Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/perf_event.h>
19#include <linux/resource.h>
20#include <linux/kernel.h>
21#include <linux/workqueue.h>
22#include <linux/capability.h>
23#include <linux/device.h>
24#include <linux/key.h>
25#include <linux/times.h>
26#include <linux/posix-timers.h>
27#include <linux/security.h>
28#include <linux/random.h>
29#include <linux/suspend.h>
30#include <linux/tty.h>
31#include <linux/signal.h>
32#include <linux/cn_proc.h>
33#include <linux/getcpu.h>
34#include <linux/task_io_accounting_ops.h>
35#include <linux/seccomp.h>
36#include <linux/cpu.h>
37#include <linux/personality.h>
38#include <linux/ptrace.h>
39#include <linux/fs_struct.h>
40#include <linux/file.h>
41#include <linux/mount.h>
42#include <linux/gfp.h>
43#include <linux/syscore_ops.h>
44#include <linux/version.h>
45#include <linux/ctype.h>
46#include <linux/syscall_user_dispatch.h>
47
48#include <linux/compat.h>
49#include <linux/syscalls.h>
50#include <linux/kprobes.h>
51#include <linux/user_namespace.h>
52#include <linux/time_namespace.h>
53#include <linux/binfmts.h>
54
55#include <linux/sched.h>
56#include <linux/sched/autogroup.h>
57#include <linux/sched/loadavg.h>
58#include <linux/sched/stat.h>
59#include <linux/sched/mm.h>
60#include <linux/sched/coredump.h>
61#include <linux/sched/task.h>
62#include <linux/sched/cputime.h>
63#include <linux/rcupdate.h>
64#include <linux/uidgid.h>
65#include <linux/cred.h>
66
67#include <linux/nospec.h>
68
69#include <linux/kmsg_dump.h>
70/* Move somewhere else to avoid recompiling? */
71#include <generated/utsrelease.h>
72
73#include <linux/uaccess.h>
74#include <asm/io.h>
75#include <asm/unistd.h>
76
77#include "uid16.h"
78
79#ifndef SET_UNALIGN_CTL
80# define SET_UNALIGN_CTL(a, b) (-EINVAL)
81#endif
82#ifndef GET_UNALIGN_CTL
83# define GET_UNALIGN_CTL(a, b) (-EINVAL)
84#endif
85#ifndef SET_FPEMU_CTL
86# define SET_FPEMU_CTL(a, b) (-EINVAL)
87#endif
88#ifndef GET_FPEMU_CTL
89# define GET_FPEMU_CTL(a, b) (-EINVAL)
90#endif
91#ifndef SET_FPEXC_CTL
92# define SET_FPEXC_CTL(a, b) (-EINVAL)
93#endif
94#ifndef GET_FPEXC_CTL
95# define GET_FPEXC_CTL(a, b) (-EINVAL)
96#endif
97#ifndef GET_ENDIAN
98# define GET_ENDIAN(a, b) (-EINVAL)
99#endif
100#ifndef SET_ENDIAN
101# define SET_ENDIAN(a, b) (-EINVAL)
102#endif
103#ifndef GET_TSC_CTL
104# define GET_TSC_CTL(a) (-EINVAL)
105#endif
106#ifndef SET_TSC_CTL
107# define SET_TSC_CTL(a) (-EINVAL)
108#endif
109#ifndef GET_FP_MODE
110# define GET_FP_MODE(a) (-EINVAL)
111#endif
112#ifndef SET_FP_MODE
113# define SET_FP_MODE(a,b) (-EINVAL)
114#endif
115#ifndef SVE_SET_VL
116# define SVE_SET_VL(a) (-EINVAL)
117#endif
118#ifndef SVE_GET_VL
119# define SVE_GET_VL() (-EINVAL)
120#endif
121#ifndef SME_SET_VL
122# define SME_SET_VL(a) (-EINVAL)
123#endif
124#ifndef SME_GET_VL
125# define SME_GET_VL() (-EINVAL)
126#endif
127#ifndef PAC_RESET_KEYS
128# define PAC_RESET_KEYS(a, b) (-EINVAL)
129#endif
130#ifndef PAC_SET_ENABLED_KEYS
131# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
132#endif
133#ifndef PAC_GET_ENABLED_KEYS
134# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
135#endif
136#ifndef SET_TAGGED_ADDR_CTRL
137# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
138#endif
139#ifndef GET_TAGGED_ADDR_CTRL
140# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
141#endif
142
143/*
144 * this is where the system-wide overflow UID and GID are defined, for
145 * architectures that now have 32-bit UID/GID but didn't in the past
146 */
147
148int overflowuid = DEFAULT_OVERFLOWUID;
149int overflowgid = DEFAULT_OVERFLOWGID;
150
151EXPORT_SYMBOL(overflowuid);
152EXPORT_SYMBOL(overflowgid);
153
154/*
155 * the same as above, but for filesystems which can only store a 16-bit
156 * UID and GID. as such, this is needed on all architectures
157 */
158
159int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
160int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
161
162EXPORT_SYMBOL(fs_overflowuid);
163EXPORT_SYMBOL(fs_overflowgid);
164
165/*
166 * Returns true if current's euid is same as p's uid or euid,
167 * or has CAP_SYS_NICE to p's user_ns.
168 *
169 * Called with rcu_read_lock, creds are safe
170 */
171static bool set_one_prio_perm(struct task_struct *p)
172{
173 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
174
175 if (uid_eq(pcred->uid, cred->euid) ||
176 uid_eq(pcred->euid, cred->euid))
177 return true;
178 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
179 return true;
180 return false;
181}
182
183/*
184 * set the priority of a task
185 * - the caller must hold the RCU read lock
186 */
187static int set_one_prio(struct task_struct *p, int niceval, int error)
188{
189 int no_nice;
190
191 if (!set_one_prio_perm(p)) {
192 error = -EPERM;
193 goto out;
194 }
195 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
196 error = -EACCES;
197 goto out;
198 }
199 no_nice = security_task_setnice(p, niceval);
200 if (no_nice) {
201 error = no_nice;
202 goto out;
203 }
204 if (error == -ESRCH)
205 error = 0;
206 set_user_nice(p, niceval);
207out:
208 return error;
209}
210
211SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
212{
213 struct task_struct *g, *p;
214 struct user_struct *user;
215 const struct cred *cred = current_cred();
216 int error = -EINVAL;
217 struct pid *pgrp;
218 kuid_t uid;
219
220 if (which > PRIO_USER || which < PRIO_PROCESS)
221 goto out;
222
223 /* normalize: avoid signed division (rounding problems) */
224 error = -ESRCH;
225 if (niceval < MIN_NICE)
226 niceval = MIN_NICE;
227 if (niceval > MAX_NICE)
228 niceval = MAX_NICE;
229
230 rcu_read_lock();
231 switch (which) {
232 case PRIO_PROCESS:
233 if (who)
234 p = find_task_by_vpid(who);
235 else
236 p = current;
237 if (p)
238 error = set_one_prio(p, niceval, error);
239 break;
240 case PRIO_PGRP:
241 if (who)
242 pgrp = find_vpid(who);
243 else
244 pgrp = task_pgrp(current);
245 read_lock(&tasklist_lock);
246 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
247 error = set_one_prio(p, niceval, error);
248 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 read_unlock(&tasklist_lock);
250 break;
251 case PRIO_USER:
252 uid = make_kuid(cred->user_ns, who);
253 user = cred->user;
254 if (!who)
255 uid = cred->uid;
256 else if (!uid_eq(uid, cred->uid)) {
257 user = find_user(uid);
258 if (!user)
259 goto out_unlock; /* No processes for this user */
260 }
261 for_each_process_thread(g, p) {
262 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
263 error = set_one_prio(p, niceval, error);
264 }
265 if (!uid_eq(uid, cred->uid))
266 free_uid(user); /* For find_user() */
267 break;
268 }
269out_unlock:
270 rcu_read_unlock();
271out:
272 return error;
273}
274
275/*
276 * Ugh. To avoid negative return values, "getpriority()" will
277 * not return the normal nice-value, but a negated value that
278 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
279 * to stay compatible.
280 */
281SYSCALL_DEFINE2(getpriority, int, which, int, who)
282{
283 struct task_struct *g, *p;
284 struct user_struct *user;
285 const struct cred *cred = current_cred();
286 long niceval, retval = -ESRCH;
287 struct pid *pgrp;
288 kuid_t uid;
289
290 if (which > PRIO_USER || which < PRIO_PROCESS)
291 return -EINVAL;
292
293 rcu_read_lock();
294 switch (which) {
295 case PRIO_PROCESS:
296 if (who)
297 p = find_task_by_vpid(who);
298 else
299 p = current;
300 if (p) {
301 niceval = nice_to_rlimit(task_nice(p));
302 if (niceval > retval)
303 retval = niceval;
304 }
305 break;
306 case PRIO_PGRP:
307 if (who)
308 pgrp = find_vpid(who);
309 else
310 pgrp = task_pgrp(current);
311 read_lock(&tasklist_lock);
312 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
313 niceval = nice_to_rlimit(task_nice(p));
314 if (niceval > retval)
315 retval = niceval;
316 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
317 read_unlock(&tasklist_lock);
318 break;
319 case PRIO_USER:
320 uid = make_kuid(cred->user_ns, who);
321 user = cred->user;
322 if (!who)
323 uid = cred->uid;
324 else if (!uid_eq(uid, cred->uid)) {
325 user = find_user(uid);
326 if (!user)
327 goto out_unlock; /* No processes for this user */
328 }
329 for_each_process_thread(g, p) {
330 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
331 niceval = nice_to_rlimit(task_nice(p));
332 if (niceval > retval)
333 retval = niceval;
334 }
335 }
336 if (!uid_eq(uid, cred->uid))
337 free_uid(user); /* for find_user() */
338 break;
339 }
340out_unlock:
341 rcu_read_unlock();
342
343 return retval;
344}
345
346/*
347 * Unprivileged users may change the real gid to the effective gid
348 * or vice versa. (BSD-style)
349 *
350 * If you set the real gid at all, or set the effective gid to a value not
351 * equal to the real gid, then the saved gid is set to the new effective gid.
352 *
353 * This makes it possible for a setgid program to completely drop its
354 * privileges, which is often a useful assertion to make when you are doing
355 * a security audit over a program.
356 *
357 * The general idea is that a program which uses just setregid() will be
358 * 100% compatible with BSD. A program which uses just setgid() will be
359 * 100% compatible with POSIX with saved IDs.
360 *
361 * SMP: There are not races, the GIDs are checked only by filesystem
362 * operations (as far as semantic preservation is concerned).
363 */
364#ifdef CONFIG_MULTIUSER
365long __sys_setregid(gid_t rgid, gid_t egid)
366{
367 struct user_namespace *ns = current_user_ns();
368 const struct cred *old;
369 struct cred *new;
370 int retval;
371 kgid_t krgid, kegid;
372
373 krgid = make_kgid(ns, rgid);
374 kegid = make_kgid(ns, egid);
375
376 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
377 return -EINVAL;
378 if ((egid != (gid_t) -1) && !gid_valid(kegid))
379 return -EINVAL;
380
381 new = prepare_creds();
382 if (!new)
383 return -ENOMEM;
384 old = current_cred();
385
386 retval = -EPERM;
387 if (rgid != (gid_t) -1) {
388 if (gid_eq(old->gid, krgid) ||
389 gid_eq(old->egid, krgid) ||
390 ns_capable_setid(old->user_ns, CAP_SETGID))
391 new->gid = krgid;
392 else
393 goto error;
394 }
395 if (egid != (gid_t) -1) {
396 if (gid_eq(old->gid, kegid) ||
397 gid_eq(old->egid, kegid) ||
398 gid_eq(old->sgid, kegid) ||
399 ns_capable_setid(old->user_ns, CAP_SETGID))
400 new->egid = kegid;
401 else
402 goto error;
403 }
404
405 if (rgid != (gid_t) -1 ||
406 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
407 new->sgid = new->egid;
408 new->fsgid = new->egid;
409
410 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
411 if (retval < 0)
412 goto error;
413
414 return commit_creds(new);
415
416error:
417 abort_creds(new);
418 return retval;
419}
420
421SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
422{
423 return __sys_setregid(rgid, egid);
424}
425
426/*
427 * setgid() is implemented like SysV w/ SAVED_IDS
428 *
429 * SMP: Same implicit races as above.
430 */
431long __sys_setgid(gid_t gid)
432{
433 struct user_namespace *ns = current_user_ns();
434 const struct cred *old;
435 struct cred *new;
436 int retval;
437 kgid_t kgid;
438
439 kgid = make_kgid(ns, gid);
440 if (!gid_valid(kgid))
441 return -EINVAL;
442
443 new = prepare_creds();
444 if (!new)
445 return -ENOMEM;
446 old = current_cred();
447
448 retval = -EPERM;
449 if (ns_capable_setid(old->user_ns, CAP_SETGID))
450 new->gid = new->egid = new->sgid = new->fsgid = kgid;
451 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
452 new->egid = new->fsgid = kgid;
453 else
454 goto error;
455
456 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
457 if (retval < 0)
458 goto error;
459
460 return commit_creds(new);
461
462error:
463 abort_creds(new);
464 return retval;
465}
466
467SYSCALL_DEFINE1(setgid, gid_t, gid)
468{
469 return __sys_setgid(gid);
470}
471
472/*
473 * change the user struct in a credentials set to match the new UID
474 */
475static int set_user(struct cred *new)
476{
477 struct user_struct *new_user;
478
479 new_user = alloc_uid(new->uid);
480 if (!new_user)
481 return -EAGAIN;
482
483 free_uid(new->user);
484 new->user = new_user;
485 return 0;
486}
487
488static void flag_nproc_exceeded(struct cred *new)
489{
490 if (new->ucounts == current_ucounts())
491 return;
492
493 /*
494 * We don't fail in case of NPROC limit excess here because too many
495 * poorly written programs don't check set*uid() return code, assuming
496 * it never fails if called by root. We may still enforce NPROC limit
497 * for programs doing set*uid()+execve() by harmlessly deferring the
498 * failure to the execve() stage.
499 */
500 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
501 new->user != INIT_USER)
502 current->flags |= PF_NPROC_EXCEEDED;
503 else
504 current->flags &= ~PF_NPROC_EXCEEDED;
505}
506
507/*
508 * Unprivileged users may change the real uid to the effective uid
509 * or vice versa. (BSD-style)
510 *
511 * If you set the real uid at all, or set the effective uid to a value not
512 * equal to the real uid, then the saved uid is set to the new effective uid.
513 *
514 * This makes it possible for a setuid program to completely drop its
515 * privileges, which is often a useful assertion to make when you are doing
516 * a security audit over a program.
517 *
518 * The general idea is that a program which uses just setreuid() will be
519 * 100% compatible with BSD. A program which uses just setuid() will be
520 * 100% compatible with POSIX with saved IDs.
521 */
522long __sys_setreuid(uid_t ruid, uid_t euid)
523{
524 struct user_namespace *ns = current_user_ns();
525 const struct cred *old;
526 struct cred *new;
527 int retval;
528 kuid_t kruid, keuid;
529
530 kruid = make_kuid(ns, ruid);
531 keuid = make_kuid(ns, euid);
532
533 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
534 return -EINVAL;
535 if ((euid != (uid_t) -1) && !uid_valid(keuid))
536 return -EINVAL;
537
538 new = prepare_creds();
539 if (!new)
540 return -ENOMEM;
541 old = current_cred();
542
543 retval = -EPERM;
544 if (ruid != (uid_t) -1) {
545 new->uid = kruid;
546 if (!uid_eq(old->uid, kruid) &&
547 !uid_eq(old->euid, kruid) &&
548 !ns_capable_setid(old->user_ns, CAP_SETUID))
549 goto error;
550 }
551
552 if (euid != (uid_t) -1) {
553 new->euid = keuid;
554 if (!uid_eq(old->uid, keuid) &&
555 !uid_eq(old->euid, keuid) &&
556 !uid_eq(old->suid, keuid) &&
557 !ns_capable_setid(old->user_ns, CAP_SETUID))
558 goto error;
559 }
560
561 if (!uid_eq(new->uid, old->uid)) {
562 retval = set_user(new);
563 if (retval < 0)
564 goto error;
565 }
566 if (ruid != (uid_t) -1 ||
567 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
568 new->suid = new->euid;
569 new->fsuid = new->euid;
570
571 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
572 if (retval < 0)
573 goto error;
574
575 retval = set_cred_ucounts(new);
576 if (retval < 0)
577 goto error;
578
579 flag_nproc_exceeded(new);
580 return commit_creds(new);
581
582error:
583 abort_creds(new);
584 return retval;
585}
586
587SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
588{
589 return __sys_setreuid(ruid, euid);
590}
591
592/*
593 * setuid() is implemented like SysV with SAVED_IDS
594 *
595 * Note that SAVED_ID's is deficient in that a setuid root program
596 * like sendmail, for example, cannot set its uid to be a normal
597 * user and then switch back, because if you're root, setuid() sets
598 * the saved uid too. If you don't like this, blame the bright people
599 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
600 * will allow a root program to temporarily drop privileges and be able to
601 * regain them by swapping the real and effective uid.
602 */
603long __sys_setuid(uid_t uid)
604{
605 struct user_namespace *ns = current_user_ns();
606 const struct cred *old;
607 struct cred *new;
608 int retval;
609 kuid_t kuid;
610
611 kuid = make_kuid(ns, uid);
612 if (!uid_valid(kuid))
613 return -EINVAL;
614
615 new = prepare_creds();
616 if (!new)
617 return -ENOMEM;
618 old = current_cred();
619
620 retval = -EPERM;
621 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
622 new->suid = new->uid = kuid;
623 if (!uid_eq(kuid, old->uid)) {
624 retval = set_user(new);
625 if (retval < 0)
626 goto error;
627 }
628 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
629 goto error;
630 }
631
632 new->fsuid = new->euid = kuid;
633
634 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
635 if (retval < 0)
636 goto error;
637
638 retval = set_cred_ucounts(new);
639 if (retval < 0)
640 goto error;
641
642 flag_nproc_exceeded(new);
643 return commit_creds(new);
644
645error:
646 abort_creds(new);
647 return retval;
648}
649
650SYSCALL_DEFINE1(setuid, uid_t, uid)
651{
652 return __sys_setuid(uid);
653}
654
655
656/*
657 * This function implements a generic ability to update ruid, euid,
658 * and suid. This allows you to implement the 4.4 compatible seteuid().
659 */
660long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
661{
662 struct user_namespace *ns = current_user_ns();
663 const struct cred *old;
664 struct cred *new;
665 int retval;
666 kuid_t kruid, keuid, ksuid;
667
668 kruid = make_kuid(ns, ruid);
669 keuid = make_kuid(ns, euid);
670 ksuid = make_kuid(ns, suid);
671
672 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
673 return -EINVAL;
674
675 if ((euid != (uid_t) -1) && !uid_valid(keuid))
676 return -EINVAL;
677
678 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
679 return -EINVAL;
680
681 new = prepare_creds();
682 if (!new)
683 return -ENOMEM;
684
685 old = current_cred();
686
687 retval = -EPERM;
688 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
689 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
690 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
691 goto error;
692 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
693 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
694 goto error;
695 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
696 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
697 goto error;
698 }
699
700 if (ruid != (uid_t) -1) {
701 new->uid = kruid;
702 if (!uid_eq(kruid, old->uid)) {
703 retval = set_user(new);
704 if (retval < 0)
705 goto error;
706 }
707 }
708 if (euid != (uid_t) -1)
709 new->euid = keuid;
710 if (suid != (uid_t) -1)
711 new->suid = ksuid;
712 new->fsuid = new->euid;
713
714 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
715 if (retval < 0)
716 goto error;
717
718 retval = set_cred_ucounts(new);
719 if (retval < 0)
720 goto error;
721
722 flag_nproc_exceeded(new);
723 return commit_creds(new);
724
725error:
726 abort_creds(new);
727 return retval;
728}
729
730SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
731{
732 return __sys_setresuid(ruid, euid, suid);
733}
734
735SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
736{
737 const struct cred *cred = current_cred();
738 int retval;
739 uid_t ruid, euid, suid;
740
741 ruid = from_kuid_munged(cred->user_ns, cred->uid);
742 euid = from_kuid_munged(cred->user_ns, cred->euid);
743 suid = from_kuid_munged(cred->user_ns, cred->suid);
744
745 retval = put_user(ruid, ruidp);
746 if (!retval) {
747 retval = put_user(euid, euidp);
748 if (!retval)
749 return put_user(suid, suidp);
750 }
751 return retval;
752}
753
754/*
755 * Same as above, but for rgid, egid, sgid.
