Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Red Hat, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_alloc.h"
 15#include "xfs_btree.h"
 16#include "xfs_btree_staging.h"
 17#include "xfs_rmap.h"
 18#include "xfs_rmap_btree.h"
 19#include "xfs_trace.h"
 20#include "xfs_error.h"
 21#include "xfs_extent_busy.h"
 22#include "xfs_ag.h"
 23#include "xfs_ag_resv.h"
 24
 25static struct kmem_cache	*xfs_rmapbt_cur_cache;
 26
 27/*
 28 * Reverse map btree.
 29 *
 30 * This is a per-ag tree used to track the owner(s) of a given extent. With
 31 * reflink it is possible for there to be multiple owners, which is a departure
 32 * from classic XFS. Owner records for data extents are inserted when the
 33 * extent is mapped and removed when an extent is unmapped.  Owner records for
 34 * all other block types (i.e. metadata) are inserted when an extent is
 35 * allocated and removed when an extent is freed. There can only be one owner
 36 * of a metadata extent, usually an inode or some other metadata structure like
 37 * an AG btree.
 38 *
 39 * The rmap btree is part of the free space management, so blocks for the tree
 40 * are sourced from the agfl. Hence we need transaction reservation support for
 41 * this tree so that the freelist is always large enough. This also impacts on
 42 * the minimum space we need to leave free in the AG.
 43 *
 44 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 45 * but it is the only way to enforce unique keys when a block can be owned by
 46 * multiple files at any offset. There's no need to order/search by extent
 47 * size for online updating/management of the tree. It is intended that most
 48 * reverse lookups will be to find the owner(s) of a particular block, or to
 49 * try to recover tree and file data from corrupt primary metadata.
 50 */
 51
 52static struct xfs_btree_cur *
 53xfs_rmapbt_dup_cursor(
 54	struct xfs_btree_cur	*cur)
 55{
 56	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 57				cur->bc_ag.agbp, cur->bc_ag.pag);
 58}
 59
 60STATIC void
 61xfs_rmapbt_set_root(
 62	struct xfs_btree_cur		*cur,
 63	const union xfs_btree_ptr	*ptr,
 64	int				inc)
 65{
 66	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 67	struct xfs_agf		*agf = agbp->b_addr;
 68	int			btnum = cur->bc_btnum;
 69
 70	ASSERT(ptr->s != 0);
 71
 72	agf->agf_roots[btnum] = ptr->s;
 73	be32_add_cpu(&agf->agf_levels[btnum], inc);
 74	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 75
 76	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 77}
 78
 79STATIC int
 80xfs_rmapbt_alloc_block(
 81	struct xfs_btree_cur		*cur,
 82	const union xfs_btree_ptr	*start,
 83	union xfs_btree_ptr		*new,
 84	int				*stat)
 85{
 86	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 87	struct xfs_agf		*agf = agbp->b_addr;
 88	struct xfs_perag	*pag = cur->bc_ag.pag;
 89	int			error;
 90	xfs_agblock_t		bno;
 91
 92	/* Allocate the new block from the freelist. If we can't, give up.  */
 93	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
 94				       &bno, 1);
 95	if (error)
 96		return error;
 97
 98	trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
 99	if (bno == NULLAGBLOCK) {
100		*stat = 0;
101		return 0;
102	}
103
104	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
105
106	new->s = cpu_to_be32(bno);
107	be32_add_cpu(&agf->agf_rmap_blocks, 1);
108	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
109
110	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
111
112	*stat = 1;
113	return 0;
114}
115
116STATIC int
117xfs_rmapbt_free_block(
118	struct xfs_btree_cur	*cur,
119	struct xfs_buf		*bp)
120{
121	struct xfs_buf		*agbp = cur->bc_ag.agbp;
122	struct xfs_agf		*agf = agbp->b_addr;
123	struct xfs_perag	*pag = cur->bc_ag.pag;
124	xfs_agblock_t		bno;
125	int			error;
126
127	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
128	trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
129			bno, 1);
130	be32_add_cpu(&agf->agf_rmap_blocks, -1);
131	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
132	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
133	if (error)
134		return error;
135
136	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
137			      XFS_EXTENT_BUSY_SKIP_DISCARD);
138
139	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
140	return 0;
141}
142
143STATIC int
144xfs_rmapbt_get_minrecs(
145	struct xfs_btree_cur	*cur,
146	int			level)
147{
148	return cur->bc_mp->m_rmap_mnr[level != 0];
149}
150
151STATIC int
152xfs_rmapbt_get_maxrecs(
153	struct xfs_btree_cur	*cur,
154	int			level)
155{
156	return cur->bc_mp->m_rmap_mxr[level != 0];
157}
158
 
