Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/kmsan.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include "debug.h"
18#include "direct.h"
19
20bool dma_default_coherent;
21
22/*
23 * Managed DMA API
24 */
25struct dma_devres {
26 size_t size;
27 void *vaddr;
28 dma_addr_t dma_handle;
29 unsigned long attrs;
30};
31
32static void dmam_release(struct device *dev, void *res)
33{
34 struct dma_devres *this = res;
35
36 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
37 this->attrs);
38}
39
40static int dmam_match(struct device *dev, void *res, void *match_data)
41{
42 struct dma_devres *this = res, *match = match_data;
43
44 if (this->vaddr == match->vaddr) {
45 WARN_ON(this->size != match->size ||
46 this->dma_handle != match->dma_handle);
47 return 1;
48 }
49 return 0;
50}
51
52/**
53 * dmam_free_coherent - Managed dma_free_coherent()
54 * @dev: Device to free coherent memory for
55 * @size: Size of allocation
56 * @vaddr: Virtual address of the memory to free
57 * @dma_handle: DMA handle of the memory to free
58 *
59 * Managed dma_free_coherent().
60 */
61void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
62 dma_addr_t dma_handle)
63{
64 struct dma_devres match_data = { size, vaddr, dma_handle };
65
66 dma_free_coherent(dev, size, vaddr, dma_handle);
67 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
68}
69EXPORT_SYMBOL(dmam_free_coherent);
70
71/**
72 * dmam_alloc_attrs - Managed dma_alloc_attrs()
73 * @dev: Device to allocate non_coherent memory for
74 * @size: Size of allocation
75 * @dma_handle: Out argument for allocated DMA handle
76 * @gfp: Allocation flags
77 * @attrs: Flags in the DMA_ATTR_* namespace.
78 *
79 * Managed dma_alloc_attrs(). Memory allocated using this function will be
80 * automatically released on driver detach.
81 *
82 * RETURNS:
83 * Pointer to allocated memory on success, NULL on failure.
84 */
85void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 gfp_t gfp, unsigned long attrs)
87{
88 struct dma_devres *dr;
89 void *vaddr;
90
91 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
92 if (!dr)
93 return NULL;
94
95 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
96 if (!vaddr) {
97 devres_free(dr);
98 return NULL;
99 }
100
101 dr->vaddr = vaddr;
102 dr->dma_handle = *dma_handle;
103 dr->size = size;
104 dr->attrs = attrs;
105
106 devres_add(dev, dr);
107
108 return vaddr;
109}
110EXPORT_SYMBOL(dmam_alloc_attrs);
111
112static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113 const struct dma_map_ops *ops)
114{
115 if (likely(!ops))
116 return true;
117#ifdef CONFIG_DMA_OPS_BYPASS
118 if (dev->dma_ops_bypass)
119 return min_not_zero(mask, dev->bus_dma_limit) >=
120 dma_direct_get_required_mask(dev);
121#endif
122 return false;
123}
124
125
126/*
127 * Check if the devices uses a direct mapping for streaming DMA operations.
128 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
129 * enough.
130 */
131static inline bool dma_alloc_direct(struct device *dev,
132 const struct dma_map_ops *ops)
133{
134 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
135}
136
137static inline bool dma_map_direct(struct device *dev,
138 const struct dma_map_ops *ops)
139{
140 return dma_go_direct(dev, *dev->dma_mask, ops);
141}
142
143dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144 size_t offset, size_t size, enum dma_data_direction dir,
145 unsigned long attrs)
146{
147 const struct dma_map_ops *ops = get_dma_ops(dev);
148 dma_addr_t addr;
149
150 BUG_ON(!valid_dma_direction(dir));
151
152 if (WARN_ON_ONCE(!dev->dma_mask))
153 return DMA_MAPPING_ERROR;
154
155 if (dma_map_direct(dev, ops) ||
156 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
158 else
159 addr = ops->map_page(dev, page, offset, size, dir, attrs);
160 kmsan_handle_dma(page, offset, size, dir);
161 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
162
163 return addr;
164}
165EXPORT_SYMBOL(dma_map_page_attrs);
166
167void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168 enum dma_data_direction dir, unsigned long attrs)
169{
170 const struct dma_map_ops *ops = get_dma_ops(dev);
171
172 BUG_ON(!valid_dma_direction(dir));
173 if (dma_map_direct(dev, ops) ||
174 arch_dma_unmap_page_direct(dev, addr + size))
175 dma_direct_unmap_page(dev, addr, size, dir, attrs);
176 else if (ops->unmap_page)
177 ops->unmap_page(dev, addr, size, dir, attrs);
178 debug_dma_unmap_page(dev, addr, size, dir);
179}
180EXPORT_SYMBOL(dma_unmap_page_attrs);
181
182static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183 int nents, enum dma_data_direction dir, unsigned long attrs)
184{
185 const struct dma_map_ops *ops = get_dma_ops(dev);
186 int ents;
187
188 BUG_ON(!valid_dma_direction(dir));
189
190 if (WARN_ON_ONCE(!dev->dma_mask))
191 return 0;
192
193 if (dma_map_direct(dev, ops) ||
194 arch_dma_map_sg_direct(dev, sg, nents))
195 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 else
197 ents = ops->map_sg(dev, sg, nents, dir, attrs);
198
199 if (ents > 0) {
200 kmsan_handle_dma_sg(sg, nents, dir);
201 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203 ents != -EIO && ents != -EREMOTEIO)) {
204 return -EIO;
205 }
206
207 return ents;
208}
209
210/**
211 * dma_map_sg_attrs - Map the given buffer for DMA
212 * @dev: The device for which to perform the DMA operation
213 * @sg: The sg_table object describing the buffer
214 * @nents: Number of entries to map
215 * @dir: DMA direction
216 * @attrs: Optional DMA attributes for the map operation
217 *
218 * Maps a buffer described by a scatterlist passed in the sg argument with
219 * nents segments for the @dir DMA operation by the @dev device.
220 *
221 * Returns the number of mapped entries (which can be less than nents)
222 * on success. Zero is returned for any error.
223 *
224 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 * original sg and original nents (not the value returned by this funciton).
