Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/perf_event.h>
19#include <linux/resource.h>
20#include <linux/kernel.h>
21#include <linux/workqueue.h>
22#include <linux/capability.h>
23#include <linux/device.h>
24#include <linux/key.h>
25#include <linux/times.h>
26#include <linux/posix-timers.h>
27#include <linux/security.h>
28#include <linux/random.h>
29#include <linux/suspend.h>
30#include <linux/tty.h>
31#include <linux/signal.h>
32#include <linux/cn_proc.h>
33#include <linux/getcpu.h>
34#include <linux/task_io_accounting_ops.h>
35#include <linux/seccomp.h>
36#include <linux/cpu.h>
37#include <linux/personality.h>
38#include <linux/ptrace.h>
39#include <linux/fs_struct.h>
40#include <linux/file.h>
41#include <linux/mount.h>
42#include <linux/gfp.h>
43#include <linux/syscore_ops.h>
44#include <linux/version.h>
45#include <linux/ctype.h>
46#include <linux/syscall_user_dispatch.h>
47
48#include <linux/compat.h>
49#include <linux/syscalls.h>
50#include <linux/kprobes.h>
51#include <linux/user_namespace.h>
52#include <linux/time_namespace.h>
53#include <linux/binfmts.h>
54
55#include <linux/sched.h>
56#include <linux/sched/autogroup.h>
57#include <linux/sched/loadavg.h>
58#include <linux/sched/stat.h>
59#include <linux/sched/mm.h>
60#include <linux/sched/coredump.h>
61#include <linux/sched/task.h>
62#include <linux/sched/cputime.h>
63#include <linux/rcupdate.h>
64#include <linux/uidgid.h>
65#include <linux/cred.h>
66
67#include <linux/nospec.h>
68
69#include <linux/kmsg_dump.h>
70/* Move somewhere else to avoid recompiling? */
71#include <generated/utsrelease.h>
72
73#include <linux/uaccess.h>
74#include <asm/io.h>
75#include <asm/unistd.h>
76
77#include "uid16.h"
78
79#ifndef SET_UNALIGN_CTL
80# define SET_UNALIGN_CTL(a, b) (-EINVAL)
81#endif
82#ifndef GET_UNALIGN_CTL
83# define GET_UNALIGN_CTL(a, b) (-EINVAL)
84#endif
85#ifndef SET_FPEMU_CTL
86# define SET_FPEMU_CTL(a, b) (-EINVAL)
87#endif
88#ifndef GET_FPEMU_CTL
89# define GET_FPEMU_CTL(a, b) (-EINVAL)
90#endif
91#ifndef SET_FPEXC_CTL
92# define SET_FPEXC_CTL(a, b) (-EINVAL)
93#endif
94#ifndef GET_FPEXC_CTL
95# define GET_FPEXC_CTL(a, b) (-EINVAL)
96#endif
97#ifndef GET_ENDIAN
98# define GET_ENDIAN(a, b) (-EINVAL)
99#endif
100#ifndef SET_ENDIAN
101# define SET_ENDIAN(a, b) (-EINVAL)
102#endif
103#ifndef GET_TSC_CTL
104# define GET_TSC_CTL(a) (-EINVAL)
105#endif
106#ifndef SET_TSC_CTL
107# define SET_TSC_CTL(a) (-EINVAL)
108#endif
109#ifndef GET_FP_MODE
110# define GET_FP_MODE(a) (-EINVAL)
111#endif
112#ifndef SET_FP_MODE
113# define SET_FP_MODE(a,b) (-EINVAL)
114#endif
115#ifndef SVE_SET_VL
116# define SVE_SET_VL(a) (-EINVAL)
117#endif
118#ifndef SVE_GET_VL
119# define SVE_GET_VL() (-EINVAL)
120#endif
121#ifndef SME_SET_VL
122# define SME_SET_VL(a) (-EINVAL)
123#endif
124#ifndef SME_GET_VL
125# define SME_GET_VL() (-EINVAL)
126#endif
127#ifndef PAC_RESET_KEYS
128# define PAC_RESET_KEYS(a, b) (-EINVAL)
129#endif
130#ifndef PAC_SET_ENABLED_KEYS
131# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
132#endif
133#ifndef PAC_GET_ENABLED_KEYS
134# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
135#endif
136#ifndef SET_TAGGED_ADDR_CTRL
137# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
138#endif
139#ifndef GET_TAGGED_ADDR_CTRL
140# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
141#endif
142
143/*
144 * this is where the system-wide overflow UID and GID are defined, for
145 * architectures that now have 32-bit UID/GID but didn't in the past
146 */
147
148int overflowuid = DEFAULT_OVERFLOWUID;
149int overflowgid = DEFAULT_OVERFLOWGID;
150
151EXPORT_SYMBOL(overflowuid);
152EXPORT_SYMBOL(overflowgid);
153
154/*
155 * the same as above, but for filesystems which can only store a 16-bit
156 * UID and GID. as such, this is needed on all architectures
157 */
158
159int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
160int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
161
162EXPORT_SYMBOL(fs_overflowuid);
163EXPORT_SYMBOL(fs_overflowgid);
164
165/*
166 * Returns true if current's euid is same as p's uid or euid,
167 * or has CAP_SYS_NICE to p's user_ns.
168 *
169 * Called with rcu_read_lock, creds are safe
170 */
171static bool set_one_prio_perm(struct task_struct *p)
172{
173 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
174
175 if (uid_eq(pcred->uid, cred->euid) ||
176 uid_eq(pcred->euid, cred->euid))
177 return true;
178 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
179 return true;
180 return false;
181}
182
183/*
184 * set the priority of a task
185 * - the caller must hold the RCU read lock
186 */
187static int set_one_prio(struct task_struct *p, int niceval, int error)
188{
189 int no_nice;
190
191 if (!set_one_prio_perm(p)) {
192 error = -EPERM;
193 goto out;
194 }
195 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
196 error = -EACCES;
197 goto out;
198 }
199 no_nice = security_task_setnice(p, niceval);
200 if (no_nice) {
201 error = no_nice;
202 goto out;
203 }
204 if (error == -ESRCH)
205 error = 0;
206 set_user_nice(p, niceval);
207out:
208 return error;
209}
210
211SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
212{
213 struct task_struct *g, *p;
214 struct user_struct *user;
215 const struct cred *cred = current_cred();
216 int error = -EINVAL;
217 struct pid *pgrp;
218 kuid_t uid;
219
220 if (which > PRIO_USER || which < PRIO_PROCESS)
221 goto out;
222
223 /* normalize: avoid signed division (rounding problems) */
224 error = -ESRCH;
225 if (niceval < MIN_NICE)
226 niceval = MIN_NICE;
227 if (niceval > MAX_NICE)
228 niceval = MAX_NICE;
229
230 rcu_read_lock();
231 switch (which) {
232 case PRIO_PROCESS:
233 if (who)
234 p = find_task_by_vpid(who);
235 else
236 p = current;
237 if (p)
238 error = set_one_prio(p, niceval, error);
239 break;
240 case PRIO_PGRP:
241 if (who)
242 pgrp = find_vpid(who);
243 else
244 pgrp = task_pgrp(current);
245 read_lock(&tasklist_lock);
246 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247 error = set_one_prio(p, niceval, error);
248 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 read_unlock(&tasklist_lock);
250 break;
251 case PRIO_USER:
252 uid = make_kuid(cred->user_ns, who);
253 user = cred->user;
254 if (!who)
255 uid = cred->uid;
256 else if (!uid_eq(uid, cred->uid)) {
257 user = find_user(uid);
258 if (!user)
259 goto out_unlock; /* No processes for this user */
260 }
261 for_each_process_thread(g, p) {
262 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
263 error = set_one_prio(p, niceval, error);
264 }
265 if (!uid_eq(uid, cred->uid))
266 free_uid(user); /* For find_user() */
267 break;
268 }
269out_unlock:
270 rcu_read_unlock();
271out:
272 return error;
273}
274
275/*
276 * Ugh. To avoid negative return values, "getpriority()" will
277 * not return the normal nice-value, but a negated value that
278 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
279 * to stay compatible.
280 */
281SYSCALL_DEFINE2(getpriority, int, which, int, who)
282{
283 struct task_struct *g, *p;
284 struct user_struct *user;
285 const struct cred *cred = current_cred();
286 long niceval, retval = -ESRCH;
287 struct pid *pgrp;
288 kuid_t uid;
289
290 if (which > PRIO_USER || which < PRIO_PROCESS)
291 return -EINVAL;
292
293 rcu_read_lock();
294 switch (which) {
295 case PRIO_PROCESS:
296 if (who)
297 p = find_task_by_vpid(who);
298 else
299 p = current;
300 if (p) {
301 niceval = nice_to_rlimit(task_nice(p));
302 if (niceval > retval)
303 retval = niceval;
304 }
305 break;
306 case PRIO_PGRP:
307 if (who)
308 pgrp = find_vpid(who);
309 else
310 pgrp = task_pgrp(current);
311 read_lock(&tasklist_lock);
312 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
313 niceval = nice_to_rlimit(task_nice(p));
314 if (niceval > retval)
315 retval = niceval;
316 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
317 read_unlock(&tasklist_lock);
318 break;
319 case PRIO_USER:
320 uid = make_kuid(cred->user_ns, who);
321 user = cred->user;
322 if (!who)
323 uid = cred->uid;
324 else if (!uid_eq(uid, cred->uid)) {
325 user = find_user(uid);
326 if (!user)
327 goto out_unlock; /* No processes for this user */
328 }
329 for_each_process_thread(g, p) {
330 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
331 niceval = nice_to_rlimit(task_nice(p));
332 if (niceval > retval)
333 retval = niceval;
334 }
335 }
336 if (!uid_eq(uid, cred->uid))
337 free_uid(user); /* for find_user() */
338 break;
339 }
340out_unlock:
341 rcu_read_unlock();
342
343 return retval;
344}
345
346/*
347 * Unprivileged users may change the real gid to the effective gid
348 * or vice versa. (BSD-style)
349 *
350 * If you set the real gid at all, or set the effective gid to a value not
351 * equal to the real gid, then the saved gid is set to the new effective gid.
352 *
353 * This makes it possible for a setgid program to completely drop its
354 * privileges, which is often a useful assertion to make when you are doing
355 * a security audit over a program.
356 *
357 * The general idea is that a program which uses just setregid() will be
358 * 100% compatible with BSD. A program which uses just setgid() will be
359 * 100% compatible with POSIX with saved IDs.
360 *
361 * SMP: There are not races, the GIDs are checked only by filesystem
362 * operations (as far as semantic preservation is concerned).
363 */
364#ifdef CONFIG_MULTIUSER
365long __sys_setregid(gid_t rgid, gid_t egid)
366{
367 struct user_namespace *ns = current_user_ns();
368 const struct cred *old;
369 struct cred *new;
370 int retval;
371 kgid_t krgid, kegid;
372
373 krgid = make_kgid(ns, rgid);
374 kegid = make_kgid(ns, egid);
375
376 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
377 return -EINVAL;
378 if ((egid != (gid_t) -1) && !gid_valid(kegid))
379 return -EINVAL;
380
381 new = prepare_creds();
382 if (!new)
383 return -ENOMEM;
384 old = current_cred();
385
386 retval = -EPERM;
387 if (rgid != (gid_t) -1) {
388 if (gid_eq(old->gid, krgid) ||
389 gid_eq(old->egid, krgid) ||
390 ns_capable_setid(old->user_ns, CAP_SETGID))
391 new->gid = krgid;
392 else
393 goto error;
394 }
395 if (egid != (gid_t) -1) {
396 if (gid_eq(old->gid, kegid) ||
397 gid_eq(old->egid, kegid) ||
398 gid_eq(old->sgid, kegid) ||
399 ns_capable_setid(old->user_ns, CAP_SETGID))
400 new->egid = kegid;
401 else
402 goto error;
403 }
404
405 if (rgid != (gid_t) -1 ||
406 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
407 new->sgid = new->egid;
408 new->fsgid = new->egid;
409
410 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
411 if (retval < 0)
412 goto error;
413
414 return commit_creds(new);
415
416error:
417 abort_creds(new);
418 return retval;
419}
420
421SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
422{
423 return __sys_setregid(rgid, egid);
424}
425
426/*
427 * setgid() is implemented like SysV w/ SAVED_IDS
428 *
429 * SMP: Same implicit races as above.
430 */
431long __sys_setgid(gid_t gid)
432{
433 struct user_namespace *ns = current_user_ns();
434 const struct cred *old;
435 struct cred *new;
436 int retval;
437 kgid_t kgid;
438
439 kgid = make_kgid(ns, gid);
440 if (!gid_valid(kgid))
441 return -EINVAL;
442
443 new = prepare_creds();
444 if (!new)
445 return -ENOMEM;
446 old = current_cred();
447
448 retval = -EPERM;
449 if (ns_capable_setid(old->user_ns, CAP_SETGID))
450 new->gid = new->egid = new->sgid = new->fsgid = kgid;
451 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
452 new->egid = new->fsgid = kgid;
453 else
454 goto error;
455
456 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
457 if (retval < 0)
458 goto error;
459
460 return commit_creds(new);
461
462error:
463 abort_creds(new);
464 return retval;
465}
466
467SYSCALL_DEFINE1(setgid, gid_t, gid)
468{
469 return __sys_setgid(gid);
470}
471
472/*
473 * change the user struct in a credentials set to match the new UID
474 */
475static int set_user(struct cred *new)
476{
477 struct user_struct *new_user;
478
479 new_user = alloc_uid(new->uid);
480 if (!new_user)
481 return -EAGAIN;
482
483 free_uid(new->user);
484 new->user = new_user;
485 return 0;
486}
487
488static void flag_nproc_exceeded(struct cred *new)
489{
490 if (new->ucounts == current_ucounts())
491 return;
492
493 /*
494 * We don't fail in case of NPROC limit excess here because too many
495 * poorly written programs don't check set*uid() return code, assuming
496 * it never fails if called by root. We may still enforce NPROC limit
497 * for programs doing set*uid()+execve() by harmlessly deferring the
498 * failure to the execve() stage.
499 */
500 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
501 new->user != INIT_USER)
502 current->flags |= PF_NPROC_EXCEEDED;
503 else
504 current->flags &= ~PF_NPROC_EXCEEDED;
505}
506
507/*
508 * Unprivileged users may change the real uid to the effective uid
509 * or vice versa. (BSD-style)
510 *
511 * If you set the real uid at all, or set the effective uid to a value not
512 * equal to the real uid, then the saved uid is set to the new effective uid.
513 *
514 * This makes it possible for a setuid program to completely drop its
515 * privileges, which is often a useful assertion to make when you are doing
516 * a security audit over a program.
517 *
518 * The general idea is that a program which uses just setreuid() will be
519 * 100% compatible with BSD. A program which uses just setuid() will be
520 * 100% compatible with POSIX with saved IDs.
521 */
522long __sys_setreuid(uid_t ruid, uid_t euid)
523{
524 struct user_namespace *ns = current_user_ns();
525 const struct cred *old;
526 struct cred *new;
527 int retval;
528 kuid_t kruid, keuid;
529
530 kruid = make_kuid(ns, ruid);
531 keuid = make_kuid(ns, euid);
532
533 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
534 return -EINVAL;
535 if ((euid != (uid_t) -1) && !uid_valid(keuid))
536 return -EINVAL;
537
538 new = prepare_creds();
539 if (!new)
540 return -ENOMEM;
541 old = current_cred();
542
543 retval = -EPERM;
544 if (ruid != (uid_t) -1) {
545 new->uid = kruid;
546 if (!uid_eq(old->uid, kruid) &&
547 !uid_eq(old->euid, kruid) &&
548 !ns_capable_setid(old->user_ns, CAP_SETUID))
549 goto error;
550 }
551
552 if (euid != (uid_t) -1) {
553 new->euid = keuid;
554 if (!uid_eq(old->uid, keuid) &&
555 !uid_eq(old->euid, keuid) &&
556 !uid_eq(old->suid, keuid) &&
557 !ns_capable_setid(old->user_ns, CAP_SETUID))
558 goto error;
559 }
560
561 if (!uid_eq(new->uid, old->uid)) {
562 retval = set_user(new);
563 if (retval < 0)
564 goto error;
565 }
566 if (ruid != (uid_t) -1 ||
567 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
568 new->suid = new->euid;
569 new->fsuid = new->euid;
570
571 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
572 if (retval < 0)
573 goto error;
574
575 retval = set_cred_ucounts(new);
576 if (retval < 0)
577 goto error;
578
579 flag_nproc_exceeded(new);
580 return commit_creds(new);
581
582error:
583 abort_creds(new);
584 return retval;
585}
586
587SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
588{
589 return __sys_setreuid(ruid, euid);
590}
591
592/*
593 * setuid() is implemented like SysV with SAVED_IDS
594 *
595 * Note that SAVED_ID's is deficient in that a setuid root program
596 * like sendmail, for example, cannot set its uid to be a normal
597 * user and then switch back, because if you're root, setuid() sets
598 * the saved uid too. If you don't like this, blame the bright people
599 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
600 * will allow a root program to temporarily drop privileges and be able to
601 * regain them by swapping the real and effective uid.
602 */
603long __sys_setuid(uid_t uid)
604{
605 struct user_namespace *ns = current_user_ns();
606 const struct cred *old;
607 struct cred *new;
608 int retval;
609 kuid_t kuid;
610
611 kuid = make_kuid(ns, uid);
612 if (!uid_valid(kuid))
613 return -EINVAL;
614
615 new = prepare_creds();
616 if (!new)
617 return -ENOMEM;
618 old = current_cred();
619
620 retval = -EPERM;
621 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
622 new->suid = new->uid = kuid;
623 if (!uid_eq(kuid, old->uid)) {
624 retval = set_user(new);
625 if (retval < 0)
626 goto error;
627 }
628 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
629 goto error;
630 }
631
632 new->fsuid = new->euid = kuid;
633
634 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
635 if (retval < 0)
636 goto error;
637
638 retval = set_cred_ucounts(new);
639 if (retval < 0)
640 goto error;
641
642 flag_nproc_exceeded(new);
643 return commit_creds(new);
644
645error:
646 abort_creds(new);
647 return retval;
648}
649
650SYSCALL_DEFINE1(setuid, uid_t, uid)
651{
652 return __sys_setuid(uid);
653}
654
655
656/*
657 * This function implements a generic ability to update ruid, euid,
658 * and suid. This allows you to implement the 4.4 compatible seteuid().
659 */
660long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
661{
662 struct user_namespace *ns = current_user_ns();
663 const struct cred *old;
664 struct cred *new;
665 int retval;
666 kuid_t kruid, keuid, ksuid;
667
668 kruid = make_kuid(ns, ruid);
669 keuid = make_kuid(ns, euid);
670 ksuid = make_kuid(ns, suid);
671
672 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
673 return -EINVAL;
674
675 if ((euid != (uid_t) -1) && !uid_valid(keuid))
676 return -EINVAL;
677
678 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
679 return -EINVAL;
680
681 new = prepare_creds();
682 if (!new)
683 return -ENOMEM;
684
685 old = current_cred();
686
687 retval = -EPERM;
688 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
689 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
690 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
691 goto error;
692 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
693 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
694 goto error;
695 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
696 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
697 goto error;
698 }
699
700 if (ruid != (uid_t) -1) {
701 new->uid = kruid;
702 if (!uid_eq(kruid, old->uid)) {
703 retval = set_user(new);
704 if (retval < 0)
705 goto error;
706 }
707 }
708 if (euid != (uid_t) -1)
709 new->euid = keuid;
710 if (suid != (uid_t) -1)
711 new->suid = ksuid;
712 new->fsuid = new->euid;
713
714 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
715 if (retval < 0)
716 goto error;
717
718 retval = set_cred_ucounts(new);
719 if (retval < 0)
720 goto error;
721
722 flag_nproc_exceeded(new);
723 return commit_creds(new);
724
725error:
726 abort_creds(new);
727 return retval;
728}
729
730SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
731{
732 return __sys_setresuid(ruid, euid, suid);
733}
734
735SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
736{
737 const struct cred *cred = current_cred();
738 int retval;
739 uid_t ruid, euid, suid;
740
741 ruid = from_kuid_munged(cred->user_ns, cred->uid);
742 euid = from_kuid_munged(cred->user_ns, cred->euid);
743 suid = from_kuid_munged(cred->user_ns, cred->suid);
744
745 retval = put_user(ruid, ruidp);
746 if (!retval) {
747 retval = put_user(euid, euidp);
748 if (!retval)
749 return put_user(suid, suidp);
750 }
751 return retval;
752}
753
754/*
755 * Same as above, but for rgid, egid, sgid.
