Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/kmsan.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include "debug.h"
18#include "direct.h"
19
20bool dma_default_coherent;
21
22/*
23 * Managed DMA API
24 */
25struct dma_devres {
26 size_t size;
27 void *vaddr;
28 dma_addr_t dma_handle;
29 unsigned long attrs;
30};
31
32static void dmam_release(struct device *dev, void *res)
33{
34 struct dma_devres *this = res;
35
36 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
37 this->attrs);
38}
39
40static int dmam_match(struct device *dev, void *res, void *match_data)
41{
42 struct dma_devres *this = res, *match = match_data;
43
44 if (this->vaddr == match->vaddr) {
45 WARN_ON(this->size != match->size ||
46 this->dma_handle != match->dma_handle);
47 return 1;
48 }
49 return 0;
50}
51
52/**
53 * dmam_free_coherent - Managed dma_free_coherent()
54 * @dev: Device to free coherent memory for
55 * @size: Size of allocation
56 * @vaddr: Virtual address of the memory to free
57 * @dma_handle: DMA handle of the memory to free
58 *
59 * Managed dma_free_coherent().
60 */
61void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
62 dma_addr_t dma_handle)
63{
64 struct dma_devres match_data = { size, vaddr, dma_handle };
65
66 dma_free_coherent(dev, size, vaddr, dma_handle);
67 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
68}
69EXPORT_SYMBOL(dmam_free_coherent);
70
71/**
72 * dmam_alloc_attrs - Managed dma_alloc_attrs()
73 * @dev: Device to allocate non_coherent memory for
74 * @size: Size of allocation
75 * @dma_handle: Out argument for allocated DMA handle
76 * @gfp: Allocation flags
77 * @attrs: Flags in the DMA_ATTR_* namespace.
78 *
79 * Managed dma_alloc_attrs(). Memory allocated using this function will be
80 * automatically released on driver detach.
81 *
82 * RETURNS:
83 * Pointer to allocated memory on success, NULL on failure.
84 */
85void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 gfp_t gfp, unsigned long attrs)
87{
88 struct dma_devres *dr;
89 void *vaddr;
90
91 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
92 if (!dr)
93 return NULL;
94
95 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
96 if (!vaddr) {
97 devres_free(dr);
98 return NULL;
99 }
100
101 dr->vaddr = vaddr;
102 dr->dma_handle = *dma_handle;
103 dr->size = size;
104 dr->attrs = attrs;
105
106 devres_add(dev, dr);
107
108 return vaddr;
109}
110EXPORT_SYMBOL(dmam_alloc_attrs);
111
112static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113 const struct dma_map_ops *ops)
114{
115 if (likely(!ops))
116 return true;
117#ifdef CONFIG_DMA_OPS_BYPASS
118 if (dev->dma_ops_bypass)
119 return min_not_zero(mask, dev->bus_dma_limit) >=
120 dma_direct_get_required_mask(dev);
121#endif
122 return false;
123}
124
125
126/*
127 * Check if the devices uses a direct mapping for streaming DMA operations.
128 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
129 * enough.
130 */
131static inline bool dma_alloc_direct(struct device *dev,
132 const struct dma_map_ops *ops)
133{
134 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
135}
136
137static inline bool dma_map_direct(struct device *dev,
138 const struct dma_map_ops *ops)
139{
140 return dma_go_direct(dev, *dev->dma_mask, ops);
141}
142
143dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144 size_t offset, size_t size, enum dma_data_direction dir,
145 unsigned long attrs)
146{
147 const struct dma_map_ops *ops = get_dma_ops(dev);
148 dma_addr_t addr;
149
150 BUG_ON(!valid_dma_direction(dir));
151
152 if (WARN_ON_ONCE(!dev->dma_mask))
153 return DMA_MAPPING_ERROR;
154
155 if (dma_map_direct(dev, ops) ||
156 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
158 else
159 addr = ops->map_page(dev, page, offset, size, dir, attrs);
160 kmsan_handle_dma(page, offset, size, dir);
161 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
162
163 return addr;
164}
165EXPORT_SYMBOL(dma_map_page_attrs);
166
167void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168 enum dma_data_direction dir, unsigned long attrs)
169{
170 const struct dma_map_ops *ops = get_dma_ops(dev);
171
172 BUG_ON(!valid_dma_direction(dir));
173 if (dma_map_direct(dev, ops) ||
174 arch_dma_unmap_page_direct(dev, addr + size))
175 dma_direct_unmap_page(dev, addr, size, dir, attrs);
176 else if (ops->unmap_page)
177 ops->unmap_page(dev, addr, size, dir, attrs);
178 debug_dma_unmap_page(dev, addr, size, dir);
179}
180EXPORT_SYMBOL(dma_unmap_page_attrs);
181
182static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183 int nents, enum dma_data_direction dir, unsigned long attrs)
184{
185 const struct dma_map_ops *ops = get_dma_ops(dev);
186 int ents;
187
188 BUG_ON(!valid_dma_direction(dir));
189
190 if (WARN_ON_ONCE(!dev->dma_mask))
191 return 0;
192
193 if (dma_map_direct(dev, ops) ||
194 arch_dma_map_sg_direct(dev, sg, nents))
195 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 else
197 ents = ops->map_sg(dev, sg, nents, dir, attrs);
198
199 if (ents > 0) {
200 kmsan_handle_dma_sg(sg, nents, dir);
201 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203 ents != -EIO && ents != -EREMOTEIO)) {
204 return -EIO;
205 }
206
207 return ents;
208}
209
210/**
211 * dma_map_sg_attrs - Map the given buffer for DMA
212 * @dev: The device for which to perform the DMA operation
213 * @sg: The sg_table object describing the buffer
214 * @nents: Number of entries to map
215 * @dir: DMA direction
216 * @attrs: Optional DMA attributes for the map operation
217 *
218 * Maps a buffer described by a scatterlist passed in the sg argument with
219 * nents segments for the @dir DMA operation by the @dev device.
220 *
221 * Returns the number of mapped entries (which can be less than nents)
222 * on success. Zero is returned for any error.
223 *
224 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 * original sg and original nents (not the value returned by this funciton).
226 */
227unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228 int nents, enum dma_data_direction dir, unsigned long attrs)
229{
230 int ret;
231
232 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
233 if (ret < 0)
234 return 0;
235 return ret;
236}
237EXPORT_SYMBOL(dma_map_sg_attrs);
238
239/**
240 * dma_map_sgtable - Map the given buffer for DMA
241 * @dev: The device for which to perform the DMA operation
242 * @sgt: The sg_table object describing the buffer
243 * @dir: DMA direction
244 * @attrs: Optional DMA attributes for the map operation
245 *
246 * Maps a buffer described by a scatterlist stored in the given sg_table
247 * object for the @dir DMA operation by the @dev device. After success, the
248 * ownership for the buffer is transferred to the DMA domain. One has to
249 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 * ownership of the buffer back to the CPU domain before touching the
251 * buffer by the CPU.
