Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
 
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67
  68#include "audit.h"
  69
  70/* flags stating the success for a syscall */
  71#define AUDITSC_INVALID 0
  72#define AUDITSC_SUCCESS 1
  73#define AUDITSC_FAILURE 2
  74
  75/* no execve audit message should be longer than this (userspace limits),
  76 * see the note near the top of audit_log_execve_info() about this value */
  77#define MAX_EXECVE_AUDIT_LEN 7500
  78
  79/* max length to print of cmdline/proctitle value during audit */
  80#define MAX_PROCTITLE_AUDIT_LEN 128
  81
  82/* number of audit rules */
  83int audit_n_rules;
  84
  85/* determines whether we collect data for signals sent */
  86int audit_signals;
  87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88struct audit_aux_data {
  89	struct audit_aux_data	*next;
  90	int			type;
  91};
  92
 
 
  93/* Number of target pids per aux struct. */
  94#define AUDIT_AUX_PIDS	16
  95
 
 
 
 
 
 
 
  96struct audit_aux_data_pids {
  97	struct audit_aux_data	d;
  98	pid_t			target_pid[AUDIT_AUX_PIDS];
  99	kuid_t			target_auid[AUDIT_AUX_PIDS];
 100	kuid_t			target_uid[AUDIT_AUX_PIDS];
 101	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 102	u32			target_sid[AUDIT_AUX_PIDS];
 103	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 104	int			pid_count;
 105};
 106
 107struct audit_aux_data_bprm_fcaps {
 108	struct audit_aux_data	d;
 109	struct audit_cap_data	fcap;
 110	unsigned int		fcap_ver;
 111	struct audit_cap_data	old_pcap;
 112	struct audit_cap_data	new_pcap;
 113};
 114
 
 
 
 
 
 
 115struct audit_tree_refs {
 116	struct audit_tree_refs *next;
 117	struct audit_chunk *c[31];
 118};
 119
 120struct audit_nfcfgop_tab {
 121	enum audit_nfcfgop	op;
 122	const char		*s;
 123};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 126	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 127	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 128	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 129	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 130	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 131	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 132	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 133	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 134	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 135	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 136	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 137	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 138	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 139	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 140	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 141	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 143	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 145	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146};
 147
 
 
 
 
 
 
 
 
 148static int audit_match_perm(struct audit_context *ctx, int mask)
 149{
 150	unsigned n;
 151
 152	if (unlikely(!ctx))
 153		return 0;
 154	n = ctx->major;
 155
 156	switch (audit_classify_syscall(ctx->arch, n)) {
 157	case AUDITSC_NATIVE:
 158		if ((mask & AUDIT_PERM_WRITE) &&
 159		     audit_match_class(AUDIT_CLASS_WRITE, n))
 160			return 1;
 161		if ((mask & AUDIT_PERM_READ) &&
 162		     audit_match_class(AUDIT_CLASS_READ, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_ATTR) &&
 165		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 166			return 1;
 167		return 0;
 168	case AUDITSC_COMPAT: /* 32bit on biarch */
 169		if ((mask & AUDIT_PERM_WRITE) &&
 170		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 171			return 1;
 172		if ((mask & AUDIT_PERM_READ) &&
 173		     audit_match_class(AUDIT_CLASS_READ_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_ATTR) &&
 176		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 177			return 1;
 178		return 0;
 179	case AUDITSC_OPEN:
 180		return mask & ACC_MODE(ctx->argv[1]);
 181	case AUDITSC_OPENAT:
 182		return mask & ACC_MODE(ctx->argv[2]);
 183	case AUDITSC_SOCKETCALL:
 184		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 185	case AUDITSC_EXECVE:
 186		return mask & AUDIT_PERM_EXEC;
 187	case AUDITSC_OPENAT2:
 188		return mask & ACC_MODE((u32)ctx->openat2.flags);
 189	default:
 190		return 0;
 191	}
 192}
 193
 194static int audit_match_filetype(struct audit_context *ctx, int val)
 195{
 196	struct audit_names *n;
 197	umode_t mode = (umode_t)val;
 198
 199	if (unlikely(!ctx))
 200		return 0;
 201
 202	list_for_each_entry(n, &ctx->names_list, list) {
 203		if ((n->ino != AUDIT_INO_UNSET) &&
 204		    ((n->mode & S_IFMT) == mode))
 205			return 1;
 206	}
 207
 208	return 0;
 209}
 210
 211/*
 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 213 * ->first_trees points to its beginning, ->trees - to the current end of data.
 214 * ->tree_count is the number of free entries in array pointed to by ->trees.
 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 216 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 217 * it's going to remain 1-element for almost any setup) until we free context itself.
 218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 219 */
 220
 
 221static void audit_set_auditable(struct audit_context *ctx)
 222{
 223	if (!ctx->prio) {
 224		ctx->prio = 1;
 225		ctx->current_state = AUDIT_STATE_RECORD;
 226	}
 227}
 228
 229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 230{
 231	struct audit_tree_refs *p = ctx->trees;
 232	int left = ctx->tree_count;
 233
 234	if (likely(left)) {
 235		p->c[--left] = chunk;
 236		ctx->tree_count = left;
 237		return 1;
 238	}
 239	if (!p)
 240		return 0;
 241	p = p->next;
 242	if (p) {
 243		p->c[30] = chunk;
 244		ctx->trees = p;
 245		ctx->tree_count = 30;
 246		return 1;
 247	}
 248	return 0;
 249}
 250
 251static int grow_tree_refs(struct audit_context *ctx)
 252{
 253	struct audit_tree_refs *p = ctx->trees;
 254
 255	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 256	if (!ctx->trees) {
 257		ctx->trees = p;
 258		return 0;
 259	}
 260	if (p)
 261		p->next = ctx->trees;
 262	else
 263		ctx->first_trees = ctx->trees;
 264	ctx->tree_count = 31;
 265	return 1;
 266}
 
 267
 268static void unroll_tree_refs(struct audit_context *ctx,
 269		      struct audit_tree_refs *p, int count)
 270{
 
 271	struct audit_tree_refs *q;
 272	int n;
 273
 274	if (!p) {
 275		/* we started with empty chain */
 276		p = ctx->first_trees;
 277		count = 31;
 278		/* if the very first allocation has failed, nothing to do */
 279		if (!p)
 280			return;
 281	}
 282	n = count;
 283	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 284		while (n--) {
 285			audit_put_chunk(q->c[n]);
 286			q->c[n] = NULL;
 287		}
 288	}
 289	while (n-- > ctx->tree_count) {
 290		audit_put_chunk(q->c[n]);
 291		q->c[n] = NULL;
 292	}
 293	ctx->trees = p;
 294	ctx->tree_count = count;
 
 295}
 296
 297static void free_tree_refs(struct audit_context *ctx)
 298{
 299	struct audit_tree_refs *p, *q;
 300
 301	for (p = ctx->first_trees; p; p = q) {
 302		q = p->next;
 303		kfree(p);
 304	}
 305}
 306
 307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 308{
 
 309	struct audit_tree_refs *p;
 310	int n;
 311
 312	if (!tree)
 313		return 0;
 314	/* full ones */
 315	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 316		for (n = 0; n < 31; n++)
 317			if (audit_tree_match(p->c[n], tree))
 318				return 1;
 319	}
 320	/* partial */
 321	if (p) {
 322		for (n = ctx->tree_count; n < 31; n++)
 323			if (audit_tree_match(p->c[n], tree))
 324				return 1;
 325	}
 326	return 0;
 327}
 328
 329static int audit_compare_uid(kuid_t uid,
 330			     struct audit_names *name,
 331			     struct audit_field *f,
 332			     struct audit_context *ctx)
 333{
 334	struct audit_names *n;
 335	int rc;
 336
 337	if (name) {
 338		rc = audit_uid_comparator(uid, f->op, name->uid);
 339		if (rc)
 340			return rc;
 341	}
 342
 343	if (ctx) {
 344		list_for_each_entry(n, &ctx->names_list, list) {
 345			rc = audit_uid_comparator(uid, f->op, n->uid);
 346			if (rc)
 347				return rc;
 348		}
 349	}
 350	return 0;
 351}
 352
 353static int audit_compare_gid(kgid_t gid,
 354			     struct audit_names *name,
 355			     struct audit_field *f,
 356			     struct audit_context *ctx)
 357{
 358	struct audit_names *n;
 359	int rc;
 360
 361	if (name) {
 362		rc = audit_gid_comparator(gid, f->op, name->gid);
 363		if (rc)
 364			return rc;
 365	}
 366
 367	if (ctx) {
 368		list_for_each_entry(n, &ctx->names_list, list) {
 369			rc = audit_gid_comparator(gid, f->op, n->gid);
 370			if (rc)
 371				return rc;
 372		}
 373	}
 374	return 0;
 375}
 376
 377static int audit_field_compare(struct task_struct *tsk,
 378			       const struct cred *cred,
 379			       struct audit_field *f,
 380			       struct audit_context *ctx,
 381			       struct audit_names *name)
 382{
 383	switch (f->val) {
 384	/* process to file object comparisons */
 385	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 386		return audit_compare_uid(cred->uid, name, f, ctx);
 387	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 388		return audit_compare_gid(cred->gid, name, f, ctx);
 389	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 390		return audit_compare_uid(cred->euid, name, f, ctx);
 391	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 392		return audit_compare_gid(cred->egid, name, f, ctx);
 393	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 394		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 395	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 396		return audit_compare_uid(cred->suid, name, f, ctx);
 397	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 398		return audit_compare_gid(cred->sgid, name, f, ctx);
 399	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 400		return audit_compare_uid(cred->fsuid, name, f, ctx);
 401	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 402		return audit_compare_gid(cred->fsgid, name, f, ctx);
 403	/* uid comparisons */
 404	case AUDIT_COMPARE_UID_TO_AUID:
 405		return audit_uid_comparator(cred->uid, f->op,
 406					    audit_get_loginuid(tsk));
 407	case AUDIT_COMPARE_UID_TO_EUID:
 408		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 409	case AUDIT_COMPARE_UID_TO_SUID:
 410		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 411	case AUDIT_COMPARE_UID_TO_FSUID:
 412		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 413	/* auid comparisons */
 414	case AUDIT_COMPARE_AUID_TO_EUID:
 415		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 416					    cred->euid);
 417	case AUDIT_COMPARE_AUID_TO_SUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->suid);
 420	case AUDIT_COMPARE_AUID_TO_FSUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->fsuid);
 423	/* euid comparisons */
 424	case AUDIT_COMPARE_EUID_TO_SUID:
 425		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 426	case AUDIT_COMPARE_EUID_TO_FSUID:
 427		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 428	/* suid comparisons */
 429	case AUDIT_COMPARE_SUID_TO_FSUID:
 430		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 431	/* gid comparisons */
 432	case AUDIT_COMPARE_GID_TO_EGID:
 433		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 434	case AUDIT_COMPARE_GID_TO_SGID:
 435		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 436	case AUDIT_COMPARE_GID_TO_FSGID:
 437		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 438	/* egid comparisons */
 439	case AUDIT_COMPARE_EGID_TO_SGID:
 440		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 441	case AUDIT_COMPARE_EGID_TO_FSGID:
 442		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 443	/* sgid comparison */
 444	case AUDIT_COMPARE_SGID_TO_FSGID:
 445		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 446	default:
 447		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 448		return 0;
 449	}
 450	return 0;
 451}
 452
 453/* Determine if any context name data matches a rule's watch data */
 454/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 455 * otherwise.
 456 *
 457 * If task_creation is true, this is an explicit indication that we are
 458 * filtering a task rule at task creation time.  This and tsk == current are
 459 * the only situations where tsk->cred may be accessed without an rcu read lock.
 460 */
 461static int audit_filter_rules(struct task_struct *tsk,
 462			      struct audit_krule *rule,
 463			      struct audit_context *ctx,
 464			      struct audit_names *name,
 465			      enum audit_state *state,
 466			      bool task_creation)
 467{
 468	const struct cred *cred;
 469	int i, need_sid = 1;
 470	u32 sid;
 471	unsigned int sessionid;
 472
 473	if (ctx && rule->prio <= ctx->prio)
 474		return 0;
 475
 476	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 477
 478	for (i = 0; i < rule->field_count; i++) {
 479		struct audit_field *f = &rule->fields[i];
 480		struct audit_names *n;
 481		int result = 0;
 482		pid_t pid;
 483
 484		switch (f->type) {
 485		case AUDIT_PID:
 486			pid = task_tgid_nr(tsk);
 487			result = audit_comparator(pid, f->op, f->val);
 488			break;
 489		case AUDIT_PPID:
 490			if (ctx) {
 491				if (!ctx->ppid)
 492					ctx->ppid = task_ppid_nr(tsk);
 493				result = audit_comparator(ctx->ppid, f->op, f->val);
 494			}
 495			break;
 496		case AUDIT_EXE:
 497			result = audit_exe_compare(tsk, rule->exe);
 498			if (f->op == Audit_not_equal)
 499				result = !result;
 500			break;
 501		case AUDIT_UID:
 502			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 503			break;
 504		case AUDIT_EUID:
 505			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 506			break;
 507		case AUDIT_SUID:
 508			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 509			break;
 510		case AUDIT_FSUID:
 511			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 512			break;
 513		case AUDIT_GID:
 514			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 515			if (f->op == Audit_equal) {
 516				if (!result)
 517					result = groups_search(cred->group_info, f->gid);
 518			} else if (f->op == Audit_not_equal) {
 519				if (result)
 520					result = !groups_search(cred->group_info, f->gid);
 521			}
 522			break;
 523		case AUDIT_EGID:
 524			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 525			if (f->op == Audit_equal) {
 526				if (!result)
 527					result = groups_search(cred->group_info, f->gid);
 528			} else if (f->op == Audit_not_equal) {
 529				if (result)
 530					result = !groups_search(cred->group_info, f->gid);
 531			}
 532			break;
 533		case AUDIT_SGID:
 534			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 535			break;
 536		case AUDIT_FSGID:
 537			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 538			break;
 539		case AUDIT_SESSIONID:
 540			sessionid = audit_get_sessionid(tsk);
 541			result = audit_comparator(sessionid, f->op, f->val);
 542			break;
 543		case AUDIT_PERS:
 544			result = audit_comparator(tsk->personality, f->op, f->val);
 545			break;
 546		case AUDIT_ARCH:
 547			if (ctx)
 548				result = audit_comparator(ctx->arch, f->op, f->val);
 549			break;
 550
 551		case AUDIT_EXIT:
 552			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 553				result = audit_comparator(ctx->return_code, f->op, f->val);
 554			break;
 555		case AUDIT_SUCCESS:
 556			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 557				if (f->val)
 558					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 559				else
 560					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 561			}
 562			break;
 563		case AUDIT_DEVMAJOR:
 564			if (name) {
 565				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 566				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 567					++result;
 568			} else if (ctx) {
 569				list_for_each_entry(n, &ctx->names_list, list) {
 570					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 571					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_DEVMINOR:
 579			if (name) {
 580				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 581				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 582					++result;
 583			} else if (ctx) {
 584				list_for_each_entry(n, &ctx->names_list, list) {
 585					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 586					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 587						++result;
 588						break;
 589					}
 590				}
 591			}
 592			break;
 593		case AUDIT_INODE:
 594			if (name)
 595				result = audit_comparator(name->ino, f->op, f->val);
 596			else if (ctx) {
 597				list_for_each_entry(n, &ctx->names_list, list) {
 598					if (audit_comparator(n->ino, f->op, f->val)) {
 599						++result;
 600						break;
 601					}
 602				}
 603			}
 604			break;
 605		case AUDIT_OBJ_UID:
 606			if (name) {
 607				result = audit_uid_comparator(name->uid, f->op, f->uid);
 608			} else if (ctx) {
 609				list_for_each_entry(n, &ctx->names_list, list) {
 610					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 611						++result;
 612						break;
 613					}
 614				}
 615			}
 616			break;
 617		case AUDIT_OBJ_GID:
 618			if (name) {
 619				result = audit_gid_comparator(name->gid, f->op, f->gid);
 620			} else if (ctx) {
 621				list_for_each_entry(n, &ctx->names_list, list) {
 622					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 623						++result;
 624						break;
 625					}
 626				}
 627			}
 628			break;
 629		case AUDIT_WATCH:
 630			if (name) {
 631				result = audit_watch_compare(rule->watch,
 632							     name->ino,
 633							     name->dev);
 634				if (f->op == Audit_not_equal)
 635					result = !result;
 636			}
 637			break;
 638		case AUDIT_DIR:
 639			if (ctx) {
 640				result = match_tree_refs(ctx, rule->tree);
 641				if (f->op == Audit_not_equal)
 642					result = !result;
 643			}
 644			break;
 645		case AUDIT_LOGINUID:
 646			result = audit_uid_comparator(audit_get_loginuid(tsk),
 647						      f->op, f->uid);
 648			break;
 649		case AUDIT_LOGINUID_SET:
 650			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 651			break;
 652		case AUDIT_SADDR_FAM:
 653			if (ctx && ctx->sockaddr)
 654				result = audit_comparator(ctx->sockaddr->ss_family,
 655							  f->op, f->val);
 656			break;
 657		case AUDIT_SUBJ_USER:
 658		case AUDIT_SUBJ_ROLE:
 659		case AUDIT_SUBJ_TYPE:
 660		case AUDIT_SUBJ_SEN:
 661		case AUDIT_SUBJ_CLR:
 662			/* NOTE: this may return negative values indicating
 663			   a temporary error.  We simply treat this as a
 664			   match for now to avoid losing information that
 665			   may be wanted.   An error message will also be
 666			   logged upon error */
 667			if (f->lsm_rule) {
 668				if (need_sid) {
 669					/* @tsk should always be equal to
 670					 * @current with the exception of
 671					 * fork()/copy_process() in which case
 672					 * the new @tsk creds are still a dup
 673					 * of @current's creds so we can still
 674					 * use security_current_getsecid_subj()
 675					 * here even though it always refs
 676					 * @current's creds
 677					 */
 678					security_current_getsecid_subj(&sid);
 679					need_sid = 0;
 680				}
 681				result = security_audit_rule_match(sid, f->type,
 682								   f->op,
 683								   f->lsm_rule);
 
