Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
 
  67
  68#include "audit.h"
  69
  70/* flags stating the success for a syscall */
  71#define AUDITSC_INVALID 0
  72#define AUDITSC_SUCCESS 1
  73#define AUDITSC_FAILURE 2
  74
  75/* no execve audit message should be longer than this (userspace limits),
  76 * see the note near the top of audit_log_execve_info() about this value */
  77#define MAX_EXECVE_AUDIT_LEN 7500
  78
  79/* max length to print of cmdline/proctitle value during audit */
  80#define MAX_PROCTITLE_AUDIT_LEN 128
  81
  82/* number of audit rules */
  83int audit_n_rules;
  84
  85/* determines whether we collect data for signals sent */
  86int audit_signals;
  87
  88struct audit_aux_data {
  89	struct audit_aux_data	*next;
  90	int			type;
  91};
  92
  93/* Number of target pids per aux struct. */
  94#define AUDIT_AUX_PIDS	16
  95
  96struct audit_aux_data_pids {
  97	struct audit_aux_data	d;
  98	pid_t			target_pid[AUDIT_AUX_PIDS];
  99	kuid_t			target_auid[AUDIT_AUX_PIDS];
 100	kuid_t			target_uid[AUDIT_AUX_PIDS];
 101	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 102	u32			target_sid[AUDIT_AUX_PIDS];
 103	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 104	int			pid_count;
 105};
 106
 107struct audit_aux_data_bprm_fcaps {
 108	struct audit_aux_data	d;
 109	struct audit_cap_data	fcap;
 110	unsigned int		fcap_ver;
 111	struct audit_cap_data	old_pcap;
 112	struct audit_cap_data	new_pcap;
 113};
 114
 115struct audit_tree_refs {
 116	struct audit_tree_refs *next;
 117	struct audit_chunk *c[31];
 118};
 119
 120struct audit_nfcfgop_tab {
 121	enum audit_nfcfgop	op;
 122	const char		*s;
 123};
 124
 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 126	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 127	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 128	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 129	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 130	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 131	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 132	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 133	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 134	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 135	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 136	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 137	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 138	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 139	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 140	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 141	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 143	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 
 
 145	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 146};
 147
 148static int audit_match_perm(struct audit_context *ctx, int mask)
 149{
 150	unsigned n;
 151
 152	if (unlikely(!ctx))
 153		return 0;
 154	n = ctx->major;
 155
 156	switch (audit_classify_syscall(ctx->arch, n)) {
 157	case AUDITSC_NATIVE:
 158		if ((mask & AUDIT_PERM_WRITE) &&
 159		     audit_match_class(AUDIT_CLASS_WRITE, n))
 160			return 1;
 161		if ((mask & AUDIT_PERM_READ) &&
 162		     audit_match_class(AUDIT_CLASS_READ, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_ATTR) &&
 165		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 166			return 1;
 167		return 0;
 168	case AUDITSC_COMPAT: /* 32bit on biarch */
 169		if ((mask & AUDIT_PERM_WRITE) &&
 170		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 171			return 1;
 172		if ((mask & AUDIT_PERM_READ) &&
 173		     audit_match_class(AUDIT_CLASS_READ_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_ATTR) &&
 176		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 177			return 1;
 178		return 0;
 179	case AUDITSC_OPEN:
 180		return mask & ACC_MODE(ctx->argv[1]);
 181	case AUDITSC_OPENAT:
 182		return mask & ACC_MODE(ctx->argv[2]);
 183	case AUDITSC_SOCKETCALL:
 184		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 185	case AUDITSC_EXECVE:
 186		return mask & AUDIT_PERM_EXEC;
 187	case AUDITSC_OPENAT2:
 188		return mask & ACC_MODE((u32)ctx->openat2.flags);
 189	default:
 190		return 0;
 191	}
 192}
 193
 194static int audit_match_filetype(struct audit_context *ctx, int val)
 195{
 196	struct audit_names *n;
 197	umode_t mode = (umode_t)val;
 198
 199	if (unlikely(!ctx))
 200		return 0;
 201
 202	list_for_each_entry(n, &ctx->names_list, list) {
 203		if ((n->ino != AUDIT_INO_UNSET) &&
 204		    ((n->mode & S_IFMT) == mode))
 205			return 1;
 206	}
 207
 208	return 0;
 209}
 210
 211/*
 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 213 * ->first_trees points to its beginning, ->trees - to the current end of data.
 214 * ->tree_count is the number of free entries in array pointed to by ->trees.
 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 216 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 217 * it's going to remain 1-element for almost any setup) until we free context itself.
 218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 219 */
 220
 221static void audit_set_auditable(struct audit_context *ctx)
 222{
 223	if (!ctx->prio) {
 224		ctx->prio = 1;
 225		ctx->current_state = AUDIT_STATE_RECORD;
 226	}
 227}
 228
 229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 230{
 231	struct audit_tree_refs *p = ctx->trees;
 232	int left = ctx->tree_count;
 233
 234	if (likely(left)) {
 235		p->c[--left] = chunk;
 236		ctx->tree_count = left;
 237		return 1;
 238	}
 239	if (!p)
 240		return 0;
 241	p = p->next;
 242	if (p) {
 243		p->c[30] = chunk;
 244		ctx->trees = p;
 245		ctx->tree_count = 30;
 246		return 1;
 247	}
 248	return 0;
 249}
 250
 251static int grow_tree_refs(struct audit_context *ctx)
 252{
 253	struct audit_tree_refs *p = ctx->trees;
 254
 255	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 256	if (!ctx->trees) {
 257		ctx->trees = p;
 258		return 0;
 259	}
 260	if (p)
 261		p->next = ctx->trees;
 262	else
 263		ctx->first_trees = ctx->trees;
 264	ctx->tree_count = 31;
 265	return 1;
 266}
 267
 268static void unroll_tree_refs(struct audit_context *ctx,
 269		      struct audit_tree_refs *p, int count)
 270{
 271	struct audit_tree_refs *q;
 272	int n;
 273
 274	if (!p) {
 275		/* we started with empty chain */
 276		p = ctx->first_trees;
 277		count = 31;
 278		/* if the very first allocation has failed, nothing to do */
 279		if (!p)
 280			return;
 281	}
 282	n = count;
 283	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 284		while (n--) {
 285			audit_put_chunk(q->c[n]);
 286			q->c[n] = NULL;
 287		}
 288	}
 289	while (n-- > ctx->tree_count) {
 290		audit_put_chunk(q->c[n]);
 291		q->c[n] = NULL;
 292	}
 293	ctx->trees = p;
 294	ctx->tree_count = count;
 295}
 296
 297static void free_tree_refs(struct audit_context *ctx)
 298{
 299	struct audit_tree_refs *p, *q;
 300
 301	for (p = ctx->first_trees; p; p = q) {
 302		q = p->next;
 303		kfree(p);
 304	}
 305}
 306
 307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 308{
 309	struct audit_tree_refs *p;
 310	int n;
 311
 312	if (!tree)
 313		return 0;
 314	/* full ones */
 315	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 316		for (n = 0; n < 31; n++)
 317			if (audit_tree_match(p->c[n], tree))
 318				return 1;
 319	}
 320	/* partial */
 321	if (p) {
 322		for (n = ctx->tree_count; n < 31; n++)
 323			if (audit_tree_match(p->c[n], tree))
 324				return 1;
 325	}
 326	return 0;
 327}
 328
 329static int audit_compare_uid(kuid_t uid,
 330			     struct audit_names *name,
 331			     struct audit_field *f,
 332			     struct audit_context *ctx)
 333{
 334	struct audit_names *n;
 335	int rc;
 336
 337	if (name) {
 338		rc = audit_uid_comparator(uid, f->op, name->uid);
 339		if (rc)
 340			return rc;
 341	}
 342
 343	if (ctx) {
 344		list_for_each_entry(n, &ctx->names_list, list) {
 345			rc = audit_uid_comparator(uid, f->op, n->uid);
 346			if (rc)
 347				return rc;
 348		}
 349	}
 350	return 0;
 351}
 352
 353static int audit_compare_gid(kgid_t gid,
 354			     struct audit_names *name,
 355			     struct audit_field *f,
 356			     struct audit_context *ctx)
 357{
 358	struct audit_names *n;
 359	int rc;
 360
 361	if (name) {
 362		rc = audit_gid_comparator(gid, f->op, name->gid);
 363		if (rc)
 364			return rc;
 365	}
 366
 367	if (ctx) {
 368		list_for_each_entry(n, &ctx->names_list, list) {
 369			rc = audit_gid_comparator(gid, f->op, n->gid);
 370			if (rc)
 371				return rc;
 372		}
 373	}
 374	return 0;
 375}
 376
 377static int audit_field_compare(struct task_struct *tsk,
 378			       const struct cred *cred,
 379			       struct audit_field *f,
 380			       struct audit_context *ctx,
 381			       struct audit_names *name)
 382{
 383	switch (f->val) {
 384	/* process to file object comparisons */
 385	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 386		return audit_compare_uid(cred->uid, name, f, ctx);
 387	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 388		return audit_compare_gid(cred->gid, name, f, ctx);
 389	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 390		return audit_compare_uid(cred->euid, name, f, ctx);
 391	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 392		return audit_compare_gid(cred->egid, name, f, ctx);
 393	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 394		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 395	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->suid, name, f, ctx);
 397	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->sgid, name, f, ctx);
 399	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 400		return audit_compare_uid(cred->fsuid, name, f, ctx);
 401	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 402		return audit_compare_gid(cred->fsgid, name, f, ctx);
 403	/* uid comparisons */
 404	case AUDIT_COMPARE_UID_TO_AUID:
 405		return audit_uid_comparator(cred->uid, f->op,
 406					    audit_get_loginuid(tsk));
 407	case AUDIT_COMPARE_UID_TO_EUID:
 408		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 409	case AUDIT_COMPARE_UID_TO_SUID:
 410		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 411	case AUDIT_COMPARE_UID_TO_FSUID:
 412		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 413	/* auid comparisons */
 414	case AUDIT_COMPARE_AUID_TO_EUID:
 415		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 416					    cred->euid);
 417	case AUDIT_COMPARE_AUID_TO_SUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->suid);
 420	case AUDIT_COMPARE_AUID_TO_FSUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->fsuid);
 423	/* euid comparisons */
 424	case AUDIT_COMPARE_EUID_TO_SUID:
 425		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 426	case AUDIT_COMPARE_EUID_TO_FSUID:
 427		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 428	/* suid comparisons */
 429	case AUDIT_COMPARE_SUID_TO_FSUID:
 430		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 431	/* gid comparisons */
 432	case AUDIT_COMPARE_GID_TO_EGID:
 433		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 434	case AUDIT_COMPARE_GID_TO_SGID:
 435		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 436	case AUDIT_COMPARE_GID_TO_FSGID:
 437		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 438	/* egid comparisons */
 439	case AUDIT_COMPARE_EGID_TO_SGID:
 440		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 441	case AUDIT_COMPARE_EGID_TO_FSGID:
 442		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 443	/* sgid comparison */
 444	case AUDIT_COMPARE_SGID_TO_FSGID:
 445		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 446	default:
 447		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 448		return 0;
 449	}
 450	return 0;
 451}
 452
 453/* Determine if any context name data matches a rule's watch data */
 454/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 455 * otherwise.
 456 *
 457 * If task_creation is true, this is an explicit indication that we are
 458 * filtering a task rule at task creation time.  This and tsk == current are
 459 * the only situations where tsk->cred may be accessed without an rcu read lock.
 460 */
 461static int audit_filter_rules(struct task_struct *tsk,
 462			      struct audit_krule *rule,
 463			      struct audit_context *ctx,
 464			      struct audit_names *name,
 465			      enum audit_state *state,
 466			      bool task_creation)
 467{
 468	const struct cred *cred;
 469	int i, need_sid = 1;
 470	u32 sid;
 471	unsigned int sessionid;
 472
 473	if (ctx && rule->prio <= ctx->prio)
 474		return 0;
 475
 476	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 477
 478	for (i = 0; i < rule->field_count; i++) {
 479		struct audit_field *f = &rule->fields[i];
 480		struct audit_names *n;
 481		int result = 0;
 482		pid_t pid;
 483
 484		switch (f->type) {
 485		case AUDIT_PID:
 486			pid = task_tgid_nr(tsk);
 487			result = audit_comparator(pid, f->op, f->val);
 488			break;
 489		case AUDIT_PPID:
 490			if (ctx) {
 491				if (!ctx->ppid)
 492					ctx->ppid = task_ppid_nr(tsk);
 493				result = audit_comparator(ctx->ppid, f->op, f->val);
 494			}
 495			break;
 496		case AUDIT_EXE:
 497			result = audit_exe_compare(tsk, rule->exe);
 498			if (f->op == Audit_not_equal)
 499				result = !result;
 500			break;
 501		case AUDIT_UID:
 502			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 503			break;
 504		case AUDIT_EUID:
 505			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 506			break;
 507		case AUDIT_SUID:
 508			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 509			break;
 510		case AUDIT_FSUID:
 511			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 512			break;
 513		case AUDIT_GID:
 514			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 515			if (f->op == Audit_equal) {
 516				if (!result)
 517					result = groups_search(cred->group_info, f->gid);
 518			} else if (f->op == Audit_not_equal) {
 519				if (result)
 520					result = !groups_search(cred->group_info, f->gid);
 521			}
 522			break;
 523		case AUDIT_EGID:
 524			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 525			if (f->op == Audit_equal) {
 526				if (!result)
 527					result = groups_search(cred->group_info, f->gid);
 528			} else if (f->op == Audit_not_equal) {
 529				if (result)
 530					result = !groups_search(cred->group_info, f->gid);
 531			}
 532			break;
 533		case AUDIT_SGID:
 534			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 535			break;
 536		case AUDIT_FSGID:
 537			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 538			break;
 539		case AUDIT_SESSIONID:
 540			sessionid = audit_get_sessionid(tsk);
 541			result = audit_comparator(sessionid, f->op, f->val);
 542			break;
 543		case AUDIT_PERS:
 544			result = audit_comparator(tsk->personality, f->op, f->val);
 545			break;
 546		case AUDIT_ARCH:
 547			if (ctx)
 548				result = audit_comparator(ctx->arch, f->op, f->val);
 549			break;
 550
 551		case AUDIT_EXIT:
 552			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 553				result = audit_comparator(ctx->return_code, f->op, f->val);
 554			break;
 555		case AUDIT_SUCCESS:
 556			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 557				if (f->val)
 558					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 559				else
 560					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 561			}
 562			break;
 563		case AUDIT_DEVMAJOR:
 564			if (name) {
 565				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 566				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 567					++result;
 568			} else if (ctx) {
 569				list_for_each_entry(n, &ctx->names_list, list) {
 570					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 571					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_DEVMINOR:
 579			if (name) {
 580				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 581				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 582					++result;
 583			} else if (ctx) {
 584				list_for_each_entry(n, &ctx->names_list, list) {
 585					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 586					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 587						++result;
 588						break;
 589					}
 590				}
 591			}
 592			break;
 593		case AUDIT_INODE:
 594			if (name)
 595				result = audit_comparator(name->ino, f->op, f->val);
 596			else if (ctx) {
 597				list_for_each_entry(n, &ctx->names_list, list) {
 598					if (audit_comparator(n->ino, f->op, f->val)) {
 599						++result;
 600						break;
 601					}
 602				}
 603			}
 604			break;
 605		case AUDIT_OBJ_UID:
 606			if (name) {
 607				result = audit_uid_comparator(name->uid, f->op, f->uid);
 608			} else if (ctx) {
 609				list_for_each_entry(n, &ctx->names_list, list) {
 610					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 611						++result;
 612						break;
 613					}
 614				}
 615			}
 616			break;
 617		case AUDIT_OBJ_GID:
 618			if (name) {
 619				result = audit_gid_comparator(name->gid, f->op, f->gid);
 620			} else if (ctx) {
 621				list_for_each_entry(n, &ctx->names_list, list) {
 622					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 623						++result;
 624						break;
 625					}
 626				}
 627			}
 628			break;
 629		case AUDIT_WATCH:
 630			if (name) {
 631				result = audit_watch_compare(rule->watch,
 632							     name->ino,
 633							     name->dev);
 634				if (f->op == Audit_not_equal)
 635					result = !result;
 636			}
 637			break;
 638		case AUDIT_DIR:
 639			if (ctx) {
 640				result = match_tree_refs(ctx, rule->tree);
 641				if (f->op == Audit_not_equal)
 642					result = !result;
 643			}
 644			break;
 645		case AUDIT_LOGINUID:
 646			result = audit_uid_comparator(audit_get_loginuid(tsk),
 647						      f->op, f->uid);
 648			break;
 649		case AUDIT_LOGINUID_SET:
 650			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 651			break;
 652		case AUDIT_SADDR_FAM:
 653			if (ctx && ctx->sockaddr)
 654				result = audit_comparator(ctx->sockaddr->ss_family,
 655							  f->op, f->val);
 656			break;
 657		case AUDIT_SUBJ_USER:
 658		case AUDIT_SUBJ_ROLE:
 659		case AUDIT_SUBJ_TYPE:
 660		case AUDIT_SUBJ_SEN:
 661		case AUDIT_SUBJ_CLR:
 662			/* NOTE: this may return negative values indicating
 663			   a temporary error.  We simply treat this as a
 664			   match for now to avoid losing information that
 665			   may be wanted.   An error message will also be
 666			   logged upon error */
 667			if (f->lsm_rule) {
 668				if (need_sid) {
 669					/* @tsk should always be equal to
 670					 * @current with the exception of
 671					 * fork()/copy_process() in which case
 672					 * the new @tsk creds are still a dup
 673					 * of @current's creds so we can still
 674					 * use security_current_getsecid_subj()
 675					 * here even though it always refs
 676					 * @current's creds
 677					 */
 678					security_current_getsecid_subj(&sid);
 679					need_sid = 0;
 680				}
 681				result = security_audit_rule_match(sid, f->type,
 682								   f->op,
 683								   f->lsm_rule);
 684			}
 685			break;
 686		case AUDIT_OBJ_USER:
 687		case AUDIT_OBJ_ROLE:
 688		case AUDIT_OBJ_TYPE:
 689		case AUDIT_OBJ_LEV_LOW:
 690		case AUDIT_OBJ_LEV_HIGH:
 691			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 692			   also applies here */
 693			if (f->lsm_rule) {
 694				/* Find files that match */
 695				if (name) {
 696					result = security_audit_rule_match(
 697								name->osid,
 698								f->type,
 699								f->op,
 700								f->lsm_rule);
 701				} else if (ctx) {
 702					list_for_each_entry(n, &ctx->names_list, list) {
 703						if (security_audit_rule_match(
 704								n->osid,
 705								f->type,
 706								f->op,
 707								f->lsm_rule)) {
 708							++result;
 709							break;
 710						}
 711					}
 712				}
 713				/* Find ipc objects that match */
 714				if (!ctx || ctx->type != AUDIT_IPC)
 715					break;
 716				if (security_audit_rule_match(ctx->ipc.osid,
 717							      f->type, f->op,
 718							      f->lsm_rule))
 719					++result;
 720			}
 721			break;
 722		case AUDIT_ARG0:
 723		case AUDIT_ARG1:
 724		case AUDIT_ARG2:
 725		case AUDIT_ARG3:
 726			if (ctx)
 727				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 728			break;
 729		case AUDIT_FILTERKEY:
 730			/* ignore this field for filtering */
 731			result = 1;
 732			break;
 733		case AUDIT_PERM:
 734			result = audit_match_perm(ctx, f->val);
 735			if (f->op == Audit_not_equal)
 736				result = !result;
 737			break;
 738		case AUDIT_FILETYPE:
 739			result = audit_match_filetype(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FIELD_COMPARE:
 744			result = audit_field_compare(tsk, cred, f, ctx, name);
 745			break;
 746		}
 747		if (!result)
 748			return 0;
 749	}
 750
 751	if (ctx) {
 752		if (rule->filterkey) {
 753			kfree(ctx->filterkey);
 754			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755		}
 756		ctx->prio = rule->prio;
 757	}
 758	switch (rule->action) {
 759	case AUDIT_NEVER:
 760		*state = AUDIT_STATE_DISABLED;
 761		break;
 762	case AUDIT_ALWAYS:
 763		*state = AUDIT_STATE_RECORD;
 764		break;
 765	}
 766	return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775	struct audit_entry *e;
 776	enum audit_state   state;
 777
 778	rcu_read_lock();
 779	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781				       &state, true)) {
 782			if (state == AUDIT_STATE_RECORD)
 783				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784			rcu_read_unlock();
 785			return state;
 786		}
 787	}
 788	rcu_read_unlock();
 789	return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794	int word, bit;
 795
 796	if (val > 0xffffffff)
 797		return false;
 798
 799	word = AUDIT_WORD(val);
 800	if (word >= AUDIT_BITMASK_SIZE)
 801		return false;
 802
 803	bit = AUDIT_BIT(val);
 804
 805	return rule->mask[word] & bit;
 806}
 807
 808/**
 809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 810 * @tsk: associated task
 811 * @ctx: audit context
 812 * @list: audit filter list
 813 * @name: audit_name (can be NULL)
 814 * @op: current syscall/uring_op
 815 *
 816 * Run the udit filters specified in @list against @tsk using @ctx,
 817 * @name, and @op, as necessary; the caller is responsible for ensuring
 818 * that the call is made while the RCU read lock is held. The @name
 819 * parameter can be NULL, but all others must be specified.