252 *
253 * Returns 0 on success or a negative error code on error. The following
254 * error codes are supported with the given meaning:
255 *
256 * -EINVAL An invalid argument, unaligned access or other error
257 * in usage. Will not succeed if retried.
258 * -ENOMEM Insufficient resources (like memory or IOVA space) to
259 * complete the mapping. Should succeed if retried later.
260 * -EIO Legacy error code with an unknown meaning. eg. this is
261 * returned if a lower level call returned
262 * DMA_MAPPING_ERROR.
263 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
264 * in the sg_table. This will not succeed if retried.
265 */
266int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267 enum dma_data_direction dir, unsigned long attrs)
268{
269 int nents;
270
271 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
272 if (nents < 0)
273 return nents;
274 sgt->nents = nents;
275 return 0;
276}
277EXPORT_SYMBOL_GPL(dma_map_sgtable);
278
279void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280 int nents, enum dma_data_direction dir,
281 unsigned long attrs)
282{
283 const struct dma_map_ops *ops = get_dma_ops(dev);
284
285 BUG_ON(!valid_dma_direction(dir));
286 debug_dma_unmap_sg(dev, sg, nents, dir);
287 if (dma_map_direct(dev, ops) ||
288 arch_dma_unmap_sg_direct(dev, sg, nents))
289 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290 else if (ops->unmap_sg)
291 ops->unmap_sg(dev, sg, nents, dir, attrs);
292}
293EXPORT_SYMBOL(dma_unmap_sg_attrs);
294
295dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296 size_t size, enum dma_data_direction dir, unsigned long attrs)
297{
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 dma_addr_t addr = DMA_MAPPING_ERROR;
300
301 BUG_ON(!valid_dma_direction(dir));
302
303 if (WARN_ON_ONCE(!dev->dma_mask))
304 return DMA_MAPPING_ERROR;
305
306 if (dma_map_direct(dev, ops))
307 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308 else if (ops->map_resource)
309 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
310
311 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
312 return addr;
313}
314EXPORT_SYMBOL(dma_map_resource);
315
316void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317 enum dma_data_direction dir, unsigned long attrs)
318{
319 const struct dma_map_ops *ops = get_dma_ops(dev);
320
321 BUG_ON(!valid_dma_direction(dir));
322 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323 ops->unmap_resource(dev, addr, size, dir, attrs);
324 debug_dma_unmap_resource(dev, addr, size, dir);
325}
326EXPORT_SYMBOL(dma_unmap_resource);
327
328void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329 enum dma_data_direction dir)
330{
331 const struct dma_map_ops *ops = get_dma_ops(dev);
332
333 BUG_ON(!valid_dma_direction(dir));
334 if (dma_map_direct(dev, ops))
335 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336 else if (ops->sync_single_for_cpu)
337 ops->sync_single_for_cpu(dev, addr, size, dir);
338 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
339}
340EXPORT_SYMBOL(dma_sync_single_for_cpu);
341
342void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343 size_t size, enum dma_data_direction dir)
344{
345 const struct dma_map_ops *ops = get_dma_ops(dev);
346
347 BUG_ON(!valid_dma_direction(dir));
348 if (dma_map_direct(dev, ops))
349 dma_direct_sync_single_for_device(dev, addr, size, dir);
350 else if (ops->sync_single_for_device)
351 ops->sync_single_for_device(dev, addr, size, dir);
352 debug_dma_sync_single_for_device(dev, addr, size, dir);
353}
354EXPORT_SYMBOL(dma_sync_single_for_device);
355
356void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357 int nelems, enum dma_data_direction dir)
358{
359 const struct dma_map_ops *ops = get_dma_ops(dev);
360
361 BUG_ON(!valid_dma_direction(dir));
362 if (dma_map_direct(dev, ops))
363 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364 else if (ops->sync_sg_for_cpu)
365 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
367}
368EXPORT_SYMBOL(dma_sync_sg_for_cpu);
369
370void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371 int nelems, enum dma_data_direction dir)
372{
373 const struct dma_map_ops *ops = get_dma_ops(dev);
374
375 BUG_ON(!valid_dma_direction(dir));
376 if (dma_map_direct(dev, ops))
377 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378 else if (ops->sync_sg_for_device)
379 ops->sync_sg_for_device(dev, sg, nelems, dir);
380 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
381}
382EXPORT_SYMBOL(dma_sync_sg_for_device);
383
384/*
385 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 * that the intention is to allow exporting memory allocated via the
387 * coherent DMA APIs through the dma_buf API, which only accepts a
388 * scattertable. This presents a couple of problems:
389 * 1. Not all memory allocated via the coherent DMA APIs is backed by
390 * a struct page
391 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 * as we will try to flush the memory through a different alias to that
393 * actually being used (and the flushes are redundant.)
394 */
395int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396 void *cpu_addr, dma_addr_t dma_addr, size_t size,
397 unsigned long attrs)
398{
399 const struct dma_map_ops *ops = get_dma_ops(dev);
400
401 if (dma_alloc_direct(dev, ops))
402 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
403 size, attrs);
404 if (!ops->get_sgtable)
405 return -ENXIO;
406 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
407}
408EXPORT_SYMBOL(dma_get_sgtable_attrs);
409
410#ifdef CONFIG_MMU
411/*
412 * Return the page attributes used for mapping dma_alloc_* memory, either in
413 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
414 */
415pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
416{
417 if (dev_is_dma_coherent(dev))
418 return prot;
419#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420 if (attrs & DMA_ATTR_WRITE_COMBINE)
421 return pgprot_writecombine(prot);
422#endif
423 return pgprot_dmacoherent(prot);
424}
425#endif /* CONFIG_MMU */
426
427/**
428 * dma_can_mmap - check if a given device supports dma_mmap_*
429 * @dev: device to check
430 *
431 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 * map DMA allocations to userspace.