 684			}
 685			break;
 686		case AUDIT_OBJ_USER:
 687		case AUDIT_OBJ_ROLE:
 688		case AUDIT_OBJ_TYPE:
 689		case AUDIT_OBJ_LEV_LOW:
 690		case AUDIT_OBJ_LEV_HIGH:
 691			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 692			   also applies here */
 693			if (f->lsm_rule) {
 694				/* Find files that match */
 695				if (name) {
 696					result = security_audit_rule_match(
 697								name->osid,
 698								f->type,
 699								f->op,
 700								f->lsm_rule);
 701				} else if (ctx) {
 702					list_for_each_entry(n, &ctx->names_list, list) {
 703						if (security_audit_rule_match(
 704								n->osid,
 705								f->type,
 706								f->op,
 707								f->lsm_rule)) {
 708							++result;
 709							break;
 710						}
 711					}
 712				}
 713				/* Find ipc objects that match */
 714				if (!ctx || ctx->type != AUDIT_IPC)
 715					break;
 716				if (security_audit_rule_match(ctx->ipc.osid,
 717							      f->type, f->op,
 718							      f->lsm_rule))
 719					++result;
 720			}
 721			break;
 722		case AUDIT_ARG0:
 723		case AUDIT_ARG1:
 724		case AUDIT_ARG2:
 725		case AUDIT_ARG3:
 726			if (ctx)
 727				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 728			break;
 729		case AUDIT_FILTERKEY:
 730			/* ignore this field for filtering */
 731			result = 1;
 732			break;
 733		case AUDIT_PERM:
 734			result = audit_match_perm(ctx, f->val);
 735			if (f->op == Audit_not_equal)
 736				result = !result;
 737			break;
 738		case AUDIT_FILETYPE:
 739			result = audit_match_filetype(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FIELD_COMPARE:
 744			result = audit_field_compare(tsk, cred, f, ctx, name);
 745			break;
 746		}
 
 747		if (!result)
 748			return 0;
 749	}
 750
 751	if (ctx) {
 
 
 752		if (rule->filterkey) {
 753			kfree(ctx->filterkey);
 754			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 755		}
 756		ctx->prio = rule->prio;
 757	}
 758	switch (rule->action) {
 759	case AUDIT_NEVER:
 760		*state = AUDIT_STATE_DISABLED;
 761		break;
 762	case AUDIT_ALWAYS:
 763		*state = AUDIT_STATE_RECORD;
 764		break;
 765	}
 766	return 1;
 767}
 768
 769/* At process creation time, we can determine if system-call auditing is
 770 * completely disabled for this task.  Since we only have the task
 771 * structure at this point, we can only check uid and gid.
 772 */
 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 774{
 775	struct audit_entry *e;
 776	enum audit_state   state;
 777
 778	rcu_read_lock();
 779	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 780		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 781				       &state, true)) {
 782			if (state == AUDIT_STATE_RECORD)
 783				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 784			rcu_read_unlock();
 785			return state;
 786		}
 787	}
 788	rcu_read_unlock();
 789	return AUDIT_STATE_BUILD;
 790}
 791
 792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 793{
 794	int word, bit;
 795
 796	if (val > 0xffffffff)
 797		return false;
 798
 799	word = AUDIT_WORD(val);
 800	if (word >= AUDIT_BITMASK_SIZE)
 801		return false;
 802
 803	bit = AUDIT_BIT(val);
 804
 805	return rule->mask[word] & bit;
 806}
 807
 808/**
 809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 810 * @tsk: associated task
 811 * @ctx: audit context
 812 * @list: audit filter list
 813 * @name: audit_name (can be NULL)
 814 * @op: current syscall/uring_op
 815 *
 816 * Run the udit filters specified in @list against @tsk using @ctx,
 817 * @name, and @op, as necessary; the caller is responsible for ensuring
 818 * that the call is made while the RCU read lock is held. The @name
 819 * parameter can be NULL, but all others must be specified.
 820 * Returns 1/true if the filter finds a match, 0/false if none are found.
 821 */
 822static int __audit_filter_op(struct task_struct *tsk,
 823			   struct audit_context *ctx,
 824			   struct list_head *list,
 825			   struct audit_names *name,
 826			   unsigned long op)
 827{
 828	struct audit_entry *e;
 829	enum audit_state state;
 830
 831	list_for_each_entry_rcu(e, list, list) {
 832		if (audit_in_mask(&e->rule, op) &&
 833		    audit_filter_rules(tsk, &e->rule, ctx, name,
 834				       &state, false)) {
 835			ctx->current_state = state;
 836			return 1;
 837		}
 838	}
 839	return 0;
 840}
 841
 842/**
 843 * audit_filter_uring - apply filters to an io_uring operation
 844 * @tsk: associated task
 845 * @ctx: audit context
 846 */
 847static void audit_filter_uring(struct task_struct *tsk,
 848			       struct audit_context *ctx)
 849{
 850	if (auditd_test_task(tsk))
 851		return;
 852
 853	rcu_read_lock();
 854	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 855			NULL, ctx->uring_op);
 856	rcu_read_unlock();
 857}
 858
 859/* At syscall exit time, this filter is called if the audit_state is
 860 * not low enough that auditing cannot take place, but is also not
 861 * high enough that we already know we have to write an audit record
 862 * (i.e., the state is AUDIT_STATE_BUILD).
 863 */
 864static void audit_filter_syscall(struct task_struct *tsk,
 865				 struct audit_context *ctx)
 866{
 867	if (auditd_test_task(tsk))
 868		return;
 869
 870	rcu_read_lock();
 871	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 872			NULL, ctx->major);
 
 
 
 
 
 
 
 
 
 
 
 
 873	rcu_read_unlock();
 
 874}
 875
 876/*
 877 * Given an audit_name check the inode hash table to see if they match.
 878 * Called holding the rcu read lock to protect the use of audit_inode_hash
 879 */
 880static int audit_filter_inode_name(struct task_struct *tsk,
 881				   struct audit_names *n,
 882				   struct audit_context *ctx) {
 883	int h = audit_hash_ino((u32)n->ino);
 884	struct list_head *list = &audit_inode_hash[h];
 885
 886	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 887}
 888
 889/* At syscall exit time, this filter is called if any audit_names have been
 890 * collected during syscall processing.  We only check rules in sublists at hash
 891 * buckets applicable to the inode numbers in audit_names.
 892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 893 */
 894void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 895{
 896	struct audit_names *n;
 
 
 897
 898	if (auditd_test_task(tsk))
 899		return;
 900
 901	rcu_read_lock();
 
 
 
 
 
 
 902
 903	list_for_each_entry(n, &ctx->names_list, list) {
 904		if (audit_filter_inode_name(tsk, n, ctx))
 905			break;
 
 
 
 
 
 
 
 
 
 906	}
 907	rcu_read_unlock();
 908}
 909
 910static inline void audit_proctitle_free(struct audit_context *context)
 
 
 911{
 912	kfree(context->proctitle.value);
 913	context->proctitle.value = NULL;
 914	context->proctitle.len = 0;
 915}
 916
 917static inline void audit_free_module(struct audit_context *context)
 918{
 919	if (context->type == AUDIT_KERN_MODULE) {
 920		kfree(context->module.name);
 921		context->module.name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922	}
 
 
 
 923}
 
 924static inline void audit_free_names(struct audit_context *context)
 925{
 926	struct audit_names *n, *next;
 927
 928	list_for_each_entry_safe(n, next, &context->names_list, list) {
 929		list_del(&n->list);
 930		if (n->name)
 931			putname(n->name);
 932		if (n->should_free)
 933			kfree(n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	}
 935	context->name_count = 0;
 936	path_put(&context->pwd);
 937	context->pwd.dentry = NULL;
 938	context->pwd.mnt = NULL;
 939}
 940
 941static inline void audit_free_aux(struct audit_context *context)
 942{
 943	struct audit_aux_data *aux;
 944
 945	while ((aux = context->aux)) {
 946		context->aux = aux->next;
 947		kfree(aux);
 948	}
 949	context->aux = NULL;
 950	while ((aux = context->aux_pids)) {
 951		context->aux_pids = aux->next;
 952		kfree(aux);
 953	}
 954	context->aux_pids = NULL;
 955}
 956
 957/**
 958 * audit_reset_context - reset a audit_context structure
 959 * @ctx: the audit_context to reset
 960 *
 961 * All fields in the audit_context will be reset to an initial state, all
 962 * references held by fields will be dropped, and private memory will be
 963 * released.  When this function returns the audit_context will be suitable
 964 * for reuse, so long as the passed context is not NULL or a dummy context.
 965 */
 966static void audit_reset_context(struct audit_context *ctx)
 967{
 968	if (!ctx)
 969		return;
 970
 971	/* if ctx is non-null, reset the "ctx->context" regardless */
 972	ctx->context = AUDIT_CTX_UNUSED;
 973	if (ctx->dummy)
 974		return;
 975
 976	/*
 977	 * NOTE: It shouldn't matter in what order we release the fields, so
 978	 *       release them in the order in which they appear in the struct;
 979	 *       this gives us some hope of quickly making sure we are
 980	 *       resetting the audit_context properly.
 981	 *
 982	 *       Other things worth mentioning:
 983	 *       - we don't reset "dummy"
 984	 *       - we don't reset "state", we do reset "current_state"
 985	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 986	 *       - much of this is likely overkill, but play it safe for now
 987	 *       - we really need to work on improving the audit_context struct
 988	 */
 989
 990	ctx->current_state = ctx->state;
 991	ctx->serial = 0;
 992	ctx->major = 0;
 993	ctx->uring_op = 0;
 994	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
 995	memset(ctx->argv, 0, sizeof(ctx->argv));
 996	ctx->return_code = 0;
 997	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
 998	ctx->return_valid = AUDITSC_INVALID;
 999	audit_free_names(ctx);
1000	if (ctx->state != AUDIT_STATE_RECORD) {
1001		kfree(ctx->filterkey);
1002		ctx->filterkey = NULL;
1003	}
1004	audit_free_aux(ctx);
1005	kfree(ctx->sockaddr);
1006	ctx->sockaddr = NULL;
1007	ctx->sockaddr_len = 0;
1008	ctx->ppid = 0;
1009	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011	ctx->personality = 0;
1012	ctx->arch = 0;
1013	ctx->target_pid = 0;
1014	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015	ctx->target_sessionid = 0;
1016	ctx->target_sid = 0;
1017	ctx->target_comm[0] = '\0';
1018	unroll_tree_refs(ctx, NULL, 0);
1019	WARN_ON(!list_empty(&ctx->killed_trees));
1020	audit_free_module(ctx);
1021	ctx->fds[0] = -1;
1022	ctx->type = 0; /* reset last for audit_free_*() */
1023}
1024
1025static inline struct audit_context *audit_alloc_context(enum audit_state state)
1026{
1027	struct audit_context *context;
1028
1029	context = kzalloc(sizeof(*context), GFP_KERNEL);
1030	if (!context)
1031		return NULL;
1032	context->context = AUDIT_CTX_UNUSED;
1033	context->state = state;
1034	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1035	INIT_LIST_HEAD(&context->killed_trees);
1036	INIT_LIST_HEAD(&context->names_list);
1037	context->fds[0] = -1;
1038	context->return_valid = AUDITSC_INVALID;
1039	return context;
1040}
1041
1042/**
1043 * audit_alloc - allocate an audit context block for a task
1044 * @tsk: task
1045 *
1046 * Filter on the task information and allocate a per-task audit context
1047 * if necessary.  Doing so turns on system call auditing for the
1048 * specified task.  This is called from copy_process, so no lock is
1049 * needed.
1050 */
1051int audit_alloc(struct task_struct *tsk)
1052{
1053	struct audit_context *context;
1054	enum audit_state     state;
1055	char *key = NULL;
1056
1057	if (likely(!audit_ever_enabled))
1058		return 0;
1059
1060	state = audit_filter_task(tsk, &key);
1061	if (state == AUDIT_STATE_DISABLED) {
1062		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1063		return 0;
1064	}
1065
1066	if (!(context = audit_alloc_context(state))) {
1067		kfree(key);
1068		audit_log_lost("out of memory in audit_alloc");
1069		return -ENOMEM;
1070	}
1071	context->filterkey = key;
1072
1073	audit_set_context(tsk, context);
1074	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1075	return 0;
1076}
1077
1078static inline void audit_free_context(struct audit_context *context)
1079{
1080	/* resetting is extra work, but it is likely just noise */
1081	audit_reset_context(context);
1082	audit_proctitle_free(context);
1083	free_tree_refs(context);
1084	kfree(context->filterkey);
1085	kfree(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086}
1087
1088static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1089				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1090				 u32 sid, char *comm)
1091{
1092	struct audit_buffer *ab;
1093	char *ctx = NULL;
1094	u32 len;
1095	int rc = 0;
1096
1097	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1098	if (!ab)
1099		return rc;
1100
1101	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102			 from_kuid(&init_user_ns, auid),
1103			 from_kuid(&init_user_ns, uid), sessionid);
1104	if (sid) {
1105		if (security_secid_to_secctx(sid, &ctx, &len)) {
1106			audit_log_format(ab, " obj=(none)");
1107			rc = 1;
1108		} else {
1109			audit_log_format(ab, " obj=%s", ctx);
1110			security_release_secctx(ctx, len);
1111		}
1112	}
1113	audit_log_format(ab, " ocomm=");
1114	audit_log_untrustedstring(ab, comm);
1115	audit_log_end(ab);
1116
1117	return rc;
1118}
1119
1120static void audit_log_execve_info(struct audit_context *context,
1121				  struct audit_buffer **ab)
1122{
1123	long len_max;
1124	long len_rem;
1125	long len_full;
1126	long len_buf;
1127	long len_abuf = 0;
1128	long len_tmp;
1129	bool require_data;
1130	bool encode;
1131	unsigned int iter;
1132	unsigned int arg;
1133	char *buf_head;
1134	char *buf;
1135	const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1138	 *       data we put in the audit record for this argument (see the
1139	 *       code below) ... at this point in time 96 is plenty */
1140	char abuf[96];
1141
1142	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143	 *       current value of 7500 is not as important as the fact that it
1144	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1145	 *       room if we go over a little bit in the logging below */
1146	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147	len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149	/* scratch buffer to hold the userspace args */
1150	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151	if (!buf_head) {
1152		audit_panic("out of memory for argv string");
1153		return;
1154	}
1155	buf = buf_head;
1156
1157	audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159	len_rem = len_max;
1160	len_buf = 0;
1161	len_full = 0;
1162	require_data = true;
1163	encode = false;
1164	iter = 0;
1165	arg = 0;
1166	do {
1167		/* NOTE: we don't ever want to trust this value for anything
1168		 *       serious, but the audit record format insists we
1169		 *       provide an argument length for really long arguments,
1170		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171		 *       to use strncpy_from_user() to obtain this value for
1172		 *       recording in the log, although we don't use it
1173		 *       anywhere here to avoid a double-fetch problem */
1174		if (len_full == 0)
1175			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177		/* read more data from userspace */
1178		if (require_data) {
1179			/* can we make more room in the buffer? */
1180			if (buf != buf_head) {
1181				memmove(buf_head, buf, len_buf);
1182				buf = buf_head;
1183			}
1184
1185			/* fetch as much as we can of the argument */
1186			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187						    len_max - len_buf);
1188			if (len_tmp == -EFAULT) {
1189				/* unable to copy from userspace */
1190				send_sig(SIGKILL, current, 0);
1191				goto out;
1192			} else if (len_tmp == (len_max - len_buf)) {
1193				/* buffer is not large enough */
1194				require_data = true;
1195				/* NOTE: if we are going to span multiple
1196				 *       buffers force the encoding so we stand
1197				 *       a chance at a sane len_full value and
1198				 *       consistent record encoding */
1199				encode = true;
1200				len_full = len_full * 2;
1201				p += len_tmp;
1202			} else {
1203				require_data = false;
1204				if (!encode)
1205					encode = audit_string_contains_control(
1206								buf, len_tmp);
1207				/* try to use a trusted value for len_full */
1208				if (len_full < len_max)
1209					len_full = (encode ?
1210						    len_tmp * 2 : len_tmp);
1211				p += len_tmp + 1;
1212			}
1213			len_buf += len_tmp;
1214			buf_head[len_buf] = '\0';
1215
1216			/* length of the buffer in the audit record? */
1217			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1218		}
1219
1220		/* write as much as we can to the audit log */
1221		if (len_buf >= 0) {
1222			/* NOTE: some magic numbers here - basically if we
1223			 *       can't fit a reasonable amount of data into the
1224			 *       existing audit buffer, flush it and start with
1225			 *       a new buffer */
1226			if ((sizeof(abuf) + 8) > len_rem) {
1227				len_rem = len_max;
1228				audit_log_end(*ab);
1229				*ab = audit_log_start(context,
1230						      GFP_KERNEL, AUDIT_EXECVE);
1231				if (!*ab)
1232					goto out;
1233			}
1234
1235			/* create the non-arg portion of the arg record */
1236			len_tmp = 0;
1237			if (require_data || (iter > 0) ||
1238			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1239				if (iter == 0) {
1240					len_tmp += snprintf(&abuf[len_tmp],
1241							sizeof(abuf) - len_tmp,
1242							" a%d_len=%lu",
1243							arg, len_full);
1244				}
1245				len_tmp += snprintf(&abuf[len_tmp],
1246						    sizeof(abuf) - len_tmp,
1247						    " a%d[%d]=", arg, iter++);
1248			} else
1249				len_tmp += snprintf(&abuf[len_tmp],
1250						    sizeof(abuf) - len_tmp,
1251						    " a%d=", arg);
1252			WARN_ON(len_tmp >= sizeof(abuf));
1253			abuf[sizeof(abuf) - 1] = '\0';
1254
1255			/* log the arg in the audit record */
1256			audit_log_format(*ab, "%s", abuf);
1257			len_rem -= len_tmp;
1258			len_tmp = len_buf;
1259			if (encode) {
1260				if (len_abuf > len_rem)
1261					len_tmp = len_rem / 2; /* encoding */
1262				audit_log_n_hex(*ab, buf, len_tmp);
1263				len_rem -= len_tmp * 2;
1264				len_abuf -= len_tmp * 2;
1265			} else {
1266				if (len_abuf > len_rem)
1267					len_tmp = len_rem - 2; /* quotes */
1268				audit_log_n_string(*ab, buf, len_tmp);
1269				len_rem -= len_tmp + 2;
1270				/* don't subtract the "2" because we still need
1271				 * to add quotes to the remaining string */
1272				len_abuf -= len_tmp;
1273			}
1274			len_buf -= len_tmp;
1275			buf += len_tmp;
1276		}
1277
1278		/* ready to move to the next argument? */
1279		if ((len_buf == 0) && !require_data) {
1280			arg++;
1281			iter = 0;
1282			len_full = 0;
1283			require_data = true;
1284			encode = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285		}
1286	} while (arg < context->execve.argc);
1287
1288	/* NOTE: the caller handles the final audit_log_end() call */
 