756 */
757long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
758{
759 struct user_namespace *ns = current_user_ns();
760 const struct cred *old;
761 struct cred *new;
762 int retval;
763 kgid_t krgid, kegid, ksgid;
764
765 krgid = make_kgid(ns, rgid);
766 kegid = make_kgid(ns, egid);
767 ksgid = make_kgid(ns, sgid);
768
769 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
770 return -EINVAL;
771 if ((egid != (gid_t) -1) && !gid_valid(kegid))
772 return -EINVAL;
773 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
774 return -EINVAL;
775
776 new = prepare_creds();
777 if (!new)
778 return -ENOMEM;
779 old = current_cred();
780
781 retval = -EPERM;
782 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
783 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
784 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
785 goto error;
786 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
787 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
788 goto error;
789 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
790 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
791 goto error;
792 }
793
794 if (rgid != (gid_t) -1)
795 new->gid = krgid;
796 if (egid != (gid_t) -1)
797 new->egid = kegid;
798 if (sgid != (gid_t) -1)
799 new->sgid = ksgid;
800 new->fsgid = new->egid;
801
802 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
803 if (retval < 0)
804 goto error;
805
806 return commit_creds(new);
807
808error:
809 abort_creds(new);
810 return retval;
811}
812
813SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
814{
815 return __sys_setresgid(rgid, egid, sgid);
816}
817
818SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
819{
820 const struct cred *cred = current_cred();
821 int retval;
822 gid_t rgid, egid, sgid;
823
824 rgid = from_kgid_munged(cred->user_ns, cred->gid);
825 egid = from_kgid_munged(cred->user_ns, cred->egid);
826 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
827
828 retval = put_user(rgid, rgidp);
829 if (!retval) {
830 retval = put_user(egid, egidp);
831 if (!retval)
832 retval = put_user(sgid, sgidp);
833 }
834
835 return retval;
836}
837
838
839/*
840 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
841 * is used for "access()" and for the NFS daemon (letting nfsd stay at
842 * whatever uid it wants to). It normally shadows "euid", except when
843 * explicitly set by setfsuid() or for access..
844 */
845long __sys_setfsuid(uid_t uid)
846{
847 const struct cred *old;
848 struct cred *new;
849 uid_t old_fsuid;
850 kuid_t kuid;
851
852 old = current_cred();
853 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
854
855 kuid = make_kuid(old->user_ns, uid);
856 if (!uid_valid(kuid))
857 return old_fsuid;
858
859 new = prepare_creds();
860 if (!new)
861 return old_fsuid;
862
863 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
864 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
865 ns_capable_setid(old->user_ns, CAP_SETUID)) {
866 if (!uid_eq(kuid, old->fsuid)) {
867 new->fsuid = kuid;
868 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
869 goto change_okay;
870 }
871 }
872
873 abort_creds(new);
874 return old_fsuid;
875
876change_okay:
877 commit_creds(new);
878 return old_fsuid;
879}
880
881SYSCALL_DEFINE1(setfsuid, uid_t, uid)
882{
883 return __sys_setfsuid(uid);
884}
885
886/*
887 * Samma på svenska..
888 */
889long __sys_setfsgid(gid_t gid)
890{
891 const struct cred *old;
892 struct cred *new;
893 gid_t old_fsgid;
894 kgid_t kgid;
895
896 old = current_cred();
897 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
898
899 kgid = make_kgid(old->user_ns, gid);
900 if (!gid_valid(kgid))
901 return old_fsgid;
902
903 new = prepare_creds();
904 if (!new)
905 return old_fsgid;
906
907 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
908 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
909 ns_capable_setid(old->user_ns, CAP_SETGID)) {
910 if (!gid_eq(kgid, old->fsgid)) {
911 new->fsgid = kgid;
912 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
913 goto change_okay;
914 }
915 }
916
917 abort_creds(new);
918 return old_fsgid;
919
920change_okay:
921 commit_creds(new);
922 return old_fsgid;
923}
924
925SYSCALL_DEFINE1(setfsgid, gid_t, gid)
926{
927 return __sys_setfsgid(gid);
928}
929#endif /* CONFIG_MULTIUSER */
930
931/**
932 * sys_getpid - return the thread group id of the current process
933 *
934 * Note, despite the name, this returns the tgid not the pid. The tgid and
935 * the pid are identical unless CLONE_THREAD was specified on clone() in
936 * which case the tgid is the same in all threads of the same group.
937 *
938 * This is SMP safe as current->tgid does not change.
939 */
940SYSCALL_DEFINE0(getpid)
941{
942 return task_tgid_vnr(current);
943}
944
945/* Thread ID - the internal kernel "pid" */
946SYSCALL_DEFINE0(gettid)
947{
948 return task_pid_vnr(current);
949}
950
951/*
952 * Accessing ->real_parent is not SMP-safe, it could
953 * change from under us. However, we can use a stale
954 * value of ->real_parent under rcu_read_lock(), see
955 * release_task()->call_rcu(delayed_put_task_struct).
956 */
957SYSCALL_DEFINE0(getppid)
958{
959 int pid;
960
961 rcu_read_lock();
962 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
963 rcu_read_unlock();
964
965 return pid;
966}
967
968SYSCALL_DEFINE0(getuid)
969{
970 /* Only we change this so SMP safe */
971 return from_kuid_munged(current_user_ns(), current_uid());
972}
973
974SYSCALL_DEFINE0(geteuid)
975{
976 /* Only we change this so SMP safe */
977 return from_kuid_munged(current_user_ns(), current_euid());
978}
979
980SYSCALL_DEFINE0(getgid)
981{
982 /* Only we change this so SMP safe */
983 return from_kgid_munged(current_user_ns(), current_gid());
984}
985
986SYSCALL_DEFINE0(getegid)
987{
988 /* Only we change this so SMP safe */
989 return from_kgid_munged(current_user_ns(), current_egid());
990}
991
992static void do_sys_times(struct tms *tms)
993{
994 u64 tgutime, tgstime, cutime, cstime;
995
996 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
997 cutime = current->signal->cutime;
998 cstime = current->signal->cstime;
999 tms->tms_utime = nsec_to_clock_t(tgutime);
1000 tms->tms_stime = nsec_to_clock_t(tgstime);
1001 tms->tms_cutime = nsec_to_clock_t(cutime);
1002 tms->tms_cstime = nsec_to_clock_t(cstime);
1003}
1004
1005SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1006{
1007 if (tbuf) {
1008 struct tms tmp;
1009
1010 do_sys_times(&tmp);
1011 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1012 return -EFAULT;
1013 }
1014 force_successful_syscall_return();
1015 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1016}
1017
1018#ifdef CONFIG_COMPAT
1019static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1020{
1021 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1022}
1023
1024COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1025{
1026 if (tbuf) {
1027 struct tms tms;
1028 struct compat_tms tmp;
1029
1030 do_sys_times(&tms);
1031 /* Convert our struct tms to the compat version. */
1032 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1033 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1034 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1035 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1036 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1037 return -EFAULT;
1038 }
1039 force_successful_syscall_return();
1040 return compat_jiffies_to_clock_t(jiffies);
1041}
1042#endif
1043
1044/*
1045 * This needs some heavy checking ...
1046 * I just haven't the stomach for it. I also don't fully
1047 * understand sessions/pgrp etc. Let somebody who does explain it.
1048 *
1049 * OK, I think I have the protection semantics right.... this is really
1050 * only important on a multi-user system anyway, to make sure one user
1051 * can't send a signal to a process owned by another. -TYT, 12/12/91
1052 *
1053 * !PF_FORKNOEXEC check to conform completely to POSIX.
1054 */
1055SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1056{
1057 struct task_struct *p;
1058 struct task_struct *group_leader = current->group_leader;
1059 struct pid *pgrp;
1060 int err;
1061
1062 if (!pid)
1063 pid = task_pid_vnr(group_leader);
1064 if (!pgid)
1065 pgid = pid;
1066 if (pgid < 0)
1067 return -EINVAL;
1068 rcu_read_lock();
1069
1070 /* From this point forward we keep holding onto the tasklist lock
1071 * so that our parent does not change from under us. -DaveM
1072 */
1073 write_lock_irq(&tasklist_lock);
1074
1075 err = -ESRCH;
1076 p = find_task_by_vpid(pid);
1077 if (!p)
1078 goto out;
1079
1080 err = -EINVAL;
1081 if (!thread_group_leader(p))
1082 goto out;
1083
1084 if (same_thread_group(p->real_parent, group_leader)) {
1085 err = -EPERM;
1086 if (task_session(p) != task_session(group_leader))
1087 goto out;
1088 err = -EACCES;
1089 if (!(p->flags & PF_FORKNOEXEC))
1090 goto out;
1091 } else {
1092 err = -ESRCH;
1093 if (p != group_leader)
1094 goto out;
1095 }
1096
1097 err = -EPERM;
1098 if (p->signal->leader)
1099 goto out;
1100
1101 pgrp = task_pid(p);
1102 if (pgid != pid) {
1103 struct task_struct *g;
1104
1105 pgrp = find_vpid(pgid);
1106 g = pid_task(pgrp, PIDTYPE_PGID);
1107 if (!g || task_session(g) != task_session(group_leader))
1108 goto out;
1109 }
1110
1111 err = security_task_setpgid(p, pgid);
1112 if (err)
1113 goto out;
1114
1115 if (task_pgrp(p) != pgrp)
1116 change_pid(p, PIDTYPE_PGID, pgrp);
1117
1118 err = 0;
1119out:
1120 /* All paths lead to here, thus we are safe. -DaveM */
1121 write_unlock_irq(&tasklist_lock);
1122 rcu_read_unlock();
1123 return err;
1124}
1125
1126static int do_getpgid(pid_t pid)
1127{
1128 struct task_struct *p;
1129 struct pid *grp;
1130 int retval;
1131
1132 rcu_read_lock();
1133 if (!pid)
1134 grp = task_pgrp(current);
1135 else {
1136 retval = -ESRCH;
1137 p = find_task_by_vpid(pid);
1138 if (!p)
1139 goto out;
1140 grp = task_pgrp(p);
1141 if (!grp)
1142 goto out;
1143
1144 retval = security_task_getpgid(p);
1145 if (retval)
1146 goto out;
1147 }
1148 retval = pid_vnr(grp);
1149out:
1150 rcu_read_unlock();
1151 return retval;
1152}
1153
1154SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155{
1156 return do_getpgid(pid);
1157}
1158
1159#ifdef __ARCH_WANT_SYS_GETPGRP
1160
1161SYSCALL_DEFINE0(getpgrp)
1162{
1163 return do_getpgid(0);
1164}
1165
1166#endif
1167
1168SYSCALL_DEFINE1(getsid, pid_t, pid)
1169{
1170 struct task_struct *p;
1171 struct pid *sid;
1172 int retval;
1173
1174 rcu_read_lock();
1175 if (!pid)
1176 sid = task_session(current);
1177 else {
1178 retval = -ESRCH;
1179 p = find_task_by_vpid(pid);
1180 if (!p)
1181 goto out;
1182 sid = task_session(p);
1183 if (!sid)
1184 goto out;
1185
1186 retval = security_task_getsid(p);
1187 if (retval)
1188 goto out;
1189 }
1190 retval = pid_vnr(sid);
1191out:
1192 rcu_read_unlock();
1193 return retval;
1194}
1195
1196static void set_special_pids(struct pid *pid)
1197{
1198 struct task_struct *curr = current->group_leader;
1199
1200 if (task_session(curr) != pid)
1201 change_pid(curr, PIDTYPE_SID, pid);
1202
1203 if (task_pgrp(curr) != pid)
1204 change_pid(curr, PIDTYPE_PGID, pid);
1205}
1206
1207int ksys_setsid(void)
1208{
1209 struct task_struct *group_leader = current->group_leader;
1210 struct pid *sid = task_pid(group_leader);
1211 pid_t session = pid_vnr(sid);
1212 int err = -EPERM;
1213
1214 write_lock_irq(&tasklist_lock);
1215 /* Fail if I am already a session leader */
1216 if (group_leader->signal->leader)
1217 goto out;
1218
1219 /* Fail if a process group id already exists that equals the
1220 * proposed session id.
1221 */
1222 if (pid_task(sid, PIDTYPE_PGID))
1223 goto out;
1224
1225 group_leader->signal->leader = 1;
1226 set_special_pids(sid);
1227
1228 proc_clear_tty(group_leader);
1229
1230 err = session;
1231out:
1232 write_unlock_irq(&tasklist_lock);
1233 if (err > 0) {
1234 proc_sid_connector(group_leader);
1235 sched_autogroup_create_attach(group_leader);
1236 }
1237 return err;
1238}
1239
1240SYSCALL_DEFINE0(setsid)
1241{
1242 return ksys_setsid();
1243}
1244
1245DECLARE_RWSEM(uts_sem);
1246
1247#ifdef COMPAT_UTS_MACHINE
1248#define override_architecture(name) \
1249 (personality(current->personality) == PER_LINUX32 && \
1250 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1251 sizeof(COMPAT_UTS_MACHINE)))
1252#else
1253#define override_architecture(name) 0
1254#endif
1255
1256/*
1257 * Work around broken programs that cannot handle "Linux 3.0".
1258 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1259 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1260 * 2.6.60.
1261 */
1262static int override_release(char __user *release, size_t len)
1263{
1264 int ret = 0;
1265
1266 if (current->personality & UNAME26) {
1267 const char *rest = UTS_RELEASE;
1268 char buf[65] = { 0 };
1269 int ndots = 0;
1270 unsigned v;
1271 size_t copy;
1272
1273 while (*rest) {
1274 if (*rest == '.' && ++ndots >= 3)
1275 break;
1276 if (!isdigit(*rest) && *rest != '.')
1277 break;
1278 rest++;
1279 }
1280 v = LINUX_VERSION_PATCHLEVEL + 60;
1281 copy = clamp_t(size_t, len, 1, sizeof(buf));
1282 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1283 ret = copy_to_user(release, buf, copy + 1);
1284 }
1285 return ret;
1286}
1287
1288SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1289{
1290 struct new_utsname tmp;
1291
1292 down_read(&uts_sem);
1293 memcpy(&tmp, utsname(), sizeof(tmp));
1294 up_read(&uts_sem);
1295 if (copy_to_user(name, &tmp, sizeof(tmp)))
1296 return -EFAULT;
1297
1298 if (override_release(name->release, sizeof(name->release)))
1299 return -EFAULT;
1300 if (override_architecture(name))
1301 return -EFAULT;
1302 return 0;
1303}
1304
1305#ifdef __ARCH_WANT_SYS_OLD_UNAME
1306/*
1307 * Old cruft
1308 */
1309SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1310{
1311 struct old_utsname tmp;
1312
1313 if (!name)
1314 return -EFAULT;
1315
1316 down_read(&uts_sem);
1317 memcpy(&tmp, utsname(), sizeof(tmp));
1318 up_read(&uts_sem);
1319 if (copy_to_user(name, &tmp, sizeof(tmp)))
1320 return -EFAULT;
1321
1322 if (override_release(name->release, sizeof(name->release)))
1323 return -EFAULT;
1324 if (override_architecture(name))
1325 return -EFAULT;
1326 return 0;
1327}
1328
1329SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1330{
1331 struct oldold_utsname tmp;
1332
1333 if (!name)
1334 return -EFAULT;
1335
1336 memset(&tmp, 0, sizeof(tmp));
1337
1338 down_read(&uts_sem);
1339 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1340 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1341 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1342 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1343 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1344 up_read(&uts_sem);
1345 if (copy_to_user(name, &tmp, sizeof(tmp)))
1346 return -EFAULT;
1347
1348 if (override_architecture(name))
1349 return -EFAULT;
1350 if (override_release(name->release, sizeof(name->release)))
1351 return -EFAULT;
1352 return 0;
1353}
1354#endif
1355
1356SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1357{
1358 int errno;
1359 char tmp[__NEW_UTS_LEN];
1360
1361 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1362 return -EPERM;
1363
1364 if (len < 0 || len > __NEW_UTS_LEN)
1365 return -EINVAL;
1366 errno = -EFAULT;
1367 if (!copy_from_user(tmp, name, len)) {
1368 struct new_utsname *u;
1369
1370 add_device_randomness(tmp, len);
1371 down_write(&uts_sem);
1372 u = utsname();
1373 memcpy(u->nodename, tmp, len);
1374 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1375 errno = 0;
1376 uts_proc_notify(UTS_PROC_HOSTNAME);
1377 up_write(&uts_sem);
1378 }
1379 return errno;
1380}
1381
1382#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1383
1384SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1385{
1386 int i;
1387 struct new_utsname *u;
1388 char tmp[__NEW_UTS_LEN + 1];
1389
1390 if (len < 0)
1391 return -EINVAL;
1392 down_read(&uts_sem);
1393 u = utsname();
1394 i = 1 + strlen(u->nodename);
1395 if (i > len)
1396 i = len;
1397 memcpy(tmp, u->nodename, i);
1398 up_read(&uts_sem);
1399 if (copy_to_user(name, tmp, i))
1400 return -EFAULT;
1401 return 0;
1402}
1403
1404#endif
1405
1406/*
1407 * Only setdomainname; getdomainname can be implemented by calling
1408 * uname()
1409 */
1410SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1411{
1412 int errno;
1413 char tmp[__NEW_UTS_LEN];
1414
1415 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1416 return -EPERM;
1417 if (len < 0 || len > __NEW_UTS_LEN)
1418 return -EINVAL;
1419
1420 errno = -EFAULT;
1421 if (!copy_from_user(tmp, name, len)) {
1422 struct new_utsname *u;
1423
1424 add_device_randomness(tmp, len);
1425 down_write(&uts_sem);
1426 u = utsname();
1427 memcpy(u->domainname, tmp, len);
1428 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1429 errno = 0;
1430 uts_proc_notify(UTS_PROC_DOMAINNAME);
1431 up_write(&uts_sem);
1432 }
1433 return errno;
1434}
1435
1436/* make sure you are allowed to change @tsk limits before calling this */
1437static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1438 struct rlimit *new_rlim, struct rlimit *old_rlim)
1439{
1440 struct rlimit *rlim;
1441 int retval = 0;
1442
1443 if (resource >= RLIM_NLIMITS)
1444 return -EINVAL;
1445 resource = array_index_nospec(resource, RLIM_NLIMITS);
1446
1447 if (new_rlim) {
1448 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1449 return -EINVAL;
1450 if (resource == RLIMIT_NOFILE &&
1451 new_rlim->rlim_max > sysctl_nr_open)
1452 return -EPERM;
1453 }
1454
1455 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1456 rlim = tsk->signal->rlim + resource;
1457 task_lock(tsk->group_leader);
1458 if (new_rlim) {
1459 /*
1460 * Keep the capable check against init_user_ns until cgroups can
1461 * contain all limits.
1462 */
1463 if (new_rlim->rlim_max > rlim->rlim_max &&
1464 !capable(CAP_SYS_RESOURCE))
1465 retval = -EPERM;
1466 if (!retval)
1467 retval = security_task_setrlimit(tsk, resource, new_rlim);
1468 }
1469 if (!retval) {
1470 if (old_rlim)
1471 *old_rlim = *rlim;
1472 if (new_rlim)
1473 *rlim = *new_rlim;
1474 }
1475 task_unlock(tsk->group_leader);
1476
1477 /*
1478 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1479 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1480 * ignores the rlimit.
1481 */
1482 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1483 new_rlim->rlim_cur != RLIM_INFINITY &&
1484 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1485 /*
1486 * update_rlimit_cpu can fail if the task is exiting, but there
1487 * may be other tasks in the thread group that are not exiting,
1488 * and they need their cpu timers adjusted.
1489 *
1490 * The group_leader is the last task to be released, so if we
1491 * cannot update_rlimit_cpu on it, then the entire process is
1492 * exiting and we do not need to update at all.
1493 */
1494 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1495 }
1496
1497 return retval;
1498}
1499
1500SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1501{
1502 struct rlimit value;
1503 int ret;
1504
1505 ret = do_prlimit(current, resource, NULL, &value);
1506 if (!ret)
1507 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1508
1509 return ret;
1510}
1511
1512#ifdef CONFIG_COMPAT
1513
1514COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1515 struct compat_rlimit __user *, rlim)
1516{
1517 struct rlimit r;
1518 struct compat_rlimit r32;
1519
1520 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1521 return -EFAULT;
1522
1523 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1524 r.rlim_cur = RLIM_INFINITY;
1525 else
1526 r.rlim_cur = r32.rlim_cur;
1527 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1528 r.rlim_max = RLIM_INFINITY;
1529 else
1530 r.rlim_max = r32.rlim_max;
1531 return do_prlimit(current, resource, &r, NULL);
1532}
1533
1534COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1535 struct compat_rlimit __user *, rlim)
1536{
1537 struct rlimit r;
1538 int ret;
1539
1540 ret = do_prlimit(current, resource, NULL, &r);
1541 if (!ret) {
1542 struct compat_rlimit r32;
1543 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1544 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1545 else
1546 r32.rlim_cur = r.rlim_cur;
1547 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1548 r32.rlim_max = COMPAT_RLIM_INFINITY;
1549 else
1550 r32.rlim_max = r.rlim_max;
1551
1552 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1553 return -EFAULT;
1554 }
1555 return ret;
1556}
1557
1558#endif
1559
1560#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1561
1562/*
1563 * Back compatibility for getrlimit. Needed for some apps.