 820 * Returns 1/true if the filter finds a match, 0/false if none are found.
 821 */
 822static int __audit_filter_op(struct task_struct *tsk,
 823			   struct audit_context *ctx,
 824			   struct list_head *list,
 825			   struct audit_names *name,
 826			   unsigned long op)
 827{
 828	struct audit_entry *e;
 829	enum audit_state state;
 830
 831	list_for_each_entry_rcu(e, list, list) {
 832		if (audit_in_mask(&e->rule, op) &&
 833		    audit_filter_rules(tsk, &e->rule, ctx, name,
 834				       &state, false)) {
 835			ctx->current_state = state;
 836			return 1;
 837		}
 838	}
 839	return 0;
 840}
 841
 842/**
 843 * audit_filter_uring - apply filters to an io_uring operation
 844 * @tsk: associated task
 845 * @ctx: audit context
 846 */
 847static void audit_filter_uring(struct task_struct *tsk,
 848			       struct audit_context *ctx)
 849{
 850	if (auditd_test_task(tsk))
 851		return;
 852
 853	rcu_read_lock();
 854	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 855			NULL, ctx->uring_op);
 856	rcu_read_unlock();
 857}
 858
 859/* At syscall exit time, this filter is called if the audit_state is
 860 * not low enough that auditing cannot take place, but is also not
 861 * high enough that we already know we have to write an audit record
 862 * (i.e., the state is AUDIT_STATE_BUILD).
 863 */
 864static void audit_filter_syscall(struct task_struct *tsk,
 865				 struct audit_context *ctx)
 866{
 867	if (auditd_test_task(tsk))
 868		return;
 869
 870	rcu_read_lock();
 871	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 872			NULL, ctx->major);
 873	rcu_read_unlock();
 874}
 875
 876/*
 877 * Given an audit_name check the inode hash table to see if they match.
 878 * Called holding the rcu read lock to protect the use of audit_inode_hash
 879 */
 880static int audit_filter_inode_name(struct task_struct *tsk,
 881				   struct audit_names *n,
 882				   struct audit_context *ctx) {
 
 883	int h = audit_hash_ino((u32)n->ino);
 884	struct list_head *list = &audit_inode_hash[h];
 885
 886	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 887}
 888
 889/* At syscall exit time, this filter is called if any audit_names have been
 890 * collected during syscall processing.  We only check rules in sublists at hash
 891 * buckets applicable to the inode numbers in audit_names.
 892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 893 */
 894void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 895{
 896	struct audit_names *n;
 897
 898	if (auditd_test_task(tsk))
 899		return;
 900
 901	rcu_read_lock();
 902
 903	list_for_each_entry(n, &ctx->names_list, list) {
 904		if (audit_filter_inode_name(tsk, n, ctx))
 905			break;
 906	}
 907	rcu_read_unlock();
 908}
 909
 910static inline void audit_proctitle_free(struct audit_context *context)
 911{
 912	kfree(context->proctitle.value);
 913	context->proctitle.value = NULL;
 914	context->proctitle.len = 0;
 915}
 916
 917static inline void audit_free_module(struct audit_context *context)
 918{
 919	if (context->type == AUDIT_KERN_MODULE) {
 920		kfree(context->module.name);
 921		context->module.name = NULL;
 922	}
 923}
 924static inline void audit_free_names(struct audit_context *context)
 925{
 926	struct audit_names *n, *next;
 927
 928	list_for_each_entry_safe(n, next, &context->names_list, list) {
 929		list_del(&n->list);
 930		if (n->name)
 931			putname(n->name);
 932		if (n->should_free)
 933			kfree(n);
 934	}
 935	context->name_count = 0;
 936	path_put(&context->pwd);
 937	context->pwd.dentry = NULL;
 938	context->pwd.mnt = NULL;
 939}
 940
 941static inline void audit_free_aux(struct audit_context *context)
 942{
 943	struct audit_aux_data *aux;
 944
 945	while ((aux = context->aux)) {
 946		context->aux = aux->next;
 947		kfree(aux);
 948	}
 949	context->aux = NULL;
 950	while ((aux = context->aux_pids)) {
 951		context->aux_pids = aux->next;
 952		kfree(aux);
 953	}
 954	context->aux_pids = NULL;
 955}
 956
 957/**
 958 * audit_reset_context - reset a audit_context structure
 959 * @ctx: the audit_context to reset
 960 *
 961 * All fields in the audit_context will be reset to an initial state, all
 962 * references held by fields will be dropped, and private memory will be
 963 * released.  When this function returns the audit_context will be suitable
 964 * for reuse, so long as the passed context is not NULL or a dummy context.
 965 */
 966static void audit_reset_context(struct audit_context *ctx)
 967{
 968	if (!ctx)
 969		return;
 970
 971	/* if ctx is non-null, reset the "ctx->context" regardless */
 972	ctx->context = AUDIT_CTX_UNUSED;
 973	if (ctx->dummy)
 974		return;
 975
 976	/*
 977	 * NOTE: It shouldn't matter in what order we release the fields, so
 978	 *       release them in the order in which they appear in the struct;
 979	 *       this gives us some hope of quickly making sure we are
 980	 *       resetting the audit_context properly.
 981	 *
 982	 *       Other things worth mentioning:
 983	 *       - we don't reset "dummy"
 984	 *       - we don't reset "state", we do reset "current_state"
 985	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 986	 *       - much of this is likely overkill, but play it safe for now
 987	 *       - we really need to work on improving the audit_context struct
 988	 */
 989
 990	ctx->current_state = ctx->state;
 991	ctx->serial = 0;
 992	ctx->major = 0;
 993	ctx->uring_op = 0;
 994	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 995	memset(ctx->argv, 0, sizeof(ctx->argv));
 996	ctx->return_code = 0;
 997	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
 998	ctx->return_valid = AUDITSC_INVALID;
 999	audit_free_names(ctx);
1000	if (ctx->state != AUDIT_STATE_RECORD) {
1001		kfree(ctx->filterkey);
1002		ctx->filterkey = NULL;
1003	}
1004	audit_free_aux(ctx);
1005	kfree(ctx->sockaddr);
1006	ctx->sockaddr = NULL;
1007	ctx->sockaddr_len = 0;
1008	ctx->ppid = 0;
1009	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011	ctx->personality = 0;
1012	ctx->arch = 0;
1013	ctx->target_pid = 0;
1014	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015	ctx->target_sessionid = 0;
1016	ctx->target_sid = 0;
1017	ctx->target_comm[0] = '\0';
1018	unroll_tree_refs(ctx, NULL, 0);
1019	WARN_ON(!list_empty(&ctx->killed_trees));
1020	audit_free_module(ctx);
1021	ctx->fds[0] = -1;
1022	ctx->type = 0; /* reset last for audit_free_*() */
1023}
1024
1025static inline struct audit_context *audit_alloc_context(enum audit_state state)
1026{
1027	struct audit_context *context;
1028
1029	context = kzalloc(sizeof(*context), GFP_KERNEL);
1030	if (!context)
1031		return NULL;
1032	context->context = AUDIT_CTX_UNUSED;
1033	context->state = state;
1034	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1035	INIT_LIST_HEAD(&context->killed_trees);
1036	INIT_LIST_HEAD(&context->names_list);
1037	context->fds[0] = -1;
1038	context->return_valid = AUDITSC_INVALID;
1039	return context;
1040}
1041
1042/**
1043 * audit_alloc - allocate an audit context block for a task
1044 * @tsk: task
1045 *
1046 * Filter on the task information and allocate a per-task audit context
1047 * if necessary.  Doing so turns on system call auditing for the
1048 * specified task.  This is called from copy_process, so no lock is
1049 * needed.
1050 */
1051int audit_alloc(struct task_struct *tsk)
1052{
1053	struct audit_context *context;
1054	enum audit_state     state;
1055	char *key = NULL;
1056
1057	if (likely(!audit_ever_enabled))
1058		return 0;
1059
1060	state = audit_filter_task(tsk, &key);
1061	if (state == AUDIT_STATE_DISABLED) {
1062		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1063		return 0;
1064	}
1065
1066	if (!(context = audit_alloc_context(state))) {
 
1067		kfree(key);
1068		audit_log_lost("out of memory in audit_alloc");
1069		return -ENOMEM;
1070	}
1071	context->filterkey = key;
1072
1073	audit_set_context(tsk, context);
1074	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1075	return 0;
1076}
1077
1078static inline void audit_free_context(struct audit_context *context)
1079{
1080	/* resetting is extra work, but it is likely just noise */
1081	audit_reset_context(context);
1082	audit_proctitle_free(context);
1083	free_tree_refs(context);
1084	kfree(context->filterkey);
1085	kfree(context);
1086}
1087
1088static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1089				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1090				 u32 sid, char *comm)
1091{
1092	struct audit_buffer *ab;
1093	char *ctx = NULL;
1094	u32 len;
1095	int rc = 0;
1096
1097	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1098	if (!ab)
1099		return rc;
1100
1101	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102			 from_kuid(&init_user_ns, auid),
1103			 from_kuid(&init_user_ns, uid), sessionid);
1104	if (sid) {
1105		if (security_secid_to_secctx(sid, &ctx, &len)) {
1106			audit_log_format(ab, " obj=(none)");
1107			rc = 1;
1108		} else {
1109			audit_log_format(ab, " obj=%s", ctx);
1110			security_release_secctx(ctx, len);
1111		}
1112	}
1113	audit_log_format(ab, " ocomm=");
1114	audit_log_untrustedstring(ab, comm);
1115	audit_log_end(ab);
1116
1117	return rc;
1118}
1119
1120static void audit_log_execve_info(struct audit_context *context,
1121				  struct audit_buffer **ab)
1122{
1123	long len_max;
1124	long len_rem;
1125	long len_full;
1126	long len_buf;
1127	long len_abuf = 0;
1128	long len_tmp;
1129	bool require_data;
1130	bool encode;
1131	unsigned int iter;
1132	unsigned int arg;
1133	char *buf_head;
1134	char *buf;
1135	const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1138	 *       data we put in the audit record for this argument (see the
1139	 *       code below) ... at this point in time 96 is plenty */
1140	char abuf[96];
1141
1142	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143	 *       current value of 7500 is not as important as the fact that it
1144	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1145	 *       room if we go over a little bit in the logging below */
1146	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147	len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149	/* scratch buffer to hold the userspace args */
1150	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151	if (!buf_head) {
1152		audit_panic("out of memory for argv string");
1153		return;
1154	}
1155	buf = buf_head;
1156
1157	audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159	len_rem = len_max;
1160	len_buf = 0;
1161	len_full = 0;
1162	require_data = true;
1163	encode = false;
1164	iter = 0;
1165	arg = 0;
1166	do {
1167		/* NOTE: we don't ever want to trust this value for anything
1168		 *       serious, but the audit record format insists we
1169		 *       provide an argument length for really long arguments,
1170		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171		 *       to use strncpy_from_user() to obtain this value for
1172		 *       recording in the log, although we don't use it
1173		 *       anywhere here to avoid a double-fetch problem */
1174		if (len_full == 0)
1175			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177		/* read more data from userspace */
1178		if (require_data) {
1179			/* can we make more room in the buffer? */
1180			if (buf != buf_head) {
1181				memmove(buf_head, buf, len_buf);
1182				buf = buf_head;
1183			}
1184
1185			/* fetch as much as we can of the argument */
1186			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187						    len_max - len_buf);
1188			if (len_tmp == -EFAULT) {
1189				/* unable to copy from userspace */
1190				send_sig(SIGKILL, current, 0);
1191				goto out;
1192			} else if (len_tmp == (len_max - len_buf)) {
1193				/* buffer is not large enough */
1194				require_data = true;
1195				/* NOTE: if we are going to span multiple
1196				 *       buffers force the encoding so we stand
1197				 *       a chance at a sane len_full value and
1198				 *       consistent record encoding */
1199				encode = true;
1200				len_full = len_full * 2;
1201				p += len_tmp;
1202			} else {
1203				require_data = false;
1204				if (!encode)
1205					encode = audit_string_contains_control(
1206								buf, len_tmp);
1207				/* try to use a trusted value for len_full */
1208				if (len_full < len_max)
1209					len_full = (encode ?
