1, -1, -1 },
1105	{ "set-power-level", -1, -1, -1, -1, -1 },
1106	{ "set-time-for-power-on", -1, -1, -1, -1, -1 },
1107	{ "ibm,set-system-parameter", -1, 1, -1, -1, -1 },
1108	{ "set-time-of-day", -1, -1, -1, -1, -1 },
1109#ifdef CONFIG_CPU_BIG_ENDIAN
1110	{ "ibm,suspend-me", -1, -1, -1, -1, -1 },
1111	{ "ibm,update-nodes", -1, 0, -1, -1, -1, 4096 },
1112	{ "ibm,update-properties", -1, 0, -1, -1, -1, 4096 },
1113#endif
1114	{ "ibm,physical-attestation", -1, 0, 1, -1, -1 },
1115};
1116
1117static bool in_rmo_buf(u32 base, u32 end)
1118{
1119	return base >= rtas_rmo_buf &&
1120		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1121		base <= end &&
1122		end >= rtas_rmo_buf &&
1123		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1124}
1125
1126static bool block_rtas_call(int token, int nargs,
1127			    struct rtas_args *args)
1128{
1129	int i;
1130
1131	for (i = 0; i < ARRAY_SIZE(rtas_filters); i++) {
1132		struct rtas_filter *f = &rtas_filters[i];
1133		u32 base, size, end;
1134
1135		if (token != f->token)
1136			continue;
1137
1138		if (f->buf_idx1 != -1) {
1139			base = be32_to_cpu(args->args[f->buf_idx1]);
1140			if (f->size_idx1 != -1)
1141				size = be32_to_cpu(args->args[f->size_idx1]);
1142			else if (f->fixed_size)
1143				size = f->fixed_size;
1144			else
1145				size = 1;
 
 
 
1146
1147			end = base + size - 1;
 
 
 
 
 
 
 
1148
1149			/*
1150			 * Special case for ibm,platform-dump - NULL buffer
1151			 * address is used to indicate end of dump processing
1152			 */
1153			if (!strcmp(f->name, "ibm,platform-dump") &&
1154			    base == 0)
1155				return false;
1156
1157			if (!in_rmo_buf(base, end))
1158				goto err;
1159		}
 
 
 
1160
1161		if (f->buf_idx2 != -1) {
1162			base = be32_to_cpu(args->args[f->buf_idx2]);
1163			if (f->size_idx2 != -1)
1164				size = be32_to_cpu(args->args[f->size_idx2]);
1165			else if (f->fixed_size)
1166				size = f->fixed_size;
1167			else
1168				size = 1;
1169			end = base + size - 1;
1170
1171			/*
1172			 * Special case for ibm,configure-connector where the
1173			 * address can be 0
1174			 */
1175			if (!strcmp(f->name, "ibm,configure-connector") &&
1176			    base == 0)
1177				return false;
 
 
1178
1179			if (!in_rmo_buf(base, end))
1180				goto err;
1181		}
 
 
 
1182
1183		return false;
 
1184	}
1185
 
1186err:
1187	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1188	pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n",
1189			   token, nargs, current->comm);
1190	return true;
1191}
1192
1193static void __init rtas_syscall_filter_init(void)
1194{
1195	unsigned int i;
1196
1197	for (i = 0; i < ARRAY_SIZE(rtas_filters); i++)
1198		rtas_filters[i].token = rtas_token(rtas_filters[i].name);
1199}
1200
1201/* We assume to be passed big endian arguments */
1202SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1203{
 
 
1204	struct rtas_args args;
1205	unsigned long flags;
1206	char *buff_copy, *errbuf = NULL;
1207	int nargs, nret, token;
1208
1209	if (!capable(CAP_SYS_ADMIN))
1210		return -EPERM;
1211
1212	if (!rtas.entry)
1213		return -EINVAL;
1214
1215	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1216		return -EFAULT;
1217
1218	nargs = be32_to_cpu(args.nargs);
1219	nret  = be32_to_cpu(args.nret);
1220	token = be32_to_cpu(args.token);
1221
1222	if (nargs >= ARRAY_SIZE(args.args)
1223	    || nret > ARRAY_SIZE(args.args)
1224	    || nargs + nret > ARRAY_SIZE(args.args))
1225		return -EINVAL;
1226
 
 
 
1227	/* Copy in args. */
1228	if (copy_from_user(args.args, uargs->args,
1229			   nargs * sizeof(rtas_arg_t)) != 0)
1230		return -EFAULT;
1231
1232	if (token == RTAS_UNKNOWN_SERVICE)
 
 
 
 
 
1233		return -EINVAL;
1234
1235	args.rets = &args.args[nargs];
1236	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1237
1238	if (block_rtas_call(token, nargs, &args))
1239		return -EINVAL;
1240
1241	if (token == ibm_open_errinjct_token || token == ibm_errinjct_token) {
1242		int err;
1243
1244		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1245		if (err)
1246			return err;
1247	}
1248
1249	/* Need to handle ibm,suspend_me call specially */
1250	if (token == rtas_token("ibm,suspend-me")) {
1251
1252		/*
1253		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1254		 * endian, or at least the hcall within it requires it.
1255		 */
1256		int rc = 0;
1257		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1258		              | be32_to_cpu(args.args[1]);
1259		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1260		if (rc == -EAGAIN)
1261			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1262		else if (rc == -EIO)
1263			args.rets[0] = cpu_to_be32(-1);
1264		else if (rc)
1265			return rc;
1266		goto copy_return;
1267	}
1268
1269	buff_copy = get_errorlog_buffer();
1270
1271	flags = lock_rtas();
 
 
 
 
 
 
 
1272
1273	rtas.args = args;
1274	do_enter_rtas(__pa(&rtas.args));
1275	args = rtas.args;
 
 
 
1276
1277	/* A -1 return code indicates that the last command couldn't
1278	   be completed due to a hardware error. */
1279	if (be32_to_cpu(args.rets[0]) == -1)
1280		errbuf = __fetch_rtas_last_error(buff_copy);
1281
1282	unlock_rtas(flags);
 
 
 
 
1283
1284	if (buff_copy) {
1285		if (errbuf)
1286			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1287		kfree(buff_copy);
1288	}
1289
1290 copy_return:
1291	/* Copy out args. */
1292	if (copy_to_user(uargs->args + nargs,
1293			 args.args + nargs,
1294			 nret * sizeof(rtas_arg_t)) != 0)
1295		return -EFAULT;
1296
1297	return 0;
1298}
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300/*
1301 * Call early during boot, before mem init, to retrieve the RTAS
1302 * information from the device-tree and allocate the RMO buffer for userland
1303 * accesses.
1304 */
1305void __init rtas_initialize(void)
1306{
1307	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1308	u32 base, size, entry;
1309	int no_base, no_size, no_entry;
1310
1311	/* Get RTAS dev node and fill up our "rtas" structure with infos
1312	 * about it.
1313	 */
1314	rtas.dev = of_find_node_by_name(NULL, "rtas");
1315	if (!rtas.dev)
1316		return;
1317
1318	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1319	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1320	if (no_base || no_size) {
1321		of_node_put(rtas.dev);
1322		rtas.dev = NULL;
1323		return;
1324	}
1325
1326	rtas.base = base;
1327	rtas.size = size;
1328	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1329	rtas.entry = no_entry ? rtas.base : entry;
1330
1331	init_error_log_max();
1332
 
 
 