1564 */
1565SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1566 struct rlimit __user *, rlim)
1567{
1568 struct rlimit x;
1569 if (resource >= RLIM_NLIMITS)
1570 return -EINVAL;
1571
1572 resource = array_index_nospec(resource, RLIM_NLIMITS);
1573 task_lock(current->group_leader);
1574 x = current->signal->rlim[resource];
1575 task_unlock(current->group_leader);
1576 if (x.rlim_cur > 0x7FFFFFFF)
1577 x.rlim_cur = 0x7FFFFFFF;
1578 if (x.rlim_max > 0x7FFFFFFF)
1579 x.rlim_max = 0x7FFFFFFF;
1580 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1581}
1582
1583#ifdef CONFIG_COMPAT
1584COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1585 struct compat_rlimit __user *, rlim)
1586{
1587 struct rlimit r;
1588
1589 if (resource >= RLIM_NLIMITS)
1590 return -EINVAL;
1591
1592 resource = array_index_nospec(resource, RLIM_NLIMITS);
1593 task_lock(current->group_leader);
1594 r = current->signal->rlim[resource];
1595 task_unlock(current->group_leader);
1596 if (r.rlim_cur > 0x7FFFFFFF)
1597 r.rlim_cur = 0x7FFFFFFF;
1598 if (r.rlim_max > 0x7FFFFFFF)
1599 r.rlim_max = 0x7FFFFFFF;
1600
1601 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1602 put_user(r.rlim_max, &rlim->rlim_max))
1603 return -EFAULT;
1604 return 0;
1605}
1606#endif
1607
1608#endif
1609
1610static inline bool rlim64_is_infinity(__u64 rlim64)
1611{
1612#if BITS_PER_LONG < 64
1613 return rlim64 >= ULONG_MAX;
1614#else
1615 return rlim64 == RLIM64_INFINITY;
1616#endif
1617}
1618
1619static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1620{
1621 if (rlim->rlim_cur == RLIM_INFINITY)
1622 rlim64->rlim_cur = RLIM64_INFINITY;
1623 else
1624 rlim64->rlim_cur = rlim->rlim_cur;
1625 if (rlim->rlim_max == RLIM_INFINITY)
1626 rlim64->rlim_max = RLIM64_INFINITY;
1627 else
1628 rlim64->rlim_max = rlim->rlim_max;
1629}
1630
1631static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1632{
1633 if (rlim64_is_infinity(rlim64->rlim_cur))
1634 rlim->rlim_cur = RLIM_INFINITY;
1635 else
1636 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1637 if (rlim64_is_infinity(rlim64->rlim_max))
1638 rlim->rlim_max = RLIM_INFINITY;
1639 else
1640 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1641}
1642
1643/* rcu lock must be held */
1644static int check_prlimit_permission(struct task_struct *task,
1645 unsigned int flags)
1646{
1647 const struct cred *cred = current_cred(), *tcred;
1648 bool id_match;
1649
1650 if (current == task)
1651 return 0;
1652
1653 tcred = __task_cred(task);
1654 id_match = (uid_eq(cred->uid, tcred->euid) &&
1655 uid_eq(cred->uid, tcred->suid) &&
1656 uid_eq(cred->uid, tcred->uid) &&
1657 gid_eq(cred->gid, tcred->egid) &&
1658 gid_eq(cred->gid, tcred->sgid) &&
1659 gid_eq(cred->gid, tcred->gid));
1660 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1661 return -EPERM;
1662
1663 return security_task_prlimit(cred, tcred, flags);
1664}
1665
1666SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1667 const struct rlimit64 __user *, new_rlim,
1668 struct rlimit64 __user *, old_rlim)
1669{
1670 struct rlimit64 old64, new64;
1671 struct rlimit old, new;
1672 struct task_struct *tsk;
1673 unsigned int checkflags = 0;
1674 int ret;
1675
1676 if (old_rlim)
1677 checkflags |= LSM_PRLIMIT_READ;
1678
1679 if (new_rlim) {
1680 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1681 return -EFAULT;
1682 rlim64_to_rlim(&new64, &new);
1683 checkflags |= LSM_PRLIMIT_WRITE;
1684 }
1685
1686 rcu_read_lock();
1687 tsk = pid ? find_task_by_vpid(pid) : current;
1688 if (!tsk) {
1689 rcu_read_unlock();
1690 return -ESRCH;
1691 }
1692 ret = check_prlimit_permission(tsk, checkflags);
1693 if (ret) {
1694 rcu_read_unlock();
1695 return ret;
1696 }
1697 get_task_struct(tsk);
1698 rcu_read_unlock();
1699
1700 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1701 old_rlim ? &old : NULL);
1702
1703 if (!ret && old_rlim) {
1704 rlim_to_rlim64(&old, &old64);
1705 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1706 ret = -EFAULT;
1707 }
1708
1709 put_task_struct(tsk);
1710 return ret;
1711}
1712
1713SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1714{
1715 struct rlimit new_rlim;
1716
1717 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1718 return -EFAULT;
1719 return do_prlimit(current, resource, &new_rlim, NULL);
1720}
1721
1722/*
1723 * It would make sense to put struct rusage in the task_struct,
1724 * except that would make the task_struct be *really big*. After
1725 * task_struct gets moved into malloc'ed memory, it would
1726 * make sense to do this. It will make moving the rest of the information
1727 * a lot simpler! (Which we're not doing right now because we're not
1728 * measuring them yet).
1729 *
1730 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1731 * races with threads incrementing their own counters. But since word
1732 * reads are atomic, we either get new values or old values and we don't
1733 * care which for the sums. We always take the siglock to protect reading
1734 * the c* fields from p->signal from races with exit.c updating those
1735 * fields when reaping, so a sample either gets all the additions of a
1736 * given child after it's reaped, or none so this sample is before reaping.
1737 *
1738 * Locking:
1739 * We need to take the siglock for CHILDEREN, SELF and BOTH
1740 * for the cases current multithreaded, non-current single threaded
1741 * non-current multithreaded. Thread traversal is now safe with
1742 * the siglock held.
1743 * Strictly speaking, we donot need to take the siglock if we are current and
1744 * single threaded, as no one else can take our signal_struct away, no one
1745 * else can reap the children to update signal->c* counters, and no one else
1746 * can race with the signal-> fields. If we do not take any lock, the
1747 * signal-> fields could be read out of order while another thread was just
1748 * exiting. So we should place a read memory barrier when we avoid the lock.
1749 * On the writer side, write memory barrier is implied in __exit_signal
1750 * as __exit_signal releases the siglock spinlock after updating the signal->
1751 * fields. But we don't do this yet to keep things simple.
1752 *
1753 */
1754
1755static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1756{
1757 r->ru_nvcsw += t->nvcsw;
1758 r->ru_nivcsw += t->nivcsw;
1759 r->ru_minflt += t->min_flt;
1760 r->ru_majflt += t->maj_flt;
1761 r->ru_inblock += task_io_get_inblock(t);
1762 r->ru_oublock += task_io_get_oublock(t);
1763}
1764
1765void getrusage(struct task_struct *p, int who, struct rusage *r)
1766{
1767 struct task_struct *t;
1768 unsigned long flags;
1769 u64 tgutime, tgstime, utime, stime;
1770 unsigned long maxrss = 0;
1771
1772 memset((char *)r, 0, sizeof (*r));
1773 utime = stime = 0;
1774
1775 if (who == RUSAGE_THREAD) {
1776 task_cputime_adjusted(current, &utime, &stime);
1777 accumulate_thread_rusage(p, r);
1778 maxrss = p->signal->maxrss;
1779 goto out;
1780 }
1781
1782 if (!lock_task_sighand(p, &flags))
1783 return;
1784
1785 switch (who) {
1786 case RUSAGE_BOTH:
1787 case RUSAGE_CHILDREN:
1788 utime = p->signal->cutime;
1789 stime = p->signal->cstime;
1790 r->ru_nvcsw = p->signal->cnvcsw;
1791 r->ru_nivcsw = p->signal->cnivcsw;
1792 r->ru_minflt = p->signal->cmin_flt;
1793 r->ru_majflt = p->signal->cmaj_flt;
1794 r->ru_inblock = p->signal->cinblock;
1795 r->ru_oublock = p->signal->coublock;
1796 maxrss = p->signal->cmaxrss;
1797
1798 if (who == RUSAGE_CHILDREN)
1799 break;
1800 fallthrough;
1801
1802 case RUSAGE_SELF:
1803 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1804 utime += tgutime;
1805 stime += tgstime;
1806 r->ru_nvcsw += p->signal->nvcsw;
1807 r->ru_nivcsw += p->signal->nivcsw;
1808 r->ru_minflt += p->signal->min_flt;
1809 r->ru_majflt += p->signal->maj_flt;
1810 r->ru_inblock += p->signal->inblock;
1811 r->ru_oublock += p->signal->oublock;
1812 if (maxrss < p->signal->maxrss)
1813 maxrss = p->signal->maxrss;
1814 t = p;
1815 do {
1816 accumulate_thread_rusage(t, r);
1817 } while_each_thread(p, t);
1818 break;
1819
1820 default:
1821 BUG();
1822 }
1823 unlock_task_sighand(p, &flags);
1824
1825out:
1826 r->ru_utime = ns_to_kernel_old_timeval(utime);
1827 r->ru_stime = ns_to_kernel_old_timeval(stime);
1828
1829 if (who != RUSAGE_CHILDREN) {
1830 struct mm_struct *mm = get_task_mm(p);
1831
1832 if (mm) {
1833 setmax_mm_hiwater_rss(&maxrss, mm);
1834 mmput(mm);
1835 }
1836 }
1837 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1838}
1839
1840SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1841{
1842 struct rusage r;
1843
1844 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1845 who != RUSAGE_THREAD)
1846 return -EINVAL;
1847
1848 getrusage(current, who, &r);
1849 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1850}
1851
1852#ifdef CONFIG_COMPAT
1853COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1854{
1855 struct rusage r;
1856
1857 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1858 who != RUSAGE_THREAD)
1859 return -EINVAL;
1860
1861 getrusage(current, who, &r);
1862 return put_compat_rusage(&r, ru);
1863}
1864#endif
1865
1866SYSCALL_DEFINE1(umask, int, mask)
1867{
1868 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1869 return mask;
1870}
1871
1872static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1873{
1874 struct fd exe;
1875 struct inode *inode;
1876 int err;
1877
1878 exe = fdget(fd);
1879 if (!exe.file)
1880 return -EBADF;
1881
1882 inode = file_inode(exe.file);
1883
1884 /*
1885 * Because the original mm->exe_file points to executable file, make
1886 * sure that this one is executable as well, to avoid breaking an
1887 * overall picture.
1888 */
1889 err = -EACCES;
1890 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1891 goto exit;
1892
1893 err = file_permission(exe.file, MAY_EXEC);
1894 if (err)
1895 goto exit;
1896
1897 err = replace_mm_exe_file(mm, exe.file);
1898exit:
1899 fdput(exe);
1900 return err;
1901}
1902
1903/*
1904 * Check arithmetic relations of passed addresses.
1905 *
1906 * WARNING: we don't require any capability here so be very careful
1907 * in what is allowed for modification from userspace.
1908 */
1909static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1910{
1911 unsigned long mmap_max_addr = TASK_SIZE;
1912 int error = -EINVAL, i;
1913
1914 static const unsigned char offsets[] = {
1915 offsetof(struct prctl_mm_map, start_code),
1916 offsetof(struct prctl_mm_map, end_code),
1917 offsetof(struct prctl_mm_map, start_data),
1918 offsetof(struct prctl_mm_map, end_data),
1919 offsetof(struct prctl_mm_map, start_brk),
1920 offsetof(struct prctl_mm_map, brk),
1921 offsetof(struct prctl_mm_map, start_stack),
1922 offsetof(struct prctl_mm_map, arg_start),
1923 offsetof(struct prctl_mm_map, arg_end),
1924 offsetof(struct prctl_mm_map, env_start),
1925 offsetof(struct prctl_mm_map, env_end),
1926 };
1927
1928 /*
1929 * Make sure the members are not somewhere outside
1930 * of allowed address space.
1931 */
1932 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1933 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1934
1935 if ((unsigned long)val >= mmap_max_addr ||
1936 (unsigned long)val < mmap_min_addr)
1937 goto out;
1938 }
1939
1940 /*
1941 * Make sure the pairs are ordered.
1942 */
1943#define __prctl_check_order(__m1, __op, __m2) \
1944 ((unsigned long)prctl_map->__m1 __op \
1945 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1946 error = __prctl_check_order(start_code, <, end_code);
1947 error |= __prctl_check_order(start_data,<=, end_data);
1948 error |= __prctl_check_order(start_brk, <=, brk);
1949 error |= __prctl_check_order(arg_start, <=, arg_end);
1950 error |= __prctl_check_order(env_start, <=, env_end);
1951 if (error)
1952 goto out;
1953#undef __prctl_check_order
1954
1955 error = -EINVAL;
1956
1957 /*
1958 * Neither we should allow to override limits if they set.
1959 */
1960 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1961 prctl_map->start_brk, prctl_map->end_data,
1962 prctl_map->start_data))
1963 goto out;
1964
1965 error = 0;
1966out:
1967 return error;
1968}
1969
1970#ifdef CONFIG_CHECKPOINT_RESTORE
1971static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1972{
1973 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1974 unsigned long user_auxv[AT_VECTOR_SIZE];
1975 struct mm_struct *mm = current->mm;
1976 int error;
1977
1978 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1979 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1980
1981 if (opt == PR_SET_MM_MAP_SIZE)
1982 return put_user((unsigned int)sizeof(prctl_map),
1983 (unsigned int __user *)addr);
1984
1985 if (data_size != sizeof(prctl_map))
1986 return -EINVAL;
1987
1988 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1989 return -EFAULT;
1990
1991 error = validate_prctl_map_addr(&prctl_map);
1992 if (error)
1993 return error;
1994
1995 if (prctl_map.auxv_size) {
1996 /*
1997 * Someone is trying to cheat the auxv vector.
1998 */
1999 if (!prctl_map.auxv ||
2000 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2001 return -EINVAL;
2002
2003 memset(user_auxv, 0, sizeof(user_auxv));
2004 if (copy_from_user(user_auxv,
2005 (const void __user *)prctl_map.auxv,
2006 prctl_map.auxv_size))
2007 return -EFAULT;
2008
2009 /* Last entry must be AT_NULL as specification requires */
2010 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2011 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2012 }
2013
2014 if (prctl_map.exe_fd != (u32)-1) {
2015 /*
2016 * Check if the current user is checkpoint/restore capable.
2017 * At the time of this writing, it checks for CAP_SYS_ADMIN
2018 * or CAP_CHECKPOINT_RESTORE.
2019 * Note that a user with access to ptrace can masquerade an
2020 * arbitrary program as any executable, even setuid ones.
2021 * This may have implications in the tomoyo subsystem.
2022 */
2023 if (!checkpoint_restore_ns_capable(current_user_ns()))
2024 return -EPERM;
2025
2026 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2027 if (error)
2028 return error;
2029 }
2030
2031 /*
2032 * arg_lock protects concurrent updates but we still need mmap_lock for
2033 * read to exclude races with sys_brk.
2034 */
2035 mmap_read_lock(mm);
2036
2037 /*
2038 * We don't validate if these members are pointing to
2039 * real present VMAs because application may have correspond
2040 * VMAs already unmapped and kernel uses these members for statistics
2041 * output in procfs mostly, except
2042 *
2043 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2044 * for VMAs when updating these members so anything wrong written
2045 * here cause kernel to swear at userspace program but won't lead
2046 * to any problem in kernel itself
2047 */
2048
2049 spin_lock(&mm->arg_lock);
2050 mm->start_code = prctl_map.start_code;
2051 mm->end_code = prctl_map.end_code;
2052 mm->start_data = prctl_map.start_data;
2053 mm->end_data = prctl_map.end_data;
2054 mm->start_brk = prctl_map.start_brk;
2055 mm->brk = prctl_map.brk;
2056 mm->start_stack = prctl_map.start_stack;
2057 mm->arg_start = prctl_map.arg_start;
2058 mm->arg_end = prctl_map.arg_end;
2059 mm->env_start = prctl_map.env_start;
2060 mm->env_end = prctl_map.env_end;
2061 spin_unlock(&mm->arg_lock);
2062
2063 /*
2064 * Note this update of @saved_auxv is lockless thus
2065 * if someone reads this member in procfs while we're
2066 * updating -- it may get partly updated results. It's
2067 * known and acceptable trade off: we leave it as is to
2068 * not introduce additional locks here making the kernel
2069 * more complex.
2070 */
2071 if (prctl_map.auxv_size)
2072 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2073
2074 mmap_read_unlock(mm);
2075 return 0;
2076}
2077#endif /* CONFIG_CHECKPOINT_RESTORE */
2078
2079static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2080 unsigned long len)
2081{
2082 /*
2083 * This doesn't move the auxiliary vector itself since it's pinned to
2084 * mm_struct, but it permits filling the vector with new values. It's
2085 * up to the caller to provide sane values here, otherwise userspace
2086 * tools which use this vector might be unhappy.
2087 */
2088 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2089
2090 if (len > sizeof(user_auxv))
2091 return -EINVAL;
2092
2093 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2094 return -EFAULT;
2095
2096 /* Make sure the last entry is always AT_NULL */
2097 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2098 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2099
2100 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2101
2102 task_lock(current);
2103 memcpy(mm->saved_auxv, user_auxv, len);
2104 task_unlock(current);
2105
2106 return 0;
2107}
2108
2109static int prctl_set_mm(int opt, unsigned long addr,
2110 unsigned long arg4, unsigned long arg5)
2111{
2112 struct mm_struct *mm = current->mm;
2113 struct prctl_mm_map prctl_map = {
2114 .auxv = NULL,
2115 .auxv_size = 0,
2116 .exe_fd = -1,
2117 };
2118 struct vm_area_struct *vma;
2119 int error;
2120
2121 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2122 opt != PR_SET_MM_MAP &&
2123 opt != PR_SET_MM_MAP_SIZE)))
2124 return -EINVAL;
2125
2126#ifdef CONFIG_CHECKPOINT_RESTORE
2127 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2128 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2129#endif
2130
2131 if (!capable(CAP_SYS_RESOURCE))
2132 return -EPERM;
2133
2134 if (opt == PR_SET_MM_EXE_FILE)
2135 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2136
2137 if (opt == PR_SET_MM_AUXV)
2138 return prctl_set_auxv(mm, addr, arg4);
2139
2140 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2141 return -EINVAL;
2142
2143 error = -EINVAL;
2144
2145 /*
2146 * arg_lock protects concurrent updates of arg boundaries, we need
2147 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2148 * validation.
2149 */
2150 mmap_read_lock(mm);
2151 vma = find_vma(mm, addr);
2152
2153 spin_lock(&mm->arg_lock);
2154 prctl_map.start_code = mm->start_code;
2155 prctl_map.end_code = mm->end_code;
2156 prctl_map.start_data = mm->start_data;
2157 prctl_map.end_data = mm->end_data;
2158 prctl_map.start_brk = mm->start_brk;
2159 prctl_map.brk = mm->brk;
2160 prctl_map.start_stack = mm->start_stack;
2161 prctl_map.arg_start = mm->arg_start;
2162 prctl_map.arg_end = mm->arg_end;
2163 prctl_map.env_start = mm->env_start;
2164 prctl_map.env_end = mm->env_end;
2165
2166 switch (opt) {
2167 case PR_SET_MM_START_CODE:
2168 prctl_map.start_code = addr;
2169 break;
2170 case PR_SET_MM_END_CODE:
2171 prctl_map.end_code = addr;
2172 break;
2173 case PR_SET_MM_START_DATA:
2174 prctl_map.start_data = addr;
2175 break;
2176 case PR_SET_MM_END_DATA:
2177 prctl_map.end_data = addr;
2178 break;
2179 case PR_SET_MM_START_STACK:
2180 prctl_map.start_stack = addr;
2181 break;
2182 case PR_SET_MM_START_BRK:
2183 prctl_map.start_brk = addr;
2184 break;
2185 case PR_SET_MM_BRK:
2186 prctl_map.brk = addr;
2187 break;
2188 case PR_SET_MM_ARG_START:
2189 prctl_map.arg_start = addr;
2190 break;
2191 case PR_SET_MM_ARG_END:
2192 prctl_map.arg_end = addr;
2193 break;
2194 case PR_SET_MM_ENV_START:
2195 prctl_map.env_start = addr;
2196 break;
2197 case PR_SET_MM_ENV_END:
2198 prctl_map.env_end = addr;
2199 break;
2200 default:
2201 goto out;
2202 }
2203
2204 error = validate_prctl_map_addr(&prctl_map);
2205 if (error)
2206 goto out;
2207
2208 switch (opt) {
2209 /*
2210 * If command line arguments and environment
2211 * are placed somewhere else on stack, we can
2212 * set them up here, ARG_START/END to setup
2213 * command line arguments and ENV_START/END
2214 * for environment.