756 */
757long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
758{
759 struct user_namespace *ns = current_user_ns();
760 const struct cred *old;
761 struct cred *new;
762 int retval;
763 kgid_t krgid, kegid, ksgid;
764
765 krgid = make_kgid(ns, rgid);
766 kegid = make_kgid(ns, egid);
767 ksgid = make_kgid(ns, sgid);
768
769 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
770 return -EINVAL;
771 if ((egid != (gid_t) -1) && !gid_valid(kegid))
772 return -EINVAL;
773 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
774 return -EINVAL;
775
776 new = prepare_creds();
777 if (!new)
778 return -ENOMEM;
779 old = current_cred();
780
781 retval = -EPERM;
782 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
783 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
784 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
785 goto error;
786 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
787 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
788 goto error;
789 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
790 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
791 goto error;
792 }
793
794 if (rgid != (gid_t) -1)
795 new->gid = krgid;
796 if (egid != (gid_t) -1)
797 new->egid = kegid;
798 if (sgid != (gid_t) -1)
799 new->sgid = ksgid;
800 new->fsgid = new->egid;
801
802 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
803 if (retval < 0)
804 goto error;
805
806 return commit_creds(new);
807
808error:
809 abort_creds(new);
810 return retval;
811}
812
813SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
814{
815 return __sys_setresgid(rgid, egid, sgid);
816}
817
818SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
819{
820 const struct cred *cred = current_cred();
821 int retval;
822 gid_t rgid, egid, sgid;
823
824 rgid = from_kgid_munged(cred->user_ns, cred->gid);
825 egid = from_kgid_munged(cred->user_ns, cred->egid);
826 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
827
828 retval = put_user(rgid, rgidp);
829 if (!retval) {
830 retval = put_user(egid, egidp);
831 if (!retval)
832 retval = put_user(sgid, sgidp);
833 }
834
835 return retval;
836}
837
838
839/*
840 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
841 * is used for "access()" and for the NFS daemon (letting nfsd stay at
842 * whatever uid it wants to). It normally shadows "euid", except when
843 * explicitly set by setfsuid() or for access..
844 */
845long __sys_setfsuid(uid_t uid)
846{
847 const struct cred *old;
848 struct cred *new;
849 uid_t old_fsuid;
850 kuid_t kuid;
851
852 old = current_cred();
853 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
854
855 kuid = make_kuid(old->user_ns, uid);
856 if (!uid_valid(kuid))
857 return old_fsuid;
858
859 new = prepare_creds();
860 if (!new)
861 return old_fsuid;
862
863 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
864 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
865 ns_capable_setid(old->user_ns, CAP_SETUID)) {
866 if (!uid_eq(kuid, old->fsuid)) {
867 new->fsuid = kuid;
868 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
869 goto change_okay;
870 }
871 }
872
873 abort_creds(new);
874 return old_fsuid;
875
876change_okay:
877 commit_creds(new);
878 return old_fsuid;
879}
880
881SYSCALL_DEFINE1(setfsuid, uid_t, uid)
882{
883 return __sys_setfsuid(uid);
884}
885
886/*
887 * Samma på svenska..
888 */
889long __sys_setfsgid(gid_t gid)
890{
891 const struct cred *old;
892 struct cred *new;
893 gid_t old_fsgid;
894 kgid_t kgid;
895
896 old = current_cred();
897 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
898
899 kgid = make_kgid(old->user_ns, gid);
900 if (!gid_valid(kgid))
901 return old_fsgid;
902
903 new = prepare_creds();
904 if (!new)
905 return old_fsgid;
906
907 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
908 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
909 ns_capable_setid(old->user_ns, CAP_SETGID)) {
910 if (!gid_eq(kgid, old->fsgid)) {
911 new->fsgid = kgid;
912 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
913 goto change_okay;
914 }
915 }
916
917 abort_creds(new);
918 return old_fsgid;
919
920change_okay:
921 commit_creds(new);
922 return old_fsgid;
923}
924
925SYSCALL_DEFINE1(setfsgid, gid_t, gid)
926{
927 return __sys_setfsgid(gid);
928}
929#endif /* CONFIG_MULTIUSER */
930
931/**
932 * sys_getpid - return the thread group id of the current process
933 *
934 * Note, despite the name, this returns the tgid not the pid. The tgid and
935 * the pid are identical unless CLONE_THREAD was specified on clone() in
936 * which case the tgid is the same in all threads of the same group.
937 *
938 * This is SMP safe as current->tgid does not change.
939 */
940SYSCALL_DEFINE0(getpid)
941{
942 return task_tgid_vnr(current);
943}
944
945/* Thread ID - the internal kernel "pid" */
946SYSCALL_DEFINE0(gettid)
947{
948 return task_pid_vnr(current);
949}
950
951/*
952 * Accessing ->real_parent is not SMP-safe, it could
953 * change from under us. However, we can use a stale
954 * value of ->real_parent under rcu_read_lock(), see
955 * release_task()->call_rcu(delayed_put_task_struct).
956 */
957SYSCALL_DEFINE0(getppid)
958{
959 int pid;
960
961 rcu_read_lock();
962 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
963 rcu_read_unlock();
964
965 return pid;
966}
967
968SYSCALL_DEFINE0(getuid)
969{
970 /* Only we change this so SMP safe */
971 return from_kuid_munged(current_user_ns(), current_uid());
972}
973
974SYSCALL_DEFINE0(geteuid)
975{
976 /* Only we change this so SMP safe */
977 return from_kuid_munged(current_user_ns(), current_euid());
978}
979
980SYSCALL_DEFINE0(getgid)
981{
982 /* Only we change this so SMP safe */
983 return from_kgid_munged(current_user_ns(), current_gid());
984}
985
986SYSCALL_DEFINE0(getegid)
987{
988 /* Only we change this so SMP safe */
989 return from_kgid_munged(current_user_ns(), current_egid());
990}
991
992static void do_sys_times(struct tms *tms)
993{
994 u64 tgutime, tgstime, cutime, cstime;
995
996 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
997 cutime = current->signal->cutime;
998 cstime = current->signal->cstime;
999 tms->tms_utime = nsec_to_clock_t(tgutime);
1000 tms->tms_stime = nsec_to_clock_t(tgstime);
1001 tms->tms_cutime = nsec_to_clock_t(cutime);
1002 tms->tms_cstime = nsec_to_clock_t(cstime);
1003}
1004
1005SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1006{
1007 if (tbuf) {
1008 struct tms tmp;
1009
1010 do_sys_times(&tmp);
1011 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1012 return -EFAULT;
1013 }
1014 force_successful_syscall_return();
1015 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1016}
1017
1018#ifdef CONFIG_COMPAT
1019static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1020{
1021 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1022}
1023
1024COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1025{
1026 if (tbuf) {
1027 struct tms tms;
1028 struct compat_tms tmp;
1029
1030 do_sys_times(&tms);
1031 /* Convert our struct tms to the compat version. */
1032 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1033 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1034 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1035 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1036 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1037 return -EFAULT;
1038 }
1039 force_successful_syscall_return();
1040 return compat_jiffies_to_clock_t(jiffies);
1041}
1042#endif
1043
1044/*
1045 * This needs some heavy checking ...
1046 * I just haven't the stomach for it. I also don't fully
1047 * understand sessions/pgrp etc. Let somebody who does explain it.
1048 *
1049 * OK, I think I have the protection semantics right.... this is really
1050 * only important on a multi-user system anyway, to make sure one user
1051 * can't send a signal to a process owned by another. -TYT, 12/12/91
1052 *
1053 * !PF_FORKNOEXEC check to conform completely to POSIX.
1054 */
1055SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1056{
1057 struct task_struct *p;
1058 struct task_struct *group_leader = current->group_leader;
1059 struct pid *pgrp;
1060 int err;
1061
1062 if (!pid)
1063 pid = task_pid_vnr(group_leader);
1064 if (!pgid)
1065 pgid = pid;
1066 if (pgid < 0)
1067 return -EINVAL;
1068 rcu_read_lock();
1069
1070 /* From this point forward we keep holding onto the tasklist lock
1071 * so that our parent does not change from under us. -DaveM
1072 */
1073 write_lock_irq(&tasklist_lock);
1074
1075 err = -ESRCH;
1076 p = find_task_by_vpid(pid);
1077 if (!p)
1078 goto out;
1079
1080 err = -EINVAL;
1081 if (!thread_group_leader(p))
1082 goto out;
1083
1084 if (same_thread_group(p->real_parent, group_leader)) {
1085 err = -EPERM;
1086 if (task_session(p) != task_session(group_leader))
1087 goto out;
1088 err = -EACCES;
1089 if (!(p->flags & PF_FORKNOEXEC))
1090 goto out;
1091 } else {
1092 err = -ESRCH;
1093 if (p != group_leader)
1094 goto out;
1095 }
1096
1097 err = -EPERM;
1098 if (p->signal->leader)
1099 goto out;
1100
1101 pgrp = task_pid(p);
1102 if (pgid != pid) {
1103 struct task_struct *g;
1104
1105 pgrp = find_vpid(pgid);
1106 g = pid_task(pgrp, PIDTYPE_PGID);
1107 if (!g || task_session(g) != task_session(group_leader))
1108 goto out;
1109 }
1110
1111 err = security_task_setpgid(p, pgid);
1112 if (err)
1113 goto out;
1114
1115 if (task_pgrp(p) != pgrp)
1116 change_pid(p, PIDTYPE_PGID, pgrp);
1117
1118 err = 0;
1119out:
1120 /* All paths lead to here, thus we are safe. -DaveM */
1121 write_unlock_irq(&tasklist_lock);
1122 rcu_read_unlock();
1123 return err;
1124}
1125
1126static int do_getpgid(pid_t pid)
1127{
1128 struct task_struct *p;
1129 struct pid *grp;
1130 int retval;
1131
1132 rcu_read_lock();
1133 if (!pid)
1134 grp = task_pgrp(current);
1135 else {
1136 retval = -ESRCH;
1137 p = find_task_by_vpid(pid);
1138 if (!p)
1139 goto out;
1140 grp = task_pgrp(p);
1141 if (!grp)
1142 goto out;
1143
1144 retval = security_task_getpgid(p);
1145 if (retval)
1146 goto out;
1147 }
1148 retval = pid_vnr(grp);
1149out:
1150 rcu_read_unlock();
1151 return retval;
1152}
1153
1154SYSCALL_DEFINE1(getpgid, pid_t, pid)
1155{
1156 return do_getpgid(pid);
1157}
1158
1159#ifdef __ARCH_WANT_SYS_GETPGRP
1160
1161SYSCALL_DEFINE0(getpgrp)
1162{
1163 return do_getpgid(0);
1164}
1165
1166#endif
1167
1168SYSCALL_DEFINE1(getsid, pid_t, pid)
1169{
1170 struct task_struct *p;
1171 struct pid *sid;
1172 int retval;
1173
1174 rcu_read_lock();
1175 if (!pid)
1176 sid = task_session(current);
1177 else {
1178 retval = -ESRCH;
1179 p = find_task_by_vpid(pid);
1180 if (!p)
1181 goto out;
1182 sid = task_session(p);
1183 if (!sid)
1184 goto out;
1185
1186 retval = security_task_getsid(p);
1187 if (retval)
1188 goto out;
1189 }
1190 retval = pid_vnr(sid);
1191out:
1192 rcu_read_unlock();
1193 return retval;
1194}
1195
1196static void set_special_pids(struct pid *pid)
1197{
1198 struct task_struct *curr = current->group_leader;
1199
1200 if (task_session(curr) != pid)
1201 change_pid(curr, PIDTYPE_SID, pid);
1202
1203 if (task_pgrp(curr) != pid)
1204 change_pid(curr, PIDTYPE_PGID, pid);
1205}
1206
1207int ksys_setsid(void)
1208{
1209 struct task_struct *group_leader = current->group_leader;
1210 struct pid *sid = task_pid(group_leader);
1211 pid_t session = pid_vnr(sid);
1212 int err = -EPERM;
1213
1214 write_lock_irq(&tasklist_lock);
1215 /* Fail if I am already a session leader */
1216 if (group_leader->signal->leader)
1217 goto out;
1218
1219 /* Fail if a process group id already exists that equals the
1220 * proposed session id.
1221 */
1222 if (pid_task(sid, PIDTYPE_PGID))
1223 goto out;
1224
1225 group_leader->signal->leader = 1;
1226 set_special_pids(sid);
1227
1228 proc_clear_tty(group_leader);
1229
1230 err = session;
1231out:
1232 write_unlock_irq(&tasklist_lock);
1233 if (err > 0) {
1234 proc_sid_connector(group_leader);
1235 sched_autogroup_create_attach(group_leader);
1236 }
1237 return err;
1238}
1239
1240SYSCALL_DEFINE0(setsid)
1241{
1242 return ksys_setsid();
1243}
1244
1245DECLARE_RWSEM(uts_sem);
1246
1247#ifdef COMPAT_UTS_MACHINE
1248#define override_architecture(name) \
1249 (personality(current->personality) == PER_LINUX32 && \
1250 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1251 sizeof(COMPAT_UTS_MACHINE)))
1252#else
1253#define override_architecture(name) 0
1254#endif
1255
1256/*
1257 * Work around broken programs that cannot handle "Linux 3.0".
1258 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1259 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1260 * 2.6.60.
1261 */
1262static int override_release(char __user *release, size_t len)
1263{
1264 int ret = 0;
1265
1266 if (current->personality & UNAME26) {
1267 const char *rest = UTS_RELEASE;
1268 char buf[65] = { 0 };
1269 int ndots = 0;
1270 unsigned v;
1271 size_t copy;
1272
1273 while (*rest) {
1274 if (*rest == '.' && ++ndots >= 3)
1275 break;
1276 if (!isdigit(*rest) && *rest != '.')
1277 break;
1278 rest++;
1279 }
1280 v = LINUX_VERSION_PATCHLEVEL + 60;
1281 copy = clamp_t(size_t, len, 1, sizeof(buf));
1282 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1283 ret = copy_to_user(release, buf, copy + 1);
1284 }
1285 return ret;
1286}
1287
1288SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1289{
1290 struct new_utsname tmp;
1291
1292 down_read(&uts_sem);
1293 memcpy(&tmp, utsname(), sizeof(tmp));
1294 up_read(&uts_sem);
1295 if (copy_to_user(name, &tmp, sizeof(tmp)))
1296 return -EFAULT;
1297
1298 if (override_release(name->release, sizeof(name->release)))
1299 return -EFAULT;
1300 if (override_architecture(name))
1301 return -EFAULT;
1302 return 0;
1303}
1304
1305#ifdef __ARCH_WANT_SYS_OLD_UNAME
1306/*
1307 * Old cruft
1308 */
1309SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1310{
1311 struct old_utsname tmp;
1312
1313 if (!name)
1314 return -EFAULT;
1315
1316 down_read(&uts_sem);
1317 memcpy(&tmp, utsname(), sizeof(tmp));
1318 up_read(&uts_sem);
1319 if (copy_to_user(name, &tmp, sizeof(tmp)))
1320 return -EFAULT;
1321
1322 if (override_release(name->release, sizeof(name->release)))
1323 return -EFAULT;
1324 if (override_architecture(name))
1325 return -EFAULT;
1326 return 0;
1327}
1328
1329SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1330{
1331 struct oldold_utsname tmp;
1332
1333 if (!name)
1334 return -EFAULT;
1335
1336 memset(&tmp, 0, sizeof(tmp));
1337
1338 down_read(&uts_sem);
1339 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1340 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1341 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1342 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1343 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1344 up_read(&uts_sem);
1345 if (copy_to_user(name, &tmp, sizeof(tmp)))
1346 return -EFAULT;
1347
1348 if (override_architecture(name))
1349 return -EFAULT;
1350 if (override_release(name->release, sizeof(name->release)))
1351 return -EFAULT;
1352 return 0;
1353}
1354#endif
1355
1356SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1357{
1358 int errno;
1359 char tmp[__NEW_UTS_LEN];
1360
1361 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1362 return -EPERM;
1363
1364 if (len < 0 || len > __NEW_UTS_LEN)
1365 return -EINVAL;
1366 errno = -EFAULT;
1367 if (!copy_from_user(tmp, name, len)) {
1368 struct new_utsname *u;
1369
1370 add_device_randomness(tmp, len);
1371 down_write(&uts_sem);
1372 u = utsname();
1373 memcpy(u->nodename, tmp, len);
1374 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1375 errno = 0;
1376 uts_proc_notify(UTS_PROC_HOSTNAME);
1377 up_write(&uts_sem);
1378 }
1379 return errno;
1380}
1381
1382#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1383
1384SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1385{
1386 int i;
1387 struct new_utsname *u;
1388 char tmp[__NEW_UTS_LEN + 1];
1389
1390 if (len < 0)
1391 return -EINVAL;
1392 down_read(&uts_sem);
1393 u = utsname();
1394 i = 1 + strlen(u->nodename);
1395 if (i > len)
1396 i = len;
1397 memcpy(tmp, u->nodename, i);
1398 up_read(&uts_sem);
1399 if (copy_to_user(name, tmp, i))
1400 return -EFAULT;
1401 return 0;
1402}
1403
1404#endif
1405
1406/*
1407 * Only setdomainname; getdomainname can be implemented by calling
1408 * uname()
1409 */
1410SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1411{
1412 int errno;
1413 char tmp[__NEW_UTS_LEN];
1414
1415 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1416 return -EPERM;
1417 if (len < 0 || len > __NEW_UTS_LEN)
1418 return -EINVAL;
1419
1420 errno = -EFAULT;
1421 if (!copy_from_user(tmp, name, len)) {
1422 struct new_utsname *u;
1423
1424 add_device_randomness(tmp, len);
1425 down_write(&uts_sem);
1426 u = utsname();
1427 memcpy(u->domainname, tmp, len);
1428 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1429 errno = 0;
1430 uts_proc_notify(UTS_PROC_DOMAINNAME);
1431 up_write(&uts_sem);
1432 }
1433 return errno;
1434}
1435
1436/* make sure you are allowed to change @tsk limits before calling this */
1437static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1438 struct rlimit *new_rlim, struct rlimit *old_rlim)
1439{
1440 struct rlimit *rlim;
1441 int retval = 0;
1442
1443 if (resource >= RLIM_NLIMITS)
1444 return -EINVAL;
1445 resource = array_index_nospec(resource, RLIM_NLIMITS);
1446
1447 if (new_rlim) {
1448 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1449 return -EINVAL;
1450 if (resource == RLIMIT_NOFILE &&
1451 new_rlim->rlim_max > sysctl_nr_open)
1452 return -EPERM;
1453 }
1454
1455 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1456 rlim = tsk->signal->rlim + resource;
1457 task_lock(tsk->group_leader);
1458 if (new_rlim) {
1459 /*
1460 * Keep the capable check against init_user_ns until cgroups can
1461 * contain all limits.
1462 */
1463 if (new_rlim->rlim_max > rlim->rlim_max &&
1464 !capable(CAP_SYS_RESOURCE))
1465 retval = -EPERM;
1466 if (!retval)
1467 retval = security_task_setrlimit(tsk, resource, new_rlim);
1468 }
1469 if (!retval) {
1470 if (old_rlim)
1471 *old_rlim = *rlim;
1472 if (new_rlim)
1473 *rlim = *new_rlim;
1474 }
1475 task_unlock(tsk->group_leader);
1476
1477 /*
1478 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1479 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1480 * ignores the rlimit.
1481 */
1482 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1483 new_rlim->rlim_cur != RLIM_INFINITY &&
1484 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1485 /*
1486 * update_rlimit_cpu can fail if the task is exiting, but there
1487 * may be other tasks in the thread group that are not exiting,
1488 * and they need their cpu timers adjusted.
1489 *
1490 * The group_leader is the last task to be released, so if we
1491 * cannot update_rlimit_cpu on it, then the entire process is
1492 * exiting and we do not need to update at all.
1493 */
1494 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1495 }
1496
1497 return retval;
1498}
1499
1500SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1501{
1502 struct rlimit value;
1503 int ret;
1504
1505 ret = do_prlimit(current, resource, NULL, &value);
1506 if (!ret)
1507 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1508
1509 return ret;
1510}
1511
1512#ifdef CONFIG_COMPAT
1513
1514COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1515 struct compat_rlimit __user *, rlim)
1516{
1517 struct rlimit r;
1518 struct compat_rlimit r32;
1519
1520 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1521 return -EFAULT;
1522
1523 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1524 r.rlim_cur = RLIM_INFINITY;
1525 else
1526 r.rlim_cur = r32.rlim_cur;
1527 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1528 r.rlim_max = RLIM_INFINITY;
1529 else
1530 r.rlim_max = r32.rlim_max;
1531 return do_prlimit(current, resource, &r, NULL);
1532}
1533
1534COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1535 struct compat_rlimit __user *, rlim)
1536{
1537 struct rlimit r;
1538 int ret;
1539
1540 ret = do_prlimit(current, resource, NULL, &r);
1541 if (!ret) {
1542 struct compat_rlimit r32;
1543 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1544 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1545 else
1546 r32.rlim_cur = r.rlim_cur;
1547 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1548 r32.rlim_max = COMPAT_RLIM_INFINITY;
1549 else
1550 r32.rlim_max = r.rlim_max;
1551
1552 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1553 return -EFAULT;
1554 }
1555 return ret;
1556}
1557
1558#endif
1559
1560#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1561
1562/*
1563 * Back compatibility for getrlimit. Needed for some apps.