1210						    len_tmp * 2 : len_tmp);
1211				p += len_tmp + 1;
1212			}
1213			len_buf += len_tmp;
1214			buf_head[len_buf] = '\0';
1215
1216			/* length of the buffer in the audit record? */
1217			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1218		}
1219
1220		/* write as much as we can to the audit log */
1221		if (len_buf >= 0) {
1222			/* NOTE: some magic numbers here - basically if we
1223			 *       can't fit a reasonable amount of data into the
1224			 *       existing audit buffer, flush it and start with
1225			 *       a new buffer */
1226			if ((sizeof(abuf) + 8) > len_rem) {
1227				len_rem = len_max;
1228				audit_log_end(*ab);
1229				*ab = audit_log_start(context,
1230						      GFP_KERNEL, AUDIT_EXECVE);
1231				if (!*ab)
1232					goto out;
1233			}
1234
1235			/* create the non-arg portion of the arg record */
1236			len_tmp = 0;
1237			if (require_data || (iter > 0) ||
1238			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1239				if (iter == 0) {
1240					len_tmp += snprintf(&abuf[len_tmp],
1241							sizeof(abuf) - len_tmp,
1242							" a%d_len=%lu",
1243							arg, len_full);
1244				}
1245				len_tmp += snprintf(&abuf[len_tmp],
1246						    sizeof(abuf) - len_tmp,
1247						    " a%d[%d]=", arg, iter++);
1248			} else
1249				len_tmp += snprintf(&abuf[len_tmp],
1250						    sizeof(abuf) - len_tmp,
1251						    " a%d=", arg);
1252			WARN_ON(len_tmp >= sizeof(abuf));
1253			abuf[sizeof(abuf) - 1] = '\0';
1254
1255			/* log the arg in the audit record */
1256			audit_log_format(*ab, "%s", abuf);
1257			len_rem -= len_tmp;
1258			len_tmp = len_buf;
1259			if (encode) {
1260				if (len_abuf > len_rem)
1261					len_tmp = len_rem / 2; /* encoding */
1262				audit_log_n_hex(*ab, buf, len_tmp);
1263				len_rem -= len_tmp * 2;
1264				len_abuf -= len_tmp * 2;
1265			} else {
1266				if (len_abuf > len_rem)
1267					len_tmp = len_rem - 2; /* quotes */
1268				audit_log_n_string(*ab, buf, len_tmp);
1269				len_rem -= len_tmp + 2;
1270				/* don't subtract the "2" because we still need
1271				 * to add quotes to the remaining string */
1272				len_abuf -= len_tmp;
1273			}
1274			len_buf -= len_tmp;
1275			buf += len_tmp;
1276		}
1277
1278		/* ready to move to the next argument? */
1279		if ((len_buf == 0) && !require_data) {
1280			arg++;
1281			iter = 0;
1282			len_full = 0;
1283			require_data = true;
1284			encode = false;
1285		}
1286	} while (arg < context->execve.argc);
1287
1288	/* NOTE: the caller handles the final audit_log_end() call */
1289
1290out:
1291	kfree(buf_head);
1292}
1293
1294static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295			  kernel_cap_t *cap)
1296{
1297	int i;
1298
1299	if (cap_isclear(*cap)) {
1300		audit_log_format(ab, " %s=0", prefix);
1301		return;
1302	}
1303	audit_log_format(ab, " %s=", prefix);
1304	CAP_FOR_EACH_U32(i)
1305		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1306}
1307
1308static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309{
1310	if (name->fcap_ver == -1) {
1311		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1312		return;
1313	}
1314	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317			 name->fcap.fE, name->fcap_ver,
1318			 from_kuid(&init_user_ns, name->fcap.rootid));
1319}
1320
1321static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322{
1323	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324	const struct timespec64 *tk = &context->time.tk_injoffset;
1325	static const char * const ntp_name[] = {
1326		"offset",
1327		"freq",
1328		"status",
1329		"tai",
1330		"tick",
1331		"adjust",
1332	};
1333	int type;
1334
1335	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338				if (!*ab) {
1339					*ab = audit_log_start(context,
1340							GFP_KERNEL,
1341							AUDIT_TIME_ADJNTPVAL);
1342					if (!*ab)
1343						return;
1344				}
1345				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346						 ntp_name[type],
1347						 ntp->vals[type].oldval,
1348						 ntp->vals[type].newval);
1349				audit_log_end(*ab);
1350				*ab = NULL;
1351			}
1352		}
1353	}
1354	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355		if (!*ab) {
1356			*ab = audit_log_start(context, GFP_KERNEL,
1357					      AUDIT_TIME_INJOFFSET);
1358			if (!*ab)
1359				return;
1360		}
1361		audit_log_format(*ab, "sec=%lli nsec=%li",
1362				 (long long)tk->tv_sec, tk->tv_nsec);
1363		audit_log_end(*ab);
1364		*ab = NULL;
1365	}
1366}
1367
1368static void show_special(struct audit_context *context, int *call_panic)
1369{
1370	struct audit_buffer *ab;
1371	int i;
1372
1373	ab = audit_log_start(context, GFP_KERNEL, context->type);
1374	if (!ab)
1375		return;
1376
1377	switch (context->type) {
1378	case AUDIT_SOCKETCALL: {
1379		int nargs = context->socketcall.nargs;
1380
1381		audit_log_format(ab, "nargs=%d", nargs);
1382		for (i = 0; i < nargs; i++)
1383			audit_log_format(ab, " a%d=%lx", i,
1384				context->socketcall.args[i]);
1385		break; }
1386	case AUDIT_IPC: {
1387		u32 osid = context->ipc.osid;
1388
1389		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1390				 from_kuid(&init_user_ns, context->ipc.uid),
1391				 from_kgid(&init_user_ns, context->ipc.gid),
1392				 context->ipc.mode);
1393		if (osid) {
1394			char *ctx = NULL;
1395			u32 len;
1396
1397			if (security_secid_to_secctx(osid, &ctx, &len)) {
1398				audit_log_format(ab, " osid=%u", osid);
1399				*call_panic = 1;
1400			} else {
1401				audit_log_format(ab, " obj=%s", ctx);
1402				security_release_secctx(ctx, len);
1403			}
1404		}
1405		if (context->ipc.has_perm) {
1406			audit_log_end(ab);
1407			ab = audit_log_start(context, GFP_KERNEL,
1408					     AUDIT_IPC_SET_PERM);
1409			if (unlikely(!ab))
1410				return;
1411			audit_log_format(ab,
1412				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413				context->ipc.qbytes,
1414				context->ipc.perm_uid,
1415				context->ipc.perm_gid,
1416				context->ipc.perm_mode);
1417		}
1418		break; }
1419	case AUDIT_MQ_OPEN:
1420		audit_log_format(ab,
1421			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422			"mq_msgsize=%ld mq_curmsgs=%ld",
1423			context->mq_open.oflag, context->mq_open.mode,
1424			context->mq_open.attr.mq_flags,
1425			context->mq_open.attr.mq_maxmsg,
1426			context->mq_open.attr.mq_msgsize,
1427			context->mq_open.attr.mq_curmsgs);
1428		break;
1429	case AUDIT_MQ_SENDRECV:
1430		audit_log_format(ab,
1431			"mqdes=%d msg_len=%zd msg_prio=%u "
1432			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433			context->mq_sendrecv.mqdes,
1434			context->mq_sendrecv.msg_len,
1435			context->mq_sendrecv.msg_prio,
1436			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437			context->mq_sendrecv.abs_timeout.tv_nsec);
1438		break;
1439	case AUDIT_MQ_NOTIFY:
1440		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441				context->mq_notify.mqdes,
1442				context->mq_notify.sigev_signo);
1443		break;
1444	case AUDIT_MQ_GETSETATTR: {
1445		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446
1447		audit_log_format(ab,
1448			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449			"mq_curmsgs=%ld ",
1450			context->mq_getsetattr.mqdes,
1451			attr->mq_flags, attr->mq_maxmsg,
1452			attr->mq_msgsize, attr->mq_curmsgs);
1453		break; }
1454	case AUDIT_CAPSET:
1455		audit_log_format(ab, "pid=%d", context->capset.pid);
1456		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1460		break;
1461	case AUDIT_MMAP:
1462		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463				 context->mmap.flags);
1464		break;
1465	case AUDIT_OPENAT2:
1466		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467				 context->openat2.flags,
1468				 context->openat2.mode,
1469				 context->openat2.resolve);
1470		break;
1471	case AUDIT_EXECVE:
1472		audit_log_execve_info(context, &ab);
1473		break;
1474	case AUDIT_KERN_MODULE:
1475		audit_log_format(ab, "name=");
1476		if (context->module.name) {
1477			audit_log_untrustedstring(ab, context->module.name);
1478		} else
1479			audit_log_format(ab, "(null)");
1480
1481		break;
1482	case AUDIT_TIME_ADJNTPVAL:
1483	case AUDIT_TIME_INJOFFSET:
1484		/* this call deviates from the rest, eating the buffer */
1485		audit_log_time(context, &ab);
1486		break;
1487	}
1488	audit_log_end(ab);
1489}
1490
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493	char *end = proctitle + len - 1;
1494
1495	while (end > proctitle && !isprint(*end))
1496		end--;
1497
1498	/* catch the case where proctitle is only 1 non-print character */
1499	len = end - proctitle + 1;
1500	len -= isprint(proctitle[len-1]) == 0;
1501	return len;
1502}
1503
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513		    const struct path *path, int record_num, int *call_panic)
1514{
1515	struct audit_buffer *ab;
1516
1517	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518	if (!ab)
1519		return;
1520
1521	audit_log_format(ab, "item=%d", record_num);
1522
1523	if (path)
1524		audit_log_d_path(ab, " name=", path);
1525	else if (n->name) {
1526		switch (n->name_len) {
1527		case AUDIT_NAME_FULL:
1528			/* log the full path */
1529			audit_log_format(ab, " name=");
1530			audit_log_untrustedstring(ab, n->name->name);
1531			break;
1532		case 0:
1533			/* name was specified as a relative path and the
1534			 * directory component is the cwd
1535			 */
1536			if (context->pwd.dentry && context->pwd.mnt)
1537				audit_log_d_path(ab, " name=", &context->pwd);
1538			else
1539				audit_log_format(ab, " name=(null)");
1540			break;
1541		default:
1542			/* log the name's directory component */
1543			audit_log_format(ab, " name=");
1544			audit_log_n_untrustedstring(ab, n->name->name,
1545						    n->name_len);
1546		}
1547	} else
1548		audit_log_format(ab, " name=(null)");
1549
1550	if (n->ino != AUDIT_INO_UNSET)
1551		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552				 n->ino,
1553				 MAJOR(n->dev),
1554				 MINOR(n->dev),
1555				 n->mode,
1556				 from_kuid(&init_user_ns, n->uid),
1557				 from_kgid(&init_user_ns, n->gid),
1558				 MAJOR(n->rdev),
1559				 MINOR(n->rdev));
1560	if (n->osid != 0) {
1561		char *ctx = NULL;
1562		u32 len;
1563
1564		if (security_secid_to_secctx(
1565			n->osid, &ctx, &len)) {
1566			audit_log_format(ab, " osid=%u", n->osid);
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 (ctx->return_valid == AUDITSC_SUCCESS ?
1656				  "yes" : "no"),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 (context->return_valid == AUDITSC_SUCCESS ?
1699					  "yes" : "no"),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  axs->target_sid[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  context->target_sid, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
1830	if (!context)
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
2012{
2013	struct audit_context *context = audit_context();
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
2024	}
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
2044	context->current_state  = state;
2045	ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
2079
2080out:
2081	audit_reset_context(context);
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for(;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			n->name->refcnt++;
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
2234		return;
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
2238		return;
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	name->refcnt++;
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getsecid(inode, &name->osid);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		name->refcnt++;
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
 
 
2462	/* is there a matching child entry? */
2463	list_for_each_entry(n, &context->names_list, list) {
2464		/* can only match entries that have a name */
2465		if (!n->name ||
2466		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2467			continue;
2468
2469		if (!strcmp(dname->name, n->name->name) ||
2470		    !audit_compare_dname_path(dname, n->name->name,
2471						found_parent ?
2472						found_parent->name_len :
2473						AUDIT_NAME_FULL)) {
2474			if (n->type == AUDIT_TYPE_UNKNOWN)
2475				n->type = type;
2476			found_child = n;
2477			break;
2478		}
2479	}
2480
2481	if (!found_parent) {
2482		/* create a new, "anonymous" parent record */
2483		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2484		if (!n)
2485			return;
2486		audit_copy_inode(n, NULL, parent, 0);
2487	}
2488
2489	if (!found_child) {
2490		found_child = audit_alloc_name(context, type);
2491		if (!found_child)
2492			return;
2493
2494		/* Re-use the name belonging to the slot for a matching parent
2495		 * directory. All names for this context are relinquished in
2496		 * audit_free_names() */
2497		if (found_parent) {
2498			found_child->name = found_parent->name;
2499			found_child->name_len = AUDIT_NAME_FULL;
2500			found_child->name->refcnt++;
2501		}
2502	}
2503
2504	if (inode)
2505		audit_copy_inode(found_child, dentry, inode, 0);
2506	else
2507		found_child->ino = AUDIT_INO_UNSET;
2508}
2509EXPORT_SYMBOL_GPL(__audit_inode_child);
2510
2511/**
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2514 * @t: timespec64 to store time recorded in the audit_context
2515 * @serial: serial value that is recorded in the audit_context
2516 *
2517 * Also sets the context as auditable.
2518 */
2519int auditsc_get_stamp(struct audit_context *ctx,
2520		       struct timespec64 *t, unsigned int *serial)
2521{
2522	if (ctx->context == AUDIT_CTX_UNUSED)
2523		return 0;
2524	if (!ctx->serial)
2525		ctx->serial = audit_serial();
2526	t->tv_sec  = ctx->ctime.tv_sec;
2527	t->tv_nsec = ctx->ctime.tv_nsec;
2528	*serial    = ctx->serial;
2529	if (!ctx->prio) {
2530		ctx->prio = 1;
2531		ctx->current_state = AUDIT_STATE_RECORD;
2532	}
2533	return 1;
2534}
2535
2536/**
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2538 * @oflag: open flag
2539 * @mode: mode bits
2540 * @attr: queue attributes
2541 *
2542 */
2543void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2544{
2545	struct audit_context *context = audit_context();
2546
2547	if (attr)
2548		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2549	else
2550		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2551
2552	context->mq_open.oflag = oflag;
2553	context->mq_open.mode = mode;
2554
2555	context->type = AUDIT_MQ_OPEN;
2556}
2557
2558/**
2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
2563 * @abs_timeout: Message timeout in absolute time
2564 *
2565 */
2566void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2567			const struct timespec64 *abs_timeout)
2568{
2569	struct audit_context *context = audit_context();
2570	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2571
2572	if (abs_timeout)
2573		memcpy(p, abs_timeout, sizeof(*p));
2574	else
2575		memset(p, 0, sizeof(*p));
2576
2577	context->mq_sendrecv.mqdes = mqdes;
2578	context->mq_sendrecv.msg_len = msg_len;
2579	context->mq_sendrecv.msg_prio = msg_prio;
2580
2581	context->type = AUDIT_MQ_SENDRECV;
2582}
2583
2584/**
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
2587 * @notification: Notification event
2588 *
2589 */
2590
2591void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2592{
2593	struct audit_context *context = audit_context();
2594
2595	if (notification)
2596		context->mq_notify.sigev_signo = notification->sigev_signo;
2597	else
2598		context->mq_notify.sigev_signo = 0;
2599
2600	context->mq_notify.mqdes = mqdes;
2601	context->type = AUDIT_MQ_NOTIFY;
2602}
2603
2604/**
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2607 * @mqstat: MQ flags
2608 *
2609 */
2610void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2611{
2612	struct audit_context *context = audit_context();
2613
2614	context->mq_getsetattr.mqdes = mqdes;
2615	context->mq_getsetattr.mqstat = *mqstat;
2616	context->type = AUDIT_MQ_GETSETATTR;
2617}
2618
2619/**
2620 * __audit_ipc_obj - record audit data for ipc object
2621 * @ipcp: ipc permissions
2622 *
2623 */
2624void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2625{
2626	struct audit_context *context = audit_context();
2627
2628	context->ipc.uid = ipcp->uid;
2629	context->ipc.gid = ipcp->gid;
2630	context->ipc.mode = ipcp->mode;
2631	context->ipc.has_perm = 0;
2632	security_ipc_getsecid(ipcp, &context->ipc.osid);
2633	context->type = AUDIT_IPC;
2634}
2635
2636/**
2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2642 *
2643 * Called only after audit_ipc_obj().
2644 */
2645void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2646{
2647	struct audit_context *context = audit_context();
2648
2649	context->ipc.qbytes = qbytes;
2650	context->ipc.perm_uid = uid;
2651	context->ipc.perm_gid = gid;
2652	context->ipc.perm_mode = mode;
2653	context->ipc.has_perm = 1;
2654}
2655
2656void __audit_bprm(struct linux_binprm *bprm)
2657{
2658	struct audit_context *context = audit_context();
2659
2660	context->type = AUDIT_EXECVE;
2661	context->execve.argc = bprm->argc;
2662}
2663
2664
2665/**
2666 * __audit_socketcall - record audit data for sys_socketcall
2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2668 * @args: args array
2669 *
2670 */
2671int __audit_socketcall(int nargs, unsigned long *args)
2672{
2673	struct audit_context *context = audit_context();
2674
2675	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2676		return -EINVAL;
2677	context->type = AUDIT_SOCKETCALL;
2678	context->socketcall.nargs = nargs;
2679	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2680	return 0;
2681}
2682
2683/**
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2687 *
2688 */
2689void __audit_fd_pair(int fd1, int fd2)
2690{
2691	struct audit_context *context = audit_context();
2692
2693	context->fds[0] = fd1;
2694	context->fds[1] = fd2;
2695}
2696
2697/**
2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2701 *
2702 * Returns 0 for success or NULL context or < 0 on error.