2215 */
2216 case PR_SET_MM_START_STACK:
2217 case PR_SET_MM_ARG_START:
2218 case PR_SET_MM_ARG_END:
2219 case PR_SET_MM_ENV_START:
2220 case PR_SET_MM_ENV_END:
2221 if (!vma) {
2222 error = -EFAULT;
2223 goto out;
2224 }
2225 }
2226
2227 mm->start_code = prctl_map.start_code;
2228 mm->end_code = prctl_map.end_code;
2229 mm->start_data = prctl_map.start_data;
2230 mm->end_data = prctl_map.end_data;
2231 mm->start_brk = prctl_map.start_brk;
2232 mm->brk = prctl_map.brk;
2233 mm->start_stack = prctl_map.start_stack;
2234 mm->arg_start = prctl_map.arg_start;
2235 mm->arg_end = prctl_map.arg_end;
2236 mm->env_start = prctl_map.env_start;
2237 mm->env_end = prctl_map.env_end;
2238
2239 error = 0;
2240out:
2241 spin_unlock(&mm->arg_lock);
2242 mmap_read_unlock(mm);
2243 return error;
2244}
2245
2246#ifdef CONFIG_CHECKPOINT_RESTORE
2247static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2248{
2249 return put_user(me->clear_child_tid, tid_addr);
2250}
2251#else
2252static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2253{
2254 return -EINVAL;
2255}
2256#endif
2257
2258static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2259{
2260 /*
2261 * If task has has_child_subreaper - all its descendants
2262 * already have these flag too and new descendants will
2263 * inherit it on fork, skip them.
2264 *
2265 * If we've found child_reaper - skip descendants in
2266 * it's subtree as they will never get out pidns.
2267 */
2268 if (p->signal->has_child_subreaper ||
2269 is_child_reaper(task_pid(p)))
2270 return 0;
2271
2272 p->signal->has_child_subreaper = 1;
2273 return 1;
2274}
2275
2276int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2277{
2278 return -EINVAL;
2279}
2280
2281int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2282 unsigned long ctrl)
2283{
2284 return -EINVAL;
2285}
2286
2287#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2288
2289#ifdef CONFIG_ANON_VMA_NAME
2290
2291#define ANON_VMA_NAME_MAX_LEN 80
2292#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2293
2294static inline bool is_valid_name_char(char ch)
2295{
2296 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2297 return ch > 0x1f && ch < 0x7f &&
2298 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2299}
2300
2301static int prctl_set_vma(unsigned long opt, unsigned long addr,
2302 unsigned long size, unsigned long arg)
2303{
2304 struct mm_struct *mm = current->mm;
2305 const char __user *uname;
2306 struct anon_vma_name *anon_name = NULL;
2307 int error;
2308
2309 switch (opt) {
2310 case PR_SET_VMA_ANON_NAME:
2311 uname = (const char __user *)arg;
2312 if (uname) {
2313 char *name, *pch;
2314
2315 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2316 if (IS_ERR(name))
2317 return PTR_ERR(name);
2318
2319 for (pch = name; *pch != '\0'; pch++) {
2320 if (!is_valid_name_char(*pch)) {
2321 kfree(name);
2322 return -EINVAL;
2323 }
2324 }
2325 /* anon_vma has its own copy */
2326 anon_name = anon_vma_name_alloc(name);
2327 kfree(name);
2328 if (!anon_name)
2329 return -ENOMEM;
2330
2331 }
2332
2333 mmap_write_lock(mm);
2334 error = madvise_set_anon_name(mm, addr, size, anon_name);
2335 mmap_write_unlock(mm);
2336 anon_vma_name_put(anon_name);
2337 break;
2338 default:
2339 error = -EINVAL;
2340 }
2341
2342 return error;
2343}
2344
2345#else /* CONFIG_ANON_VMA_NAME */
2346static int prctl_set_vma(unsigned long opt, unsigned long start,
2347 unsigned long size, unsigned long arg)
2348{
2349 return -EINVAL;
2350}
2351#endif /* CONFIG_ANON_VMA_NAME */
2352
2353SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2354 unsigned long, arg4, unsigned long, arg5)
2355{
2356 struct task_struct *me = current;
2357 unsigned char comm[sizeof(me->comm)];
2358 long error;
2359
2360 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2361 if (error != -ENOSYS)
2362 return error;
2363
2364 error = 0;
2365 switch (option) {
2366 case PR_SET_PDEATHSIG:
2367 if (!valid_signal(arg2)) {
2368 error = -EINVAL;
2369 break;
2370 }
2371 me->pdeath_signal = arg2;
2372 break;
2373 case PR_GET_PDEATHSIG:
2374 error = put_user(me->pdeath_signal, (int __user *)arg2);
2375 break;
2376 case PR_GET_DUMPABLE:
2377 error = get_dumpable(me->mm);
2378 break;
2379 case PR_SET_DUMPABLE:
2380 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2381 error = -EINVAL;
2382 break;
2383 }
2384 set_dumpable(me->mm, arg2);
2385 break;
2386
2387 case PR_SET_UNALIGN:
2388 error = SET_UNALIGN_CTL(me, arg2);
2389 break;
2390 case PR_GET_UNALIGN:
2391 error = GET_UNALIGN_CTL(me, arg2);
2392 break;
2393 case PR_SET_FPEMU:
2394 error = SET_FPEMU_CTL(me, arg2);
2395 break;
2396 case PR_GET_FPEMU:
2397 error = GET_FPEMU_CTL(me, arg2);
2398 break;
2399 case PR_SET_FPEXC:
2400 error = SET_FPEXC_CTL(me, arg2);
2401 break;
2402 case PR_GET_FPEXC:
2403 error = GET_FPEXC_CTL(me, arg2);
2404 break;
2405 case PR_GET_TIMING:
2406 error = PR_TIMING_STATISTICAL;
2407 break;
2408 case PR_SET_TIMING:
2409 if (arg2 != PR_TIMING_STATISTICAL)
2410 error = -EINVAL;
2411 break;
2412 case PR_SET_NAME:
2413 comm[sizeof(me->comm) - 1] = 0;
2414 if (strncpy_from_user(comm, (char __user *)arg2,
2415 sizeof(me->comm) - 1) < 0)
2416 return -EFAULT;
2417 set_task_comm(me, comm);
2418 proc_comm_connector(me);
2419 break;
2420 case PR_GET_NAME:
2421 get_task_comm(comm, me);
2422 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2423 return -EFAULT;
2424 break;
2425 case PR_GET_ENDIAN:
2426 error = GET_ENDIAN(me, arg2);
2427 break;
2428 case PR_SET_ENDIAN:
2429 error = SET_ENDIAN(me, arg2);
2430 break;
2431 case PR_GET_SECCOMP:
2432 error = prctl_get_seccomp();
2433 break;
2434 case PR_SET_SECCOMP:
2435 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2436 break;
2437 case PR_GET_TSC:
2438 error = GET_TSC_CTL(arg2);
2439 break;
2440 case PR_SET_TSC:
2441 error = SET_TSC_CTL(arg2);
2442 break;
2443 case PR_TASK_PERF_EVENTS_DISABLE:
2444 error = perf_event_task_disable();
2445 break;
2446 case PR_TASK_PERF_EVENTS_ENABLE:
2447 error = perf_event_task_enable();
2448 break;
2449 case PR_GET_TIMERSLACK:
2450 if (current->timer_slack_ns > ULONG_MAX)
2451 error = ULONG_MAX;
2452 else
2453 error = current->timer_slack_ns;
2454 break;
2455 case PR_SET_TIMERSLACK:
2456 if (arg2 <= 0)
2457 current->timer_slack_ns =
2458 current->default_timer_slack_ns;
2459 else
2460 current->timer_slack_ns = arg2;
2461 break;
2462 case PR_MCE_KILL:
2463 if (arg4 | arg5)
2464 return -EINVAL;
2465 switch (arg2) {
2466 case PR_MCE_KILL_CLEAR:
2467 if (arg3 != 0)
2468 return -EINVAL;
2469 current->flags &= ~PF_MCE_PROCESS;
2470 break;
2471 case PR_MCE_KILL_SET:
2472 current->flags |= PF_MCE_PROCESS;
2473 if (arg3 == PR_MCE_KILL_EARLY)
2474 current->flags |= PF_MCE_EARLY;
2475 else if (arg3 == PR_MCE_KILL_LATE)
2476 current->flags &= ~PF_MCE_EARLY;
2477 else if (arg3 == PR_MCE_KILL_DEFAULT)
2478 current->flags &=
2479 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2480 else
2481 return -EINVAL;
2482 break;
2483 default:
2484 return -EINVAL;
2485 }
2486 break;
2487 case PR_MCE_KILL_GET:
2488 if (arg2 | arg3 | arg4 | arg5)
2489 return -EINVAL;
2490 if (current->flags & PF_MCE_PROCESS)
2491 error = (current->flags & PF_MCE_EARLY) ?
2492 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2493 else
2494 error = PR_MCE_KILL_DEFAULT;
2495 break;
2496 case PR_SET_MM:
2497 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2498 break;
2499 case PR_GET_TID_ADDRESS:
2500 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2501 break;
2502 case PR_SET_CHILD_SUBREAPER:
2503 me->signal->is_child_subreaper = !!arg2;
2504 if (!arg2)
2505 break;
2506
2507 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2508 break;
2509 case PR_GET_CHILD_SUBREAPER:
2510 error = put_user(me->signal->is_child_subreaper,
2511 (int __user *)arg2);
2512 break;
2513 case PR_SET_NO_NEW_PRIVS:
2514 if (arg2 != 1 || arg3 || arg4 || arg5)
2515 return -EINVAL;
2516
2517 task_set_no_new_privs(current);
2518 break;
2519 case PR_GET_NO_NEW_PRIVS:
2520 if (arg2 || arg3 || arg4 || arg5)
2521 return -EINVAL;
2522 return task_no_new_privs(current) ? 1 : 0;
2523 case PR_GET_THP_DISABLE:
2524 if (arg2 || arg3 || arg4 || arg5)
2525 return -EINVAL;
2526 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2527 break;
2528 case PR_SET_THP_DISABLE:
2529 if (arg3 || arg4 || arg5)
2530 return -EINVAL;
2531 if (mmap_write_lock_killable(me->mm))
2532 return -EINTR;
2533 if (arg2)
2534 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2535 else
2536 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2537 mmap_write_unlock(me->mm);
2538 break;
2539 case PR_MPX_ENABLE_MANAGEMENT:
2540 case PR_MPX_DISABLE_MANAGEMENT:
2541 /* No longer implemented: */
2542 return -EINVAL;
2543 case PR_SET_FP_MODE:
2544 error = SET_FP_MODE(me, arg2);
2545 break;
2546 case PR_GET_FP_MODE:
2547 error = GET_FP_MODE(me);
2548 break;
2549 case PR_SVE_SET_VL:
2550 error = SVE_SET_VL(arg2);
2551 break;
2552 case PR_SVE_GET_VL:
2553 error = SVE_GET_VL();
2554 break;
2555 case PR_SME_SET_VL:
2556 error = SME_SET_VL(arg2);
2557 break;
2558 case PR_SME_GET_VL:
2559 error = SME_GET_VL();
2560 break;
2561 case PR_GET_SPECULATION_CTRL:
2562 if (arg3 || arg4 || arg5)
2563 return -EINVAL;
2564 error = arch_prctl_spec_ctrl_get(me, arg2);
2565 break;
2566 case PR_SET_SPECULATION_CTRL:
2567 if (arg4 || arg5)
2568 return -EINVAL;
2569 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2570 break;
2571 case PR_PAC_RESET_KEYS:
2572 if (arg3 || arg4 || arg5)
2573 return -EINVAL;
2574 error = PAC_RESET_KEYS(me, arg2);
2575 break;
2576 case PR_PAC_SET_ENABLED_KEYS:
2577 if (arg4 || arg5)
2578 return -EINVAL;
2579 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2580 break;
2581 case PR_PAC_GET_ENABLED_KEYS:
2582 if (arg2 || arg3 || arg4 || arg5)
2583 return -EINVAL;
2584 error = PAC_GET_ENABLED_KEYS(me);
2585 break;
2586 case PR_SET_TAGGED_ADDR_CTRL:
2587 if (arg3 || arg4 || arg5)
2588 return -EINVAL;
2589 error = SET_TAGGED_ADDR_CTRL(arg2);
2590 break;
2591 case PR_GET_TAGGED_ADDR_CTRL:
2592 if (arg2 || arg3 || arg4 || arg5)
2593 return -EINVAL;
2594 error = GET_TAGGED_ADDR_CTRL();
2595 break;
2596 case PR_SET_IO_FLUSHER:
2597 if (!capable(CAP_SYS_RESOURCE))
2598 return -EPERM;
2599
2600 if (arg3 || arg4 || arg5)
2601 return -EINVAL;
2602
2603 if (arg2 == 1)
2604 current->flags |= PR_IO_FLUSHER;
2605 else if (!arg2)
2606 current->flags &= ~PR_IO_FLUSHER;
2607 else
2608 return -EINVAL;
2609 break;
2610 case PR_GET_IO_FLUSHER:
2611 if (!capable(CAP_SYS_RESOURCE))
2612 return -EPERM;
2613
2614 if (arg2 || arg3 || arg4 || arg5)
2615 return -EINVAL;
2616
2617 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2618 break;
2619 case PR_SET_SYSCALL_USER_DISPATCH:
2620 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2621 (char __user *) arg5);
2622 break;
2623#ifdef CONFIG_SCHED_CORE
2624 case PR_SCHED_CORE:
2625 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2626 break;
2627#endif
2628 case PR_SET_VMA:
2629 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2630 break;
2631 default:
2632 error = -EINVAL;
2633 break;
2634 }
2635 return error;
2636}
2637
2638SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2639 struct getcpu_cache __user *, unused)
2640{
2641 int err = 0;
2642 int cpu = raw_smp_processor_id();
2643
2644 if (cpup)
2645 err |= put_user(cpu, cpup);
2646 if (nodep)
2647 err |= put_user(cpu_to_node(cpu), nodep);
2648 return err ? -EFAULT : 0;
2649}
2650
2651/**
2652 * do_sysinfo - fill in sysinfo struct
2653 * @info: pointer to buffer to fill
2654 */
2655static int do_sysinfo(struct sysinfo *info)
2656{
2657 unsigned long mem_total, sav_total;
2658 unsigned int mem_unit, bitcount;
2659 struct timespec64 tp;
2660
2661 memset(info, 0, sizeof(struct sysinfo));
2662
2663 ktime_get_boottime_ts64(&tp);
2664 timens_add_boottime(&tp);
2665 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2666
2667 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2668
2669 info->procs = nr_threads;
2670
2671 si_meminfo(info);
2672 si_swapinfo(info);
2673
2674 /*
2675 * If the sum of all the available memory (i.e. ram + swap)
2676 * is less than can be stored in a 32 bit unsigned long then
2677 * we can be binary compatible with 2.2.x kernels. If not,
2678 * well, in that case 2.2.x was broken anyways...
2679 *
2680 * -Erik Andersen <andersee@debian.org>
2681 */
2682
2683 mem_total = info->totalram + info->totalswap;
2684 if (mem_total < info->totalram || mem_total < info->totalswap)
2685 goto out;
2686 bitcount = 0;
2687 mem_unit = info->mem_unit;
2688 while (mem_unit > 1) {
2689 bitcount++;
2690 mem_unit >>= 1;
2691 sav_total = mem_total;
2692 mem_total <<= 1;
2693 if (mem_total < sav_total)
2694 goto out;
2695 }
2696
2697 /*
2698 * If mem_total did not overflow, multiply all memory values by
2699 * info->mem_unit and set it to 1. This leaves things compatible
2700 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2701 * kernels...
2702 */
2703
2704 info->mem_unit = 1;
2705 info->totalram <<= bitcount;
2706 info->freeram <<= bitcount;
2707 info->sharedram <<= bitcount;
2708 info->bufferram <<= bitcount;
2709 info->totalswap <<= bitcount;
2710 info->freeswap <<= bitcount;
2711 info->totalhigh <<= bitcount;
2712 info->freehigh <<= bitcount;
2713
2714out:
2715 return 0;
2716}
2717
2718SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2719{
2720 struct sysinfo val;
2721
2722 do_sysinfo(&val);
2723
2724 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2725 return -EFAULT;
2726
2727 return 0;
2728}
2729
2730#ifdef CONFIG_COMPAT
2731struct compat_sysinfo {
2732 s32 uptime;
2733 u32 loads[3];
2734 u32 totalram;
2735 u32 freeram;
2736 u32 sharedram;
2737 u32 bufferram;
2738 u32 totalswap;
2739 u32 freeswap;
2740 u16 procs;
2741 u16 pad;
2742 u32 totalhigh;
2743 u32 freehigh;
2744 u32 mem_unit;
2745 char _f[20-2*sizeof(u32)-sizeof(int)];
2746};
2747
2748COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2749{
2750 struct sysinfo s;
2751 struct compat_sysinfo s_32;
2752
2753 do_sysinfo(&s);
2754
2755 /* Check to see if any memory value is too large for 32-bit and scale
2756 * down if needed
2757 */
2758 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2759 int bitcount = 0;
2760
2761 while (s.mem_unit < PAGE_SIZE) {
2762 s.mem_unit <<= 1;
2763 bitcount++;
2764 }
2765
2766 s.totalram >>= bitcount;
2767 s.freeram >>= bitcount;
2768 s.sharedram >>= bitcount;
2769 s.bufferram >>= bitcount;
2770 s.totalswap >>= bitcount;
2771 s.freeswap >>= bitcount;
2772 s.totalhigh >>= bitcount;
2773 s.freehigh >>= bitcount;
2774 }
2775
2776 memset(&s_32, 0, sizeof(s_32));
2777 s_32.uptime = s.uptime;
2778 s_32.loads[0] = s.loads[0];
2779 s_32.loads[1] = s.loads[1];
2780 s_32.loads[2] = s.loads[2];
2781 s_32.totalram = s.totalram;
2782 s_32.freeram = s.freeram;
2783 s_32.sharedram = s.sharedram;
2784 s_32.bufferram = s.bufferram;
2785 s_32.totalswap = s.totalswap;
2786 s_32.freeswap = s.freeswap;
2787 s_32.procs = s.procs;
2788 s_32.totalhigh = s.totalhigh;
2789 s_32.freehigh = s.freehigh;
2790 s_32.mem_unit = s.mem_unit;
2791 if (copy_to_user(info, &s_32, sizeof(s_32)))
2792 return -EFAULT;
2793 return 0;
2794}
2795#endif /* CONFIG_COMPAT */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/ksm.h>
19#include <linux/perf_event.h>
20#include <linux/resource.h>
21#include <linux/kernel.h>
22#include <linux/workqueue.h>
23#include <linux/capability.h>
24#include <linux/device.h>
25#include <linux/key.h>
26#include <linux/times.h>
27#include <linux/posix-timers.h>
28#include <linux/security.h>
29#include <linux/random.h>
30#include <linux/suspend.h>
31#include <linux/tty.h>
32#include <linux/signal.h>
33#include <linux/cn_proc.h>
34#include <linux/getcpu.h>
35#include <linux/task_io_accounting_ops.h>
36#include <linux/seccomp.h>
37#include <linux/cpu.h>
38#include <linux/personality.h>
39#include <linux/ptrace.h>
40#include <linux/fs_struct.h>
41#include <linux/file.h>
42#include <linux/mount.h>
43#include <linux/gfp.h>
44#include <linux/syscore_ops.h>
45#include <linux/version.h>
46#include <linux/ctype.h>
47#include <linux/syscall_user_dispatch.h>
48
49#include <linux/compat.h>
50#include <linux/syscalls.h>
51#include <linux/kprobes.h>
52#include <linux/user_namespace.h>
53#include <linux/time_namespace.h>
54#include <linux/binfmts.h>
55
56#include <linux/sched.h>
57#include <linux/sched/autogroup.h>
58#include <linux/sched/loadavg.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/mm.h>
61#include <linux/sched/coredump.h>
62#include <linux/sched/task.h>
63#include <linux/sched/cputime.h>
64#include <linux/rcupdate.h>
65#include <linux/uidgid.h>
66#include <linux/cred.h>
67
68#include <linux/nospec.h>
69
70#include <linux/kmsg_dump.h>
71/* Move somewhere else to avoid recompiling? */
72#include <generated/utsrelease.h>
73
74#include <linux/uaccess.h>
75#include <asm/io.h>
76#include <asm/unistd.h>
77
78#include "uid16.h"
79
80#ifndef SET_UNALIGN_CTL
81# define SET_UNALIGN_CTL(a, b) (-EINVAL)
82#endif
83#ifndef GET_UNALIGN_CTL
84# define GET_UNALIGN_CTL(a, b) (-EINVAL)
85#endif
86#ifndef SET_FPEMU_CTL
87# define SET_FPEMU_CTL(a, b) (-EINVAL)
88#endif
89#ifndef GET_FPEMU_CTL
90# define GET_FPEMU_CTL(a, b) (-EINVAL)
91#endif
92#ifndef SET_FPEXC_CTL
93# define SET_FPEXC_CTL(a, b) (-EINVAL)
94#endif
95#ifndef GET_FPEXC_CTL
96# define GET_FPEXC_CTL(a, b) (-EINVAL)
97#endif
98#ifndef GET_ENDIAN
99# define GET_ENDIAN(a, b) (-EINVAL)
100#endif
101#ifndef SET_ENDIAN
102# define SET_ENDIAN(a, b) (-EINVAL)
103#endif
104#ifndef GET_TSC_CTL
105# define GET_TSC_CTL(a) (-EINVAL)
106#endif
107#ifndef SET_TSC_CTL
108# define SET_TSC_CTL(a) (-EINVAL)
109#endif
110#ifndef GET_FP_MODE
111# define GET_FP_MODE(a) (-EINVAL)
112#endif
113#ifndef SET_FP_MODE
114# define SET_FP_MODE(a,b) (-EINVAL)
115#endif
116#ifndef SVE_SET_VL
117# define SVE_SET_VL(a) (-EINVAL)
118#endif
119#ifndef SVE_GET_VL
120# define SVE_GET_VL() (-EINVAL)
121#endif
122#ifndef SME_SET_VL
123# define SME_SET_VL(a) (-EINVAL)
124#endif
125#ifndef SME_GET_VL
126# define SME_GET_VL() (-EINVAL)
127#endif
128#ifndef PAC_RESET_KEYS
129# define PAC_RESET_KEYS(a, b) (-EINVAL)
130#endif
131#ifndef PAC_SET_ENABLED_KEYS
132# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133#endif
134#ifndef PAC_GET_ENABLED_KEYS
135# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136#endif
137#ifndef SET_TAGGED_ADDR_CTRL
138# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139#endif
140#ifndef GET_TAGGED_ADDR_CTRL
141# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
142#endif
143#ifndef RISCV_V_SET_CONTROL
144# define RISCV_V_SET_CONTROL(a) (-EINVAL)
145#endif
146#ifndef RISCV_V_GET_CONTROL
147# define RISCV_V_GET_CONTROL() (-EINVAL)
148#endif
149
150/*
151 * this is where the system-wide overflow UID and GID are defined, for
152 * architectures that now have 32-bit UID/GID but didn't in the past
153 */
154
155int overflowuid = DEFAULT_OVERFLOWUID;
156int overflowgid = DEFAULT_OVERFLOWGID;
157
158EXPORT_SYMBOL(overflowuid);
159EXPORT_SYMBOL(overflowgid);
160
161/*
162 * the same as above, but for filesystems which can only store a 16-bit
163 * UID and GID. as such, this is needed on all architectures
164 */
165
166int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
168
169EXPORT_SYMBOL(fs_overflowuid);
170EXPORT_SYMBOL(fs_overflowgid);
171
172/*
173 * Returns true if current's euid is same as p's uid or euid,
174 * or has CAP_SYS_NICE to p's user_ns.