433 */
434bool dma_can_mmap(struct device *dev)
435{
436 const struct dma_map_ops *ops = get_dma_ops(dev);
437
438 if (dma_alloc_direct(dev, ops))
439 return dma_direct_can_mmap(dev);
440 return ops->mmap != NULL;
441}
442EXPORT_SYMBOL_GPL(dma_can_mmap);
443
444/**
445 * dma_mmap_attrs - map a coherent DMA allocation into user space
446 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 * @vma: vm_area_struct describing requested user mapping
448 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 * @dma_addr: device-view address returned from dma_alloc_attrs
450 * @size: size of memory originally requested in dma_alloc_attrs
451 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
452 *
453 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 * space. The coherent DMA buffer must not be freed by the driver until the
455 * user space mapping has been released.
456 */
457int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458 void *cpu_addr, dma_addr_t dma_addr, size_t size,
459 unsigned long attrs)
460{
461 const struct dma_map_ops *ops = get_dma_ops(dev);
462
463 if (dma_alloc_direct(dev, ops))
464 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
465 attrs);
466 if (!ops->mmap)
467 return -ENXIO;
468 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
469}
470EXPORT_SYMBOL(dma_mmap_attrs);
471
472u64 dma_get_required_mask(struct device *dev)
473{
474 const struct dma_map_ops *ops = get_dma_ops(dev);
475
476 if (dma_alloc_direct(dev, ops))
477 return dma_direct_get_required_mask(dev);
478 if (ops->get_required_mask)
479 return ops->get_required_mask(dev);
480
481 /*
482 * We require every DMA ops implementation to at least support a 32-bit
483 * DMA mask (and use bounce buffering if that isn't supported in
484 * hardware). As the direct mapping code has its own routine to
485 * actually report an optimal mask we default to 32-bit here as that
486 * is the right thing for most IOMMUs, and at least not actively
487 * harmful in general.
488 */
489 return DMA_BIT_MASK(32);
490}
491EXPORT_SYMBOL_GPL(dma_get_required_mask);
492
493void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494 gfp_t flag, unsigned long attrs)
495{
496 const struct dma_map_ops *ops = get_dma_ops(dev);
497 void *cpu_addr;
498
499 WARN_ON_ONCE(!dev->coherent_dma_mask);
500
501 /*
502 * DMA allocations can never be turned back into a page pointer, so
503 * requesting compound pages doesn't make sense (and can't even be
504 * supported at all by various backends).
505 */
506 if (WARN_ON_ONCE(flag & __GFP_COMP))
507 return NULL;
508
509 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
510 return cpu_addr;
511
512 /* let the implementation decide on the zone to allocate from: */
513 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
514
515 if (dma_alloc_direct(dev, ops))
516 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
517 else if (ops->alloc)
518 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
519 else
520 return NULL;
521
522 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
523 return cpu_addr;
524}
525EXPORT_SYMBOL(dma_alloc_attrs);
526
527void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528 dma_addr_t dma_handle, unsigned long attrs)
529{
530 const struct dma_map_ops *ops = get_dma_ops(dev);
531
532 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
533 return;
534 /*
535 * On non-coherent platforms which implement DMA-coherent buffers via
536 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538 * sleep on some machines, and b) an indication that the driver is
539 * probably misusing the coherent API anyway.
540 */
541 WARN_ON(irqs_disabled());
542
543 if (!cpu_addr)
544 return;
545
546 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547 if (dma_alloc_direct(dev, ops))
548 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
549 else if (ops->free)
550 ops->free(dev, size, cpu_addr, dma_handle, attrs);
551}
552EXPORT_SYMBOL(dma_free_attrs);
553
554static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
556{
557 const struct dma_map_ops *ops = get_dma_ops(dev);
558
559 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
560 return NULL;
561 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
562 return NULL;
563 if (WARN_ON_ONCE(gfp & __GFP_COMP))
564 return NULL;
565
566 size = PAGE_ALIGN(size);
567 if (dma_alloc_direct(dev, ops))
568 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569 if (!ops->alloc_pages)
570 return NULL;
571 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
572}
573
574struct page *dma_alloc_pages(struct device *dev, size_t size,
575 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
576{
577 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
578
579 if (page)
580 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
581 return page;
582}
583EXPORT_SYMBOL_GPL(dma_alloc_pages);
584
585static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586 dma_addr_t dma_handle, enum dma_data_direction dir)
587{
588 const struct dma_map_ops *ops = get_dma_ops(dev);
589
590 size = PAGE_ALIGN(size);
591 if (dma_alloc_direct(dev, ops))
592 dma_direct_free_pages(dev, size, page, dma_handle, dir);
593 else if (ops->free_pages)
594 ops->free_pages(dev, size, page, dma_handle, dir);
595}
596
597void dma_free_pages(struct device *dev, size_t size, struct page *page,
598 dma_addr_t dma_handle, enum dma_data_direction dir)
599{
600 debug_dma_unmap_page(dev, dma_handle, size, dir);
601 __dma_free_pages(dev, size, page, dma_handle, dir);
602}
603EXPORT_SYMBOL_GPL(dma_free_pages);
604
605int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606 size_t size, struct page *page)
607{
608 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
609
610 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
611 return -ENXIO;
612 return remap_pfn_range(vma, vma->vm_start,
613 page_to_pfn(page) + vma->vm_pgoff,
614 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
615}
616EXPORT_SYMBOL_GPL(dma_mmap_pages);
617
618static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619 enum dma_data_direction dir, gfp_t gfp)
620{
621 struct sg_table *sgt;
622 struct page *page;
623
624 sgt = kmalloc(sizeof(*sgt), gfp);
625 if (!sgt)
626 return NULL;
627 if (sg_alloc_table(sgt, 1, gfp))
628 goto out_free_sgt;
629 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
630 if (!page)
631 goto out_free_table;
632 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633 sg_dma_len(sgt->sgl) = sgt->sgl->length;
634 return sgt;
635out_free_table:
636 sg_free_table(sgt);
637out_free_sgt:
638 kfree(sgt);
639 return NULL;
640}
641
642struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
644{
645 const struct dma_map_ops *ops = get_dma_ops(dev);
646 struct sg_table *sgt;
647
648 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
649 return NULL;
650 if (WARN_ON_ONCE(gfp & __GFP_COMP))
651 return NULL;
652
653 if (ops && ops->alloc_noncontiguous)
654 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
655 else
656 sgt = alloc_single_sgt(dev, size, dir, gfp);
657
658 if (sgt) {
659 sgt->nents = 1;
660 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
661 }
662 return sgt;
663}
664EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
665
666static void free_single_sgt(struct device *dev, size_t size,
667 struct sg_table *sgt, enum dma_data_direction dir)
668{
669 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
670 dir);
671 sg_free_table(sgt);
672 kfree(sgt);
673}
674
675void dma_free_noncontiguous(struct device *dev, size_t size,
676 struct sg_table *sgt, enum dma_data_direction dir)
677{
678 const struct dma_map_ops *ops = get_dma_ops(dev);
679
680 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681 if (ops && ops->free_noncontiguous)
682 ops->free_noncontiguous(dev, size, sgt, dir);
683 else
684 free_single_sgt(dev, size, sgt, dir);
685}
686EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
687
688void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689 struct sg_table *sgt)
690{
691 const struct dma_map_ops *ops = get_dma_ops(dev);
692 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
693
694 if (ops && ops->alloc_noncontiguous)
695 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696 return page_address(sg_page(sgt->sgl));
697}
698EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
699
700void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
701{
702 const struct dma_map_ops *ops = get_dma_ops(dev);
703
704 if (ops && ops->alloc_noncontiguous)
705 vunmap(vaddr);
706}
707EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
708
709int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710 size_t size, struct sg_table *sgt)
711{
712 const struct dma_map_ops *ops = get_dma_ops(dev);
713
714 if (ops && ops->alloc_noncontiguous) {
715 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
716
717 if (vma->vm_pgoff >= count ||
718 vma_pages(vma) > count - vma->vm_pgoff)
719 return -ENXIO;
720 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
721 }
722 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
723}
724EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
725
726static int dma_supported(struct device *dev, u64 mask)
727{
728 const struct dma_map_ops *ops = get_dma_ops(dev);
729
730 /*
731 * ->dma_supported sets the bypass flag, so we must always call
732 * into the method here unless the device is truly direct mapped.