1333	/*
1334	 * Discover these now to avoid device tree lookups in the
1335	 * panic path.
1336	 */
1337	if (of_property_read_bool(rtas.dev, "ibm,extended-os-term"))
1338		ibm_os_term_token = rtas_token("ibm,os-term");
1339
1340	/* If RTAS was found, allocate the RMO buffer for it and look for
1341	 * the stop-self token if any
1342	 */
1343#ifdef CONFIG_PPC64
1344	if (firmware_has_feature(FW_FEATURE_LPAR))
1345		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1346#endif
1347	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
1348						 0, rtas_region);
1349	if (!rtas_rmo_buf)
1350		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1351		      PAGE_SIZE, &rtas_region);
1352
1353#ifdef CONFIG_RTAS_ERROR_LOGGING
1354	rtas_last_error_token = rtas_token("rtas-last-error");
1355#endif
1356	ibm_open_errinjct_token = rtas_token("ibm,open-errinjct");
1357	ibm_errinjct_token = rtas_token("ibm,errinjct");
1358	rtas_syscall_filter_init();
1359}
1360
1361int __init early_init_dt_scan_rtas(unsigned long node,
1362		const char *uname, int depth, void *data)
1363{
1364	const u32 *basep, *entryp, *sizep;
1365
1366	if (depth != 1 || strcmp(uname, "rtas") != 0)
1367		return 0;
1368
1369	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1370	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1371	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
1372
1373#ifdef CONFIG_PPC64
1374	/* need this feature to decide the crashkernel offset */
1375	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
1376		powerpc_firmware_features |= FW_FEATURE_LPAR;
1377#endif
1378
1379	if (basep && entryp && sizep) {
1380		rtas.base = *basep;
1381		rtas.entry = *entryp;
1382		rtas.size = *sizep;
1383	}
1384
1385#ifdef CONFIG_UDBG_RTAS_CONSOLE
1386	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1387	if (basep)
1388		rtas_putchar_token = *basep;
1389
1390	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
1391	if (basep)
1392		rtas_getchar_token = *basep;
1393
1394	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
1395	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
1396		udbg_init_rtas_console();
1397
1398#endif
1399
1400	/* break now */
1401	return 1;
1402}
1403
1404static arch_spinlock_t timebase_lock;
1405static u64 timebase = 0;
1406
1407void rtas_give_timebase(void)
1408{
1409	unsigned long flags;
1410
1411	local_irq_save(flags);
1412	hard_irq_disable();
1413	arch_spin_lock(&timebase_lock);
1414	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
1415	timebase = get_tb();
1416	arch_spin_unlock(&timebase_lock);
1417
1418	while (timebase)
1419		barrier();
1420	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
1421	local_irq_restore(flags);
1422}
1423
1424void rtas_take_timebase(void)
1425{
1426	while (!timebase)
1427		barrier();
1428	arch_spin_lock(&timebase_lock);
1429	set_tb(timebase >> 32, timebase & 0xffffffff);
1430	timebase = 0;
1431	arch_spin_unlock(&timebase_lock);
1432}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Procedures for interfacing to the RTAS on CHRP machines.
   5 *
   6 * Peter Bergner, IBM	March 2001.
   7 * Copyright (C) 2001 IBM.
   8 */
   9
  10#define pr_fmt(fmt)	"rtas: " fmt
  11
  12#include <linux/bsearch.h>
  13#include <linux/capability.h>
  14#include <linux/delay.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/kconfig.h>
  18#include <linux/kernel.h>
  19#include <linux/lockdep.h>
  20#include <linux/memblock.h>
  21#include <linux/mutex.h>
  22#include <linux/nospec.h>
  23#include <linux/of.h>
  24#include <linux/of_fdt.h>
  25#include <linux/reboot.h>
  26#include <linux/sched.h>
  27#include <linux/security.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30#include <linux/stdarg.h>
  31#include <linux/syscalls.h>
  32#include <linux/types.h>
  33#include <linux/uaccess.h>
  34#include <linux/xarray.h>
  35
  36#include <asm/delay.h>
  37#include <asm/firmware.h>
  38#include <asm/interrupt.h>
  39#include <asm/machdep.h>
  40#include <asm/mmu.h>
  41#include <asm/page.h>
  42#include <asm/rtas-work-area.h>
  43#include <asm/rtas.h>
  44#include <asm/time.h>
  45#include <asm/trace.h>
  46#include <asm/udbg.h>
  47
  48struct rtas_filter {
  49	/* Indexes into the args buffer, -1 if not used */
  50	const int buf_idx1;
  51	const int size_idx1;
  52	const int buf_idx2;
  53	const int size_idx2;
  54	/*
  55	 * Assumed buffer size per the spec if the function does not
  56	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
  57	 */
  58	const int fixed_size;
  59};
  60
  61/**
  62 * struct rtas_function - Descriptor for RTAS functions.
  63 *
  64 * @token: Value of @name if it exists under the /rtas node.
  65 * @name: Function name.
  66 * @filter: If non-NULL, invoking this function via the rtas syscall is
  67 *          generally allowed, and @filter describes constraints on the
  68 *          arguments. See also @banned_for_syscall_on_le.
  69 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
  70 *                            but specifically restricted on ppc64le. Such
  71 *                            functions are believed to have no users on
  72 *                            ppc64le, and we want to keep it that way. It does
  73 *                            not make sense for this to be set when @filter
  74 *                            is NULL.
  75 * @lock: Pointer to an optional dedicated per-function mutex. This
  76 *        should be set for functions that require multiple calls in
  77 *        sequence to complete a single operation, and such sequences
  78 *        will disrupt each other if allowed to interleave. Users of
  79 *        this function are required to hold the associated lock for
  80 *        the duration of the call sequence. Add an explanatory
  81 *        comment to the function table entry if setting this member.
  82 */
  83struct rtas_function {
  84	s32 token;
  85	const bool banned_for_syscall_on_le:1;
  86	const char * const name;
  87	const struct rtas_filter *filter;
  88	struct mutex *lock;
  89};
  90
  91/*
  92 * Per-function locks for sequence-based RTAS functions.
  93 */
  94static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
  95static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
  96static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
  97static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
  98static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
  99static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
 100DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
 101
 102static struct rtas_function rtas_function_table[] __ro_after_init = {
 103	[RTAS_FNIDX__CHECK_EXCEPTION] = {
 104		.name = "check-exception",
 105	},
 106	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
 107		.name = "display-character",
 108		.filter = &(const struct rtas_filter) {
 109			.buf_idx1 = -1, .size_idx1 = -1,
 110			.buf_idx2 = -1, .size_idx2 = -1,
 111		},
 112	},
 113	[RTAS_FNIDX__EVENT_SCAN] = {
 114		.name = "event-scan",
 115	},
 116	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
 117		.name = "freeze-time-base",
 118	},
 119	[RTAS_FNIDX__GET_POWER_LEVEL] = {
 120		.name = "get-power-level",
 121		.filter = &(const struct rtas_filter) {
 122			.buf_idx1 = -1, .size_idx1 = -1,
 123			.buf_idx2 = -1, .size_idx2 = -1,
 124		},
 125	},
 126	[RTAS_FNIDX__GET_SENSOR_STATE] = {
 127		.name = "get-sensor-state",
 128		.filter = &(const struct rtas_filter) {
 129			.buf_idx1 = -1, .size_idx1 = -1,
 130			.buf_idx2 = -1, .size_idx2 = -1,
 131		},
 132	},
 133	[RTAS_FNIDX__GET_TERM_CHAR] = {
 134		.name = "get-term-char",
 135	},
 136	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
 137		.name = "get-time-of-day",
 138		.filter = &(const struct rtas_filter) {
 139			.buf_idx1 = -1, .size_idx1 = -1,
 140			.buf_idx2 = -1, .size_idx2 = -1,
 141		},
 142	},
 143	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
 144		.name = "ibm,activate-firmware",
 145		.filter = &(const struct rtas_filter) {
 146			.buf_idx1 = -1, .size_idx1 = -1,
 147			.buf_idx2 = -1, .size_idx2 = -1,
 148		},
 149		/*
 150		 * PAPR+ as of v2.13 doesn't explicitly impose any
 151		 * restriction, but this typically requires multiple
 152		 * calls before success, and there's no reason to
 153		 * allow sequences to interleave.
 154		 */
 155		.lock = &rtas_ibm_activate_firmware_lock,
 156	},
 157	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
 158		.name = "ibm,cbe-start-ptcal",
 159	},
 160	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
 161		.name = "ibm,cbe-stop-ptcal",
 162	},
 163	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
 164		.name = "ibm,change-msi",
 165	},
 166	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
 167		.name = "ibm,close-errinjct",
 168		.filter = &(const struct rtas_filter) {
 169			.buf_idx1 = -1, .size_idx1 = -1,
 170			.buf_idx2 = -1, .size_idx2 = -1,
 171		},
 172	},
 173	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