 
 
 
 
 
1289
1290out:
1291	kfree(buf_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292}
1293
1294static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295			  kernel_cap_t *cap)
 
1296{
1297	int i;
 
 
 
 
 
 
 
 
1298
1299	if (cap_isclear(*cap)) {
1300		audit_log_format(ab, " %s=0", prefix);
 
 
 
 
 
 
 
 
 
1301		return;
1302	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	audit_log_format(ab, " %s=", prefix);
1304	CAP_FOR_EACH_U32(i)
1305		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
 
1306}
1307
1308static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309{
1310	if (name->fcap_ver == -1) {
1311		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1312		return;
1313	}
1314	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317			 name->fcap.fE, name->fcap_ver,
1318			 from_kuid(&init_user_ns, name->fcap.rootid));
1319}
1320
1321static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322{
1323	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324	const struct timespec64 *tk = &context->time.tk_injoffset;
1325	static const char * const ntp_name[] = {
1326		"offset",
1327		"freq",
1328		"status",
1329		"tai",
1330		"tick",
1331		"adjust",
1332	};
1333	int type;
1334
1335	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338				if (!*ab) {
1339					*ab = audit_log_start(context,
1340							GFP_KERNEL,
1341							AUDIT_TIME_ADJNTPVAL);
1342					if (!*ab)
1343						return;
1344				}
1345				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346						 ntp_name[type],
1347						 ntp->vals[type].oldval,
1348						 ntp->vals[type].newval);
1349				audit_log_end(*ab);
1350				*ab = NULL;
1351			}
1352		}
1353	}
1354	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355		if (!*ab) {
1356			*ab = audit_log_start(context, GFP_KERNEL,
1357					      AUDIT_TIME_INJOFFSET);
1358			if (!*ab)
1359				return;
1360		}
1361		audit_log_format(*ab, "sec=%lli nsec=%li",
1362				 (long long)tk->tv_sec, tk->tv_nsec);
1363		audit_log_end(*ab);
1364		*ab = NULL;
1365	}
 
 
 
1366}
1367
1368static void show_special(struct audit_context *context, int *call_panic)
1369{
1370	struct audit_buffer *ab;
1371	int i;
1372
1373	ab = audit_log_start(context, GFP_KERNEL, context->type);
1374	if (!ab)
1375		return;
1376
1377	switch (context->type) {
1378	case AUDIT_SOCKETCALL: {
1379		int nargs = context->socketcall.nargs;
1380
1381		audit_log_format(ab, "nargs=%d", nargs);
1382		for (i = 0; i < nargs; i++)
1383			audit_log_format(ab, " a%d=%lx", i,
1384				context->socketcall.args[i]);
1385		break; }
1386	case AUDIT_IPC: {
1387		u32 osid = context->ipc.osid;
1388
1389		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1390				 from_kuid(&init_user_ns, context->ipc.uid),
1391				 from_kgid(&init_user_ns, context->ipc.gid),
1392				 context->ipc.mode);
1393		if (osid) {
1394			char *ctx = NULL;
1395			u32 len;
1396
1397			if (security_secid_to_secctx(osid, &ctx, &len)) {
1398				audit_log_format(ab, " osid=%u", osid);
1399				*call_panic = 1;
1400			} else {
1401				audit_log_format(ab, " obj=%s", ctx);
1402				security_release_secctx(ctx, len);
1403			}
1404		}
1405		if (context->ipc.has_perm) {
1406			audit_log_end(ab);
1407			ab = audit_log_start(context, GFP_KERNEL,
1408					     AUDIT_IPC_SET_PERM);
1409			if (unlikely(!ab))
1410				return;
1411			audit_log_format(ab,
1412				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413				context->ipc.qbytes,
1414				context->ipc.perm_uid,
1415				context->ipc.perm_gid,
1416				context->ipc.perm_mode);
 
 
1417		}
1418		break; }
1419	case AUDIT_MQ_OPEN:
1420		audit_log_format(ab,
1421			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422			"mq_msgsize=%ld mq_curmsgs=%ld",
1423			context->mq_open.oflag, context->mq_open.mode,
1424			context->mq_open.attr.mq_flags,
1425			context->mq_open.attr.mq_maxmsg,
1426			context->mq_open.attr.mq_msgsize,
1427			context->mq_open.attr.mq_curmsgs);
1428		break;
1429	case AUDIT_MQ_SENDRECV:
1430		audit_log_format(ab,
1431			"mqdes=%d msg_len=%zd msg_prio=%u "
1432			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433			context->mq_sendrecv.mqdes,
1434			context->mq_sendrecv.msg_len,
1435			context->mq_sendrecv.msg_prio,
1436			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437			context->mq_sendrecv.abs_timeout.tv_nsec);
1438		break;
1439	case AUDIT_MQ_NOTIFY:
1440		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441				context->mq_notify.mqdes,
1442				context->mq_notify.sigev_signo);
1443		break;
1444	case AUDIT_MQ_GETSETATTR: {
1445		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446
1447		audit_log_format(ab,
1448			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449			"mq_curmsgs=%ld ",
1450			context->mq_getsetattr.mqdes,
1451			attr->mq_flags, attr->mq_maxmsg,
1452			attr->mq_msgsize, attr->mq_curmsgs);
1453		break; }
1454	case AUDIT_CAPSET:
1455		audit_log_format(ab, "pid=%d", context->capset.pid);
1456		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1460		break;
1461	case AUDIT_MMAP:
1462		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463				 context->mmap.flags);
1464		break;
1465	case AUDIT_OPENAT2:
1466		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467				 context->openat2.flags,
1468				 context->openat2.mode,
1469				 context->openat2.resolve);
1470		break;
1471	case AUDIT_EXECVE:
1472		audit_log_execve_info(context, &ab);
1473		break;
1474	case AUDIT_KERN_MODULE:
1475		audit_log_format(ab, "name=");
1476		if (context->module.name) {
1477			audit_log_untrustedstring(ab, context->module.name);
1478		} else
1479			audit_log_format(ab, "(null)");
1480
1481		break;
1482	case AUDIT_TIME_ADJNTPVAL:
1483	case AUDIT_TIME_INJOFFSET:
1484		/* this call deviates from the rest, eating the buffer */
1485		audit_log_time(context, &ab);
1486		break;
1487	}
1488	audit_log_end(ab);
1489}
1490
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493	char *end = proctitle + len - 1;
1494
1495	while (end > proctitle && !isprint(*end))
1496		end--;
1497
1498	/* catch the case where proctitle is only 1 non-print character */
1499	len = end - proctitle + 1;
1500	len -= isprint(proctitle[len-1]) == 0;
1501	return len;
1502}
1503
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513		    const struct path *path, int record_num, int *call_panic)
1514{
 
 
1515	struct audit_buffer *ab;
 
 
1516
1517	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518	if (!ab)
1519		return;
1520
1521	audit_log_format(ab, "item=%d", record_num);
1522
1523	if (path)
1524		audit_log_d_path(ab, " name=", path);
1525	else if (n->name) {
1526		switch (n->name_len) {
1527		case AUDIT_NAME_FULL:
1528			/* log the full path */
1529			audit_log_format(ab, " name=");
1530			audit_log_untrustedstring(ab, n->name->name);
1531			break;
1532		case 0:
1533			/* name was specified as a relative path and the
1534			 * directory component is the cwd
1535			 */
1536			if (context->pwd.dentry && context->pwd.mnt)
1537				audit_log_d_path(ab, " name=", &context->pwd);
1538			else
1539				audit_log_format(ab, " name=(null)");
1540			break;
1541		default:
1542			/* log the name's directory component */
1543			audit_log_format(ab, " name=");
1544			audit_log_n_untrustedstring(ab, n->name->name,
1545						    n->name_len);
1546		}
1547	} else
1548		audit_log_format(ab, " name=(null)");
1549
1550	if (n->ino != AUDIT_INO_UNSET)
1551		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552				 n->ino,
1553				 MAJOR(n->dev),
1554				 MINOR(n->dev),
1555				 n->mode,
1556				 from_kuid(&init_user_ns, n->uid),
1557				 from_kgid(&init_user_ns, n->gid),
1558				 MAJOR(n->rdev),
1559				 MINOR(n->rdev));
1560	if (n->osid != 0) {
1561		char *ctx = NULL;
1562		u32 len;
1563
1564		if (security_secid_to_secctx(
1565			n->osid, &ctx, &len)) {
1566			audit_log_format(ab, " osid=%u", n->osid);
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 (ctx->return_valid == AUDITSC_SUCCESS ?
1656				  "yes" : "no"),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 (context->return_valid == AUDITSC_SUCCESS ?
1699					  "yes" : "no"),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
 
 
 
 
 
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  axs->target_sid[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  context->target_sid, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
 
 
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
1830	if (!context)
 
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
 
2012{
2013	struct audit_context *context = audit_context();
 
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024	}
 
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
2044	context->current_state  = state;
2045	ktime_get_coarse_real_ts64(&context->ctime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
 
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
 
 
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
 
2079
2080out:
2081	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
 
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
 
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
 
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for(;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
 
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			n->name->refcnt++;
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
2234		return;
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
 
 
 
 
2238		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	name->refcnt++;
 
 
 
 
 
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
 
 
 
 
 
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
 
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getsecid(inode, &name->osid);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
 
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		name->refcnt++;
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
2462	/* is there a matching child entry? */
2463	list_for_each_entry(n, &context->names_list, list) {
2464		/* can only match entries that have a name */
2465		if (!n->name ||
2466		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2467			continue;
2468
2469		if (!strcmp(dname->name, n->name->name) ||
2470		    !audit_compare_dname_path(dname, n->name->name,
2471						found_parent ?
2472						found_parent->name_len :
2473						AUDIT_NAME_FULL)) {
2474			if (n->type == AUDIT_TYPE_UNKNOWN)
2475				n->type = type;
2476			found_child = n;
2477			break;
2478		}
2479	}
2480
 
2481	if (!found_parent) {
2482		/* create a new, "anonymous" parent record */
2483		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2484		if (!n)
2485			return;
2486		audit_copy_inode(n, NULL, parent, 0);
 
 
2487	}
2488
2489	if (!found_child) {
2490		found_child = audit_alloc_name(context, type);
2491		if (!found_child)
2492			return;
 
2493
2494		/* Re-use the name belonging to the slot for a matching parent
2495		 * directory. All names for this context are relinquished in
2496		 * audit_free_names() */
2497		if (found_parent) {
2498			found_child->name = found_parent->name;
2499			found_child->name_len = AUDIT_NAME_FULL;
2500			found_child->name->refcnt++;
 
 
 
2501		}
2502	}
2503
2504	if (inode)
2505		audit_copy_inode(found_child, dentry, inode, 0);
2506	else
2507		found_child->ino = AUDIT_INO_UNSET;
 