 
 
 
 
 
 
 
 
 
159STATIC void
160xfs_rmapbt_init_key_from_rec(
161	union xfs_btree_key		*key,
162	const union xfs_btree_rec	*rec)
163{
164	key->rmap.rm_startblock = rec->rmap.rm_startblock;
165	key->rmap.rm_owner = rec->rmap.rm_owner;
166	key->rmap.rm_offset = rec->rmap.rm_offset;
167}
168
169/*
170 * The high key for a reverse mapping record can be computed by shifting
171 * the startblock and offset to the highest value that would still map
172 * to that record.  In practice this means that we add blockcount-1 to
173 * the startblock for all records, and if the record is for a data/attr
174 * fork mapping, we add blockcount-1 to the offset too.
175 */
176STATIC void
177xfs_rmapbt_init_high_key_from_rec(
178	union xfs_btree_key		*key,
179	const union xfs_btree_rec	*rec)
180{
181	uint64_t			off;
182	int				adj;
183
184	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
185
186	key->rmap.rm_startblock = rec->rmap.rm_startblock;
187	be32_add_cpu(&key->rmap.rm_startblock, adj);
188	key->rmap.rm_owner = rec->rmap.rm_owner;
189	key->rmap.rm_offset = rec->rmap.rm_offset;
190	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
191	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
192		return;
193	off = be64_to_cpu(key->rmap.rm_offset);
194	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
195	key->rmap.rm_offset = cpu_to_be64(off);
196}
197
198STATIC void
199xfs_rmapbt_init_rec_from_cur(
200	struct xfs_btree_cur	*cur,
201	union xfs_btree_rec	*rec)
202{
203	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
204	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
205	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
206	rec->rmap.rm_offset = cpu_to_be64(
207			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
208}
209
210STATIC void
211xfs_rmapbt_init_ptr_from_cur(
212	struct xfs_btree_cur	*cur,
213	union xfs_btree_ptr	*ptr)
214{
215	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
216
217	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
218
219	ptr->s = agf->agf_roots[cur->bc_btnum];
220}
221
 
 
 
 
 
 
 
 
 
 
222STATIC int64_t
223xfs_rmapbt_key_diff(
224	struct xfs_btree_cur		*cur,
225	const union xfs_btree_key	*key)
226{
227	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
228	const struct xfs_rmap_key	*kp = &key->rmap;
229	__u64				x, y;
230	int64_t				d;
231
232	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
233	if (d)
234		return d;
235
236	x = be64_to_cpu(kp->rm_owner);
237	y = rec->rm_owner;
238	if (x > y)
239		return 1;
240	else if (y > x)
241		return -1;
242
243	x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
244	y = rec->rm_offset;
245	if (x > y)
246		return 1;
247	else if (y > x)
248		return -1;
249	return 0;
250}
251
252STATIC int64_t
253xfs_rmapbt_diff_two_keys(
254	struct xfs_btree_cur		*cur,
255	const union xfs_btree_key	*k1,
256	const union xfs_btree_key	*k2)
 