 174		.name = "ibm,configure-bridge",
 175	},
 176	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
 177		.name = "ibm,configure-connector",
 178		.filter = &(const struct rtas_filter) {
 179			.buf_idx1 = 0, .size_idx1 = -1,
 180			.buf_idx2 = 1, .size_idx2 = -1,
 181			.fixed_size = 4096,
 182		},
 183	},
 184	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
 185		.name = "ibm,configure-kernel-dump",
 186	},
 187	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
 188		.name = "ibm,configure-pe",
 189	},
 190	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
 191		.name = "ibm,create-pe-dma-window",
 192	},
 193	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
 194		.name = "ibm,display-message",
 195		.filter = &(const struct rtas_filter) {
 196			.buf_idx1 = 0, .size_idx1 = -1,
 197			.buf_idx2 = -1, .size_idx2 = -1,
 198		},
 199	},
 200	[RTAS_FNIDX__IBM_ERRINJCT] = {
 201		.name = "ibm,errinjct",
 202		.filter = &(const struct rtas_filter) {
 203			.buf_idx1 = 2, .size_idx1 = -1,
 204			.buf_idx2 = -1, .size_idx2 = -1,
 205			.fixed_size = 1024,
 206		},
 207	},
 208	[RTAS_FNIDX__IBM_EXTI2C] = {
 209		.name = "ibm,exti2c",
 210	},
 211	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
 212		.name = "ibm,get-config-addr-info",
 213	},
 214	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
 215		.name = "ibm,get-config-addr-info2",
 216		.filter = &(const struct rtas_filter) {
 217			.buf_idx1 = -1, .size_idx1 = -1,
 218			.buf_idx2 = -1, .size_idx2 = -1,
 219		},
 220	},
 221	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
 222		.name = "ibm,get-dynamic-sensor-state",
 223		.filter = &(const struct rtas_filter) {
 224			.buf_idx1 = 1, .size_idx1 = -1,
 225			.buf_idx2 = -1, .size_idx2 = -1,
 226		},
 227		/*
 228		 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
 229		 * must not call ibm,get-dynamic-sensor-state with
 230		 * different inputs until a non-retry status has been
 231		 * returned.
 232		 */
 233		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
 234	},
 235	[RTAS_FNIDX__IBM_GET_INDICES] = {
 236		.name = "ibm,get-indices",
 237		.filter = &(const struct rtas_filter) {
 238			.buf_idx1 = 2, .size_idx1 = 3,
 239			.buf_idx2 = -1, .size_idx2 = -1,
 240		},
 241		/*
 242		 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
 243		 * interleave ibm,get-indices call sequences with
 244		 * different inputs.
 245		 */
 246		.lock = &rtas_ibm_get_indices_lock,
 247	},
 248	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
 249		.name = "ibm,get-rio-topology",
 250	},
 251	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
 252		.name = "ibm,get-system-parameter",
 253		.filter = &(const struct rtas_filter) {
 254			.buf_idx1 = 1, .size_idx1 = 2,
 255			.buf_idx2 = -1, .size_idx2 = -1,
 256		},
 257	},
 258	[RTAS_FNIDX__IBM_GET_VPD] = {
 259		.name = "ibm,get-vpd",
 260		.filter = &(const struct rtas_filter) {
 261			.buf_idx1 = 0, .size_idx1 = -1,
 262			.buf_idx2 = 1, .size_idx2 = 2,
 263		},
 264		/*
 265		 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
 266		 * should not be allowed to interleave.
 267		 */
 268		.lock = &rtas_ibm_get_vpd_lock,
 269	},
 270	[RTAS_FNIDX__IBM_GET_XIVE] = {
 271		.name = "ibm,get-xive",
 272	},
 273	[RTAS_FNIDX__IBM_INT_OFF] = {
 274		.name = "ibm,int-off",
 275	},
 276	[RTAS_FNIDX__IBM_INT_ON] = {
 277		.name = "ibm,int-on",
 278	},
 279	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
 280		.name = "ibm,io-quiesce-ack",
 281	},
 282	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
 283		.name = "ibm,lpar-perftools",
 284		.filter = &(const struct rtas_filter) {
 285			.buf_idx1 = 2, .size_idx1 = 3,
 286			.buf_idx2 = -1, .size_idx2 = -1,
 287		},
 288		/*
 289		 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
 290		 * only one call sequence in progress at a time.
 291		 */
 292		.lock = &rtas_ibm_lpar_perftools_lock,
 293	},
 294	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
 295		.name = "ibm,manage-flash-image",
 296	},
 297	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
 298		.name = "ibm,manage-storage-preservation",
 299	},
 300	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
 301		.name = "ibm,nmi-interlock",
 302	},
 303	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
 304		.name = "ibm,nmi-register",
 305	},
 306	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
 307		.name = "ibm,open-errinjct",
 308		.filter = &(const struct rtas_filter) {
 309			.buf_idx1 = -1, .size_idx1 = -1,
 310			.buf_idx2 = -1, .size_idx2 = -1,
 311		},
 312	},
 313	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
 314		.name = "ibm,open-sriov-allow-unfreeze",
 315	},
 316	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
 317		.name = "ibm,open-sriov-map-pe-number",
 318	},
 319	[RTAS_FNIDX__IBM_OS_TERM] = {
 320		.name = "ibm,os-term",
 321	},
 322	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
 323		.name = "ibm,partner-control",
 324	},
 325	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
 326		.name = "ibm,physical-attestation",
 327		.filter = &(const struct rtas_filter) {
 328			.buf_idx1 = 0, .size_idx1 = 1,
 329			.buf_idx2 = -1, .size_idx2 = -1,
 330		},
 331		/*
 332		 * This follows a sequence-based pattern similar to
 333		 * ibm,get-vpd et al. Since PAPR+ restricts
 334		 * interleaving call sequences for other functions of
 335		 * this style, assume the restriction applies here,
 336		 * even though it's not explicit in the spec.
 337		 */
 338		.lock = &rtas_ibm_physical_attestation_lock,
 339	},
 340	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
 341		.name = "ibm,platform-dump",
 342		.filter = &(const struct rtas_filter) {
 343			.buf_idx1 = 4, .size_idx1 = 5,
 344			.buf_idx2 = -1, .size_idx2 = -1,
 345		},
 346		/*
 347		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
 348		 * sequences of ibm,platform-dump are allowed if they
 349		 * are operating on different dump tags. So leave the
 350		 * lock pointer unset for now. This may need
 351		 * reconsideration if kernel-internal users appear.
 352		 */
 353	},
 354	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
 355		.name = "ibm,power-off-ups",
 356	},
 357	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
 358		.name = "ibm,query-interrupt-source-number",
 359	},
 360	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
 361		.name = "ibm,query-pe-dma-window",
 362	},
 363	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
 364		.name = "ibm,read-pci-config",
 365	},
 366	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
 367		.name = "ibm,read-slot-reset-state",
 368		.filter = &(const struct rtas_filter) {
 369			.buf_idx1 = -1, .size_idx1 = -1,
 370			.buf_idx2 = -1, .size_idx2 = -1,
 371		},
 372	},
 373	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
 374		.name = "ibm,read-slot-reset-state2",
 375	},
 376	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
 377		.name = "ibm,remove-pe-dma-window",
 378	},
 379	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
 380		/*
 381		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
 382		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
 383		 * implementations use the singular form in practice.
 384		 */
 385		.name = "ibm,reset-pe-dma-window",
 386	},
 387	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
 388		.name = "ibm,scan-log-dump",
 389		.filter = &(const struct rtas_filter) {
 390			.buf_idx1 = 0, .size_idx1 = 1,
 391			.buf_idx2 = -1, .size_idx2 = -1,
 392		},
 393	},
 394	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
 395		.name = "ibm,set-dynamic-indicator",
 396		.filter = &(const struct rtas_filter) {
 397			.buf_idx1 = 2, .size_idx1 = -1,
 398			.buf_idx2 = -1, .size_idx2 = -1,
 399		},
 400		/*
 401		 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
 402		 * this function with different inputs until a
 403		 * non-retry status has been returned.
 404		 */
 405		.lock = &rtas_ibm_set_dynamic_indicator_lock,
 406	},
 407	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
 408		.name = "ibm,set-eeh-option",
 409		.filter = &(const struct rtas_filter) {
 410			.buf_idx1 = -1, .size_idx1 = -1,
 411			.buf_idx2 = -1, .size_idx2 = -1,
 412		},
 413	},
 414	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
 415		.name = "ibm,set-slot-reset",
 416	},
 417	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
 418		.name = "ibm,set-system-parameter",
 419		.filter = &(const struct rtas_filter) {
 420			.buf_idx1 = 1, .size_idx1 = -1,
 421			.buf_idx2 = -1, .size_idx2 = -1,
 422		},
 423	},
 424	[RTAS_FNIDX__IBM_SET_XIVE] = {
 425		.name = "ibm,set-xive",
 426	},
 427	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
 428		.name = "ibm,slot-error-detail",
 429	},
 430	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
 431		.name = "ibm,suspend-me",
 432		.banned_for_syscall_on_le = true,
 433		.filter = &(const struct rtas_filter) {