2508}
2509EXPORT_SYMBOL_GPL(__audit_inode_child);
2510
2511/**
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2514 * @t: timespec64 to store time recorded in the audit_context
2515 * @serial: serial value that is recorded in the audit_context
2516 *
2517 * Also sets the context as auditable.
2518 */
2519int auditsc_get_stamp(struct audit_context *ctx,
2520		       struct timespec64 *t, unsigned int *serial)
2521{
2522	if (ctx->context == AUDIT_CTX_UNUSED)
2523		return 0;
2524	if (!ctx->serial)
2525		ctx->serial = audit_serial();
2526	t->tv_sec  = ctx->ctime.tv_sec;
2527	t->tv_nsec = ctx->ctime.tv_nsec;
2528	*serial    = ctx->serial;
2529	if (!ctx->prio) {
2530		ctx->prio = 1;
2531		ctx->current_state = AUDIT_STATE_RECORD;
2532	}
2533	return 1;
2534}
2535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536/**
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2538 * @oflag: open flag
2539 * @mode: mode bits
2540 * @attr: queue attributes
2541 *
2542 */
2543void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2544{
2545	struct audit_context *context = audit_context();
2546
2547	if (attr)
2548		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2549	else
2550		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2551
2552	context->mq_open.oflag = oflag;
2553	context->mq_open.mode = mode;
2554
2555	context->type = AUDIT_MQ_OPEN;
2556}
2557
2558/**
2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
2563 * @abs_timeout: Message timeout in absolute time
2564 *
2565 */
2566void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2567			const struct timespec64 *abs_timeout)
2568{
2569	struct audit_context *context = audit_context();
2570	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2571
2572	if (abs_timeout)
2573		memcpy(p, abs_timeout, sizeof(*p));
2574	else
2575		memset(p, 0, sizeof(*p));
2576
2577	context->mq_sendrecv.mqdes = mqdes;
2578	context->mq_sendrecv.msg_len = msg_len;
2579	context->mq_sendrecv.msg_prio = msg_prio;
2580
2581	context->type = AUDIT_MQ_SENDRECV;
2582}
2583
2584/**
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
2587 * @notification: Notification event
2588 *
2589 */
2590
2591void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2592{
2593	struct audit_context *context = audit_context();
2594
2595	if (notification)
2596		context->mq_notify.sigev_signo = notification->sigev_signo;
2597	else
2598		context->mq_notify.sigev_signo = 0;
2599
2600	context->mq_notify.mqdes = mqdes;
2601	context->type = AUDIT_MQ_NOTIFY;
2602}
2603
2604/**
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2607 * @mqstat: MQ flags
2608 *
2609 */
2610void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2611{
2612	struct audit_context *context = audit_context();
2613
2614	context->mq_getsetattr.mqdes = mqdes;
2615	context->mq_getsetattr.mqstat = *mqstat;
2616	context->type = AUDIT_MQ_GETSETATTR;
2617}
2618
2619/**
2620 * __audit_ipc_obj - record audit data for ipc object
2621 * @ipcp: ipc permissions
2622 *
2623 */
2624void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2625{
2626	struct audit_context *context = audit_context();
2627
2628	context->ipc.uid = ipcp->uid;
2629	context->ipc.gid = ipcp->gid;
2630	context->ipc.mode = ipcp->mode;
2631	context->ipc.has_perm = 0;
2632	security_ipc_getsecid(ipcp, &context->ipc.osid);
2633	context->type = AUDIT_IPC;
2634}
2635
2636/**
2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2642 *
2643 * Called only after audit_ipc_obj().
2644 */
2645void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2646{
2647	struct audit_context *context = audit_context();
2648
2649	context->ipc.qbytes = qbytes;
2650	context->ipc.perm_uid = uid;
2651	context->ipc.perm_gid = gid;
2652	context->ipc.perm_mode = mode;
2653	context->ipc.has_perm = 1;
2654}
2655
2656void __audit_bprm(struct linux_binprm *bprm)
2657{
2658	struct audit_context *context = audit_context();
 
 
 
 
2659
2660	context->type = AUDIT_EXECVE;
2661	context->execve.argc = bprm->argc;
 
 
 
 
 
 
 
 
 
2662}
2663
2664
2665/**
2666 * __audit_socketcall - record audit data for sys_socketcall
2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2668 * @args: args array
2669 *
2670 */
2671int __audit_socketcall(int nargs, unsigned long *args)
2672{
2673	struct audit_context *context = audit_context();
 
 
 
2674
2675	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2676		return -EINVAL;
2677	context->type = AUDIT_SOCKETCALL;
2678	context->socketcall.nargs = nargs;
2679	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2680	return 0;
2681}
2682
2683/**
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2687 *
2688 */
2689void __audit_fd_pair(int fd1, int fd2)
2690{
2691	struct audit_context *context = audit_context();
2692
2693	context->fds[0] = fd1;
2694	context->fds[1] = fd2;
2695}
2696
2697/**
2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2701 *
2702 * Returns 0 for success or NULL context or < 0 on error.
2703 */
2704int __audit_sockaddr(int len, void *a)
2705{
2706	struct audit_context *context = audit_context();
 
 
 
2707
2708	if (!context->sockaddr) {
2709		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2710
2711		if (!p)
2712			return -ENOMEM;
2713		context->sockaddr = p;
2714	}
2715
2716	context->sockaddr_len = len;
2717	memcpy(context->sockaddr, a, len);
2718	return 0;
2719}
2720
2721void __audit_ptrace(struct task_struct *t)
2722{
2723	struct audit_context *context = audit_context();
2724
2725	context->target_pid = task_tgid_nr(t);
2726	context->target_auid = audit_get_loginuid(t);
2727	context->target_uid = task_uid(t);
2728	context->target_sessionid = audit_get_sessionid(t);
2729	security_task_getsecid_obj(t, &context->target_sid);
2730	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2731}
2732
2733/**
2734 * audit_signal_info_syscall - record signal info for syscalls
 
2735 * @t: task being signaled
2736 *
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2739 */
2740int audit_signal_info_syscall(struct task_struct *t)
2741{
2742	struct audit_aux_data_pids *axp;
2743	struct audit_context *ctx = audit_context();
2744	kuid_t t_uid = task_uid(t);
2745
2746	if (!audit_signals || audit_dummy_context())
2747		return 0;
 
 
 
 
 
 
 
 
 
 
 
2748
2749	/* optimize the common case by putting first signal recipient directly
2750	 * in audit_context */
2751	if (!ctx->target_pid) {
2752		ctx->target_pid = task_tgid_nr(t);
2753		ctx->target_auid = audit_get_loginuid(t);
2754		ctx->target_uid = t_uid;
2755		ctx->target_sessionid = audit_get_sessionid(t);
2756		security_task_getsecid_obj(t, &ctx->target_sid);
2757		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2758		return 0;
2759	}
2760
2761	axp = (void *)ctx->aux_pids;
2762	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764		if (!axp)
2765			return -ENOMEM;
2766
2767		axp->d.type = AUDIT_OBJ_PID;
2768		axp->d.next = ctx->aux_pids;
2769		ctx->aux_pids = (void *)axp;
2770	}
2771	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2772
2773	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2774	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2775	axp->target_uid[axp->pid_count] = t_uid;
2776	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2777	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2778	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2779	axp->pid_count++;
2780
2781	return 0;
2782}
2783
2784/**
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
2789 *
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2792 *
2793 * -Eric
2794 */
2795int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796			   const struct cred *new, const struct cred *old)
2797{
2798	struct audit_aux_data_bprm_fcaps *ax;
2799	struct audit_context *context = audit_context();
2800	struct cpu_vfs_cap_data vcaps;
 
2801
2802	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803	if (!ax)
2804		return -ENOMEM;
2805
2806	ax->d.type = AUDIT_BPRM_FCAPS;
2807	ax->d.next = context->aux;
2808	context->aux = (void *)ax;
2809
2810	get_vfs_caps_from_disk(&init_user_ns,
2811			       bprm->file->f_path.dentry, &vcaps);
 
2812
2813	ax->fcap.permitted = vcaps.permitted;
2814	ax->fcap.inheritable = vcaps.inheritable;
2815	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2816	ax->fcap.rootid = vcaps.rootid;
2817	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2818
2819	ax->old_pcap.permitted   = old->cap_permitted;
2820	ax->old_pcap.inheritable = old->cap_inheritable;
2821	ax->old_pcap.effective   = old->cap_effective;
2822	ax->old_pcap.ambient     = old->cap_ambient;
2823
2824	ax->new_pcap.permitted   = new->cap_permitted;
2825	ax->new_pcap.inheritable = new->cap_inheritable;
2826	ax->new_pcap.effective   = new->cap_effective;
2827	ax->new_pcap.ambient     = new->cap_ambient;
2828	return 0;
2829}
2830
2831/**
2832 * __audit_log_capset - store information about the arguments to the capset syscall
 
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
2835 *
2836 * Record the arguments userspace sent to sys_capset for later printing by the
2837 * audit system if applicable
2838 */
2839void __audit_log_capset(const struct cred *new, const struct cred *old)
 
2840{
2841	struct audit_context *context = audit_context();
2842
2843	context->capset.pid = task_tgid_nr(current);
2844	context->capset.cap.effective   = new->cap_effective;
2845	context->capset.cap.inheritable = new->cap_effective;
2846	context->capset.cap.permitted   = new->cap_permitted;
2847	context->capset.cap.ambient     = new->cap_ambient;
2848	context->type = AUDIT_CAPSET;
2849}
2850
2851void __audit_mmap_fd(int fd, int flags)
2852{
2853	struct audit_context *context = audit_context();
2854
2855	context->mmap.fd = fd;
2856	context->mmap.flags = flags;
2857	context->type = AUDIT_MMAP;
2858}
2859
2860void __audit_openat2_how(struct open_how *how)
2861{
2862	struct audit_context *context = audit_context();
2863
2864	context->openat2.flags = how->flags;
2865	context->openat2.mode = how->mode;
2866	context->openat2.resolve = how->resolve;
2867	context->type = AUDIT_OPENAT2;
2868}
2869
2870void __audit_log_kern_module(char *name)
2871{
2872	struct audit_context *context = audit_context();
2873
2874	context->module.name = kstrdup(name, GFP_KERNEL);
2875	if (!context->module.name)
2876		audit_log_lost("out of memory in __audit_log_kern_module");
2877	context->type = AUDIT_KERN_MODULE;
2878}
2879
2880void __audit_fanotify(unsigned int response)
2881{
2882	audit_log(audit_context(), GFP_KERNEL,
2883		AUDIT_FANOTIFY,	"resp=%u", response);
2884}
2885
2886void __audit_tk_injoffset(struct timespec64 offset)
2887{
2888	struct audit_context *context = audit_context();
2889
2890	/* only set type if not already set by NTP */
2891	if (!context->type)
2892		context->type = AUDIT_TIME_INJOFFSET;
2893	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2894}
2895
2896void __audit_ntp_log(const struct audit_ntp_data *ad)
2897{
2898	struct audit_context *context = audit_context();
2899	int type;
2900
2901	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902		if (ad->vals[type].newval != ad->vals[type].oldval) {
2903			/* unconditionally set type, overwriting TK */
2904			context->type = AUDIT_TIME_ADJNTPVAL;
2905			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2906			break;
2907		}
2908}
2909
2910void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2911		       enum audit_nfcfgop op, gfp_t gfp)
2912{
2913	struct audit_buffer *ab;
2914	char comm[sizeof(current->comm)];
2915
2916	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2917	if (!ab)
2918		return;
2919	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920			 name, af, nentries, audit_nfcfgs[op].s);
2921
2922	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923	audit_log_task_context(ab); /* subj= */
2924	audit_log_format(ab, " comm=");
2925	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2926	audit_log_end(ab);
2927}
2928EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2929
2930static void audit_log_task(struct audit_buffer *ab)
2931{
2932	kuid_t auid, uid;
2933	kgid_t gid;
2934	unsigned int sessionid;
2935	char comm[sizeof(current->comm)];
2936
2937	auid = audit_get_loginuid(current);
2938	sessionid = audit_get_sessionid(current);
2939	current_uid_gid(&uid, &gid);
2940
2941	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2942			 from_kuid(&init_user_ns, auid),
2943			 from_kuid(&init_user_ns, uid),
2944			 from_kgid(&init_user_ns, gid),
2945			 sessionid);
2946	audit_log_task_context(ab);
2947	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2948	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2949	audit_log_d_path_exe(ab, current->mm);
2950}
2951
2952/**
2953 * audit_core_dumps - record information about processes that end abnormally
2954 * @signr: signal value
2955 *
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2958 */
2959void audit_core_dumps(long signr)
2960{
2961	struct audit_buffer *ab;
 
 
 
 
2962
2963	if (!audit_enabled)
2964		return;
2965
2966	if (signr == SIGQUIT)	/* don't care for those */
2967		return;
2968
2969	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2970	if (unlikely(!ab))
2971		return;
2972	audit_log_task(ab);
2973	audit_log_format(ab, " sig=%ld res=1", signr);
2974	audit_log_end(ab);
2975}
2976
2977/**
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2982 *
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2988 */
2989void audit_seccomp(unsigned long syscall, long signr, int code)
2990{
2991	struct audit_buffer *ab;
2992
2993	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2994	if (unlikely(!ab))
2995		return;
2996	audit_log_task(ab);
2997	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2998			 signr, syscall_get_arch(current), syscall,
2999			 in_compat_syscall(), KSTK_EIP(current), code);
3000	audit_log_end(ab);
3001}
3002
3003void audit_seccomp_actions_logged(const char *names, const char *old_names,
3004				  int res)
3005{
3006	struct audit_buffer *ab;
3007
3008	if (!audit_enabled)
3009		return;
3010
3011	ab = audit_log_start(audit_context(), GFP_KERNEL,
3012			     AUDIT_CONFIG_CHANGE);
3013	if (unlikely(!ab))
3014		return;
3015
3016	audit_log_format(ab,
3017			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018			 names, old_names, res);
 
 
 
 
 
 
 
3019	audit_log_end(ab);
3020}
3021
3022struct list_head *audit_killed_trees(void)
3023{
3024	struct audit_context *ctx = audit_context();
3025	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3026		return NULL;
3027	return &ctx->killed_trees;
3028}
v3.1
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
 
 
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
 
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
 
 
 
 
 
 
 
 
  70
  71#include "audit.h"
  72
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
 