1564 */
1565SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1566 struct rlimit __user *, rlim)
1567{
1568 struct rlimit x;
1569 if (resource >= RLIM_NLIMITS)
1570 return -EINVAL;
1571
1572 resource = array_index_nospec(resource, RLIM_NLIMITS);
1573 task_lock(current->group_leader);
1574 x = current->signal->rlim[resource];
1575 task_unlock(current->group_leader);
1576 if (x.rlim_cur > 0x7FFFFFFF)
1577 x.rlim_cur = 0x7FFFFFFF;
1578 if (x.rlim_max > 0x7FFFFFFF)
1579 x.rlim_max = 0x7FFFFFFF;
1580 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1581}
1582
1583#ifdef CONFIG_COMPAT
1584COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1585 struct compat_rlimit __user *, rlim)
1586{
1587 struct rlimit r;
1588
1589 if (resource >= RLIM_NLIMITS)
1590 return -EINVAL;
1591
1592 resource = array_index_nospec(resource, RLIM_NLIMITS);
1593 task_lock(current->group_leader);
1594 r = current->signal->rlim[resource];
1595 task_unlock(current->group_leader);
1596 if (r.rlim_cur > 0x7FFFFFFF)
1597 r.rlim_cur = 0x7FFFFFFF;
1598 if (r.rlim_max > 0x7FFFFFFF)
1599 r.rlim_max = 0x7FFFFFFF;
1600
1601 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1602 put_user(r.rlim_max, &rlim->rlim_max))
1603 return -EFAULT;
1604 return 0;
1605}
1606#endif
1607
1608#endif
1609
1610static inline bool rlim64_is_infinity(__u64 rlim64)
1611{
1612#if BITS_PER_LONG < 64
1613 return rlim64 >= ULONG_MAX;
1614#else
1615 return rlim64 == RLIM64_INFINITY;
1616#endif
1617}
1618
1619static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1620{
1621 if (rlim->rlim_cur == RLIM_INFINITY)
1622 rlim64->rlim_cur = RLIM64_INFINITY;
1623 else
1624 rlim64->rlim_cur = rlim->rlim_cur;
1625 if (rlim->rlim_max == RLIM_INFINITY)
1626 rlim64->rlim_max = RLIM64_INFINITY;
1627 else
1628 rlim64->rlim_max = rlim->rlim_max;
1629}
1630
1631static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1632{
1633 if (rlim64_is_infinity(rlim64->rlim_cur))
1634 rlim->rlim_cur = RLIM_INFINITY;
1635 else
1636 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1637 if (rlim64_is_infinity(rlim64->rlim_max))
1638 rlim->rlim_max = RLIM_INFINITY;
1639 else
1640 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1641}
1642
1643/* rcu lock must be held */
1644static int check_prlimit_permission(struct task_struct *task,
1645 unsigned int flags)
1646{
1647 const struct cred *cred = current_cred(), *tcred;
1648 bool id_match;
1649
1650 if (current == task)
1651 return 0;
1652
1653 tcred = __task_cred(task);
1654 id_match = (uid_eq(cred->uid, tcred->euid) &&
1655 uid_eq(cred->uid, tcred->suid) &&
1656 uid_eq(cred->uid, tcred->uid) &&
1657 gid_eq(cred->gid, tcred->egid) &&
1658 gid_eq(cred->gid, tcred->sgid) &&
1659 gid_eq(cred->gid, tcred->gid));
1660 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1661 return -EPERM;
1662
1663 return security_task_prlimit(cred, tcred, flags);
1664}
1665
1666SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1667 const struct rlimit64 __user *, new_rlim,
1668 struct rlimit64 __user *, old_rlim)
1669{
1670 struct rlimit64 old64, new64;
1671 struct rlimit old, new;
1672 struct task_struct *tsk;
1673 unsigned int checkflags = 0;
1674 int ret;
1675
1676 if (old_rlim)
1677 checkflags |= LSM_PRLIMIT_READ;
1678
1679 if (new_rlim) {
1680 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1681 return -EFAULT;
1682 rlim64_to_rlim(&new64, &new);
1683 checkflags |= LSM_PRLIMIT_WRITE;
1684 }
1685
1686 rcu_read_lock();
1687 tsk = pid ? find_task_by_vpid(pid) : current;
1688 if (!tsk) {
1689 rcu_read_unlock();
1690 return -ESRCH;
1691 }
1692 ret = check_prlimit_permission(tsk, checkflags);
1693 if (ret) {
1694 rcu_read_unlock();
1695 return ret;
1696 }
1697 get_task_struct(tsk);
1698 rcu_read_unlock();
1699
1700 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1701 old_rlim ? &old : NULL);
1702
1703 if (!ret && old_rlim) {
1704 rlim_to_rlim64(&old, &old64);
1705 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1706 ret = -EFAULT;
1707 }
1708
1709 put_task_struct(tsk);
1710 return ret;
1711}
1712
1713SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1714{
1715 struct rlimit new_rlim;
1716
1717 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1718 return -EFAULT;
1719 return do_prlimit(current, resource, &new_rlim, NULL);
1720}
1721
1722/*
1723 * It would make sense to put struct rusage in the task_struct,
1724 * except that would make the task_struct be *really big*. After
1725 * task_struct gets moved into malloc'ed memory, it would
1726 * make sense to do this. It will make moving the rest of the information
1727 * a lot simpler! (Which we're not doing right now because we're not
1728 * measuring them yet).
1729 *
1730 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1731 * races with threads incrementing their own counters. But since word
1732 * reads are atomic, we either get new values or old values and we don't
1733 * care which for the sums. We always take the siglock to protect reading
1734 * the c* fields from p->signal from races with exit.c updating those
1735 * fields when reaping, so a sample either gets all the additions of a
1736 * given child after it's reaped, or none so this sample is before reaping.
1737 *
1738 * Locking:
1739 * We need to take the siglock for CHILDEREN, SELF and BOTH
1740 * for the cases current multithreaded, non-current single threaded
1741 * non-current multithreaded. Thread traversal is now safe with
1742 * the siglock held.
1743 * Strictly speaking, we donot need to take the siglock if we are current and
1744 * single threaded, as no one else can take our signal_struct away, no one
1745 * else can reap the children to update signal->c* counters, and no one else
1746 * can race with the signal-> fields. If we do not take any lock, the
1747 * signal-> fields could be read out of order while another thread was just
1748 * exiting. So we should place a read memory barrier when we avoid the lock.
1749 * On the writer side, write memory barrier is implied in __exit_signal
1750 * as __exit_signal releases the siglock spinlock after updating the signal->
1751 * fields. But we don't do this yet to keep things simple.
1752 *
1753 */
1754
1755static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1756{
1757 r->ru_nvcsw += t->nvcsw;
1758 r->ru_nivcsw += t->nivcsw;
1759 r->ru_minflt += t->min_flt;
1760 r->ru_majflt += t->maj_flt;
1761 r->ru_inblock += task_io_get_inblock(t);
1762 r->ru_oublock += task_io_get_oublock(t);
1763}
1764
1765void getrusage(struct task_struct *p, int who, struct rusage *r)
1766{
1767 struct task_struct *t;
1768 unsigned long flags;
1769 u64 tgutime, tgstime, utime, stime;
1770 unsigned long maxrss = 0;
1771
1772 memset((char *)r, 0, sizeof (*r));
1773 utime = stime = 0;
1774
1775 if (who == RUSAGE_THREAD) {
1776 task_cputime_adjusted(current, &utime, &stime);
1777 accumulate_thread_rusage(p, r);
1778 maxrss = p->signal->maxrss;
1779 goto out;
1780 }
1781
1782 if (!lock_task_sighand(p, &flags))
1783 return;
1784
1785 switch (who) {
1786 case RUSAGE_BOTH:
1787 case RUSAGE_CHILDREN:
1788 utime = p->signal->cutime;
1789 stime = p->signal->cstime;
1790 r->ru_nvcsw = p->signal->cnvcsw;
1791 r->ru_nivcsw = p->signal->cnivcsw;
1792 r->ru_minflt = p->signal->cmin_flt;
1793 r->ru_majflt = p->signal->cmaj_flt;
1794 r->ru_inblock = p->signal->cinblock;
1795 r->ru_oublock = p->signal->coublock;
1796 maxrss = p->signal->cmaxrss;
1797
1798 if (who == RUSAGE_CHILDREN)
1799 break;
1800 fallthrough;
1801
1802 case RUSAGE_SELF:
1803 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1804 utime += tgutime;
1805 stime += tgstime;
1806 r->ru_nvcsw += p->signal->nvcsw;
1807 r->ru_nivcsw += p->signal->nivcsw;
1808 r->ru_minflt += p->signal->min_flt;
1809 r->ru_majflt += p->signal->maj_flt;
1810 r->ru_inblock += p->signal->inblock;
1811 r->ru_oublock += p->signal->oublock;
1812 if (maxrss < p->signal->maxrss)
1813 maxrss = p->signal->maxrss;
1814 t = p;
1815 do {
1816 accumulate_thread_rusage(t, r);
1817 } while_each_thread(p, t);
1818 break;
1819
1820 default:
1821 BUG();
1822 }
1823 unlock_task_sighand(p, &flags);
1824
1825out:
1826 r->ru_utime = ns_to_kernel_old_timeval(utime);
1827 r->ru_stime = ns_to_kernel_old_timeval(stime);
1828
1829 if (who != RUSAGE_CHILDREN) {
1830 struct mm_struct *mm = get_task_mm(p);
1831
1832 if (mm) {
1833 setmax_mm_hiwater_rss(&maxrss, mm);
1834 mmput(mm);
1835 }
1836 }
1837 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1838}
1839
1840SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1841{
1842 struct rusage r;
1843
1844 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1845 who != RUSAGE_THREAD)
1846 return -EINVAL;
1847
1848 getrusage(current, who, &r);
1849 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1850}
1851
1852#ifdef CONFIG_COMPAT
1853COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1854{
1855 struct rusage r;
1856
1857 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1858 who != RUSAGE_THREAD)
1859 return -EINVAL;
1860
1861 getrusage(current, who, &r);
1862 return put_compat_rusage(&r, ru);
1863}
1864#endif
1865
1866SYSCALL_DEFINE1(umask, int, mask)
1867{
1868 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1869 return mask;
1870}
1871
1872static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1873{
1874 struct fd exe;
1875 struct inode *inode;
1876 int err;
1877
1878 exe = fdget(fd);
1879 if (!exe.file)
1880 return -EBADF;
1881
1882 inode = file_inode(exe.file);
1883
1884 /*
1885 * Because the original mm->exe_file points to executable file, make
1886 * sure that this one is executable as well, to avoid breaking an
1887 * overall picture.
1888 */
1889 err = -EACCES;
1890 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1891 goto exit;
1892
1893 err = file_permission(exe.file, MAY_EXEC);
1894 if (err)
1895 goto exit;
1896
1897 err = replace_mm_exe_file(mm, exe.file);
1898exit:
1899 fdput(exe);
1900 return err;
1901}
1902
1903/*
1904 * Check arithmetic relations of passed addresses.
1905 *
1906 * WARNING: we don't require any capability here so be very careful
1907 * in what is allowed for modification from userspace.
1908 */
1909static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1910{
1911 unsigned long mmap_max_addr = TASK_SIZE;
1912 int error = -EINVAL, i;
1913
1914 static const unsigned char offsets[] = {
1915 offsetof(struct prctl_mm_map, start_code),
1916 offsetof(struct prctl_mm_map, end_code),
1917 offsetof(struct prctl_mm_map, start_data),
1918 offsetof(struct prctl_mm_map, end_data),
1919 offsetof(struct prctl_mm_map, start_brk),
1920 offsetof(struct prctl_mm_map, brk),
1921 offsetof(struct prctl_mm_map, start_stack),
1922 offsetof(struct prctl_mm_map, arg_start),
1923 offsetof(struct prctl_mm_map, arg_end),
1924 offsetof(struct prctl_mm_map, env_start),
1925 offsetof(struct prctl_mm_map, env_end),
1926 };
1927
1928 /*
1929 * Make sure the members are not somewhere outside
1930 * of allowed address space.
1931 */
1932 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1933 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1934
1935 if ((unsigned long)val >= mmap_max_addr ||
1936 (unsigned long)val < mmap_min_addr)
1937 goto out;
1938 }
1939
1940 /*
1941 * Make sure the pairs are ordered.
1942 */
1943#define __prctl_check_order(__m1, __op, __m2) \
1944 ((unsigned long)prctl_map->__m1 __op \
1945 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1946 error = __prctl_check_order(start_code, <, end_code);
1947 error |= __prctl_check_order(start_data,<=, end_data);
1948 error |= __prctl_check_order(start_brk, <=, brk);
1949 error |= __prctl_check_order(arg_start, <=, arg_end);
1950 error |= __prctl_check_order(env_start, <=, env_end);
1951 if (error)
1952 goto out;
1953#undef __prctl_check_order
1954
1955 error = -EINVAL;
1956
1957 /*
1958 * Neither we should allow to override limits if they set.
1959 */
1960 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1961 prctl_map->start_brk, prctl_map->end_data,
1962 prctl_map->start_data))
1963 goto out;
1964
1965 error = 0;
1966out:
1967 return error;
1968}
1969
1970#ifdef CONFIG_CHECKPOINT_RESTORE
1971static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1972{
1973 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1974 unsigned long user_auxv[AT_VECTOR_SIZE];
1975 struct mm_struct *mm = current->mm;
1976 int error;
1977
1978 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1979 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1980
1981 if (opt == PR_SET_MM_MAP_SIZE)
1982 return put_user((unsigned int)sizeof(prctl_map),
1983 (unsigned int __user *)addr);
1984
1985 if (data_size != sizeof(prctl_map))
1986 return -EINVAL;
1987
1988 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1989 return -EFAULT;
1990
1991 error = validate_prctl_map_addr(&prctl_map);
1992 if (error)
1993 return error;
1994
1995 if (prctl_map.auxv_size) {
1996 /*
1997 * Someone is trying to cheat the auxv vector.
1998 */
1999 if (!prctl_map.auxv ||
2000 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2001 return -EINVAL;
2002
2003 memset(user_auxv, 0, sizeof(user_auxv));
2004 if (copy_from_user(user_auxv,
2005 (const void __user *)prctl_map.auxv,
2006 prctl_map.auxv_size))
2007 return -EFAULT;
2008
2009 /* Last entry must be AT_NULL as specification requires */
2010 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2011 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2012 }
2013
2014 if (prctl_map.exe_fd != (u32)-1) {
2015 /*
2016 * Check if the current user is checkpoint/restore capable.
2017 * At the time of this writing, it checks for CAP_SYS_ADMIN
2018 * or CAP_CHECKPOINT_RESTORE.
2019 * Note that a user with access to ptrace can masquerade an
2020 * arbitrary program as any executable, even setuid ones.
2021 * This may have implications in the tomoyo subsystem.
2022 */
2023 if (!checkpoint_restore_ns_capable(current_user_ns()))
2024 return -EPERM;
2025
2026 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2027 if (error)
2028 return error;
2029 }
2030
2031 /*
2032 * arg_lock protects concurrent updates but we still need mmap_lock for
2033 * read to exclude races with sys_brk.
2034 */
2035 mmap_read_lock(mm);
2036
2037 /*
2038 * We don't validate if these members are pointing to
2039 * real present VMAs because application may have correspond
2040 * VMAs already unmapped and kernel uses these members for statistics
2041 * output in procfs mostly, except
2042 *
2043 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2044 * for VMAs when updating these members so anything wrong written
2045 * here cause kernel to swear at userspace program but won't lead
2046 * to any problem in kernel itself
2047 */
2048
2049 spin_lock(&mm->arg_lock);
2050 mm->start_code = prctl_map.start_code;
2051 mm->end_code = prctl_map.end_code;
2052 mm->start_data = prctl_map.start_data;
2053 mm->end_data = prctl_map.end_data;
2054 mm->start_brk = prctl_map.start_brk;
2055 mm->brk = prctl_map.brk;
2056 mm->start_stack = prctl_map.start_stack;
2057 mm->arg_start = prctl_map.arg_start;
2058 mm->arg_end = prctl_map.arg_end;
2059 mm->env_start = prctl_map.env_start;
2060 mm->env_end = prctl_map.env_end;
2061 spin_unlock(&mm->arg_lock);
2062
2063 /*
2064 * Note this update of @saved_auxv is lockless thus
2065 * if someone reads this member in procfs while we're
2066 * updating -- it may get partly updated results. It's
2067 * known and acceptable trade off: we leave it as is to
2068 * not introduce additional locks here making the kernel
2069 * more complex.
2070 */
2071 if (prctl_map.auxv_size)
2072 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2073
2074 mmap_read_unlock(mm);
2075 return 0;
2076}
2077#endif /* CONFIG_CHECKPOINT_RESTORE */
2078
2079static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2080 unsigned long len)
2081{
2082 /*
2083 * This doesn't move the auxiliary vector itself since it's pinned to
2084 * mm_struct, but it permits filling the vector with new values. It's
2085 * up to the caller to provide sane values here, otherwise userspace
2086 * tools which use this vector might be unhappy.
2087 */
2088 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2089
2090 if (len > sizeof(user_auxv))
2091 return -EINVAL;
2092
2093 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2094 return -EFAULT;
2095
2096 /* Make sure the last entry is always AT_NULL */
2097 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2098 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2099
2100 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2101
2102 task_lock(current);
2103 memcpy(mm->saved_auxv, user_auxv, len);
2104 task_unlock(current);
2105
2106 return 0;
2107}
2108
2109static int prctl_set_mm(int opt, unsigned long addr,
2110 unsigned long arg4, unsigned long arg5)
2111{
2112 struct mm_struct *mm = current->mm;
2113 struct prctl_mm_map prctl_map = {
2114 .auxv = NULL,
2115 .auxv_size = 0,
2116 .exe_fd = -1,
2117 };
2118 struct vm_area_struct *vma;
2119 int error;
2120
2121 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2122 opt != PR_SET_MM_MAP &&
2123 opt != PR_SET_MM_MAP_SIZE)))
2124 return -EINVAL;
2125
2126#ifdef CONFIG_CHECKPOINT_RESTORE
2127 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2128 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2129#endif
2130
2131 if (!capable(CAP_SYS_RESOURCE))
2132 return -EPERM;
2133
2134 if (opt == PR_SET_MM_EXE_FILE)
2135 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2136
2137 if (opt == PR_SET_MM_AUXV)
2138 return prctl_set_auxv(mm, addr, arg4);
2139
2140 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2141 return -EINVAL;
2142
2143 error = -EINVAL;
2144
2145 /*
2146 * arg_lock protects concurrent updates of arg boundaries, we need
2147 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2148 * validation.
2149 */
2150 mmap_read_lock(mm);
2151 vma = find_vma(mm, addr);
2152
2153 spin_lock(&mm->arg_lock);
2154 prctl_map.start_code = mm->start_code;
2155 prctl_map.end_code = mm->end_code;
2156 prctl_map.start_data = mm->start_data;
2157 prctl_map.end_data = mm->end_data;
2158 prctl_map.start_brk = mm->start_brk;
2159 prctl_map.brk = mm->brk;
2160 prctl_map.start_stack = mm->start_stack;
2161 prctl_map.arg_start = mm->arg_start;
2162 prctl_map.arg_end = mm->arg_end;
2163 prctl_map.env_start = mm->env_start;
2164 prctl_map.env_end = mm->env_end;
2165
2166 switch (opt) {
2167 case PR_SET_MM_START_CODE:
2168 prctl_map.start_code = addr;
2169 break;
2170 case PR_SET_MM_END_CODE:
2171 prctl_map.end_code = addr;
2172 break;
2173 case PR_SET_MM_START_DATA:
2174 prctl_map.start_data = addr;
2175 break;
2176 case PR_SET_MM_END_DATA:
2177 prctl_map.end_data = addr;
2178 break;
2179 case PR_SET_MM_START_STACK:
2180 prctl_map.start_stack = addr;
2181 break;
2182 case PR_SET_MM_START_BRK:
2183 prctl_map.start_brk = addr;
2184 break;
2185 case PR_SET_MM_BRK:
2186 prctl_map.brk = addr;
2187 break;
2188 case PR_SET_MM_ARG_START:
2189 prctl_map.arg_start = addr;
2190 break;
2191 case PR_SET_MM_ARG_END:
2192 prctl_map.arg_end = addr;
2193 break;
2194 case PR_SET_MM_ENV_START:
2195 prctl_map.env_start = addr;
2196 break;
2197 case PR_SET_MM_ENV_END:
2198 prctl_map.env_end = addr;
2199 break;
2200 default:
2201 goto out;
2202 }
2203
2204 error = validate_prctl_map_addr(&prctl_map);
2205 if (error)
2206 goto out;
2207
2208 switch (opt) {
2209 /*
2210 * If command line arguments and environment
2211 * are placed somewhere else on stack, we can
2212 * set them up here, ARG_START/END to setup
2213 * command line arguments and ENV_START/END
2214 * for environment.