 434			.buf_idx1 = -1, .size_idx1 = -1,
 435			.buf_idx2 = -1, .size_idx2 = -1,
 436		},
 437	},
 438	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
 439		.name = "ibm,tune-dma-parms",
 440	},
 441	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
 442		.name = "ibm,update-flash-64-and-reboot",
 443	},
 444	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
 445		.name = "ibm,update-nodes",
 446		.banned_for_syscall_on_le = true,
 447		.filter = &(const struct rtas_filter) {
 448			.buf_idx1 = 0, .size_idx1 = -1,
 449			.buf_idx2 = -1, .size_idx2 = -1,
 450			.fixed_size = 4096,
 451		},
 452	},
 453	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
 454		.name = "ibm,update-properties",
 455		.banned_for_syscall_on_le = true,
 456		.filter = &(const struct rtas_filter) {
 457			.buf_idx1 = 0, .size_idx1 = -1,
 458			.buf_idx2 = -1, .size_idx2 = -1,
 459			.fixed_size = 4096,
 460		},
 461	},
 462	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
 463		.name = "ibm,validate-flash-image",
 464	},
 465	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
 466		.name = "ibm,write-pci-config",
 467	},
 468	[RTAS_FNIDX__NVRAM_FETCH] = {
 469		.name = "nvram-fetch",
 470	},
 471	[RTAS_FNIDX__NVRAM_STORE] = {
 472		.name = "nvram-store",
 473	},
 474	[RTAS_FNIDX__POWER_OFF] = {
 475		.name = "power-off",
 476	},
 477	[RTAS_FNIDX__PUT_TERM_CHAR] = {
 478		.name = "put-term-char",
 479	},
 480	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
 481		.name = "query-cpu-stopped-state",
 482	},
 483	[RTAS_FNIDX__READ_PCI_CONFIG] = {
 484		.name = "read-pci-config",
 485	},
 486	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
 487		.name = "rtas-last-error",
 488	},
 489	[RTAS_FNIDX__SET_INDICATOR] = {
 490		.name = "set-indicator",
 491		.filter = &(const struct rtas_filter) {
 492			.buf_idx1 = -1, .size_idx1 = -1,
 493			.buf_idx2 = -1, .size_idx2 = -1,
 494		},
 495	},
 496	[RTAS_FNIDX__SET_POWER_LEVEL] = {
 497		.name = "set-power-level",
 498		.filter = &(const struct rtas_filter) {
 499			.buf_idx1 = -1, .size_idx1 = -1,
 500			.buf_idx2 = -1, .size_idx2 = -1,
 501		},
 502	},
 503	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
 504		.name = "set-time-for-power-on",
 505		.filter = &(const struct rtas_filter) {
 506			.buf_idx1 = -1, .size_idx1 = -1,
 507			.buf_idx2 = -1, .size_idx2 = -1,
 508		},
 509	},
 510	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
 511		.name = "set-time-of-day",
 512		.filter = &(const struct rtas_filter) {
 513			.buf_idx1 = -1, .size_idx1 = -1,
 514			.buf_idx2 = -1, .size_idx2 = -1,
 515		},
 516	},
 517	[RTAS_FNIDX__START_CPU] = {
 518		.name = "start-cpu",
 519	},
 520	[RTAS_FNIDX__STOP_SELF] = {
 521		.name = "stop-self",
 522	},
 523	[RTAS_FNIDX__SYSTEM_REBOOT] = {
 524		.name = "system-reboot",
 525	},
 526	[RTAS_FNIDX__THAW_TIME_BASE] = {
 527		.name = "thaw-time-base",
 528	},
 529	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
 530		.name = "write-pci-config",
 531	},
 532};
 533
 534#define for_each_rtas_function(funcp)                                       \
 535	for (funcp = &rtas_function_table[0];                               \
 536	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
 537	     ++funcp)
 538
 539/*
 540 * Nearly all RTAS calls need to be serialized. All uses of the
 541 * default rtas_args block must hold rtas_lock.
 542 *
 543 * Exceptions to the RTAS serialization requirement (e.g. stop-self)
 544 * must use a separate rtas_args structure.
 545 */
 546static DEFINE_RAW_SPINLOCK(rtas_lock);
 547static struct rtas_args rtas_args;
 548
 549/**
 550 * rtas_function_token() - RTAS function token lookup.
 551 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
 552 *
 553 * Context: Any context.
 554 * Return: the token value for the function if implemented by this platform,
 555 *         otherwise RTAS_UNKNOWN_SERVICE.
 556 */
 557s32 rtas_function_token(const rtas_fn_handle_t handle)
 558{
 559	const size_t index = handle.index;
 560	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
 561
 562	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
 563		return RTAS_UNKNOWN_SERVICE;
 564	/*
 565	 * Various drivers attempt token lookups on non-RTAS
 566	 * platforms.
 567	 */
 568	if (!rtas.dev)
 569		return RTAS_UNKNOWN_SERVICE;
 570
 571	return rtas_function_table[index].token;
 572}
 573EXPORT_SYMBOL_GPL(rtas_function_token);
 574
 575static int rtas_function_cmp(const void *a, const void *b)
 576{
 577	const struct rtas_function *f1 = a;
 578	const struct rtas_function *f2 = b;
 579
 580	return strcmp(f1->name, f2->name);
 581}
 582
 583/*
 584 * Boot-time initialization of the function table needs the lookup to
 585 * return a non-const-qualified object. Use rtas_name_to_function()
 586 * in all other contexts.
 587 */
 588static struct rtas_function *__rtas_name_to_function(const char *name)
 589{
 590	const struct rtas_function key = {
 591		.name = name,
 592	};
 593	struct rtas_function *found;
 594
 595	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
 596			sizeof(rtas_function_table[0]), rtas_function_cmp);
 597
 598	return found;
 599}
 600
 601static const struct rtas_function *rtas_name_to_function(const char *name)
 602{
 603	return __rtas_name_to_function(name);
 604}
 605
 606static DEFINE_XARRAY(rtas_token_to_function_xarray);
 607
 608static int __init rtas_token_to_function_xarray_init(void)
 609{
 610	const struct rtas_function *func;
 611	int err = 0;
 612
 613	for_each_rtas_function(func) {
 614		const s32 token = func->token;
 615
 616		if (token == RTAS_UNKNOWN_SERVICE)
 617			continue;
 618
 619		err = xa_err(xa_store(&rtas_token_to_function_xarray,
 620				      token, (void *)func, GFP_KERNEL));
 621		if (err)
 622			break;
 623	}
 624
 625	return err;
 626}
 627arch_initcall(rtas_token_to_function_xarray_init);
 628
 629/*
 630 * For use by sys_rtas(), where the token value is provided by user
 631 * space and we don't want to warn on failed lookups.
 632 */
 633static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
 634{
 635	return xa_load(&rtas_token_to_function_xarray, token);
 636}
 637
 638/*
 639 * Reverse lookup for deriving the function descriptor from a
 640 * known-good token value in contexts where the former is not already
 641 * available. @token must be valid, e.g. derived from the result of a
 642 * prior lookup against the function table.
 643 */
 644static const struct rtas_function *rtas_token_to_function(s32 token)
 645{
 646	const struct rtas_function *func;
 647
 648	if (WARN_ONCE(token < 0, "invalid token %d", token))
 649		return NULL;
 650
 651	func = rtas_token_to_function_untrusted(token);
 652	if (func)
 653		return func;
 654	/*
 655	 * Fall back to linear scan in case the reverse mapping hasn't
 656	 * been initialized yet.
 657	 */
 658	if (xa_empty(&rtas_token_to_function_xarray)) {
 659		for_each_rtas_function(func) {
 660			if (func->token == token)
 661				return func;
 662		}
 663	}
 664
 665	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
 666	return NULL;
 667}
 668
 669/* This is here deliberately so it's only used in this file */
 670void enter_rtas(unsigned long);
 671
 672static void __do_enter_rtas(struct rtas_args *args)
 673{
 674	enter_rtas(__pa(args));
 675	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
 676}
 677
 678static void __do_enter_rtas_trace(struct rtas_args *args)
 679{
 680	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
 681
 682	/*
 683	 * If there is a per-function lock, it must be held by the
 684	 * caller.
 685	 */
 686	if (func->lock)
 687		lockdep_assert_held(func->lock);
 688
 689	if (args == &rtas_args)
 690		lockdep_assert_held(&rtas_lock);
 691
 692	trace_rtas_input(args, func->name);
 693	trace_rtas_ll_entry(args);
 694
 695	__do_enter_rtas(args);
 696
 697	trace_rtas_ll_exit(args);
 698	trace_rtas_output(args, func->name);
 699}
 700
 701static void do_enter_rtas(struct rtas_args *args)
 702{
 703	const unsigned long msr = mfmsr();
 704	/*
 705	 * Situations where we want to skip any active tracepoints for
 706	 * safety reasons:
 707	 *
 708	 * 1. The last code executed on an offline CPU as it stops,
 709	 *    i.e. we're about to call stop-self. The tracepoints'
 710	 *    function name lookup uses xarray, which uses RCU, which
 711	 *    isn't valid to call on an offline CPU.  Any events
 712	 *    emitted on an offline CPU will be discarded anyway.
 713	 *
 714	 * 2. In real mode, as when invoking ibm,nmi-interlock from
 715	 *    the pseries MCE handler. We cannot count on trace
 716	 *    buffers or the entries in rtas_token_to_function_xarray
 717	 *    to be contained in the RMO.
 718	 */
 719	const unsigned long mask = MSR_IR | MSR_DR;
 720	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
 721				      (msr & mask) == mask);
 722	/*
 723	 * Make sure MSR[RI] is currently enabled as it will be forced later
 724	 * in enter_rtas.
 725	 */
 