175 *
176 * Called with rcu_read_lock, creds are safe
177 */
178static bool set_one_prio_perm(struct task_struct *p)
179{
180 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
181
182 if (uid_eq(pcred->uid, cred->euid) ||
183 uid_eq(pcred->euid, cred->euid))
184 return true;
185 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
186 return true;
187 return false;
188}
189
190/*
191 * set the priority of a task
192 * - the caller must hold the RCU read lock
193 */
194static int set_one_prio(struct task_struct *p, int niceval, int error)
195{
196 int no_nice;
197
198 if (!set_one_prio_perm(p)) {
199 error = -EPERM;
200 goto out;
201 }
202 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
203 error = -EACCES;
204 goto out;
205 }
206 no_nice = security_task_setnice(p, niceval);
207 if (no_nice) {
208 error = no_nice;
209 goto out;
210 }
211 if (error == -ESRCH)
212 error = 0;
213 set_user_nice(p, niceval);
214out:
215 return error;
216}
217
218SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
219{
220 struct task_struct *g, *p;
221 struct user_struct *user;
222 const struct cred *cred = current_cred();
223 int error = -EINVAL;
224 struct pid *pgrp;
225 kuid_t uid;
226
227 if (which > PRIO_USER || which < PRIO_PROCESS)
228 goto out;
229
230 /* normalize: avoid signed division (rounding problems) */
231 error = -ESRCH;
232 if (niceval < MIN_NICE)
233 niceval = MIN_NICE;
234 if (niceval > MAX_NICE)
235 niceval = MAX_NICE;
236
237 rcu_read_lock();
238 switch (which) {
239 case PRIO_PROCESS:
240 if (who)
241 p = find_task_by_vpid(who);
242 else
243 p = current;
244 if (p)
245 error = set_one_prio(p, niceval, error);
246 break;
247 case PRIO_PGRP:
248 if (who)
249 pgrp = find_vpid(who);
250 else
251 pgrp = task_pgrp(current);
252 read_lock(&tasklist_lock);
253 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254 error = set_one_prio(p, niceval, error);
255 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256 read_unlock(&tasklist_lock);
257 break;
258 case PRIO_USER:
259 uid = make_kuid(cred->user_ns, who);
260 user = cred->user;
261 if (!who)
262 uid = cred->uid;
263 else if (!uid_eq(uid, cred->uid)) {
264 user = find_user(uid);
265 if (!user)
266 goto out_unlock; /* No processes for this user */
267 }
268 for_each_process_thread(g, p) {
269 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270 error = set_one_prio(p, niceval, error);
271 }
272 if (!uid_eq(uid, cred->uid))
273 free_uid(user); /* For find_user() */
274 break;
275 }
276out_unlock:
277 rcu_read_unlock();
278out:
279 return error;
280}
281
282/*
283 * Ugh. To avoid negative return values, "getpriority()" will
284 * not return the normal nice-value, but a negated value that
285 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286 * to stay compatible.
287 */
288SYSCALL_DEFINE2(getpriority, int, which, int, who)
289{
290 struct task_struct *g, *p;
291 struct user_struct *user;
292 const struct cred *cred = current_cred();
293 long niceval, retval = -ESRCH;
294 struct pid *pgrp;
295 kuid_t uid;
296
297 if (which > PRIO_USER || which < PRIO_PROCESS)
298 return -EINVAL;
299
300 rcu_read_lock();
301 switch (which) {
302 case PRIO_PROCESS:
303 if (who)
304 p = find_task_by_vpid(who);
305 else
306 p = current;
307 if (p) {
308 niceval = nice_to_rlimit(task_nice(p));
309 if (niceval > retval)
310 retval = niceval;
311 }
312 break;
313 case PRIO_PGRP:
314 if (who)
315 pgrp = find_vpid(who);
316 else
317 pgrp = task_pgrp(current);
318 read_lock(&tasklist_lock);
319 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320 niceval = nice_to_rlimit(task_nice(p));
321 if (niceval > retval)
322 retval = niceval;
323 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324 read_unlock(&tasklist_lock);
325 break;
326 case PRIO_USER:
327 uid = make_kuid(cred->user_ns, who);
328 user = cred->user;
329 if (!who)
330 uid = cred->uid;
331 else if (!uid_eq(uid, cred->uid)) {
332 user = find_user(uid);
333 if (!user)
334 goto out_unlock; /* No processes for this user */
335 }
336 for_each_process_thread(g, p) {
337 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338 niceval = nice_to_rlimit(task_nice(p));
339 if (niceval > retval)
340 retval = niceval;
341 }
342 }
343 if (!uid_eq(uid, cred->uid))
344 free_uid(user); /* for find_user() */
345 break;
346 }
347out_unlock:
348 rcu_read_unlock();
349
350 return retval;
351}
352
353/*
354 * Unprivileged users may change the real gid to the effective gid
355 * or vice versa. (BSD-style)
356 *
357 * If you set the real gid at all, or set the effective gid to a value not
358 * equal to the real gid, then the saved gid is set to the new effective gid.
359 *
360 * This makes it possible for a setgid program to completely drop its
361 * privileges, which is often a useful assertion to make when you are doing
362 * a security audit over a program.
363 *
364 * The general idea is that a program which uses just setregid() will be
365 * 100% compatible with BSD. A program which uses just setgid() will be
366 * 100% compatible with POSIX with saved IDs.
367 *
368 * SMP: There are not races, the GIDs are checked only by filesystem
369 * operations (as far as semantic preservation is concerned).
370 */
371#ifdef CONFIG_MULTIUSER
372long __sys_setregid(gid_t rgid, gid_t egid)
373{
374 struct user_namespace *ns = current_user_ns();
375 const struct cred *old;
376 struct cred *new;
377 int retval;
378 kgid_t krgid, kegid;
379
380 krgid = make_kgid(ns, rgid);
381 kegid = make_kgid(ns, egid);
382
383 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
384 return -EINVAL;
385 if ((egid != (gid_t) -1) && !gid_valid(kegid))
386 return -EINVAL;
387
388 new = prepare_creds();
389 if (!new)
390 return -ENOMEM;
391 old = current_cred();
392
393 retval = -EPERM;
394 if (rgid != (gid_t) -1) {
395 if (gid_eq(old->gid, krgid) ||
396 gid_eq(old->egid, krgid) ||
397 ns_capable_setid(old->user_ns, CAP_SETGID))
398 new->gid = krgid;
399 else
400 goto error;
401 }
402 if (egid != (gid_t) -1) {
403 if (gid_eq(old->gid, kegid) ||
404 gid_eq(old->egid, kegid) ||
405 gid_eq(old->sgid, kegid) ||
406 ns_capable_setid(old->user_ns, CAP_SETGID))
407 new->egid = kegid;
408 else
409 goto error;
410 }
411
412 if (rgid != (gid_t) -1 ||
413 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414 new->sgid = new->egid;
415 new->fsgid = new->egid;
416
417 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
418 if (retval < 0)
419 goto error;
420
421 return commit_creds(new);
422
423error:
424 abort_creds(new);
425 return retval;
426}
427
428SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
429{
430 return __sys_setregid(rgid, egid);
431}
432
433/*
434 * setgid() is implemented like SysV w/ SAVED_IDS
435 *
436 * SMP: Same implicit races as above.
437 */
438long __sys_setgid(gid_t gid)
439{
440 struct user_namespace *ns = current_user_ns();
441 const struct cred *old;
442 struct cred *new;
443 int retval;
444 kgid_t kgid;
445
446 kgid = make_kgid(ns, gid);
447 if (!gid_valid(kgid))
448 return -EINVAL;
449
450 new = prepare_creds();
451 if (!new)
452 return -ENOMEM;
453 old = current_cred();
454
455 retval = -EPERM;
456 if (ns_capable_setid(old->user_ns, CAP_SETGID))
457 new->gid = new->egid = new->sgid = new->fsgid = kgid;
458 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459 new->egid = new->fsgid = kgid;
460 else
461 goto error;
462
463 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
464 if (retval < 0)
465 goto error;
466
467 return commit_creds(new);
468
469error:
470 abort_creds(new);
471 return retval;
472}
473
474SYSCALL_DEFINE1(setgid, gid_t, gid)
475{
476 return __sys_setgid(gid);
477}
478
479/*
480 * change the user struct in a credentials set to match the new UID
481 */
482static int set_user(struct cred *new)
483{
484 struct user_struct *new_user;
485
486 new_user = alloc_uid(new->uid);
487 if (!new_user)
488 return -EAGAIN;
489
490 free_uid(new->user);
491 new->user = new_user;
492 return 0;
493}
494
495static void flag_nproc_exceeded(struct cred *new)
496{
497 if (new->ucounts == current_ucounts())
498 return;
499
500 /*
501 * We don't fail in case of NPROC limit excess here because too many
502 * poorly written programs don't check set*uid() return code, assuming
503 * it never fails if called by root. We may still enforce NPROC limit
504 * for programs doing set*uid()+execve() by harmlessly deferring the
505 * failure to the execve() stage.
506 */
507 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508 new->user != INIT_USER)
509 current->flags |= PF_NPROC_EXCEEDED;
510 else
511 current->flags &= ~PF_NPROC_EXCEEDED;
512}
513
514/*
515 * Unprivileged users may change the real uid to the effective uid
516 * or vice versa. (BSD-style)
517 *
518 * If you set the real uid at all, or set the effective uid to a value not
519 * equal to the real uid, then the saved uid is set to the new effective uid.
520 *
521 * This makes it possible for a setuid program to completely drop its
522 * privileges, which is often a useful assertion to make when you are doing
523 * a security audit over a program.
524 *
525 * The general idea is that a program which uses just setreuid() will be
526 * 100% compatible with BSD. A program which uses just setuid() will be
527 * 100% compatible with POSIX with saved IDs.
528 */
529long __sys_setreuid(uid_t ruid, uid_t euid)
530{
531 struct user_namespace *ns = current_user_ns();
532 const struct cred *old;
533 struct cred *new;
534 int retval;
535 kuid_t kruid, keuid;
536
537 kruid = make_kuid(ns, ruid);
538 keuid = make_kuid(ns, euid);
539
540 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
541 return -EINVAL;
542 if ((euid != (uid_t) -1) && !uid_valid(keuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ruid != (uid_t) -1) {
552 new->uid = kruid;
553 if (!uid_eq(old->uid, kruid) &&
554 !uid_eq(old->euid, kruid) &&
555 !ns_capable_setid(old->user_ns, CAP_SETUID))
556 goto error;
557 }
558
559 if (euid != (uid_t) -1) {
560 new->euid = keuid;
561 if (!uid_eq(old->uid, keuid) &&
562 !uid_eq(old->euid, keuid) &&
563 !uid_eq(old->suid, keuid) &&
564 !ns_capable_setid(old->user_ns, CAP_SETUID))
565 goto error;
566 }
567
568 if (!uid_eq(new->uid, old->uid)) {
569 retval = set_user(new);
570 if (retval < 0)
571 goto error;
572 }
573 if (ruid != (uid_t) -1 ||
574 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575 new->suid = new->euid;
576 new->fsuid = new->euid;
577
578 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
579 if (retval < 0)
580 goto error;
581
582 retval = set_cred_ucounts(new);
583 if (retval < 0)
584 goto error;
585
586 flag_nproc_exceeded(new);
587 return commit_creds(new);
588
589error:
590 abort_creds(new);
591 return retval;
592}
593
594SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595{
596 return __sys_setreuid(ruid, euid);
597}
598
599/*
600 * setuid() is implemented like SysV with SAVED_IDS
601 *
602 * Note that SAVED_ID's is deficient in that a setuid root program
603 * like sendmail, for example, cannot set its uid to be a normal
604 * user and then switch back, because if you're root, setuid() sets
605 * the saved uid too. If you don't like this, blame the bright people
606 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
607 * will allow a root program to temporarily drop privileges and be able to
608 * regain them by swapping the real and effective uid.
609 */
610long __sys_setuid(uid_t uid)
611{
612 struct user_namespace *ns = current_user_ns();
613 const struct cred *old;
614 struct cred *new;
615 int retval;
616 kuid_t kuid;
617
618 kuid = make_kuid(ns, uid);
619 if (!uid_valid(kuid))
620 return -EINVAL;
621
622 new = prepare_creds();
623 if (!new)
624 return -ENOMEM;
625 old = current_cred();
626
627 retval = -EPERM;
628 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629 new->suid = new->uid = kuid;
630 if (!uid_eq(kuid, old->uid)) {
631 retval = set_user(new);
632 if (retval < 0)
633 goto error;
634 }
635 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
636 goto error;
637 }
638
639 new->fsuid = new->euid = kuid;
640
641 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
642 if (retval < 0)
643 goto error;
644
645 retval = set_cred_ucounts(new);
646 if (retval < 0)
647 goto error;
648
649 flag_nproc_exceeded(new);
650 return commit_creds(new);
651
652error:
653 abort_creds(new);
654 return retval;
655}
656
657SYSCALL_DEFINE1(setuid, uid_t, uid)
658{
659 return __sys_setuid(uid);
660}
661
662
663/*
664 * This function implements a generic ability to update ruid, euid,
665 * and suid. This allows you to implement the 4.4 compatible seteuid().
666 */
667long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
668{
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kuid_t kruid, keuid, ksuid;
674 bool ruid_new, euid_new, suid_new;
675
676 kruid = make_kuid(ns, ruid);
677 keuid = make_kuid(ns, euid);
678 ksuid = make_kuid(ns, suid);
679
680 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
681 return -EINVAL;
682
683 if ((euid != (uid_t) -1) && !uid_valid(keuid))
684 return -EINVAL;
685
686 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
687 return -EINVAL;
688
689 old = current_cred();
690
691 /* check for no-op */
692 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694 uid_eq(keuid, old->fsuid))) &&
695 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
696 return 0;
697
698 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
699 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
701 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
703 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704 if ((ruid_new || euid_new || suid_new) &&
705 !ns_capable_setid(old->user_ns, CAP_SETUID))
706 return -EPERM;
707
708 new = prepare_creds();
709 if (!new)
710 return -ENOMEM;
711
712 if (ruid != (uid_t) -1) {
713 new->uid = kruid;
714 if (!uid_eq(kruid, old->uid)) {
715 retval = set_user(new);
716 if (retval < 0)
717 goto error;
718 }
719 }
720 if (euid != (uid_t) -1)
721 new->euid = keuid;
722 if (suid != (uid_t) -1)
723 new->suid = ksuid;
724 new->fsuid = new->euid;
725
726 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
727 if (retval < 0)
728 goto error;
729
730 retval = set_cred_ucounts(new);
731 if (retval < 0)
732 goto error;
733
734 flag_nproc_exceeded(new);
735 return commit_creds(new);
736
737error:
738 abort_creds(new);
739 return retval;
740}
741
742SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
743{
744 return __sys_setresuid(ruid, euid, suid);
745}
746
747SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
748{
749 const struct cred *cred = current_cred();
750 int retval;
751 uid_t ruid, euid, suid;
752
753 ruid = from_kuid_munged(cred->user_ns, cred->uid);
754 euid = from_kuid_munged(cred->user_ns, cred->euid);
755 suid = from_kuid_munged(cred->user_ns, cred->suid);
756
757 retval = put_user(ruid, ruidp);
758 if (!retval) {
759 retval = put_user(euid, euidp);
760 if (!retval)
761 return put_user(suid, suidp);
762 }
763 return retval;
764}
765
766/*
767 * Same as above, but for rgid, egid, sgid.
768 */
769long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
770{
771 struct user_namespace *ns = current_user_ns();
772 const struct cred *old;
773 struct cred *new;
774 int retval;
775 kgid_t krgid, kegid, ksgid;
776 bool rgid_new, egid_new, sgid_new;
777
778 krgid = make_kgid(ns, rgid);
779 kegid = make_kgid(ns, egid);
780 ksgid = make_kgid(ns, sgid);
781
782 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
783 return -EINVAL;
784 if ((egid != (gid_t) -1) && !gid_valid(kegid))
785 return -EINVAL;
786 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
787 return -EINVAL;
788
789 old = current_cred();
790
791 /* check for no-op */
792 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794 gid_eq(kegid, old->fsgid))) &&
795 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
796 return 0;
797
798 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
799 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
801 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
803 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804 if ((rgid_new || egid_new || sgid_new) &&
805 !ns_capable_setid(old->user_ns, CAP_SETGID))
806 return -EPERM;
807
808 new = prepare_creds();
809 if (!new)
810 return -ENOMEM;
811
812 if (rgid != (gid_t) -1)
813 new->gid = krgid;
814 if (egid != (gid_t) -1)
815 new->egid = kegid;
816 if (sgid != (gid_t) -1)
817 new->sgid = ksgid;
818 new->fsgid = new->egid;
819
820 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
821 if (retval < 0)
822 goto error;
823
824 return commit_creds(new);
825
826error:
827 abort_creds(new);
828 return retval;
829}
830
831SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
832{
833 return __sys_setresgid(rgid, egid, sgid);
834}
835
836SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
837{
838 const struct cred *cred = current_cred();
839 int retval;
840 gid_t rgid, egid, sgid;
841
842 rgid = from_kgid_munged(cred->user_ns, cred->gid);
843 egid = from_kgid_munged(cred->user_ns, cred->egid);
844 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
845
846 retval = put_user(rgid, rgidp);
847 if (!retval) {
848 retval = put_user(egid, egidp);
849 if (!retval)
850 retval = put_user(sgid, sgidp);
851 }
852
853 return retval;
854}
855
856
857/*
858 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859 * is used for "access()" and for the NFS daemon (letting nfsd stay at
860 * whatever uid it wants to). It normally shadows "euid", except when
861 * explicitly set by setfsuid() or for access..