257{
258	const struct xfs_rmap_key	*kp1 = &k1->rmap;
259	const struct xfs_rmap_key	*kp2 = &k2->rmap;
260	int64_t				d;
261	__u64				x, y;
262
 
 
 
263	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
264		       be32_to_cpu(kp2->rm_startblock);
265	if (d)
266		return d;
267
268	x = be64_to_cpu(kp1->rm_owner);
269	y = be64_to_cpu(kp2->rm_owner);
270	if (x > y)
271		return 1;
272	else if (y > x)
273		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
275	x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
276	y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
277	if (x > y)
278		return 1;
279	else if (y > x)
280		return -1;
281	return 0;
282}
283
284static xfs_failaddr_t
285xfs_rmapbt_verify(
286	struct xfs_buf		*bp)
287{
288	struct xfs_mount	*mp = bp->b_mount;
289	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
290	struct xfs_perag	*pag = bp->b_pag;
291	xfs_failaddr_t		fa;
292	unsigned int		level;
293
294	/*
295	 * magic number and level verification
296	 *
297	 * During growfs operations, we can't verify the exact level or owner as
298	 * the perag is not fully initialised and hence not attached to the
299	 * buffer.  In this case, check against the maximum tree depth.
300	 *
301	 * Similarly, during log recovery we will have a perag structure
302	 * attached, but the agf information will not yet have been initialised
303	 * from the on disk AGF. Again, we can only check against maximum limits
304	 * in this case.
305	 */
306	if (!xfs_verify_magic(bp, block->bb_magic))
307		return __this_address;
308
309	if (!xfs_has_rmapbt(mp))
310		return __this_address;
311	fa = xfs_btree_sblock_v5hdr_verify(bp);
312	if (fa)
313		return fa;
314
315	level = be16_to_cpu(block->bb_level);
316	if (pag && pag->pagf_init) {
317		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
318			return __this_address;
319	} else if (level >= mp->m_rmap_maxlevels)
320		return __this_address;
321
322	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
323}
324
325static void
326xfs_rmapbt_read_verify(
327	struct xfs_buf	*bp)
328{
329	xfs_failaddr_t	fa;
330
331	if (!xfs_btree_sblock_verify_crc(bp))
332		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333	else {
334		fa = xfs_rmapbt_verify(bp);
335		if (fa)
336			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337	}
338
339	if (bp->b_error)
340		trace_xfs_btree_corrupt(bp, _RET_IP_);
341}
342
343static void
344xfs_rmapbt_write_verify(
345	struct xfs_buf	*bp)
346{
347	xfs_failaddr_t	fa;
348
349	fa = xfs_rmapbt_verify(bp);
350	if (fa) {
351		trace_xfs_btree_corrupt(bp, _RET_IP_);
352		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353		return;
354	}
355	xfs_btree_sblock_calc_crc(bp);
356
357}
358
359const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
360	.name			= "xfs_rmapbt",
361	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
362	.verify_read		= xfs_rmapbt_read_verify,
363	.verify_write		= xfs_rmapbt_write_verify,
364	.verify_struct		= xfs_rmapbt_verify,
365};
366
367STATIC int
368xfs_rmapbt_keys_inorder(
369	struct xfs_btree_cur		*cur,
370	const union xfs_btree_key	*k1,
371	const union xfs_btree_key	*k2)
372{
373	uint32_t		x;
374	uint32_t		y;
375	uint64_t		a;
376	uint64_t		b;
377
378	x = be32_to_cpu(k1->rmap.rm_startblock);
379	y = be32_to_cpu(k2->rmap.rm_startblock);
380	if (x < y)
381		return 1;
382	else if (x > y)
383		return 0;
384	a = be64_to_cpu(k1->rmap.rm_owner);
385	b = be64_to_cpu(k2->rmap.rm_owner);
386	if (a < b)
387		return 1;
388	else if (a > b)
389		return 0;
390	a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
391	b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
392	if (a <= b)
393		return 1;
394	return 0;
395}
396
397STATIC int
398xfs_rmapbt_recs_inorder(
399	struct xfs_btree_cur		*cur,
400	const union xfs_btree_rec	*r1,
401	const union xfs_btree_rec	*r2)
402{
403	uint32_t		x;
404	uint32_t		y;
405	uint64_t		a;
406	uint64_t		b;
407
408	x = be32_to_cpu(r1->rmap.rm_startblock);
409	y = be32_to_cpu(r2->rmap.rm_startblock);
410	if (x < y)
411		return 1;
412	else if (x > y)
413		return 0;
414	a = be64_to_cpu(r1->rmap.rm_owner);
415	b = be64_to_cpu(r2->rmap.rm_owner);
416	if (a < b)
417		return 1;
418	else if (a > b)
419		return 0;
420	a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
421	b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
422	if (a <= b)
423		return 1;
424	return 0;
425}
426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427static const struct xfs_btree_ops xfs_rmapbt_ops = {
428	.rec_len		= sizeof(struct xfs_rmap_rec),
429	.key_len		= 2 * sizeof(struct xfs_rmap_key),
430
431	.dup_cursor		= xfs_rmapbt_dup_cursor,
432	.set_root		= xfs_rmapbt_set_root,
433	.alloc_block		= xfs_rmapbt_alloc_block,
434	.free_block		= xfs_rmapbt_free_block,
435	.get_minrecs		= xfs_rmapbt_get_minrecs,
436	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
437	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
438	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
439	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
440	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
441	.key_diff		= xfs_rmapbt_key_diff,
442	.buf_ops		= &xfs_rmapbt_buf_ops,
443	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
444	.keys_inorder		= xfs_rmapbt_keys_inorder,
445	.recs_inorder		= xfs_rmapbt_recs_inorder,
 