 726	BUG_ON(!(msr & MSR_RI));
 727
 728	BUG_ON(!irqs_disabled());
 729
 730	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
 731
 732	if (can_trace)
 733		__do_enter_rtas_trace(args);
 734	else
 735		__do_enter_rtas(args);
 736}
 737
 738struct rtas_t rtas;
 
 
 
 739
 740DEFINE_SPINLOCK(rtas_data_buf_lock);
 741EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
 742
 743char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
 744EXPORT_SYMBOL_GPL(rtas_data_buf);
 745
 746unsigned long rtas_rmo_buf;
 747
 748/*
 749 * If non-NULL, this gets called when the kernel terminates.
 750 * This is done like this so rtas_flash can be a module.
 751 */
 752void (*rtas_flash_term_hook)(int);
 753EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755/*
 756 * call_rtas_display_status and call_rtas_display_status_delay
 757 * are designed only for very early low-level debugging, which
 758 * is why the token is hard-coded to 10.
 759 */
 760static void call_rtas_display_status(unsigned char c)
 761{
 762	unsigned long flags;
 763
 764	if (!rtas.base)
 765		return;
 766
 767	raw_spin_lock_irqsave(&rtas_lock, flags);
 768	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
 769	raw_spin_unlock_irqrestore(&rtas_lock, flags);
 770}
 771
 772static void call_rtas_display_status_delay(char c)
 773{
 774	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 775	static int width = 16;
 776
 777	if (c == '\n') {
 778		while (width-- > 0)
 779			call_rtas_display_status(' ');
 780		width = 16;
 781		mdelay(500);
 782		pending_newline = 1;
 783	} else {
 784		if (pending_newline) {
 785			call_rtas_display_status('\r');
 786			call_rtas_display_status('\n');
 787		}
 788		pending_newline = 0;
 789		if (width--) {
 790			call_rtas_display_status(c);
 791			udelay(10000);
 792		}
 793	}
 794}
 795
 796void __init udbg_init_rtas_panel(void)
 797{
 798	udbg_putc = call_rtas_display_status_delay;
 799}
 800
 801#ifdef CONFIG_UDBG_RTAS_CONSOLE
 802
 803/* If you think you're dying before early_init_dt_scan_rtas() does its
 804 * work, you can hard code the token values for your firmware here and
 805 * hardcode rtas.base/entry etc.
 806 */
 807static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
 808static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
 809
 810static void udbg_rtascon_putc(char c)
 811{
 812	int tries;
 813
 814	if (!rtas.base)
 815		return;
 816
 817	/* Add CRs before LFs */
 818	if (c == '\n')
 819		udbg_rtascon_putc('\r');
 820
 821	/* if there is more than one character to be displayed, wait a bit */
 822	for (tries = 0; tries < 16; tries++) {
 823		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
 824			break;
 825		udelay(1000);
 826	}
 827}
 828
 829static int udbg_rtascon_getc_poll(void)
 830{
 831	int c;
 832
 833	if (!rtas.base)
 834		return -1;
 835
 836	if (rtas_call(rtas_getchar_token, 0, 2, &c))
 837		return -1;
 838
 839	return c;
 840}
 841
 842static int udbg_rtascon_getc(void)
 843{
 844	int c;
 845
 846	while ((c = udbg_rtascon_getc_poll()) == -1)
 847		;
 848
 849	return c;
 850}
 851
 852
 853void __init udbg_init_rtas_console(void)
 854{
 855	udbg_putc = udbg_rtascon_putc;
 856	udbg_getc = udbg_rtascon_getc;
 857	udbg_getc_poll = udbg_rtascon_getc_poll;
 858}
 859#endif /* CONFIG_UDBG_RTAS_CONSOLE */
 860
 861void rtas_progress(char *s, unsigned short hex)
 862{
 863	struct device_node *root;
 864	int width;
 865	const __be32 *p;
 866	char *os;
 867	static int display_character, set_indicator;
 868	static int display_width, display_lines, form_feed;
 869	static const int *row_width;
 870	static DEFINE_SPINLOCK(progress_lock);
 871	static int current_line;
 872	static int pending_newline = 0;  /* did last write end with unprinted newline? */
 873
 874	if (!rtas.base)
 875		return;
 876
 877	if (display_width == 0) {
 878		display_width = 0x10;
 879		if ((root = of_find_node_by_path("/rtas"))) {
 880			if ((p = of_get_property(root,
 881					"ibm,display-line-length", NULL)))
 882				display_width = be32_to_cpu(*p);
 883			if ((p = of_get_property(root,
 884					"ibm,form-feed", NULL)))
 885				form_feed = be32_to_cpu(*p);
 886			if ((p = of_get_property(root,
 887					"ibm,display-number-of-lines", NULL)))
 888				display_lines = be32_to_cpu(*p);
 889			row_width = of_get_property(root,
 890					"ibm,display-truncation-length", NULL);
 891			of_node_put(root);
 892		}
 893		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
 894		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
 895	}
 896
 897	if (display_character == RTAS_UNKNOWN_SERVICE) {
 898		/* use hex display if available */
 899		if (set_indicator != RTAS_UNKNOWN_SERVICE)
 900			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
 901		return;
 902	}
 903
 904	spin_lock(&progress_lock);
 905
 906	/*
 907	 * Last write ended with newline, but we didn't print it since
 908	 * it would just clear the bottom line of output. Print it now
 909	 * instead.
 910	 *
 911	 * If no newline is pending and form feed is supported, clear the
 912	 * display with a form feed; otherwise, print a CR to start output
 913	 * at the beginning of the line.
 914	 */
 915	if (pending_newline) {
 916		rtas_call(display_character, 1, 1, NULL, '\r');
 917		rtas_call(display_character, 1, 1, NULL, '\n');
 918		pending_newline = 0;
 919	} else {
 920		current_line = 0;
 921		if (form_feed)
 922			rtas_call(display_character, 1, 1, NULL,
 923				  (char)form_feed);
 924		else
 925			rtas_call(display_character, 1, 1, NULL, '\r');
 926	}
 927
 928	if (row_width)
 929		width = row_width[current_line];
 930	else
 931		width = display_width;
 932	os = s;
 933	while (*os) {
 934		if (*os == '\n' || *os == '\r') {
 935			/* If newline is the last character, save it
 936			 * until next call to avoid bumping up the
 937			 * display output.
 938			 */
 939			if (*os == '\n' && !os[1]) {
 940				pending_newline = 1;
 941				current_line++;
 942				if (current_line > display_lines-1)
 943					current_line = display_lines-1;
 944				spin_unlock(&progress_lock);
 945				return;
 946			}
 947
 948			/* RTAS wants CR-LF, not just LF */
 949
 950			if (*os == '\n') {
 951				rtas_call(display_character, 1, 1, NULL, '\r');
 952				rtas_call(display_character, 1, 1, NULL, '\n');
 953			} else {
 954				/* CR might be used to re-draw a line, so we'll
 955				 * leave it alone and not add LF.
 956				 */
 957				rtas_call(display_character, 1, 1, NULL, *os);
 958			}
 959
 960			if (row_width)
 961				width = row_width[current_line];
 962			else
 963				width = display_width;
 964		} else {
 965			width--;
 966			rtas_call(display_character, 1, 1, NULL, *os);
 967		}
 968
 969		os++;
 970
 971		/* if we overwrite the screen length */
 972		if (width <= 0)
 973			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
 974				os++;
 975	}
 976
 977	spin_unlock(&progress_lock);
 978}
 979EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
 980
 981int rtas_token(const char *service)
 982{
 983	const struct rtas_function *func;
 984	const __be32 *tokp;
 985
 986	if (rtas.dev == NULL)
 987		return RTAS_UNKNOWN_SERVICE;
 988
 989	func = rtas_name_to_function(service);
 990	if (func)
 991		return func->token;
 992	/*
 993	 * The caller is looking up a name that is not known to be an
 994	 * RTAS function. Either it's a function that needs to be
 995	 * added to the table, or they're misusing rtas_token() to
 996	 * access non-function properties of the /rtas node. Warn and
 997	 * fall back to the legacy behavior.
 998	 */
 999	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
1000		  service);
1001
1002	tokp = of_get_property(rtas.dev, service, NULL);
1003	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1004}
1005EXPORT_SYMBOL_GPL(rtas_token);
 