226 */
227unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228 int nents, enum dma_data_direction dir, unsigned long attrs)
229{
230 int ret;
231
232 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
233 if (ret < 0)
234 return 0;
235 return ret;
236}
237EXPORT_SYMBOL(dma_map_sg_attrs);
238
239/**
240 * dma_map_sgtable - Map the given buffer for DMA
241 * @dev: The device for which to perform the DMA operation
242 * @sgt: The sg_table object describing the buffer
243 * @dir: DMA direction
244 * @attrs: Optional DMA attributes for the map operation
245 *
246 * Maps a buffer described by a scatterlist stored in the given sg_table
247 * object for the @dir DMA operation by the @dev device. After success, the
248 * ownership for the buffer is transferred to the DMA domain. One has to
249 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 * ownership of the buffer back to the CPU domain before touching the
251 * buffer by the CPU.
252 *
253 * Returns 0 on success or a negative error code on error. The following
254 * error codes are supported with the given meaning:
255 *
256 * -EINVAL An invalid argument, unaligned access or other error
257 * in usage. Will not succeed if retried.
258 * -ENOMEM Insufficient resources (like memory or IOVA space) to
259 * complete the mapping. Should succeed if retried later.
260 * -EIO Legacy error code with an unknown meaning. eg. this is
261 * returned if a lower level call returned
262 * DMA_MAPPING_ERROR.
263 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
264 * in the sg_table. This will not succeed if retried.
265 */
266int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267 enum dma_data_direction dir, unsigned long attrs)
268{
269 int nents;
270
271 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
272 if (nents < 0)
273 return nents;
274 sgt->nents = nents;
275 return 0;
276}
277EXPORT_SYMBOL_GPL(dma_map_sgtable);
278
279void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280 int nents, enum dma_data_direction dir,
281 unsigned long attrs)
282{
283 const struct dma_map_ops *ops = get_dma_ops(dev);
284
285 BUG_ON(!valid_dma_direction(dir));
286 debug_dma_unmap_sg(dev, sg, nents, dir);
287 if (dma_map_direct(dev, ops) ||
288 arch_dma_unmap_sg_direct(dev, sg, nents))
289 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290 else if (ops->unmap_sg)
291 ops->unmap_sg(dev, sg, nents, dir, attrs);
292}
293EXPORT_SYMBOL(dma_unmap_sg_attrs);
294
295dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296 size_t size, enum dma_data_direction dir, unsigned long attrs)
297{
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 dma_addr_t addr = DMA_MAPPING_ERROR;
300
301 BUG_ON(!valid_dma_direction(dir));
302
303 if (WARN_ON_ONCE(!dev->dma_mask))
304 return DMA_MAPPING_ERROR;
305
306 if (dma_map_direct(dev, ops))
307 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308 else if (ops->map_resource)
309 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
310
311 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
312 return addr;
313}
314EXPORT_SYMBOL(dma_map_resource);
315
316void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317 enum dma_data_direction dir, unsigned long attrs)
318{
319 const struct dma_map_ops *ops = get_dma_ops(dev);
320
321 BUG_ON(!valid_dma_direction(dir));
322 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323 ops->unmap_resource(dev, addr, size, dir, attrs);
324 debug_dma_unmap_resource(dev, addr, size, dir);
325}
326EXPORT_SYMBOL(dma_unmap_resource);
327
328void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329 enum dma_data_direction dir)
330{
331 const struct dma_map_ops *ops = get_dma_ops(dev);
332
333 BUG_ON(!valid_dma_direction(dir));
334 if (dma_map_direct(dev, ops))
335 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336 else if (ops->sync_single_for_cpu)
337 ops->sync_single_for_cpu(dev, addr, size, dir);
338 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
339}
340EXPORT_SYMBOL(dma_sync_single_for_cpu);
341
342void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343 size_t size, enum dma_data_direction dir)
344{
345 const struct dma_map_ops *ops = get_dma_ops(dev);
346
347 BUG_ON(!valid_dma_direction(dir));
348 if (dma_map_direct(dev, ops))
349 dma_direct_sync_single_for_device(dev, addr, size, dir);
350 else if (ops->sync_single_for_device)
351 ops->sync_single_for_device(dev, addr, size, dir);
352 debug_dma_sync_single_for_device(dev, addr, size, dir);
353}
354EXPORT_SYMBOL(dma_sync_single_for_device);
355
356void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357 int nelems, enum dma_data_direction dir)
358{
359 const struct dma_map_ops *ops = get_dma_ops(dev);
360
361 BUG_ON(!valid_dma_direction(dir));
362 if (dma_map_direct(dev, ops))
363 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364 else if (ops->sync_sg_for_cpu)
365 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
367}
368EXPORT_SYMBOL(dma_sync_sg_for_cpu);
369
370void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371 int nelems, enum dma_data_direction dir)
372{
373 const struct dma_map_ops *ops = get_dma_ops(dev);
374
375 BUG_ON(!valid_dma_direction(dir));
376 if (dma_map_direct(dev, ops))
377 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378 else if (ops->sync_sg_for_device)
379 ops->sync_sg_for_device(dev, sg, nelems, dir);
380 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
381}
382EXPORT_SYMBOL(dma_sync_sg_for_device);
383
384/*
385 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 * that the intention is to allow exporting memory allocated via the
387 * coherent DMA APIs through the dma_buf API, which only accepts a
388 * scattertable. This presents a couple of problems:
389 * 1. Not all memory allocated via the coherent DMA APIs is backed by
390 * a struct page
391 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 * as we will try to flush the memory through a different alias to that
393 * actually being used (and the flushes are redundant.)
394 */
395int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396 void *cpu_addr, dma_addr_t dma_addr, size_t size,
397 unsigned long attrs)
398{
399 const struct dma_map_ops *ops = get_dma_ops(dev);
400
401 if (dma_alloc_direct(dev, ops))
402 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
403 size, attrs);
404 if (!ops->get_sgtable)
405 return -ENXIO;
406 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
407}
408EXPORT_SYMBOL(dma_get_sgtable_attrs);
409
410#ifdef CONFIG_MMU
411/*
412 * Return the page attributes used for mapping dma_alloc_* memory, either in
413 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
414 */
415pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
416{
417 if (dev_is_dma_coherent(dev))
418 return prot;
419#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420 if (attrs & DMA_ATTR_WRITE_COMBINE)
421 return pgprot_writecombine(prot);
422#endif
423 return pgprot_dmacoherent(prot);
424}
425#endif /* CONFIG_MMU */
426
427/**
428 * dma_can_mmap - check if a given device supports dma_mmap_*
429 * @dev: device to check
430 *
431 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 * map DMA allocations to userspace.