446};
447
448static struct xfs_btree_cur *
449xfs_rmapbt_init_common(
450	struct xfs_mount	*mp,
451	struct xfs_trans	*tp,
452	struct xfs_perag	*pag)
453{
454	struct xfs_btree_cur	*cur;
455
456	/* Overlapping btree; 2 keys per pointer. */
457	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RMAP,
458			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
459	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
460	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
461	cur->bc_ops = &xfs_rmapbt_ops;
462
463	/* take a reference for the cursor */
464	atomic_inc(&pag->pag_ref);
465	cur->bc_ag.pag = pag;
466
467	return cur;
468}
469
470/* Create a new reverse mapping btree cursor. */
471struct xfs_btree_cur *
472xfs_rmapbt_init_cursor(
473	struct xfs_mount	*mp,
474	struct xfs_trans	*tp,
475	struct xfs_buf		*agbp,
476	struct xfs_perag	*pag)
477{
478	struct xfs_agf		*agf = agbp->b_addr;
479	struct xfs_btree_cur	*cur;
480
481	cur = xfs_rmapbt_init_common(mp, tp, pag);
482	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
483	cur->bc_ag.agbp = agbp;
484	return cur;
485}
486
487/* Create a new reverse mapping btree cursor with a fake root for staging. */
488struct xfs_btree_cur *
489xfs_rmapbt_stage_cursor(
490	struct xfs_mount	*mp,
491	struct xbtree_afakeroot	*afake,
492	struct xfs_perag	*pag)
493{
494	struct xfs_btree_cur	*cur;
495
496	cur = xfs_rmapbt_init_common(mp, NULL, pag);
497	xfs_btree_stage_afakeroot(cur, afake);
498	return cur;
499}
500
501/*
502 * Install a new reverse mapping btree root.  Caller is responsible for
503 * invalidating and freeing the old btree blocks.
504 */
505void
506xfs_rmapbt_commit_staged_btree(
507	struct xfs_btree_cur	*cur,
508	struct xfs_trans	*tp,
509	struct xfs_buf		*agbp)
510{
511	struct xfs_agf		*agf = agbp->b_addr;
512	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
513
514	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
515
516	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
517	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
518	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
519	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
520				    XFS_AGF_RMAP_BLOCKS);
521	xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
522}
523
524/* Calculate number of records in a reverse mapping btree block. */
525static inline unsigned int
526xfs_rmapbt_block_maxrecs(
527	unsigned int		blocklen,
528	bool			leaf)
529{
530	if (leaf)
531		return blocklen / sizeof(struct xfs_rmap_rec);
532	return blocklen /
533		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
534}
535
536/*
537 * Calculate number of records in an rmap btree block.
538 */
539int
540xfs_rmapbt_maxrecs(
541	int			blocklen,
542	int			leaf)
543{
544	blocklen -= XFS_RMAP_BLOCK_LEN;
545	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
546}
547
548/* Compute the max possible height for reverse mapping btrees. */
549unsigned int
550xfs_rmapbt_maxlevels_ondisk(void)
551{
552	unsigned int		minrecs[2];
553	unsigned int		blocklen;
554
555	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
556
557	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
558	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
559
560	/*
561	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
562	 *