733 */
734 if (!ops)
735 return dma_direct_supported(dev, mask);
736 if (!ops->dma_supported)
737 return 1;
738 return ops->dma_supported(dev, mask);
739}
740
741bool dma_pci_p2pdma_supported(struct device *dev)
742{
743 const struct dma_map_ops *ops = get_dma_ops(dev);
744
745 /* if ops is not set, dma direct will be used which supports P2PDMA */
746 if (!ops)
747 return true;
748
749 /*
750 * Note: dma_ops_bypass is not checked here because P2PDMA should
751 * not be used with dma mapping ops that do not have support even
752 * if the specific device is bypassing them.
753 */
754
755 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
756}
757EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
758
759#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760void arch_dma_set_mask(struct device *dev, u64 mask);
761#else
762#define arch_dma_set_mask(dev, mask) do { } while (0)
763#endif
764
765int dma_set_mask(struct device *dev, u64 mask)
766{
767 /*
768 * Truncate the mask to the actually supported dma_addr_t width to
769 * avoid generating unsupportable addresses.
770 */
771 mask = (dma_addr_t)mask;
772
773 if (!dev->dma_mask || !dma_supported(dev, mask))
774 return -EIO;
775
776 arch_dma_set_mask(dev, mask);
777 *dev->dma_mask = mask;
778 return 0;
779}
780EXPORT_SYMBOL(dma_set_mask);
781
782int dma_set_coherent_mask(struct device *dev, u64 mask)
783{
784 /*
785 * Truncate the mask to the actually supported dma_addr_t width to
786 * avoid generating unsupportable addresses.
787 */
788 mask = (dma_addr_t)mask;
789
790 if (!dma_supported(dev, mask))
791 return -EIO;
792
793 dev->coherent_dma_mask = mask;
794 return 0;
795}
796EXPORT_SYMBOL(dma_set_coherent_mask);
797
798size_t dma_max_mapping_size(struct device *dev)
799{
800 const struct dma_map_ops *ops = get_dma_ops(dev);
801 size_t size = SIZE_MAX;
802
803 if (dma_map_direct(dev, ops))
804 size = dma_direct_max_mapping_size(dev);
805 else if (ops && ops->max_mapping_size)
806 size = ops->max_mapping_size(dev);
807
808 return size;
809}
810EXPORT_SYMBOL_GPL(dma_max_mapping_size);
811
812size_t dma_opt_mapping_size(struct device *dev)
813{
814 const struct dma_map_ops *ops = get_dma_ops(dev);
815 size_t size = SIZE_MAX;
816
817 if (ops && ops->opt_mapping_size)
818 size = ops->opt_mapping_size();
819
820 return min(dma_max_mapping_size(dev), size);
821}
822EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
823
824bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
825{
826 const struct dma_map_ops *ops = get_dma_ops(dev);
827
828 if (dma_map_direct(dev, ops))
829 return dma_direct_need_sync(dev, dma_addr);
830 return ops->sync_single_for_cpu || ops->sync_single_for_device;
831}
832EXPORT_SYMBOL_GPL(dma_need_sync);
833
834unsigned long dma_get_merge_boundary(struct device *dev)
835{
836 const struct dma_map_ops *ops = get_dma_ops(dev);
837
838 if (!ops || !ops->get_merge_boundary)
839 return 0; /* can't merge */
840
841 return ops->get_merge_boundary(dev);
842}
843EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/iommu-dma.h>
14#include <linux/kmsan.h>
15#include <linux/of_device.h>
16#include <linux/slab.h>
17#include <linux/vmalloc.h>
18#include "debug.h"
19#include "direct.h"
20
21#define CREATE_TRACE_POINTS
22#include <trace/events/dma.h>
23
24#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28#endif
29
30/*
31 * Managed DMA API
32 */
33struct dma_devres {
34 size_t size;
35 void *vaddr;
36 dma_addr_t dma_handle;
37 unsigned long attrs;
38};
39
40static void dmam_release(struct device *dev, void *res)
41{
42 struct dma_devres *this = res;
43
44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 this->attrs);
46}
47
48static int dmam_match(struct device *dev, void *res, void *match_data)
49{
50 struct dma_devres *this = res, *match = match_data;
51
52 if (this->vaddr == match->vaddr) {
53 WARN_ON(this->size != match->size ||
54 this->dma_handle != match->dma_handle);
55 return 1;
56 }
57 return 0;
58}
59
60/**
61 * dmam_free_coherent - Managed dma_free_coherent()
62 * @dev: Device to free coherent memory for
63 * @size: Size of allocation
64 * @vaddr: Virtual address of the memory to free
65 * @dma_handle: DMA handle of the memory to free
66 *
67 * Managed dma_free_coherent().
68 */
69void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 dma_addr_t dma_handle)
71{
72 struct dma_devres match_data = { size, vaddr, dma_handle };
73
74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 dma_free_coherent(dev, size, vaddr, dma_handle);
76}
77EXPORT_SYMBOL(dmam_free_coherent);
78
79/**
80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
81 * @dev: Device to allocate non_coherent memory for
82 * @size: Size of allocation
83 * @dma_handle: Out argument for allocated DMA handle
84 * @gfp: Allocation flags
85 * @attrs: Flags in the DMA_ATTR_* namespace.