433 */
434bool dma_can_mmap(struct device *dev)
435{
436 const struct dma_map_ops *ops = get_dma_ops(dev);
437
438 if (dma_alloc_direct(dev, ops))
439 return dma_direct_can_mmap(dev);
440 return ops->mmap != NULL;
441}
442EXPORT_SYMBOL_GPL(dma_can_mmap);
443
444/**
445 * dma_mmap_attrs - map a coherent DMA allocation into user space
446 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 * @vma: vm_area_struct describing requested user mapping
448 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 * @dma_addr: device-view address returned from dma_alloc_attrs
450 * @size: size of memory originally requested in dma_alloc_attrs
451 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
452 *
453 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 * space. The coherent DMA buffer must not be freed by the driver until the
455 * user space mapping has been released.
456 */
457int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458 void *cpu_addr, dma_addr_t dma_addr, size_t size,
459 unsigned long attrs)
460{
461 const struct dma_map_ops *ops = get_dma_ops(dev);
462
463 if (dma_alloc_direct(dev, ops))
464 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
465 attrs);
466 if (!ops->mmap)
467 return -ENXIO;
468 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
469}
470EXPORT_SYMBOL(dma_mmap_attrs);
471
472u64 dma_get_required_mask(struct device *dev)
473{
474 const struct dma_map_ops *ops = get_dma_ops(dev);
475
476 if (dma_alloc_direct(dev, ops))
477 return dma_direct_get_required_mask(dev);
478 if (ops->get_required_mask)
479 return ops->get_required_mask(dev);
480
481 /*
482 * We require every DMA ops implementation to at least support a 32-bit
483 * DMA mask (and use bounce buffering if that isn't supported in
484 * hardware). As the direct mapping code has its own routine to
485 * actually report an optimal mask we default to 32-bit here as that
486 * is the right thing for most IOMMUs, and at least not actively
487 * harmful in general.
488 */
489 return DMA_BIT_MASK(32);
490}
491EXPORT_SYMBOL_GPL(dma_get_required_mask);
492
493void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494 gfp_t flag, unsigned long attrs)
495{
496 const struct dma_map_ops *ops = get_dma_ops(dev);
497 void *cpu_addr;
498
499 WARN_ON_ONCE(!dev->coherent_dma_mask);
500
501 /*
502 * DMA allocations can never be turned back into a page pointer, so
503 * requesting compound pages doesn't make sense (and can't even be
504 * supported at all by various backends).
505 */
506 if (WARN_ON_ONCE(flag & __GFP_COMP))
507 return NULL;
508
509 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
510 return cpu_addr;
511
512 /* let the implementation decide on the zone to allocate from: */
513 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
514
515 if (dma_alloc_direct(dev, ops))
516 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
517 else if (ops->alloc)
518 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
519 else
520 return NULL;
521
522 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
523 return cpu_addr;
524}
525EXPORT_SYMBOL(dma_alloc_attrs);
526
527void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528 dma_addr_t dma_handle, unsigned long attrs)
529{
530 const struct dma_map_ops *ops = get_dma_ops(dev);
531
532 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
533 return;
534 /*
535 * On non-coherent platforms which implement DMA-coherent buffers via
536 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538 * sleep on some machines, and b) an indication that the driver is
539 * probably misusing the coherent API anyway.
540 */
541 WARN_ON(irqs_disabled());
542
543 if (!cpu_addr)
544 return;
545
546 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547 if (dma_alloc_direct(dev, ops))
548 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
549 else if (ops->free)
550 ops->free(dev, size, cpu_addr, dma_handle, attrs);
551}
552EXPORT_SYMBOL(dma_free_attrs);
553
554static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
556{
557 const struct dma_map_ops *ops = get_dma_ops(dev);
558
559 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
560 return NULL;
561 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
562 return NULL;
563 if (WARN_ON_ONCE(gfp & __GFP_COMP))
564 return NULL;
565
566 size = PAGE_ALIGN(size);
567 if (dma_alloc_direct(dev, ops))
568 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569 if (!ops->alloc_pages)
570 return NULL;
571 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
572}
573
574struct page *dma_alloc_pages(struct device *dev, size_t size,
575 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
576{
577 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
578
579 if (page)
580 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
581 return page;
582}
583EXPORT_SYMBOL_GPL(dma_alloc_pages);
584
585static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586 dma_addr_t dma_handle, enum dma_data_direction dir)
587{
588 const struct dma_map_ops *ops = get_dma_ops(dev);
589
590 size = PAGE_ALIGN(size);
591 if (dma_alloc_direct(dev, ops))
592 dma_direct_free_pages(dev, size, page, dma_handle, dir);
593 else if (ops->free_pages)
594 ops->free_pages(dev, size, page, dma_handle, dir);
595}
596
597void dma_free_pages(struct device *dev, size_t size, struct page *page,
598 dma_addr_t dma_handle, enum dma_data_direction dir)
599{
600 debug_dma_unmap_page(dev, dma_handle, size, dir);
601 __dma_free_pages(dev, size, page, dma_handle, dir);
602}
603EXPORT_SYMBOL_GPL(dma_free_pages);
604
605int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606 size_t size, struct page *page)
607{
608 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
609
610 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
611 return -ENXIO;
612 return remap_pfn_range(vma, vma->vm_start,
613 page_to_pfn(page) + vma->vm_pgoff,
614 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
615}
616EXPORT_SYMBOL_GPL(dma_mmap_pages);
617
618static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619 enum dma_data_direction dir, gfp_t gfp)
620{
621 struct sg_table *sgt;
622 struct page *page;
623
624 sgt = kmalloc(sizeof(*sgt), gfp);
625 if (!sgt)
626 return NULL;
627 if (sg_alloc_table(sgt, 1, gfp))
628 goto out_free_sgt;
629 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
630 if (!page)
631 goto out_free_table;
632 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633 sg_dma_len(sgt->sgl) = sgt->sgl->length;
634 return sgt;
635out_free_table:
636 sg_free_table(sgt);
637out_free_sgt:
638 kfree(sgt);
639 return NULL;
640}
641
642struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
644{
645 const struct dma_map_ops *ops = get_dma_ops(dev);
646 struct sg_table *sgt;
647
648 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
649 return NULL;