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
 
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90	kernel_cap_t		permitted;
  91	kernel_cap_t		inheritable;
  92	union {
  93		unsigned int	fE;		/* effective bit of a file capability */
  94		kernel_cap_t	effective;	/* effective set of a process */
  95	};
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 104	const char	*name;
 105	int		name_len;	/* number of name's characters to log */
 106	unsigned	name_put;	/* call __putname() for this name */
 107	unsigned long	ino;
 108	dev_t		dev;
 109	umode_t		mode;
 110	uid_t		uid;
 111	gid_t		gid;
 112	dev_t		rdev;
 113	u32		osid;
 114	struct audit_cap_data fcap;
 115	unsigned int	fcap_ver;
 116};
 117
 118struct audit_aux_data {
 119	struct audit_aux_data	*next;
 120	int			type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM	0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS	16
 127
 128struct audit_aux_data_execve {
 129	struct audit_aux_data	d;
 130	int argc;
 131	int envc;
 132	struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136	struct audit_aux_data	d;
 137	pid_t			target_pid[AUDIT_AUX_PIDS];
 138	uid_t			target_auid[AUDIT_AUX_PIDS];
 139	uid_t			target_uid[AUDIT_AUX_PIDS];
 140	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 141	u32			target_sid[AUDIT_AUX_PIDS];
 142	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143	int			pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147	struct audit_aux_data	d;
 148	struct audit_cap_data	fcap;
 149	unsigned int		fcap_ver;
 150	struct audit_cap_data	old_pcap;
 151	struct audit_cap_data	new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155	struct audit_aux_data	d;
 156	pid_t			pid;
 157	struct audit_cap_data	cap;
 158};
 159
 160struct audit_tree_refs {
 161	struct audit_tree_refs *next;
 162	struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167	int		    dummy;	/* must be the first element */
 168	int		    in_syscall;	/* 1 if task is in a syscall */
 169	enum audit_state    state, current_state;
 170	unsigned int	    serial;     /* serial number for record */
 171	int		    major;      /* syscall number */
 172	struct timespec	    ctime;      /* time of syscall entry */
 173	unsigned long	    argv[4];    /* syscall arguments */
 174	long		    return_code;/* syscall return code */
 175	u64		    prio;
 176	int		    return_valid; /* return code is valid */
 177	int		    name_count;
 178	struct audit_names  names[AUDIT_NAMES];
 179	char *		    filterkey;	/* key for rule that triggered record */
 180	struct path	    pwd;
 181	struct audit_context *previous; /* For nested syscalls */
 182	struct audit_aux_data *aux;
 183	struct audit_aux_data *aux_pids;
 184	struct sockaddr_storage *sockaddr;
 185	size_t sockaddr_len;
 186				/* Save things to print about task_struct */
 187	pid_t		    pid, ppid;
 188	uid_t		    uid, euid, suid, fsuid;
 189	gid_t		    gid, egid, sgid, fsgid;
 190	unsigned long	    personality;
 191	int		    arch;
 192
 193	pid_t		    target_pid;
 194	uid_t		    target_auid;
 195	uid_t		    target_uid;
 196	unsigned int	    target_sessionid;
 197	u32		    target_sid;
 198	char		    target_comm[TASK_COMM_LEN];
 199
 200	struct audit_tree_refs *trees, *first_trees;
 201	struct list_head killed_trees;
 202	int tree_count;
 203
 204	int type;
 205	union {
 206		struct {
 207			int nargs;
 208			long args[6];
 209		} socketcall;
 210		struct {
 211			uid_t			uid;
 212			gid_t			gid;
 213			mode_t			mode;
 214			u32			osid;
 215			int			has_perm;
 216			uid_t			perm_uid;
 217			gid_t			perm_gid;
 218			mode_t			perm_mode;
 219			unsigned long		qbytes;
 220		} ipc;
 221		struct {
 222			mqd_t			mqdes;
 223			struct mq_attr 		mqstat;
 224		} mq_getsetattr;
 225		struct {
 226			mqd_t			mqdes;
 227			int			sigev_signo;
 228		} mq_notify;
 229		struct {
 230			mqd_t			mqdes;
 231			size_t			msg_len;
 232			unsigned int		msg_prio;
 233			struct timespec		abs_timeout;
 234		} mq_sendrecv;
 235		struct {
 236			int			oflag;
 237			mode_t			mode;
 238			struct mq_attr		attr;
 239		} mq_open;
 240		struct {
 241			pid_t			pid;
 242			struct audit_cap_data	cap;
 243		} capset;
 244		struct {
 245			int			fd;
 246			int			flags;
 247		} mmap;
 248	};
 249	int fds[2];
 250
 251#if AUDIT_DEBUG
 252	int		    put_count;
 253	int		    ino_count;
 254#endif
 255};
 256
 257static inline int open_arg(int flags, int mask)
 258{
 259	int n = ACC_MODE(flags);
 260	if (flags & (O_TRUNC | O_CREAT))
 261		n |= AUDIT_PERM_WRITE;
 262	return n & mask;
 263}
 264
 265static int audit_match_perm(struct audit_context *ctx, int mask)
 266{
 267	unsigned n;
 
 268	if (unlikely(!ctx))
 269		return 0;
 270	n = ctx->major;
 271
 272	switch (audit_classify_syscall(ctx->arch, n)) {
 273	case 0:	/* native */
 274		if ((mask & AUDIT_PERM_WRITE) &&
 275		     audit_match_class(AUDIT_CLASS_WRITE, n))
 276			return 1;
 277		if ((mask & AUDIT_PERM_READ) &&
 278		     audit_match_class(AUDIT_CLASS_READ, n))
 279			return 1;
 280		if ((mask & AUDIT_PERM_ATTR) &&
 281		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 282			return 1;
 283		return 0;
 284	case 1: /* 32bit on biarch */
 285		if ((mask & AUDIT_PERM_WRITE) &&
 286		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 287			return 1;
 288		if ((mask & AUDIT_PERM_READ) &&
 289		     audit_match_class(AUDIT_CLASS_READ_32, n))
 290			return 1;
 291		if ((mask & AUDIT_PERM_ATTR) &&
 292		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 293			return 1;
 294		return 0;
 295	case 2: /* open */
 296		return mask & ACC_MODE(ctx->argv[1]);
 297	case 3: /* openat */
 298		return mask & ACC_MODE(ctx->argv[2]);
 299	case 4: /* socketcall */
 300		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 301	case 5: /* execve */
 302		return mask & AUDIT_PERM_EXEC;
 
 
 303	default:
 304		return 0;
 305	}
 306}
 307
 308static int audit_match_filetype(struct audit_context *ctx, int which)
 309{
 310	unsigned index = which & ~S_IFMT;
 311	mode_t mode = which & S_IFMT;
 312
 313	if (unlikely(!ctx))
 314		return 0;
 315
 316	if (index >= ctx->name_count)
 317		return 0;
 318	if (ctx->names[index].ino == -1)
 319		return 0;
 320	if ((ctx->names[index].mode ^ mode) & S_IFMT)
 321		return 0;
 322	return 1;
 323}
 324
 325/*
 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 327 * ->first_trees points to its beginning, ->trees - to the current end of data.
 328 * ->tree_count is the number of free entries in array pointed to by ->trees.
 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 330 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 331 * it's going to remain 1-element for almost any setup) until we free context itself.
 332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 333 */
 334
 335#ifdef CONFIG_AUDIT_TREE
 336static void audit_set_auditable(struct audit_context *ctx)
 337{
 338	if (!ctx->prio) {
 339		ctx->prio = 1;
 340		ctx->current_state = AUDIT_RECORD_CONTEXT;
 341	}
 342}
 343
 344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 345{
 346	struct audit_tree_refs *p = ctx->trees;
 347	int left = ctx->tree_count;
 
 348	if (likely(left)) {
 349		p->c[--left] = chunk;
 350		ctx->tree_count = left;
 351		return 1;
 352	}
 353	if (!p)
 354		return 0;
 355	p = p->next;
 356	if (p) {
 357		p->c[30] = chunk;
 358		ctx->trees = p;
 359		ctx->tree_count = 30;
 360		return 1;
 361	}
 362	return 0;
 363}
 364
 365static int grow_tree_refs(struct audit_context *ctx)
 366{
 367	struct audit_tree_refs *p = ctx->trees;
 
 368	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 369	if (!ctx->trees) {
 370		ctx->trees = p;
 371		return 0;
 372	}
 373	if (p)
 374		p->next = ctx->trees;
 375	else
 376		ctx->first_trees = ctx->trees;
 377	ctx->tree_count = 31;
 378	return 1;
 379}
 380#endif
 381
 382static void unroll_tree_refs(struct audit_context *ctx,
 383		      struct audit_tree_refs *p, int count)
 384{
 385#ifdef CONFIG_AUDIT_TREE
 386	struct audit_tree_refs *q;
 387	int n;
 
 388	if (!p) {
 389		/* we started with empty chain */
 390		p = ctx->first_trees;
 391		count = 31;
 392		/* if the very first allocation has failed, nothing to do */
 393		if (!p)
 394			return;
 395	}
 396	n = count;
 397	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 398		while (n--) {
 399			audit_put_chunk(q->c[n]);
 400			q->c[n] = NULL;
 401		}
 402	}
 403	while (n-- > ctx->tree_count) {
 404		audit_put_chunk(q->c[n]);
 405		q->c[n] = NULL;
 406	}
 407	ctx->trees = p;
 408	ctx->tree_count = count;
 409#endif
 410}
 411
 412static void free_tree_refs(struct audit_context *ctx)
 413{
 414	struct audit_tree_refs *p, *q;
 
 415	for (p = ctx->first_trees; p; p = q) {
 416		q = p->next;
 417		kfree(p);
 418	}
 419}
 420
 421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 422{
 423#ifdef CONFIG_AUDIT_TREE
 424	struct audit_tree_refs *p;
 425	int n;
 
 426	if (!tree)
 427		return 0;
 428	/* full ones */
 429	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 430		for (n = 0; n < 31; n++)
 431			if (audit_tree_match(p->c[n], tree))
 432				return 1;
 433	}
 434	/* partial */
 435	if (p) {
 436		for (n = ctx->tree_count; n < 31; n++)
 437			if (audit_tree_match(p->c[n], tree))
 438				return 1;
 439	}
 440#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	return 0;
 442}
 443
 444/* Determine if any context name data matches a rule's watch data */
 445/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 446 * otherwise.
 447 *
 448 * If task_creation is true, this is an explicit indication that we are
 449 * filtering a task rule at task creation time.  This and tsk == current are
 450 * the only situations where tsk->cred may be accessed without an rcu read lock.
 451 */
 452static int audit_filter_rules(struct task_struct *tsk,
 453			      struct audit_krule *rule,
 454			      struct audit_context *ctx,
 455			      struct audit_names *name,
 456			      enum audit_state *state,
 457			      bool task_creation)
 458{
 459	const struct cred *cred;
 460	int i, j, need_sid = 1;
 461	u32 sid;
 
 
 
 
 462
 463	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 464
 465	for (i = 0; i < rule->field_count; i++) {
 466		struct audit_field *f = &rule->fields[i];
 
 467		int result = 0;
 
 468
 469		switch (f->type) {
 470		case AUDIT_PID:
 471			result = audit_comparator(tsk->pid, f->op, f->val);
 
 472			break;
 473		case AUDIT_PPID:
 474			if (ctx) {
 475				if (!ctx->ppid)
 476					ctx->ppid = sys_getppid();
 477				result = audit_comparator(ctx->ppid, f->op, f->val);
 478			}
 479			break;
 
 
 
 
 
 480		case AUDIT_UID:
 481			result = audit_comparator(cred->uid, f->op, f->val);
 482			break;
 483		case AUDIT_EUID:
 484			result = audit_comparator(cred->euid, f->op, f->val);
 485			break;
 486		case AUDIT_SUID:
 487			result = audit_comparator(cred->suid, f->op, f->val);
 488			break;
 489		case AUDIT_FSUID:
 490			result = audit_comparator(cred->fsuid, f->op, f->val);
 491			break;
 492		case AUDIT_GID:
 493			result = audit_comparator(cred->gid, f->op, f->val);
 
 
 
 
 
 
 
 494			break;
 495		case AUDIT_EGID:
 496			result = audit_comparator(cred->egid, f->op, f->val);
 
 
 
 
 
 
 
 497			break;
 498		case AUDIT_SGID:
 499			result = audit_comparator(cred->sgid, f->op, f->val);
 500			break;
 501		case AUDIT_FSGID:
 502			result = audit_comparator(cred->fsgid, f->op, f->val);
 
 
 
 
 503			break;
 504		case AUDIT_PERS:
 505			result = audit_comparator(tsk->personality, f->op, f->val);
 506			break;
 507		case AUDIT_ARCH:
 508			if (ctx)
 509				result = audit_comparator(ctx->arch, f->op, f->val);
 510			break;
 511
 512		case AUDIT_EXIT:
 513			if (ctx && ctx->return_valid)
 514				result = audit_comparator(ctx->return_code, f->op, f->val);
 515			break;
 516		case AUDIT_SUCCESS:
 517			if (ctx && ctx->return_valid) {
 518				if (f->val)
 519					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 520				else
 521					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 522			}
 523			break;
 524		case AUDIT_DEVMAJOR:
 525			if (name)
 526				result = audit_comparator(MAJOR(name->dev),
 527							  f->op, f->val);
 528			else if (ctx) {
 529				for (j = 0; j < ctx->name_count; j++) {
 530					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
 
 
 531						++result;
 532						break;
 533					}
 534				}
 535			}
 536			break;
 537		case AUDIT_DEVMINOR:
 538			if (name)
 539				result = audit_comparator(MINOR(name->dev),
 540							  f->op, f->val);
 541			else if (ctx) {
 542				for (j = 0; j < ctx->name_count; j++) {
 543					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 
 
 544						++result;
 545						break;
 546					}
 547				}
 548			}
 549			break;
 550		case AUDIT_INODE:
 551			if (name)
 552				result = (name->ino == f->val);
 553			else if (ctx) {
 554				for (j = 0; j < ctx->name_count; j++) {
 555					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556						++result;
 557						break;
 558					}
 559				}
 560			}
 561			break;
 562		case AUDIT_WATCH:
 563			if (name)
 564				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 565			break;
 566		case AUDIT_DIR:
 567			if (ctx)
 568				result = match_tree_refs(ctx, rule->tree);
 
 
 
 569			break;
 570		case AUDIT_LOGINUID:
 571			result = 0;
 572			if (ctx)
 573				result = audit_comparator(tsk->loginuid, f->op, f->val);
 
 
 
 
 
 
 
 574			break;
 575		case AUDIT_SUBJ_USER:
 576		case AUDIT_SUBJ_ROLE:
 577		case AUDIT_SUBJ_TYPE:
 578		case AUDIT_SUBJ_SEN:
 579		case AUDIT_SUBJ_CLR:
 580			/* NOTE: this may return negative values indicating
 581			   a temporary error.  We simply treat this as a
 582			   match for now to avoid losing information that
 583			   may be wanted.   An error message will also be
 584			   logged upon error */
 585			if (f->lsm_rule) {
 586				if (need_sid) {
 587					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 588					need_sid = 0;
 589				}
 590				result = security_audit_rule_match(sid, f->type,
 591				                                  f->op,
 592				                                  f->lsm_rule,
 593				                                  ctx);
 594			}
 595			break;
 596		case AUDIT_OBJ_USER:
 597		case AUDIT_OBJ_ROLE:
 598		case AUDIT_OBJ_TYPE:
 599		case AUDIT_OBJ_LEV_LOW:
 600		case AUDIT_OBJ_LEV_HIGH:
 601			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 602			   also applies here */
 603			if (f->lsm_rule) {
 604				/* Find files that match */
 605				if (name) {
 606					result = security_audit_rule_match(
 607					           name->osid, f->type, f->op,
 608					           f->lsm_rule, ctx);
 
 
 609				} else if (ctx) {
 610					for (j = 0; j < ctx->name_count; j++) {
 611						if (security_audit_rule_match(
 612						      ctx->names[j].osid,
 613						      f->type, f->op,
 614						      f->lsm_rule, ctx)) {
 
 615							++result;
 616							break;
 617						}
 618					}
 619				}
 620				/* Find ipc objects that match */
 621				if (!ctx || ctx->type != AUDIT_IPC)
 622					break;
 623				if (security_audit_rule_match(ctx->ipc.osid,
 624							      f->type, f->op,
 625							      f->lsm_rule, ctx))
 626					++result;
 627			}
 628			break;
 629		case AUDIT_ARG0:
 630		case AUDIT_ARG1:
 631		case AUDIT_ARG2:
 632		case AUDIT_ARG3:
 633			if (ctx)
 634				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 635			break;
 636		case AUDIT_FILTERKEY:
 637			/* ignore this field for filtering */
 638			result = 1;
 639			break;
 640		case AUDIT_PERM:
 641			result = audit_match_perm(ctx, f->val);
 
 
 642			break;
 643		case AUDIT_FILETYPE:
 644			result = audit_match_filetype(ctx, f->val);
 
 
 
 
 
 645			break;
 646		}
 647
 648		if (!result)
 649			return 0;
 650	}
 651
 652	if (ctx) {
 653		if (rule->prio <= ctx->prio)
 654			return 0;
 655		if (rule->filterkey) {
 656			kfree(ctx->filterkey);
 657			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 658		}
 659		ctx->prio = rule->prio;
 660	}
 661	switch (rule->action) {
 662	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 663	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 
 
 
 