86 *
87 * Managed dma_alloc_attrs(). Memory allocated using this function will be
88 * automatically released on driver detach.
89 *
90 * RETURNS:
91 * Pointer to allocated memory on success, NULL on failure.
92 */
93void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 gfp_t gfp, unsigned long attrs)
95{
96 struct dma_devres *dr;
97 void *vaddr;
98
99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 if (!dr)
101 return NULL;
102
103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 if (!vaddr) {
105 devres_free(dr);
106 return NULL;
107 }
108
109 dr->vaddr = vaddr;
110 dr->dma_handle = *dma_handle;
111 dr->size = size;
112 dr->attrs = attrs;
113
114 devres_add(dev, dr);
115
116 return vaddr;
117}
118EXPORT_SYMBOL(dmam_alloc_attrs);
119
120static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 const struct dma_map_ops *ops)
122{
123 if (use_dma_iommu(dev))
124 return false;
125
126 if (likely(!ops))
127 return true;
128
129#ifdef CONFIG_DMA_OPS_BYPASS
130 if (dev->dma_ops_bypass)
131 return min_not_zero(mask, dev->bus_dma_limit) >=
132 dma_direct_get_required_mask(dev);
133#endif
134 return false;
135}
136
137
138/*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
143static inline bool dma_alloc_direct(struct device *dev,
144 const struct dma_map_ops *ops)
145{
146 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147}
148
149static inline bool dma_map_direct(struct device *dev,
150 const struct dma_map_ops *ops)
151{
152 return dma_go_direct(dev, *dev->dma_mask, ops);
153}
154
155dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 size_t offset, size_t size, enum dma_data_direction dir,
157 unsigned long attrs)
158{
159 const struct dma_map_ops *ops = get_dma_ops(dev);
160 dma_addr_t addr;
161
162 BUG_ON(!valid_dma_direction(dir));
163
164 if (WARN_ON_ONCE(!dev->dma_mask))
165 return DMA_MAPPING_ERROR;
166
167 if (dma_map_direct(dev, ops) ||
168 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 else if (use_dma_iommu(dev))
171 addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 else
173 addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 kmsan_handle_dma(page, offset, size, dir);
175 trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 attrs);
177 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179 return addr;
180}
181EXPORT_SYMBOL(dma_map_page_attrs);
182
183void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 enum dma_data_direction dir, unsigned long attrs)
185{
186 const struct dma_map_ops *ops = get_dma_ops(dev);
187
188 BUG_ON(!valid_dma_direction(dir));
189 if (dma_map_direct(dev, ops) ||
190 arch_dma_unmap_page_direct(dev, addr + size))
191 dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 else if (use_dma_iommu(dev))
193 iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 else
195 ops->unmap_page(dev, addr, size, dir, attrs);
196 trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 debug_dma_unmap_page(dev, addr, size, dir);
198}
199EXPORT_SYMBOL(dma_unmap_page_attrs);
200
201static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 int nents, enum dma_data_direction dir, unsigned long attrs)
203{
204 const struct dma_map_ops *ops = get_dma_ops(dev);
205 int ents;
206
207 BUG_ON(!valid_dma_direction(dir));
208
209 if (WARN_ON_ONCE(!dev->dma_mask))
210 return 0;
211
212 if (dma_map_direct(dev, ops) ||
213 arch_dma_map_sg_direct(dev, sg, nents))
214 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 else if (use_dma_iommu(dev))
216 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 else
218 ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220 if (ents > 0) {
221 kmsan_handle_dma_sg(sg, nents, dir);
222 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 ents != -EIO && ents != -EREMOTEIO)) {
226 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227 return -EIO;
228 }
229
230 return ents;
231}
232
233/**
234 * dma_map_sg_attrs - Map the given buffer for DMA
235 * @dev: The device for which to perform the DMA operation
236 * @sg: The sg_table object describing the buffer
237 * @nents: Number of entries to map
238 * @dir: DMA direction
239 * @attrs: Optional DMA attributes for the map operation
240 *
241 * Maps a buffer described by a scatterlist passed in the sg argument with
242 * nents segments for the @dir DMA operation by the @dev device.
243 *
244 * Returns the number of mapped entries (which can be less than nents)
245 * on success. Zero is returned for any error.
246 *
247 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
248 * original sg and original nents (not the value returned by this funciton).
249 */
250unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251 int nents, enum dma_data_direction dir, unsigned long attrs)
252{
253 int ret;
254
255 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256 if (ret < 0)
257 return 0;
258 return ret;
259}
260EXPORT_SYMBOL(dma_map_sg_attrs);
261
262/**
263 * dma_map_sgtable - Map the given buffer for DMA
264 * @dev: The device for which to perform the DMA operation
265 * @sgt: The sg_table object describing the buffer
266 * @dir: DMA direction
267 * @attrs: Optional DMA attributes for the map operation
268 *
269 * Maps a buffer described by a scatterlist stored in the given sg_table
270 * object for the @dir DMA operation by the @dev device. After success, the
271 * ownership for the buffer is transferred to the DMA domain. One has to
272 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273 * ownership of the buffer back to the CPU domain before touching the
274 * buffer by the CPU.
275 *
276 * Returns 0 on success or a negative error code on error. The following
277 * error codes are supported with the given meaning:
278 *
279 * -EINVAL An invalid argument, unaligned access or other error
280 * in usage. Will not succeed if retried.
281 * -ENOMEM Insufficient resources (like memory or IOVA space) to
282 * complete the mapping. Should succeed if retried later.
283 * -EIO Legacy error code with an unknown meaning. eg. this is
284 * returned if a lower level call returned
285 * DMA_MAPPING_ERROR.
286 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
287 * in the sg_table. This will not succeed if retried.