650 if (WARN_ON_ONCE(gfp & __GFP_COMP))
651 return NULL;
652
653 if (ops && ops->alloc_noncontiguous)
654 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
655 else
656 sgt = alloc_single_sgt(dev, size, dir, gfp);
657
658 if (sgt) {
659 sgt->nents = 1;
660 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
661 }
662 return sgt;
663}
664EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
665
666static void free_single_sgt(struct device *dev, size_t size,
667 struct sg_table *sgt, enum dma_data_direction dir)
668{
669 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
670 dir);
671 sg_free_table(sgt);
672 kfree(sgt);
673}
674
675void dma_free_noncontiguous(struct device *dev, size_t size,
676 struct sg_table *sgt, enum dma_data_direction dir)
677{
678 const struct dma_map_ops *ops = get_dma_ops(dev);
679
680 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681 if (ops && ops->free_noncontiguous)
682 ops->free_noncontiguous(dev, size, sgt, dir);
683 else
684 free_single_sgt(dev, size, sgt, dir);
685}
686EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
687
688void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689 struct sg_table *sgt)
690{
691 const struct dma_map_ops *ops = get_dma_ops(dev);
692 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
693
694 if (ops && ops->alloc_noncontiguous)
695 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696 return page_address(sg_page(sgt->sgl));
697}
698EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
699
700void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
701{
702 const struct dma_map_ops *ops = get_dma_ops(dev);
703
704 if (ops && ops->alloc_noncontiguous)
705 vunmap(vaddr);
706}
707EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
708
709int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710 size_t size, struct sg_table *sgt)
711{
712 const struct dma_map_ops *ops = get_dma_ops(dev);
713
714 if (ops && ops->alloc_noncontiguous) {
715 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
716
717 if (vma->vm_pgoff >= count ||
718 vma_pages(vma) > count - vma->vm_pgoff)
719 return -ENXIO;
720 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
721 }
722 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
723}
724EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
725
726static int dma_supported(struct device *dev, u64 mask)
727{
728 const struct dma_map_ops *ops = get_dma_ops(dev);
729
730 /*
731 * ->dma_supported sets the bypass flag, so we must always call
732 * into the method here unless the device is truly direct mapped.
733 */
734 if (!ops)
735 return dma_direct_supported(dev, mask);
736 if (!ops->dma_supported)
737 return 1;
738 return ops->dma_supported(dev, mask);
739}
740
741bool dma_pci_p2pdma_supported(struct device *dev)
742{
743 const struct dma_map_ops *ops = get_dma_ops(dev);
744
745 /* if ops is not set, dma direct will be used which supports P2PDMA */
746 if (!ops)
747 return true;
748
749 /*
750 * Note: dma_ops_bypass is not checked here because P2PDMA should
751 * not be used with dma mapping ops that do not have support even
752 * if the specific device is bypassing them.
753 */
754
755 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
756}
757EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
758
759#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760void arch_dma_set_mask(struct device *dev, u64 mask);
761#else
762#define arch_dma_set_mask(dev, mask) do { } while (0)
763#endif
764
765int dma_set_mask(struct device *dev, u64 mask)
766{
767 /*
768 * Truncate the mask to the actually supported dma_addr_t width to
769 * avoid generating unsupportable addresses.
770 */
771 mask = (dma_addr_t)mask;
772
773 if (!dev->dma_mask || !dma_supported(dev, mask))
774 return -EIO;
775
776 arch_dma_set_mask(dev, mask);
777 *dev->dma_mask = mask;
778 return 0;
779}
780EXPORT_SYMBOL(dma_set_mask);
781
782int dma_set_coherent_mask(struct device *dev, u64 mask)
783{
784 /*
785 * Truncate the mask to the actually supported dma_addr_t width to
786 * avoid generating unsupportable addresses.
787 */
788 mask = (dma_addr_t)mask;
789
790 if (!dma_supported(dev, mask))
791 return -EIO;
792
793 dev->coherent_dma_mask = mask;
794 return 0;
795}
796EXPORT_SYMBOL(dma_set_coherent_mask);
797
798size_t dma_max_mapping_size(struct device *dev)
799{
800 const struct dma_map_ops *ops = get_dma_ops(dev);
801 size_t size = SIZE_MAX;
802
803 if (dma_map_direct(dev, ops))
804 size = dma_direct_max_mapping_size(dev);
805 else if (ops && ops->max_mapping_size)
806 size = ops->max_mapping_size(dev);
807
808 return size;
809}
810EXPORT_SYMBOL_GPL(dma_max_mapping_size);
811
812size_t dma_opt_mapping_size(struct device *dev)
813{
814 const struct dma_map_ops *ops = get_dma_ops(dev);
815 size_t size = SIZE_MAX;
816
817 if (ops && ops->opt_mapping_size)
818 size = ops->opt_mapping_size();
819
820 return min(dma_max_mapping_size(dev), size);
821}
822EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
823
824bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
825{
826 const struct dma_map_ops *ops = get_dma_ops(dev);
827
828 if (dma_map_direct(dev, ops))
829 return dma_direct_need_sync(dev, dma_addr);
830 return ops->sync_single_for_cpu || ops->sync_single_for_device;
831}
832EXPORT_SYMBOL_GPL(dma_need_sync);
833
834unsigned long dma_get_merge_boundary(struct device *dev)
835{
836 const struct dma_map_ops *ops = get_dma_ops(dev);
837
838 if (!ops || !ops->get_merge_boundary)
839 return 0; /* can't merge */
840
841 return ops->get_merge_boundary(dev);
842}
843EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/kmsan.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include "debug.h"
18#include "direct.h"
19
20#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
21 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
22 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
23bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
24#endif
25
26/*
27 * Managed DMA API
28 */
29struct dma_devres {
30 size_t size;
31 void *vaddr;
32 dma_addr_t dma_handle;
33 unsigned long attrs;
34};
35
36static void dmam_release(struct device *dev, void *res)
37{
38 struct dma_devres *this = res;
39
40 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
41 this->attrs);
42}
43
44static int dmam_match(struct device *dev, void *res, void *match_data)
45{
46 struct dma_devres *this = res, *match = match_data;
47
48 if (this->vaddr == match->vaddr) {
49 WARN_ON(this->size != match->size ||
50 this->dma_handle != match->dma_handle);
51 return 1;
52 }
53 return 0;
54}
55
56/**
57 * dmam_free_coherent - Managed dma_free_coherent()
58 * @dev: Device to free coherent memory for
59 * @size: Size of allocation
60 * @vaddr: Virtual address of the memory to free
61 * @dma_handle: DMA handle of the memory to free
62 *
63 * Managed dma_free_coherent().