2703 */
2704int __audit_sockaddr(int len, void *a)
2705{
2706	struct audit_context *context = audit_context();
2707
2708	if (!context->sockaddr) {
2709		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2710
2711		if (!p)
2712			return -ENOMEM;
2713		context->sockaddr = p;
2714	}
2715
2716	context->sockaddr_len = len;
2717	memcpy(context->sockaddr, a, len);
2718	return 0;
2719}
2720
2721void __audit_ptrace(struct task_struct *t)
2722{
2723	struct audit_context *context = audit_context();
2724
2725	context->target_pid = task_tgid_nr(t);
2726	context->target_auid = audit_get_loginuid(t);
2727	context->target_uid = task_uid(t);
2728	context->target_sessionid = audit_get_sessionid(t);
2729	security_task_getsecid_obj(t, &context->target_sid);
2730	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2731}
2732
2733/**
2734 * audit_signal_info_syscall - record signal info for syscalls
2735 * @t: task being signaled
2736 *
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2739 */
2740int audit_signal_info_syscall(struct task_struct *t)
2741{
2742	struct audit_aux_data_pids *axp;
2743	struct audit_context *ctx = audit_context();
2744	kuid_t t_uid = task_uid(t);
2745
2746	if (!audit_signals || audit_dummy_context())
2747		return 0;
2748
2749	/* optimize the common case by putting first signal recipient directly
2750	 * in audit_context */
2751	if (!ctx->target_pid) {
2752		ctx->target_pid = task_tgid_nr(t);
2753		ctx->target_auid = audit_get_loginuid(t);
2754		ctx->target_uid = t_uid;
2755		ctx->target_sessionid = audit_get_sessionid(t);
2756		security_task_getsecid_obj(t, &ctx->target_sid);
2757		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2758		return 0;
2759	}
2760
2761	axp = (void *)ctx->aux_pids;
2762	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764		if (!axp)
2765			return -ENOMEM;
2766
2767		axp->d.type = AUDIT_OBJ_PID;
2768		axp->d.next = ctx->aux_pids;
2769		ctx->aux_pids = (void *)axp;
2770	}
2771	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2772
2773	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2774	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2775	axp->target_uid[axp->pid_count] = t_uid;
2776	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2777	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2778	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2779	axp->pid_count++;
2780
2781	return 0;
2782}
2783
2784/**
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
2789 *
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2792 *
2793 * -Eric
2794 */
2795int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796			   const struct cred *new, const struct cred *old)
2797{
2798	struct audit_aux_data_bprm_fcaps *ax;
2799	struct audit_context *context = audit_context();
2800	struct cpu_vfs_cap_data vcaps;
2801
2802	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803	if (!ax)
2804		return -ENOMEM;
2805
2806	ax->d.type = AUDIT_BPRM_FCAPS;
2807	ax->d.next = context->aux;
2808	context->aux = (void *)ax;
2809
2810	get_vfs_caps_from_disk(&init_user_ns,
2811			       bprm->file->f_path.dentry, &vcaps);
2812
2813	ax->fcap.permitted = vcaps.permitted;
2814	ax->fcap.inheritable = vcaps.inheritable;
2815	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2816	ax->fcap.rootid = vcaps.rootid;
2817	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2818
2819	ax->old_pcap.permitted   = old->cap_permitted;
2820	ax->old_pcap.inheritable = old->cap_inheritable;
2821	ax->old_pcap.effective   = old->cap_effective;
2822	ax->old_pcap.ambient     = old->cap_ambient;
2823
2824	ax->new_pcap.permitted   = new->cap_permitted;
2825	ax->new_pcap.inheritable = new->cap_inheritable;
2826	ax->new_pcap.effective   = new->cap_effective;
2827	ax->new_pcap.ambient     = new->cap_ambient;
2828	return 0;
2829}
2830
2831/**
2832 * __audit_log_capset - store information about the arguments to the capset syscall
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
2835 *
2836 * Record the arguments userspace sent to sys_capset for later printing by the
2837 * audit system if applicable
2838 */
2839void __audit_log_capset(const struct cred *new, const struct cred *old)
2840{
2841	struct audit_context *context = audit_context();
2842
2843	context->capset.pid = task_tgid_nr(current);
2844	context->capset.cap.effective   = new->cap_effective;
2845	context->capset.cap.inheritable = new->cap_effective;
2846	context->capset.cap.permitted   = new->cap_permitted;
2847	context->capset.cap.ambient     = new->cap_ambient;
2848	context->type = AUDIT_CAPSET;
2849}
2850
2851void __audit_mmap_fd(int fd, int flags)
2852{
2853	struct audit_context *context = audit_context();
2854
2855	context->mmap.fd = fd;
2856	context->mmap.flags = flags;
2857	context->type = AUDIT_MMAP;
2858}
2859
2860void __audit_openat2_how(struct open_how *how)
2861{
2862	struct audit_context *context = audit_context();
2863
2864	context->openat2.flags = how->flags;
2865	context->openat2.mode = how->mode;
2866	context->openat2.resolve = how->resolve;
2867	context->type = AUDIT_OPENAT2;
2868}
2869
2870void __audit_log_kern_module(char *name)
2871{
2872	struct audit_context *context = audit_context();
2873
2874	context->module.name = kstrdup(name, GFP_KERNEL);
2875	if (!context->module.name)
2876		audit_log_lost("out of memory in __audit_log_kern_module");
2877	context->type = AUDIT_KERN_MODULE;
2878}
2879
2880void __audit_fanotify(unsigned int response)
2881{
2882	audit_log(audit_context(), GFP_KERNEL,
2883		AUDIT_FANOTIFY,	"resp=%u", response);
 
 
 
 
 
 
 
 
 
 
 
2884}
2885
2886void __audit_tk_injoffset(struct timespec64 offset)
2887{
2888	struct audit_context *context = audit_context();
2889
2890	/* only set type if not already set by NTP */
2891	if (!context->type)
2892		context->type = AUDIT_TIME_INJOFFSET;
2893	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2894}
2895
2896void __audit_ntp_log(const struct audit_ntp_data *ad)
2897{
2898	struct audit_context *context = audit_context();
2899	int type;
2900
2901	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902		if (ad->vals[type].newval != ad->vals[type].oldval) {
2903			/* unconditionally set type, overwriting TK */
2904			context->type = AUDIT_TIME_ADJNTPVAL;
2905			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2906			break;
2907		}
2908}
2909
2910void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2911		       enum audit_nfcfgop op, gfp_t gfp)
2912{
2913	struct audit_buffer *ab;
2914	char comm[sizeof(current->comm)];
2915
2916	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2917	if (!ab)
2918		return;
2919	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920			 name, af, nentries, audit_nfcfgs[op].s);
2921
2922	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923	audit_log_task_context(ab); /* subj= */
2924	audit_log_format(ab, " comm=");
2925	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2926	audit_log_end(ab);
2927}
2928EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2929
2930static void audit_log_task(struct audit_buffer *ab)
2931{
2932	kuid_t auid, uid;
2933	kgid_t gid;
2934	unsigned int sessionid;
2935	char comm[sizeof(current->comm)];
2936
2937	auid = audit_get_loginuid(current);
2938	sessionid = audit_get_sessionid(current);
2939	current_uid_gid(&uid, &gid);
2940
2941	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2942			 from_kuid(&init_user_ns, auid),
2943			 from_kuid(&init_user_ns, uid),
2944			 from_kgid(&init_user_ns, gid),
2945			 sessionid);
2946	audit_log_task_context(ab);
2947	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2948	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2949	audit_log_d_path_exe(ab, current->mm);
2950}
2951
2952/**
2953 * audit_core_dumps - record information about processes that end abnormally
2954 * @signr: signal value
2955 *
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2958 */
2959void audit_core_dumps(long signr)
2960{
2961	struct audit_buffer *ab;
2962
2963	if (!audit_enabled)
2964		return;
2965
2966	if (signr == SIGQUIT)	/* don't care for those */
2967		return;
2968
2969	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2970	if (unlikely(!ab))
2971		return;
2972	audit_log_task(ab);
2973	audit_log_format(ab, " sig=%ld res=1", signr);
2974	audit_log_end(ab);
2975}
2976
2977/**
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2982 *
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2988 */
2989void audit_seccomp(unsigned long syscall, long signr, int code)
2990{
2991	struct audit_buffer *ab;
2992
2993	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2994	if (unlikely(!ab))
2995		return;
2996	audit_log_task(ab);
2997	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2998			 signr, syscall_get_arch(current), syscall,
2999			 in_compat_syscall(), KSTK_EIP(current), code);
3000	audit_log_end(ab);
3001}
3002
3003void audit_seccomp_actions_logged(const char *names, const char *old_names,
3004				  int res)
3005{
3006	struct audit_buffer *ab;
3007
3008	if (!audit_enabled)
3009		return;
3010
3011	ab = audit_log_start(audit_context(), GFP_KERNEL,
3012			     AUDIT_CONFIG_CHANGE);
3013	if (unlikely(!ab))
3014		return;
3015
3016	audit_log_format(ab,
3017			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018			 names, old_names, res);
3019	audit_log_end(ab);
3020}
3021
3022struct list_head *audit_killed_trees(void)
3023{
3024	struct audit_context *ctx = audit_context();
3025	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3026		return NULL;
3027	return &ctx->killed_trees;
3028}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67#include <uapi/linux/fanotify.h>
  68
  69#include "audit.h"
  70
  71/* flags stating the success for a syscall */
  72#define AUDITSC_INVALID 0
  73#define AUDITSC_SUCCESS 1
  74#define AUDITSC_FAILURE 2
  75
  76/* no execve audit message should be longer than this (userspace limits),
  77 * see the note near the top of audit_log_execve_info() about this value */
  78#define MAX_EXECVE_AUDIT_LEN 7500
  79
  80/* max length to print of cmdline/proctitle value during audit */
  81#define MAX_PROCTITLE_AUDIT_LEN 128
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_aux_data {
  90	struct audit_aux_data	*next;
  91	int			type;
  92};
  93
  94/* Number of target pids per aux struct. */
  95#define AUDIT_AUX_PIDS	16
  96
  97struct audit_aux_data_pids {
  98	struct audit_aux_data	d;
  99	pid_t			target_pid[AUDIT_AUX_PIDS];
 100	kuid_t			target_auid[AUDIT_AUX_PIDS];
 101	kuid_t			target_uid[AUDIT_AUX_PIDS];
 102	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 103	u32			target_sid[AUDIT_AUX_PIDS];
 104	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 105	int			pid_count;
 106};
 107
 108struct audit_aux_data_bprm_fcaps {
 109	struct audit_aux_data	d;
 110	struct audit_cap_data	fcap;
 111	unsigned int		fcap_ver;
 112	struct audit_cap_data	old_pcap;
 113	struct audit_cap_data	new_pcap;
 114};
 115
 116struct audit_tree_refs {
 117	struct audit_tree_refs *next;
 118	struct audit_chunk *c[31];
 119};
 120
 121struct audit_nfcfgop_tab {
 122	enum audit_nfcfgop	op;
 123	const char		*s;
 124};
 125
 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 127	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 128	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 129	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 130	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 131	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 132	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 133	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 134	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 135	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 136	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 137	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 138	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 139	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 140	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 141	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 143	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 145	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 146	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
 147	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
 148	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 149};
 150
 151static int audit_match_perm(struct audit_context *ctx, int mask)
 152{
 153	unsigned n;
 154
 155	if (unlikely(!ctx))
 156		return 0;
 157	n = ctx->major;
 158
 159	switch (audit_classify_syscall(ctx->arch, n)) {
 160	case AUDITSC_NATIVE:
 161		if ((mask & AUDIT_PERM_WRITE) &&
 162		     audit_match_class(AUDIT_CLASS_WRITE, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_READ) &&
 165		     audit_match_class(AUDIT_CLASS_READ, n))
 166			return 1;
 167		if ((mask & AUDIT_PERM_ATTR) &&
 168		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 169			return 1;
 170		return 0;
 171	case AUDITSC_COMPAT: /* 32bit on biarch */
 172		if ((mask & AUDIT_PERM_WRITE) &&
 173		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_READ) &&
 176		     audit_match_class(AUDIT_CLASS_READ_32, n))
 177			return 1;
 178		if ((mask & AUDIT_PERM_ATTR) &&
 179		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 180			return 1;
 181		return 0;
 182	case AUDITSC_OPEN:
 183		return mask & ACC_MODE(ctx->argv[1]);
 184	case AUDITSC_OPENAT:
 185		return mask & ACC_MODE(ctx->argv[2]);
 186	case AUDITSC_SOCKETCALL:
 187		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 188	case AUDITSC_EXECVE:
 189		return mask & AUDIT_PERM_EXEC;
 190	case AUDITSC_OPENAT2:
 191		return mask & ACC_MODE((u32)ctx->openat2.flags);
 192	default:
 193		return 0;
 194	}
 195}
 196
 197static int audit_match_filetype(struct audit_context *ctx, int val)
 198{
 199	struct audit_names *n;
 200	umode_t mode = (umode_t)val;
 201
 202	if (unlikely(!ctx))
 203		return 0;
 204
 205	list_for_each_entry(n, &ctx->names_list, list) {
 206		if ((n->ino != AUDIT_INO_UNSET) &&
 207		    ((n->mode & S_IFMT) == mode))
 208			return 1;
 209	}
 210
 211	return 0;
 212}
 213
 214/*
 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 216 * ->first_trees points to its beginning, ->trees - to the current end of data.
 217 * ->tree_count is the number of free entries in array pointed to by ->trees.
 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 219 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 220 * it's going to remain 1-element for almost any setup) until we free context itself.
 221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 222 */
 223
 224static void audit_set_auditable(struct audit_context *ctx)
 225{
 226	if (!ctx->prio) {
 227		ctx->prio = 1;
 228		ctx->current_state = AUDIT_STATE_RECORD;
 229	}
 230}
 231
 232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	int left = ctx->tree_count;
 236
 237	if (likely(left)) {
 238		p->c[--left] = chunk;
 239		ctx->tree_count = left;
 240		return 1;
 241	}
 242	if (!p)
 243		return 0;
 244	p = p->next;
 245	if (p) {
 246		p->c[30] = chunk;
 247		ctx->trees = p;
 248		ctx->tree_count = 30;
 249		return 1;
 250	}
 251	return 0;
 252}
 253
 254static int grow_tree_refs(struct audit_context *ctx)
 255{
 256	struct audit_tree_refs *p = ctx->trees;
 257
 258	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 259	if (!ctx->trees) {
 260		ctx->trees = p;
 261		return 0;
 262	}
 263	if (p)
 264		p->next = ctx->trees;
 265	else
 266		ctx->first_trees = ctx->trees;
 267	ctx->tree_count = 31;
 268	return 1;
 269}
 270
 271static void unroll_tree_refs(struct audit_context *ctx,
 272		      struct audit_tree_refs *p, int count)
 273{
 274	struct audit_tree_refs *q;
 275	int n;
 276
 277	if (!p) {
 278		/* we started with empty chain */
 279		p = ctx->first_trees;
 280		count = 31;
 281		/* if the very first allocation has failed, nothing to do */
 282		if (!p)
 283			return;
 284	}
 285	n = count;
 286	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 287		while (n--) {
 288			audit_put_chunk(q->c[n]);
 289			q->c[n] = NULL;
 290		}
 291	}
 292	while (n-- > ctx->tree_count) {
 293		audit_put_chunk(q->c[n]);
 294		q->c[n] = NULL;
 295	}
 296	ctx->trees = p;
 297	ctx->tree_count = count;
 298}
 299
 300static void free_tree_refs(struct audit_context *ctx)
 301{
 302	struct audit_tree_refs *p, *q;
 303
 304	for (p = ctx->first_trees; p; p = q) {
 305		q = p->next;
 306		kfree(p);
 307	}
 308}
 309
 310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 311{
 312	struct audit_tree_refs *p;
 313	int n;
 314
 315	if (!tree)
 316		return 0;
 317	/* full ones */
 318	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 319		for (n = 0; n < 31; n++)
 320			if (audit_tree_match(p->c[n], tree))
 321				return 1;
 322	}
 323	/* partial */
 324	if (p) {
 325		for (n = ctx->tree_count; n < 31; n++)
 326			if (audit_tree_match(p->c[n], tree))
 327				return 1;
 328	}
 329	return 0;
 330}
 331
 332static int audit_compare_uid(kuid_t uid,
 333			     struct audit_names *name,
 334			     struct audit_field *f,
 335			     struct audit_context *ctx)
 336{
 337	struct audit_names *n;
 338	int rc;
 339
 340	if (name) {
 341		rc = audit_uid_comparator(uid, f->op, name->uid);
 342		if (rc)
 343			return rc;
 344	}
 345
 346	if (ctx) {
 347		list_for_each_entry(n, &ctx->names_list, list) {
 348			rc = audit_uid_comparator(uid, f->op, n->uid);
 349			if (rc)
 350				return rc;
 351		}
 352	}
 353	return 0;
 354}
 355
 356static int audit_compare_gid(kgid_t gid,
 357			     struct audit_names *name,
 358			     struct audit_field *f,
 359			     struct audit_context *ctx)
 360{
 361	struct audit_names *n;
 362	int rc;
 363
 364	if (name) {
 365		rc = audit_gid_comparator(gid, f->op, name->gid);
 366		if (rc)
 367			return rc;
 368	}
 369
 370	if (ctx) {
 371		list_for_each_entry(n, &ctx->names_list, list) {
 372			rc = audit_gid_comparator(gid, f->op, n->gid);
 373			if (rc)
 374				return rc;
 375		}
 376	}
 377	return 0;
 378}
 379
 380static int audit_field_compare(struct task_struct *tsk,
 381			       const struct cred *cred,
 382			       struct audit_field *f,
 383			       struct audit_context *ctx,
 384			       struct audit_names *name)
 385{
 386	switch (f->val) {
 387	/* process to file object comparisons */
 388	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 389		return audit_compare_uid(cred->uid, name, f, ctx);
 390	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 391		return audit_compare_gid(cred->gid, name, f, ctx);
 392	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 393		return audit_compare_uid(cred->euid, name, f, ctx);
 394	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 395		return audit_compare_gid(cred->egid, name, f, ctx);
 396	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 397		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 398	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 399		return audit_compare_uid(cred->suid, name, f, ctx);
 400	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 401		return audit_compare_gid(cred->sgid, name, f, ctx);
 402	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 403		return audit_compare_uid(cred->fsuid, name, f, ctx);
 404	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 405		return audit_compare_gid(cred->fsgid, name, f, ctx);
 406	/* uid comparisons */
 407	case AUDIT_COMPARE_UID_TO_AUID:
 408		return audit_uid_comparator(cred->uid, f->op,
 409					    audit_get_loginuid(tsk));
 410	case AUDIT_COMPARE_UID_TO_EUID:
 411		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 412	case AUDIT_COMPARE_UID_TO_SUID:
 413		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 414	case AUDIT_COMPARE_UID_TO_FSUID:
 415		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 416	/* auid comparisons */
 417	case AUDIT_COMPARE_AUID_TO_EUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->euid);
 420	case AUDIT_COMPARE_AUID_TO_SUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->suid);
 423	case AUDIT_COMPARE_AUID_TO_FSUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->fsuid);
 426	/* euid comparisons */
 427	case AUDIT_COMPARE_EUID_TO_SUID:
 428		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 429	case AUDIT_COMPARE_EUID_TO_FSUID:
 430		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 431	/* suid comparisons */
 432	case AUDIT_COMPARE_SUID_TO_FSUID:
 433		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 434	/* gid comparisons */
 435	case AUDIT_COMPARE_GID_TO_EGID:
 436		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 437	case AUDIT_COMPARE_GID_TO_SGID:
 438		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 439	case AUDIT_COMPARE_GID_TO_FSGID:
 440		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 441	/* egid comparisons */
 442	case AUDIT_COMPARE_EGID_TO_SGID:
 443		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 444	case AUDIT_COMPARE_EGID_TO_FSGID:
 445		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 446	/* sgid comparison */
 447	case AUDIT_COMPARE_SGID_TO_FSGID:
 448		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 449	default:
 450		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 451		return 0;
 452	}
 453	return 0;
 454}
 455
 456/* Determine if any context name data matches a rule's watch data */
 457/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 458 * otherwise.
 459 *
 460 * If task_creation is true, this is an explicit indication that we are
 461 * filtering a task rule at task creation time.  This and tsk == current are
 462 * the only situations where tsk->cred may be accessed without an rcu read lock.