 664	}
 665	return 1;
 666}
 667
 668/* At process creation time, we can determine if system-call auditing is
 669 * completely disabled for this task.  Since we only have the task
 670 * structure at this point, we can only check uid and gid.
 671 */
 672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 673{
 674	struct audit_entry *e;
 675	enum audit_state   state;
 676
 677	rcu_read_lock();
 678	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 679		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 680				       &state, true)) {
 681			if (state == AUDIT_RECORD_CONTEXT)
 682				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 683			rcu_read_unlock();
 684			return state;
 685		}
 686	}
 687	rcu_read_unlock();
 688	return AUDIT_BUILD_CONTEXT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691/* At syscall entry and exit time, this filter is called if the
 692 * audit_state is not low enough that auditing cannot take place, but is
 693 * also not high enough that we already know we have to write an audit
 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 
 
 
 
 
 
 
 
 
 695 */
 696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 697					     struct audit_context *ctx,
 698					     struct list_head *list)
 
 
 699{
 700	struct audit_entry *e;
 701	enum audit_state state;
 702
 703	if (audit_pid && tsk->tgid == audit_pid)
 704		return AUDIT_DISABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705
 706	rcu_read_lock();
 707	if (!list_empty(list)) {
 708		int word = AUDIT_WORD(ctx->major);
 709		int bit  = AUDIT_BIT(ctx->major);
 710
 711		list_for_each_entry_rcu(e, list, list) {
 712			if ((e->rule.mask[word] & bit) == bit &&
 713			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 714					       &state, false)) {
 715				rcu_read_unlock();
 716				ctx->current_state = state;
 717				return state;
 718			}
 719		}
 720	}
 721	rcu_read_unlock();
 722	return AUDIT_BUILD_CONTEXT;
 723}
 724
 725/* At syscall exit time, this filter is called if any audit_names[] have been
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * collected during syscall processing.  We only check rules in sublists at hash
 727 * buckets applicable to the inode numbers in audit_names[].
 728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 729 */
 730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 731{
 732	int i;
 733	struct audit_entry *e;
 734	enum audit_state state;
 735
 736	if (audit_pid && tsk->tgid == audit_pid)
 737		return;
 738
 739	rcu_read_lock();
 740	for (i = 0; i < ctx->name_count; i++) {
 741		int word = AUDIT_WORD(ctx->major);
 742		int bit  = AUDIT_BIT(ctx->major);
 743		struct audit_names *n = &ctx->names[i];
 744		int h = audit_hash_ino((u32)n->ino);
 745		struct list_head *list = &audit_inode_hash[h];
 746
 747		if (list_empty(list))
 748			continue;
 749
 750		list_for_each_entry_rcu(e, list, list) {
 751			if ((e->rule.mask[word] & bit) == bit &&
 752			    audit_filter_rules(tsk, &e->rule, ctx, n,
 753				    	       &state, false)) {
 754				rcu_read_unlock();
 755				ctx->current_state = state;
 756				return;
 757			}
 758		}
 759	}
 760	rcu_read_unlock();
 761}
 762
 763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 764						      int return_valid,
 765						      long return_code)
 766{
 767	struct audit_context *context = tsk->audit_context;
 
 
 
 768
 769	if (likely(!context))
 770		return NULL;
 771	context->return_valid = return_valid;
 772
 773	/*
 774	 * we need to fix up the return code in the audit logs if the actual
 775	 * return codes are later going to be fixed up by the arch specific
 776	 * signal handlers
 777	 *
 778	 * This is actually a test for:
 779	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 780	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 781	 *
 782	 * but is faster than a bunch of ||
 783	 */
 784	if (unlikely(return_code <= -ERESTARTSYS) &&
 785	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 786	    (return_code != -ENOIOCTLCMD))
 787		context->return_code = -EINTR;
 788	else
 789		context->return_code  = return_code;
 790
 791	if (context->in_syscall && !context->dummy) {
 792		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 793		audit_filter_inodes(tsk, context);
 794	}
 795
 796	tsk->audit_context = NULL;
 797	return context;
 798}
 799
 800static inline void audit_free_names(struct audit_context *context)
 801{
 802	int i;
 803
 804#if AUDIT_DEBUG == 2
 805	if (context->put_count + context->ino_count != context->name_count) {
 806		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 807		       " name_count=%d put_count=%d"
 808		       " ino_count=%d [NOT freeing]\n",
 809		       __FILE__, __LINE__,
 810		       context->serial, context->major, context->in_syscall,
 811		       context->name_count, context->put_count,
 812		       context->ino_count);
 813		for (i = 0; i < context->name_count; i++) {
 814			printk(KERN_ERR "names[%d] = %p = %s\n", i,
 815			       context->names[i].name,
 816			       context->names[i].name ?: "(null)");
 817		}
 818		dump_stack();
 819		return;
 820	}
 821#endif
 822#if AUDIT_DEBUG
 823	context->put_count  = 0;
 824	context->ino_count  = 0;
 825#endif
 826
 827	for (i = 0; i < context->name_count; i++) {
 828		if (context->names[i].name && context->names[i].name_put)
 829			__putname(context->names[i].name);
 830	}
 831	context->name_count = 0;
 832	path_put(&context->pwd);
 833	context->pwd.dentry = NULL;
 834	context->pwd.mnt = NULL;
 835}
 836
 837static inline void audit_free_aux(struct audit_context *context)
 838{
 839	struct audit_aux_data *aux;
 840
 841	while ((aux = context->aux)) {
 842		context->aux = aux->next;
 843		kfree(aux);
 844	}
 
 845	while ((aux = context->aux_pids)) {
 846		context->aux_pids = aux->next;
 847		kfree(aux);
 848	}
 
 849}
 850
 851static inline void audit_zero_context(struct audit_context *context,
 852				      enum audit_state state)
 
 
 
 
 
 
 
 
 853{
 854	memset(context, 0, sizeof(*context));
 855	context->state      = state;
 856	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857}
 858
 859static inline struct audit_context *audit_alloc_context(enum audit_state state)
 860{
 861	struct audit_context *context;
 862
 863	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 
 864		return NULL;
 865	audit_zero_context(context, state);
 
 
 866	INIT_LIST_HEAD(&context->killed_trees);
 
 
 
 867	return context;
 868}
 869
 870/**
 871 * audit_alloc - allocate an audit context block for a task
 872 * @tsk: task
 873 *
 874 * Filter on the task information and allocate a per-task audit context
 875 * if necessary.  Doing so turns on system call auditing for the
 876 * specified task.  This is called from copy_process, so no lock is
 877 * needed.
 878 */
 879int audit_alloc(struct task_struct *tsk)
 880{
 881	struct audit_context *context;
 882	enum audit_state     state;
 883	char *key = NULL;
 884
 885	if (likely(!audit_ever_enabled))
 886		return 0; /* Return if not auditing. */
 887
 888	state = audit_filter_task(tsk, &key);
 889	if (likely(state == AUDIT_DISABLED))
 
 890		return 0;
 
 891
 892	if (!(context = audit_alloc_context(state))) {
 893		kfree(key);
 894		audit_log_lost("out of memory in audit_alloc");
 895		return -ENOMEM;
 896	}
 897	context->filterkey = key;
 898
 899	tsk->audit_context  = context;
 900	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 901	return 0;
 902}
 903
 904static inline void audit_free_context(struct audit_context *context)
 905{
 906	struct audit_context *previous;
 907	int		     count = 0;
 908
 909	do {
 910		previous = context->previous;
 911		if (previous || (count &&  count < 10)) {
 912			++count;
 913			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 914			       " freeing multiple contexts (%d)\n",
 915			       context->serial, context->major,
 916			       context->name_count, count);
 917		}
 918		audit_free_names(context);
 919		unroll_tree_refs(context, NULL, 0);
 920		free_tree_refs(context);
 921		audit_free_aux(context);
 922		kfree(context->filterkey);
 923		kfree(context->sockaddr);
 924		kfree(context);
 925		context  = previous;
 926	} while (context);
 927	if (count >= 10)
 928		printk(KERN_ERR "audit: freed %d contexts\n", count);
 929}
 930
 931void audit_log_task_context(struct audit_buffer *ab)
 932{
 933	char *ctx = NULL;
 934	unsigned len;
 935	int error;
 936	u32 sid;
 937
 938	security_task_getsecid(current, &sid);
 939	if (!sid)
 940		return;
 941
 942	error = security_secid_to_secctx(sid, &ctx, &len);
 943	if (error) {
 944		if (error != -EINVAL)
 945			goto error_path;
 946		return;
 947	}
 948
 949	audit_log_format(ab, " subj=%s", ctx);
 950	security_release_secctx(ctx, len);
 951	return;
 952
 953error_path:
 954	audit_panic("error in audit_log_task_context");
 955	return;
 956}
 957
 958EXPORT_SYMBOL(audit_log_task_context);
 959
 960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 961{
 962	char name[sizeof(tsk->comm)];
 963	struct mm_struct *mm = tsk->mm;
 964	struct vm_area_struct *vma;
 965
 966	/* tsk == current */
 967
 968	get_task_comm(name, tsk);
 969	audit_log_format(ab, " comm=");
 970	audit_log_untrustedstring(ab, name);
 971
 972	if (mm) {
 973		down_read(&mm->mmap_sem);
 974		vma = mm->mmap;
 975		while (vma) {
 976			if ((vma->vm_flags & VM_EXECUTABLE) &&
 977			    vma->vm_file) {
 978				audit_log_d_path(ab, "exe=",
 979						 &vma->vm_file->f_path);
 980				break;
 981			}
 982			vma = vma->vm_next;
 983		}
 984		up_read(&mm->mmap_sem);
 985	}
 986	audit_log_task_context(ab);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990				 uid_t auid, uid_t uid, unsigned int sessionid,
 991				 u32 sid, char *comm)
 992{
 993	struct audit_buffer *ab;
 994	char *ctx = NULL;
 995	u32 len;
 996	int rc = 0;
 997
 998	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999	if (!ab)
1000		return rc;
1001
1002	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003			 uid, sessionid);
1004	if (security_secid_to_secctx(sid, &ctx, &len)) {
1005		audit_log_format(ab, " obj=(none)");
1006		rc = 1;
1007	} else {
1008		audit_log_format(ab, " obj=%s", ctx);
1009		security_release_secctx(ctx, len);
 
 
 
1010	}
1011	audit_log_format(ab, " ocomm=");
1012	audit_log_untrustedstring(ab, comm);
1013	audit_log_end(ab);
1014
1015	return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates.  We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message.  In one 7500 byte message we can log up to
1026 * about 1000 min size arguments.  That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030					struct audit_buffer **ab,
1031					int arg_num,
1032					size_t *len_sent,
1033					const char __user *p,
1034					char *buf)
1035{
1036	char arg_num_len_buf[12];
1037	const char __user *tmp_p = p;
1038	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040	size_t len, len_left, to_send;
1041	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042	unsigned int i, has_cntl = 0, too_long = 0;
1043	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044
1045	/* strnlen_user includes the null we don't want to send */
1046	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048	/*
1049	 * We just created this mm, if we can't find the strings
1050	 * we just copied into it something is _very_ wrong. Similar
1051	 * for strings that are too long, we should not have created
1052	 * any.
1053	 */
1054	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055		WARN_ON(1);
1056		send_sig(SIGKILL, current, 0);
1057		return -1;
1058	}
 
 
 
 
 
 
 
1059
1060	/* walk the whole argument looking for non-ascii chars */
1061	do {
1062		if (len_left > MAX_EXECVE_AUDIT_LEN)
1063			to_send = MAX_EXECVE_AUDIT_LEN;
1064		else
1065			to_send = len_left;
1066		ret = copy_from_user(buf, tmp_p, to_send);
1067		/*
1068		 * There is no reason for this copy to be short. We just
1069		 * copied them here, and the mm hasn't been exposed to user-
1070		 * space yet.
1071		 */
1072		if (ret) {
1073			WARN_ON(1);
1074			send_sig(SIGKILL, current, 0);
1075			return -1;
1076		}
1077		buf[to_send] = '\0';
1078		has_cntl = audit_string_contains_control(buf, to_send);
1079		if (has_cntl) {
1080			/*
1081			 * hex messages get logged as 2 bytes, so we can only
1082			 * send half as much in each message
1083			 */
1084			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086		}
1087		len_left -= to_send;
1088		tmp_p += to_send;
1089	} while (len_left > 0);
1090
1091	len_left = len;
1092
1093	if (len > max_execve_audit_len)
1094		too_long = 1;
1095
1096	/* rewalk the argument actually logging the message */
1097	for (i = 0; len_left > 0; i++) {
1098		int room_left;
1099
1100		if (len_left > max_execve_audit_len)
1101			to_send = max_execve_audit_len;
1102		else
1103			to_send = len_left;
1104
1105		/* do we have space left to send this argument in this ab? */
1106		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107		if (has_cntl)
1108			room_left -= (to_send * 2);
1109		else
1110			room_left -= to_send;
1111		if (room_left < 0) {
1112			*len_sent = 0;
1113			audit_log_end(*ab);
1114			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115			if (!*ab)
1116				return 0;
1117		}
 
1118
1119		/*
1120		 * first record needs to say how long the original string was
1121		 * so we can be sure nothing was lost.
1122		 */
1123		if ((i == 0) && (too_long))
1124			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125					 has_cntl ? 2*len : len);
1126
1127		/*
1128		 * normally arguments are small enough to fit and we already
1129		 * filled buf above when we checked for control characters
1130		 * so don't bother with another copy_from_user
1131		 */
1132		if (len >= max_execve_audit_len)
1133			ret = copy_from_user(buf, p, to_send);
1134		else
1135			ret = 0;
1136		if (ret) {
1137			WARN_ON(1);
1138			send_sig(SIGKILL, current, 0);
1139			return -1;
1140		}
1141		buf[to_send] = '\0';
1142
1143		/* actually log it */
1144		audit_log_format(*ab, " a%d", arg_num);
1145		if (too_long)
1146			audit_log_format(*ab, "[%d]", i);
1147		audit_log_format(*ab, "=");
1148		if (has_cntl)
1149			audit_log_n_hex(*ab, buf, to_send);
1150		else
1151			audit_log_string(*ab, buf);
1152
1153		p += to_send;
1154		len_left -= to_send;
1155		*len_sent += arg_num_len;
1156		if (has_cntl)
1157			*len_sent += to_send * 2;
1158		else
1159			*len_sent += to_send;
1160	}
1161	/* include the null we didn't log */
1162	return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166				  struct audit_buffer **ab,
1167				  struct audit_aux_data_execve *axi)
1168{
1169	int i;
1170	size_t len, len_sent = 0;
1171	const char __user *p;
1172	char *buf;
1173
1174	if (axi->mm != current->mm)
1175		return; /* execve failed, no additional info */
1176
1177	p = (const char __user *)axi->mm->arg_start;
1178
1179	audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181	/*
1182	 * we need some kernel buffer to hold the userspace args.  Just
1183	 * allocate one big one rather than allocating one of the right size
1184	 * for every single argument inside audit_log_single_execve_arg()
1185	 * should be <8k allocation so should be pretty safe.
1186	 */
1187	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188	if (!buf) {
1189		audit_panic("out of memory for argv string\n");
1190		return;
1191	}
1192
1193	for (i = 0; i < axi->argc; i++) {
1194		len = audit_log_single_execve_arg(context, ab, i,
1195						  &len_sent, p, buf);
1196		if (len <= 0)
1197			break;
1198		p += len;
1199	}
1200	kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205	int i;
1206
1207	audit_log_format(ab, " %s=", prefix);
1208	CAP_FOR_EACH_U32(i) {
1209		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210	}
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215	kernel_cap_t *perm = &name->fcap.permitted;
1216	kernel_cap_t *inh = &name->fcap.inheritable;
1217	int log = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219	if (!cap_isclear(*perm)) {
1220		audit_log_cap(ab, "cap_fp", perm);
1221		log = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222	}
1223	if (!cap_isclear(*inh)) {
1224		audit_log_cap(ab, "cap_fi", inh);
1225		log = 1;
 