64 */
65void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
66 dma_addr_t dma_handle)
67{
68 struct dma_devres match_data = { size, vaddr, dma_handle };
69
70 dma_free_coherent(dev, size, vaddr, dma_handle);
71 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
72}
73EXPORT_SYMBOL(dmam_free_coherent);
74
75/**
76 * dmam_alloc_attrs - Managed dma_alloc_attrs()
77 * @dev: Device to allocate non_coherent memory for
78 * @size: Size of allocation
79 * @dma_handle: Out argument for allocated DMA handle
80 * @gfp: Allocation flags
81 * @attrs: Flags in the DMA_ATTR_* namespace.
82 *
83 * Managed dma_alloc_attrs(). Memory allocated using this function will be
84 * automatically released on driver detach.
85 *
86 * RETURNS:
87 * Pointer to allocated memory on success, NULL on failure.
88 */
89void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
90 gfp_t gfp, unsigned long attrs)
91{
92 struct dma_devres *dr;
93 void *vaddr;
94
95 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
96 if (!dr)
97 return NULL;
98
99 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100 if (!vaddr) {
101 devres_free(dr);
102 return NULL;
103 }
104
105 dr->vaddr = vaddr;
106 dr->dma_handle = *dma_handle;
107 dr->size = size;
108 dr->attrs = attrs;
109
110 devres_add(dev, dr);
111
112 return vaddr;
113}
114EXPORT_SYMBOL(dmam_alloc_attrs);
115
116static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117 const struct dma_map_ops *ops)
118{
119 if (likely(!ops))
120 return true;
121#ifdef CONFIG_DMA_OPS_BYPASS
122 if (dev->dma_ops_bypass)
123 return min_not_zero(mask, dev->bus_dma_limit) >=
124 dma_direct_get_required_mask(dev);
125#endif
126 return false;
127}
128
129
130/*
131 * Check if the devices uses a direct mapping for streaming DMA operations.
132 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133 * enough.
134 */
135static inline bool dma_alloc_direct(struct device *dev,
136 const struct dma_map_ops *ops)
137{
138 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139}
140
141static inline bool dma_map_direct(struct device *dev,
142 const struct dma_map_ops *ops)
143{
144 return dma_go_direct(dev, *dev->dma_mask, ops);
145}
146
147dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148 size_t offset, size_t size, enum dma_data_direction dir,
149 unsigned long attrs)
150{
151 const struct dma_map_ops *ops = get_dma_ops(dev);
152 dma_addr_t addr;
153
154 BUG_ON(!valid_dma_direction(dir));
155
156 if (WARN_ON_ONCE(!dev->dma_mask))
157 return DMA_MAPPING_ERROR;
158
159 if (dma_map_direct(dev, ops) ||
160 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
162 else
163 addr = ops->map_page(dev, page, offset, size, dir, attrs);
164 kmsan_handle_dma(page, offset, size, dir);
165 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166
167 return addr;
168}
169EXPORT_SYMBOL(dma_map_page_attrs);
170
171void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172 enum dma_data_direction dir, unsigned long attrs)
173{
174 const struct dma_map_ops *ops = get_dma_ops(dev);
175
176 BUG_ON(!valid_dma_direction(dir));
177 if (dma_map_direct(dev, ops) ||
178 arch_dma_unmap_page_direct(dev, addr + size))
179 dma_direct_unmap_page(dev, addr, size, dir, attrs);
180 else if (ops->unmap_page)
181 ops->unmap_page(dev, addr, size, dir, attrs);
182 debug_dma_unmap_page(dev, addr, size, dir);
183}
184EXPORT_SYMBOL(dma_unmap_page_attrs);
185
186static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187 int nents, enum dma_data_direction dir, unsigned long attrs)
188{
189 const struct dma_map_ops *ops = get_dma_ops(dev);
190 int ents;
191
192 BUG_ON(!valid_dma_direction(dir));
193
194 if (WARN_ON_ONCE(!dev->dma_mask))
195 return 0;
196
197 if (dma_map_direct(dev, ops) ||
198 arch_dma_map_sg_direct(dev, sg, nents))
199 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
200 else
201 ents = ops->map_sg(dev, sg, nents, dir, attrs);
202
203 if (ents > 0) {
204 kmsan_handle_dma_sg(sg, nents, dir);
205 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207 ents != -EIO && ents != -EREMOTEIO)) {
208 return -EIO;
209 }
210
211 return ents;
212}
213
214/**
215 * dma_map_sg_attrs - Map the given buffer for DMA
216 * @dev: The device for which to perform the DMA operation
217 * @sg: The sg_table object describing the buffer
218 * @nents: Number of entries to map
219 * @dir: DMA direction
220 * @attrs: Optional DMA attributes for the map operation
221 *
222 * Maps a buffer described by a scatterlist passed in the sg argument with
223 * nents segments for the @dir DMA operation by the @dev device.
224 *
225 * Returns the number of mapped entries (which can be less than nents)
226 * on success. Zero is returned for any error.
227 *
228 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229 * original sg and original nents (not the value returned by this funciton).
230 */
231unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232 int nents, enum dma_data_direction dir, unsigned long attrs)
233{
234 int ret;
235
236 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237 if (ret < 0)
238 return 0;
239 return ret;
240}
241EXPORT_SYMBOL(dma_map_sg_attrs);
242
243/**
244 * dma_map_sgtable - Map the given buffer for DMA
245 * @dev: The device for which to perform the DMA operation
246 * @sgt: The sg_table object describing the buffer
247 * @dir: DMA direction
248 * @attrs: Optional DMA attributes for the map operation
249 *
250 * Maps a buffer described by a scatterlist stored in the given sg_table
251 * object for the @dir DMA operation by the @dev device. After success, the
252 * ownership for the buffer is transferred to the DMA domain. One has to
253 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254 * ownership of the buffer back to the CPU domain before touching the
255 * buffer by the CPU.