862 */
863long __sys_setfsuid(uid_t uid)
864{
865 const struct cred *old;
866 struct cred *new;
867 uid_t old_fsuid;
868 kuid_t kuid;
869
870 old = current_cred();
871 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
872
873 kuid = make_kuid(old->user_ns, uid);
874 if (!uid_valid(kuid))
875 return old_fsuid;
876
877 new = prepare_creds();
878 if (!new)
879 return old_fsuid;
880
881 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
882 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883 ns_capable_setid(old->user_ns, CAP_SETUID)) {
884 if (!uid_eq(kuid, old->fsuid)) {
885 new->fsuid = kuid;
886 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
887 goto change_okay;
888 }
889 }
890
891 abort_creds(new);
892 return old_fsuid;
893
894change_okay:
895 commit_creds(new);
896 return old_fsuid;
897}
898
899SYSCALL_DEFINE1(setfsuid, uid_t, uid)
900{
901 return __sys_setfsuid(uid);
902}
903
904/*
905 * Samma på svenska..
906 */
907long __sys_setfsgid(gid_t gid)
908{
909 const struct cred *old;
910 struct cred *new;
911 gid_t old_fsgid;
912 kgid_t kgid;
913
914 old = current_cred();
915 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
916
917 kgid = make_kgid(old->user_ns, gid);
918 if (!gid_valid(kgid))
919 return old_fsgid;
920
921 new = prepare_creds();
922 if (!new)
923 return old_fsgid;
924
925 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
926 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927 ns_capable_setid(old->user_ns, CAP_SETGID)) {
928 if (!gid_eq(kgid, old->fsgid)) {
929 new->fsgid = kgid;
930 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
931 goto change_okay;
932 }
933 }
934
935 abort_creds(new);
936 return old_fsgid;
937
938change_okay:
939 commit_creds(new);
940 return old_fsgid;
941}
942
943SYSCALL_DEFINE1(setfsgid, gid_t, gid)
944{
945 return __sys_setfsgid(gid);
946}
947#endif /* CONFIG_MULTIUSER */
948
949/**
950 * sys_getpid - return the thread group id of the current process
951 *
952 * Note, despite the name, this returns the tgid not the pid. The tgid and
953 * the pid are identical unless CLONE_THREAD was specified on clone() in
954 * which case the tgid is the same in all threads of the same group.
955 *
956 * This is SMP safe as current->tgid does not change.
957 */
958SYSCALL_DEFINE0(getpid)
959{
960 return task_tgid_vnr(current);
961}
962
963/* Thread ID - the internal kernel "pid" */
964SYSCALL_DEFINE0(gettid)
965{
966 return task_pid_vnr(current);
967}
968
969/*
970 * Accessing ->real_parent is not SMP-safe, it could
971 * change from under us. However, we can use a stale
972 * value of ->real_parent under rcu_read_lock(), see
973 * release_task()->call_rcu(delayed_put_task_struct).
974 */
975SYSCALL_DEFINE0(getppid)
976{
977 int pid;
978
979 rcu_read_lock();
980 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
981 rcu_read_unlock();
982
983 return pid;
984}
985
986SYSCALL_DEFINE0(getuid)
987{
988 /* Only we change this so SMP safe */
989 return from_kuid_munged(current_user_ns(), current_uid());
990}
991
992SYSCALL_DEFINE0(geteuid)
993{
994 /* Only we change this so SMP safe */
995 return from_kuid_munged(current_user_ns(), current_euid());
996}
997
998SYSCALL_DEFINE0(getgid)
999{
1000 /* Only we change this so SMP safe */
1001 return from_kgid_munged(current_user_ns(), current_gid());
1002}
1003
1004SYSCALL_DEFINE0(getegid)
1005{
1006 /* Only we change this so SMP safe */
1007 return from_kgid_munged(current_user_ns(), current_egid());
1008}
1009
1010static void do_sys_times(struct tms *tms)
1011{
1012 u64 tgutime, tgstime, cutime, cstime;
1013
1014 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015 cutime = current->signal->cutime;
1016 cstime = current->signal->cstime;
1017 tms->tms_utime = nsec_to_clock_t(tgutime);
1018 tms->tms_stime = nsec_to_clock_t(tgstime);
1019 tms->tms_cutime = nsec_to_clock_t(cutime);
1020 tms->tms_cstime = nsec_to_clock_t(cstime);
1021}
1022
1023SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024{
1025 if (tbuf) {
1026 struct tms tmp;
1027
1028 do_sys_times(&tmp);
1029 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030 return -EFAULT;
1031 }
1032 force_successful_syscall_return();
1033 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034}
1035
1036#ifdef CONFIG_COMPAT
1037static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038{
1039 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040}
1041
1042COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043{
1044 if (tbuf) {
1045 struct tms tms;
1046 struct compat_tms tmp;
1047
1048 do_sys_times(&tms);
1049 /* Convert our struct tms to the compat version. */
1050 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055 return -EFAULT;
1056 }
1057 force_successful_syscall_return();
1058 return compat_jiffies_to_clock_t(jiffies);
1059}
1060#endif
1061
1062/*
1063 * This needs some heavy checking ...
1064 * I just haven't the stomach for it. I also don't fully
1065 * understand sessions/pgrp etc. Let somebody who does explain it.
1066 *
1067 * OK, I think I have the protection semantics right.... this is really
1068 * only important on a multi-user system anyway, to make sure one user
1069 * can't send a signal to a process owned by another. -TYT, 12/12/91
1070 *
1071 * !PF_FORKNOEXEC check to conform completely to POSIX.
1072 */
1073SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074{
1075 struct task_struct *p;
1076 struct task_struct *group_leader = current->group_leader;
1077 struct pid *pgrp;
1078 int err;
1079
1080 if (!pid)
1081 pid = task_pid_vnr(group_leader);
1082 if (!pgid)
1083 pgid = pid;
1084 if (pgid < 0)
1085 return -EINVAL;
1086 rcu_read_lock();
1087
1088 /* From this point forward we keep holding onto the tasklist lock
1089 * so that our parent does not change from under us. -DaveM
1090 */
1091 write_lock_irq(&tasklist_lock);
1092
1093 err = -ESRCH;
1094 p = find_task_by_vpid(pid);
1095 if (!p)
1096 goto out;
1097
1098 err = -EINVAL;
1099 if (!thread_group_leader(p))
1100 goto out;
1101
1102 if (same_thread_group(p->real_parent, group_leader)) {
1103 err = -EPERM;
1104 if (task_session(p) != task_session(group_leader))
1105 goto out;
1106 err = -EACCES;
1107 if (!(p->flags & PF_FORKNOEXEC))
1108 goto out;
1109 } else {
1110 err = -ESRCH;
1111 if (p != group_leader)
1112 goto out;
1113 }
1114
1115 err = -EPERM;
1116 if (p->signal->leader)
1117 goto out;
1118
1119 pgrp = task_pid(p);
1120 if (pgid != pid) {
1121 struct task_struct *g;
1122
1123 pgrp = find_vpid(pgid);
1124 g = pid_task(pgrp, PIDTYPE_PGID);
1125 if (!g || task_session(g) != task_session(group_leader))
1126 goto out;
1127 }
1128
1129 err = security_task_setpgid(p, pgid);
1130 if (err)
1131 goto out;
1132
1133 if (task_pgrp(p) != pgrp)
1134 change_pid(p, PIDTYPE_PGID, pgrp);
1135
1136 err = 0;
1137out:
1138 /* All paths lead to here, thus we are safe. -DaveM */
1139 write_unlock_irq(&tasklist_lock);
1140 rcu_read_unlock();
1141 return err;
1142}
1143
1144static int do_getpgid(pid_t pid)
1145{
1146 struct task_struct *p;
1147 struct pid *grp;
1148 int retval;
1149
1150 rcu_read_lock();
1151 if (!pid)
1152 grp = task_pgrp(current);
1153 else {
1154 retval = -ESRCH;
1155 p = find_task_by_vpid(pid);
1156 if (!p)
1157 goto out;
1158 grp = task_pgrp(p);
1159 if (!grp)
1160 goto out;
1161
1162 retval = security_task_getpgid(p);
1163 if (retval)
1164 goto out;
1165 }
1166 retval = pid_vnr(grp);
1167out:
1168 rcu_read_unlock();
1169 return retval;
1170}
1171
1172SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173{
1174 return do_getpgid(pid);
1175}
1176
1177#ifdef __ARCH_WANT_SYS_GETPGRP
1178
1179SYSCALL_DEFINE0(getpgrp)
1180{
1181 return do_getpgid(0);
1182}
1183
1184#endif
1185
1186SYSCALL_DEFINE1(getsid, pid_t, pid)
1187{
1188 struct task_struct *p;
1189 struct pid *sid;
1190 int retval;
1191
1192 rcu_read_lock();
1193 if (!pid)
1194 sid = task_session(current);
1195 else {
1196 retval = -ESRCH;
1197 p = find_task_by_vpid(pid);
1198 if (!p)
1199 goto out;
1200 sid = task_session(p);
1201 if (!sid)
1202 goto out;
1203
1204 retval = security_task_getsid(p);
1205 if (retval)
1206 goto out;
1207 }
1208 retval = pid_vnr(sid);
1209out:
1210 rcu_read_unlock();
1211 return retval;
1212}
1213
1214static void set_special_pids(struct pid *pid)
1215{
1216 struct task_struct *curr = current->group_leader;
1217
1218 if (task_session(curr) != pid)
1219 change_pid(curr, PIDTYPE_SID, pid);
1220
1221 if (task_pgrp(curr) != pid)
1222 change_pid(curr, PIDTYPE_PGID, pid);
1223}
1224
1225int ksys_setsid(void)
1226{
1227 struct task_struct *group_leader = current->group_leader;
1228 struct pid *sid = task_pid(group_leader);
1229 pid_t session = pid_vnr(sid);
1230 int err = -EPERM;
1231
1232 write_lock_irq(&tasklist_lock);
1233 /* Fail if I am already a session leader */
1234 if (group_leader->signal->leader)
1235 goto out;
1236
1237 /* Fail if a process group id already exists that equals the
1238 * proposed session id.
1239 */
1240 if (pid_task(sid, PIDTYPE_PGID))
1241 goto out;
1242
1243 group_leader->signal->leader = 1;
1244 set_special_pids(sid);
1245
1246 proc_clear_tty(group_leader);
1247
1248 err = session;
1249out:
1250 write_unlock_irq(&tasklist_lock);
1251 if (err > 0) {
1252 proc_sid_connector(group_leader);
1253 sched_autogroup_create_attach(group_leader);
1254 }
1255 return err;
1256}
1257
1258SYSCALL_DEFINE0(setsid)
1259{
1260 return ksys_setsid();
1261}
1262
1263DECLARE_RWSEM(uts_sem);
1264
1265#ifdef COMPAT_UTS_MACHINE
1266#define override_architecture(name) \
1267 (personality(current->personality) == PER_LINUX32 && \
1268 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269 sizeof(COMPAT_UTS_MACHINE)))
1270#else
1271#define override_architecture(name) 0
1272#endif
1273
1274/*
1275 * Work around broken programs that cannot handle "Linux 3.0".
1276 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278 * 2.6.60.
1279 */
1280static int override_release(char __user *release, size_t len)
1281{
1282 int ret = 0;
1283
1284 if (current->personality & UNAME26) {
1285 const char *rest = UTS_RELEASE;
1286 char buf[65] = { 0 };
1287 int ndots = 0;
1288 unsigned v;
1289 size_t copy;
1290
1291 while (*rest) {
1292 if (*rest == '.' && ++ndots >= 3)
1293 break;
1294 if (!isdigit(*rest) && *rest != '.')
1295 break;
1296 rest++;
1297 }
1298 v = LINUX_VERSION_PATCHLEVEL + 60;
1299 copy = clamp_t(size_t, len, 1, sizeof(buf));
1300 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301 ret = copy_to_user(release, buf, copy + 1);
1302 }
1303 return ret;
1304}
1305
1306SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307{
1308 struct new_utsname tmp;
1309
1310 down_read(&uts_sem);
1311 memcpy(&tmp, utsname(), sizeof(tmp));
1312 up_read(&uts_sem);
1313 if (copy_to_user(name, &tmp, sizeof(tmp)))
1314 return -EFAULT;
1315
1316 if (override_release(name->release, sizeof(name->release)))
1317 return -EFAULT;
1318 if (override_architecture(name))
1319 return -EFAULT;
1320 return 0;
1321}
1322
1323#ifdef __ARCH_WANT_SYS_OLD_UNAME
1324/*
1325 * Old cruft
1326 */
1327SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328{
1329 struct old_utsname tmp;
1330
1331 if (!name)
1332 return -EFAULT;
1333
1334 down_read(&uts_sem);
1335 memcpy(&tmp, utsname(), sizeof(tmp));
1336 up_read(&uts_sem);
1337 if (copy_to_user(name, &tmp, sizeof(tmp)))
1338 return -EFAULT;
1339
1340 if (override_release(name->release, sizeof(name->release)))
1341 return -EFAULT;
1342 if (override_architecture(name))
1343 return -EFAULT;
1344 return 0;
1345}
1346
1347SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348{
1349 struct oldold_utsname tmp;
1350
1351 if (!name)
1352 return -EFAULT;
1353
1354 memset(&tmp, 0, sizeof(tmp));
1355
1356 down_read(&uts_sem);
1357 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1362 up_read(&uts_sem);
1363 if (copy_to_user(name, &tmp, sizeof(tmp)))
1364 return -EFAULT;
1365
1366 if (override_architecture(name))
1367 return -EFAULT;
1368 if (override_release(name->release, sizeof(name->release)))
1369 return -EFAULT;
1370 return 0;
1371}
1372#endif
1373
1374SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375{
1376 int errno;
1377 char tmp[__NEW_UTS_LEN];
1378
1379 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380 return -EPERM;
1381
1382 if (len < 0 || len > __NEW_UTS_LEN)
1383 return -EINVAL;
1384 errno = -EFAULT;
1385 if (!copy_from_user(tmp, name, len)) {
1386 struct new_utsname *u;
1387
1388 add_device_randomness(tmp, len);
1389 down_write(&uts_sem);
1390 u = utsname();
1391 memcpy(u->nodename, tmp, len);
1392 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393 errno = 0;
1394 uts_proc_notify(UTS_PROC_HOSTNAME);
1395 up_write(&uts_sem);
1396 }
1397 return errno;
1398}
1399
1400#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401
1402SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403{
1404 int i;
1405 struct new_utsname *u;
1406 char tmp[__NEW_UTS_LEN + 1];
1407
1408 if (len < 0)
1409 return -EINVAL;
1410 down_read(&uts_sem);
1411 u = utsname();
1412 i = 1 + strlen(u->nodename);
1413 if (i > len)
1414 i = len;
1415 memcpy(tmp, u->nodename, i);
1416 up_read(&uts_sem);
1417 if (copy_to_user(name, tmp, i))
1418 return -EFAULT;
1419 return 0;
1420}
1421
1422#endif
1423
1424/*
1425 * Only setdomainname; getdomainname can be implemented by calling
1426 * uname()
1427 */
1428SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429{
1430 int errno;
1431 char tmp[__NEW_UTS_LEN];
1432
1433 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434 return -EPERM;
1435 if (len < 0 || len > __NEW_UTS_LEN)
1436 return -EINVAL;
1437
1438 errno = -EFAULT;
1439 if (!copy_from_user(tmp, name, len)) {
1440 struct new_utsname *u;
1441
1442 add_device_randomness(tmp, len);
1443 down_write(&uts_sem);
1444 u = utsname();
1445 memcpy(u->domainname, tmp, len);
1446 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447 errno = 0;
1448 uts_proc_notify(UTS_PROC_DOMAINNAME);
1449 up_write(&uts_sem);
1450 }
1451 return errno;
1452}
1453
1454/* make sure you are allowed to change @tsk limits before calling this */
1455static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456 struct rlimit *new_rlim, struct rlimit *old_rlim)
1457{
1458 struct rlimit *rlim;
1459 int retval = 0;
1460
1461 if (resource >= RLIM_NLIMITS)
1462 return -EINVAL;
1463 resource = array_index_nospec(resource, RLIM_NLIMITS);
1464
1465 if (new_rlim) {
1466 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467 return -EINVAL;
1468 if (resource == RLIMIT_NOFILE &&
1469 new_rlim->rlim_max > sysctl_nr_open)
1470 return -EPERM;
1471 }
1472
1473 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474 rlim = tsk->signal->rlim + resource;
1475 task_lock(tsk->group_leader);
1476 if (new_rlim) {
1477 /*
1478 * Keep the capable check against init_user_ns until cgroups can
1479 * contain all limits.
1480 */
1481 if (new_rlim->rlim_max > rlim->rlim_max &&
1482 !capable(CAP_SYS_RESOURCE))
1483 retval = -EPERM;
1484 if (!retval)
1485 retval = security_task_setrlimit(tsk, resource, new_rlim);
1486 }
1487 if (!retval) {
1488 if (old_rlim)
1489 *old_rlim = *rlim;
1490 if (new_rlim)
1491 *rlim = *new_rlim;
1492 }
1493 task_unlock(tsk->group_leader);
1494
1495 /*
1496 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498 * ignores the rlimit.
1499 */
1500 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501 new_rlim->rlim_cur != RLIM_INFINITY &&
1502 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503 /*
1504 * update_rlimit_cpu can fail if the task is exiting, but there
1505 * may be other tasks in the thread group that are not exiting,
1506 * and they need their cpu timers adjusted.
1507 *
1508 * The group_leader is the last task to be released, so if we
1509 * cannot update_rlimit_cpu on it, then the entire process is
1510 * exiting and we do not need to update at all.
1511 */
1512 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513 }
1514
1515 return retval;
1516}
1517
1518SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519{
1520 struct rlimit value;
1521 int ret;
1522
1523 ret = do_prlimit(current, resource, NULL, &value);
1524 if (!ret)
1525 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526
1527 return ret;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533 struct compat_rlimit __user *, rlim)
1534{
1535 struct rlimit r;
1536 struct compat_rlimit r32;
1537
1538 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539 return -EFAULT;
1540
1541 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542 r.rlim_cur = RLIM_INFINITY;
1543 else
1544 r.rlim_cur = r32.rlim_cur;
1545 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546 r.rlim_max = RLIM_INFINITY;
1547 else
1548 r.rlim_max = r32.rlim_max;
1549 return do_prlimit(current, resource, &r, NULL);
1550}
1551
1552COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553 struct compat_rlimit __user *, rlim)
1554{
1555 struct rlimit r;
1556 int ret;
1557
1558 ret = do_prlimit(current, resource, NULL, &r);
1559 if (!ret) {
1560 struct compat_rlimit r32;
1561 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563 else
1564 r32.rlim_cur = r.rlim_cur;
1565 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566 r32.rlim_max = COMPAT_RLIM_INFINITY;
1567 else
1568 r32.rlim_max = r.rlim_max;
1569
1570 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571 return -EFAULT;
1572 }
1573 return ret;
1574}
1575
1576#endif
1577
1578#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579
1580/*
1581 * Back compatibility for getrlimit. Needed for some apps.