 463 */
 464static int audit_filter_rules(struct task_struct *tsk,
 465			      struct audit_krule *rule,
 466			      struct audit_context *ctx,
 467			      struct audit_names *name,
 468			      enum audit_state *state,
 469			      bool task_creation)
 470{
 471	const struct cred *cred;
 472	int i, need_sid = 1;
 473	u32 sid;
 474	unsigned int sessionid;
 475
 476	if (ctx && rule->prio <= ctx->prio)
 477		return 0;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx && ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					/* @tsk should always be equal to
 673					 * @current with the exception of
 674					 * fork()/copy_process() in which case
 675					 * the new @tsk creds are still a dup
 676					 * of @current's creds so we can still
 677					 * use security_current_getsecid_subj()
 678					 * here even though it always refs
 679					 * @current's creds
 680					 */
 681					security_current_getsecid_subj(&sid);
 682					need_sid = 0;
 683				}
 684				result = security_audit_rule_match(sid, f->type,
 685								   f->op,
 686								   f->lsm_rule);
 687			}
 688			break;
 689		case AUDIT_OBJ_USER:
 690		case AUDIT_OBJ_ROLE:
 691		case AUDIT_OBJ_TYPE:
 692		case AUDIT_OBJ_LEV_LOW:
 693		case AUDIT_OBJ_LEV_HIGH:
 694			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 695			   also applies here */
 696			if (f->lsm_rule) {
 697				/* Find files that match */
 698				if (name) {
 699					result = security_audit_rule_match(
 700								name->osid,
 701								f->type,
 702								f->op,
 703								f->lsm_rule);
 704				} else if (ctx) {
 705					list_for_each_entry(n, &ctx->names_list, list) {
 706						if (security_audit_rule_match(
 707								n->osid,
 708								f->type,
 709								f->op,
 710								f->lsm_rule)) {
 711							++result;
 712							break;
 713						}
 714					}
 715				}
 716				/* Find ipc objects that match */
 717				if (!ctx || ctx->type != AUDIT_IPC)
 718					break;
 719				if (security_audit_rule_match(ctx->ipc.osid,
 720							      f->type, f->op,
 721							      f->lsm_rule))
 722					++result;
 723			}
 724			break;
 725		case AUDIT_ARG0:
 726		case AUDIT_ARG1:
 727		case AUDIT_ARG2:
 728		case AUDIT_ARG3:
 729			if (ctx)
 730				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 731			break;
 732		case AUDIT_FILTERKEY:
 733			/* ignore this field for filtering */
 734			result = 1;
 735			break;
 736		case AUDIT_PERM:
 737			result = audit_match_perm(ctx, f->val);
 738			if (f->op == Audit_not_equal)
 739				result = !result;
 740			break;
 741		case AUDIT_FILETYPE:
 742			result = audit_match_filetype(ctx, f->val);
 743			if (f->op == Audit_not_equal)
 744				result = !result;
 745			break;
 746		case AUDIT_FIELD_COMPARE:
 747			result = audit_field_compare(tsk, cred, f, ctx, name);
 748			break;
 749		}
 750		if (!result)
 751			return 0;
 752	}
 753
 754	if (ctx) {
 755		if (rule->filterkey) {
 756			kfree(ctx->filterkey);
 757			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 758		}
 759		ctx->prio = rule->prio;
 760	}
 761	switch (rule->action) {
 762	case AUDIT_NEVER:
 763		*state = AUDIT_STATE_DISABLED;
 764		break;
 765	case AUDIT_ALWAYS:
 766		*state = AUDIT_STATE_RECORD;
 767		break;
 768	}
 769	return 1;
 770}
 771
 772/* At process creation time, we can determine if system-call auditing is
 773 * completely disabled for this task.  Since we only have the task
 774 * structure at this point, we can only check uid and gid.
 775 */
 776static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 777{
 778	struct audit_entry *e;
 779	enum audit_state   state;
 780
 781	rcu_read_lock();
 782	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 783		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 784				       &state, true)) {
 785			if (state == AUDIT_STATE_RECORD)
 786				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 787			rcu_read_unlock();
 788			return state;
 789		}
 790	}
 791	rcu_read_unlock();
 792	return AUDIT_STATE_BUILD;
 793}
 794
 795static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 796{
 797	int word, bit;
 798
 799	if (val > 0xffffffff)
 800		return false;
 801
 802	word = AUDIT_WORD(val);
 803	if (word >= AUDIT_BITMASK_SIZE)
 804		return false;
 805
 806	bit = AUDIT_BIT(val);
 807
 808	return rule->mask[word] & bit;
 809}
 810
 811/**
 812 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 813 * @tsk: associated task
 814 * @ctx: audit context
 815 * @list: audit filter list
 816 * @name: audit_name (can be NULL)
 817 * @op: current syscall/uring_op
 818 *
 819 * Run the udit filters specified in @list against @tsk using @ctx,
 820 * @name, and @op, as necessary; the caller is responsible for ensuring
 821 * that the call is made while the RCU read lock is held. The @name
 822 * parameter can be NULL, but all others must be specified.
 823 * Returns 1/true if the filter finds a match, 0/false if none are found.
 824 */
 825static int __audit_filter_op(struct task_struct *tsk,
 826			   struct audit_context *ctx,
 827			   struct list_head *list,
 828			   struct audit_names *name,
 829			   unsigned long op)
 830{
 831	struct audit_entry *e;
 832	enum audit_state state;
 833
 834	list_for_each_entry_rcu(e, list, list) {
 835		if (audit_in_mask(&e->rule, op) &&
 836		    audit_filter_rules(tsk, &e->rule, ctx, name,
 837				       &state, false)) {
 838			ctx->current_state = state;
 839			return 1;
 840		}
 841	}
 842	return 0;
 843}
 844
 845/**
 846 * audit_filter_uring - apply filters to an io_uring operation
 847 * @tsk: associated task
 848 * @ctx: audit context
 849 */
 850static void audit_filter_uring(struct task_struct *tsk,
 851			       struct audit_context *ctx)
 852{
 853	if (auditd_test_task(tsk))
 854		return;
 855
 856	rcu_read_lock();
 857	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 858			NULL, ctx->uring_op);
 859	rcu_read_unlock();
 860}
 861
 862/* At syscall exit time, this filter is called if the audit_state is
 863 * not low enough that auditing cannot take place, but is also not
 864 * high enough that we already know we have to write an audit record
 865 * (i.e., the state is AUDIT_STATE_BUILD).
 866 */
 867static void audit_filter_syscall(struct task_struct *tsk,
 868				 struct audit_context *ctx)
 869{
 870	if (auditd_test_task(tsk))
 871		return;
 872
 873	rcu_read_lock();
 874	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 875			NULL, ctx->major);
 876	rcu_read_unlock();
 877}
 878
 879/*
 880 * Given an audit_name check the inode hash table to see if they match.
 881 * Called holding the rcu read lock to protect the use of audit_inode_hash
 882 */
 883static int audit_filter_inode_name(struct task_struct *tsk,
 884				   struct audit_names *n,
 885				   struct audit_context *ctx)
 886{
 887	int h = audit_hash_ino((u32)n->ino);
 888	struct list_head *list = &audit_inode_hash[h];
 889
 890	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 891}
 892
 893/* At syscall exit time, this filter is called if any audit_names have been
 894 * collected during syscall processing.  We only check rules in sublists at hash
 895 * buckets applicable to the inode numbers in audit_names.
 896 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 897 */
 898void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 899{
 900	struct audit_names *n;
 901
 902	if (auditd_test_task(tsk))
 903		return;
 904
 905	rcu_read_lock();
 906
 907	list_for_each_entry(n, &ctx->names_list, list) {
 908		if (audit_filter_inode_name(tsk, n, ctx))
 909			break;
 910	}
 911	rcu_read_unlock();
 912}
 913
 914static inline void audit_proctitle_free(struct audit_context *context)
 915{
 916	kfree(context->proctitle.value);
 917	context->proctitle.value = NULL;
 918	context->proctitle.len = 0;
 919}
 920
 921static inline void audit_free_module(struct audit_context *context)
 922{
 923	if (context->type == AUDIT_KERN_MODULE) {
 924		kfree(context->module.name);
 925		context->module.name = NULL;
 926	}
 927}
 928static inline void audit_free_names(struct audit_context *context)
 929{
 930	struct audit_names *n, *next;
 931
 932	list_for_each_entry_safe(n, next, &context->names_list, list) {
 933		list_del(&n->list);
 934		if (n->name)
 935			putname(n->name);
 936		if (n->should_free)
 937			kfree(n);
 938	}
 939	context->name_count = 0;
 940	path_put(&context->pwd);
 941	context->pwd.dentry = NULL;
 942	context->pwd.mnt = NULL;
 943}
 944
 945static inline void audit_free_aux(struct audit_context *context)
 946{
 947	struct audit_aux_data *aux;
 948
 949	while ((aux = context->aux)) {
 950		context->aux = aux->next;
 951		kfree(aux);
 952	}
 953	context->aux = NULL;
 954	while ((aux = context->aux_pids)) {
 955		context->aux_pids = aux->next;
 956		kfree(aux);
 957	}
 958	context->aux_pids = NULL;
 959}
 960
 961/**
 962 * audit_reset_context - reset a audit_context structure
 963 * @ctx: the audit_context to reset
 964 *
 965 * All fields in the audit_context will be reset to an initial state, all
 966 * references held by fields will be dropped, and private memory will be
 967 * released.  When this function returns the audit_context will be suitable
 968 * for reuse, so long as the passed context is not NULL or a dummy context.
 969 */
 970static void audit_reset_context(struct audit_context *ctx)
 971{
 972	if (!ctx)
 973		return;
 974
 975	/* if ctx is non-null, reset the "ctx->context" regardless */
 976	ctx->context = AUDIT_CTX_UNUSED;
 977	if (ctx->dummy)
 978		return;
 979
 980	/*
 981	 * NOTE: It shouldn't matter in what order we release the fields, so
 982	 *       release them in the order in which they appear in the struct;
 983	 *       this gives us some hope of quickly making sure we are
 984	 *       resetting the audit_context properly.
 985	 *
 986	 *       Other things worth mentioning:
 987	 *       - we don't reset "dummy"
 988	 *       - we don't reset "state", we do reset "current_state"
 989	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 990	 *       - much of this is likely overkill, but play it safe for now
 991	 *       - we really need to work on improving the audit_context struct
 992	 */
 993
 994	ctx->current_state = ctx->state;
 995	ctx->serial = 0;
 996	ctx->major = 0;
 997	ctx->uring_op = 0;
 998	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 999	memset(ctx->argv, 0, sizeof(ctx->argv));
1000	ctx->return_code = 0;
1001	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1002	ctx->return_valid = AUDITSC_INVALID;
1003	audit_free_names(ctx);
1004	if (ctx->state != AUDIT_STATE_RECORD) {
1005		kfree(ctx->filterkey);
1006		ctx->filterkey = NULL;
1007	}
1008	audit_free_aux(ctx);
1009	kfree(ctx->sockaddr);
1010	ctx->sockaddr = NULL;
1011	ctx->sockaddr_len = 0;
1012	ctx->ppid = 0;
1013	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1014	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1015	ctx->personality = 0;
1016	ctx->arch = 0;
1017	ctx->target_pid = 0;
1018	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1019	ctx->target_sessionid = 0;
1020	ctx->target_sid = 0;
1021	ctx->target_comm[0] = '\0';
1022	unroll_tree_refs(ctx, NULL, 0);
1023	WARN_ON(!list_empty(&ctx->killed_trees));
1024	audit_free_module(ctx);
1025	ctx->fds[0] = -1;
1026	ctx->type = 0; /* reset last for audit_free_*() */
1027}
1028
1029static inline struct audit_context *audit_alloc_context(enum audit_state state)
1030{
1031	struct audit_context *context;
1032
1033	context = kzalloc(sizeof(*context), GFP_KERNEL);
1034	if (!context)
1035		return NULL;
1036	context->context = AUDIT_CTX_UNUSED;
1037	context->state = state;
1038	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1039	INIT_LIST_HEAD(&context->killed_trees);
1040	INIT_LIST_HEAD(&context->names_list);
1041	context->fds[0] = -1;
1042	context->return_valid = AUDITSC_INVALID;
1043	return context;
1044}
1045
1046/**
1047 * audit_alloc - allocate an audit context block for a task
1048 * @tsk: task
1049 *
1050 * Filter on the task information and allocate a per-task audit context
1051 * if necessary.  Doing so turns on system call auditing for the
1052 * specified task.  This is called from copy_process, so no lock is
1053 * needed.
1054 */
1055int audit_alloc(struct task_struct *tsk)
1056{
1057	struct audit_context *context;
1058	enum audit_state     state;
1059	char *key = NULL;
1060
1061	if (likely(!audit_ever_enabled))
1062		return 0;
1063
1064	state = audit_filter_task(tsk, &key);
1065	if (state == AUDIT_STATE_DISABLED) {
1066		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1067		return 0;
1068	}
1069
1070	context = audit_alloc_context(state);
1071	if (!context) {
1072		kfree(key);
1073		audit_log_lost("out of memory in audit_alloc");
1074		return -ENOMEM;
1075	}
1076	context->filterkey = key;
1077
1078	audit_set_context(tsk, context);
1079	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1080	return 0;
1081}
1082
1083static inline void audit_free_context(struct audit_context *context)
1084{
1085	/* resetting is extra work, but it is likely just noise */
1086	audit_reset_context(context);
1087	audit_proctitle_free(context);
1088	free_tree_refs(context);
1089	kfree(context->filterkey);
1090	kfree(context);
1091}
1092
1093static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1094				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1095				 u32 sid, char *comm)
1096{
1097	struct audit_buffer *ab;
1098	char *ctx = NULL;
1099	u32 len;
1100	int rc = 0;
1101
1102	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1103	if (!ab)
1104		return rc;
1105
1106	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1107			 from_kuid(&init_user_ns, auid),
1108			 from_kuid(&init_user_ns, uid), sessionid);
1109	if (sid) {
1110		if (security_secid_to_secctx(sid, &ctx, &len)) {
1111			audit_log_format(ab, " obj=(none)");
1112			rc = 1;
1113		} else {
1114			audit_log_format(ab, " obj=%s", ctx);
1115			security_release_secctx(ctx, len);
1116		}
1117	}
1118	audit_log_format(ab, " ocomm=");
1119	audit_log_untrustedstring(ab, comm);
1120	audit_log_end(ab);
1121
1122	return rc;
1123}
1124
1125static void audit_log_execve_info(struct audit_context *context,
1126				  struct audit_buffer **ab)
1127{
1128	long len_max;
1129	long len_rem;
1130	long len_full;
1131	long len_buf;
1132	long len_abuf = 0;
1133	long len_tmp;
1134	bool require_data;
1135	bool encode;
1136	unsigned int iter;
1137	unsigned int arg;
1138	char *buf_head;
1139	char *buf;
1140	const char __user *p = (const char __user *)current->mm->arg_start;
1141
1142	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1143	 *       data we put in the audit record for this argument (see the
1144	 *       code below) ... at this point in time 96 is plenty */
1145	char abuf[96];
1146
1147	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1148	 *       current value of 7500 is not as important as the fact that it
1149	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1150	 *       room if we go over a little bit in the logging below */
1151	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1152	len_max = MAX_EXECVE_AUDIT_LEN;
1153
1154	/* scratch buffer to hold the userspace args */
1155	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156	if (!buf_head) {
1157		audit_panic("out of memory for argv string");
1158		return;
1159	}
1160	buf = buf_head;
1161
1162	audit_log_format(*ab, "argc=%d", context->execve.argc);
1163
1164	len_rem = len_max;
1165	len_buf = 0;
1166	len_full = 0;
1167	require_data = true;
1168	encode = false;
1169	iter = 0;
1170	arg = 0;
1171	do {
1172		/* NOTE: we don't ever want to trust this value for anything
1173		 *       serious, but the audit record format insists we
1174		 *       provide an argument length for really long arguments,
1175		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1176		 *       to use strncpy_from_user() to obtain this value for
1177		 *       recording in the log, although we don't use it
1178		 *       anywhere here to avoid a double-fetch problem */
1179		if (len_full == 0)
1180			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1181
1182		/* read more data from userspace */
1183		if (require_data) {
1184			/* can we make more room in the buffer? */
1185			if (buf != buf_head) {
1186				memmove(buf_head, buf, len_buf);
1187				buf = buf_head;
1188			}
1189
1190			/* fetch as much as we can of the argument */
1191			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1192						    len_max - len_buf);
1193			if (len_tmp == -EFAULT) {
1194				/* unable to copy from userspace */
1195				send_sig(SIGKILL, current, 0);
1196				goto out;
1197			} else if (len_tmp == (len_max - len_buf)) {
1198				/* buffer is not large enough */
1199				require_data = true;
1200				/* NOTE: if we are going to span multiple
1201				 *       buffers force the encoding so we stand
1202				 *       a chance at a sane len_full value and
1203				 *       consistent record encoding */
1204				encode = true;
1205				len_full = len_full * 2;
1206				p += len_tmp;
1207			} else {
1208				require_data = false;
1209				if (!encode)
1210					encode = audit_string_contains_control(
1211								buf, len_tmp);
1212				/* try to use a trusted value for len_full */
1213				if (len_full < len_max)
1214					len_full = (encode ?