256 *
257 * Returns 0 on success or a negative error code on error. The following
258 * error codes are supported with the given meaning:
259 *
260 * -EINVAL An invalid argument, unaligned access or other error
261 * in usage. Will not succeed if retried.
262 * -ENOMEM Insufficient resources (like memory or IOVA space) to
263 * complete the mapping. Should succeed if retried later.
264 * -EIO Legacy error code with an unknown meaning. eg. this is
265 * returned if a lower level call returned
266 * DMA_MAPPING_ERROR.
267 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
268 * in the sg_table. This will not succeed if retried.
269 */
270int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271 enum dma_data_direction dir, unsigned long attrs)
272{
273 int nents;
274
275 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276 if (nents < 0)
277 return nents;
278 sgt->nents = nents;
279 return 0;
280}
281EXPORT_SYMBOL_GPL(dma_map_sgtable);
282
283void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284 int nents, enum dma_data_direction dir,
285 unsigned long attrs)
286{
287 const struct dma_map_ops *ops = get_dma_ops(dev);
288
289 BUG_ON(!valid_dma_direction(dir));
290 debug_dma_unmap_sg(dev, sg, nents, dir);
291 if (dma_map_direct(dev, ops) ||
292 arch_dma_unmap_sg_direct(dev, sg, nents))
293 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
294 else if (ops->unmap_sg)
295 ops->unmap_sg(dev, sg, nents, dir, attrs);
296}
297EXPORT_SYMBOL(dma_unmap_sg_attrs);
298
299dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300 size_t size, enum dma_data_direction dir, unsigned long attrs)
301{
302 const struct dma_map_ops *ops = get_dma_ops(dev);
303 dma_addr_t addr = DMA_MAPPING_ERROR;
304
305 BUG_ON(!valid_dma_direction(dir));
306
307 if (WARN_ON_ONCE(!dev->dma_mask))
308 return DMA_MAPPING_ERROR;
309
310 if (dma_map_direct(dev, ops))
311 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
312 else if (ops->map_resource)
313 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314
315 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316 return addr;
317}
318EXPORT_SYMBOL(dma_map_resource);
319
320void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321 enum dma_data_direction dir, unsigned long attrs)
322{
323 const struct dma_map_ops *ops = get_dma_ops(dev);
324
325 BUG_ON(!valid_dma_direction(dir));
326 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
327 ops->unmap_resource(dev, addr, size, dir, attrs);
328 debug_dma_unmap_resource(dev, addr, size, dir);
329}
330EXPORT_SYMBOL(dma_unmap_resource);
331
332void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
333 enum dma_data_direction dir)
334{
335 const struct dma_map_ops *ops = get_dma_ops(dev);
336
337 BUG_ON(!valid_dma_direction(dir));
338 if (dma_map_direct(dev, ops))
339 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
340 else if (ops->sync_single_for_cpu)
341 ops->sync_single_for_cpu(dev, addr, size, dir);
342 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
343}
344EXPORT_SYMBOL(dma_sync_single_for_cpu);
345
346void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
347 size_t size, enum dma_data_direction dir)
348{
349 const struct dma_map_ops *ops = get_dma_ops(dev);
350
351 BUG_ON(!valid_dma_direction(dir));
352 if (dma_map_direct(dev, ops))
353 dma_direct_sync_single_for_device(dev, addr, size, dir);
354 else if (ops->sync_single_for_device)
355 ops->sync_single_for_device(dev, addr, size, dir);
356 debug_dma_sync_single_for_device(dev, addr, size, dir);
357}
358EXPORT_SYMBOL(dma_sync_single_for_device);
359
360void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
361 int nelems, enum dma_data_direction dir)
362{
363 const struct dma_map_ops *ops = get_dma_ops(dev);
364
365 BUG_ON(!valid_dma_direction(dir));
366 if (dma_map_direct(dev, ops))
367 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
368 else if (ops->sync_sg_for_cpu)
369 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
370 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
371}
372EXPORT_SYMBOL(dma_sync_sg_for_cpu);
373
374void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
375 int nelems, enum dma_data_direction dir)
376{
377 const struct dma_map_ops *ops = get_dma_ops(dev);
378
379 BUG_ON(!valid_dma_direction(dir));
380 if (dma_map_direct(dev, ops))
381 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
382 else if (ops->sync_sg_for_device)
383 ops->sync_sg_for_device(dev, sg, nelems, dir);
384 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
385}
386EXPORT_SYMBOL(dma_sync_sg_for_device);
387
388/*
389 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
390 * that the intention is to allow exporting memory allocated via the
391 * coherent DMA APIs through the dma_buf API, which only accepts a
392 * scattertable. This presents a couple of problems:
393 * 1. Not all memory allocated via the coherent DMA APIs is backed by
394 * a struct page
395 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
396 * as we will try to flush the memory through a different alias to that
397 * actually being used (and the flushes are redundant.)
398 */
399int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
400 void *cpu_addr, dma_addr_t dma_addr, size_t size,
401 unsigned long attrs)
402{
403 const struct dma_map_ops *ops = get_dma_ops(dev);
404
405 if (dma_alloc_direct(dev, ops))
406 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
407 size, attrs);
408 if (!ops->get_sgtable)
409 return -ENXIO;
410 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
411}
412EXPORT_SYMBOL(dma_get_sgtable_attrs);
413
414#ifdef CONFIG_MMU
415/*
416 * Return the page attributes used for mapping dma_alloc_* memory, either in
417 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
418 */
419pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
420{
421 if (dev_is_dma_coherent(dev))
422 return prot;
423#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
424 if (attrs & DMA_ATTR_WRITE_COMBINE)
425 return pgprot_writecombine(prot);
426#endif
427 return pgprot_dmacoherent(prot);
428}
429#endif /* CONFIG_MMU */
430
431/**
432 * dma_can_mmap - check if a given device supports dma_mmap_*
433 * @dev: device to check
434 *
435 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
436 * map DMA allocations to userspace.