563	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
564	 * refcount record format) owners, which means that theoretically we
565	 * could face up to 2^64 rmap records.  However, we're likely to run
566	 * out of blocks in the AG long before that happens, which means that
567	 * we must compute the max height based on what the btree will look
568	 * like if it consumes almost all the blocks in the AG due to maximal
569	 * sharing factor.
570	 */
571	return xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS);
572}
573
574/* Compute the maximum height of an rmap btree. */
575void
576xfs_rmapbt_compute_maxlevels(
577	struct xfs_mount		*mp)
578{
579	if (!xfs_has_rmapbt(mp)) {
580		mp->m_rmap_maxlevels = 0;
581		return;
582	}
583
584	if (xfs_has_reflink(mp)) {
585		/*
586		 * Compute the asymptotic maxlevels for an rmap btree on a
587		 * filesystem that supports reflink.
588		 *
589		 * On a reflink filesystem, each AG block can have up to 2^32
590		 * (per the refcount record format) owners, which means that
591		 * theoretically we could face up to 2^64 rmap records.
592		 * However, we're likely to run out of blocks in the AG long
593		 * before that happens, which means that we must compute the
594		 * max height based on what the btree will look like if it
595		 * consumes almost all the blocks in the AG due to maximal
596		 * sharing factor.
597		 */
598		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
599				mp->m_sb.sb_agblocks);
600	} else {
601		/*
602		 * If there's no block sharing, compute the maximum rmapbt
603		 * height assuming one rmap record per AG block.
604		 */
605		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
606				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
607	}
608	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
609}
610
611/* Calculate the refcount btree size for some records. */
612xfs_extlen_t
613xfs_rmapbt_calc_size(
614	struct xfs_mount	*mp,
615	unsigned long long	len)
616{
617	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
618}
619
620/*
621 * Calculate the maximum refcount btree size.
622 */
623xfs_extlen_t
624xfs_rmapbt_max_size(
625	struct xfs_mount	*mp,
626	xfs_agblock_t		agblocks)
627{
628	/* Bail out if we're uninitialized, which can happen in mkfs. */
629	if (mp->m_rmap_mxr[0] == 0)
630		return 0;
631
632	return xfs_rmapbt_calc_size(mp, agblocks);
633}
634
635/*
636 * Figure out how many blocks to reserve and how many are used by this btree.
637 */
638int
639xfs_rmapbt_calc_reserves(
640	struct xfs_mount	*mp,
641	struct xfs_trans	*tp,
642	struct xfs_perag	*pag,
643	xfs_extlen_t		*ask,
644	xfs_extlen_t		*used)
645{
646	struct xfs_buf		*agbp;
647	struct xfs_agf		*agf;
648	xfs_agblock_t		agblocks;
649	xfs_extlen_t		tree_len;
650	int			error;
651
652	if (!xfs_has_rmapbt(mp))
653		return 0;
654
655	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
656	if (error)
657		return error;
658
659	agf = agbp->b_addr;
660	agblocks = be32_to_cpu(agf->agf_length);
661	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
662	xfs_trans_brelse(tp, agbp);
663
664	/*
665	 * The log is permanently allocated, so the space it occupies will
666	 * never be available for the kinds of things that would require btree
667	 * expansion.  We therefore can pretend the space isn't there.