1215						    len_tmp * 2 : len_tmp);
1216				p += len_tmp + 1;
1217			}
1218			len_buf += len_tmp;
1219			buf_head[len_buf] = '\0';
1220
1221			/* length of the buffer in the audit record? */
1222			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1223		}
1224
1225		/* write as much as we can to the audit log */
1226		if (len_buf >= 0) {
1227			/* NOTE: some magic numbers here - basically if we
1228			 *       can't fit a reasonable amount of data into the
1229			 *       existing audit buffer, flush it and start with
1230			 *       a new buffer */
1231			if ((sizeof(abuf) + 8) > len_rem) {
1232				len_rem = len_max;
1233				audit_log_end(*ab);
1234				*ab = audit_log_start(context,
1235						      GFP_KERNEL, AUDIT_EXECVE);
1236				if (!*ab)
1237					goto out;
1238			}
1239
1240			/* create the non-arg portion of the arg record */
1241			len_tmp = 0;
1242			if (require_data || (iter > 0) ||
1243			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1244				if (iter == 0) {
1245					len_tmp += snprintf(&abuf[len_tmp],
1246							sizeof(abuf) - len_tmp,
1247							" a%d_len=%lu",
1248							arg, len_full);
1249				}
1250				len_tmp += snprintf(&abuf[len_tmp],
1251						    sizeof(abuf) - len_tmp,
1252						    " a%d[%d]=", arg, iter++);
1253			} else
1254				len_tmp += snprintf(&abuf[len_tmp],
1255						    sizeof(abuf) - len_tmp,
1256						    " a%d=", arg);
1257			WARN_ON(len_tmp >= sizeof(abuf));
1258			abuf[sizeof(abuf) - 1] = '\0';
1259
1260			/* log the arg in the audit record */
1261			audit_log_format(*ab, "%s", abuf);
1262			len_rem -= len_tmp;
1263			len_tmp = len_buf;
1264			if (encode) {
1265				if (len_abuf > len_rem)
1266					len_tmp = len_rem / 2; /* encoding */
1267				audit_log_n_hex(*ab, buf, len_tmp);
1268				len_rem -= len_tmp * 2;
1269				len_abuf -= len_tmp * 2;
1270			} else {
1271				if (len_abuf > len_rem)
1272					len_tmp = len_rem - 2; /* quotes */
1273				audit_log_n_string(*ab, buf, len_tmp);
1274				len_rem -= len_tmp + 2;
1275				/* don't subtract the "2" because we still need
1276				 * to add quotes to the remaining string */
1277				len_abuf -= len_tmp;
1278			}
1279			len_buf -= len_tmp;
1280			buf += len_tmp;
1281		}
1282
1283		/* ready to move to the next argument? */
1284		if ((len_buf == 0) && !require_data) {
1285			arg++;
1286			iter = 0;
1287			len_full = 0;
1288			require_data = true;
1289			encode = false;
1290		}
1291	} while (arg < context->execve.argc);
1292
1293	/* NOTE: the caller handles the final audit_log_end() call */
1294
1295out:
1296	kfree(buf_head);
1297}
1298
1299static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1300			  kernel_cap_t *cap)
1301{
 
 
1302	if (cap_isclear(*cap)) {
1303		audit_log_format(ab, " %s=0", prefix);
1304		return;
1305	}
1306	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
 
 
1307}
1308
1309static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1310{
1311	if (name->fcap_ver == -1) {
1312		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1313		return;
1314	}
1315	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1316	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1317	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1318			 name->fcap.fE, name->fcap_ver,
1319			 from_kuid(&init_user_ns, name->fcap.rootid));
1320}
1321
1322static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1323{
1324	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1325	const struct timespec64 *tk = &context->time.tk_injoffset;
1326	static const char * const ntp_name[] = {
1327		"offset",
1328		"freq",
1329		"status",
1330		"tai",
1331		"tick",
1332		"adjust",
1333	};
1334	int type;
1335
1336	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1337		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1338			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1339				if (!*ab) {
1340					*ab = audit_log_start(context,
1341							GFP_KERNEL,
1342							AUDIT_TIME_ADJNTPVAL);
1343					if (!*ab)
1344						return;
1345				}
1346				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1347						 ntp_name[type],
1348						 ntp->vals[type].oldval,
1349						 ntp->vals[type].newval);
1350				audit_log_end(*ab);
1351				*ab = NULL;
1352			}
1353		}
1354	}
1355	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1356		if (!*ab) {
1357			*ab = audit_log_start(context, GFP_KERNEL,
1358					      AUDIT_TIME_INJOFFSET);
1359			if (!*ab)
1360				return;
1361		}
1362		audit_log_format(*ab, "sec=%lli nsec=%li",
1363				 (long long)tk->tv_sec, tk->tv_nsec);
1364		audit_log_end(*ab);
1365		*ab = NULL;
1366	}
1367}
1368
1369static void show_special(struct audit_context *context, int *call_panic)
1370{
1371	struct audit_buffer *ab;
1372	int i;
1373
1374	ab = audit_log_start(context, GFP_KERNEL, context->type);
1375	if (!ab)
1376		return;
1377
1378	switch (context->type) {
1379	case AUDIT_SOCKETCALL: {
1380		int nargs = context->socketcall.nargs;
1381
1382		audit_log_format(ab, "nargs=%d", nargs);
1383		for (i = 0; i < nargs; i++)
1384			audit_log_format(ab, " a%d=%lx", i,
1385				context->socketcall.args[i]);
1386		break; }
1387	case AUDIT_IPC: {
1388		u32 osid = context->ipc.osid;
1389
1390		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391				 from_kuid(&init_user_ns, context->ipc.uid),
1392				 from_kgid(&init_user_ns, context->ipc.gid),
1393				 context->ipc.mode);
1394		if (osid) {
1395			char *ctx = NULL;
1396			u32 len;
1397
1398			if (security_secid_to_secctx(osid, &ctx, &len)) {
1399				audit_log_format(ab, " osid=%u", osid);
1400				*call_panic = 1;
1401			} else {
1402				audit_log_format(ab, " obj=%s", ctx);
1403				security_release_secctx(ctx, len);
1404			}
1405		}
1406		if (context->ipc.has_perm) {
1407			audit_log_end(ab);
1408			ab = audit_log_start(context, GFP_KERNEL,
1409					     AUDIT_IPC_SET_PERM);
1410			if (unlikely(!ab))
1411				return;
1412			audit_log_format(ab,
1413				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1414				context->ipc.qbytes,
1415				context->ipc.perm_uid,
1416				context->ipc.perm_gid,
1417				context->ipc.perm_mode);
1418		}
1419		break; }
1420	case AUDIT_MQ_OPEN:
1421		audit_log_format(ab,
1422			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1423			"mq_msgsize=%ld mq_curmsgs=%ld",
1424			context->mq_open.oflag, context->mq_open.mode,
1425			context->mq_open.attr.mq_flags,
1426			context->mq_open.attr.mq_maxmsg,
1427			context->mq_open.attr.mq_msgsize,
1428			context->mq_open.attr.mq_curmsgs);
1429		break;
1430	case AUDIT_MQ_SENDRECV:
1431		audit_log_format(ab,
1432			"mqdes=%d msg_len=%zd msg_prio=%u "
1433			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1434			context->mq_sendrecv.mqdes,
1435			context->mq_sendrecv.msg_len,
1436			context->mq_sendrecv.msg_prio,
1437			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1438			context->mq_sendrecv.abs_timeout.tv_nsec);
1439		break;
1440	case AUDIT_MQ_NOTIFY:
1441		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1442				context->mq_notify.mqdes,
1443				context->mq_notify.sigev_signo);
1444		break;
1445	case AUDIT_MQ_GETSETATTR: {
1446		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447
1448		audit_log_format(ab,
1449			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450			"mq_curmsgs=%ld ",
1451			context->mq_getsetattr.mqdes,
1452			attr->mq_flags, attr->mq_maxmsg,
1453			attr->mq_msgsize, attr->mq_curmsgs);
1454		break; }
1455	case AUDIT_CAPSET:
1456		audit_log_format(ab, "pid=%d", context->capset.pid);
1457		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1458		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1459		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1460		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1461		break;
1462	case AUDIT_MMAP:
1463		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1464				 context->mmap.flags);
1465		break;
1466	case AUDIT_OPENAT2:
1467		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1468				 context->openat2.flags,
1469				 context->openat2.mode,
1470				 context->openat2.resolve);
1471		break;
1472	case AUDIT_EXECVE:
1473		audit_log_execve_info(context, &ab);
1474		break;
1475	case AUDIT_KERN_MODULE:
1476		audit_log_format(ab, "name=");
1477		if (context->module.name) {
1478			audit_log_untrustedstring(ab, context->module.name);
1479		} else
1480			audit_log_format(ab, "(null)");
1481
1482		break;
1483	case AUDIT_TIME_ADJNTPVAL:
1484	case AUDIT_TIME_INJOFFSET:
1485		/* this call deviates from the rest, eating the buffer */
1486		audit_log_time(context, &ab);
1487		break;
1488	}
1489	audit_log_end(ab);
1490}
1491
1492static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493{
1494	char *end = proctitle + len - 1;
1495
1496	while (end > proctitle && !isprint(*end))
1497		end--;
1498
1499	/* catch the case where proctitle is only 1 non-print character */
1500	len = end - proctitle + 1;
1501	len -= isprint(proctitle[len-1]) == 0;
1502	return len;
1503}
1504
1505/*
1506 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1507 * @context: audit_context for the task
1508 * @n: audit_names structure with reportable details
1509 * @path: optional path to report instead of audit_names->name
1510 * @record_num: record number to report when handling a list of names
1511 * @call_panic: optional pointer to int that will be updated if secid fails
1512 */
1513static void audit_log_name(struct audit_context *context, struct audit_names *n,
1514		    const struct path *path, int record_num, int *call_panic)
1515{
1516	struct audit_buffer *ab;
1517
1518	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1519	if (!ab)
1520		return;
1521
1522	audit_log_format(ab, "item=%d", record_num);
1523
1524	if (path)
1525		audit_log_d_path(ab, " name=", path);
1526	else if (n->name) {
1527		switch (n->name_len) {
1528		case AUDIT_NAME_FULL:
1529			/* log the full path */
1530			audit_log_format(ab, " name=");
1531			audit_log_untrustedstring(ab, n->name->name);
1532			break;
1533		case 0:
1534			/* name was specified as a relative path and the
1535			 * directory component is the cwd
1536			 */
1537			if (context->pwd.dentry && context->pwd.mnt)
1538				audit_log_d_path(ab, " name=", &context->pwd);
1539			else
1540				audit_log_format(ab, " name=(null)");
1541			break;
1542		default:
1543			/* log the name's directory component */
1544			audit_log_format(ab, " name=");
1545			audit_log_n_untrustedstring(ab, n->name->name,
1546						    n->name_len);
1547		}
1548	} else
1549		audit_log_format(ab, " name=(null)");
1550
1551	if (n->ino != AUDIT_INO_UNSET)
1552		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1553				 n->ino,
1554				 MAJOR(n->dev),
1555				 MINOR(n->dev),
1556				 n->mode,
1557				 from_kuid(&init_user_ns, n->uid),
1558				 from_kgid(&init_user_ns, n->gid),
1559				 MAJOR(n->rdev),
1560				 MINOR(n->rdev));
1561	if (n->osid != 0) {
1562		char *ctx = NULL;
1563		u32 len;
1564
1565		if (security_secid_to_secctx(
1566			n->osid, &ctx, &len)) {
1567			audit_log_format(ab, " osid=%u", n->osid);
1568			if (call_panic)
1569				*call_panic = 2;
1570		} else {
1571			audit_log_format(ab, " obj=%s", ctx);
1572			security_release_secctx(ctx, len);
1573		}
1574	}
1575
1576	/* log the audit_names record type */
1577	switch (n->type) {
1578	case AUDIT_TYPE_NORMAL:
1579		audit_log_format(ab, " nametype=NORMAL");
1580		break;
1581	case AUDIT_TYPE_PARENT:
1582		audit_log_format(ab, " nametype=PARENT");
1583		break;
1584	case AUDIT_TYPE_CHILD_DELETE:
1585		audit_log_format(ab, " nametype=DELETE");
1586		break;
1587	case AUDIT_TYPE_CHILD_CREATE:
1588		audit_log_format(ab, " nametype=CREATE");
1589		break;
1590	default:
1591		audit_log_format(ab, " nametype=UNKNOWN");
1592		break;
1593	}
1594
1595	audit_log_fcaps(ab, n);
1596	audit_log_end(ab);
1597}
1598
1599static void audit_log_proctitle(void)
1600{
1601	int res;
1602	char *buf;
1603	char *msg = "(null)";
1604	int len = strlen(msg);
1605	struct audit_context *context = audit_context();
1606	struct audit_buffer *ab;
1607
1608	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1609	if (!ab)
1610		return;	/* audit_panic or being filtered */
1611
1612	audit_log_format(ab, "proctitle=");
1613
1614	/* Not  cached */
1615	if (!context->proctitle.value) {
1616		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1617		if (!buf)
1618			goto out;
1619		/* Historically called this from procfs naming */
1620		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1621		if (res == 0) {
1622			kfree(buf);
1623			goto out;
1624		}
1625		res = audit_proctitle_rtrim(buf, res);
1626		if (res == 0) {
1627			kfree(buf);
1628			goto out;
1629		}
1630		context->proctitle.value = buf;
1631		context->proctitle.len = res;
1632	}
1633	msg = context->proctitle.value;
1634	len = context->proctitle.len;
1635out:
1636	audit_log_n_untrustedstring(ab, msg, len);
1637	audit_log_end(ab);
1638}
1639
1640/**
1641 * audit_log_uring - generate a AUDIT_URINGOP record
1642 * @ctx: the audit context
1643 */
1644static void audit_log_uring(struct audit_context *ctx)
1645{
1646	struct audit_buffer *ab;
1647	const struct cred *cred;
1648
1649	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1650	if (!ab)
1651		return;
1652	cred = current_cred();
1653	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1654	if (ctx->return_valid != AUDITSC_INVALID)
1655		audit_log_format(ab, " success=%s exit=%ld",
1656				 (ctx->return_valid == AUDITSC_SUCCESS ?
1657				  "yes" : "no"),
1658				 ctx->return_code);
1659	audit_log_format(ab,
1660			 " items=%d"
1661			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1662			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663			 ctx->name_count,
1664			 task_ppid_nr(current), task_tgid_nr(current),
1665			 from_kuid(&init_user_ns, cred->uid),
1666			 from_kgid(&init_user_ns, cred->gid),
1667			 from_kuid(&init_user_ns, cred->euid),
1668			 from_kuid(&init_user_ns, cred->suid),
1669			 from_kuid(&init_user_ns, cred->fsuid),
1670			 from_kgid(&init_user_ns, cred->egid),
1671			 from_kgid(&init_user_ns, cred->sgid),
1672			 from_kgid(&init_user_ns, cred->fsgid));
1673	audit_log_task_context(ab);
1674	audit_log_key(ab, ctx->filterkey);
1675	audit_log_end(ab);
1676}
1677
1678static void audit_log_exit(void)
1679{
1680	int i, call_panic = 0;
1681	struct audit_context *context = audit_context();
1682	struct audit_buffer *ab;
1683	struct audit_aux_data *aux;
1684	struct audit_names *n;
1685
1686	context->personality = current->personality;
1687
1688	switch (context->context) {
1689	case AUDIT_CTX_SYSCALL:
1690		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1691		if (!ab)
1692			return;
1693		audit_log_format(ab, "arch=%x syscall=%d",
1694				 context->arch, context->major);
1695		if (context->personality != PER_LINUX)
1696			audit_log_format(ab, " per=%lx", context->personality);
1697		if (context->return_valid != AUDITSC_INVALID)
1698			audit_log_format(ab, " success=%s exit=%ld",
1699					 (context->return_valid == AUDITSC_SUCCESS ?
1700					  "yes" : "no"),
1701					 context->return_code);
1702		audit_log_format(ab,
1703				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1704				 context->argv[0],
1705				 context->argv[1],
1706				 context->argv[2],
1707				 context->argv[3],
1708				 context->name_count);
1709		audit_log_task_info(ab);
1710		audit_log_key(ab, context->filterkey);
1711		audit_log_end(ab);
1712		break;
1713	case AUDIT_CTX_URING:
1714		audit_log_uring(context);
1715		break;
1716	default:
1717		BUG();
1718		break;
1719	}
1720
1721	for (aux = context->aux; aux; aux = aux->next) {
1722
1723		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1724		if (!ab)
1725			continue; /* audit_panic has been called */
1726
1727		switch (aux->type) {
1728
1729		case AUDIT_BPRM_FCAPS: {
1730			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1731
1732			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1733			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1734			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1735			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1736			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1737			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1738			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1739			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1740			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1741			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1742			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1743			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1744			audit_log_format(ab, " frootid=%d",
1745					 from_kuid(&init_user_ns,
1746						   axs->fcap.rootid));
1747			break; }
1748
1749		}
1750		audit_log_end(ab);
1751	}
1752
1753	if (context->type)
1754		show_special(context, &call_panic);
1755
1756	if (context->fds[0] >= 0) {
1757		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1758		if (ab) {
1759			audit_log_format(ab, "fd0=%d fd1=%d",
1760					context->fds[0], context->fds[1]);
1761			audit_log_end(ab);
1762		}
1763	}
1764
1765	if (context->sockaddr_len) {
1766		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1767		if (ab) {
1768			audit_log_format(ab, "saddr=");
1769			audit_log_n_hex(ab, (void *)context->sockaddr,
1770					context->sockaddr_len);
1771			audit_log_end(ab);
1772		}
1773	}
1774
1775	for (aux = context->aux_pids; aux; aux = aux->next) {
1776		struct audit_aux_data_pids *axs = (void *)aux;
1777
1778		for (i = 0; i < axs->pid_count; i++)
1779			if (audit_log_pid_context(context, axs->target_pid[i],
1780						  axs->target_auid[i],
1781						  axs->target_uid[i],
1782						  axs->target_sessionid[i],
1783						  axs->target_sid[i],
1784						  axs->target_comm[i]))
1785				call_panic = 1;
1786	}
1787
1788	if (context->target_pid &&
1789	    audit_log_pid_context(context, context->target_pid,
1790				  context->target_auid, context->target_uid,
1791				  context->target_sessionid,
1792				  context->target_sid, context->target_comm))
1793			call_panic = 1;
1794
1795	if (context->pwd.dentry && context->pwd.mnt) {
1796		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1797		if (ab) {
1798			audit_log_d_path(ab, "cwd=", &context->pwd);
1799			audit_log_end(ab);
1800		}
1801	}
1802
1803	i = 0;
1804	list_for_each_entry(n, &context->names_list, list) {
1805		if (n->hidden)
1806			continue;
1807		audit_log_name(context, n, NULL, i++, &call_panic);
1808	}
1809
1810	if (context->context == AUDIT_CTX_SYSCALL)
1811		audit_log_proctitle();
1812
1813	/* Send end of event record to help user space know we are finished */
1814	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1815	if (ab)
1816		audit_log_end(ab);
1817	if (call_panic)
1818		audit_panic("error in audit_log_exit()");
1819}
1820
1821/**
1822 * __audit_free - free a per-task audit context
1823 * @tsk: task whose audit context block to free
1824 *
1825 * Called from copy_process, do_exit, and the io_uring code
1826 */
1827void __audit_free(struct task_struct *tsk)
1828{
1829	struct audit_context *context = tsk->audit_context;
1830
1831	if (!context)
1832		return;
1833
1834	/* this may generate CONFIG_CHANGE records */
1835	if (!list_empty(&context->killed_trees))
1836		audit_kill_trees(context);
1837
1838	/* We are called either by do_exit() or the fork() error handling code;
1839	 * in the former case tsk == current and in the latter tsk is a
1840	 * random task_struct that doesn't have any meaningful data we
1841	 * need to log via audit_log_exit().
1842	 */
1843	if (tsk == current && !context->dummy) {
1844		context->return_valid = AUDITSC_INVALID;
1845		context->return_code = 0;
1846		if (context->context == AUDIT_CTX_SYSCALL) {
1847			audit_filter_syscall(tsk, context);
1848			audit_filter_inodes(tsk, context);
1849			if (context->current_state == AUDIT_STATE_RECORD)
1850				audit_log_exit();
1851		} else if (context->context == AUDIT_CTX_URING) {
1852			/* TODO: verify this case is real and valid */
1853			audit_filter_uring(tsk, context);
1854			audit_filter_inodes(tsk, context);
1855			if (context->current_state == AUDIT_STATE_RECORD)
1856				audit_log_uring(context);
1857		}
1858	}
1859
1860	audit_set_context(tsk, NULL);
1861	audit_free_context(context);
1862}
1863
1864/**
1865 * audit_return_fixup - fixup the return codes in the audit_context
1866 * @ctx: the audit_context
1867 * @success: true/false value to indicate if the operation succeeded or not
1868 * @code: operation return code
1869 *
1870 * We need to fixup the return code in the audit logs if the actual return
1871 * codes are later going to be fixed by the arch specific signal handlers.