 
 
 
 
 
1006
1007#ifdef CONFIG_RTAS_ERROR_LOGGING
1008
1009static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1010
1011/*
1012 * Return the firmware-specified size of the error log buffer
1013 *  for all rtas calls that require an error buffer argument.
1014 *  This includes 'check-exception' and 'rtas-last-error'.
1015 */
1016int rtas_get_error_log_max(void)
1017{
1018	return rtas_error_log_max;
1019}
 
1020
1021static void __init init_error_log_max(void)
1022{
1023	static const char propname[] __initconst = "rtas-error-log-max";
1024	u32 max;
1025
1026	if (of_property_read_u32(rtas.dev, propname, &max)) {
1027		pr_warn("%s not found, using default of %u\n",
1028			propname, RTAS_ERROR_LOG_MAX);
1029		max = RTAS_ERROR_LOG_MAX;
1030	}
1031
1032	if (max > RTAS_ERROR_LOG_MAX) {
1033		pr_warn("%s = %u, clamping max error log size to %u\n",
1034			propname, max, RTAS_ERROR_LOG_MAX);
1035		max = RTAS_ERROR_LOG_MAX;
1036	}
1037
1038	rtas_error_log_max = max;
1039}
1040
1041
1042static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
 
1043
1044/** Return a copy of the detailed error text associated with the
1045 *  most recent failed call to rtas.  Because the error text
1046 *  might go stale if there are any other intervening rtas calls,
1047 *  this routine must be called atomically with whatever produced
1048 *  the error (i.e. with rtas_lock still held from the previous call).
1049 */
1050static char *__fetch_rtas_last_error(char *altbuf)
1051{
1052	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1053	struct rtas_args err_args, save_args;
1054	u32 bufsz;
1055	char *buf = NULL;
1056
1057	lockdep_assert_held(&rtas_lock);
1058
1059	if (token == -1)
1060		return NULL;
1061
1062	bufsz = rtas_get_error_log_max();
1063
1064	err_args.token = cpu_to_be32(token);
1065	err_args.nargs = cpu_to_be32(2);
1066	err_args.nret = cpu_to_be32(1);
1067	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1068	err_args.args[1] = cpu_to_be32(bufsz);
1069	err_args.args[2] = 0;
1070
1071	save_args = rtas_args;
1072	rtas_args = err_args;
1073
1074	do_enter_rtas(&rtas_args);
1075
1076	err_args = rtas_args;
1077	rtas_args = save_args;
1078
1079	/* Log the error in the unlikely case that there was one. */
1080	if (unlikely(err_args.args[2] == 0)) {
1081		if (altbuf) {
1082			buf = altbuf;
1083		} else {
1084			buf = rtas_err_buf;
1085			if (slab_is_available())
1086				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1087		}
1088		if (buf)
1089			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1090	}
1091
1092	return buf;
1093}
1094
1095#define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1096
1097#else /* CONFIG_RTAS_ERROR_LOGGING */
1098#define __fetch_rtas_last_error(x)	NULL
1099#define get_errorlog_buffer()		NULL
1100static void __init init_error_log_max(void) {}
1101#endif
1102
1103
1104static void
1105va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1106		      va_list list)
1107{
1108	int i;
1109
1110	args->token = cpu_to_be32(token);
1111	args->nargs = cpu_to_be32(nargs);
1112	args->nret  = cpu_to_be32(nret);
1113	args->rets  = &(args->args[nargs]);
1114
1115	for (i = 0; i < nargs; ++i)
1116		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1117
1118	for (i = 0; i < nret; ++i)
1119		args->rets[i] = 0;
1120
1121	do_enter_rtas(args);
1122}
1123
1124/**
1125 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1126 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1127 *        constraints.
1128 * @token: Identifies the function being invoked.
1129 * @nargs: Number of input parameters. Does not include token.
1130 * @nret: Number of output parameters, including the call status.
1131 * @....: List of @nargs input parameters.
1132 *
1133 * Invokes the RTAS function indicated by @token, which the caller
1134 * should obtain via rtas_function_token().
1135 *
1136 * This function is similar to rtas_call(), but must be used with a
1137 * limited set of RTAS calls specifically exempted from the general
1138 * requirement that only one RTAS call may be in progress at any
1139 * time. Examples include stop-self and ibm,nmi-interlock.
1140 */
1141void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1142{
1143	va_list list;
1144
1145	va_start(list, nret);
1146	va_rtas_call_unlocked(args, token, nargs, nret, list);
1147	va_end(list);
1148}
1149
1150static bool token_is_restricted_errinjct(s32 token)
1151{
1152	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1153	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1154}
1155
1156/**
1157 * rtas_call() - Invoke an RTAS firmware function.
1158 * @token: Identifies the function being invoked.
1159 * @nargs: Number of input parameters. Does not include token.
1160 * @nret: Number of output parameters, including the call status.
1161 * @outputs: Array of @nret output words.
1162 * @....: List of @nargs input parameters.
1163 *
1164 * Invokes the RTAS function indicated by @token, which the caller
1165 * should obtain via rtas_function_token().
1166 *
1167 * The @nargs and @nret arguments must match the number of input and
1168 * output parameters specified for the RTAS function.
1169 *
1170 * rtas_call() returns RTAS status codes, not conventional Linux errno
1171 * values. Callers must translate any failure to an appropriate errno
1172 * in syscall context. Most callers of RTAS functions that can return
1173 * -2 or 990x should use rtas_busy_delay() to correctly handle those
1174 * statuses before calling again.
1175 *
1176 * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1177 * Codes of the PAPR and CHRP specifications.
1178 *
1179 * Context: Process context preferably, interrupt context if
1180 *          necessary.  Acquires an internal spinlock and may perform
1181 *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1182 *          context.
1183 * Return:
1184 * *                          0 - RTAS function call succeeded.
1185 * *                         -1 - RTAS function encountered a hardware or
1186 *                                platform error, or the token is invalid,
1187 *                                or the function is restricted by kernel policy.
1188 * *                         -2 - Specs say "A necessary hardware device was busy,
1189 *                                and the requested function could not be
1190 *                                performed. The operation should be retried at
1191 *                                a later time." This is misleading, at least with
1192 *                                respect to current RTAS implementations. What it
1193 *                                usually means in practice is that the function
1194 *                                could not be completed while meeting RTAS's
1195 *                                deadline for returning control to the OS (250us
1196 *                                for PAPR/PowerVM, typically), but the call may be
1197 *                                immediately reattempted to resume work on it.
1198 * *                         -3 - Parameter error.
1199 * *                         -7 - Unexpected state change.
1200 * *                9000...9899 - Vendor-specific success codes.
1201 * *                9900...9905 - Advisory extended delay. Caller should try
1202 *                                again after ~10^x ms has elapsed, where x is
1203 *                                the last digit of the status [0-5]. Again going
1204 *                                beyond the PAPR text, 990x on PowerVM indicates
1205 *                                contention for RTAS-internal resources. Other
1206 *                                RTAS call sequences in progress should be
1207 *                                allowed to complete before reattempting the
1208 *                                call.
1209 * *                      -9000 - Multi-level isolation error.
1210 * *              -9999...-9004 - Vendor-specific error codes.
1211 * * Additional negative values - Function-specific error.
1212 * * Additional positive values - Function-specific success.
1213 */
1214int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1215{
1216	struct pin_cookie cookie;
1217	va_list list;
1218	int i;
1219	unsigned long flags;
1220	struct rtas_args *args;
1221	char *buff_copy = NULL;
1222	int ret;
1223
1224	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1225		return -1;
1226
1227	if (token_is_restricted_errinjct(token)) {
1228		/*
1229		 * It would be nicer to not discard the error value
1230		 * from security_locked_down(), but callers expect an
1231		 * RTAS status, not an errno.
1232		 */
1233		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1234			return -1;
1235	}
1236
1237	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1238		WARN_ON_ONCE(1);
1239		return -1;
1240	}
1241
1242	raw_spin_lock_irqsave(&rtas_lock, flags);
1243	cookie = lockdep_pin_lock(&rtas_lock);
1244
1245	/* We use the global rtas args buffer */
1246	args = &rtas_args;
1247
1248	va_start(list, outputs);
1249	va_rtas_call_unlocked(args, token, nargs, nret, list);
1250	va_end(list);
1251
1252	/* A -1 return code indicates that the last command couldn't
1253	   be completed due to a hardware error. */
1254	if (be32_to_cpu(args->rets[0]) == -1)
1255		buff_copy = __fetch_rtas_last_error(NULL);
1256
1257	if (nret > 1 && outputs != NULL)
1258		for (i = 0; i < nret-1; ++i)
1259			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1260	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1261
1262	lockdep_unpin_lock(&rtas_lock, cookie);
1263	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1264
1265	if (buff_copy) {
1266		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1267		if (slab_is_available())
1268			kfree(buff_copy);
1269	}
1270	return ret;
1271}
1272EXPORT_SYMBOL_GPL(rtas_call);
1273
1274/**
1275 * rtas_busy_delay_time() - From an RTAS status value, calculate the
1276 *                          suggested delay time in milliseconds.
1277 *
1278 * @status: a value returned from rtas_call() or similar APIs which return
1279 *          the status of a RTAS function call.
1280 *
1281 * Context: Any context.
1282 *
1283 * Return:
1284 * * 100000 - If @status is 9905.
1285 * * 10000  - If @status is 9904.
1286 * * 1000   - If @status is 9903.
1287 * * 100    - If @status is 9902.
1288 * * 10     - If @status is 9901.
1289 * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1290 *            some callers depend on this behavior, and the worst outcome
1291 *            is that they will delay for longer than necessary.
1292 * * 0      - If @status is not a busy or extended delay value.
1293 */
1294unsigned int rtas_busy_delay_time(int status)
1295{
1296	int order;
1297	unsigned int ms = 0;
1298
1299	if (status == RTAS_BUSY) {
1300		ms = 1;
1301	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1302		   status <= RTAS_EXTENDED_DELAY_MAX) {
1303		order = status - RTAS_EXTENDED_DELAY_MIN;
1304		for (ms = 1; order > 0; order--)
1305			ms *= 10;
1306	}
1307
1308	return ms;
1309}
1310
1311/*
1312 * Early boot fallback for rtas_busy_delay().
1313 */
1314static bool __init rtas_busy_delay_early(int status)
1315{
1316	static size_t successive_ext_delays __initdata;
1317	bool retry;
1318
1319	switch (status) {
1320	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1321		/*
1322		 * In the unlikely case that we receive an extended
1323		 * delay status in early boot, the OS is probably not
1324		 * the cause, and there's nothing we can do to clear
1325		 * the condition. Best we can do is delay for a bit
1326		 * and hope it's transient. Lie to the caller if it
1327		 * seems like we're stuck in a retry loop.
1328		 */
1329		mdelay(1);
1330		retry = true;
1331		successive_ext_delays += 1;
1332		if (successive_ext_delays > 1000) {
1333			pr_err("too many extended delays, giving up\n");
1334			dump_stack();
1335			retry = false;
1336			successive_ext_delays = 0;
1337		}
1338		break;
1339	case RTAS_BUSY:
1340		retry = true;
1341		successive_ext_delays = 0;
1342		break;
1343	default:
1344		retry = false;
1345		successive_ext_delays = 0;
1346		break;
1347	}
1348
1349	return retry;
1350}
1351
1352/**
1353 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1354 *
1355 * @status: a value returned from rtas_call() or similar APIs which return
1356 *          the status of a RTAS function call.
1357 *
1358 * Context: Process context. May sleep or schedule.
1359 *
1360 * Return:
1361 * * true  - @status is RTAS_BUSY or an extended delay hint. The
1362 *           caller may assume that the CPU has been yielded if necessary,
1363 *           and that an appropriate delay for @status has elapsed.
1364 *           Generally the caller should reattempt the RTAS call which
1365 *           yielded @status.
1366 *
1367 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1368 *           caller is responsible for handling @status.
1369 */
1370bool __ref rtas_busy_delay(int status)
1371{
1372	unsigned int ms;
1373	bool ret;
1374
1375	/*
1376	 * Can't do timed sleeps before timekeeping is up.
1377	 */
1378	if (system_state < SYSTEM_SCHEDULING)
1379		return rtas_busy_delay_early(status);
1380
1381	switch (status) {
1382	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1383		ret = true;
1384		ms = rtas_busy_delay_time(status);
1385		/*
1386		 * The extended delay hint can be as high as 100 seconds.
1387		 * Surely any function returning such a status is either
1388		 * buggy or isn't going to be significantly slowed by us
1389		 * polling at 1HZ. Clamp the sleep time to one second.
1390		 */
1391		ms = clamp(ms, 1U, 1000U);
1392		/*
1393		 * The delay hint is an order-of-magnitude suggestion, not a
1394		 * minimum. It is fine, possibly even advantageous, for us to
1395		 * pause for less time than hinted. To make sure pause time will
1396		 * not be way longer than requested independent of HZ
1397		 * configuration, use fsleep(). See fsleep() for details of
1398		 * used sleeping functions.
 
 
 
 
1399		 */
1400		fsleep(ms * 1000);
 
 
 
1401		break;
1402	case RTAS_BUSY:
1403		ret = true;
1404		/*
1405		 * We should call again immediately if there's no other
1406		 * work to do.
1407		 */
1408		cond_resched();
1409		break;
1410	default:
1411		ret = false;
1412		/*
1413		 * Not a busy or extended delay status; the caller should
1414		 * handle @status itself. Ensure we warn on misuses in
1415		 * atomic context regardless.
1416		 */
1417		might_sleep();
1418		break;
1419	}
1420
1421	return ret;
1422}
1423EXPORT_SYMBOL_GPL(rtas_busy_delay);
1424
1425int rtas_error_rc(int rtas_rc)
1426{
1427	int rc;
1428
1429	switch (rtas_rc) {
1430	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1431		rc = -EIO;
1432		break;
1433	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1434		rc = -EINVAL;
1435		break;
1436	case -9000:			/* Isolation error */
1437		rc = -EFAULT;
1438		break;
1439	case -9001:			/* Outstanding TCE/PTE */
1440		rc = -EEXIST;
1441		break;
1442	case -9002:			/* No usable slot */
1443		rc = -ENODEV;
1444		break;
1445	default:
1446		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1447		rc = -ERANGE;
1448		break;
1449	}
1450	return rc;
1451}
1452EXPORT_SYMBOL_GPL(rtas_error_rc);
1453
1454int rtas_get_power_level(int powerdomain, int *level)
1455{
1456	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1457	int rc;
1458
1459	if (token == RTAS_UNKNOWN_SERVICE)
1460		return -ENOENT;
1461
1462	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1463		udelay(1);
1464
1465	if (rc < 0)
1466		return rtas_error_rc(rc);
1467	return rc;
1468}
1469EXPORT_SYMBOL_GPL(rtas_get_power_level);
1470
1471int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1472{
1473	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1474	int rc;
1475
1476	if (token == RTAS_UNKNOWN_SERVICE)
1477		return -ENOENT;
1478
1479	do {
1480		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1481	} while (rtas_busy_delay(rc));
1482
1483	if (rc < 0)
1484		return rtas_error_rc(rc);
1485	return rc;
1486}
1487EXPORT_SYMBOL_GPL(rtas_set_power_level);
1488
1489int rtas_get_sensor(int sensor, int index, int *state)
1490{
1491	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1492	int rc;
1493
1494	if (token == RTAS_UNKNOWN_SERVICE)
1495		return -ENOENT;
1496
1497	do {
1498		rc = rtas_call(token, 2, 2, state, sensor, index);
1499	} while (rtas_busy_delay(rc));
1500
1501	if (rc < 0)
1502		return rtas_error_rc(rc);
1503	return rc;
1504}
1505EXPORT_SYMBOL_GPL(rtas_get_sensor);
1506
1507int rtas_get_sensor_fast(int sensor, int index, int *state)
1508{
1509	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1510	int rc;
1511
1512	if (token == RTAS_UNKNOWN_SERVICE)
1513		return -ENOENT;
1514
1515	rc = rtas_call(token, 2, 2, state, sensor, index);
1516	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1517				    rc <= RTAS_EXTENDED_DELAY_MAX));
1518
1519	if (rc < 0)
1520		return rtas_error_rc(rc);
1521	return rc;
1522}
1523
1524bool rtas_indicator_present(int token, int *maxindex)
1525{
1526	int proplen, count, i;
1527	const struct indicator_elem {
1528		__be32 token;
1529		__be32 maxindex;
1530	} *indicators;
1531
1532	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1533	if (!indicators)
1534		return false;
1535
1536	count = proplen / sizeof(struct indicator_elem);
1537
1538	for (i = 0; i < count; i++) {
1539		if (__be32_to_cpu(indicators[i].token) != token)
1540			continue;
1541		if (maxindex)
1542			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1543		return true;
1544	}
1545
1546	return false;
1547}
 