2215 */
2216 case PR_SET_MM_START_STACK:
2217 case PR_SET_MM_ARG_START:
2218 case PR_SET_MM_ARG_END:
2219 case PR_SET_MM_ENV_START:
2220 case PR_SET_MM_ENV_END:
2221 if (!vma) {
2222 error = -EFAULT;
2223 goto out;
2224 }
2225 }
2226
2227 mm->start_code = prctl_map.start_code;
2228 mm->end_code = prctl_map.end_code;
2229 mm->start_data = prctl_map.start_data;
2230 mm->end_data = prctl_map.end_data;
2231 mm->start_brk = prctl_map.start_brk;
2232 mm->brk = prctl_map.brk;
2233 mm->start_stack = prctl_map.start_stack;
2234 mm->arg_start = prctl_map.arg_start;
2235 mm->arg_end = prctl_map.arg_end;
2236 mm->env_start = prctl_map.env_start;
2237 mm->env_end = prctl_map.env_end;
2238
2239 error = 0;
2240out:
2241 spin_unlock(&mm->arg_lock);
2242 mmap_read_unlock(mm);
2243 return error;
2244}
2245
2246#ifdef CONFIG_CHECKPOINT_RESTORE
2247static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2248{
2249 return put_user(me->clear_child_tid, tid_addr);
2250}
2251#else
2252static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2253{
2254 return -EINVAL;
2255}
2256#endif
2257
2258static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2259{
2260 /*
2261 * If task has has_child_subreaper - all its descendants
2262 * already have these flag too and new descendants will
2263 * inherit it on fork, skip them.
2264 *
2265 * If we've found child_reaper - skip descendants in
2266 * it's subtree as they will never get out pidns.
2267 */
2268 if (p->signal->has_child_subreaper ||
2269 is_child_reaper(task_pid(p)))
2270 return 0;
2271
2272 p->signal->has_child_subreaper = 1;
2273 return 1;
2274}
2275
2276int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2277{
2278 return -EINVAL;
2279}
2280
2281int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2282 unsigned long ctrl)
2283{
2284 return -EINVAL;
2285}
2286
2287#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2288
2289#ifdef CONFIG_ANON_VMA_NAME
2290
2291#define ANON_VMA_NAME_MAX_LEN 80
2292#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2293
2294static inline bool is_valid_name_char(char ch)
2295{
2296 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2297 return ch > 0x1f && ch < 0x7f &&
2298 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2299}
2300
2301static int prctl_set_vma(unsigned long opt, unsigned long addr,
2302 unsigned long size, unsigned long arg)
2303{
2304 struct mm_struct *mm = current->mm;
2305 const char __user *uname;
2306 struct anon_vma_name *anon_name = NULL;
2307 int error;
2308
2309 switch (opt) {
2310 case PR_SET_VMA_ANON_NAME:
2311 uname = (const char __user *)arg;
2312 if (uname) {
2313 char *name, *pch;
2314
2315 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2316 if (IS_ERR(name))
2317 return PTR_ERR(name);
2318
2319 for (pch = name; *pch != '\0'; pch++) {
2320 if (!is_valid_name_char(*pch)) {
2321 kfree(name);
2322 return -EINVAL;
2323 }
2324 }
2325 /* anon_vma has its own copy */
2326 anon_name = anon_vma_name_alloc(name);
2327 kfree(name);
2328 if (!anon_name)
2329 return -ENOMEM;
2330
2331 }
2332
2333 mmap_write_lock(mm);
2334 error = madvise_set_anon_name(mm, addr, size, anon_name);
2335 mmap_write_unlock(mm);
2336 anon_vma_name_put(anon_name);
2337 break;
2338 default:
2339 error = -EINVAL;
2340 }
2341
2342 return error;
2343}
2344
2345#else /* CONFIG_ANON_VMA_NAME */
2346static int prctl_set_vma(unsigned long opt, unsigned long start,
2347 unsigned long size, unsigned long arg)
2348{
2349 return -EINVAL;
2350}
2351#endif /* CONFIG_ANON_VMA_NAME */
2352
2353SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2354 unsigned long, arg4, unsigned long, arg5)
2355{
2356 struct task_struct *me = current;
2357 unsigned char comm[sizeof(me->comm)];
2358 long error;
2359
2360 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2361 if (error != -ENOSYS)
2362 return error;
2363
2364 error = 0;
2365 switch (option) {
2366 case PR_SET_PDEATHSIG:
2367 if (!valid_signal(arg2)) {
2368 error = -EINVAL;
2369 break;
2370 }
2371 me->pdeath_signal = arg2;
2372 break;
2373 case PR_GET_PDEATHSIG:
2374 error = put_user(me->pdeath_signal, (int __user *)arg2);
2375 break;
2376 case PR_GET_DUMPABLE:
2377 error = get_dumpable(me->mm);
2378 break;
2379 case PR_SET_DUMPABLE:
2380 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2381 error = -EINVAL;
2382 break;
2383 }
2384 set_dumpable(me->mm, arg2);
2385 break;
2386
2387 case PR_SET_UNALIGN:
2388 error = SET_UNALIGN_CTL(me, arg2);
2389 break;
2390 case PR_GET_UNALIGN:
2391 error = GET_UNALIGN_CTL(me, arg2);
2392 break;
2393 case PR_SET_FPEMU:
2394 error = SET_FPEMU_CTL(me, arg2);
2395 break;
2396 case PR_GET_FPEMU:
2397 error = GET_FPEMU_CTL(me, arg2);
2398 break;
2399 case PR_SET_FPEXC:
2400 error = SET_FPEXC_CTL(me, arg2);
2401 break;
2402 case PR_GET_FPEXC:
2403 error = GET_FPEXC_CTL(me, arg2);
2404 break;
2405 case PR_GET_TIMING:
2406 error = PR_TIMING_STATISTICAL;
2407 break;
2408 case PR_SET_TIMING:
2409 if (arg2 != PR_TIMING_STATISTICAL)
2410 error = -EINVAL;
2411 break;
2412 case PR_SET_NAME:
2413 comm[sizeof(me->comm) - 1] = 0;
2414 if (strncpy_from_user(comm, (char __user *)arg2,
2415 sizeof(me->comm) - 1) < 0)
2416 return -EFAULT;
2417 set_task_comm(me, comm);
2418 proc_comm_connector(me);
2419 break;
2420 case PR_GET_NAME:
2421 get_task_comm(comm, me);
2422 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2423 return -EFAULT;
2424 break;
2425 case PR_GET_ENDIAN:
2426 error = GET_ENDIAN(me, arg2);
2427 break;
2428 case PR_SET_ENDIAN:
2429 error = SET_ENDIAN(me, arg2);
2430 break;
2431 case PR_GET_SECCOMP:
2432 error = prctl_get_seccomp();
2433 break;
2434 case PR_SET_SECCOMP:
2435 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2436 break;
2437 case PR_GET_TSC:
2438 error = GET_TSC_CTL(arg2);
2439 break;
2440 case PR_SET_TSC:
2441 error = SET_TSC_CTL(arg2);
2442 break;
2443 case PR_TASK_PERF_EVENTS_DISABLE:
2444 error = perf_event_task_disable();
2445 break;
2446 case PR_TASK_PERF_EVENTS_ENABLE:
2447 error = perf_event_task_enable();
2448 break;
2449 case PR_GET_TIMERSLACK:
2450 if (current->timer_slack_ns > ULONG_MAX)
2451 error = ULONG_MAX;
2452 else
2453 error = current->timer_slack_ns;
2454 break;
2455 case PR_SET_TIMERSLACK:
2456 if (arg2 <= 0)
2457 current->timer_slack_ns =
2458 current->default_timer_slack_ns;
2459 else
2460 current->timer_slack_ns = arg2;
2461 break;
2462 case PR_MCE_KILL:
2463 if (arg4 | arg5)
2464 return -EINVAL;
2465 switch (arg2) {
2466 case PR_MCE_KILL_CLEAR:
2467 if (arg3 != 0)
2468 return -EINVAL;
2469 current->flags &= ~PF_MCE_PROCESS;
2470 break;
2471 case PR_MCE_KILL_SET:
2472 current->flags |= PF_MCE_PROCESS;
2473 if (arg3 == PR_MCE_KILL_EARLY)
2474 current->flags |= PF_MCE_EARLY;
2475 else if (arg3 == PR_MCE_KILL_LATE)
2476 current->flags &= ~PF_MCE_EARLY;
2477 else if (arg3 == PR_MCE_KILL_DEFAULT)
2478 current->flags &=
2479 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2480 else
2481 return -EINVAL;
2482 break;
2483 default:
2484 return -EINVAL;
2485 }
2486 break;
2487 case PR_MCE_KILL_GET:
2488 if (arg2 | arg3 | arg4 | arg5)
2489 return -EINVAL;
2490 if (current->flags & PF_MCE_PROCESS)
2491 error = (current->flags & PF_MCE_EARLY) ?
2492 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2493 else
2494 error = PR_MCE_KILL_DEFAULT;
2495 break;
2496 case PR_SET_MM:
2497 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2498 break;
2499 case PR_GET_TID_ADDRESS:
2500 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2501 break;
2502 case PR_SET_CHILD_SUBREAPER:
2503 me->signal->is_child_subreaper = !!arg2;
2504 if (!arg2)
2505 break;
2506
2507 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2508 break;
2509 case PR_GET_CHILD_SUBREAPER:
2510 error = put_user(me->signal->is_child_subreaper,
2511 (int __user *)arg2);
2512 break;
2513 case PR_SET_NO_NEW_PRIVS:
2514 if (arg2 != 1 || arg3 || arg4 || arg5)
2515 return -EINVAL;
2516
2517 task_set_no_new_privs(current);
2518 break;
2519 case PR_GET_NO_NEW_PRIVS:
2520 if (arg2 || arg3 || arg4 || arg5)
2521 return -EINVAL;
2522 return task_no_new_privs(current) ? 1 : 0;
2523 case PR_GET_THP_DISABLE:
2524 if (arg2 || arg3 || arg4 || arg5)
2525 return -EINVAL;
2526 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2527 break;
2528 case PR_SET_THP_DISABLE:
2529 if (arg3 || arg4 || arg5)
2530 return -EINVAL;
2531 if (mmap_write_lock_killable(me->mm))
2532 return -EINTR;
2533 if (arg2)
2534 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2535 else
2536 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2537 mmap_write_unlock(me->mm);
2538 break;
2539 case PR_MPX_ENABLE_MANAGEMENT:
2540 case PR_MPX_DISABLE_MANAGEMENT:
2541 /* No longer implemented: */
2542 return -EINVAL;
2543 case PR_SET_FP_MODE:
2544 error = SET_FP_MODE(me, arg2);
2545 break;
2546 case PR_GET_FP_MODE:
2547 error = GET_FP_MODE(me);
2548 break;
2549 case PR_SVE_SET_VL:
2550 error = SVE_SET_VL(arg2);
2551 break;
2552 case PR_SVE_GET_VL:
2553 error = SVE_GET_VL();
2554 break;
2555 case PR_SME_SET_VL:
2556 error = SME_SET_VL(arg2);
2557 break;
2558 case PR_SME_GET_VL:
2559 error = SME_GET_VL();
2560 break;
2561 case PR_GET_SPECULATION_CTRL:
2562 if (arg3 || arg4 || arg5)
2563 return -EINVAL;
2564 error = arch_prctl_spec_ctrl_get(me, arg2);
2565 break;
2566 case PR_SET_SPECULATION_CTRL:
2567 if (arg4 || arg5)
2568 return -EINVAL;
2569 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2570 break;
2571 case PR_PAC_RESET_KEYS:
2572 if (arg3 || arg4 || arg5)
2573 return -EINVAL;
2574 error = PAC_RESET_KEYS(me, arg2);
2575 break;
2576 case PR_PAC_SET_ENABLED_KEYS:
2577 if (arg4 || arg5)
2578 return -EINVAL;
2579 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2580 break;
2581 case PR_PAC_GET_ENABLED_KEYS:
2582 if (arg2 || arg3 || arg4 || arg5)
2583 return -EINVAL;
2584 error = PAC_GET_ENABLED_KEYS(me);
2585 break;
2586 case PR_SET_TAGGED_ADDR_CTRL:
2587 if (arg3 || arg4 || arg5)
2588 return -EINVAL;
2589 error = SET_TAGGED_ADDR_CTRL(arg2);
2590 break;
2591 case PR_GET_TAGGED_ADDR_CTRL:
2592 if (arg2 || arg3 || arg4 || arg5)
2593 return -EINVAL;
2594 error = GET_TAGGED_ADDR_CTRL();
2595 break;
2596 case PR_SET_IO_FLUSHER:
2597 if (!capable(CAP_SYS_RESOURCE))
2598 return -EPERM;
2599
2600 if (arg3 || arg4 || arg5)
2601 return -EINVAL;
2602
2603 if (arg2 == 1)
2604 current->flags |= PR_IO_FLUSHER;
2605 else if (!arg2)
2606 current->flags &= ~PR_IO_FLUSHER;
2607 else
2608 return -EINVAL;
2609 break;
2610 case PR_GET_IO_FLUSHER:
2611 if (!capable(CAP_SYS_RESOURCE))
2612 return -EPERM;
2613
2614 if (arg2 || arg3 || arg4 || arg5)
2615 return -EINVAL;
2616
2617 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2618 break;
2619 case PR_SET_SYSCALL_USER_DISPATCH:
2620 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2621 (char __user *) arg5);
2622 break;
2623#ifdef CONFIG_SCHED_CORE
2624 case PR_SCHED_CORE:
2625 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2626 break;
2627#endif
2628 case PR_SET_VMA:
2629 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2630 break;
2631 default:
2632 error = -EINVAL;
2633 break;
2634 }
2635 return error;
2636}
2637
2638SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2639 struct getcpu_cache __user *, unused)
2640{
2641 int err = 0;
2642 int cpu = raw_smp_processor_id();
2643
2644 if (cpup)
2645 err |= put_user(cpu, cpup);
2646 if (nodep)
2647 err |= put_user(cpu_to_node(cpu), nodep);
2648 return err ? -EFAULT : 0;
2649}
2650
2651/**
2652 * do_sysinfo - fill in sysinfo struct
2653 * @info: pointer to buffer to fill
2654 */
2655static int do_sysinfo(struct sysinfo *info)
2656{
2657 unsigned long mem_total, sav_total;
2658 unsigned int mem_unit, bitcount;
2659 struct timespec64 tp;
2660
2661 memset(info, 0, sizeof(struct sysinfo));
2662
2663 ktime_get_boottime_ts64(&tp);
2664 timens_add_boottime(&tp);
2665 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2666
2667 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2668
2669 info->procs = nr_threads;
2670
2671 si_meminfo(info);
2672 si_swapinfo(info);
2673
2674 /*
2675 * If the sum of all the available memory (i.e. ram + swap)
2676 * is less than can be stored in a 32 bit unsigned long then
2677 * we can be binary compatible with 2.2.x kernels. If not,
2678 * well, in that case 2.2.x was broken anyways...
2679 *
2680 * -Erik Andersen <andersee@debian.org>
2681 */
2682
2683 mem_total = info->totalram + info->totalswap;
2684 if (mem_total < info->totalram || mem_total < info->totalswap)
2685 goto out;
2686 bitcount = 0;
2687 mem_unit = info->mem_unit;
2688 while (mem_unit > 1) {
2689 bitcount++;
2690 mem_unit >>= 1;
2691 sav_total = mem_total;
2692 mem_total <<= 1;
2693 if (mem_total < sav_total)
2694 goto out;
2695 }
2696
2697 /*
2698 * If mem_total did not overflow, multiply all memory values by
2699 * info->mem_unit and set it to 1. This leaves things compatible
2700 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2701 * kernels...
2702 */
2703
2704 info->mem_unit = 1;
2705 info->totalram <<= bitcount;
2706 info->freeram <<= bitcount;
2707 info->sharedram <<= bitcount;
2708 info->bufferram <<= bitcount;
2709 info->totalswap <<= bitcount;
2710 info->freeswap <<= bitcount;
2711 info->totalhigh <<= bitcount;
2712 info->freehigh <<= bitcount;
2713
2714out:
2715 return 0;
2716}
2717
2718SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2719{
2720 struct sysinfo val;
2721
2722 do_sysinfo(&val);
2723
2724 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2725 return -EFAULT;
2726
2727 return 0;
2728}
2729
2730#ifdef CONFIG_COMPAT
2731struct compat_sysinfo {
2732 s32 uptime;
2733 u32 loads[3];
2734 u32 totalram;
2735 u32 freeram;
2736 u32 sharedram;
2737 u32 bufferram;
2738 u32 totalswap;
2739 u32 freeswap;
2740 u16 procs;
2741 u16 pad;
2742 u32 totalhigh;
2743 u32 freehigh;
2744 u32 mem_unit;
2745 char _f[20-2*sizeof(u32)-sizeof(int)];
2746};
2747
2748COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2749{
2750 struct sysinfo s;
2751 struct compat_sysinfo s_32;
2752
2753 do_sysinfo(&s);
2754
2755 /* Check to see if any memory value is too large for 32-bit and scale
2756 * down if needed
2757 */
2758 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2759 int bitcount = 0;
2760
2761 while (s.mem_unit < PAGE_SIZE) {
2762 s.mem_unit <<= 1;
2763 bitcount++;
2764 }
2765
2766 s.totalram >>= bitcount;
2767 s.freeram >>= bitcount;
2768 s.sharedram >>= bitcount;
2769 s.bufferram >>= bitcount;
2770 s.totalswap >>= bitcount;
2771 s.freeswap >>= bitcount;
2772 s.totalhigh >>= bitcount;
2773 s.freehigh >>= bitcount;
2774 }
2775
2776 memset(&s_32, 0, sizeof(s_32));
2777 s_32.uptime = s.uptime;
2778 s_32.loads[0] = s.loads[0];
2779 s_32.loads[1] = s.loads[1];
2780 s_32.loads[2] = s.loads[2];
2781 s_32.totalram = s.totalram;
2782 s_32.freeram = s.freeram;
2783 s_32.sharedram = s.sharedram;
2784 s_32.bufferram = s.bufferram;
2785 s_32.totalswap = s.totalswap;
2786 s_32.freeswap = s.freeswap;
2787 s_32.procs = s.procs;
2788 s_32.totalhigh = s.totalhigh;
2789 s_32.freehigh = s.freehigh;
2790 s_32.mem_unit = s.mem_unit;
2791 if (copy_to_user(info, &s_32, sizeof(s_32)))
2792 return -EFAULT;
2793 return 0;
2794}
2795#endif /* CONFIG_COMPAT */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/ksm.h>
19#include <linux/perf_event.h>
20#include <linux/resource.h>
21#include <linux/kernel.h>
22#include <linux/workqueue.h>
23#include <linux/capability.h>
24#include <linux/device.h>
25#include <linux/key.h>
26#include <linux/times.h>
27#include <linux/posix-timers.h>
28#include <linux/security.h>
29#include <linux/random.h>
30#include <linux/suspend.h>
31#include <linux/tty.h>
32#include <linux/signal.h>
33#include <linux/cn_proc.h>
34#include <linux/getcpu.h>
35#include <linux/task_io_accounting_ops.h>
36#include <linux/seccomp.h>
37#include <linux/cpu.h>
38#include <linux/personality.h>
39#include <linux/ptrace.h>
40#include <linux/fs_struct.h>
41#include <linux/file.h>
42#include <linux/mount.h>
43#include <linux/gfp.h>
44#include <linux/syscore_ops.h>
45#include <linux/version.h>
46#include <linux/ctype.h>
47#include <linux/syscall_user_dispatch.h>
48
49#include <linux/compat.h>
50#include <linux/syscalls.h>
51#include <linux/kprobes.h>
52#include <linux/user_namespace.h>
53#include <linux/time_namespace.h>
54#include <linux/binfmts.h>
55
56#include <linux/sched.h>
57#include <linux/sched/autogroup.h>
58#include <linux/sched/loadavg.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/mm.h>
61#include <linux/sched/coredump.h>
62#include <linux/sched/task.h>
63#include <linux/sched/cputime.h>
64#include <linux/rcupdate.h>
65#include <linux/uidgid.h>
66#include <linux/cred.h>
67
68#include <linux/nospec.h>
69
70#include <linux/kmsg_dump.h>
71/* Move somewhere else to avoid recompiling? */
72#include <generated/utsrelease.h>
73
74#include <linux/uaccess.h>
75#include <asm/io.h>
76#include <asm/unistd.h>
77
78#include "uid16.h"
79
80#ifndef SET_UNALIGN_CTL
81# define SET_UNALIGN_CTL(a, b) (-EINVAL)
82#endif
83#ifndef GET_UNALIGN_CTL
84# define GET_UNALIGN_CTL(a, b) (-EINVAL)
85#endif
86#ifndef SET_FPEMU_CTL
87# define SET_FPEMU_CTL(a, b) (-EINVAL)
88#endif
89#ifndef GET_FPEMU_CTL
90# define GET_FPEMU_CTL(a, b) (-EINVAL)
91#endif
92#ifndef SET_FPEXC_CTL
93# define SET_FPEXC_CTL(a, b) (-EINVAL)
94#endif
95#ifndef GET_FPEXC_CTL
96# define GET_FPEXC_CTL(a, b) (-EINVAL)
97#endif
98#ifndef GET_ENDIAN
99# define GET_ENDIAN(a, b) (-EINVAL)
100#endif
101#ifndef SET_ENDIAN
102# define SET_ENDIAN(a, b) (-EINVAL)
103#endif
104#ifndef GET_TSC_CTL
105# define GET_TSC_CTL(a) (-EINVAL)
106#endif
107#ifndef SET_TSC_CTL
108# define SET_TSC_CTL(a) (-EINVAL)
109#endif
110#ifndef GET_FP_MODE
111# define GET_FP_MODE(a) (-EINVAL)
112#endif
113#ifndef SET_FP_MODE
114# define SET_FP_MODE(a,b) (-EINVAL)
115#endif
116#ifndef SVE_SET_VL
117# define SVE_SET_VL(a) (-EINVAL)
118#endif
119#ifndef SVE_GET_VL
120# define SVE_GET_VL() (-EINVAL)
121#endif
122#ifndef SME_SET_VL
123# define SME_SET_VL(a) (-EINVAL)
124#endif
125#ifndef SME_GET_VL
126# define SME_GET_VL() (-EINVAL)
127#endif
128#ifndef PAC_RESET_KEYS
129# define PAC_RESET_KEYS(a, b) (-EINVAL)
130#endif
131#ifndef PAC_SET_ENABLED_KEYS
132# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133#endif
134#ifndef PAC_GET_ENABLED_KEYS
135# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136#endif
137#ifndef SET_TAGGED_ADDR_CTRL
138# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139#endif
140#ifndef GET_TAGGED_ADDR_CTRL
141# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
142#endif
143#ifndef RISCV_V_SET_CONTROL
144# define RISCV_V_SET_CONTROL(a) (-EINVAL)
145#endif
146#ifndef RISCV_V_GET_CONTROL
147# define RISCV_V_GET_CONTROL() (-EINVAL)
148#endif
149#ifndef RISCV_SET_ICACHE_FLUSH_CTX
150# define RISCV_SET_ICACHE_FLUSH_CTX(a, b) (-EINVAL)
151#endif
152#ifndef PPC_GET_DEXCR_ASPECT
153# define PPC_GET_DEXCR_ASPECT(a, b) (-EINVAL)
154#endif
155#ifndef PPC_SET_DEXCR_ASPECT
156# define PPC_SET_DEXCR_ASPECT(a, b, c) (-EINVAL)
157#endif
158
159/*
160 * this is where the system-wide overflow UID and GID are defined, for
161 * architectures that now have 32-bit UID/GID but didn't in the past
162 */
163
164int overflowuid = DEFAULT_OVERFLOWUID;
165int overflowgid = DEFAULT_OVERFLOWGID;
166
167EXPORT_SYMBOL(overflowuid);
168EXPORT_SYMBOL(overflowgid);
169
170/*
171 * the same as above, but for filesystems which can only store a 16-bit
172 * UID and GID. as such, this is needed on all architectures
173 */
174
175int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
176int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
177
178EXPORT_SYMBOL(fs_overflowuid);
179EXPORT_SYMBOL(fs_overflowgid);
180
181/*
182 * Returns true if current's euid is same as p's uid or euid,
183 * or has CAP_SYS_NICE to p's user_ns.