 
 
 
 
 
 
 
1226	}
1227
1228	if (log)
1229		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234	struct audit_buffer *ab;
1235	int i;
1236
1237	ab = audit_log_start(context, GFP_KERNEL, context->type);
1238	if (!ab)
1239		return;
1240
1241	switch (context->type) {
1242	case AUDIT_SOCKETCALL: {
1243		int nargs = context->socketcall.nargs;
 
1244		audit_log_format(ab, "nargs=%d", nargs);
1245		for (i = 0; i < nargs; i++)
1246			audit_log_format(ab, " a%d=%lx", i,
1247				context->socketcall.args[i]);
1248		break; }
1249	case AUDIT_IPC: {
1250		u32 osid = context->ipc.osid;
1251
1252		audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
 
 
1254		if (osid) {
1255			char *ctx = NULL;
1256			u32 len;
 
1257			if (security_secid_to_secctx(osid, &ctx, &len)) {
1258				audit_log_format(ab, " osid=%u", osid);
1259				*call_panic = 1;
1260			} else {
1261				audit_log_format(ab, " obj=%s", ctx);
1262				security_release_secctx(ctx, len);
1263			}
1264		}
1265		if (context->ipc.has_perm) {
1266			audit_log_end(ab);
1267			ab = audit_log_start(context, GFP_KERNEL,
1268					     AUDIT_IPC_SET_PERM);
 
 
1269			audit_log_format(ab,
1270				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271				context->ipc.qbytes,
1272				context->ipc.perm_uid,
1273				context->ipc.perm_gid,
1274				context->ipc.perm_mode);
1275			if (!ab)
1276				return;
1277		}
1278		break; }
1279	case AUDIT_MQ_OPEN: {
1280		audit_log_format(ab,
1281			"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282			"mq_msgsize=%ld mq_curmsgs=%ld",
1283			context->mq_open.oflag, context->mq_open.mode,
1284			context->mq_open.attr.mq_flags,
1285			context->mq_open.attr.mq_maxmsg,
1286			context->mq_open.attr.mq_msgsize,
1287			context->mq_open.attr.mq_curmsgs);
1288		break; }
1289	case AUDIT_MQ_SENDRECV: {
1290		audit_log_format(ab,
1291			"mqdes=%d msg_len=%zd msg_prio=%u "
1292			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293			context->mq_sendrecv.mqdes,
1294			context->mq_sendrecv.msg_len,
1295			context->mq_sendrecv.msg_prio,
1296			context->mq_sendrecv.abs_timeout.tv_sec,
1297			context->mq_sendrecv.abs_timeout.tv_nsec);
1298		break; }
1299	case AUDIT_MQ_NOTIFY: {
1300		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301				context->mq_notify.mqdes,
1302				context->mq_notify.sigev_signo);
1303		break; }
1304	case AUDIT_MQ_GETSETATTR: {
1305		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1306		audit_log_format(ab,
1307			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308			"mq_curmsgs=%ld ",
1309			context->mq_getsetattr.mqdes,
1310			attr->mq_flags, attr->mq_maxmsg,
1311			attr->mq_msgsize, attr->mq_curmsgs);
1312		break; }
1313	case AUDIT_CAPSET: {
1314		audit_log_format(ab, "pid=%d", context->capset.pid);
1315		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318		break; }
1319	case AUDIT_MMAP: {
 
1320		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321				 context->mmap.flags);
1322		break; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323	}
1324	audit_log_end(ab);
1325}
1326
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328{
1329	const struct cred *cred;
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	const char *tty;
1334
1335	/* tsk == current */
1336	context->pid = tsk->pid;
1337	if (!context->ppid)
1338		context->ppid = sys_getppid();
1339	cred = current_cred();
1340	context->uid   = cred->uid;
1341	context->gid   = cred->gid;
1342	context->euid  = cred->euid;
1343	context->suid  = cred->suid;
1344	context->fsuid = cred->fsuid;
1345	context->egid  = cred->egid;
1346	context->sgid  = cred->sgid;
1347	context->fsgid = cred->fsgid;
1348	context->personality = tsk->personality;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351	if (!ab)
1352		return;		/* audit_panic has been called */
1353	audit_log_format(ab, "arch=%x syscall=%d",
1354			 context->arch, context->major);
1355	if (context->personality != PER_LINUX)
1356		audit_log_format(ab, " per=%lx", context->personality);
1357	if (context->return_valid)
1358		audit_log_format(ab, " success=%s exit=%ld",
1359				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360				 context->return_code);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	spin_lock_irq(&tsk->sighand->siglock);
1363	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364		tty = tsk->signal->tty->name;
1365	else
1366		tty = "(none)";
1367	spin_unlock_irq(&tsk->sighand->siglock);
 
 
1368
 
 
 
 
 
 
 
 
 
 
1369	audit_log_format(ab,
1370		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372		  " euid=%u suid=%u fsuid=%u"
1373		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374		  context->argv[0],
1375		  context->argv[1],
1376		  context->argv[2],
1377		  context->argv[3],
1378		  context->name_count,
1379		  context->ppid,
1380		  context->pid,
1381		  tsk->loginuid,
1382		  context->uid,
1383		  context->gid,
1384		  context->euid, context->suid, context->fsuid,
1385		  context->egid, context->sgid, context->fsgid, tty,
1386		  tsk->sessionid);
1387
 
 
 
 
 
 
 
 
 
1388
1389	audit_log_task_info(ab, tsk);
1390	audit_log_key(ab, context->filterkey);
1391	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392
1393	for (aux = context->aux; aux; aux = aux->next) {
1394
1395		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396		if (!ab)
1397			continue; /* audit_panic has been called */
1398
1399		switch (aux->type) {
1400
1401		case AUDIT_EXECVE: {
1402			struct audit_aux_data_execve *axi = (void *)aux;
1403			audit_log_execve_info(context, &ab, axi);
1404			break; }
1405
1406		case AUDIT_BPRM_FCAPS: {
1407			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1408			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1418			break; }
1419
1420		}
1421		audit_log_end(ab);
1422	}
1423
1424	if (context->type)
1425		show_special(context, &call_panic);
1426
1427	if (context->fds[0] >= 0) {
1428		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429		if (ab) {
1430			audit_log_format(ab, "fd0=%d fd1=%d",
1431					context->fds[0], context->fds[1]);
1432			audit_log_end(ab);
1433		}
1434	}
1435
1436	if (context->sockaddr_len) {
1437		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438		if (ab) {
1439			audit_log_format(ab, "saddr=");
1440			audit_log_n_hex(ab, (void *)context->sockaddr,
1441					context->sockaddr_len);
1442			audit_log_end(ab);
1443		}
1444	}
1445
1446	for (aux = context->aux_pids; aux; aux = aux->next) {
1447		struct audit_aux_data_pids *axs = (void *)aux;
1448
1449		for (i = 0; i < axs->pid_count; i++)
1450			if (audit_log_pid_context(context, axs->target_pid[i],
1451						  axs->target_auid[i],
1452						  axs->target_uid[i],
1453						  axs->target_sessionid[i],
1454						  axs->target_sid[i],
1455						  axs->target_comm[i]))
1456				call_panic = 1;
1457	}
1458
1459	if (context->target_pid &&
1460	    audit_log_pid_context(context, context->target_pid,
1461				  context->target_auid, context->target_uid,
1462				  context->target_sessionid,
1463				  context->target_sid, context->target_comm))
1464			call_panic = 1;
1465
1466	if (context->pwd.dentry && context->pwd.mnt) {
1467		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468		if (ab) {
1469			audit_log_d_path(ab, "cwd=", &context->pwd);
1470			audit_log_end(ab);
1471		}
1472	}
1473	for (i = 0; i < context->name_count; i++) {
1474		struct audit_names *n = &context->names[i];
1475
1476		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477		if (!ab)
1478			continue; /* audit_panic has been called */
 
 
 
1479
1480		audit_log_format(ab, "item=%d", i);
1481
1482		if (n->name) {
1483			switch(n->name_len) {
1484			case AUDIT_NAME_FULL:
1485				/* log the full path */
1486				audit_log_format(ab, " name=");
1487				audit_log_untrustedstring(ab, n->name);
1488				break;
1489			case 0:
1490				/* name was specified as a relative path and the
1491				 * directory component is the cwd */
1492				audit_log_d_path(ab, "name=", &context->pwd);
1493				break;
1494			default:
1495				/* log the name's directory component */
1496				audit_log_format(ab, " name=");
1497				audit_log_n_untrustedstring(ab, n->name,
1498							    n->name_len);
1499			}
1500		} else
1501			audit_log_format(ab, " name=(null)");
1502
1503		if (n->ino != (unsigned long)-1) {
1504			audit_log_format(ab, " inode=%lu"
1505					 " dev=%02x:%02x mode=%#o"
1506					 " ouid=%u ogid=%u rdev=%02x:%02x",
1507					 n->ino,
1508					 MAJOR(n->dev),
1509					 MINOR(n->dev),
1510					 n->mode,
1511					 n->uid,
1512					 n->gid,
1513					 MAJOR(n->rdev),
1514					 MINOR(n->rdev));
1515		}
1516		if (n->osid != 0) {
1517			char *ctx = NULL;
1518			u32 len;
1519			if (security_secid_to_secctx(
1520				n->osid, &ctx, &len)) {
1521				audit_log_format(ab, " osid=%u", n->osid);
1522				call_panic = 2;
1523			} else {
1524				audit_log_format(ab, " obj=%s", ctx);
1525				security_release_secctx(ctx, len);
1526			}
1527		}
1528
1529		audit_log_fcaps(ab, n);
1530
1531		audit_log_end(ab);
1532	}
1533
1534	/* Send end of event record to help user space know we are finished */
1535	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536	if (ab)
1537		audit_log_end(ab);
1538	if (call_panic)
1539		audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550	struct audit_context *context;
1551
1552	context = audit_get_context(tsk, 0, 0);
1553	if (likely(!context))
1554		return;
1555
1556	/* Check for system calls that do not go through the exit
1557	 * function (e.g., exit_group), then free context block.
1558	 * We use GFP_ATOMIC here because we might be doing this
1559	 * in the context of the idle thread */
1560	/* that can happen only if we are called from do_exit() */
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565
 
1566	audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry.  This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built.  If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587			 unsigned long a1, unsigned long a2,
1588			 unsigned long a3, unsigned long a4)
1589{
1590	struct task_struct *tsk = current;
1591	struct audit_context *context = tsk->audit_context;
1592	enum audit_state     state;
1593
1594	if (unlikely(!context))
1595		return;
1596
1597	/*
1598	 * This happens only on certain architectures that make system
1599	 * calls in kernel_thread via the entry.S interface, instead of
1600	 * with direct calls.  (If you are porting to a new
1601	 * architecture, hitting this condition can indicate that you
1602	 * got the _exit/_leave calls backward in entry.S.)
1603	 *
1604	 * i386     no
1605	 * x86_64   no
1606	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1607	 *
1608	 * This also happens with vm86 emulation in a non-nested manner
1609	 * (entries without exits), so this case must be caught.
1610	 */
1611	if (context->in_syscall) {
1612		struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615		printk(KERN_ERR
1616		       "audit(:%d) pid=%d in syscall=%d;"
1617		       " entering syscall=%d\n",
1618		       context->serial, tsk->pid, context->major, major);
1619#endif
1620		newctx = audit_alloc_context(context->state);
1621		if (newctx) {
1622			newctx->previous   = context;
1623			context		   = newctx;
1624			tsk->audit_context = newctx;
1625		} else	{
1626			/* If we can't alloc a new context, the best we
1627			 * can do is to leak memory (any pending putname
1628			 * will be lost).  The only other alternative is
1629			 * to abandon auditing. */
1630			audit_zero_context(context, context->state);
1631		}
1632	}
1633	BUG_ON(context->in_syscall || context->name_count);
1634
1635	if (!audit_enabled)
 
1636		return;
1637
1638	context->arch	    = arch;
 
 
 
 
 
 
 
1639	context->major      = major;
1640	context->argv[0]    = a1;
1641	context->argv[1]    = a2;
1642	context->argv[2]    = a3;
1643	context->argv[3]    = a4;
1644
1645	state = context->state;
1646	context->dummy = !audit_n_rules;
1647	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648		context->prio = 0;
1649		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650	}
1651	if (likely(state == AUDIT_DISABLED))
1652		return;
1653
1654	context->serial     = 0;
1655	context->ctime      = CURRENT_TIME;
1656	context->in_syscall = 1;
1657	context->current_state  = state;
1658	context->ppid       = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663	struct audit_context *ctx = current->audit_context;
1664	struct audit_context *p = child->audit_context;
1665	if (!p || !ctx)
1666		return;
1667	if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668		return;
1669	p->arch = ctx->arch;
1670	p->major = ctx->major;
1671	memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672	p->ctime = ctx->ctime;
1673	p->dummy = ctx->dummy;
1674	p->in_syscall = ctx->in_syscall;
1675	p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676	p->ppid = current->pid;
1677	p->prio = ctx->prio;
1678	p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call.  If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information.  In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694	struct task_struct *tsk = current;
1695	struct audit_context *context;
1696
1697	context = audit_get_context(tsk, valid, return_code);
 
 
1698
1699	if (likely(!context))
1700		return;
1701
1702	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703		audit_log_exit(context, tsk);
1704
1705	context->in_syscall = 0;
1706	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
 
1707
1708	if (!list_empty(&context->killed_trees))
1709		audit_kill_trees(&context->killed_trees);
1710
1711	if (context->previous) {
1712		struct audit_context *new_context = context->previous;
1713		context->previous  = NULL;
1714		audit_free_context(context);
1715		tsk->audit_context = new_context;
1716	} else {
1717		audit_free_names(context);
1718		unroll_tree_refs(context, NULL, 0);
1719		audit_free_aux(context);
1720		context->aux = NULL;
1721		context->aux_pids = NULL;
1722		context->target_pid = 0;
1723		context->target_sid = 0;
1724		context->sockaddr_len = 0;
1725		context->type = 0;
1726		context->fds[0] = -1;
1727		if (context->state != AUDIT_RECORD_CONTEXT) {
1728			kfree(context->filterkey);
1729			context->filterkey = NULL;
1730		}
1731		tsk->audit_context = context;
1732	}
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738	struct audit_context *context;
1739	struct audit_tree_refs *p;
1740	struct audit_chunk *chunk;
1741	int count;
1742	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 
1743		return;
1744	context = current->audit_context;
1745	p = context->trees;
1746	count = context->tree_count;
1747	rcu_read_lock();
1748	chunk = audit_tree_lookup(inode);
1749	rcu_read_unlock();
1750	if (!chunk)
1751		return;
1752	if (likely(put_tree_ref(context, chunk)))
1753		return;
1754	if (unlikely(!grow_tree_refs(context))) {
1755		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756		audit_set_auditable(context);
1757		audit_put_chunk(chunk);
1758		unroll_tree_refs(context, p, count);
1759		return;
1760	}
1761	put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768	struct audit_context *context;
1769	struct audit_tree_refs *p;
1770	const struct dentry *d, *parent;
1771	struct audit_chunk *drop;
1772	unsigned long seq;
1773	int count;
1774
1775	context = current->audit_context;
1776	p = context->trees;
1777	count = context->tree_count;
1778retry:
1779	drop = NULL;
1780	d = dentry;
1781	rcu_read_lock();
1782	seq = read_seqbegin(&rename_lock);
1783	for(;;) {
1784		struct inode *inode = d->d_inode;
1785		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 
1786			struct audit_chunk *chunk;
 