1582 */
1583SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584 struct rlimit __user *, rlim)
1585{
1586 struct rlimit x;
1587 if (resource >= RLIM_NLIMITS)
1588 return -EINVAL;
1589
1590 resource = array_index_nospec(resource, RLIM_NLIMITS);
1591 task_lock(current->group_leader);
1592 x = current->signal->rlim[resource];
1593 task_unlock(current->group_leader);
1594 if (x.rlim_cur > 0x7FFFFFFF)
1595 x.rlim_cur = 0x7FFFFFFF;
1596 if (x.rlim_max > 0x7FFFFFFF)
1597 x.rlim_max = 0x7FFFFFFF;
1598 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599}
1600
1601#ifdef CONFIG_COMPAT
1602COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603 struct compat_rlimit __user *, rlim)
1604{
1605 struct rlimit r;
1606
1607 if (resource >= RLIM_NLIMITS)
1608 return -EINVAL;
1609
1610 resource = array_index_nospec(resource, RLIM_NLIMITS);
1611 task_lock(current->group_leader);
1612 r = current->signal->rlim[resource];
1613 task_unlock(current->group_leader);
1614 if (r.rlim_cur > 0x7FFFFFFF)
1615 r.rlim_cur = 0x7FFFFFFF;
1616 if (r.rlim_max > 0x7FFFFFFF)
1617 r.rlim_max = 0x7FFFFFFF;
1618
1619 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620 put_user(r.rlim_max, &rlim->rlim_max))
1621 return -EFAULT;
1622 return 0;
1623}
1624#endif
1625
1626#endif
1627
1628static inline bool rlim64_is_infinity(__u64 rlim64)
1629{
1630#if BITS_PER_LONG < 64
1631 return rlim64 >= ULONG_MAX;
1632#else
1633 return rlim64 == RLIM64_INFINITY;
1634#endif
1635}
1636
1637static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638{
1639 if (rlim->rlim_cur == RLIM_INFINITY)
1640 rlim64->rlim_cur = RLIM64_INFINITY;
1641 else
1642 rlim64->rlim_cur = rlim->rlim_cur;
1643 if (rlim->rlim_max == RLIM_INFINITY)
1644 rlim64->rlim_max = RLIM64_INFINITY;
1645 else
1646 rlim64->rlim_max = rlim->rlim_max;
1647}
1648
1649static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650{
1651 if (rlim64_is_infinity(rlim64->rlim_cur))
1652 rlim->rlim_cur = RLIM_INFINITY;
1653 else
1654 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655 if (rlim64_is_infinity(rlim64->rlim_max))
1656 rlim->rlim_max = RLIM_INFINITY;
1657 else
1658 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659}
1660
1661/* rcu lock must be held */
1662static int check_prlimit_permission(struct task_struct *task,
1663 unsigned int flags)
1664{
1665 const struct cred *cred = current_cred(), *tcred;
1666 bool id_match;
1667
1668 if (current == task)
1669 return 0;
1670
1671 tcred = __task_cred(task);
1672 id_match = (uid_eq(cred->uid, tcred->euid) &&
1673 uid_eq(cred->uid, tcred->suid) &&
1674 uid_eq(cred->uid, tcred->uid) &&
1675 gid_eq(cred->gid, tcred->egid) &&
1676 gid_eq(cred->gid, tcred->sgid) &&
1677 gid_eq(cred->gid, tcred->gid));
1678 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679 return -EPERM;
1680
1681 return security_task_prlimit(cred, tcred, flags);
1682}
1683
1684SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685 const struct rlimit64 __user *, new_rlim,
1686 struct rlimit64 __user *, old_rlim)
1687{
1688 struct rlimit64 old64, new64;
1689 struct rlimit old, new;
1690 struct task_struct *tsk;
1691 unsigned int checkflags = 0;
1692 int ret;
1693
1694 if (old_rlim)
1695 checkflags |= LSM_PRLIMIT_READ;
1696
1697 if (new_rlim) {
1698 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699 return -EFAULT;
1700 rlim64_to_rlim(&new64, &new);
1701 checkflags |= LSM_PRLIMIT_WRITE;
1702 }
1703
1704 rcu_read_lock();
1705 tsk = pid ? find_task_by_vpid(pid) : current;
1706 if (!tsk) {
1707 rcu_read_unlock();
1708 return -ESRCH;
1709 }
1710 ret = check_prlimit_permission(tsk, checkflags);
1711 if (ret) {
1712 rcu_read_unlock();
1713 return ret;
1714 }
1715 get_task_struct(tsk);
1716 rcu_read_unlock();
1717
1718 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719 old_rlim ? &old : NULL);
1720
1721 if (!ret && old_rlim) {
1722 rlim_to_rlim64(&old, &old64);
1723 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724 ret = -EFAULT;
1725 }
1726
1727 put_task_struct(tsk);
1728 return ret;
1729}
1730
1731SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732{
1733 struct rlimit new_rlim;
1734
1735 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736 return -EFAULT;
1737 return do_prlimit(current, resource, &new_rlim, NULL);
1738}
1739
1740/*
1741 * It would make sense to put struct rusage in the task_struct,
1742 * except that would make the task_struct be *really big*. After
1743 * task_struct gets moved into malloc'ed memory, it would
1744 * make sense to do this. It will make moving the rest of the information
1745 * a lot simpler! (Which we're not doing right now because we're not
1746 * measuring them yet).
1747 *
1748 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749 * races with threads incrementing their own counters. But since word
1750 * reads are atomic, we either get new values or old values and we don't
1751 * care which for the sums. We always take the siglock to protect reading
1752 * the c* fields from p->signal from races with exit.c updating those
1753 * fields when reaping, so a sample either gets all the additions of a
1754 * given child after it's reaped, or none so this sample is before reaping.
1755 *
1756 * Locking:
1757 * We need to take the siglock for CHILDEREN, SELF and BOTH
1758 * for the cases current multithreaded, non-current single threaded
1759 * non-current multithreaded. Thread traversal is now safe with
1760 * the siglock held.
1761 * Strictly speaking, we donot need to take the siglock if we are current and
1762 * single threaded, as no one else can take our signal_struct away, no one
1763 * else can reap the children to update signal->c* counters, and no one else
1764 * can race with the signal-> fields. If we do not take any lock, the
1765 * signal-> fields could be read out of order while another thread was just
1766 * exiting. So we should place a read memory barrier when we avoid the lock.
1767 * On the writer side, write memory barrier is implied in __exit_signal
1768 * as __exit_signal releases the siglock spinlock after updating the signal->
1769 * fields. But we don't do this yet to keep things simple.
1770 *
1771 */
1772
1773static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774{
1775 r->ru_nvcsw += t->nvcsw;
1776 r->ru_nivcsw += t->nivcsw;
1777 r->ru_minflt += t->min_flt;
1778 r->ru_majflt += t->maj_flt;
1779 r->ru_inblock += task_io_get_inblock(t);
1780 r->ru_oublock += task_io_get_oublock(t);
1781}
1782
1783void getrusage(struct task_struct *p, int who, struct rusage *r)
1784{
1785 struct task_struct *t;
1786 unsigned long flags;
1787 u64 tgutime, tgstime, utime, stime;
1788 unsigned long maxrss;
1789 struct mm_struct *mm;
1790 struct signal_struct *sig = p->signal;
1791 unsigned int seq = 0;
1792
1793retry:
1794 memset(r, 0, sizeof(*r));
1795 utime = stime = 0;
1796 maxrss = 0;
1797
1798 if (who == RUSAGE_THREAD) {
1799 task_cputime_adjusted(current, &utime, &stime);
1800 accumulate_thread_rusage(p, r);
1801 maxrss = sig->maxrss;
1802 goto out_thread;
1803 }
1804
1805 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1806
1807 switch (who) {
1808 case RUSAGE_BOTH:
1809 case RUSAGE_CHILDREN:
1810 utime = sig->cutime;
1811 stime = sig->cstime;
1812 r->ru_nvcsw = sig->cnvcsw;
1813 r->ru_nivcsw = sig->cnivcsw;
1814 r->ru_minflt = sig->cmin_flt;
1815 r->ru_majflt = sig->cmaj_flt;
1816 r->ru_inblock = sig->cinblock;
1817 r->ru_oublock = sig->coublock;
1818 maxrss = sig->cmaxrss;
1819
1820 if (who == RUSAGE_CHILDREN)
1821 break;
1822 fallthrough;
1823
1824 case RUSAGE_SELF:
1825 r->ru_nvcsw += sig->nvcsw;
1826 r->ru_nivcsw += sig->nivcsw;
1827 r->ru_minflt += sig->min_flt;
1828 r->ru_majflt += sig->maj_flt;
1829 r->ru_inblock += sig->inblock;
1830 r->ru_oublock += sig->oublock;
1831 if (maxrss < sig->maxrss)
1832 maxrss = sig->maxrss;
1833
1834 rcu_read_lock();
1835 __for_each_thread(sig, t)
1836 accumulate_thread_rusage(t, r);
1837 rcu_read_unlock();
1838
1839 break;
1840
1841 default:
1842 BUG();
1843 }
1844
1845 if (need_seqretry(&sig->stats_lock, seq)) {
1846 seq = 1;
1847 goto retry;
1848 }
1849 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1850
1851 if (who == RUSAGE_CHILDREN)
1852 goto out_children;
1853
1854 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1855 utime += tgutime;
1856 stime += tgstime;
1857
1858out_thread:
1859 mm = get_task_mm(p);
1860 if (mm) {
1861 setmax_mm_hiwater_rss(&maxrss, mm);
1862 mmput(mm);
1863 }
1864
1865out_children:
1866 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1867 r->ru_utime = ns_to_kernel_old_timeval(utime);
1868 r->ru_stime = ns_to_kernel_old_timeval(stime);
1869}
1870
1871SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1872{
1873 struct rusage r;
1874
1875 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876 who != RUSAGE_THREAD)
1877 return -EINVAL;
1878
1879 getrusage(current, who, &r);
1880 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1881}
1882
1883#ifdef CONFIG_COMPAT
1884COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1885{
1886 struct rusage r;
1887
1888 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1889 who != RUSAGE_THREAD)
1890 return -EINVAL;
1891
1892 getrusage(current, who, &r);
1893 return put_compat_rusage(&r, ru);
1894}
1895#endif
1896
1897SYSCALL_DEFINE1(umask, int, mask)
1898{
1899 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1900 return mask;
1901}
1902
1903static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1904{
1905 struct fd exe;
1906 struct inode *inode;
1907 int err;
1908
1909 exe = fdget(fd);
1910 if (!exe.file)
1911 return -EBADF;
1912
1913 inode = file_inode(exe.file);
1914
1915 /*
1916 * Because the original mm->exe_file points to executable file, make
1917 * sure that this one is executable as well, to avoid breaking an
1918 * overall picture.
1919 */
1920 err = -EACCES;
1921 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1922 goto exit;
1923
1924 err = file_permission(exe.file, MAY_EXEC);
1925 if (err)
1926 goto exit;
1927
1928 err = replace_mm_exe_file(mm, exe.file);
1929exit:
1930 fdput(exe);
1931 return err;
1932}
1933
1934/*
1935 * Check arithmetic relations of passed addresses.
1936 *
1937 * WARNING: we don't require any capability here so be very careful
1938 * in what is allowed for modification from userspace.
1939 */
1940static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1941{
1942 unsigned long mmap_max_addr = TASK_SIZE;
1943 int error = -EINVAL, i;
1944
1945 static const unsigned char offsets[] = {
1946 offsetof(struct prctl_mm_map, start_code),
1947 offsetof(struct prctl_mm_map, end_code),
1948 offsetof(struct prctl_mm_map, start_data),
1949 offsetof(struct prctl_mm_map, end_data),
1950 offsetof(struct prctl_mm_map, start_brk),
1951 offsetof(struct prctl_mm_map, brk),
1952 offsetof(struct prctl_mm_map, start_stack),
1953 offsetof(struct prctl_mm_map, arg_start),
1954 offsetof(struct prctl_mm_map, arg_end),
1955 offsetof(struct prctl_mm_map, env_start),
1956 offsetof(struct prctl_mm_map, env_end),
1957 };
1958
1959 /*
1960 * Make sure the members are not somewhere outside
1961 * of allowed address space.
1962 */
1963 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1964 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1965
1966 if ((unsigned long)val >= mmap_max_addr ||
1967 (unsigned long)val < mmap_min_addr)
1968 goto out;
1969 }
1970
1971 /*
1972 * Make sure the pairs are ordered.
1973 */
1974#define __prctl_check_order(__m1, __op, __m2) \
1975 ((unsigned long)prctl_map->__m1 __op \
1976 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1977 error = __prctl_check_order(start_code, <, end_code);
1978 error |= __prctl_check_order(start_data,<=, end_data);
1979 error |= __prctl_check_order(start_brk, <=, brk);
1980 error |= __prctl_check_order(arg_start, <=, arg_end);
1981 error |= __prctl_check_order(env_start, <=, env_end);
1982 if (error)
1983 goto out;
1984#undef __prctl_check_order
1985
1986 error = -EINVAL;
1987
1988 /*
1989 * Neither we should allow to override limits if they set.
1990 */
1991 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1992 prctl_map->start_brk, prctl_map->end_data,
1993 prctl_map->start_data))
1994 goto out;
1995
1996 error = 0;
1997out:
1998 return error;
1999}
2000
2001#ifdef CONFIG_CHECKPOINT_RESTORE
2002static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2003{
2004 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2005 unsigned long user_auxv[AT_VECTOR_SIZE];
2006 struct mm_struct *mm = current->mm;
2007 int error;
2008
2009 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2010 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2011
2012 if (opt == PR_SET_MM_MAP_SIZE)
2013 return put_user((unsigned int)sizeof(prctl_map),
2014 (unsigned int __user *)addr);
2015
2016 if (data_size != sizeof(prctl_map))
2017 return -EINVAL;
2018
2019 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2020 return -EFAULT;
2021
2022 error = validate_prctl_map_addr(&prctl_map);
2023 if (error)
2024 return error;
2025
2026 if (prctl_map.auxv_size) {
2027 /*
2028 * Someone is trying to cheat the auxv vector.
2029 */
2030 if (!prctl_map.auxv ||
2031 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2032 return -EINVAL;
2033
2034 memset(user_auxv, 0, sizeof(user_auxv));
2035 if (copy_from_user(user_auxv,
2036 (const void __user *)prctl_map.auxv,
2037 prctl_map.auxv_size))
2038 return -EFAULT;
2039
2040 /* Last entry must be AT_NULL as specification requires */
2041 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2042 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2043 }
2044
2045 if (prctl_map.exe_fd != (u32)-1) {
2046 /*
2047 * Check if the current user is checkpoint/restore capable.
2048 * At the time of this writing, it checks for CAP_SYS_ADMIN
2049 * or CAP_CHECKPOINT_RESTORE.
2050 * Note that a user with access to ptrace can masquerade an
2051 * arbitrary program as any executable, even setuid ones.
2052 * This may have implications in the tomoyo subsystem.
2053 */
2054 if (!checkpoint_restore_ns_capable(current_user_ns()))
2055 return -EPERM;
2056
2057 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2058 if (error)
2059 return error;
2060 }
2061
2062 /*
2063 * arg_lock protects concurrent updates but we still need mmap_lock for
2064 * read to exclude races with sys_brk.
2065 */
2066 mmap_read_lock(mm);
2067
2068 /*
2069 * We don't validate if these members are pointing to
2070 * real present VMAs because application may have correspond
2071 * VMAs already unmapped and kernel uses these members for statistics
2072 * output in procfs mostly, except
2073 *
2074 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2075 * for VMAs when updating these members so anything wrong written
2076 * here cause kernel to swear at userspace program but won't lead
2077 * to any problem in kernel itself
2078 */
2079
2080 spin_lock(&mm->arg_lock);
2081 mm->start_code = prctl_map.start_code;
2082 mm->end_code = prctl_map.end_code;
2083 mm->start_data = prctl_map.start_data;
2084 mm->end_data = prctl_map.end_data;
2085 mm->start_brk = prctl_map.start_brk;
2086 mm->brk = prctl_map.brk;
2087 mm->start_stack = prctl_map.start_stack;
2088 mm->arg_start = prctl_map.arg_start;
2089 mm->arg_end = prctl_map.arg_end;
2090 mm->env_start = prctl_map.env_start;
2091 mm->env_end = prctl_map.env_end;
2092 spin_unlock(&mm->arg_lock);
2093
2094 /*
2095 * Note this update of @saved_auxv is lockless thus
2096 * if someone reads this member in procfs while we're
2097 * updating -- it may get partly updated results. It's
2098 * known and acceptable trade off: we leave it as is to
2099 * not introduce additional locks here making the kernel
2100 * more complex.
2101 */
2102 if (prctl_map.auxv_size)
2103 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2104
2105 mmap_read_unlock(mm);
2106 return 0;
2107}
2108#endif /* CONFIG_CHECKPOINT_RESTORE */
2109
2110static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2111 unsigned long len)
2112{
2113 /*
2114 * This doesn't move the auxiliary vector itself since it's pinned to
2115 * mm_struct, but it permits filling the vector with new values. It's
2116 * up to the caller to provide sane values here, otherwise userspace
2117 * tools which use this vector might be unhappy.
2118 */
2119 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2120
2121 if (len > sizeof(user_auxv))
2122 return -EINVAL;
2123
2124 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2125 return -EFAULT;
2126
2127 /* Make sure the last entry is always AT_NULL */
2128 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2129 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2130
2131 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2132
2133 task_lock(current);
2134 memcpy(mm->saved_auxv, user_auxv, len);
2135 task_unlock(current);
2136
2137 return 0;
2138}
2139
2140static int prctl_set_mm(int opt, unsigned long addr,
2141 unsigned long arg4, unsigned long arg5)
2142{
2143 struct mm_struct *mm = current->mm;
2144 struct prctl_mm_map prctl_map = {
2145 .auxv = NULL,
2146 .auxv_size = 0,
2147 .exe_fd = -1,
2148 };
2149 struct vm_area_struct *vma;
2150 int error;
2151
2152 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2153 opt != PR_SET_MM_MAP &&
2154 opt != PR_SET_MM_MAP_SIZE)))
2155 return -EINVAL;
2156
2157#ifdef CONFIG_CHECKPOINT_RESTORE
2158 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2159 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2160#endif
2161
2162 if (!capable(CAP_SYS_RESOURCE))
2163 return -EPERM;
2164
2165 if (opt == PR_SET_MM_EXE_FILE)
2166 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2167
2168 if (opt == PR_SET_MM_AUXV)
2169 return prctl_set_auxv(mm, addr, arg4);
2170
2171 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2172 return -EINVAL;
2173
2174 error = -EINVAL;
2175
2176 /*
2177 * arg_lock protects concurrent updates of arg boundaries, we need
2178 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2179 * validation.
2180 */
2181 mmap_read_lock(mm);
2182 vma = find_vma(mm, addr);
2183
2184 spin_lock(&mm->arg_lock);
2185 prctl_map.start_code = mm->start_code;
2186 prctl_map.end_code = mm->end_code;
2187 prctl_map.start_data = mm->start_data;
2188 prctl_map.end_data = mm->end_data;
2189 prctl_map.start_brk = mm->start_brk;
2190 prctl_map.brk = mm->brk;
2191 prctl_map.start_stack = mm->start_stack;
2192 prctl_map.arg_start = mm->arg_start;
2193 prctl_map.arg_end = mm->arg_end;
2194 prctl_map.env_start = mm->env_start;
2195 prctl_map.env_end = mm->env_end;
2196
2197 switch (opt) {
2198 case PR_SET_MM_START_CODE:
2199 prctl_map.start_code = addr;
2200 break;
2201 case PR_SET_MM_END_CODE:
2202 prctl_map.end_code = addr;
2203 break;
2204 case PR_SET_MM_START_DATA:
2205 prctl_map.start_data = addr;
2206 break;
2207 case PR_SET_MM_END_DATA:
2208 prctl_map.end_data = addr;
2209 break;
2210 case PR_SET_MM_START_STACK:
2211 prctl_map.start_stack = addr;
2212 break;
2213 case PR_SET_MM_START_BRK:
2214 prctl_map.start_brk = addr;
2215 break;
2216 case PR_SET_MM_BRK:
2217 prctl_map.brk = addr;
2218 break;
2219 case PR_SET_MM_ARG_START:
2220 prctl_map.arg_start = addr;
2221 break;
2222 case PR_SET_MM_ARG_END:
2223 prctl_map.arg_end = addr;
2224 break;
2225 case PR_SET_MM_ENV_START:
2226 prctl_map.env_start = addr;
2227 break;
2228 case PR_SET_MM_ENV_END:
2229 prctl_map.env_end = addr;
2230 break;
2231 default:
2232 goto out;
2233 }
2234
2235 error = validate_prctl_map_addr(&prctl_map);
2236 if (error)
2237 goto out;
2238
2239 switch (opt) {
2240 /*
2241 * If command line arguments and environment
2242 * are placed somewhere else on stack, we can
2243 * set them up here, ARG_START/END to setup
2244 * command line arguments and ENV_START/END
2245 * for environment.