437 */
438bool dma_can_mmap(struct device *dev)
439{
440 const struct dma_map_ops *ops = get_dma_ops(dev);
441
442 if (dma_alloc_direct(dev, ops))
443 return dma_direct_can_mmap(dev);
444 return ops->mmap != NULL;
445}
446EXPORT_SYMBOL_GPL(dma_can_mmap);
447
448/**
449 * dma_mmap_attrs - map a coherent DMA allocation into user space
450 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
451 * @vma: vm_area_struct describing requested user mapping
452 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
453 * @dma_addr: device-view address returned from dma_alloc_attrs
454 * @size: size of memory originally requested in dma_alloc_attrs
455 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
456 *
457 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
458 * space. The coherent DMA buffer must not be freed by the driver until the
459 * user space mapping has been released.
460 */
461int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
462 void *cpu_addr, dma_addr_t dma_addr, size_t size,
463 unsigned long attrs)
464{
465 const struct dma_map_ops *ops = get_dma_ops(dev);
466
467 if (dma_alloc_direct(dev, ops))
468 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
469 attrs);
470 if (!ops->mmap)
471 return -ENXIO;
472 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
473}
474EXPORT_SYMBOL(dma_mmap_attrs);
475
476u64 dma_get_required_mask(struct device *dev)
477{
478 const struct dma_map_ops *ops = get_dma_ops(dev);
479
480 if (dma_alloc_direct(dev, ops))
481 return dma_direct_get_required_mask(dev);
482 if (ops->get_required_mask)
483 return ops->get_required_mask(dev);
484
485 /*
486 * We require every DMA ops implementation to at least support a 32-bit
487 * DMA mask (and use bounce buffering if that isn't supported in
488 * hardware). As the direct mapping code has its own routine to
489 * actually report an optimal mask we default to 32-bit here as that
490 * is the right thing for most IOMMUs, and at least not actively
491 * harmful in general.
492 */
493 return DMA_BIT_MASK(32);
494}
495EXPORT_SYMBOL_GPL(dma_get_required_mask);
496
497void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
498 gfp_t flag, unsigned long attrs)
499{
500 const struct dma_map_ops *ops = get_dma_ops(dev);
501 void *cpu_addr;
502
503 WARN_ON_ONCE(!dev->coherent_dma_mask);
504
505 /*
506 * DMA allocations can never be turned back into a page pointer, so
507 * requesting compound pages doesn't make sense (and can't even be
508 * supported at all by various backends).
509 */
510 if (WARN_ON_ONCE(flag & __GFP_COMP))
511 return NULL;
512
513 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
514 return cpu_addr;
515
516 /* let the implementation decide on the zone to allocate from: */
517 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
518
519 if (dma_alloc_direct(dev, ops))
520 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
521 else if (ops->alloc)
522 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
523 else
524 return NULL;
525
526 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
527 return cpu_addr;
528}
529EXPORT_SYMBOL(dma_alloc_attrs);
530
531void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
532 dma_addr_t dma_handle, unsigned long attrs)
533{
534 const struct dma_map_ops *ops = get_dma_ops(dev);
535
536 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
537 return;
538 /*
539 * On non-coherent platforms which implement DMA-coherent buffers via
540 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
541 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
542 * sleep on some machines, and b) an indication that the driver is
543 * probably misusing the coherent API anyway.
544 */
545 WARN_ON(irqs_disabled());
546
547 if (!cpu_addr)
548 return;
549
550 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
551 if (dma_alloc_direct(dev, ops))
552 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
553 else if (ops->free)
554 ops->free(dev, size, cpu_addr, dma_handle, attrs);
555}
556EXPORT_SYMBOL(dma_free_attrs);
557
558static struct page *__dma_alloc_pages(struct device *dev, size_t size,
559 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
560{
561 const struct dma_map_ops *ops = get_dma_ops(dev);
562
563 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
564 return NULL;
565 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
566 return NULL;
567 if (WARN_ON_ONCE(gfp & __GFP_COMP))
568 return NULL;
569
570 size = PAGE_ALIGN(size);
571 if (dma_alloc_direct(dev, ops))
572 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
573 if (!ops->alloc_pages)
574 return NULL;
575 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
576}
577
578struct page *dma_alloc_pages(struct device *dev, size_t size,
579 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
580{
581 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
582
583 if (page)
584 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
585 return page;
586}
587EXPORT_SYMBOL_GPL(dma_alloc_pages);
588
589static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
590 dma_addr_t dma_handle, enum dma_data_direction dir)
591{
592 const struct dma_map_ops *ops = get_dma_ops(dev);
593
594 size = PAGE_ALIGN(size);
595 if (dma_alloc_direct(dev, ops))
596 dma_direct_free_pages(dev, size, page, dma_handle, dir);
597 else if (ops->free_pages)
598 ops->free_pages(dev, size, page, dma_handle, dir);
599}
600
601void dma_free_pages(struct device *dev, size_t size, struct page *page,
602 dma_addr_t dma_handle, enum dma_data_direction dir)
603{
604 debug_dma_unmap_page(dev, dma_handle, size, dir);
605 __dma_free_pages(dev, size, page, dma_handle, dir);
606}
607EXPORT_SYMBOL_GPL(dma_free_pages);
608
609int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
610 size_t size, struct page *page)
611{
612 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613
614 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
615 return -ENXIO;
616 return remap_pfn_range(vma, vma->vm_start,
617 page_to_pfn(page) + vma->vm_pgoff,
618 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
619}
620EXPORT_SYMBOL_GPL(dma_mmap_pages);
621
622static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
623 enum dma_data_direction dir, gfp_t gfp)
624{
625 struct sg_table *sgt;
626 struct page *page;
627
628 sgt = kmalloc(sizeof(*sgt), gfp);
629 if (!sgt)
630 return NULL;
631 if (sg_alloc_table(sgt, 1, gfp))
632 goto out_free_sgt;
633 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
634 if (!page)
635 goto out_free_table;
636 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