288 */
289int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290 enum dma_data_direction dir, unsigned long attrs)
291{
292 int nents;
293
294 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295 if (nents < 0)
296 return nents;
297 sgt->nents = nents;
298 return 0;
299}
300EXPORT_SYMBOL_GPL(dma_map_sgtable);
301
302void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303 int nents, enum dma_data_direction dir,
304 unsigned long attrs)
305{
306 const struct dma_map_ops *ops = get_dma_ops(dev);
307
308 BUG_ON(!valid_dma_direction(dir));
309 trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310 debug_dma_unmap_sg(dev, sg, nents, dir);
311 if (dma_map_direct(dev, ops) ||
312 arch_dma_unmap_sg_direct(dev, sg, nents))
313 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314 else if (use_dma_iommu(dev))
315 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316 else if (ops->unmap_sg)
317 ops->unmap_sg(dev, sg, nents, dir, attrs);
318}
319EXPORT_SYMBOL(dma_unmap_sg_attrs);
320
321dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322 size_t size, enum dma_data_direction dir, unsigned long attrs)
323{
324 const struct dma_map_ops *ops = get_dma_ops(dev);
325 dma_addr_t addr = DMA_MAPPING_ERROR;
326
327 BUG_ON(!valid_dma_direction(dir));
328
329 if (WARN_ON_ONCE(!dev->dma_mask))
330 return DMA_MAPPING_ERROR;
331
332 if (dma_map_direct(dev, ops))
333 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334 else if (use_dma_iommu(dev))
335 addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336 else if (ops->map_resource)
337 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338
339 trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341 return addr;
342}
343EXPORT_SYMBOL(dma_map_resource);
344
345void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346 enum dma_data_direction dir, unsigned long attrs)
347{
348 const struct dma_map_ops *ops = get_dma_ops(dev);
349
350 BUG_ON(!valid_dma_direction(dir));
351 if (dma_map_direct(dev, ops))
352 ; /* nothing to do: uncached and no swiotlb */
353 else if (use_dma_iommu(dev))
354 iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355 else if (ops->unmap_resource)
356 ops->unmap_resource(dev, addr, size, dir, attrs);
357 trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358 debug_dma_unmap_resource(dev, addr, size, dir);
359}
360EXPORT_SYMBOL(dma_unmap_resource);
361
362#ifdef CONFIG_DMA_NEED_SYNC
363void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364 enum dma_data_direction dir)
365{
366 const struct dma_map_ops *ops = get_dma_ops(dev);
367
368 BUG_ON(!valid_dma_direction(dir));
369 if (dma_map_direct(dev, ops))
370 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371 else if (use_dma_iommu(dev))
372 iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373 else if (ops->sync_single_for_cpu)
374 ops->sync_single_for_cpu(dev, addr, size, dir);
375 trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377}
378EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379
380void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381 size_t size, enum dma_data_direction dir)
382{
383 const struct dma_map_ops *ops = get_dma_ops(dev);
384
385 BUG_ON(!valid_dma_direction(dir));
386 if (dma_map_direct(dev, ops))
387 dma_direct_sync_single_for_device(dev, addr, size, dir);
388 else if (use_dma_iommu(dev))
389 iommu_dma_sync_single_for_device(dev, addr, size, dir);
390 else if (ops->sync_single_for_device)
391 ops->sync_single_for_device(dev, addr, size, dir);
392 trace_dma_sync_single_for_device(dev, addr, size, dir);
393 debug_dma_sync_single_for_device(dev, addr, size, dir);
394}
395EXPORT_SYMBOL(__dma_sync_single_for_device);
396
397void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398 int nelems, enum dma_data_direction dir)
399{
400 const struct dma_map_ops *ops = get_dma_ops(dev);
401
402 BUG_ON(!valid_dma_direction(dir));
403 if (dma_map_direct(dev, ops))
404 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405 else if (use_dma_iommu(dev))
406 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407 else if (ops->sync_sg_for_cpu)
408 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411}
412EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413
414void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415 int nelems, enum dma_data_direction dir)
416{
417 const struct dma_map_ops *ops = get_dma_ops(dev);
418
419 BUG_ON(!valid_dma_direction(dir));
420 if (dma_map_direct(dev, ops))
421 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422 else if (use_dma_iommu(dev))
423 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424 else if (ops->sync_sg_for_device)
425 ops->sync_sg_for_device(dev, sg, nelems, dir);
426 trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428}
429EXPORT_SYMBOL(__dma_sync_sg_for_device);
430
431bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432{
433 const struct dma_map_ops *ops = get_dma_ops(dev);
434
435 if (dma_map_direct(dev, ops))
436 /*
437 * dma_skip_sync could've been reset on first SWIOTLB buffer
438 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439 * In this case, fall back to more granular check.
440 */
441 return dma_direct_need_sync(dev, dma_addr);
442 return true;
443}
444EXPORT_SYMBOL_GPL(__dma_need_sync);
445
446static void dma_setup_need_sync(struct device *dev)
447{
448 const struct dma_map_ops *ops = get_dma_ops(dev);
449
450 if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
451 /*
452 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
453 * mapping, if any. During the device initialization, it's
454 * enough to check only for the DMA coherence.
455 */
456 dev->dma_skip_sync = dev_is_dma_coherent(dev);
457 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
458 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
459 /*
460 * Synchronization is not possible when none of DMA sync ops
461 * is set.
462 */
463 dev->dma_skip_sync = true;
464 else
465 dev->dma_skip_sync = false;
466}
467#else /* !CONFIG_DMA_NEED_SYNC */
468static inline void dma_setup_need_sync(struct device *dev) { }
469#endif /* !CONFIG_DMA_NEED_SYNC */
470
471/*
472 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
473 * that the intention is to allow exporting memory allocated via the
474 * coherent DMA APIs through the dma_buf API, which only accepts a
475 * scattertable. This presents a couple of problems:
476 * 1. Not all memory allocated via the coherent DMA APIs is backed by
477 * a struct page
478 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
479 * as we will try to flush the memory through a different alias to that
480 * actually being used (and the flushes are redundant.)
481 */
482int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
483 void *cpu_addr, dma_addr_t dma_addr, size_t size,
484 unsigned long attrs)
485{
486 const struct dma_map_ops *ops = get_dma_ops(dev);
487
488 if (dma_alloc_direct(dev, ops))
489 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
490 size, attrs);
491 if (use_dma_iommu(dev))
492 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
493 size, attrs);
494 if (!ops->get_sgtable)
495 return -ENXIO;
496 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
497}
498EXPORT_SYMBOL(dma_get_sgtable_attrs);
499
500#ifdef CONFIG_MMU
501/*
502 * Return the page attributes used for mapping dma_alloc_* memory, either in
503 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
504 */
505pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
506{
507 if (dev_is_dma_coherent(dev))
508 return prot;
509#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
510 if (attrs & DMA_ATTR_WRITE_COMBINE)
511 return pgprot_writecombine(prot);
512#endif
513 return pgprot_dmacoherent(prot);
514}
515#endif /* CONFIG_MMU */
516
517/**
518 * dma_can_mmap - check if a given device supports dma_mmap_*
519 * @dev: device to check
520 *
521 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
522 * map DMA allocations to userspace.