1872 */
1873static void audit_return_fixup(struct audit_context *ctx,
1874			       int success, long code)
1875{
1876	/*
1877	 * This is actually a test for:
1878	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1879	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880	 *
1881	 * but is faster than a bunch of ||
1882	 */
1883	if (unlikely(code <= -ERESTARTSYS) &&
1884	    (code >= -ERESTART_RESTARTBLOCK) &&
1885	    (code != -ENOIOCTLCMD))
1886		ctx->return_code = -EINTR;
1887	else
1888		ctx->return_code  = code;
1889	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1890}
1891
1892/**
1893 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1894 * @op: the io_uring opcode
1895 *
1896 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1897 * operations.  This function should only ever be called from
1898 * audit_uring_entry() as we rely on the audit context checking present in that
1899 * function.
1900 */
1901void __audit_uring_entry(u8 op)
1902{
1903	struct audit_context *ctx = audit_context();
1904
1905	if (ctx->state == AUDIT_STATE_DISABLED)
1906		return;
1907
1908	/*
1909	 * NOTE: It's possible that we can be called from the process' context
1910	 *       before it returns to userspace, and before audit_syscall_exit()
1911	 *       is called.  In this case there is not much to do, just record
1912	 *       the io_uring details and return.
1913	 */
1914	ctx->uring_op = op;
1915	if (ctx->context == AUDIT_CTX_SYSCALL)
1916		return;
1917
1918	ctx->dummy = !audit_n_rules;
1919	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1920		ctx->prio = 0;
1921
1922	ctx->context = AUDIT_CTX_URING;
1923	ctx->current_state = ctx->state;
1924	ktime_get_coarse_real_ts64(&ctx->ctime);
1925}
1926
1927/**
1928 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1929 * @success: true/false value to indicate if the operation succeeded or not
1930 * @code: operation return code
1931 *
1932 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1933 * operations.  This function should only ever be called from
1934 * audit_uring_exit() as we rely on the audit context checking present in that
1935 * function.
1936 */
1937void __audit_uring_exit(int success, long code)
1938{
1939	struct audit_context *ctx = audit_context();
1940
1941	if (ctx->dummy) {
1942		if (ctx->context != AUDIT_CTX_URING)
1943			return;
1944		goto out;
1945	}
1946
1947	audit_return_fixup(ctx, success, code);
1948	if (ctx->context == AUDIT_CTX_SYSCALL) {
1949		/*
1950		 * NOTE: See the note in __audit_uring_entry() about the case
1951		 *       where we may be called from process context before we
1952		 *       return to userspace via audit_syscall_exit().  In this
1953		 *       case we simply emit a URINGOP record and bail, the
1954		 *       normal syscall exit handling will take care of
1955		 *       everything else.
1956		 *       It is also worth mentioning that when we are called,
1957		 *       the current process creds may differ from the creds
1958		 *       used during the normal syscall processing; keep that
1959		 *       in mind if/when we move the record generation code.
1960		 */
1961
1962		/*
1963		 * We need to filter on the syscall info here to decide if we
1964		 * should emit a URINGOP record.  I know it seems odd but this
1965		 * solves the problem where users have a filter to block *all*
1966		 * syscall records in the "exit" filter; we want to preserve
1967		 * the behavior here.
1968		 */
1969		audit_filter_syscall(current, ctx);
1970		if (ctx->current_state != AUDIT_STATE_RECORD)
1971			audit_filter_uring(current, ctx);
1972		audit_filter_inodes(current, ctx);
1973		if (ctx->current_state != AUDIT_STATE_RECORD)
1974			return;
1975
1976		audit_log_uring(ctx);
1977		return;
1978	}
1979
1980	/* this may generate CONFIG_CHANGE records */
1981	if (!list_empty(&ctx->killed_trees))
1982		audit_kill_trees(ctx);
1983
1984	/* run through both filters to ensure we set the filterkey properly */
1985	audit_filter_uring(current, ctx);
1986	audit_filter_inodes(current, ctx);
1987	if (ctx->current_state != AUDIT_STATE_RECORD)
1988		goto out;
1989	audit_log_exit();
1990
1991out:
1992	audit_reset_context(ctx);
1993}
1994
1995/**
1996 * __audit_syscall_entry - fill in an audit record at syscall entry
1997 * @major: major syscall type (function)
1998 * @a1: additional syscall register 1
1999 * @a2: additional syscall register 2
2000 * @a3: additional syscall register 3
2001 * @a4: additional syscall register 4
2002 *
2003 * Fill in audit context at syscall entry.  This only happens if the
2004 * audit context was created when the task was created and the state or
2005 * filters demand the audit context be built.  If the state from the
2006 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2007 * then the record will be written at syscall exit time (otherwise, it
2008 * will only be written if another part of the kernel requests that it
2009 * be written).
2010 */
2011void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2012			   unsigned long a3, unsigned long a4)
2013{
2014	struct audit_context *context = audit_context();
2015	enum audit_state     state;
2016
2017	if (!audit_enabled || !context)
2018		return;
2019
2020	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2021	WARN_ON(context->name_count);
2022	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2023		audit_panic("unrecoverable error in audit_syscall_entry()");
2024		return;
2025	}
2026
2027	state = context->state;
2028	if (state == AUDIT_STATE_DISABLED)
2029		return;
2030
2031	context->dummy = !audit_n_rules;
2032	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2033		context->prio = 0;
2034		if (auditd_test_task(current))
2035			return;
2036	}
2037
2038	context->arch	    = syscall_get_arch(current);
2039	context->major      = major;
2040	context->argv[0]    = a1;
2041	context->argv[1]    = a2;
2042	context->argv[2]    = a3;
2043	context->argv[3]    = a4;
2044	context->context = AUDIT_CTX_SYSCALL;
2045	context->current_state  = state;
2046	ktime_get_coarse_real_ts64(&context->ctime);
2047}
2048
2049/**
2050 * __audit_syscall_exit - deallocate audit context after a system call
2051 * @success: success value of the syscall
2052 * @return_code: return value of the syscall
2053 *
2054 * Tear down after system call.  If the audit context has been marked as
2055 * auditable (either because of the AUDIT_STATE_RECORD state from
2056 * filtering, or because some other part of the kernel wrote an audit
2057 * message), then write out the syscall information.  In call cases,
2058 * free the names stored from getname().
2059 */
2060void __audit_syscall_exit(int success, long return_code)
2061{
2062	struct audit_context *context = audit_context();
2063
2064	if (!context || context->dummy ||
2065	    context->context != AUDIT_CTX_SYSCALL)
2066		goto out;
2067
2068	/* this may generate CONFIG_CHANGE records */
2069	if (!list_empty(&context->killed_trees))
2070		audit_kill_trees(context);
2071
2072	audit_return_fixup(context, success, return_code);
2073	/* run through both filters to ensure we set the filterkey properly */
2074	audit_filter_syscall(current, context);
2075	audit_filter_inodes(current, context);
2076	if (context->current_state != AUDIT_STATE_RECORD)
2077		goto out;
2078
2079	audit_log_exit();
2080
2081out:
2082	audit_reset_context(context);
2083}
2084
2085static inline void handle_one(const struct inode *inode)
2086{
2087	struct audit_context *context;
2088	struct audit_tree_refs *p;
2089	struct audit_chunk *chunk;
2090	int count;
2091
2092	if (likely(!inode->i_fsnotify_marks))
2093		return;
2094	context = audit_context();
2095	p = context->trees;
2096	count = context->tree_count;
2097	rcu_read_lock();
2098	chunk = audit_tree_lookup(inode);
2099	rcu_read_unlock();
2100	if (!chunk)
2101		return;
2102	if (likely(put_tree_ref(context, chunk)))
2103		return;
2104	if (unlikely(!grow_tree_refs(context))) {
2105		pr_warn("out of memory, audit has lost a tree reference\n");
2106		audit_set_auditable(context);
2107		audit_put_chunk(chunk);
2108		unroll_tree_refs(context, p, count);
2109		return;
2110	}
2111	put_tree_ref(context, chunk);
2112}
2113
2114static void handle_path(const struct dentry *dentry)
2115{
2116	struct audit_context *context;
2117	struct audit_tree_refs *p;
2118	const struct dentry *d, *parent;
2119	struct audit_chunk *drop;
2120	unsigned long seq;
2121	int count;
2122
2123	context = audit_context();
2124	p = context->trees;
2125	count = context->tree_count;
2126retry:
2127	drop = NULL;
2128	d = dentry;
2129	rcu_read_lock();
2130	seq = read_seqbegin(&rename_lock);
2131	for (;;) {
2132		struct inode *inode = d_backing_inode(d);
2133
2134		if (inode && unlikely(inode->i_fsnotify_marks)) {
2135			struct audit_chunk *chunk;
2136
2137			chunk = audit_tree_lookup(inode);
2138			if (chunk) {
2139				if (unlikely(!put_tree_ref(context, chunk))) {
2140					drop = chunk;
2141					break;
2142				}
2143			}
2144		}
2145		parent = d->d_parent;
2146		if (parent == d)
2147			break;
2148		d = parent;
2149	}
2150	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2151		rcu_read_unlock();
2152		if (!drop) {
2153			/* just a race with rename */
2154			unroll_tree_refs(context, p, count);
2155			goto retry;
2156		}
2157		audit_put_chunk(drop);
2158		if (grow_tree_refs(context)) {
2159			/* OK, got more space */
2160			unroll_tree_refs(context, p, count);
2161			goto retry;
2162		}
2163		/* too bad */
2164		pr_warn("out of memory, audit has lost a tree reference\n");
2165		unroll_tree_refs(context, p, count);
2166		audit_set_auditable(context);
2167		return;
2168	}
2169	rcu_read_unlock();
2170}
2171
2172static struct audit_names *audit_alloc_name(struct audit_context *context,
2173						unsigned char type)
2174{
2175	struct audit_names *aname;
2176
2177	if (context->name_count < AUDIT_NAMES) {
2178		aname = &context->preallocated_names[context->name_count];
2179		memset(aname, 0, sizeof(*aname));
2180	} else {
2181		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2182		if (!aname)
2183			return NULL;
2184		aname->should_free = true;
2185	}
2186
2187	aname->ino = AUDIT_INO_UNSET;
2188	aname->type = type;
2189	list_add_tail(&aname->list, &context->names_list);
2190
2191	context->name_count++;
2192	if (!context->pwd.dentry)
2193		get_fs_pwd(current->fs, &context->pwd);
2194	return aname;
2195}
2196
2197/**
2198 * __audit_reusename - fill out filename with info from existing entry
2199 * @uptr: userland ptr to pathname
2200 *
2201 * Search the audit_names list for the current audit context. If there is an
2202 * existing entry with a matching "uptr" then return the filename
2203 * associated with that audit_name. If not, return NULL.
2204 */
2205struct filename *
2206__audit_reusename(const __user char *uptr)
2207{
2208	struct audit_context *context = audit_context();
2209	struct audit_names *n;
2210
2211	list_for_each_entry(n, &context->names_list, list) {
2212		if (!n->name)
2213			continue;
2214		if (n->name->uptr == uptr) {
2215			atomic_inc(&n->name->refcnt);
2216			return n->name;
2217		}
2218	}
2219	return NULL;
2220}
2221
2222/**
2223 * __audit_getname - add a name to the list
2224 * @name: name to add
2225 *
2226 * Add a name to the list of audit names for this context.
2227 * Called from fs/namei.c:getname().
2228 */
2229void __audit_getname(struct filename *name)
2230{
2231	struct audit_context *context = audit_context();
2232	struct audit_names *n;
2233
2234	if (context->context == AUDIT_CTX_UNUSED)
2235		return;
2236
2237	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2238	if (!n)
2239		return;
2240
2241	n->name = name;
2242	n->name_len = AUDIT_NAME_FULL;
2243	name->aname = n;
2244	atomic_inc(&name->refcnt);
2245}
2246
2247static inline int audit_copy_fcaps(struct audit_names *name,
2248				   const struct dentry *dentry)
2249{
2250	struct cpu_vfs_cap_data caps;
2251	int rc;
2252
2253	if (!dentry)
2254		return 0;
2255
2256	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2257	if (rc)
2258		return rc;
2259
2260	name->fcap.permitted = caps.permitted;
2261	name->fcap.inheritable = caps.inheritable;
2262	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2263	name->fcap.rootid = caps.rootid;
2264	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2265				VFS_CAP_REVISION_SHIFT;
2266
2267	return 0;
2268}
2269
2270/* Copy inode data into an audit_names. */
2271static void audit_copy_inode(struct audit_names *name,
2272			     const struct dentry *dentry,
2273			     struct inode *inode, unsigned int flags)
2274{
2275	name->ino   = inode->i_ino;
2276	name->dev   = inode->i_sb->s_dev;
2277	name->mode  = inode->i_mode;
2278	name->uid   = inode->i_uid;
2279	name->gid   = inode->i_gid;
2280	name->rdev  = inode->i_rdev;
2281	security_inode_getsecid(inode, &name->osid);
2282	if (flags & AUDIT_INODE_NOEVAL) {
2283		name->fcap_ver = -1;
2284		return;
2285	}
2286	audit_copy_fcaps(name, dentry);
2287}
2288
2289/**
2290 * __audit_inode - store the inode and device from a lookup
2291 * @name: name being audited
2292 * @dentry: dentry being audited
2293 * @flags: attributes for this particular entry
2294 */
2295void __audit_inode(struct filename *name, const struct dentry *dentry,
2296		   unsigned int flags)
2297{
2298	struct audit_context *context = audit_context();
2299	struct inode *inode = d_backing_inode(dentry);
2300	struct audit_names *n;
2301	bool parent = flags & AUDIT_INODE_PARENT;
2302	struct audit_entry *e;
2303	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2304	int i;
2305
2306	if (context->context == AUDIT_CTX_UNUSED)
2307		return;
2308
2309	rcu_read_lock();
2310	list_for_each_entry_rcu(e, list, list) {
2311		for (i = 0; i < e->rule.field_count; i++) {
2312			struct audit_field *f = &e->rule.fields[i];
2313
2314			if (f->type == AUDIT_FSTYPE
2315			    && audit_comparator(inode->i_sb->s_magic,
2316						f->op, f->val)
2317			    && e->rule.action == AUDIT_NEVER) {
2318				rcu_read_unlock();
2319				return;
2320			}
2321		}
2322	}
2323	rcu_read_unlock();
2324
2325	if (!name)
2326		goto out_alloc;
2327
2328	/*
2329	 * If we have a pointer to an audit_names entry already, then we can
2330	 * just use it directly if the type is correct.
2331	 */
2332	n = name->aname;
2333	if (n) {
2334		if (parent) {
2335			if (n->type == AUDIT_TYPE_PARENT ||
2336			    n->type == AUDIT_TYPE_UNKNOWN)
2337				goto out;
2338		} else {
2339			if (n->type != AUDIT_TYPE_PARENT)
2340				goto out;
2341		}
2342	}
2343
2344	list_for_each_entry_reverse(n, &context->names_list, list) {
2345		if (n->ino) {
2346			/* valid inode number, use that for the comparison */
2347			if (n->ino != inode->i_ino ||
2348			    n->dev != inode->i_sb->s_dev)
2349				continue;
2350		} else if (n->name) {
2351			/* inode number has not been set, check the name */
2352			if (strcmp(n->name->name, name->name))
2353				continue;
2354		} else
2355			/* no inode and no name (?!) ... this is odd ... */
2356			continue;
2357
2358		/* match the correct record type */
2359		if (parent) {
2360			if (n->type == AUDIT_TYPE_PARENT ||
2361			    n->type == AUDIT_TYPE_UNKNOWN)
2362				goto out;
2363		} else {
2364			if (n->type != AUDIT_TYPE_PARENT)
2365				goto out;
2366		}
2367	}
2368
2369out_alloc:
2370	/* unable to find an entry with both a matching name and type */
2371	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2372	if (!n)
2373		return;
2374	if (name) {
2375		n->name = name;
2376		atomic_inc(&name->refcnt);
2377	}
2378
2379out:
2380	if (parent) {
2381		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2382		n->type = AUDIT_TYPE_PARENT;
2383		if (flags & AUDIT_INODE_HIDDEN)
2384			n->hidden = true;
2385	} else {
2386		n->name_len = AUDIT_NAME_FULL;
2387		n->type = AUDIT_TYPE_NORMAL;
2388	}
2389	handle_path(dentry);
2390	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2391}
2392
2393void __audit_file(const struct file *file)
2394{
2395	__audit_inode(NULL, file->f_path.dentry, 0);
2396}
2397
2398/**
2399 * __audit_inode_child - collect inode info for created/removed objects
2400 * @parent: inode of dentry parent
2401 * @dentry: dentry being audited
2402 * @type:   AUDIT_TYPE_* value that we're looking for
2403 *
2404 * For syscalls that create or remove filesystem objects, audit_inode
2405 * can only collect information for the filesystem object's parent.
2406 * This call updates the audit context with the child's information.
2407 * Syscalls that create a new filesystem object must be hooked after
2408 * the object is created.  Syscalls that remove a filesystem object
2409 * must be hooked prior, in order to capture the target inode during
2410 * unsuccessful attempts.