1548
1549int rtas_set_indicator(int indicator, int index, int new_value)
1550{
1551	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1552	int rc;
1553
1554	if (token == RTAS_UNKNOWN_SERVICE)
1555		return -ENOENT;
1556
1557	do {
1558		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1559	} while (rtas_busy_delay(rc));
1560
1561	if (rc < 0)
1562		return rtas_error_rc(rc);
1563	return rc;
1564}
1565EXPORT_SYMBOL_GPL(rtas_set_indicator);
1566
1567/*
1568 * Ignoring RTAS extended delay
1569 */
1570int rtas_set_indicator_fast(int indicator, int index, int new_value)
1571{
1572	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1573	int rc;
 
1574
1575	if (token == RTAS_UNKNOWN_SERVICE)
1576		return -ENOENT;
1577
1578	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1579
1580	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1581				    rc <= RTAS_EXTENDED_DELAY_MAX));
1582
1583	if (rc < 0)
1584		return rtas_error_rc(rc);
1585
1586	return rc;
1587}
1588
1589/**
1590 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1591 *
1592 * @fw_status: RTAS call status will be placed here if not NULL.
1593 *
1594 * rtas_ibm_suspend_me() should be called only on a CPU which has
1595 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1596 * should be waiting to return from H_JOIN.
1597 *
1598 * rtas_ibm_suspend_me() may suspend execution of the OS
1599 * indefinitely. Callers should take appropriate measures upon return, such as
1600 * resetting watchdog facilities.
1601 *
1602 * Callers may choose to retry this call if @fw_status is
1603 * %RTAS_THREADS_ACTIVE.
1604 *
1605 * Return:
1606 * 0          - The partition has resumed from suspend, possibly after
1607 *              migration to a different host.
1608 * -ECANCELED - The operation was aborted.
1609 * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1610 * -EBUSY     - Some other condition prevented the suspend from succeeding.
1611 * -EIO       - Hardware/platform error.
1612 */
1613int rtas_ibm_suspend_me(int *fw_status)
1614{
1615	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1616	int fwrc;
1617	int ret;
1618
1619	fwrc = rtas_call(token, 0, 1, NULL);
1620
1621	switch (fwrc) {
1622	case 0:
1623		ret = 0;
1624		break;
1625	case RTAS_SUSPEND_ABORTED:
1626		ret = -ECANCELED;
1627		break;
1628	case RTAS_THREADS_ACTIVE:
1629		ret = -EAGAIN;
1630		break;
1631	case RTAS_NOT_SUSPENDABLE:
1632	case RTAS_OUTSTANDING_COPROC:
1633		ret = -EBUSY;
1634		break;
1635	case -1:
1636	default:
1637		ret = -EIO;
1638		break;
1639	}
1640
1641	if (fw_status)
1642		*fw_status = fwrc;
1643
1644	return ret;
1645}
1646
1647void __noreturn rtas_restart(char *cmd)
1648{
1649	if (rtas_flash_term_hook)
1650		rtas_flash_term_hook(SYS_RESTART);
1651	pr_emerg("system-reboot returned %d\n",
1652		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1653	for (;;);
1654}
1655
1656void rtas_power_off(void)
1657{
1658	if (rtas_flash_term_hook)
1659		rtas_flash_term_hook(SYS_POWER_OFF);
1660	/* allow power on only with power button press */
1661	pr_emerg("power-off returned %d\n",
1662		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1663	for (;;);
1664}
1665
1666void __noreturn rtas_halt(void)
1667{
1668	if (rtas_flash_term_hook)
1669		rtas_flash_term_hook(SYS_HALT);
1670	/* allow power on only with power button press */
1671	pr_emerg("power-off returned %d\n",
1672		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1673	for (;;);
1674}
1675
1676/* Must be in the RMO region, so we place it here */
1677static char rtas_os_term_buf[2048];
1678static bool ibm_extended_os_term;
1679
1680void rtas_os_term(char *str)
1681{
1682	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1683	static struct rtas_args args;
1684	int status;
1685
1686	/*
1687	 * Firmware with the ibm,extended-os-term property is guaranteed
1688	 * to always return from an ibm,os-term call. Earlier versions without
1689	 * this property may terminate the partition which we want to avoid
1690	 * since it interferes with panic_timeout.
1691	 */
1692
1693	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1694		return;
1695
1696	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1697
1698	/*
1699	 * Keep calling as long as RTAS returns a "try again" status,
1700	 * but don't use rtas_busy_delay(), which potentially
1701	 * schedules.
1702	 */
1703	do {
1704		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1705		status = be32_to_cpu(args.rets[0]);
1706	} while (rtas_busy_delay_time(status));
1707
1708	if (status != 0)
1709		pr_emerg("ibm,os-term call failed %d\n", status);
1710}
1711
1712/**
1713 * rtas_activate_firmware() - Activate a new version of firmware.
1714 *
1715 * Context: This function may sleep.
1716 *
1717 * Activate a new version of partition firmware. The OS must call this
1718 * after resuming from a partition hibernation or migration in order
1719 * to maintain the ability to perform live firmware updates. It's not
1720 * catastrophic for this method to be absent or to fail; just log the
1721 * condition in that case.
1722 */
1723void rtas_activate_firmware(void)
1724{
1725	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1726	int fwrc;
1727
 
1728	if (token == RTAS_UNKNOWN_SERVICE) {
1729		pr_notice("ibm,activate-firmware method unavailable\n");
1730		return;
1731	}
1732
1733	mutex_lock(&rtas_ibm_activate_firmware_lock);
1734
1735	do {
1736		fwrc = rtas_call(token, 0, 1, NULL);
1737	} while (rtas_busy_delay(fwrc));
1738
1739	mutex_unlock(&rtas_ibm_activate_firmware_lock);
1740
1741	if (fwrc)
1742		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1743}
1744
1745/**
1746 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1747 *                          extended event log.
1748 * @log: RTAS error/event log
1749 * @section_id: two character section identifier
1750 *
1751 * Return: A pointer to the specified errorlog or NULL if not found.
1752 */
1753noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1754						      uint16_t section_id)
1755{
1756	struct rtas_ext_event_log_v6 *ext_log =
1757		(struct rtas_ext_event_log_v6 *)log->buffer;
1758	struct pseries_errorlog *sect;
1759	unsigned char *p, *log_end;
1760	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1761	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1762	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1763
1764	/* Check that we understand the format */
1765	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1766	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1767	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1768		return NULL;
1769
1770	log_end = log->buffer + ext_log_length;
1771	p = ext_log->vendor_log;
1772
1773	while (p < log_end) {
1774		sect = (struct pseries_errorlog *)p;
1775		if (pseries_errorlog_id(sect) == section_id)
1776			return sect;
1777		p += pseries_errorlog_length(sect);
1778	}
1779
1780	return NULL;
1781}
1782
1783/*
1784 * The sys_rtas syscall, as originally designed, allows root to pass
1785 * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1786 * can be abused to write to arbitrary memory and do other things that
1787 * are potentially harmful to system integrity, and thus should only
1788 * be used inside the kernel and not exposed to userspace.
1789 *
1790 * All known legitimate users of the sys_rtas syscall will only ever
1791 * pass addresses that fall within the RMO buffer, and use a known
1792 * subset of RTAS calls.
1793 *
1794 * Accordingly, we filter RTAS requests to check that the call is
1795 * permitted, and that provided pointers fall within the RMO buffer.
1796 * If a function is allowed to be invoked via the syscall, then its
1797 * entry in the rtas_functions table points to a rtas_filter that
1798 * describes its constraints, with the indexes of the parameters which
1799 * are expected to contain addresses and sizes of buffers allocated
1800 * inside the RMO buffer.
1801 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802
1803static bool in_rmo_buf(u32 base, u32 end)
1804{
1805	return base >= rtas_rmo_buf &&
1806		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1807		base <= end &&
1808		end >= rtas_rmo_buf &&
1809		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1810}
1811
1812static bool block_rtas_call(const struct rtas_function *func, int nargs,
1813			    struct rtas_args *args)
1814{
1815	const struct rtas_filter *f;
1816	const bool is_platform_dump =
1817		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1818	const bool is_config_conn =
1819		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1820	u32 base, size, end;
 
 
1821
1822	/*
1823	 * Only functions with filters attached are allowed.
1824	 */
1825	f = func->filter;
1826	if (!f)
1827		goto err;
1828	/*
1829	 * And some functions aren't allowed on LE.
1830	 */
1831	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1832		goto err;
1833
1834	if (f->buf_idx1 != -1) {
1835		base = be32_to_cpu(args->args[f->buf_idx1]);
1836		if (f->size_idx1 != -1)
1837			size = be32_to_cpu(args->args[f->size_idx1]);
1838		else if (f->fixed_size)
1839			size = f->fixed_size;
1840		else
1841			size = 1;
1842
1843		end = base + size - 1;
 