637 sg_dma_len(sgt->sgl) = sgt->sgl->length;
638 return sgt;
639out_free_table:
640 sg_free_table(sgt);
641out_free_sgt:
642 kfree(sgt);
643 return NULL;
644}
645
646struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
647 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
648{
649 const struct dma_map_ops *ops = get_dma_ops(dev);
650 struct sg_table *sgt;
651
652 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
653 return NULL;
654 if (WARN_ON_ONCE(gfp & __GFP_COMP))
655 return NULL;
656
657 if (ops && ops->alloc_noncontiguous)
658 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
659 else
660 sgt = alloc_single_sgt(dev, size, dir, gfp);
661
662 if (sgt) {
663 sgt->nents = 1;
664 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
665 }
666 return sgt;
667}
668EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
669
670static void free_single_sgt(struct device *dev, size_t size,
671 struct sg_table *sgt, enum dma_data_direction dir)
672{
673 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
674 dir);
675 sg_free_table(sgt);
676 kfree(sgt);
677}
678
679void dma_free_noncontiguous(struct device *dev, size_t size,
680 struct sg_table *sgt, enum dma_data_direction dir)
681{
682 const struct dma_map_ops *ops = get_dma_ops(dev);
683
684 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
685 if (ops && ops->free_noncontiguous)
686 ops->free_noncontiguous(dev, size, sgt, dir);
687 else
688 free_single_sgt(dev, size, sgt, dir);
689}
690EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
691
692void *dma_vmap_noncontiguous(struct device *dev, size_t size,
693 struct sg_table *sgt)
694{
695 const struct dma_map_ops *ops = get_dma_ops(dev);
696 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697
698 if (ops && ops->alloc_noncontiguous)
699 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
700 return page_address(sg_page(sgt->sgl));
701}
702EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
703
704void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
705{
706 const struct dma_map_ops *ops = get_dma_ops(dev);
707
708 if (ops && ops->alloc_noncontiguous)
709 vunmap(vaddr);
710}
711EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
712
713int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
714 size_t size, struct sg_table *sgt)
715{
716 const struct dma_map_ops *ops = get_dma_ops(dev);
717
718 if (ops && ops->alloc_noncontiguous) {
719 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
720
721 if (vma->vm_pgoff >= count ||
722 vma_pages(vma) > count - vma->vm_pgoff)
723 return -ENXIO;
724 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
725 }
726 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
727}
728EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
729
730static int dma_supported(struct device *dev, u64 mask)
731{
732 const struct dma_map_ops *ops = get_dma_ops(dev);
733
734 /*
735 * ->dma_supported sets the bypass flag, so we must always call
736 * into the method here unless the device is truly direct mapped.
737 */
738 if (!ops)
739 return dma_direct_supported(dev, mask);
740 if (!ops->dma_supported)
741 return 1;
742 return ops->dma_supported(dev, mask);
743}
744
745bool dma_pci_p2pdma_supported(struct device *dev)
746{
747 const struct dma_map_ops *ops = get_dma_ops(dev);
748
749 /* if ops is not set, dma direct will be used which supports P2PDMA */
750 if (!ops)
751 return true;
752
753 /*
754 * Note: dma_ops_bypass is not checked here because P2PDMA should
755 * not be used with dma mapping ops that do not have support even
756 * if the specific device is bypassing them.
757 */
758
759 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
760}
761EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
762
763int dma_set_mask(struct device *dev, u64 mask)
764{
765 /*
766 * Truncate the mask to the actually supported dma_addr_t width to
767 * avoid generating unsupportable addresses.
768 */
769 mask = (dma_addr_t)mask;
770
771 if (!dev->dma_mask || !dma_supported(dev, mask))
772 return -EIO;
773
774 arch_dma_set_mask(dev, mask);
775 *dev->dma_mask = mask;
776 return 0;
777}
778EXPORT_SYMBOL(dma_set_mask);
779
780int dma_set_coherent_mask(struct device *dev, u64 mask)
781{
782 /*
783 * Truncate the mask to the actually supported dma_addr_t width to
784 * avoid generating unsupportable addresses.
785 */
786 mask = (dma_addr_t)mask;
787
788 if (!dma_supported(dev, mask))
789 return -EIO;
790
791 dev->coherent_dma_mask = mask;
792 return 0;
793}
794EXPORT_SYMBOL(dma_set_coherent_mask);
795
796/**
797 * dma_addressing_limited - return if the device is addressing limited
798 * @dev: device to check
799 *
800 * Return %true if the devices DMA mask is too small to address all memory in
801 * the system, else %false. Lack of addressing bits is the prime reason for
802 * bounce buffering, but might not be the only one.
803 */
804bool dma_addressing_limited(struct device *dev)
805{
806 const struct dma_map_ops *ops = get_dma_ops(dev);
807
808 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
809 dma_get_required_mask(dev))
810 return true;
811
812 if (unlikely(ops))
813 return false;
814 return !dma_direct_all_ram_mapped(dev);
815}
816EXPORT_SYMBOL_GPL(dma_addressing_limited);
817
818size_t dma_max_mapping_size(struct device *dev)
819{
820 const struct dma_map_ops *ops = get_dma_ops(dev);
821 size_t size = SIZE_MAX;
822
823 if (dma_map_direct(dev, ops))
824 size = dma_direct_max_mapping_size(dev);
825 else if (ops && ops->max_mapping_size)
826 size = ops->max_mapping_size(dev);
827
828 return size;
829}
830EXPORT_SYMBOL_GPL(dma_max_mapping_size);
831
832size_t dma_opt_mapping_size(struct device *dev)
833{
834 const struct dma_map_ops *ops = get_dma_ops(dev);
835 size_t size = SIZE_MAX;
836
837 if (ops && ops->opt_mapping_size)
838 size = ops->opt_mapping_size();
839
840 return min(dma_max_mapping_size(dev), size);
841}
842EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
843
844bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
845{
846 const struct dma_map_ops *ops = get_dma_ops(dev);
847
848 if (dma_map_direct(dev, ops))
849 return dma_direct_need_sync(dev, dma_addr);
850 return ops->sync_single_for_cpu || ops->sync_single_for_device;
851}
852EXPORT_SYMBOL_GPL(dma_need_sync);
853
854unsigned long dma_get_merge_boundary(struct device *dev)
855{
856 const struct dma_map_ops *ops = get_dma_ops(dev);
857
858 if (!ops || !ops->get_merge_boundary)
859 return 0; /* can't merge */
860
861 return ops->get_merge_boundary(dev);
862}
863EXPORT_SYMBOL_GPL(dma_get_merge_boundary);