184 *
185 * Called with rcu_read_lock, creds are safe
186 */
187static bool set_one_prio_perm(struct task_struct *p)
188{
189 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
190
191 if (uid_eq(pcred->uid, cred->euid) ||
192 uid_eq(pcred->euid, cred->euid))
193 return true;
194 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
195 return true;
196 return false;
197}
198
199/*
200 * set the priority of a task
201 * - the caller must hold the RCU read lock
202 */
203static int set_one_prio(struct task_struct *p, int niceval, int error)
204{
205 int no_nice;
206
207 if (!set_one_prio_perm(p)) {
208 error = -EPERM;
209 goto out;
210 }
211 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
212 error = -EACCES;
213 goto out;
214 }
215 no_nice = security_task_setnice(p, niceval);
216 if (no_nice) {
217 error = no_nice;
218 goto out;
219 }
220 if (error == -ESRCH)
221 error = 0;
222 set_user_nice(p, niceval);
223out:
224 return error;
225}
226
227SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
228{
229 struct task_struct *g, *p;
230 struct user_struct *user;
231 const struct cred *cred = current_cred();
232 int error = -EINVAL;
233 struct pid *pgrp;
234 kuid_t uid;
235
236 if (which > PRIO_USER || which < PRIO_PROCESS)
237 goto out;
238
239 /* normalize: avoid signed division (rounding problems) */
240 error = -ESRCH;
241 if (niceval < MIN_NICE)
242 niceval = MIN_NICE;
243 if (niceval > MAX_NICE)
244 niceval = MAX_NICE;
245
246 rcu_read_lock();
247 switch (which) {
248 case PRIO_PROCESS:
249 if (who)
250 p = find_task_by_vpid(who);
251 else
252 p = current;
253 if (p)
254 error = set_one_prio(p, niceval, error);
255 break;
256 case PRIO_PGRP:
257 if (who)
258 pgrp = find_vpid(who);
259 else
260 pgrp = task_pgrp(current);
261 read_lock(&tasklist_lock);
262 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
263 error = set_one_prio(p, niceval, error);
264 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
265 read_unlock(&tasklist_lock);
266 break;
267 case PRIO_USER:
268 uid = make_kuid(cred->user_ns, who);
269 user = cred->user;
270 if (!who)
271 uid = cred->uid;
272 else if (!uid_eq(uid, cred->uid)) {
273 user = find_user(uid);
274 if (!user)
275 goto out_unlock; /* No processes for this user */
276 }
277 for_each_process_thread(g, p) {
278 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
279 error = set_one_prio(p, niceval, error);
280 }
281 if (!uid_eq(uid, cred->uid))
282 free_uid(user); /* For find_user() */
283 break;
284 }
285out_unlock:
286 rcu_read_unlock();
287out:
288 return error;
289}
290
291/*
292 * Ugh. To avoid negative return values, "getpriority()" will
293 * not return the normal nice-value, but a negated value that
294 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
295 * to stay compatible.
296 */
297SYSCALL_DEFINE2(getpriority, int, which, int, who)
298{
299 struct task_struct *g, *p;
300 struct user_struct *user;
301 const struct cred *cred = current_cred();
302 long niceval, retval = -ESRCH;
303 struct pid *pgrp;
304 kuid_t uid;
305
306 if (which > PRIO_USER || which < PRIO_PROCESS)
307 return -EINVAL;
308
309 rcu_read_lock();
310 switch (which) {
311 case PRIO_PROCESS:
312 if (who)
313 p = find_task_by_vpid(who);
314 else
315 p = current;
316 if (p) {
317 niceval = nice_to_rlimit(task_nice(p));
318 if (niceval > retval)
319 retval = niceval;
320 }
321 break;
322 case PRIO_PGRP:
323 if (who)
324 pgrp = find_vpid(who);
325 else
326 pgrp = task_pgrp(current);
327 read_lock(&tasklist_lock);
328 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
329 niceval = nice_to_rlimit(task_nice(p));
330 if (niceval > retval)
331 retval = niceval;
332 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
333 read_unlock(&tasklist_lock);
334 break;
335 case PRIO_USER:
336 uid = make_kuid(cred->user_ns, who);
337 user = cred->user;
338 if (!who)
339 uid = cred->uid;
340 else if (!uid_eq(uid, cred->uid)) {
341 user = find_user(uid);
342 if (!user)
343 goto out_unlock; /* No processes for this user */
344 }
345 for_each_process_thread(g, p) {
346 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
347 niceval = nice_to_rlimit(task_nice(p));
348 if (niceval > retval)
349 retval = niceval;
350 }
351 }
352 if (!uid_eq(uid, cred->uid))
353 free_uid(user); /* for find_user() */
354 break;
355 }
356out_unlock:
357 rcu_read_unlock();
358
359 return retval;
360}
361
362/*
363 * Unprivileged users may change the real gid to the effective gid
364 * or vice versa. (BSD-style)
365 *
366 * If you set the real gid at all, or set the effective gid to a value not
367 * equal to the real gid, then the saved gid is set to the new effective gid.
368 *
369 * This makes it possible for a setgid program to completely drop its
370 * privileges, which is often a useful assertion to make when you are doing
371 * a security audit over a program.
372 *
373 * The general idea is that a program which uses just setregid() will be
374 * 100% compatible with BSD. A program which uses just setgid() will be
375 * 100% compatible with POSIX with saved IDs.
376 *
377 * SMP: There are not races, the GIDs are checked only by filesystem
378 * operations (as far as semantic preservation is concerned).
379 */
380#ifdef CONFIG_MULTIUSER
381long __sys_setregid(gid_t rgid, gid_t egid)
382{
383 struct user_namespace *ns = current_user_ns();
384 const struct cred *old;
385 struct cred *new;
386 int retval;
387 kgid_t krgid, kegid;
388
389 krgid = make_kgid(ns, rgid);
390 kegid = make_kgid(ns, egid);
391
392 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
393 return -EINVAL;
394 if ((egid != (gid_t) -1) && !gid_valid(kegid))
395 return -EINVAL;
396
397 new = prepare_creds();
398 if (!new)
399 return -ENOMEM;
400 old = current_cred();
401
402 retval = -EPERM;
403 if (rgid != (gid_t) -1) {
404 if (gid_eq(old->gid, krgid) ||
405 gid_eq(old->egid, krgid) ||
406 ns_capable_setid(old->user_ns, CAP_SETGID))
407 new->gid = krgid;
408 else
409 goto error;
410 }
411 if (egid != (gid_t) -1) {
412 if (gid_eq(old->gid, kegid) ||
413 gid_eq(old->egid, kegid) ||
414 gid_eq(old->sgid, kegid) ||
415 ns_capable_setid(old->user_ns, CAP_SETGID))
416 new->egid = kegid;
417 else
418 goto error;
419 }
420
421 if (rgid != (gid_t) -1 ||
422 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
423 new->sgid = new->egid;
424 new->fsgid = new->egid;
425
426 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
427 if (retval < 0)
428 goto error;
429
430 return commit_creds(new);
431
432error:
433 abort_creds(new);
434 return retval;
435}
436
437SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
438{
439 return __sys_setregid(rgid, egid);
440}
441
442/*
443 * setgid() is implemented like SysV w/ SAVED_IDS
444 *
445 * SMP: Same implicit races as above.
446 */
447long __sys_setgid(gid_t gid)
448{
449 struct user_namespace *ns = current_user_ns();
450 const struct cred *old;
451 struct cred *new;
452 int retval;
453 kgid_t kgid;
454
455 kgid = make_kgid(ns, gid);
456 if (!gid_valid(kgid))
457 return -EINVAL;
458
459 new = prepare_creds();
460 if (!new)
461 return -ENOMEM;
462 old = current_cred();
463
464 retval = -EPERM;
465 if (ns_capable_setid(old->user_ns, CAP_SETGID))
466 new->gid = new->egid = new->sgid = new->fsgid = kgid;
467 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
468 new->egid = new->fsgid = kgid;
469 else
470 goto error;
471
472 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
473 if (retval < 0)
474 goto error;
475
476 return commit_creds(new);
477
478error:
479 abort_creds(new);
480 return retval;
481}
482
483SYSCALL_DEFINE1(setgid, gid_t, gid)
484{
485 return __sys_setgid(gid);
486}
487
488/*
489 * change the user struct in a credentials set to match the new UID
490 */
491static int set_user(struct cred *new)
492{
493 struct user_struct *new_user;
494
495 new_user = alloc_uid(new->uid);
496 if (!new_user)
497 return -EAGAIN;
498
499 free_uid(new->user);
500 new->user = new_user;
501 return 0;
502}
503
504static void flag_nproc_exceeded(struct cred *new)
505{
506 if (new->ucounts == current_ucounts())
507 return;
508
509 /*
510 * We don't fail in case of NPROC limit excess here because too many
511 * poorly written programs don't check set*uid() return code, assuming
512 * it never fails if called by root. We may still enforce NPROC limit
513 * for programs doing set*uid()+execve() by harmlessly deferring the
514 * failure to the execve() stage.
515 */
516 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
517 new->user != INIT_USER)
518 current->flags |= PF_NPROC_EXCEEDED;
519 else
520 current->flags &= ~PF_NPROC_EXCEEDED;
521}
522
523/*
524 * Unprivileged users may change the real uid to the effective uid
525 * or vice versa. (BSD-style)
526 *
527 * If you set the real uid at all, or set the effective uid to a value not
528 * equal to the real uid, then the saved uid is set to the new effective uid.
529 *
530 * This makes it possible for a setuid program to completely drop its
531 * privileges, which is often a useful assertion to make when you are doing
532 * a security audit over a program.
533 *
534 * The general idea is that a program which uses just setreuid() will be
535 * 100% compatible with BSD. A program which uses just setuid() will be
536 * 100% compatible with POSIX with saved IDs.
537 */
538long __sys_setreuid(uid_t ruid, uid_t euid)
539{
540 struct user_namespace *ns = current_user_ns();
541 const struct cred *old;
542 struct cred *new;
543 int retval;
544 kuid_t kruid, keuid;
545
546 kruid = make_kuid(ns, ruid);
547 keuid = make_kuid(ns, euid);
548
549 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
550 return -EINVAL;
551 if ((euid != (uid_t) -1) && !uid_valid(keuid))
552 return -EINVAL;
553
554 new = prepare_creds();
555 if (!new)
556 return -ENOMEM;
557 old = current_cred();
558
559 retval = -EPERM;
560 if (ruid != (uid_t) -1) {
561 new->uid = kruid;
562 if (!uid_eq(old->uid, kruid) &&
563 !uid_eq(old->euid, kruid) &&
564 !ns_capable_setid(old->user_ns, CAP_SETUID))
565 goto error;
566 }
567
568 if (euid != (uid_t) -1) {
569 new->euid = keuid;
570 if (!uid_eq(old->uid, keuid) &&
571 !uid_eq(old->euid, keuid) &&
572 !uid_eq(old->suid, keuid) &&
573 !ns_capable_setid(old->user_ns, CAP_SETUID))
574 goto error;
575 }
576
577 if (!uid_eq(new->uid, old->uid)) {
578 retval = set_user(new);
579 if (retval < 0)
580 goto error;
581 }
582 if (ruid != (uid_t) -1 ||
583 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
584 new->suid = new->euid;
585 new->fsuid = new->euid;
586
587 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
588 if (retval < 0)
589 goto error;
590
591 retval = set_cred_ucounts(new);
592 if (retval < 0)
593 goto error;
594
595 flag_nproc_exceeded(new);
596 return commit_creds(new);
597
598error:
599 abort_creds(new);
600 return retval;
601}
602
603SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
604{
605 return __sys_setreuid(ruid, euid);
606}
607
608/*
609 * setuid() is implemented like SysV with SAVED_IDS
610 *
611 * Note that SAVED_ID's is deficient in that a setuid root program
612 * like sendmail, for example, cannot set its uid to be a normal
613 * user and then switch back, because if you're root, setuid() sets
614 * the saved uid too. If you don't like this, blame the bright people
615 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
616 * will allow a root program to temporarily drop privileges and be able to
617 * regain them by swapping the real and effective uid.
618 */
619long __sys_setuid(uid_t uid)
620{
621 struct user_namespace *ns = current_user_ns();
622 const struct cred *old;
623 struct cred *new;
624 int retval;
625 kuid_t kuid;
626
627 kuid = make_kuid(ns, uid);
628 if (!uid_valid(kuid))
629 return -EINVAL;
630
631 new = prepare_creds();
632 if (!new)
633 return -ENOMEM;
634 old = current_cred();
635
636 retval = -EPERM;
637 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
638 new->suid = new->uid = kuid;
639 if (!uid_eq(kuid, old->uid)) {
640 retval = set_user(new);
641 if (retval < 0)
642 goto error;
643 }
644 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
645 goto error;
646 }
647
648 new->fsuid = new->euid = kuid;
649
650 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
651 if (retval < 0)
652 goto error;
653
654 retval = set_cred_ucounts(new);
655 if (retval < 0)
656 goto error;
657
658 flag_nproc_exceeded(new);
659 return commit_creds(new);
660
661error:
662 abort_creds(new);
663 return retval;
664}
665
666SYSCALL_DEFINE1(setuid, uid_t, uid)
667{
668 return __sys_setuid(uid);
669}
670
671
672/*
673 * This function implements a generic ability to update ruid, euid,
674 * and suid. This allows you to implement the 4.4 compatible seteuid().
675 */
676long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
677{
678 struct user_namespace *ns = current_user_ns();
679 const struct cred *old;
680 struct cred *new;
681 int retval;
682 kuid_t kruid, keuid, ksuid;
683 bool ruid_new, euid_new, suid_new;
684
685 kruid = make_kuid(ns, ruid);
686 keuid = make_kuid(ns, euid);
687 ksuid = make_kuid(ns, suid);
688
689 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
690 return -EINVAL;
691
692 if ((euid != (uid_t) -1) && !uid_valid(keuid))
693 return -EINVAL;
694
695 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
696 return -EINVAL;
697
698 old = current_cred();
699
700 /* check for no-op */
701 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
702 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
703 uid_eq(keuid, old->fsuid))) &&
704 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
705 return 0;
706
707 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
708 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
709 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
710 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
711 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
712 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
713 if ((ruid_new || euid_new || suid_new) &&
714 !ns_capable_setid(old->user_ns, CAP_SETUID))
715 return -EPERM;
716
717 new = prepare_creds();
718 if (!new)
719 return -ENOMEM;
720
721 if (ruid != (uid_t) -1) {
722 new->uid = kruid;
723 if (!uid_eq(kruid, old->uid)) {
724 retval = set_user(new);
725 if (retval < 0)
726 goto error;
727 }
728 }
729 if (euid != (uid_t) -1)
730 new->euid = keuid;
731 if (suid != (uid_t) -1)
732 new->suid = ksuid;
733 new->fsuid = new->euid;
734
735 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736 if (retval < 0)
737 goto error;
738
739 retval = set_cred_ucounts(new);
740 if (retval < 0)
741 goto error;
742
743 flag_nproc_exceeded(new);
744 return commit_creds(new);
745
746error:
747 abort_creds(new);
748 return retval;
749}
750
751SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
752{
753 return __sys_setresuid(ruid, euid, suid);
754}
755
756SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
757{
758 const struct cred *cred = current_cred();
759 int retval;
760 uid_t ruid, euid, suid;
761
762 ruid = from_kuid_munged(cred->user_ns, cred->uid);
763 euid = from_kuid_munged(cred->user_ns, cred->euid);
764 suid = from_kuid_munged(cred->user_ns, cred->suid);
765
766 retval = put_user(ruid, ruidp);
767 if (!retval) {
768 retval = put_user(euid, euidp);
769 if (!retval)
770 return put_user(suid, suidp);
771 }
772 return retval;
773}
774
775/*
776 * Same as above, but for rgid, egid, sgid.
777 */
778long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
779{
780 struct user_namespace *ns = current_user_ns();
781 const struct cred *old;
782 struct cred *new;
783 int retval;
784 kgid_t krgid, kegid, ksgid;
785 bool rgid_new, egid_new, sgid_new;
786
787 krgid = make_kgid(ns, rgid);
788 kegid = make_kgid(ns, egid);
789 ksgid = make_kgid(ns, sgid);
790
791 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
792 return -EINVAL;
793 if ((egid != (gid_t) -1) && !gid_valid(kegid))
794 return -EINVAL;
795 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
796 return -EINVAL;
797
798 old = current_cred();
799
800 /* check for no-op */
801 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
802 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
803 gid_eq(kegid, old->fsgid))) &&
804 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
805 return 0;
806
807 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
808 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
809 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
810 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
811 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
812 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
813 if ((rgid_new || egid_new || sgid_new) &&
814 !ns_capable_setid(old->user_ns, CAP_SETGID))
815 return -EPERM;
816
817 new = prepare_creds();
818 if (!new)
819 return -ENOMEM;
820
821 if (rgid != (gid_t) -1)
822 new->gid = krgid;
823 if (egid != (gid_t) -1)
824 new->egid = kegid;
825 if (sgid != (gid_t) -1)
826 new->sgid = ksgid;
827 new->fsgid = new->egid;
828
829 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
830 if (retval < 0)
831 goto error;
832
833 return commit_creds(new);
834
835error:
836 abort_creds(new);
837 return retval;
838}
839
840SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
841{
842 return __sys_setresgid(rgid, egid, sgid);
843}
844
845SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
846{
847 const struct cred *cred = current_cred();
848 int retval;
849 gid_t rgid, egid, sgid;
850
851 rgid = from_kgid_munged(cred->user_ns, cred->gid);
852 egid = from_kgid_munged(cred->user_ns, cred->egid);
853 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
854
855 retval = put_user(rgid, rgidp);
856 if (!retval) {
857 retval = put_user(egid, egidp);
858 if (!retval)
859 retval = put_user(sgid, sgidp);
860 }
861
862 return retval;
863}
864
865
866/*
867 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
868 * is used for "access()" and for the NFS daemon (letting nfsd stay at
869 * whatever uid it wants to). It normally shadows "euid", except when
870 * explicitly set by setfsuid() or for access..