 
 
 
 
 
1844
1845		/*
1846		 * Special case for ibm,platform-dump - NULL buffer
1847		 * address is used to indicate end of dump processing
1848		 */
1849		if (is_platform_dump && base == 0)
1850			return false;
1851
1852		if (!in_rmo_buf(base, end))
1853			goto err;
1854	}
 
 
 
 
 
 
1855
1856	if (f->buf_idx2 != -1) {
1857		base = be32_to_cpu(args->args[f->buf_idx2]);
1858		if (f->size_idx2 != -1)
1859			size = be32_to_cpu(args->args[f->size_idx2]);
1860		else if (f->fixed_size)
1861			size = f->fixed_size;
1862		else
1863			size = 1;
1864		end = base + size - 1;
1865
1866		/*
1867		 * Special case for ibm,configure-connector where the
1868		 * address can be 0
1869		 */
1870		if (is_config_conn && base == 0)
1871			return false;
1872
1873		if (!in_rmo_buf(base, end))
1874			goto err;
1875	}
1876
1877	return false;
1878err:
1879	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1880	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1881			   func->name, nargs, current->comm);
1882	return true;
1883}
1884
 
 
 
 
 
 
 
 
1885/* We assume to be passed big endian arguments */
1886SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1887{
1888	const struct rtas_function *func;
1889	struct pin_cookie cookie;
1890	struct rtas_args args;
1891	unsigned long flags;
1892	char *buff_copy, *errbuf = NULL;
1893	int nargs, nret, token;
1894
1895	if (!capable(CAP_SYS_ADMIN))
1896		return -EPERM;
1897
1898	if (!rtas.entry)
1899		return -EINVAL;
1900
1901	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1902		return -EFAULT;
1903
1904	nargs = be32_to_cpu(args.nargs);
1905	nret  = be32_to_cpu(args.nret);
1906	token = be32_to_cpu(args.token);
1907
1908	if (nargs >= ARRAY_SIZE(args.args)
1909	    || nret > ARRAY_SIZE(args.args)
1910	    || nargs + nret > ARRAY_SIZE(args.args))
1911		return -EINVAL;
1912
1913	nargs = array_index_nospec(nargs, ARRAY_SIZE(args.args));
1914	nret = array_index_nospec(nret, ARRAY_SIZE(args.args) - nargs);
1915
1916	/* Copy in args. */
1917	if (copy_from_user(args.args, uargs->args,
1918			   nargs * sizeof(rtas_arg_t)) != 0)
1919		return -EFAULT;
1920
1921	/*
1922	 * If this token doesn't correspond to a function the kernel
1923	 * understands, you're not allowed to call it.
1924	 */
1925	func = rtas_token_to_function_untrusted(token);
1926	if (!func)
1927		return -EINVAL;
1928
1929	args.rets = &args.args[nargs];
1930	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1931
1932	if (block_rtas_call(func, nargs, &args))
1933		return -EINVAL;
1934
1935	if (token_is_restricted_errinjct(token)) {
1936		int err;
1937
1938		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1939		if (err)
1940			return err;
1941	}
1942
1943	/* Need to handle ibm,suspend_me call specially */
1944	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1945
1946		/*
1947		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1948		 * endian, or at least the hcall within it requires it.
1949		 */
1950		int rc = 0;
1951		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1952		              | be32_to_cpu(args.args[1]);
1953		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1954		if (rc == -EAGAIN)
1955			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1956		else if (rc == -EIO)
1957			args.rets[0] = cpu_to_be32(-1);
1958		else if (rc)
1959			return rc;
1960		goto copy_return;
1961	}
1962
1963	buff_copy = get_errorlog_buffer();
1964
1965	/*
1966	 * If this function has a mutex assigned to it, we must
1967	 * acquire it to avoid interleaving with any kernel-based uses
1968	 * of the same function. Kernel-based sequences acquire the
1969	 * appropriate mutex explicitly.
1970	 */
1971	if (func->lock)
1972		mutex_lock(func->lock);
1973
1974	raw_spin_lock_irqsave(&rtas_lock, flags);
1975	cookie = lockdep_pin_lock(&rtas_lock);
1976
1977	rtas_args = args;
1978	do_enter_rtas(&rtas_args);
1979	args = rtas_args;
1980
1981	/* A -1 return code indicates that the last command couldn't
1982	   be completed due to a hardware error. */
1983	if (be32_to_cpu(args.rets[0]) == -1)
1984		errbuf = __fetch_rtas_last_error(buff_copy);
1985
1986	lockdep_unpin_lock(&rtas_lock, cookie);
1987	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1988
1989	if (func->lock)
1990		mutex_unlock(func->lock);
1991
1992	if (buff_copy) {
1993		if (errbuf)
1994			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1995		kfree(buff_copy);
1996	}
1997
1998 copy_return:
1999	/* Copy out args. */
2000	if (copy_to_user(uargs->args + nargs,
2001			 args.args + nargs,
2002			 nret * sizeof(rtas_arg_t)) != 0)
2003		return -EFAULT;
2004
2005	return 0;
2006}
2007
2008static void __init rtas_function_table_init(void)
2009{
2010	struct property *prop;
2011
2012	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2013		struct rtas_function *curr = &rtas_function_table[i];
2014		struct rtas_function *prior;
2015		int cmp;
2016
2017		curr->token = RTAS_UNKNOWN_SERVICE;
2018
2019		if (i == 0)
2020			continue;
2021		/*
2022		 * Ensure table is sorted correctly for binary search
2023		 * on function names.
2024		 */
2025		prior = &rtas_function_table[i - 1];
2026
2027		cmp = strcmp(prior->name, curr->name);
2028		if (cmp < 0)
2029			continue;
2030
2031		if (cmp == 0) {
2032			pr_err("'%s' has duplicate function table entries\n",
2033			       curr->name);
2034		} else {
2035			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2036			       prior->name, curr->name);
2037		}
2038	}
2039
2040	for_each_property_of_node(rtas.dev, prop) {
2041		struct rtas_function *func;
2042
2043		if (prop->length != sizeof(u32))
2044			continue;
2045
2046		func = __rtas_name_to_function(prop->name);
2047		if (!func)
2048			continue;
2049
2050		func->token = be32_to_cpup((__be32 *)prop->value);
2051
2052		pr_debug("function %s has token %u\n", func->name, func->token);
2053	}
2054}
2055
2056/*
2057 * Call early during boot, before mem init, to retrieve the RTAS
2058 * information from the device-tree and allocate the RMO buffer for userland
2059 * accesses.
2060 */
2061void __init rtas_initialize(void)
2062{
2063	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2064	u32 base, size, entry;
2065	int no_base, no_size, no_entry;
2066
2067	/* Get RTAS dev node and fill up our "rtas" structure with infos
2068	 * about it.
2069	 */
2070	rtas.dev = of_find_node_by_name(NULL, "rtas");
2071	if (!rtas.dev)
2072		return;
2073
2074	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2075	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2076	if (no_base || no_size) {
2077		of_node_put(rtas.dev);
2078		rtas.dev = NULL;
2079		return;
2080	}
2081
2082	rtas.base = base;
2083	rtas.size = size;
2084	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2085	rtas.entry = no_entry ? rtas.base : entry;
2086
2087	init_error_log_max();
2088
2089	/* Must be called before any function token lookups */
2090	rtas_function_table_init();
2091
2092	/*
2093	 * Discover this now to avoid a device tree lookup in the
2094	 * panic path.
2095	 */
2096	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
 
2097
2098	/* If RTAS was found, allocate the RMO buffer for it and look for
2099	 * the stop-self token if any
2100	 */
2101#ifdef CONFIG_PPC64
2102	if (firmware_has_feature(FW_FEATURE_LPAR))
2103		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2104#endif
2105	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2106						 0, rtas_region);
2107	if (!rtas_rmo_buf)
2108		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2109		      PAGE_SIZE, &rtas_region);
2110
2111	rtas_work_area_reserve_arena(rtas_region);
 
 
 
 
 
2112}
2113
2114int __init early_init_dt_scan_rtas(unsigned long node,
2115		const char *uname, int depth, void *data)
2116{
2117	const u32 *basep, *entryp, *sizep;
2118
2119	if (depth != 1 || strcmp(uname, "rtas") != 0)
2120		return 0;
2121
2122	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2123	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2124	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2125
2126#ifdef CONFIG_PPC64
2127	/* need this feature to decide the crashkernel offset */
2128	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2129		powerpc_firmware_features |= FW_FEATURE_LPAR;
2130#endif
2131
2132	if (basep && entryp && sizep) {
2133		rtas.base = *basep;
2134		rtas.entry = *entryp;
2135		rtas.size = *sizep;
2136	}
2137
2138#ifdef CONFIG_UDBG_RTAS_CONSOLE
2139	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2140	if (basep)
2141		rtas_putchar_token = *basep;
2142
2143	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2144	if (basep)
2145		rtas_getchar_token = *basep;
2146
2147	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2148	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2149		udbg_init_rtas_console();
2150
2151#endif
2152
2153	/* break now */
2154	return 1;
2155}
2156
2157static DEFINE_RAW_SPINLOCK(timebase_lock);
2158static u64 timebase = 0;
2159
2160void rtas_give_timebase(void)
2161{
2162	unsigned long flags;
2163
2164	raw_spin_lock_irqsave(&timebase_lock, flags);
2165	hard_irq_disable();
2166	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
 
2167	timebase = get_tb();
2168	raw_spin_unlock(&timebase_lock);
2169
2170	while (timebase)
2171		barrier();
2172	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2173	local_irq_restore(flags);
2174}
2175
2176void rtas_take_timebase(void)
2177{
2178	while (!timebase)
2179		barrier();
2180	raw_spin_lock(&timebase_lock);
2181	set_tb(timebase >> 32, timebase & 0xffffffff);
2182	timebase = 0;
2183	raw_spin_unlock(&timebase_lock);
2184}