2411 */
2412void __audit_inode_child(struct inode *parent,
2413			 const struct dentry *dentry,
2414			 const unsigned char type)
2415{
2416	struct audit_context *context = audit_context();
2417	struct inode *inode = d_backing_inode(dentry);
2418	const struct qstr *dname = &dentry->d_name;
2419	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2420	struct audit_entry *e;
2421	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2422	int i;
2423
2424	if (context->context == AUDIT_CTX_UNUSED)
2425		return;
2426
2427	rcu_read_lock();
2428	list_for_each_entry_rcu(e, list, list) {
2429		for (i = 0; i < e->rule.field_count; i++) {
2430			struct audit_field *f = &e->rule.fields[i];
2431
2432			if (f->type == AUDIT_FSTYPE
2433			    && audit_comparator(parent->i_sb->s_magic,
2434						f->op, f->val)
2435			    && e->rule.action == AUDIT_NEVER) {
2436				rcu_read_unlock();
2437				return;
2438			}
2439		}
2440	}
2441	rcu_read_unlock();
2442
2443	if (inode)
2444		handle_one(inode);
2445
2446	/* look for a parent entry first */
2447	list_for_each_entry(n, &context->names_list, list) {
2448		if (!n->name ||
2449		    (n->type != AUDIT_TYPE_PARENT &&
2450		     n->type != AUDIT_TYPE_UNKNOWN))
2451			continue;
2452
2453		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2454		    !audit_compare_dname_path(dname,
2455					      n->name->name, n->name_len)) {
2456			if (n->type == AUDIT_TYPE_UNKNOWN)
2457				n->type = AUDIT_TYPE_PARENT;
2458			found_parent = n;
2459			break;
2460		}
2461	}
2462
2463	cond_resched();
2464
2465	/* is there a matching child entry? */
2466	list_for_each_entry(n, &context->names_list, list) {
2467		/* can only match entries that have a name */
2468		if (!n->name ||
2469		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2470			continue;
2471
2472		if (!strcmp(dname->name, n->name->name) ||
2473		    !audit_compare_dname_path(dname, n->name->name,
2474						found_parent ?
2475						found_parent->name_len :
2476						AUDIT_NAME_FULL)) {
2477			if (n->type == AUDIT_TYPE_UNKNOWN)
2478				n->type = type;
2479			found_child = n;
2480			break;
2481		}
2482	}
2483
2484	if (!found_parent) {
2485		/* create a new, "anonymous" parent record */
2486		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2487		if (!n)
2488			return;
2489		audit_copy_inode(n, NULL, parent, 0);
2490	}
2491
2492	if (!found_child) {
2493		found_child = audit_alloc_name(context, type);
2494		if (!found_child)
2495			return;
2496
2497		/* Re-use the name belonging to the slot for a matching parent
2498		 * directory. All names for this context are relinquished in
2499		 * audit_free_names() */
2500		if (found_parent) {
2501			found_child->name = found_parent->name;
2502			found_child->name_len = AUDIT_NAME_FULL;
2503			atomic_inc(&found_child->name->refcnt);
2504		}
2505	}
2506
2507	if (inode)
2508		audit_copy_inode(found_child, dentry, inode, 0);
2509	else
2510		found_child->ino = AUDIT_INO_UNSET;
2511}
2512EXPORT_SYMBOL_GPL(__audit_inode_child);
2513
2514/**
2515 * auditsc_get_stamp - get local copies of audit_context values
2516 * @ctx: audit_context for the task
2517 * @t: timespec64 to store time recorded in the audit_context
2518 * @serial: serial value that is recorded in the audit_context
2519 *
2520 * Also sets the context as auditable.
2521 */
2522int auditsc_get_stamp(struct audit_context *ctx,
2523		       struct timespec64 *t, unsigned int *serial)
2524{
2525	if (ctx->context == AUDIT_CTX_UNUSED)
2526		return 0;
2527	if (!ctx->serial)
2528		ctx->serial = audit_serial();
2529	t->tv_sec  = ctx->ctime.tv_sec;
2530	t->tv_nsec = ctx->ctime.tv_nsec;
2531	*serial    = ctx->serial;
2532	if (!ctx->prio) {
2533		ctx->prio = 1;
2534		ctx->current_state = AUDIT_STATE_RECORD;
2535	}
2536	return 1;
2537}
2538
2539/**
2540 * __audit_mq_open - record audit data for a POSIX MQ open
2541 * @oflag: open flag
2542 * @mode: mode bits
2543 * @attr: queue attributes
2544 *
2545 */
2546void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2547{
2548	struct audit_context *context = audit_context();
2549
2550	if (attr)
2551		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2552	else
2553		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2554
2555	context->mq_open.oflag = oflag;
2556	context->mq_open.mode = mode;
2557
2558	context->type = AUDIT_MQ_OPEN;
2559}
2560
2561/**
2562 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2563 * @mqdes: MQ descriptor
2564 * @msg_len: Message length
2565 * @msg_prio: Message priority
2566 * @abs_timeout: Message timeout in absolute time
2567 *
2568 */
2569void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2570			const struct timespec64 *abs_timeout)
2571{
2572	struct audit_context *context = audit_context();
2573	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2574
2575	if (abs_timeout)
2576		memcpy(p, abs_timeout, sizeof(*p));
2577	else
2578		memset(p, 0, sizeof(*p));
2579
2580	context->mq_sendrecv.mqdes = mqdes;
2581	context->mq_sendrecv.msg_len = msg_len;
2582	context->mq_sendrecv.msg_prio = msg_prio;
2583
2584	context->type = AUDIT_MQ_SENDRECV;
2585}
2586
2587/**
2588 * __audit_mq_notify - record audit data for a POSIX MQ notify
2589 * @mqdes: MQ descriptor
2590 * @notification: Notification event
2591 *
2592 */
2593
2594void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2595{
2596	struct audit_context *context = audit_context();
2597
2598	if (notification)
2599		context->mq_notify.sigev_signo = notification->sigev_signo;
2600	else
2601		context->mq_notify.sigev_signo = 0;
2602
2603	context->mq_notify.mqdes = mqdes;
2604	context->type = AUDIT_MQ_NOTIFY;
2605}
2606
2607/**
2608 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2609 * @mqdes: MQ descriptor
2610 * @mqstat: MQ flags
2611 *
2612 */
2613void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2614{
2615	struct audit_context *context = audit_context();
2616
2617	context->mq_getsetattr.mqdes = mqdes;
2618	context->mq_getsetattr.mqstat = *mqstat;
2619	context->type = AUDIT_MQ_GETSETATTR;
2620}
2621
2622/**
2623 * __audit_ipc_obj - record audit data for ipc object
2624 * @ipcp: ipc permissions
2625 *
2626 */
2627void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2628{
2629	struct audit_context *context = audit_context();
2630
2631	context->ipc.uid = ipcp->uid;
2632	context->ipc.gid = ipcp->gid;
2633	context->ipc.mode = ipcp->mode;
2634	context->ipc.has_perm = 0;
2635	security_ipc_getsecid(ipcp, &context->ipc.osid);
2636	context->type = AUDIT_IPC;
2637}
2638
2639/**
2640 * __audit_ipc_set_perm - record audit data for new ipc permissions
2641 * @qbytes: msgq bytes
2642 * @uid: msgq user id
2643 * @gid: msgq group id
2644 * @mode: msgq mode (permissions)
2645 *
2646 * Called only after audit_ipc_obj().
2647 */
2648void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2649{
2650	struct audit_context *context = audit_context();
2651
2652	context->ipc.qbytes = qbytes;
2653	context->ipc.perm_uid = uid;
2654	context->ipc.perm_gid = gid;
2655	context->ipc.perm_mode = mode;
2656	context->ipc.has_perm = 1;
2657}
2658
2659void __audit_bprm(struct linux_binprm *bprm)
2660{
2661	struct audit_context *context = audit_context();
2662
2663	context->type = AUDIT_EXECVE;
2664	context->execve.argc = bprm->argc;
2665}
2666
2667
2668/**
2669 * __audit_socketcall - record audit data for sys_socketcall
2670 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2671 * @args: args array
2672 *
2673 */
2674int __audit_socketcall(int nargs, unsigned long *args)
2675{
2676	struct audit_context *context = audit_context();
2677
2678	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2679		return -EINVAL;
2680	context->type = AUDIT_SOCKETCALL;
2681	context->socketcall.nargs = nargs;
2682	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2683	return 0;
2684}
2685
2686/**
2687 * __audit_fd_pair - record audit data for pipe and socketpair
2688 * @fd1: the first file descriptor
2689 * @fd2: the second file descriptor
2690 *
2691 */
2692void __audit_fd_pair(int fd1, int fd2)
2693{
2694	struct audit_context *context = audit_context();
2695
2696	context->fds[0] = fd1;
2697	context->fds[1] = fd2;
2698}
2699
2700/**
2701 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2702 * @len: data length in user space
2703 * @a: data address in kernel space
2704 *
2705 * Returns 0 for success or NULL context or < 0 on error.
2706 */
2707int __audit_sockaddr(int len, void *a)
2708{
2709	struct audit_context *context = audit_context();
2710
2711	if (!context->sockaddr) {
2712		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2713
2714		if (!p)
2715			return -ENOMEM;
2716		context->sockaddr = p;
2717	}
2718
2719	context->sockaddr_len = len;
2720	memcpy(context->sockaddr, a, len);
2721	return 0;
2722}
2723
2724void __audit_ptrace(struct task_struct *t)
2725{
2726	struct audit_context *context = audit_context();
2727
2728	context->target_pid = task_tgid_nr(t);
2729	context->target_auid = audit_get_loginuid(t);
2730	context->target_uid = task_uid(t);
2731	context->target_sessionid = audit_get_sessionid(t);
2732	security_task_getsecid_obj(t, &context->target_sid);
2733	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2734}
2735
2736/**
2737 * audit_signal_info_syscall - record signal info for syscalls
2738 * @t: task being signaled
2739 *
2740 * If the audit subsystem is being terminated, record the task (pid)
2741 * and uid that is doing that.
2742 */
2743int audit_signal_info_syscall(struct task_struct *t)
2744{
2745	struct audit_aux_data_pids *axp;
2746	struct audit_context *ctx = audit_context();
2747	kuid_t t_uid = task_uid(t);
2748
2749	if (!audit_signals || audit_dummy_context())
2750		return 0;
2751
2752	/* optimize the common case by putting first signal recipient directly
2753	 * in audit_context */
2754	if (!ctx->target_pid) {
2755		ctx->target_pid = task_tgid_nr(t);
2756		ctx->target_auid = audit_get_loginuid(t);
2757		ctx->target_uid = t_uid;
2758		ctx->target_sessionid = audit_get_sessionid(t);
2759		security_task_getsecid_obj(t, &ctx->target_sid);
2760		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2761		return 0;
2762	}
2763
2764	axp = (void *)ctx->aux_pids;
2765	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2766		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2767		if (!axp)
2768			return -ENOMEM;
2769
2770		axp->d.type = AUDIT_OBJ_PID;
2771		axp->d.next = ctx->aux_pids;
2772		ctx->aux_pids = (void *)axp;
2773	}
2774	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2775
2776	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2777	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2778	axp->target_uid[axp->pid_count] = t_uid;
2779	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2780	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2781	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2782	axp->pid_count++;
2783
2784	return 0;
2785}
2786
2787/**
2788 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2789 * @bprm: pointer to the bprm being processed
2790 * @new: the proposed new credentials
2791 * @old: the old credentials
2792 *
2793 * Simply check if the proc already has the caps given by the file and if not
2794 * store the priv escalation info for later auditing at the end of the syscall
2795 *
2796 * -Eric
2797 */
2798int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2799			   const struct cred *new, const struct cred *old)
2800{
2801	struct audit_aux_data_bprm_fcaps *ax;
2802	struct audit_context *context = audit_context();
2803	struct cpu_vfs_cap_data vcaps;
2804
2805	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2806	if (!ax)
2807		return -ENOMEM;
2808
2809	ax->d.type = AUDIT_BPRM_FCAPS;
2810	ax->d.next = context->aux;
2811	context->aux = (void *)ax;
2812
2813	get_vfs_caps_from_disk(&nop_mnt_idmap,
2814			       bprm->file->f_path.dentry, &vcaps);
2815
2816	ax->fcap.permitted = vcaps.permitted;
2817	ax->fcap.inheritable = vcaps.inheritable;
2818	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2819	ax->fcap.rootid = vcaps.rootid;
2820	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2821
2822	ax->old_pcap.permitted   = old->cap_permitted;
2823	ax->old_pcap.inheritable = old->cap_inheritable;
2824	ax->old_pcap.effective   = old->cap_effective;
2825	ax->old_pcap.ambient     = old->cap_ambient;
2826
2827	ax->new_pcap.permitted   = new->cap_permitted;
2828	ax->new_pcap.inheritable = new->cap_inheritable;
2829	ax->new_pcap.effective   = new->cap_effective;
2830	ax->new_pcap.ambient     = new->cap_ambient;
2831	return 0;
2832}
2833
2834/**
2835 * __audit_log_capset - store information about the arguments to the capset syscall
2836 * @new: the new credentials
2837 * @old: the old (current) credentials
2838 *
2839 * Record the arguments userspace sent to sys_capset for later printing by the
2840 * audit system if applicable
2841 */
2842void __audit_log_capset(const struct cred *new, const struct cred *old)
2843{
2844	struct audit_context *context = audit_context();
2845
2846	context->capset.pid = task_tgid_nr(current);
2847	context->capset.cap.effective   = new->cap_effective;
2848	context->capset.cap.inheritable = new->cap_effective;
2849	context->capset.cap.permitted   = new->cap_permitted;
2850	context->capset.cap.ambient     = new->cap_ambient;
2851	context->type = AUDIT_CAPSET;
2852}
2853
2854void __audit_mmap_fd(int fd, int flags)
2855{
2856	struct audit_context *context = audit_context();
2857
2858	context->mmap.fd = fd;
2859	context->mmap.flags = flags;
2860	context->type = AUDIT_MMAP;
2861}
2862
2863void __audit_openat2_how(struct open_how *how)
2864{
2865	struct audit_context *context = audit_context();
2866
2867	context->openat2.flags = how->flags;
2868	context->openat2.mode = how->mode;
2869	context->openat2.resolve = how->resolve;
2870	context->type = AUDIT_OPENAT2;
2871}
2872
2873void __audit_log_kern_module(char *name)
2874{
2875	struct audit_context *context = audit_context();
2876
2877	context->module.name = kstrdup(name, GFP_KERNEL);
2878	if (!context->module.name)
2879		audit_log_lost("out of memory in __audit_log_kern_module");
2880	context->type = AUDIT_KERN_MODULE;
2881}
2882
2883void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2884{
2885	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2886	switch (friar->hdr.type) {
2887	case FAN_RESPONSE_INFO_NONE:
2888		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2890			  response, FAN_RESPONSE_INFO_NONE);
2891		break;
2892	case FAN_RESPONSE_INFO_AUDIT_RULE:
2893		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2894			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2895			  response, friar->hdr.type, friar->rule_number,
2896			  friar->subj_trust, friar->obj_trust);
2897	}
2898}
2899
2900void __audit_tk_injoffset(struct timespec64 offset)
2901{
2902	struct audit_context *context = audit_context();
2903
2904	/* only set type if not already set by NTP */
2905	if (!context->type)
2906		context->type = AUDIT_TIME_INJOFFSET;
2907	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2908}
2909
2910void __audit_ntp_log(const struct audit_ntp_data *ad)
2911{
2912	struct audit_context *context = audit_context();
2913	int type;
2914
2915	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2916		if (ad->vals[type].newval != ad->vals[type].oldval) {
2917			/* unconditionally set type, overwriting TK */
2918			context->type = AUDIT_TIME_ADJNTPVAL;
2919			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2920			break;
2921		}
2922}
2923
2924void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2925		       enum audit_nfcfgop op, gfp_t gfp)
2926{
2927	struct audit_buffer *ab;
2928	char comm[sizeof(current->comm)];
2929
2930	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2931	if (!ab)
2932		return;
2933	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2934			 name, af, nentries, audit_nfcfgs[op].s);
2935
2936	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2937	audit_log_task_context(ab); /* subj= */
2938	audit_log_format(ab, " comm=");
2939	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2940	audit_log_end(ab);
2941}
2942EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2943
2944static void audit_log_task(struct audit_buffer *ab)
2945{
2946	kuid_t auid, uid;
2947	kgid_t gid;
2948	unsigned int sessionid;
2949	char comm[sizeof(current->comm)];
2950
2951	auid = audit_get_loginuid(current);
2952	sessionid = audit_get_sessionid(current);
2953	current_uid_gid(&uid, &gid);
2954
2955	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2956			 from_kuid(&init_user_ns, auid),
2957			 from_kuid(&init_user_ns, uid),
2958			 from_kgid(&init_user_ns, gid),
2959			 sessionid);
2960	audit_log_task_context(ab);
2961	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2962	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2963	audit_log_d_path_exe(ab, current->mm);
2964}
2965
2966/**
2967 * audit_core_dumps - record information about processes that end abnormally
2968 * @signr: signal value
2969 *
2970 * If a process ends with a core dump, something fishy is going on and we
2971 * should record the event for investigation.
2972 */
2973void audit_core_dumps(long signr)
2974{
2975	struct audit_buffer *ab;
2976
2977	if (!audit_enabled)
2978		return;
2979
2980	if (signr == SIGQUIT)	/* don't care for those */
2981		return;
2982
2983	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2984	if (unlikely(!ab))
2985		return;
2986	audit_log_task(ab);
2987	audit_log_format(ab, " sig=%ld res=1", signr);
2988	audit_log_end(ab);
2989}
2990
2991/**
2992 * audit_seccomp - record information about a seccomp action
2993 * @syscall: syscall number
2994 * @signr: signal value
2995 * @code: the seccomp action
2996 *
2997 * Record the information associated with a seccomp action. Event filtering for
2998 * seccomp actions that are not to be logged is done in seccomp_log().
2999 * Therefore, this function forces auditing independent of the audit_enabled
3000 * and dummy context state because seccomp actions should be logged even when
3001 * audit is not in use.
3002 */
3003void audit_seccomp(unsigned long syscall, long signr, int code)
3004{
3005	struct audit_buffer *ab;
3006
3007	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3008	if (unlikely(!ab))
3009		return;
3010	audit_log_task(ab);
3011	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3012			 signr, syscall_get_arch(current), syscall,
3013			 in_compat_syscall(), KSTK_EIP(current), code);
3014	audit_log_end(ab);
3015}
3016
3017void audit_seccomp_actions_logged(const char *names, const char *old_names,
3018				  int res)
3019{
3020	struct audit_buffer *ab;
3021
3022	if (!audit_enabled)
3023		return;
3024
3025	ab = audit_log_start(audit_context(), GFP_KERNEL,
3026			     AUDIT_CONFIG_CHANGE);
3027	if (unlikely(!ab))
3028		return;
3029
3030	audit_log_format(ab,
3031			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3032			 names, old_names, res);
3033	audit_log_end(ab);
3034}
3035
3036struct list_head *audit_killed_trees(void)
3037{
3038	struct audit_context *ctx = audit_context();
3039	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3040		return NULL;
3041	return &ctx->killed_trees;
3042}