871 */
872long __sys_setfsuid(uid_t uid)
873{
874 const struct cred *old;
875 struct cred *new;
876 uid_t old_fsuid;
877 kuid_t kuid;
878
879 old = current_cred();
880 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
881
882 kuid = make_kuid(old->user_ns, uid);
883 if (!uid_valid(kuid))
884 return old_fsuid;
885
886 new = prepare_creds();
887 if (!new)
888 return old_fsuid;
889
890 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
891 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
892 ns_capable_setid(old->user_ns, CAP_SETUID)) {
893 if (!uid_eq(kuid, old->fsuid)) {
894 new->fsuid = kuid;
895 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
896 goto change_okay;
897 }
898 }
899
900 abort_creds(new);
901 return old_fsuid;
902
903change_okay:
904 commit_creds(new);
905 return old_fsuid;
906}
907
908SYSCALL_DEFINE1(setfsuid, uid_t, uid)
909{
910 return __sys_setfsuid(uid);
911}
912
913/*
914 * Samma på svenska..
915 */
916long __sys_setfsgid(gid_t gid)
917{
918 const struct cred *old;
919 struct cred *new;
920 gid_t old_fsgid;
921 kgid_t kgid;
922
923 old = current_cred();
924 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
925
926 kgid = make_kgid(old->user_ns, gid);
927 if (!gid_valid(kgid))
928 return old_fsgid;
929
930 new = prepare_creds();
931 if (!new)
932 return old_fsgid;
933
934 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
935 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
936 ns_capable_setid(old->user_ns, CAP_SETGID)) {
937 if (!gid_eq(kgid, old->fsgid)) {
938 new->fsgid = kgid;
939 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
940 goto change_okay;
941 }
942 }
943
944 abort_creds(new);
945 return old_fsgid;
946
947change_okay:
948 commit_creds(new);
949 return old_fsgid;
950}
951
952SYSCALL_DEFINE1(setfsgid, gid_t, gid)
953{
954 return __sys_setfsgid(gid);
955}
956#endif /* CONFIG_MULTIUSER */
957
958/**
959 * sys_getpid - return the thread group id of the current process
960 *
961 * Note, despite the name, this returns the tgid not the pid. The tgid and
962 * the pid are identical unless CLONE_THREAD was specified on clone() in
963 * which case the tgid is the same in all threads of the same group.
964 *
965 * This is SMP safe as current->tgid does not change.
966 */
967SYSCALL_DEFINE0(getpid)
968{
969 return task_tgid_vnr(current);
970}
971
972/* Thread ID - the internal kernel "pid" */
973SYSCALL_DEFINE0(gettid)
974{
975 return task_pid_vnr(current);
976}
977
978/*
979 * Accessing ->real_parent is not SMP-safe, it could
980 * change from under us. However, we can use a stale
981 * value of ->real_parent under rcu_read_lock(), see
982 * release_task()->call_rcu(delayed_put_task_struct).
983 */
984SYSCALL_DEFINE0(getppid)
985{
986 int pid;
987
988 rcu_read_lock();
989 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
990 rcu_read_unlock();
991
992 return pid;
993}
994
995SYSCALL_DEFINE0(getuid)
996{
997 /* Only we change this so SMP safe */
998 return from_kuid_munged(current_user_ns(), current_uid());
999}
1000
1001SYSCALL_DEFINE0(geteuid)
1002{
1003 /* Only we change this so SMP safe */
1004 return from_kuid_munged(current_user_ns(), current_euid());
1005}
1006
1007SYSCALL_DEFINE0(getgid)
1008{
1009 /* Only we change this so SMP safe */
1010 return from_kgid_munged(current_user_ns(), current_gid());
1011}
1012
1013SYSCALL_DEFINE0(getegid)
1014{
1015 /* Only we change this so SMP safe */
1016 return from_kgid_munged(current_user_ns(), current_egid());
1017}
1018
1019static void do_sys_times(struct tms *tms)
1020{
1021 u64 tgutime, tgstime, cutime, cstime;
1022
1023 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1024 cutime = current->signal->cutime;
1025 cstime = current->signal->cstime;
1026 tms->tms_utime = nsec_to_clock_t(tgutime);
1027 tms->tms_stime = nsec_to_clock_t(tgstime);
1028 tms->tms_cutime = nsec_to_clock_t(cutime);
1029 tms->tms_cstime = nsec_to_clock_t(cstime);
1030}
1031
1032SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1033{
1034 if (tbuf) {
1035 struct tms tmp;
1036
1037 do_sys_times(&tmp);
1038 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1039 return -EFAULT;
1040 }
1041 force_successful_syscall_return();
1042 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1043}
1044
1045#ifdef CONFIG_COMPAT
1046static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1047{
1048 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1049}
1050
1051COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1052{
1053 if (tbuf) {
1054 struct tms tms;
1055 struct compat_tms tmp;
1056
1057 do_sys_times(&tms);
1058 /* Convert our struct tms to the compat version. */
1059 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1060 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1061 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1062 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1063 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1064 return -EFAULT;
1065 }
1066 force_successful_syscall_return();
1067 return compat_jiffies_to_clock_t(jiffies);
1068}
1069#endif
1070
1071/*
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1075 *
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another. -TYT, 12/12/91
1079 *
1080 * !PF_FORKNOEXEC check to conform completely to POSIX.
1081 */
1082SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1083{
1084 struct task_struct *p;
1085 struct task_struct *group_leader = current->group_leader;
1086 struct pid *pgrp;
1087 int err;
1088
1089 if (!pid)
1090 pid = task_pid_vnr(group_leader);
1091 if (!pgid)
1092 pgid = pid;
1093 if (pgid < 0)
1094 return -EINVAL;
1095 rcu_read_lock();
1096
1097 /* From this point forward we keep holding onto the tasklist lock
1098 * so that our parent does not change from under us. -DaveM
1099 */
1100 write_lock_irq(&tasklist_lock);
1101
1102 err = -ESRCH;
1103 p = find_task_by_vpid(pid);
1104 if (!p)
1105 goto out;
1106
1107 err = -EINVAL;
1108 if (!thread_group_leader(p))
1109 goto out;
1110
1111 if (same_thread_group(p->real_parent, group_leader)) {
1112 err = -EPERM;
1113 if (task_session(p) != task_session(group_leader))
1114 goto out;
1115 err = -EACCES;
1116 if (!(p->flags & PF_FORKNOEXEC))
1117 goto out;
1118 } else {
1119 err = -ESRCH;
1120 if (p != group_leader)
1121 goto out;
1122 }
1123
1124 err = -EPERM;
1125 if (p->signal->leader)
1126 goto out;
1127
1128 pgrp = task_pid(p);
1129 if (pgid != pid) {
1130 struct task_struct *g;
1131
1132 pgrp = find_vpid(pgid);
1133 g = pid_task(pgrp, PIDTYPE_PGID);
1134 if (!g || task_session(g) != task_session(group_leader))
1135 goto out;
1136 }
1137
1138 err = security_task_setpgid(p, pgid);
1139 if (err)
1140 goto out;
1141
1142 if (task_pgrp(p) != pgrp)
1143 change_pid(p, PIDTYPE_PGID, pgrp);
1144
1145 err = 0;
1146out:
1147 /* All paths lead to here, thus we are safe. -DaveM */
1148 write_unlock_irq(&tasklist_lock);
1149 rcu_read_unlock();
1150 return err;
1151}
1152
1153static int do_getpgid(pid_t pid)
1154{
1155 struct task_struct *p;
1156 struct pid *grp;
1157 int retval;
1158
1159 rcu_read_lock();
1160 if (!pid)
1161 grp = task_pgrp(current);
1162 else {
1163 retval = -ESRCH;
1164 p = find_task_by_vpid(pid);
1165 if (!p)
1166 goto out;
1167 grp = task_pgrp(p);
1168 if (!grp)
1169 goto out;
1170
1171 retval = security_task_getpgid(p);
1172 if (retval)
1173 goto out;
1174 }
1175 retval = pid_vnr(grp);
1176out:
1177 rcu_read_unlock();
1178 return retval;
1179}
1180
1181SYSCALL_DEFINE1(getpgid, pid_t, pid)
1182{
1183 return do_getpgid(pid);
1184}
1185
1186#ifdef __ARCH_WANT_SYS_GETPGRP
1187
1188SYSCALL_DEFINE0(getpgrp)
1189{
1190 return do_getpgid(0);
1191}
1192
1193#endif
1194
1195SYSCALL_DEFINE1(getsid, pid_t, pid)
1196{
1197 struct task_struct *p;
1198 struct pid *sid;
1199 int retval;
1200
1201 rcu_read_lock();
1202 if (!pid)
1203 sid = task_session(current);
1204 else {
1205 retval = -ESRCH;
1206 p = find_task_by_vpid(pid);
1207 if (!p)
1208 goto out;
1209 sid = task_session(p);
1210 if (!sid)
1211 goto out;
1212
1213 retval = security_task_getsid(p);
1214 if (retval)
1215 goto out;
1216 }
1217 retval = pid_vnr(sid);
1218out:
1219 rcu_read_unlock();
1220 return retval;
1221}
1222
1223static void set_special_pids(struct pid *pid)
1224{
1225 struct task_struct *curr = current->group_leader;
1226
1227 if (task_session(curr) != pid)
1228 change_pid(curr, PIDTYPE_SID, pid);
1229
1230 if (task_pgrp(curr) != pid)
1231 change_pid(curr, PIDTYPE_PGID, pid);
1232}
1233
1234int ksys_setsid(void)
1235{
1236 struct task_struct *group_leader = current->group_leader;
1237 struct pid *sid = task_pid(group_leader);
1238 pid_t session = pid_vnr(sid);
1239 int err = -EPERM;
1240
1241 write_lock_irq(&tasklist_lock);
1242 /* Fail if I am already a session leader */
1243 if (group_leader->signal->leader)
1244 goto out;
1245
1246 /* Fail if a process group id already exists that equals the
1247 * proposed session id.
1248 */
1249 if (pid_task(sid, PIDTYPE_PGID))
1250 goto out;
1251
1252 group_leader->signal->leader = 1;
1253 set_special_pids(sid);
1254
1255 proc_clear_tty(group_leader);
1256
1257 err = session;
1258out:
1259 write_unlock_irq(&tasklist_lock);
1260 if (err > 0) {
1261 proc_sid_connector(group_leader);
1262 sched_autogroup_create_attach(group_leader);
1263 }
1264 return err;
1265}
1266
1267SYSCALL_DEFINE0(setsid)
1268{
1269 return ksys_setsid();
1270}
1271
1272DECLARE_RWSEM(uts_sem);
1273
1274#ifdef COMPAT_UTS_MACHINE
1275#define override_architecture(name) \
1276 (personality(current->personality) == PER_LINUX32 && \
1277 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1278 sizeof(COMPAT_UTS_MACHINE)))
1279#else
1280#define override_architecture(name) 0
1281#endif
1282
1283/*
1284 * Work around broken programs that cannot handle "Linux 3.0".
1285 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1286 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1287 * 2.6.60.
1288 */
1289static int override_release(char __user *release, size_t len)
1290{
1291 int ret = 0;
1292
1293 if (current->personality & UNAME26) {
1294 const char *rest = UTS_RELEASE;
1295 char buf[65] = { 0 };
1296 int ndots = 0;
1297 unsigned v;
1298 size_t copy;
1299
1300 while (*rest) {
1301 if (*rest == '.' && ++ndots >= 3)
1302 break;
1303 if (!isdigit(*rest) && *rest != '.')
1304 break;
1305 rest++;
1306 }
1307 v = LINUX_VERSION_PATCHLEVEL + 60;
1308 copy = clamp_t(size_t, len, 1, sizeof(buf));
1309 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1310 ret = copy_to_user(release, buf, copy + 1);
1311 }
1312 return ret;
1313}
1314
1315SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1316{
1317 struct new_utsname tmp;
1318
1319 down_read(&uts_sem);
1320 memcpy(&tmp, utsname(), sizeof(tmp));
1321 up_read(&uts_sem);
1322 if (copy_to_user(name, &tmp, sizeof(tmp)))
1323 return -EFAULT;
1324
1325 if (override_release(name->release, sizeof(name->release)))
1326 return -EFAULT;
1327 if (override_architecture(name))
1328 return -EFAULT;
1329 return 0;
1330}
1331
1332#ifdef __ARCH_WANT_SYS_OLD_UNAME
1333/*
1334 * Old cruft
1335 */
1336SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1337{
1338 struct old_utsname tmp;
1339
1340 if (!name)
1341 return -EFAULT;
1342
1343 down_read(&uts_sem);
1344 memcpy(&tmp, utsname(), sizeof(tmp));
1345 up_read(&uts_sem);
1346 if (copy_to_user(name, &tmp, sizeof(tmp)))
1347 return -EFAULT;
1348
1349 if (override_release(name->release, sizeof(name->release)))
1350 return -EFAULT;
1351 if (override_architecture(name))
1352 return -EFAULT;
1353 return 0;
1354}
1355
1356SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1357{
1358 struct oldold_utsname tmp;
1359
1360 if (!name)
1361 return -EFAULT;
1362
1363 memset(&tmp, 0, sizeof(tmp));
1364
1365 down_read(&uts_sem);
1366 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1367 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1368 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1369 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1370 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1371 up_read(&uts_sem);
1372 if (copy_to_user(name, &tmp, sizeof(tmp)))
1373 return -EFAULT;
1374
1375 if (override_architecture(name))
1376 return -EFAULT;
1377 if (override_release(name->release, sizeof(name->release)))
1378 return -EFAULT;
1379 return 0;
1380}
1381#endif
1382
1383SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1384{
1385 int errno;
1386 char tmp[__NEW_UTS_LEN];
1387
1388 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1389 return -EPERM;
1390
1391 if (len < 0 || len > __NEW_UTS_LEN)
1392 return -EINVAL;
1393 errno = -EFAULT;
1394 if (!copy_from_user(tmp, name, len)) {
1395 struct new_utsname *u;
1396
1397 add_device_randomness(tmp, len);
1398 down_write(&uts_sem);
1399 u = utsname();
1400 memcpy(u->nodename, tmp, len);
1401 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1402 errno = 0;
1403 uts_proc_notify(UTS_PROC_HOSTNAME);
1404 up_write(&uts_sem);
1405 }
1406 return errno;
1407}
1408
1409#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1410
1411SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1412{
1413 int i;
1414 struct new_utsname *u;
1415 char tmp[__NEW_UTS_LEN + 1];
1416
1417 if (len < 0)
1418 return -EINVAL;
1419 down_read(&uts_sem);
1420 u = utsname();
1421 i = 1 + strlen(u->nodename);
1422 if (i > len)
1423 i = len;
1424 memcpy(tmp, u->nodename, i);
1425 up_read(&uts_sem);
1426 if (copy_to_user(name, tmp, i))
1427 return -EFAULT;
1428 return 0;
1429}
1430
1431#endif
1432
1433/*
1434 * Only setdomainname; getdomainname can be implemented by calling
1435 * uname()
1436 */
1437SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1438{
1439 int errno;
1440 char tmp[__NEW_UTS_LEN];
1441
1442 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1443 return -EPERM;
1444 if (len < 0 || len > __NEW_UTS_LEN)
1445 return -EINVAL;
1446
1447 errno = -EFAULT;
1448 if (!copy_from_user(tmp, name, len)) {
1449 struct new_utsname *u;
1450
1451 add_device_randomness(tmp, len);
1452 down_write(&uts_sem);
1453 u = utsname();
1454 memcpy(u->domainname, tmp, len);
1455 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1456 errno = 0;
1457 uts_proc_notify(UTS_PROC_DOMAINNAME);
1458 up_write(&uts_sem);
1459 }
1460 return errno;
1461}
1462
1463/* make sure you are allowed to change @tsk limits before calling this */
1464static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1465 struct rlimit *new_rlim, struct rlimit *old_rlim)
1466{
1467 struct rlimit *rlim;
1468 int retval = 0;
1469
1470 if (resource >= RLIM_NLIMITS)
1471 return -EINVAL;
1472 resource = array_index_nospec(resource, RLIM_NLIMITS);
1473
1474 if (new_rlim) {
1475 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1476 return -EINVAL;
1477 if (resource == RLIMIT_NOFILE &&
1478 new_rlim->rlim_max > sysctl_nr_open)
1479 return -EPERM;
1480 }
1481
1482 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1483 rlim = tsk->signal->rlim + resource;
1484 task_lock(tsk->group_leader);
1485 if (new_rlim) {
1486 /*
1487 * Keep the capable check against init_user_ns until cgroups can
1488 * contain all limits.
1489 */
1490 if (new_rlim->rlim_max > rlim->rlim_max &&
1491 !capable(CAP_SYS_RESOURCE))
1492 retval = -EPERM;
1493 if (!retval)
1494 retval = security_task_setrlimit(tsk, resource, new_rlim);
1495 }
1496 if (!retval) {
1497 if (old_rlim)
1498 *old_rlim = *rlim;
1499 if (new_rlim)
1500 *rlim = *new_rlim;
1501 }
1502 task_unlock(tsk->group_leader);
1503
1504 /*
1505 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1506 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1507 * ignores the rlimit.
1508 */
1509 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1510 new_rlim->rlim_cur != RLIM_INFINITY &&
1511 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1512 /*
1513 * update_rlimit_cpu can fail if the task is exiting, but there
1514 * may be other tasks in the thread group that are not exiting,
1515 * and they need their cpu timers adjusted.
1516 *
1517 * The group_leader is the last task to be released, so if we
1518 * cannot update_rlimit_cpu on it, then the entire process is
1519 * exiting and we do not need to update at all.
1520 */
1521 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1522 }
1523
1524 return retval;
1525}
1526
1527SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1528{
1529 struct rlimit value;
1530 int ret;
1531
1532 ret = do_prlimit(current, resource, NULL, &value);
1533 if (!ret)
1534 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1535
1536 return ret;
1537}
1538
1539#ifdef CONFIG_COMPAT
1540
1541COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1542 struct compat_rlimit __user *, rlim)
1543{
1544 struct rlimit r;
1545 struct compat_rlimit r32;
1546
1547 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1548 return -EFAULT;
1549
1550 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1551 r.rlim_cur = RLIM_INFINITY;
1552 else
1553 r.rlim_cur = r32.rlim_cur;
1554 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1555 r.rlim_max = RLIM_INFINITY;
1556 else
1557 r.rlim_max = r32.rlim_max;
1558 return do_prlimit(current, resource, &r, NULL);
1559}
1560
1561COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1562 struct compat_rlimit __user *, rlim)
1563{
1564 struct rlimit r;
1565 int ret;
1566
1567 ret = do_prlimit(current, resource, NULL, &r);
1568 if (!ret) {
1569 struct compat_rlimit r32;
1570 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1571 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1572 else
1573 r32.rlim_cur = r.rlim_cur;
1574 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1575 r32.rlim_max = COMPAT_RLIM_INFINITY;
1576 else
1577 r32.rlim_max = r.rlim_max;
1578
1579 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1580 return -EFAULT;
1581 }
1582 return ret;
1583}
1584
1585#endif
1586
1587#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1588
1589/*
1590 * Back compatibility for getrlimit. Needed for some apps.