1787			chunk = audit_tree_lookup(inode);
1788			if (chunk) {
1789				if (unlikely(!put_tree_ref(context, chunk))) {
1790					drop = chunk;
1791					break;
1792				}
1793			}
1794		}
1795		parent = d->d_parent;
1796		if (parent == d)
1797			break;
1798		d = parent;
1799	}
1800	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1801		rcu_read_unlock();
1802		if (!drop) {
1803			/* just a race with rename */
1804			unroll_tree_refs(context, p, count);
1805			goto retry;
1806		}
1807		audit_put_chunk(drop);
1808		if (grow_tree_refs(context)) {
1809			/* OK, got more space */
1810			unroll_tree_refs(context, p, count);
1811			goto retry;
1812		}
1813		/* too bad */
1814		printk(KERN_WARNING
1815			"out of memory, audit has lost a tree reference\n");
1816		unroll_tree_refs(context, p, count);
1817		audit_set_auditable(context);
1818		return;
1819	}
1820	rcu_read_unlock();
1821#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833	struct audit_context *context = current->audit_context;
 
1834
1835	if (IS_ERR(name) || !name)
1836		return;
1837
1838	if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841		       __FILE__, __LINE__, context->serial, name);
1842		dump_stack();
1843#endif
1844		return;
1845	}
1846	BUG_ON(context->name_count >= AUDIT_NAMES);
1847	context->names[context->name_count].name = name;
1848	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849	context->names[context->name_count].name_put = 1;
1850	context->names[context->name_count].ino  = (unsigned long)-1;
1851	context->names[context->name_count].osid = 0;
1852	++context->name_count;
1853	if (!context->pwd.dentry)
1854		get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866	struct audit_context *context = current->audit_context;
1867
1868	BUG_ON(!context);
1869	if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872		       __FILE__, __LINE__, context->serial, name);
1873		if (context->name_count) {
1874			int i;
1875			for (i = 0; i < context->name_count; i++)
1876				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877				       context->names[i].name,
1878				       context->names[i].name ?: "(null)");
1879		}
1880#endif
1881		__putname(name);
1882	}
1883#if AUDIT_DEBUG
1884	else {
1885		++context->put_count;
1886		if (context->put_count > context->name_count) {
1887			printk(KERN_ERR "%s:%d(:%d): major=%d"
1888			       " in_syscall=%d putname(%p) name_count=%d"
1889			       " put_count=%d\n",
1890			       __FILE__, __LINE__,
1891			       context->serial, context->major,
1892			       context->in_syscall, name, context->name_count,
1893			       context->put_count);
1894			dump_stack();
1895		}
1896	}
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901				const struct inode *inode)
1902{
1903	if (context->name_count >= AUDIT_NAMES) {
1904		if (inode)
1905			printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906			       "dev=%02x:%02x, inode=%lu\n",
1907			       MAJOR(inode->i_sb->s_dev),
1908			       MINOR(inode->i_sb->s_dev),
1909			       inode->i_ino);
1910
1911		else
1912			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913		return 1;
1914	}
1915	context->name_count++;
1916#if AUDIT_DEBUG
1917	context->ino_count++;
1918#endif
1919	return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925	struct cpu_vfs_cap_data caps;
1926	int rc;
1927
1928	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930	name->fcap.fE = 0;
1931	name->fcap_ver = 0;
1932
1933	if (!dentry)
1934		return 0;
1935
1936	rc = get_vfs_caps_from_disk(dentry, &caps);
1937	if (rc)
1938		return rc;
1939
1940	name->fcap.permitted = caps.permitted;
1941	name->fcap.inheritable = caps.inheritable;
1942	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 
 
1944
1945	return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951			     const struct inode *inode)
 
1952{
1953	name->ino   = inode->i_ino;
1954	name->dev   = inode->i_sb->s_dev;
1955	name->mode  = inode->i_mode;
1956	name->uid   = inode->i_uid;
1957	name->gid   = inode->i_gid;
1958	name->rdev  = inode->i_rdev;
1959	security_inode_getsecid(inode, &name->osid);
 
 
 
 
1960	audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
 
1971{
1972	int idx;
1973	struct audit_context *context = current->audit_context;
1974	const struct inode *inode = dentry->d_inode;
1975
1976	if (!context->in_syscall)
1977		return;
1978	if (context->name_count
1979	    && context->names[context->name_count-1].name
1980	    && context->names[context->name_count-1].name == name)
1981		idx = context->name_count - 1;
1982	else if (context->name_count > 1
1983		 && context->names[context->name_count-2].name
1984		 && context->names[context->name_count-2].name == name)
1985		idx = context->name_count - 2;
1986	else {
1987		/* FIXME: how much do we care about inodes that have no
1988		 * associated name? */
1989		if (audit_inc_name_count(context, inode))
1990			return;
1991		idx = context->name_count - 1;
1992		context->names[idx].name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993	}
1994	handle_path(dentry);
1995	audit_copy_inode(&context->names[idx], dentry, inode);
 
 
 
 
 
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
 
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created.  Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012			 const struct inode *parent)
2013{
2014	int idx;
2015	struct audit_context *context = current->audit_context;
2016	const char *found_parent = NULL, *found_child = NULL;
2017	const struct inode *inode = dentry->d_inode;
2018	const char *dname = dentry->d_name.name;
2019	int dirlen = 0;
 
 
2020
2021	if (!context->in_syscall)
2022		return;
2023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024	if (inode)
2025		handle_one(inode);
2026
2027	/* parent is more likely, look for it first */
2028	for (idx = 0; idx < context->name_count; idx++) {
2029		struct audit_names *n = &context->names[idx];
2030
2031		if (!n->name)
2032			continue;
2033
2034		if (n->ino == parent->i_ino &&
2035		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036			n->name_len = dirlen; /* update parent data in place */
2037			found_parent = n->name;
2038			goto add_names;
 
 
2039		}
2040	}
2041
2042	/* no matching parent, look for matching child */
2043	for (idx = 0; idx < context->name_count; idx++) {
2044		struct audit_names *n = &context->names[idx];
2045
2046		if (!n->name)
2047			continue;
2048
2049		/* strcmp() is the more likely scenario */
2050		if (!strcmp(dname, n->name) ||
2051		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052			if (inode)
2053				audit_copy_inode(n, NULL, inode);
2054			else
2055				n->ino = (unsigned long)-1;
2056			found_child = n->name;
2057			goto add_names;
2058		}
2059	}
2060
2061add_names:
2062	if (!found_parent) {
2063		if (audit_inc_name_count(context, parent))
 
 
2064			return;
2065		idx = context->name_count - 1;
2066		context->names[idx].name = NULL;
2067		audit_copy_inode(&context->names[idx], NULL, parent);
2068	}
2069
2070	if (!found_child) {
2071		if (audit_inc_name_count(context, inode))
 
2072			return;
2073		idx = context->name_count - 1;
2074
2075		/* Re-use the name belonging to the slot for a matching parent
2076		 * directory. All names for this context are relinquished in
2077		 * audit_free_names() */
2078		if (found_parent) {
2079			context->names[idx].name = found_parent;
2080			context->names[idx].name_len = AUDIT_NAME_FULL;
2081			/* don't call __putname() */
2082			context->names[idx].name_put = 0;
2083		} else {
2084			context->names[idx].name = NULL;
2085		}
 
2086
2087		if (inode)
2088			audit_copy_inode(&context->names[idx], NULL, inode);
2089		else
2090			context->names[idx].ino = (unsigned long)-1;
2091	}
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104		       struct timespec *t, unsigned int *serial)
2105{
2106	if (!ctx->in_syscall)
2107		return 0;
2108	if (!ctx->serial)
2109		ctx->serial = audit_serial();
2110	t->tv_sec  = ctx->ctime.tv_sec;
2111	t->tv_nsec = ctx->ctime.tv_nsec;
2112	*serial    = ctx->serial;
2113	if (!ctx->prio) {
2114		ctx->prio = 1;
2115		ctx->current_state = AUDIT_RECORD_CONTEXT;
2116	}
2117	return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134	unsigned int sessionid = atomic_inc_return(&session_id);
2135	struct audit_context *context = task->audit_context;
2136
2137	if (context && context->in_syscall) {
2138		struct audit_buffer *ab;
2139
2140		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141		if (ab) {
2142			audit_log_format(ab, "login pid=%d uid=%u "
2143				"old auid=%u new auid=%u"
2144				" old ses=%u new ses=%u",
2145				task->pid, task_uid(task),
2146				task->loginuid, loginuid,
2147				task->sessionid, sessionid);
2148			audit_log_end(ab);
2149		}
2150	}
2151	task->sessionid = sessionid;
2152	task->loginuid = loginuid;
2153	return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165	struct audit_context *context = current->audit_context;
2166
2167	if (attr)
2168		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169	else
2170		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172	context->mq_open.oflag = oflag;
2173	context->mq_open.mode = mode;
2174
2175	context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187			const struct timespec *abs_timeout)
2188{
2189	struct audit_context *context = current->audit_context;
2190	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192	if (abs_timeout)
2193		memcpy(p, abs_timeout, sizeof(struct timespec));
2194	else
2195		memset(p, 0, sizeof(struct timespec));
2196
2197	context->mq_sendrecv.mqdes = mqdes;
2198	context->mq_sendrecv.msg_len = msg_len;
2199	context->mq_sendrecv.msg_prio = msg_prio;
2200
2201	context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (notification)
2216		context->mq_notify.sigev_signo = notification->sigev_signo;
2217	else
2218		context->mq_notify.sigev_signo = 0;
2219
2220	context->mq_notify.mqdes = mqdes;
2221	context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232	struct audit_context *context = current->audit_context;
 
2233	context->mq_getsetattr.mqdes = mqdes;
2234	context->mq_getsetattr.mqstat = *mqstat;
2235	context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245	struct audit_context *context = current->audit_context;
 
2246	context->ipc.uid = ipcp->uid;
2247	context->ipc.gid = ipcp->gid;
2248	context->ipc.mode = ipcp->mode;
2249	context->ipc.has_perm = 0;
2250	security_ipc_getsecid(ipcp, &context->ipc.osid);
2251	context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265	struct audit_context *context = current->audit_context;
2266
2267	context->ipc.qbytes = qbytes;
2268	context->ipc.perm_uid = uid;
2269	context->ipc.perm_gid = gid;
2270	context->ipc.perm_mode = mode;
2271	context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276	struct audit_aux_data_execve *ax;
2277	struct audit_context *context = current->audit_context;
2278
2279	if (likely(!audit_enabled || !context || context->dummy))
2280		return 0;
2281
2282	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283	if (!ax)
2284		return -ENOMEM;
2285
2286	ax->argc = bprm->argc;
2287	ax->envc = bprm->envc;
2288	ax->mm = bprm->mm;
2289	ax->d.type = AUDIT_EXECVE;
2290	ax->d.next = context->aux;
2291	context->aux = (void *)ax;
2292	return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304	struct audit_context *context = current->audit_context;
2305
2306	if (likely(!context || context->dummy))
2307		return;
2308
 
 
2309	context->type = AUDIT_SOCKETCALL;
2310	context->socketcall.nargs = nargs;
2311	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322	struct audit_context *context = current->audit_context;
 
2323	context->fds[0] = fd1;
2324	context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336	struct audit_context *context = current->audit_context;
2337
2338	if (likely(!context || context->dummy))
2339		return 0;
2340
2341	if (!context->sockaddr) {
2342		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2343		if (!p)
2344			return -ENOMEM;
2345		context->sockaddr = p;
2346	}
2347
2348	context->sockaddr_len = len;
2349	memcpy(context->sockaddr, a, len);
2350	return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355	struct audit_context *context = current->audit_context;
2356
2357	context->target_pid = t->pid;
2358	context->target_auid = audit_get_loginuid(t);
2359	context->target_uid = task_uid(t);
2360	context->target_sessionid = audit_get_sessionid(t);
2361	security_task_getsecid(t, &context->target_sid);
2362	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375	struct audit_aux_data_pids *axp;
2376	struct task_struct *tsk = current;
2377	struct audit_context *ctx = tsk->audit_context;
2378	uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380	if (audit_pid && t->tgid == audit_pid) {
2381		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382			audit_sig_pid = tsk->pid;
2383			if (tsk->loginuid != -1)
2384				audit_sig_uid = tsk->loginuid;
2385			else
2386				audit_sig_uid = uid;
2387			security_task_getsecid(tsk, &audit_sig_sid);
2388		}
2389		if (!audit_signals || audit_dummy_context())
2390			return 0;
2391	}
2392
2393	/* optimize the common case by putting first signal recipient directly
2394	 * in audit_context */
2395	if (!ctx->target_pid) {
2396		ctx->target_pid = t->tgid;
2397		ctx->target_auid = audit_get_loginuid(t);
2398		ctx->target_uid = t_uid;
2399		ctx->target_sessionid = audit_get_sessionid(t);
2400		security_task_getsecid(t, &ctx->target_sid);
2401		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402		return 0;
2403	}
2404
2405	axp = (void *)ctx->aux_pids;
2406	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408		if (!axp)
2409			return -ENOMEM;
2410
2411		axp->d.type = AUDIT_OBJ_PID;
2412		axp->d.next = ctx->aux_pids;
2413		ctx->aux_pids = (void *)axp;
2414	}
2415	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417	axp->target_pid[axp->pid_count] = t->tgid;
2418	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419	axp->target_uid[axp->pid_count] = t_uid;
2420	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423	axp->pid_count++;
2424
2425	return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440			   const struct cred *new, const struct cred *old)
2441{
2442	struct audit_aux_data_bprm_fcaps *ax;
2443	struct audit_context *context = current->audit_context;
2444	struct cpu_vfs_cap_data vcaps;
2445	struct dentry *dentry;
2446
2447	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448	if (!ax)
2449		return -ENOMEM;
2450
2451	ax->d.type = AUDIT_BPRM_FCAPS;
2452	ax->d.next = context->aux;
2453	context->aux = (void *)ax;
2454
2455	dentry = dget(bprm->file->f_dentry);
2456	get_vfs_caps_from_disk(dentry, &vcaps);
2457	dput(dentry);
2458
2459	ax->fcap.permitted = vcaps.permitted;
2460	ax->fcap.inheritable = vcaps.inheritable;
2461	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2462	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464	ax->old_pcap.permitted   = old->cap_permitted;
2465	ax->old_pcap.inheritable = old->cap_inheritable;
2466	ax->old_pcap.effective   = old->cap_effective;
 
2467
2468	ax->new_pcap.permitted   = new->cap_permitted;
2469	ax->new_pcap.inheritable = new->cap_inheritable;
2470	ax->new_pcap.effective   = new->cap_effective;
 
2471	return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484		       const struct cred *new, const struct cred *old)
2485{
2486	struct audit_context *context = current->audit_context;
2487	context->capset.pid = pid;
 
2488	context->capset.cap.effective   = new->cap_effective;
2489	context->capset.cap.inheritable = new->cap_effective;
2490	context->capset.cap.permitted   = new->cap_permitted;
 
2491	context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496	struct audit_context *context = current->audit_context;
 
2497	context->mmap.fd = fd;
2498	context->mmap.flags = flags;
2499	context->type = AUDIT_MMAP;
2500}
2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511	struct audit_buffer *ab;
2512	u32 sid;
2513	uid_t auid = audit_get_loginuid(current), uid;
2514	gid_t gid;
2515	unsigned int sessionid = audit_get_sessionid(current);
2516
2517	if (!audit_enabled)
2518		return;
2519
2520	if (signr == SIGQUIT)	/* don't care for those */
2521		return;
2522
2523	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524	current_uid_gid(&uid, &gid);
2525	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526			 auid, uid, gid, sessionid);
2527	security_task_getsecid(current, &sid);
2528	if (sid) {
2529		char *ctx = NULL;
2530		u32 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532		if (security_secid_to_secctx(sid, &ctx, &len))
2533			audit_log_format(ab, " ssid=%u", sid);
2534		else {
2535			audit_log_format(ab, " subj=%s", ctx);
2536			security_release_secctx(ctx, len);
2537		}
2538	}
2539	audit_log_format(ab, " pid=%d comm=", current->pid);
2540	audit_log_untrustedstring(ab, current->comm);
2541	audit_log_format(ab, " sig=%ld", signr);
2542	audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547	struct audit_context *ctx = current->audit_context;
2548	if (likely(!ctx || !ctx->in_syscall))
2549		return NULL;
2550	return &ctx->killed_trees;
2551}