523 */
524bool dma_can_mmap(struct device *dev)
525{
526 const struct dma_map_ops *ops = get_dma_ops(dev);
527
528 if (dma_alloc_direct(dev, ops))
529 return dma_direct_can_mmap(dev);
530 if (use_dma_iommu(dev))
531 return true;
532 return ops->mmap != NULL;
533}
534EXPORT_SYMBOL_GPL(dma_can_mmap);
535
536/**
537 * dma_mmap_attrs - map a coherent DMA allocation into user space
538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539 * @vma: vm_area_struct describing requested user mapping
540 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
541 * @dma_addr: device-view address returned from dma_alloc_attrs
542 * @size: size of memory originally requested in dma_alloc_attrs
543 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
544 *
545 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
546 * space. The coherent DMA buffer must not be freed by the driver until the
547 * user space mapping has been released.
548 */
549int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
550 void *cpu_addr, dma_addr_t dma_addr, size_t size,
551 unsigned long attrs)
552{
553 const struct dma_map_ops *ops = get_dma_ops(dev);
554
555 if (dma_alloc_direct(dev, ops))
556 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
557 attrs);
558 if (use_dma_iommu(dev))
559 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
560 attrs);
561 if (!ops->mmap)
562 return -ENXIO;
563 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
564}
565EXPORT_SYMBOL(dma_mmap_attrs);
566
567u64 dma_get_required_mask(struct device *dev)
568{
569 const struct dma_map_ops *ops = get_dma_ops(dev);
570
571 if (dma_alloc_direct(dev, ops))
572 return dma_direct_get_required_mask(dev);
573
574 if (use_dma_iommu(dev))
575 return DMA_BIT_MASK(32);
576
577 if (ops->get_required_mask)
578 return ops->get_required_mask(dev);
579
580 /*
581 * We require every DMA ops implementation to at least support a 32-bit
582 * DMA mask (and use bounce buffering if that isn't supported in
583 * hardware). As the direct mapping code has its own routine to
584 * actually report an optimal mask we default to 32-bit here as that
585 * is the right thing for most IOMMUs, and at least not actively
586 * harmful in general.
587 */
588 return DMA_BIT_MASK(32);
589}
590EXPORT_SYMBOL_GPL(dma_get_required_mask);
591
592void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
593 gfp_t flag, unsigned long attrs)
594{
595 const struct dma_map_ops *ops = get_dma_ops(dev);
596 void *cpu_addr;
597
598 WARN_ON_ONCE(!dev->coherent_dma_mask);
599
600 /*
601 * DMA allocations can never be turned back into a page pointer, so
602 * requesting compound pages doesn't make sense (and can't even be
603 * supported at all by various backends).
604 */
605 if (WARN_ON_ONCE(flag & __GFP_COMP))
606 return NULL;
607
608 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
609 trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
610 DMA_BIDIRECTIONAL, flag, attrs);
611 return cpu_addr;
612 }
613
614 /* let the implementation decide on the zone to allocate from: */
615 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
616
617 if (dma_alloc_direct(dev, ops)) {
618 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
619 } else if (use_dma_iommu(dev)) {
620 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
621 } else if (ops->alloc) {
622 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
623 } else {
624 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
625 attrs);
626 return NULL;
627 }
628
629 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
630 flag, attrs);
631 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
632 return cpu_addr;
633}
634EXPORT_SYMBOL(dma_alloc_attrs);
635
636void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
637 dma_addr_t dma_handle, unsigned long attrs)
638{
639 const struct dma_map_ops *ops = get_dma_ops(dev);
640
641 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
642 return;
643 /*
644 * On non-coherent platforms which implement DMA-coherent buffers via
645 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
646 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
647 * sleep on some machines, and b) an indication that the driver is
648 * probably misusing the coherent API anyway.
649 */
650 WARN_ON(irqs_disabled());
651
652 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
653 attrs);
654 if (!cpu_addr)
655 return;
656
657 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
658 if (dma_alloc_direct(dev, ops))
659 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
660 else if (use_dma_iommu(dev))
661 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
662 else if (ops->free)
663 ops->free(dev, size, cpu_addr, dma_handle, attrs);
664}
665EXPORT_SYMBOL(dma_free_attrs);
666
667static struct page *__dma_alloc_pages(struct device *dev, size_t size,
668 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
669{
670 const struct dma_map_ops *ops = get_dma_ops(dev);
671
672 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
673 return NULL;
674 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
675 return NULL;
676 if (WARN_ON_ONCE(gfp & __GFP_COMP))
677 return NULL;
678
679 size = PAGE_ALIGN(size);
680 if (dma_alloc_direct(dev, ops))
681 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
682 if (use_dma_iommu(dev))
683 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
684 if (!ops->alloc_pages_op)
685 return NULL;
686 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
687}
688
689struct page *dma_alloc_pages(struct device *dev, size_t size,
690 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
691{
692 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
693
694 if (page) {
695 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
696 size, dir, gfp, 0);
697 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
698 } else {
699 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
700 }
701 return page;
702}
703EXPORT_SYMBOL_GPL(dma_alloc_pages);
704
705static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
706 dma_addr_t dma_handle, enum dma_data_direction dir)
707{
708 const struct dma_map_ops *ops = get_dma_ops(dev);
709
710 size = PAGE_ALIGN(size);
711 if (dma_alloc_direct(dev, ops))
712 dma_direct_free_pages(dev, size, page, dma_handle, dir);
713 else if (use_dma_iommu(dev))
714 dma_common_free_pages(dev, size, page, dma_handle, dir);
715 else if (ops->free_pages)
716 ops->free_pages(dev, size, page, dma_handle, dir);
717}
718
719void dma_free_pages(struct device *dev, size_t size, struct page *page,
720 dma_addr_t dma_handle, enum dma_data_direction dir)
721{
722 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
723 debug_dma_unmap_page(dev, dma_handle, size, dir);
724 __dma_free_pages(dev, size, page, dma_handle, dir);
725}
726EXPORT_SYMBOL_GPL(dma_free_pages);
727
728int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
729 size_t size, struct page *page)
730{