1591 */
1592SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1593 struct rlimit __user *, rlim)
1594{
1595 struct rlimit x;
1596 if (resource >= RLIM_NLIMITS)
1597 return -EINVAL;
1598
1599 resource = array_index_nospec(resource, RLIM_NLIMITS);
1600 task_lock(current->group_leader);
1601 x = current->signal->rlim[resource];
1602 task_unlock(current->group_leader);
1603 if (x.rlim_cur > 0x7FFFFFFF)
1604 x.rlim_cur = 0x7FFFFFFF;
1605 if (x.rlim_max > 0x7FFFFFFF)
1606 x.rlim_max = 0x7FFFFFFF;
1607 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1608}
1609
1610#ifdef CONFIG_COMPAT
1611COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1612 struct compat_rlimit __user *, rlim)
1613{
1614 struct rlimit r;
1615
1616 if (resource >= RLIM_NLIMITS)
1617 return -EINVAL;
1618
1619 resource = array_index_nospec(resource, RLIM_NLIMITS);
1620 task_lock(current->group_leader);
1621 r = current->signal->rlim[resource];
1622 task_unlock(current->group_leader);
1623 if (r.rlim_cur > 0x7FFFFFFF)
1624 r.rlim_cur = 0x7FFFFFFF;
1625 if (r.rlim_max > 0x7FFFFFFF)
1626 r.rlim_max = 0x7FFFFFFF;
1627
1628 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1629 put_user(r.rlim_max, &rlim->rlim_max))
1630 return -EFAULT;
1631 return 0;
1632}
1633#endif
1634
1635#endif
1636
1637static inline bool rlim64_is_infinity(__u64 rlim64)
1638{
1639#if BITS_PER_LONG < 64
1640 return rlim64 >= ULONG_MAX;
1641#else
1642 return rlim64 == RLIM64_INFINITY;
1643#endif
1644}
1645
1646static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1647{
1648 if (rlim->rlim_cur == RLIM_INFINITY)
1649 rlim64->rlim_cur = RLIM64_INFINITY;
1650 else
1651 rlim64->rlim_cur = rlim->rlim_cur;
1652 if (rlim->rlim_max == RLIM_INFINITY)
1653 rlim64->rlim_max = RLIM64_INFINITY;
1654 else
1655 rlim64->rlim_max = rlim->rlim_max;
1656}
1657
1658static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1659{
1660 if (rlim64_is_infinity(rlim64->rlim_cur))
1661 rlim->rlim_cur = RLIM_INFINITY;
1662 else
1663 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1664 if (rlim64_is_infinity(rlim64->rlim_max))
1665 rlim->rlim_max = RLIM_INFINITY;
1666 else
1667 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1668}
1669
1670/* rcu lock must be held */
1671static int check_prlimit_permission(struct task_struct *task,
1672 unsigned int flags)
1673{
1674 const struct cred *cred = current_cred(), *tcred;
1675 bool id_match;
1676
1677 if (current == task)
1678 return 0;
1679
1680 tcred = __task_cred(task);
1681 id_match = (uid_eq(cred->uid, tcred->euid) &&
1682 uid_eq(cred->uid, tcred->suid) &&
1683 uid_eq(cred->uid, tcred->uid) &&
1684 gid_eq(cred->gid, tcred->egid) &&
1685 gid_eq(cred->gid, tcred->sgid) &&
1686 gid_eq(cred->gid, tcred->gid));
1687 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1688 return -EPERM;
1689
1690 return security_task_prlimit(cred, tcred, flags);
1691}
1692
1693SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1694 const struct rlimit64 __user *, new_rlim,
1695 struct rlimit64 __user *, old_rlim)
1696{
1697 struct rlimit64 old64, new64;
1698 struct rlimit old, new;
1699 struct task_struct *tsk;
1700 unsigned int checkflags = 0;
1701 int ret;
1702
1703 if (old_rlim)
1704 checkflags |= LSM_PRLIMIT_READ;
1705
1706 if (new_rlim) {
1707 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1708 return -EFAULT;
1709 rlim64_to_rlim(&new64, &new);
1710 checkflags |= LSM_PRLIMIT_WRITE;
1711 }
1712
1713 rcu_read_lock();
1714 tsk = pid ? find_task_by_vpid(pid) : current;
1715 if (!tsk) {
1716 rcu_read_unlock();
1717 return -ESRCH;
1718 }
1719 ret = check_prlimit_permission(tsk, checkflags);
1720 if (ret) {
1721 rcu_read_unlock();
1722 return ret;
1723 }
1724 get_task_struct(tsk);
1725 rcu_read_unlock();
1726
1727 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1728 old_rlim ? &old : NULL);
1729
1730 if (!ret && old_rlim) {
1731 rlim_to_rlim64(&old, &old64);
1732 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1733 ret = -EFAULT;
1734 }
1735
1736 put_task_struct(tsk);
1737 return ret;
1738}
1739
1740SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1741{
1742 struct rlimit new_rlim;
1743
1744 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1745 return -EFAULT;
1746 return do_prlimit(current, resource, &new_rlim, NULL);
1747}
1748
1749/*
1750 * It would make sense to put struct rusage in the task_struct,
1751 * except that would make the task_struct be *really big*. After
1752 * task_struct gets moved into malloc'ed memory, it would
1753 * make sense to do this. It will make moving the rest of the information
1754 * a lot simpler! (Which we're not doing right now because we're not
1755 * measuring them yet).
1756 *
1757 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1758 * races with threads incrementing their own counters. But since word
1759 * reads are atomic, we either get new values or old values and we don't
1760 * care which for the sums. We always take the siglock to protect reading
1761 * the c* fields from p->signal from races with exit.c updating those
1762 * fields when reaping, so a sample either gets all the additions of a
1763 * given child after it's reaped, or none so this sample is before reaping.
1764 *
1765 * Locking:
1766 * We need to take the siglock for CHILDEREN, SELF and BOTH
1767 * for the cases current multithreaded, non-current single threaded
1768 * non-current multithreaded. Thread traversal is now safe with
1769 * the siglock held.
1770 * Strictly speaking, we donot need to take the siglock if we are current and
1771 * single threaded, as no one else can take our signal_struct away, no one
1772 * else can reap the children to update signal->c* counters, and no one else
1773 * can race with the signal-> fields. If we do not take any lock, the
1774 * signal-> fields could be read out of order while another thread was just
1775 * exiting. So we should place a read memory barrier when we avoid the lock.
1776 * On the writer side, write memory barrier is implied in __exit_signal
1777 * as __exit_signal releases the siglock spinlock after updating the signal->
1778 * fields. But we don't do this yet to keep things simple.
1779 *
1780 */
1781
1782static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1783{
1784 r->ru_nvcsw += t->nvcsw;
1785 r->ru_nivcsw += t->nivcsw;
1786 r->ru_minflt += t->min_flt;
1787 r->ru_majflt += t->maj_flt;
1788 r->ru_inblock += task_io_get_inblock(t);
1789 r->ru_oublock += task_io_get_oublock(t);
1790}
1791
1792void getrusage(struct task_struct *p, int who, struct rusage *r)
1793{
1794 struct task_struct *t;
1795 unsigned long flags;
1796 u64 tgutime, tgstime, utime, stime;
1797 unsigned long maxrss;
1798 struct mm_struct *mm;
1799 struct signal_struct *sig = p->signal;
1800 unsigned int seq = 0;
1801
1802retry:
1803 memset(r, 0, sizeof(*r));
1804 utime = stime = 0;
1805 maxrss = 0;
1806
1807 if (who == RUSAGE_THREAD) {
1808 task_cputime_adjusted(current, &utime, &stime);
1809 accumulate_thread_rusage(p, r);
1810 maxrss = sig->maxrss;
1811 goto out_thread;
1812 }
1813
1814 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1815
1816 switch (who) {
1817 case RUSAGE_BOTH:
1818 case RUSAGE_CHILDREN:
1819 utime = sig->cutime;
1820 stime = sig->cstime;
1821 r->ru_nvcsw = sig->cnvcsw;
1822 r->ru_nivcsw = sig->cnivcsw;
1823 r->ru_minflt = sig->cmin_flt;
1824 r->ru_majflt = sig->cmaj_flt;
1825 r->ru_inblock = sig->cinblock;
1826 r->ru_oublock = sig->coublock;
1827 maxrss = sig->cmaxrss;
1828
1829 if (who == RUSAGE_CHILDREN)
1830 break;
1831 fallthrough;
1832
1833 case RUSAGE_SELF:
1834 r->ru_nvcsw += sig->nvcsw;
1835 r->ru_nivcsw += sig->nivcsw;
1836 r->ru_minflt += sig->min_flt;
1837 r->ru_majflt += sig->maj_flt;
1838 r->ru_inblock += sig->inblock;
1839 r->ru_oublock += sig->oublock;
1840 if (maxrss < sig->maxrss)
1841 maxrss = sig->maxrss;
1842
1843 rcu_read_lock();
1844 __for_each_thread(sig, t)
1845 accumulate_thread_rusage(t, r);
1846 rcu_read_unlock();
1847
1848 break;
1849
1850 default:
1851 BUG();
1852 }
1853
1854 if (need_seqretry(&sig->stats_lock, seq)) {
1855 seq = 1;
1856 goto retry;
1857 }
1858 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1859
1860 if (who == RUSAGE_CHILDREN)
1861 goto out_children;
1862
1863 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1864 utime += tgutime;
1865 stime += tgstime;
1866
1867out_thread:
1868 mm = get_task_mm(p);
1869 if (mm) {
1870 setmax_mm_hiwater_rss(&maxrss, mm);
1871 mmput(mm);
1872 }
1873
1874out_children:
1875 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1876 r->ru_utime = ns_to_kernel_old_timeval(utime);
1877 r->ru_stime = ns_to_kernel_old_timeval(stime);
1878}
1879
1880SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1881{
1882 struct rusage r;
1883
1884 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1885 who != RUSAGE_THREAD)
1886 return -EINVAL;
1887
1888 getrusage(current, who, &r);
1889 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1890}
1891
1892#ifdef CONFIG_COMPAT
1893COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1894{
1895 struct rusage r;
1896
1897 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1898 who != RUSAGE_THREAD)
1899 return -EINVAL;
1900
1901 getrusage(current, who, &r);
1902 return put_compat_rusage(&r, ru);
1903}
1904#endif
1905
1906SYSCALL_DEFINE1(umask, int, mask)
1907{
1908 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1909 return mask;
1910}
1911
1912static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1913{
1914 CLASS(fd, exe)(fd);
1915 struct inode *inode;
1916 int err;
1917
1918 if (fd_empty(exe))
1919 return -EBADF;
1920
1921 inode = file_inode(fd_file(exe));
1922
1923 /*
1924 * Because the original mm->exe_file points to executable file, make
1925 * sure that this one is executable as well, to avoid breaking an
1926 * overall picture.
1927 */
1928 if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1929 return -EACCES;
1930
1931 err = file_permission(fd_file(exe), MAY_EXEC);
1932 if (err)
1933 return err;
1934
1935 return replace_mm_exe_file(mm, fd_file(exe));
1936}
1937
1938/*
1939 * Check arithmetic relations of passed addresses.
1940 *
1941 * WARNING: we don't require any capability here so be very careful
1942 * in what is allowed for modification from userspace.
1943 */
1944static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1945{
1946 unsigned long mmap_max_addr = TASK_SIZE;
1947 int error = -EINVAL, i;
1948
1949 static const unsigned char offsets[] = {
1950 offsetof(struct prctl_mm_map, start_code),
1951 offsetof(struct prctl_mm_map, end_code),
1952 offsetof(struct prctl_mm_map, start_data),
1953 offsetof(struct prctl_mm_map, end_data),
1954 offsetof(struct prctl_mm_map, start_brk),
1955 offsetof(struct prctl_mm_map, brk),
1956 offsetof(struct prctl_mm_map, start_stack),
1957 offsetof(struct prctl_mm_map, arg_start),
1958 offsetof(struct prctl_mm_map, arg_end),
1959 offsetof(struct prctl_mm_map, env_start),
1960 offsetof(struct prctl_mm_map, env_end),
1961 };
1962
1963 /*
1964 * Make sure the members are not somewhere outside
1965 * of allowed address space.
1966 */
1967 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1968 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1969
1970 if ((unsigned long)val >= mmap_max_addr ||
1971 (unsigned long)val < mmap_min_addr)
1972 goto out;
1973 }
1974
1975 /*
1976 * Make sure the pairs are ordered.
1977 */
1978#define __prctl_check_order(__m1, __op, __m2) \
1979 ((unsigned long)prctl_map->__m1 __op \
1980 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1981 error = __prctl_check_order(start_code, <, end_code);
1982 error |= __prctl_check_order(start_data,<=, end_data);
1983 error |= __prctl_check_order(start_brk, <=, brk);
1984 error |= __prctl_check_order(arg_start, <=, arg_end);
1985 error |= __prctl_check_order(env_start, <=, env_end);
1986 if (error)
1987 goto out;
1988#undef __prctl_check_order
1989
1990 error = -EINVAL;
1991
1992 /*
1993 * Neither we should allow to override limits if they set.
1994 */
1995 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1996 prctl_map->start_brk, prctl_map->end_data,
1997 prctl_map->start_data))
1998 goto out;
1999
2000 error = 0;
2001out:
2002 return error;
2003}
2004
2005#ifdef CONFIG_CHECKPOINT_RESTORE
2006static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2007{
2008 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2009 unsigned long user_auxv[AT_VECTOR_SIZE];
2010 struct mm_struct *mm = current->mm;
2011 int error;
2012
2013 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2014 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2015
2016 if (opt == PR_SET_MM_MAP_SIZE)
2017 return put_user((unsigned int)sizeof(prctl_map),
2018 (unsigned int __user *)addr);
2019
2020 if (data_size != sizeof(prctl_map))
2021 return -EINVAL;
2022
2023 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2024 return -EFAULT;
2025
2026 error = validate_prctl_map_addr(&prctl_map);
2027 if (error)
2028 return error;
2029
2030 if (prctl_map.auxv_size) {
2031 /*
2032 * Someone is trying to cheat the auxv vector.
2033 */
2034 if (!prctl_map.auxv ||
2035 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2036 return -EINVAL;
2037
2038 memset(user_auxv, 0, sizeof(user_auxv));
2039 if (copy_from_user(user_auxv,
2040 (const void __user *)prctl_map.auxv,
2041 prctl_map.auxv_size))
2042 return -EFAULT;
2043
2044 /* Last entry must be AT_NULL as specification requires */
2045 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2046 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2047 }
2048
2049 if (prctl_map.exe_fd != (u32)-1) {
2050 /*
2051 * Check if the current user is checkpoint/restore capable.
2052 * At the time of this writing, it checks for CAP_SYS_ADMIN
2053 * or CAP_CHECKPOINT_RESTORE.
2054 * Note that a user with access to ptrace can masquerade an
2055 * arbitrary program as any executable, even setuid ones.
2056 * This may have implications in the tomoyo subsystem.
2057 */
2058 if (!checkpoint_restore_ns_capable(current_user_ns()))
2059 return -EPERM;
2060
2061 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2062 if (error)
2063 return error;
2064 }
2065
2066 /*
2067 * arg_lock protects concurrent updates but we still need mmap_lock for
2068 * read to exclude races with sys_brk.
2069 */
2070 mmap_read_lock(mm);
2071
2072 /*
2073 * We don't validate if these members are pointing to
2074 * real present VMAs because application may have correspond
2075 * VMAs already unmapped and kernel uses these members for statistics
2076 * output in procfs mostly, except
2077 *
2078 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2079 * for VMAs when updating these members so anything wrong written
2080 * here cause kernel to swear at userspace program but won't lead
2081 * to any problem in kernel itself
2082 */
2083
2084 spin_lock(&mm->arg_lock);
2085 mm->start_code = prctl_map.start_code;
2086 mm->end_code = prctl_map.end_code;
2087 mm->start_data = prctl_map.start_data;
2088 mm->end_data = prctl_map.end_data;
2089 mm->start_brk = prctl_map.start_brk;
2090 mm->brk = prctl_map.brk;
2091 mm->start_stack = prctl_map.start_stack;
2092 mm->arg_start = prctl_map.arg_start;
2093 mm->arg_end = prctl_map.arg_end;
2094 mm->env_start = prctl_map.env_start;
2095 mm->env_end = prctl_map.env_end;
2096 spin_unlock(&mm->arg_lock);
2097
2098 /*
2099 * Note this update of @saved_auxv is lockless thus
2100 * if someone reads this member in procfs while we're
2101 * updating -- it may get partly updated results. It's
2102 * known and acceptable trade off: we leave it as is to
2103 * not introduce additional locks here making the kernel
2104 * more complex.
2105 */
2106 if (prctl_map.auxv_size)
2107 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2108
2109 mmap_read_unlock(mm);
2110 return 0;
2111}
2112#endif /* CONFIG_CHECKPOINT_RESTORE */
2113
2114static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2115 unsigned long len)
2116{
2117 /*
2118 * This doesn't move the auxiliary vector itself since it's pinned to
2119 * mm_struct, but it permits filling the vector with new values. It's
2120 * up to the caller to provide sane values here, otherwise userspace
2121 * tools which use this vector might be unhappy.
2122 */
2123 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2124
2125 if (len > sizeof(user_auxv))
2126 return -EINVAL;
2127
2128 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2129 return -EFAULT;
2130
2131 /* Make sure the last entry is always AT_NULL */
2132 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2133 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2134
2135 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2136
2137 task_lock(current);
2138 memcpy(mm->saved_auxv, user_auxv, len);
2139 task_unlock(current);
2140
2141 return 0;
2142}
2143
2144static int prctl_set_mm(int opt, unsigned long addr,
2145 unsigned long arg4, unsigned long arg5)
2146{
2147 struct mm_struct *mm = current->mm;
2148 struct prctl_mm_map prctl_map = {
2149 .auxv = NULL,
2150 .auxv_size = 0,
2151 .exe_fd = -1,
2152 };
2153 struct vm_area_struct *vma;
2154 int error;
2155
2156 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2157 opt != PR_SET_MM_MAP &&
2158 opt != PR_SET_MM_MAP_SIZE)))
2159 return -EINVAL;
2160
2161#ifdef CONFIG_CHECKPOINT_RESTORE
2162 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2163 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2164#endif
2165
2166 if (!capable(CAP_SYS_RESOURCE))
2167 return -EPERM;
2168
2169 if (opt == PR_SET_MM_EXE_FILE)
2170 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2171
2172 if (opt == PR_SET_MM_AUXV)
2173 return prctl_set_auxv(mm, addr, arg4);
2174
2175 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2176 return -EINVAL;
2177
2178 error = -EINVAL;
2179
2180 /*
2181 * arg_lock protects concurrent updates of arg boundaries, we need
2182 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2183 * validation.
2184 */
2185 mmap_read_lock(mm);
2186 vma = find_vma(mm, addr);
2187
2188 spin_lock(&mm->arg_lock);
2189 prctl_map.start_code = mm->start_code;
2190 prctl_map.end_code = mm->end_code;
2191 prctl_map.start_data = mm->start_data;
2192 prctl_map.end_data = mm->end_data;
2193 prctl_map.start_brk = mm->start_brk;
2194 prctl_map.brk = mm->brk;
2195 prctl_map.start_stack = mm->start_stack;
2196 prctl_map.arg_start = mm->arg_start;
2197 prctl_map.arg_end = mm->arg_end;
2198 prctl_map.env_start = mm->env_start;
2199 prctl_map.env_end = mm->env_end;
2200
2201 switch (opt) {
2202 case PR_SET_MM_START_CODE:
2203 prctl_map.start_code = addr;
2204 break;
2205 case PR_SET_MM_END_CODE:
2206 prctl_map.end_code = addr;
2207 break;
2208 case PR_SET_MM_START_DATA:
2209 prctl_map.start_data = addr;
2210 break;
2211 case PR_SET_MM_END_DATA:
2212 prctl_map.end_data = addr;
2213 break;
2214 case PR_SET_MM_START_STACK:
2215 prctl_map.start_stack = addr;
2216 break;
2217 case PR_SET_MM_START_BRK:
2218 prctl_map.start_brk = addr;
2219 break;
2220 case PR_SET_MM_BRK:
2221 prctl_map.brk = addr;
2222 break;
2223 case PR_SET_MM_ARG_START:
2224 prctl_map.arg_start = addr;
2225 break;
2226 case PR_SET_MM_ARG_END:
2227 prctl_map.arg_end = addr;
2228 break;
2229 case PR_SET_MM_ENV_START:
2230 prctl_map.env_start = addr;
2231 break;
2232 case PR_SET_MM_ENV_END:
2233 prctl_map.env_end = addr;
2234 break;
2235 default:
2236 goto out;
2237 }
2238
2239 error = validate_prctl_map_addr(&prctl_map);
2240 if (error)
2241 goto out;
2242
2243 switch (opt) {
2244 /*
2245 * If command line arguments and environment
2246 * are placed somewhere else on stack, we can
2247 * set them up here, ARG_START/END to setup
2248 * command line arguments and ENV_START/END
2249 * for environment.
2250 */
2251 case PR_SET_MM_START_STACK:
2252 case PR_SET_MM_ARG_START:
2253 case PR_SET_MM_ARG_END:
2254 case PR_SET_MM_ENV_START:
2255 case PR_SET_MM_ENV_END:
2256 if (!vma) {
2257 error = -EFAULT;
2258 goto out;
2259 }
2260 }
2261
2262 mm->start_code = prctl_map.start_code;
2263 mm->end_code = prctl_map.end_code;
2264 mm->start_data = prctl_map.start_data;
2265 mm->end_data = prctl_map.end_data;
2266 mm->start_brk = prctl_map.start_brk;
2267 mm->brk = prctl_map.brk;
2268 mm->start_stack = prctl_map.start_stack;
2269 mm->arg_start = prctl_map.arg_start;
2270 mm->arg_end = prctl_map.arg_end;
2271 mm->env_start = prctl_map.env_start;
2272 mm->env_end = prctl_map.env_end;
2273
2274 error = 0;
2275out:
2276 spin_unlock(&mm->arg_lock);
2277 mmap_read_unlock(mm);
2278 return error;
2279}
2280
2281#ifdef CONFIG_CHECKPOINT_RESTORE
2282static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2283{
2284 return put_user(me->clear_child_tid, tid_addr);
2285}
2286#else
2287static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2288{
2289 return -EINVAL;
2290}
2291#endif
2292
2293static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2294{
2295 /*
2296 * If task has has_child_subreaper - all its descendants
2297 * already have these flag too and new descendants will
2298 * inherit it on fork, skip them.
2299 *
2300 * If we've found child_reaper - skip descendants in
2301 * it's subtree as they will never get out pidns.