2246 */
2247 case PR_SET_MM_START_STACK:
2248 case PR_SET_MM_ARG_START:
2249 case PR_SET_MM_ARG_END:
2250 case PR_SET_MM_ENV_START:
2251 case PR_SET_MM_ENV_END:
2252 if (!vma) {
2253 error = -EFAULT;
2254 goto out;
2255 }
2256 }
2257
2258 mm->start_code = prctl_map.start_code;
2259 mm->end_code = prctl_map.end_code;
2260 mm->start_data = prctl_map.start_data;
2261 mm->end_data = prctl_map.end_data;
2262 mm->start_brk = prctl_map.start_brk;
2263 mm->brk = prctl_map.brk;
2264 mm->start_stack = prctl_map.start_stack;
2265 mm->arg_start = prctl_map.arg_start;
2266 mm->arg_end = prctl_map.arg_end;
2267 mm->env_start = prctl_map.env_start;
2268 mm->env_end = prctl_map.env_end;
2269
2270 error = 0;
2271out:
2272 spin_unlock(&mm->arg_lock);
2273 mmap_read_unlock(mm);
2274 return error;
2275}
2276
2277#ifdef CONFIG_CHECKPOINT_RESTORE
2278static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2279{
2280 return put_user(me->clear_child_tid, tid_addr);
2281}
2282#else
2283static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2284{
2285 return -EINVAL;
2286}
2287#endif
2288
2289static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2290{
2291 /*
2292 * If task has has_child_subreaper - all its descendants
2293 * already have these flag too and new descendants will
2294 * inherit it on fork, skip them.
2295 *
2296 * If we've found child_reaper - skip descendants in
2297 * it's subtree as they will never get out pidns.
2298 */
2299 if (p->signal->has_child_subreaper ||
2300 is_child_reaper(task_pid(p)))
2301 return 0;
2302
2303 p->signal->has_child_subreaper = 1;
2304 return 1;
2305}
2306
2307int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2308{
2309 return -EINVAL;
2310}
2311
2312int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2313 unsigned long ctrl)
2314{
2315 return -EINVAL;
2316}
2317
2318#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2319
2320#ifdef CONFIG_ANON_VMA_NAME
2321
2322#define ANON_VMA_NAME_MAX_LEN 80
2323#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2324
2325static inline bool is_valid_name_char(char ch)
2326{
2327 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2328 return ch > 0x1f && ch < 0x7f &&
2329 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2330}
2331
2332static int prctl_set_vma(unsigned long opt, unsigned long addr,
2333 unsigned long size, unsigned long arg)
2334{
2335 struct mm_struct *mm = current->mm;
2336 const char __user *uname;
2337 struct anon_vma_name *anon_name = NULL;
2338 int error;
2339
2340 switch (opt) {
2341 case PR_SET_VMA_ANON_NAME:
2342 uname = (const char __user *)arg;
2343 if (uname) {
2344 char *name, *pch;
2345
2346 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2347 if (IS_ERR(name))
2348 return PTR_ERR(name);
2349
2350 for (pch = name; *pch != '\0'; pch++) {
2351 if (!is_valid_name_char(*pch)) {
2352 kfree(name);
2353 return -EINVAL;
2354 }
2355 }
2356 /* anon_vma has its own copy */
2357 anon_name = anon_vma_name_alloc(name);
2358 kfree(name);
2359 if (!anon_name)
2360 return -ENOMEM;
2361
2362 }
2363
2364 mmap_write_lock(mm);
2365 error = madvise_set_anon_name(mm, addr, size, anon_name);
2366 mmap_write_unlock(mm);
2367 anon_vma_name_put(anon_name);
2368 break;
2369 default:
2370 error = -EINVAL;
2371 }
2372
2373 return error;
2374}
2375
2376#else /* CONFIG_ANON_VMA_NAME */
2377static int prctl_set_vma(unsigned long opt, unsigned long start,
2378 unsigned long size, unsigned long arg)
2379{
2380 return -EINVAL;
2381}
2382#endif /* CONFIG_ANON_VMA_NAME */
2383
2384static inline unsigned long get_current_mdwe(void)
2385{
2386 unsigned long ret = 0;
2387
2388 if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2389 ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2390 if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags))
2391 ret |= PR_MDWE_NO_INHERIT;
2392
2393 return ret;
2394}
2395
2396static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2397 unsigned long arg4, unsigned long arg5)
2398{
2399 unsigned long current_bits;
2400
2401 if (arg3 || arg4 || arg5)
2402 return -EINVAL;
2403
2404 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2405 return -EINVAL;
2406
2407 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2408 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2409 return -EINVAL;
2410
2411 /* PARISC cannot allow mdwe as it needs writable stacks */
2412 if (IS_ENABLED(CONFIG_PARISC))
2413 return -EINVAL;
2414
2415 current_bits = get_current_mdwe();
2416 if (current_bits && current_bits != bits)
2417 return -EPERM; /* Cannot unset the flags */
2418
2419 if (bits & PR_MDWE_NO_INHERIT)
2420 set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags);
2421 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2422 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2423
2424 return 0;
2425}
2426
2427static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2428 unsigned long arg4, unsigned long arg5)
2429{
2430 if (arg2 || arg3 || arg4 || arg5)
2431 return -EINVAL;
2432 return get_current_mdwe();
2433}
2434
2435static int prctl_get_auxv(void __user *addr, unsigned long len)
2436{
2437 struct mm_struct *mm = current->mm;
2438 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2439
2440 if (size && copy_to_user(addr, mm->saved_auxv, size))
2441 return -EFAULT;
2442 return sizeof(mm->saved_auxv);
2443}
2444
2445SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2446 unsigned long, arg4, unsigned long, arg5)
2447{
2448 struct task_struct *me = current;
2449 unsigned char comm[sizeof(me->comm)];
2450 long error;
2451
2452 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2453 if (error != -ENOSYS)
2454 return error;
2455
2456 error = 0;
2457 switch (option) {
2458 case PR_SET_PDEATHSIG:
2459 if (!valid_signal(arg2)) {
2460 error = -EINVAL;
2461 break;
2462 }
2463 me->pdeath_signal = arg2;
2464 break;
2465 case PR_GET_PDEATHSIG:
2466 error = put_user(me->pdeath_signal, (int __user *)arg2);
2467 break;
2468 case PR_GET_DUMPABLE:
2469 error = get_dumpable(me->mm);
2470 break;
2471 case PR_SET_DUMPABLE:
2472 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2473 error = -EINVAL;
2474 break;
2475 }
2476 set_dumpable(me->mm, arg2);
2477 break;
2478
2479 case PR_SET_UNALIGN:
2480 error = SET_UNALIGN_CTL(me, arg2);
2481 break;
2482 case PR_GET_UNALIGN:
2483 error = GET_UNALIGN_CTL(me, arg2);
2484 break;
2485 case PR_SET_FPEMU:
2486 error = SET_FPEMU_CTL(me, arg2);
2487 break;
2488 case PR_GET_FPEMU:
2489 error = GET_FPEMU_CTL(me, arg2);
2490 break;
2491 case PR_SET_FPEXC:
2492 error = SET_FPEXC_CTL(me, arg2);
2493 break;
2494 case PR_GET_FPEXC:
2495 error = GET_FPEXC_CTL(me, arg2);
2496 break;
2497 case PR_GET_TIMING:
2498 error = PR_TIMING_STATISTICAL;
2499 break;
2500 case PR_SET_TIMING:
2501 if (arg2 != PR_TIMING_STATISTICAL)
2502 error = -EINVAL;
2503 break;
2504 case PR_SET_NAME:
2505 comm[sizeof(me->comm) - 1] = 0;
2506 if (strncpy_from_user(comm, (char __user *)arg2,
2507 sizeof(me->comm) - 1) < 0)
2508 return -EFAULT;
2509 set_task_comm(me, comm);
2510 proc_comm_connector(me);
2511 break;
2512 case PR_GET_NAME:
2513 get_task_comm(comm, me);
2514 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2515 return -EFAULT;
2516 break;
2517 case PR_GET_ENDIAN:
2518 error = GET_ENDIAN(me, arg2);
2519 break;
2520 case PR_SET_ENDIAN:
2521 error = SET_ENDIAN(me, arg2);
2522 break;
2523 case PR_GET_SECCOMP:
2524 error = prctl_get_seccomp();
2525 break;
2526 case PR_SET_SECCOMP:
2527 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2528 break;
2529 case PR_GET_TSC:
2530 error = GET_TSC_CTL(arg2);
2531 break;
2532 case PR_SET_TSC:
2533 error = SET_TSC_CTL(arg2);
2534 break;
2535 case PR_TASK_PERF_EVENTS_DISABLE:
2536 error = perf_event_task_disable();
2537 break;
2538 case PR_TASK_PERF_EVENTS_ENABLE:
2539 error = perf_event_task_enable();
2540 break;
2541 case PR_GET_TIMERSLACK:
2542 if (current->timer_slack_ns > ULONG_MAX)
2543 error = ULONG_MAX;
2544 else
2545 error = current->timer_slack_ns;
2546 break;
2547 case PR_SET_TIMERSLACK:
2548 if (arg2 <= 0)
2549 current->timer_slack_ns =
2550 current->default_timer_slack_ns;
2551 else
2552 current->timer_slack_ns = arg2;
2553 break;
2554 case PR_MCE_KILL:
2555 if (arg4 | arg5)
2556 return -EINVAL;
2557 switch (arg2) {
2558 case PR_MCE_KILL_CLEAR:
2559 if (arg3 != 0)
2560 return -EINVAL;
2561 current->flags &= ~PF_MCE_PROCESS;
2562 break;
2563 case PR_MCE_KILL_SET:
2564 current->flags |= PF_MCE_PROCESS;
2565 if (arg3 == PR_MCE_KILL_EARLY)
2566 current->flags |= PF_MCE_EARLY;
2567 else if (arg3 == PR_MCE_KILL_LATE)
2568 current->flags &= ~PF_MCE_EARLY;
2569 else if (arg3 == PR_MCE_KILL_DEFAULT)
2570 current->flags &=
2571 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2572 else
2573 return -EINVAL;
2574 break;
2575 default:
2576 return -EINVAL;
2577 }
2578 break;
2579 case PR_MCE_KILL_GET:
2580 if (arg2 | arg3 | arg4 | arg5)
2581 return -EINVAL;
2582 if (current->flags & PF_MCE_PROCESS)
2583 error = (current->flags & PF_MCE_EARLY) ?
2584 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2585 else
2586 error = PR_MCE_KILL_DEFAULT;
2587 break;
2588 case PR_SET_MM:
2589 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2590 break;
2591 case PR_GET_TID_ADDRESS:
2592 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2593 break;
2594 case PR_SET_CHILD_SUBREAPER:
2595 me->signal->is_child_subreaper = !!arg2;
2596 if (!arg2)
2597 break;
2598
2599 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2600 break;
2601 case PR_GET_CHILD_SUBREAPER:
2602 error = put_user(me->signal->is_child_subreaper,
2603 (int __user *)arg2);
2604 break;
2605 case PR_SET_NO_NEW_PRIVS:
2606 if (arg2 != 1 || arg3 || arg4 || arg5)
2607 return -EINVAL;
2608
2609 task_set_no_new_privs(current);
2610 break;
2611 case PR_GET_NO_NEW_PRIVS:
2612 if (arg2 || arg3 || arg4 || arg5)
2613 return -EINVAL;
2614 return task_no_new_privs(current) ? 1 : 0;
2615 case PR_GET_THP_DISABLE:
2616 if (arg2 || arg3 || arg4 || arg5)
2617 return -EINVAL;
2618 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2619 break;
2620 case PR_SET_THP_DISABLE:
2621 if (arg3 || arg4 || arg5)
2622 return -EINVAL;
2623 if (mmap_write_lock_killable(me->mm))
2624 return -EINTR;
2625 if (arg2)
2626 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2627 else
2628 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2629 mmap_write_unlock(me->mm);
2630 break;
2631 case PR_MPX_ENABLE_MANAGEMENT:
2632 case PR_MPX_DISABLE_MANAGEMENT:
2633 /* No longer implemented: */
2634 return -EINVAL;
2635 case PR_SET_FP_MODE:
2636 error = SET_FP_MODE(me, arg2);
2637 break;
2638 case PR_GET_FP_MODE:
2639 error = GET_FP_MODE(me);
2640 break;
2641 case PR_SVE_SET_VL:
2642 error = SVE_SET_VL(arg2);
2643 break;
2644 case PR_SVE_GET_VL:
2645 error = SVE_GET_VL();
2646 break;
2647 case PR_SME_SET_VL:
2648 error = SME_SET_VL(arg2);
2649 break;
2650 case PR_SME_GET_VL:
2651 error = SME_GET_VL();
2652 break;
2653 case PR_GET_SPECULATION_CTRL:
2654 if (arg3 || arg4 || arg5)
2655 return -EINVAL;
2656 error = arch_prctl_spec_ctrl_get(me, arg2);
2657 break;
2658 case PR_SET_SPECULATION_CTRL:
2659 if (arg4 || arg5)
2660 return -EINVAL;
2661 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2662 break;
2663 case PR_PAC_RESET_KEYS:
2664 if (arg3 || arg4 || arg5)
2665 return -EINVAL;
2666 error = PAC_RESET_KEYS(me, arg2);
2667 break;
2668 case PR_PAC_SET_ENABLED_KEYS:
2669 if (arg4 || arg5)
2670 return -EINVAL;
2671 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2672 break;
2673 case PR_PAC_GET_ENABLED_KEYS:
2674 if (arg2 || arg3 || arg4 || arg5)
2675 return -EINVAL;
2676 error = PAC_GET_ENABLED_KEYS(me);
2677 break;
2678 case PR_SET_TAGGED_ADDR_CTRL:
2679 if (arg3 || arg4 || arg5)
2680 return -EINVAL;
2681 error = SET_TAGGED_ADDR_CTRL(arg2);
2682 break;
2683 case PR_GET_TAGGED_ADDR_CTRL:
2684 if (arg2 || arg3 || arg4 || arg5)
2685 return -EINVAL;
2686 error = GET_TAGGED_ADDR_CTRL();
2687 break;
2688 case PR_SET_IO_FLUSHER:
2689 if (!capable(CAP_SYS_RESOURCE))
2690 return -EPERM;
2691
2692 if (arg3 || arg4 || arg5)
2693 return -EINVAL;
2694
2695 if (arg2 == 1)
2696 current->flags |= PR_IO_FLUSHER;
2697 else if (!arg2)
2698 current->flags &= ~PR_IO_FLUSHER;
2699 else
2700 return -EINVAL;
2701 break;
2702 case PR_GET_IO_FLUSHER:
2703 if (!capable(CAP_SYS_RESOURCE))
2704 return -EPERM;
2705
2706 if (arg2 || arg3 || arg4 || arg5)
2707 return -EINVAL;
2708
2709 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2710 break;
2711 case PR_SET_SYSCALL_USER_DISPATCH:
2712 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2713 (char __user *) arg5);
2714 break;
2715#ifdef CONFIG_SCHED_CORE
2716 case PR_SCHED_CORE:
2717 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2718 break;
2719#endif
2720 case PR_SET_MDWE:
2721 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2722 break;
2723 case PR_GET_MDWE:
2724 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2725 break;
2726 case PR_SET_VMA:
2727 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2728 break;
2729 case PR_GET_AUXV:
2730 if (arg4 || arg5)
2731 return -EINVAL;
2732 error = prctl_get_auxv((void __user *)arg2, arg3);
2733 break;
2734#ifdef CONFIG_KSM
2735 case PR_SET_MEMORY_MERGE:
2736 if (arg3 || arg4 || arg5)
2737 return -EINVAL;
2738 if (mmap_write_lock_killable(me->mm))
2739 return -EINTR;
2740
2741 if (arg2)
2742 error = ksm_enable_merge_any(me->mm);
2743 else
2744 error = ksm_disable_merge_any(me->mm);
2745 mmap_write_unlock(me->mm);
2746 break;
2747 case PR_GET_MEMORY_MERGE:
2748 if (arg2 || arg3 || arg4 || arg5)
2749 return -EINVAL;
2750
2751 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2752 break;
2753#endif
2754 case PR_RISCV_V_SET_CONTROL:
2755 error = RISCV_V_SET_CONTROL(arg2);
2756 break;
2757 case PR_RISCV_V_GET_CONTROL:
2758 error = RISCV_V_GET_CONTROL();
2759 break;
2760 default:
2761 error = -EINVAL;
2762 break;
2763 }
2764 return error;
2765}
2766
2767SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2768 struct getcpu_cache __user *, unused)
2769{
2770 int err = 0;
2771 int cpu = raw_smp_processor_id();
2772
2773 if (cpup)
2774 err |= put_user(cpu, cpup);
2775 if (nodep)
2776 err |= put_user(cpu_to_node(cpu), nodep);
2777 return err ? -EFAULT : 0;
2778}
2779
2780/**
2781 * do_sysinfo - fill in sysinfo struct
2782 * @info: pointer to buffer to fill
2783 */
2784static int do_sysinfo(struct sysinfo *info)
2785{
2786 unsigned long mem_total, sav_total;
2787 unsigned int mem_unit, bitcount;
2788 struct timespec64 tp;
2789
2790 memset(info, 0, sizeof(struct sysinfo));
2791
2792 ktime_get_boottime_ts64(&tp);
2793 timens_add_boottime(&tp);
2794 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2795
2796 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2797
2798 info->procs = nr_threads;
2799
2800 si_meminfo(info);
2801 si_swapinfo(info);
2802
2803 /*
2804 * If the sum of all the available memory (i.e. ram + swap)
2805 * is less than can be stored in a 32 bit unsigned long then
2806 * we can be binary compatible with 2.2.x kernels. If not,
2807 * well, in that case 2.2.x was broken anyways...
2808 *
2809 * -Erik Andersen <andersee@debian.org>
2810 */
2811
2812 mem_total = info->totalram + info->totalswap;
2813 if (mem_total < info->totalram || mem_total < info->totalswap)
2814 goto out;
2815 bitcount = 0;
2816 mem_unit = info->mem_unit;
2817 while (mem_unit > 1) {
2818 bitcount++;
2819 mem_unit >>= 1;
2820 sav_total = mem_total;
2821 mem_total <<= 1;
2822 if (mem_total < sav_total)
2823 goto out;
2824 }
2825
2826 /*
2827 * If mem_total did not overflow, multiply all memory values by
2828 * info->mem_unit and set it to 1. This leaves things compatible
2829 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2830 * kernels...
2831 */
2832
2833 info->mem_unit = 1;
2834 info->totalram <<= bitcount;
2835 info->freeram <<= bitcount;
2836 info->sharedram <<= bitcount;
2837 info->bufferram <<= bitcount;
2838 info->totalswap <<= bitcount;
2839 info->freeswap <<= bitcount;
2840 info->totalhigh <<= bitcount;
2841 info->freehigh <<= bitcount;
2842
2843out:
2844 return 0;
2845}
2846
2847SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2848{
2849 struct sysinfo val;
2850
2851 do_sysinfo(&val);
2852
2853 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2854 return -EFAULT;
2855
2856 return 0;
2857}
2858
2859#ifdef CONFIG_COMPAT
2860struct compat_sysinfo {
2861 s32 uptime;
2862 u32 loads[3];
2863 u32 totalram;
2864 u32 freeram;
2865 u32 sharedram;
2866 u32 bufferram;
2867 u32 totalswap;
2868 u32 freeswap;
2869 u16 procs;
2870 u16 pad;
2871 u32 totalhigh;
2872 u32 freehigh;
2873 u32 mem_unit;
2874 char _f[20-2*sizeof(u32)-sizeof(int)];
2875};
2876
2877COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2878{
2879 struct sysinfo s;
2880 struct compat_sysinfo s_32;
2881
2882 do_sysinfo(&s);
2883
2884 /* Check to see if any memory value is too large for 32-bit and scale
2885 * down if needed
2886 */
2887 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2888 int bitcount = 0;
2889
2890 while (s.mem_unit < PAGE_SIZE) {
2891 s.mem_unit <<= 1;
2892 bitcount++;
2893 }
2894
2895 s.totalram >>= bitcount;
2896 s.freeram >>= bitcount;
2897 s.sharedram >>= bitcount;
2898 s.bufferram >>= bitcount;
2899 s.totalswap >>= bitcount;
2900 s.freeswap >>= bitcount;
2901 s.totalhigh >>= bitcount;
2902 s.freehigh >>= bitcount;
2903 }
2904
2905 memset(&s_32, 0, sizeof(s_32));
2906 s_32.uptime = s.uptime;
2907 s_32.loads[0] = s.loads[0];
2908 s_32.loads[1] = s.loads[1];
2909 s_32.loads[2] = s.loads[2];
2910 s_32.totalram = s.totalram;
2911 s_32.freeram = s.freeram;
2912 s_32.sharedram = s.sharedram;
2913 s_32.bufferram = s.bufferram;
2914 s_32.totalswap = s.totalswap;
2915 s_32.freeswap = s.freeswap;
2916 s_32.procs = s.procs;
2917 s_32.totalhigh = s.totalhigh;
2918 s_32.freehigh = s.freehigh;
2919 s_32.mem_unit = s.mem_unit;
2920 if (copy_to_user(info, &s_32, sizeof(s_32)))
2921 return -EFAULT;
2922 return 0;
2923}
2924#endif /* CONFIG_COMPAT */