731 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
732
733 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
734 return -ENXIO;
735 return remap_pfn_range(vma, vma->vm_start,
736 page_to_pfn(page) + vma->vm_pgoff,
737 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
738}
739EXPORT_SYMBOL_GPL(dma_mmap_pages);
740
741static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
742 enum dma_data_direction dir, gfp_t gfp)
743{
744 struct sg_table *sgt;
745 struct page *page;
746
747 sgt = kmalloc(sizeof(*sgt), gfp);
748 if (!sgt)
749 return NULL;
750 if (sg_alloc_table(sgt, 1, gfp))
751 goto out_free_sgt;
752 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
753 if (!page)
754 goto out_free_table;
755 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
756 sg_dma_len(sgt->sgl) = sgt->sgl->length;
757 return sgt;
758out_free_table:
759 sg_free_table(sgt);
760out_free_sgt:
761 kfree(sgt);
762 return NULL;
763}
764
765struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
766 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
767{
768 struct sg_table *sgt;
769
770 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
771 return NULL;
772 if (WARN_ON_ONCE(gfp & __GFP_COMP))
773 return NULL;
774
775 if (use_dma_iommu(dev))
776 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
777 else
778 sgt = alloc_single_sgt(dev, size, dir, gfp);
779
780 if (sgt) {
781 sgt->nents = 1;
782 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
783 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
784 } else {
785 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
786 }
787 return sgt;
788}
789EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
790
791static void free_single_sgt(struct device *dev, size_t size,
792 struct sg_table *sgt, enum dma_data_direction dir)
793{
794 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
795 dir);
796 sg_free_table(sgt);
797 kfree(sgt);
798}
799
800void dma_free_noncontiguous(struct device *dev, size_t size,
801 struct sg_table *sgt, enum dma_data_direction dir)
802{
803 trace_dma_free_sgt(dev, sgt, size, dir);
804 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
805
806 if (use_dma_iommu(dev))
807 iommu_dma_free_noncontiguous(dev, size, sgt, dir);
808 else
809 free_single_sgt(dev, size, sgt, dir);
810}
811EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
812
813void *dma_vmap_noncontiguous(struct device *dev, size_t size,
814 struct sg_table *sgt)
815{
816
817 if (use_dma_iommu(dev))
818 return iommu_dma_vmap_noncontiguous(dev, size, sgt);
819
820 return page_address(sg_page(sgt->sgl));
821}
822EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
823
824void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
825{
826 if (use_dma_iommu(dev))
827 iommu_dma_vunmap_noncontiguous(dev, vaddr);
828}
829EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
830
831int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
832 size_t size, struct sg_table *sgt)
833{
834 if (use_dma_iommu(dev))
835 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
836 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
837}
838EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
839
840static int dma_supported(struct device *dev, u64 mask)
841{
842 const struct dma_map_ops *ops = get_dma_ops(dev);
843
844 if (use_dma_iommu(dev)) {
845 if (WARN_ON(ops))
846 return false;
847 return true;
848 }
849
850 /*
851 * ->dma_supported sets and clears the bypass flag, so ignore it here
852 * and always call into the method if there is one.
853 */
854 if (ops) {
855 if (!ops->dma_supported)
856 return true;
857 return ops->dma_supported(dev, mask);
858 }
859
860 return dma_direct_supported(dev, mask);
861}
862
863bool dma_pci_p2pdma_supported(struct device *dev)
864{
865 const struct dma_map_ops *ops = get_dma_ops(dev);
866
867 /*
868 * Note: dma_ops_bypass is not checked here because P2PDMA should
869 * not be used with dma mapping ops that do not have support even
870 * if the specific device is bypassing them.
871 */
872
873 /* if ops is not set, dma direct and default IOMMU support P2PDMA */
874 return !ops;
875}
876EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
877
878int dma_set_mask(struct device *dev, u64 mask)
879{
880 /*
881 * Truncate the mask to the actually supported dma_addr_t width to
882 * avoid generating unsupportable addresses.
883 */
884 mask = (dma_addr_t)mask;
885
886 if (!dev->dma_mask || !dma_supported(dev, mask))
887 return -EIO;
888
889 arch_dma_set_mask(dev, mask);
890 *dev->dma_mask = mask;
891 dma_setup_need_sync(dev);
892
893 return 0;
894}
895EXPORT_SYMBOL(dma_set_mask);
896
897int dma_set_coherent_mask(struct device *dev, u64 mask)
898{
899 /*
900 * Truncate the mask to the actually supported dma_addr_t width to
901 * avoid generating unsupportable addresses.
902 */
903 mask = (dma_addr_t)mask;
904
905 if (!dma_supported(dev, mask))
906 return -EIO;
907
908 dev->coherent_dma_mask = mask;
909 return 0;
910}
911EXPORT_SYMBOL(dma_set_coherent_mask);
912
913/**
914 * dma_addressing_limited - return if the device is addressing limited
915 * @dev: device to check
916 *
917 * Return %true if the devices DMA mask is too small to address all memory in
918 * the system, else %false. Lack of addressing bits is the prime reason for
919 * bounce buffering, but might not be the only one.
920 */
921bool dma_addressing_limited(struct device *dev)
922{
923 const struct dma_map_ops *ops = get_dma_ops(dev);
924
925 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
926 dma_get_required_mask(dev))
927 return true;
928
929 if (unlikely(ops) || use_dma_iommu(dev))
930 return false;
931 return !dma_direct_all_ram_mapped(dev);
932}
933EXPORT_SYMBOL_GPL(dma_addressing_limited);
934
935size_t dma_max_mapping_size(struct device *dev)
936{
937 const struct dma_map_ops *ops = get_dma_ops(dev);
938 size_t size = SIZE_MAX;
939
940 if (dma_map_direct(dev, ops))
941 size = dma_direct_max_mapping_size(dev);
942 else if (use_dma_iommu(dev))
943 size = iommu_dma_max_mapping_size(dev);
944 else if (ops && ops->max_mapping_size)
945 size = ops->max_mapping_size(dev);
946
947 return size;
948}
949EXPORT_SYMBOL_GPL(dma_max_mapping_size);
950
951size_t dma_opt_mapping_size(struct device *dev)
952{
953 const struct dma_map_ops *ops = get_dma_ops(dev);
954 size_t size = SIZE_MAX;
955
956 if (use_dma_iommu(dev))
957 size = iommu_dma_opt_mapping_size();
958 else if (ops && ops->opt_mapping_size)
959 size = ops->opt_mapping_size();
960
961 return min(dma_max_mapping_size(dev), size);
962}
963EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
964
965unsigned long dma_get_merge_boundary(struct device *dev)
966{
967 const struct dma_map_ops *ops = get_dma_ops(dev);
968
969 if (use_dma_iommu(dev))
970 return iommu_dma_get_merge_boundary(dev);
971
972 if (!ops || !ops->get_merge_boundary)
973 return 0; /* can't merge */
974
975 return ops->get_merge_boundary(dev);
976}
977EXPORT_SYMBOL_GPL(dma_get_merge_boundary);