2302 */
2303 if (p->signal->has_child_subreaper ||
2304 is_child_reaper(task_pid(p)))
2305 return 0;
2306
2307 p->signal->has_child_subreaper = 1;
2308 return 1;
2309}
2310
2311int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2312{
2313 return -EINVAL;
2314}
2315
2316int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2317 unsigned long ctrl)
2318{
2319 return -EINVAL;
2320}
2321
2322int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
2323{
2324 return -EINVAL;
2325}
2326
2327int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
2328{
2329 return -EINVAL;
2330}
2331
2332int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
2333{
2334 return -EINVAL;
2335}
2336
2337#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2338
2339#ifdef CONFIG_ANON_VMA_NAME
2340
2341#define ANON_VMA_NAME_MAX_LEN 80
2342#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2343
2344static inline bool is_valid_name_char(char ch)
2345{
2346 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2347 return ch > 0x1f && ch < 0x7f &&
2348 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2349}
2350
2351static int prctl_set_vma(unsigned long opt, unsigned long addr,
2352 unsigned long size, unsigned long arg)
2353{
2354 struct mm_struct *mm = current->mm;
2355 const char __user *uname;
2356 struct anon_vma_name *anon_name = NULL;
2357 int error;
2358
2359 switch (opt) {
2360 case PR_SET_VMA_ANON_NAME:
2361 uname = (const char __user *)arg;
2362 if (uname) {
2363 char *name, *pch;
2364
2365 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2366 if (IS_ERR(name))
2367 return PTR_ERR(name);
2368
2369 for (pch = name; *pch != '\0'; pch++) {
2370 if (!is_valid_name_char(*pch)) {
2371 kfree(name);
2372 return -EINVAL;
2373 }
2374 }
2375 /* anon_vma has its own copy */
2376 anon_name = anon_vma_name_alloc(name);
2377 kfree(name);
2378 if (!anon_name)
2379 return -ENOMEM;
2380
2381 }
2382
2383 mmap_write_lock(mm);
2384 error = madvise_set_anon_name(mm, addr, size, anon_name);
2385 mmap_write_unlock(mm);
2386 anon_vma_name_put(anon_name);
2387 break;
2388 default:
2389 error = -EINVAL;
2390 }
2391
2392 return error;
2393}
2394
2395#else /* CONFIG_ANON_VMA_NAME */
2396static int prctl_set_vma(unsigned long opt, unsigned long start,
2397 unsigned long size, unsigned long arg)
2398{
2399 return -EINVAL;
2400}
2401#endif /* CONFIG_ANON_VMA_NAME */
2402
2403static inline unsigned long get_current_mdwe(void)
2404{
2405 unsigned long ret = 0;
2406
2407 if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2408 ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2409 if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags))
2410 ret |= PR_MDWE_NO_INHERIT;
2411
2412 return ret;
2413}
2414
2415static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2416 unsigned long arg4, unsigned long arg5)
2417{
2418 unsigned long current_bits;
2419
2420 if (arg3 || arg4 || arg5)
2421 return -EINVAL;
2422
2423 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2424 return -EINVAL;
2425
2426 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2427 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2428 return -EINVAL;
2429
2430 /*
2431 * EOPNOTSUPP might be more appropriate here in principle, but
2432 * existing userspace depends on EINVAL specifically.
2433 */
2434 if (!arch_memory_deny_write_exec_supported())
2435 return -EINVAL;
2436
2437 current_bits = get_current_mdwe();
2438 if (current_bits && current_bits != bits)
2439 return -EPERM; /* Cannot unset the flags */
2440
2441 if (bits & PR_MDWE_NO_INHERIT)
2442 set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags);
2443 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2444 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2445
2446 return 0;
2447}
2448
2449static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2450 unsigned long arg4, unsigned long arg5)
2451{
2452 if (arg2 || arg3 || arg4 || arg5)
2453 return -EINVAL;
2454 return get_current_mdwe();
2455}
2456
2457static int prctl_get_auxv(void __user *addr, unsigned long len)
2458{
2459 struct mm_struct *mm = current->mm;
2460 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2461
2462 if (size && copy_to_user(addr, mm->saved_auxv, size))
2463 return -EFAULT;
2464 return sizeof(mm->saved_auxv);
2465}
2466
2467SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2468 unsigned long, arg4, unsigned long, arg5)
2469{
2470 struct task_struct *me = current;
2471 unsigned char comm[sizeof(me->comm)];
2472 long error;
2473
2474 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2475 if (error != -ENOSYS)
2476 return error;
2477
2478 error = 0;
2479 switch (option) {
2480 case PR_SET_PDEATHSIG:
2481 if (!valid_signal(arg2)) {
2482 error = -EINVAL;
2483 break;
2484 }
2485 me->pdeath_signal = arg2;
2486 break;
2487 case PR_GET_PDEATHSIG:
2488 error = put_user(me->pdeath_signal, (int __user *)arg2);
2489 break;
2490 case PR_GET_DUMPABLE:
2491 error = get_dumpable(me->mm);
2492 break;
2493 case PR_SET_DUMPABLE:
2494 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2495 error = -EINVAL;
2496 break;
2497 }
2498 set_dumpable(me->mm, arg2);
2499 break;
2500
2501 case PR_SET_UNALIGN:
2502 error = SET_UNALIGN_CTL(me, arg2);
2503 break;
2504 case PR_GET_UNALIGN:
2505 error = GET_UNALIGN_CTL(me, arg2);
2506 break;
2507 case PR_SET_FPEMU:
2508 error = SET_FPEMU_CTL(me, arg2);
2509 break;
2510 case PR_GET_FPEMU:
2511 error = GET_FPEMU_CTL(me, arg2);
2512 break;
2513 case PR_SET_FPEXC:
2514 error = SET_FPEXC_CTL(me, arg2);
2515 break;
2516 case PR_GET_FPEXC:
2517 error = GET_FPEXC_CTL(me, arg2);
2518 break;
2519 case PR_GET_TIMING:
2520 error = PR_TIMING_STATISTICAL;
2521 break;
2522 case PR_SET_TIMING:
2523 if (arg2 != PR_TIMING_STATISTICAL)
2524 error = -EINVAL;
2525 break;
2526 case PR_SET_NAME:
2527 comm[sizeof(me->comm) - 1] = 0;
2528 if (strncpy_from_user(comm, (char __user *)arg2,
2529 sizeof(me->comm) - 1) < 0)
2530 return -EFAULT;
2531 set_task_comm(me, comm);
2532 proc_comm_connector(me);
2533 break;
2534 case PR_GET_NAME:
2535 get_task_comm(comm, me);
2536 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2537 return -EFAULT;
2538 break;
2539 case PR_GET_ENDIAN:
2540 error = GET_ENDIAN(me, arg2);
2541 break;
2542 case PR_SET_ENDIAN:
2543 error = SET_ENDIAN(me, arg2);
2544 break;
2545 case PR_GET_SECCOMP:
2546 error = prctl_get_seccomp();
2547 break;
2548 case PR_SET_SECCOMP:
2549 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2550 break;
2551 case PR_GET_TSC:
2552 error = GET_TSC_CTL(arg2);
2553 break;
2554 case PR_SET_TSC:
2555 error = SET_TSC_CTL(arg2);
2556 break;
2557 case PR_TASK_PERF_EVENTS_DISABLE:
2558 error = perf_event_task_disable();
2559 break;
2560 case PR_TASK_PERF_EVENTS_ENABLE:
2561 error = perf_event_task_enable();
2562 break;
2563 case PR_GET_TIMERSLACK:
2564 if (current->timer_slack_ns > ULONG_MAX)
2565 error = ULONG_MAX;
2566 else
2567 error = current->timer_slack_ns;
2568 break;
2569 case PR_SET_TIMERSLACK:
2570 if (rt_or_dl_task_policy(current))
2571 break;
2572 if (arg2 <= 0)
2573 current->timer_slack_ns =
2574 current->default_timer_slack_ns;
2575 else
2576 current->timer_slack_ns = arg2;
2577 break;
2578 case PR_MCE_KILL:
2579 if (arg4 | arg5)
2580 return -EINVAL;
2581 switch (arg2) {
2582 case PR_MCE_KILL_CLEAR:
2583 if (arg3 != 0)
2584 return -EINVAL;
2585 current->flags &= ~PF_MCE_PROCESS;
2586 break;
2587 case PR_MCE_KILL_SET:
2588 current->flags |= PF_MCE_PROCESS;
2589 if (arg3 == PR_MCE_KILL_EARLY)
2590 current->flags |= PF_MCE_EARLY;
2591 else if (arg3 == PR_MCE_KILL_LATE)
2592 current->flags &= ~PF_MCE_EARLY;
2593 else if (arg3 == PR_MCE_KILL_DEFAULT)
2594 current->flags &=
2595 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2596 else
2597 return -EINVAL;
2598 break;
2599 default:
2600 return -EINVAL;
2601 }
2602 break;
2603 case PR_MCE_KILL_GET:
2604 if (arg2 | arg3 | arg4 | arg5)
2605 return -EINVAL;
2606 if (current->flags & PF_MCE_PROCESS)
2607 error = (current->flags & PF_MCE_EARLY) ?
2608 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2609 else
2610 error = PR_MCE_KILL_DEFAULT;
2611 break;
2612 case PR_SET_MM:
2613 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2614 break;
2615 case PR_GET_TID_ADDRESS:
2616 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2617 break;
2618 case PR_SET_CHILD_SUBREAPER:
2619 me->signal->is_child_subreaper = !!arg2;
2620 if (!arg2)
2621 break;
2622
2623 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2624 break;
2625 case PR_GET_CHILD_SUBREAPER:
2626 error = put_user(me->signal->is_child_subreaper,
2627 (int __user *)arg2);
2628 break;
2629 case PR_SET_NO_NEW_PRIVS:
2630 if (arg2 != 1 || arg3 || arg4 || arg5)
2631 return -EINVAL;
2632
2633 task_set_no_new_privs(current);
2634 break;
2635 case PR_GET_NO_NEW_PRIVS:
2636 if (arg2 || arg3 || arg4 || arg5)
2637 return -EINVAL;
2638 return task_no_new_privs(current) ? 1 : 0;
2639 case PR_GET_THP_DISABLE:
2640 if (arg2 || arg3 || arg4 || arg5)
2641 return -EINVAL;
2642 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2643 break;
2644 case PR_SET_THP_DISABLE:
2645 if (arg3 || arg4 || arg5)
2646 return -EINVAL;
2647 if (mmap_write_lock_killable(me->mm))
2648 return -EINTR;
2649 if (arg2)
2650 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2651 else
2652 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2653 mmap_write_unlock(me->mm);
2654 break;
2655 case PR_MPX_ENABLE_MANAGEMENT:
2656 case PR_MPX_DISABLE_MANAGEMENT:
2657 /* No longer implemented: */
2658 return -EINVAL;
2659 case PR_SET_FP_MODE:
2660 error = SET_FP_MODE(me, arg2);
2661 break;
2662 case PR_GET_FP_MODE:
2663 error = GET_FP_MODE(me);
2664 break;
2665 case PR_SVE_SET_VL:
2666 error = SVE_SET_VL(arg2);
2667 break;
2668 case PR_SVE_GET_VL:
2669 error = SVE_GET_VL();
2670 break;
2671 case PR_SME_SET_VL:
2672 error = SME_SET_VL(arg2);
2673 break;
2674 case PR_SME_GET_VL:
2675 error = SME_GET_VL();
2676 break;
2677 case PR_GET_SPECULATION_CTRL:
2678 if (arg3 || arg4 || arg5)
2679 return -EINVAL;
2680 error = arch_prctl_spec_ctrl_get(me, arg2);
2681 break;
2682 case PR_SET_SPECULATION_CTRL:
2683 if (arg4 || arg5)
2684 return -EINVAL;
2685 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2686 break;
2687 case PR_PAC_RESET_KEYS:
2688 if (arg3 || arg4 || arg5)
2689 return -EINVAL;
2690 error = PAC_RESET_KEYS(me, arg2);
2691 break;
2692 case PR_PAC_SET_ENABLED_KEYS:
2693 if (arg4 || arg5)
2694 return -EINVAL;
2695 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2696 break;
2697 case PR_PAC_GET_ENABLED_KEYS:
2698 if (arg2 || arg3 || arg4 || arg5)
2699 return -EINVAL;
2700 error = PAC_GET_ENABLED_KEYS(me);
2701 break;
2702 case PR_SET_TAGGED_ADDR_CTRL:
2703 if (arg3 || arg4 || arg5)
2704 return -EINVAL;
2705 error = SET_TAGGED_ADDR_CTRL(arg2);
2706 break;
2707 case PR_GET_TAGGED_ADDR_CTRL:
2708 if (arg2 || arg3 || arg4 || arg5)
2709 return -EINVAL;
2710 error = GET_TAGGED_ADDR_CTRL();
2711 break;
2712 case PR_SET_IO_FLUSHER:
2713 if (!capable(CAP_SYS_RESOURCE))
2714 return -EPERM;
2715
2716 if (arg3 || arg4 || arg5)
2717 return -EINVAL;
2718
2719 if (arg2 == 1)
2720 current->flags |= PR_IO_FLUSHER;
2721 else if (!arg2)
2722 current->flags &= ~PR_IO_FLUSHER;
2723 else
2724 return -EINVAL;
2725 break;
2726 case PR_GET_IO_FLUSHER:
2727 if (!capable(CAP_SYS_RESOURCE))
2728 return -EPERM;
2729
2730 if (arg2 || arg3 || arg4 || arg5)
2731 return -EINVAL;
2732
2733 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2734 break;
2735 case PR_SET_SYSCALL_USER_DISPATCH:
2736 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2737 (char __user *) arg5);
2738 break;
2739#ifdef CONFIG_SCHED_CORE
2740 case PR_SCHED_CORE:
2741 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2742 break;
2743#endif
2744 case PR_SET_MDWE:
2745 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2746 break;
2747 case PR_GET_MDWE:
2748 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2749 break;
2750 case PR_PPC_GET_DEXCR:
2751 if (arg3 || arg4 || arg5)
2752 return -EINVAL;
2753 error = PPC_GET_DEXCR_ASPECT(me, arg2);
2754 break;
2755 case PR_PPC_SET_DEXCR:
2756 if (arg4 || arg5)
2757 return -EINVAL;
2758 error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2759 break;
2760 case PR_SET_VMA:
2761 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2762 break;
2763 case PR_GET_AUXV:
2764 if (arg4 || arg5)
2765 return -EINVAL;
2766 error = prctl_get_auxv((void __user *)arg2, arg3);
2767 break;
2768#ifdef CONFIG_KSM
2769 case PR_SET_MEMORY_MERGE:
2770 if (arg3 || arg4 || arg5)
2771 return -EINVAL;
2772 if (mmap_write_lock_killable(me->mm))
2773 return -EINTR;
2774
2775 if (arg2)
2776 error = ksm_enable_merge_any(me->mm);
2777 else
2778 error = ksm_disable_merge_any(me->mm);
2779 mmap_write_unlock(me->mm);
2780 break;
2781 case PR_GET_MEMORY_MERGE:
2782 if (arg2 || arg3 || arg4 || arg5)
2783 return -EINVAL;
2784
2785 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2786 break;
2787#endif
2788 case PR_RISCV_V_SET_CONTROL:
2789 error = RISCV_V_SET_CONTROL(arg2);
2790 break;
2791 case PR_RISCV_V_GET_CONTROL:
2792 error = RISCV_V_GET_CONTROL();
2793 break;
2794 case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2795 error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2796 break;
2797 case PR_GET_SHADOW_STACK_STATUS:
2798 if (arg3 || arg4 || arg5)
2799 return -EINVAL;
2800 error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
2801 break;
2802 case PR_SET_SHADOW_STACK_STATUS:
2803 if (arg3 || arg4 || arg5)
2804 return -EINVAL;
2805 error = arch_set_shadow_stack_status(me, arg2);
2806 break;
2807 case PR_LOCK_SHADOW_STACK_STATUS:
2808 if (arg3 || arg4 || arg5)
2809 return -EINVAL;
2810 error = arch_lock_shadow_stack_status(me, arg2);
2811 break;
2812 default:
2813 error = -EINVAL;
2814 break;
2815 }
2816 return error;
2817}
2818
2819SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2820 struct getcpu_cache __user *, unused)
2821{
2822 int err = 0;
2823 int cpu = raw_smp_processor_id();
2824
2825 if (cpup)
2826 err |= put_user(cpu, cpup);
2827 if (nodep)
2828 err |= put_user(cpu_to_node(cpu), nodep);
2829 return err ? -EFAULT : 0;
2830}
2831
2832/**
2833 * do_sysinfo - fill in sysinfo struct
2834 * @info: pointer to buffer to fill
2835 */
2836static int do_sysinfo(struct sysinfo *info)
2837{
2838 unsigned long mem_total, sav_total;
2839 unsigned int mem_unit, bitcount;
2840 struct timespec64 tp;
2841
2842 memset(info, 0, sizeof(struct sysinfo));
2843
2844 ktime_get_boottime_ts64(&tp);
2845 timens_add_boottime(&tp);
2846 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2847
2848 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2849
2850 info->procs = nr_threads;
2851
2852 si_meminfo(info);
2853 si_swapinfo(info);
2854
2855 /*
2856 * If the sum of all the available memory (i.e. ram + swap)
2857 * is less than can be stored in a 32 bit unsigned long then
2858 * we can be binary compatible with 2.2.x kernels. If not,
2859 * well, in that case 2.2.x was broken anyways...
2860 *
2861 * -Erik Andersen <andersee@debian.org>
2862 */
2863
2864 mem_total = info->totalram + info->totalswap;
2865 if (mem_total < info->totalram || mem_total < info->totalswap)
2866 goto out;
2867 bitcount = 0;
2868 mem_unit = info->mem_unit;
2869 while (mem_unit > 1) {
2870 bitcount++;
2871 mem_unit >>= 1;
2872 sav_total = mem_total;
2873 mem_total <<= 1;
2874 if (mem_total < sav_total)
2875 goto out;
2876 }
2877
2878 /*
2879 * If mem_total did not overflow, multiply all memory values by
2880 * info->mem_unit and set it to 1. This leaves things compatible
2881 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2882 * kernels...
2883 */
2884
2885 info->mem_unit = 1;
2886 info->totalram <<= bitcount;
2887 info->freeram <<= bitcount;
2888 info->sharedram <<= bitcount;
2889 info->bufferram <<= bitcount;
2890 info->totalswap <<= bitcount;
2891 info->freeswap <<= bitcount;
2892 info->totalhigh <<= bitcount;
2893 info->freehigh <<= bitcount;
2894
2895out:
2896 return 0;
2897}
2898
2899SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2900{
2901 struct sysinfo val;
2902
2903 do_sysinfo(&val);
2904
2905 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2906 return -EFAULT;
2907
2908 return 0;
2909}
2910
2911#ifdef CONFIG_COMPAT
2912struct compat_sysinfo {
2913 s32 uptime;
2914 u32 loads[3];
2915 u32 totalram;
2916 u32 freeram;
2917 u32 sharedram;
2918 u32 bufferram;
2919 u32 totalswap;
2920 u32 freeswap;
2921 u16 procs;
2922 u16 pad;
2923 u32 totalhigh;
2924 u32 freehigh;
2925 u32 mem_unit;
2926 char _f[20-2*sizeof(u32)-sizeof(int)];
2927};
2928
2929COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2930{
2931 struct sysinfo s;
2932 struct compat_sysinfo s_32;
2933
2934 do_sysinfo(&s);
2935
2936 /* Check to see if any memory value is too large for 32-bit and scale
2937 * down if needed
2938 */
2939 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2940 int bitcount = 0;
2941
2942 while (s.mem_unit < PAGE_SIZE) {
2943 s.mem_unit <<= 1;
2944 bitcount++;
2945 }
2946
2947 s.totalram >>= bitcount;
2948 s.freeram >>= bitcount;
2949 s.sharedram >>= bitcount;
2950 s.bufferram >>= bitcount;
2951 s.totalswap >>= bitcount;
2952 s.freeswap >>= bitcount;
2953 s.totalhigh >>= bitcount;
2954 s.freehigh >>= bitcount;
2955 }
2956
2957 memset(&s_32, 0, sizeof(s_32));
2958 s_32.uptime = s.uptime;
2959 s_32.loads[0] = s.loads[0];
2960 s_32.loads[1] = s.loads[1];
2961 s_32.loads[2] = s.loads[2];
2962 s_32.totalram = s.totalram;
2963 s_32.freeram = s.freeram;
2964 s_32.sharedram = s.sharedram;
2965 s_32.bufferram = s.bufferram;
2966 s_32.totalswap = s.totalswap;
2967 s_32.freeswap = s.freeswap;
2968 s_32.procs = s.procs;
2969 s_32.totalhigh = s.totalhigh;
2970 s_32.freehigh = s.freehigh;
2971 s_32.mem_unit = s.mem_unit;
2972 if (copy_to_user(info, &s_32, sizeof(s_32)))
2973 return -EFAULT;
2974 return 0;
2975}
2976#endif /* CONFIG_COMPAT */