668	 */
669	if (xfs_ag_contains_log(mp, pag->pag_agno))
670		agblocks -= mp->m_sb.sb_logblocks;
671
672	/* Reserve 1% of the AG or enough for 1 block per record. */
673	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
674	*used += tree_len;
675
676	return error;
677}
678
679int __init
680xfs_rmapbt_init_cur_cache(void)
681{
682	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
683			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
684			0, 0, NULL);
685
686	if (!xfs_rmapbt_cur_cache)
687		return -ENOMEM;
688	return 0;
689}
690
691void
692xfs_rmapbt_destroy_cur_cache(void)
693{
694	kmem_cache_destroy(xfs_rmapbt_cur_cache);
695	xfs_rmapbt_cur_cache = NULL;
696}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Red Hat, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_alloc.h"
 15#include "xfs_btree.h"
 16#include "xfs_btree_staging.h"
 17#include "xfs_rmap.h"
 18#include "xfs_rmap_btree.h"
 19#include "xfs_trace.h"
 20#include "xfs_error.h"
 21#include "xfs_extent_busy.h"
 22#include "xfs_ag.h"
 23#include "xfs_ag_resv.h"
 24
 25static struct kmem_cache	*xfs_rmapbt_cur_cache;
 26
 27/*
 28 * Reverse map btree.
 29 *
 30 * This is a per-ag tree used to track the owner(s) of a given extent. With
 31 * reflink it is possible for there to be multiple owners, which is a departure
 32 * from classic XFS. Owner records for data extents are inserted when the
 33 * extent is mapped and removed when an extent is unmapped.  Owner records for
 34 * all other block types (i.e. metadata) are inserted when an extent is
 35 * allocated and removed when an extent is freed. There can only be one owner
 36 * of a metadata extent, usually an inode or some other metadata structure like
 37 * an AG btree.
 38 *
 39 * The rmap btree is part of the free space management, so blocks for the tree
 40 * are sourced from the agfl. Hence we need transaction reservation support for
 41 * this tree so that the freelist is always large enough. This also impacts on
 42 * the minimum space we need to leave free in the AG.
 43 *
 44 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 45 * but it is the only way to enforce unique keys when a block can be owned by
 46 * multiple files at any offset. There's no need to order/search by extent
 47 * size for online updating/management of the tree. It is intended that most
 48 * reverse lookups will be to find the owner(s) of a particular block, or to
 49 * try to recover tree and file data from corrupt primary metadata.
 50 */
 51
 52static struct xfs_btree_cur *
 53xfs_rmapbt_dup_cursor(
 54	struct xfs_btree_cur	*cur)
 55{
 56	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 57				cur->bc_ag.agbp, cur->bc_ag.pag);
 58}
 59
 60STATIC void
 61xfs_rmapbt_set_root(
 62	struct xfs_btree_cur		*cur,
 63	const union xfs_btree_ptr	*ptr,
 64	int				inc)
 65{
 66	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 67	struct xfs_agf		*agf = agbp->b_addr;
 68	int			btnum = cur->bc_btnum;
 69
 70	ASSERT(ptr->s != 0);
 71
 72	agf->agf_roots[btnum] = ptr->s;
 73	be32_add_cpu(&agf->agf_levels[btnum], inc);
 74	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 75
 76	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 77}
 78
 79STATIC int
 80xfs_rmapbt_alloc_block(
 81	struct xfs_btree_cur		*cur,
 82	const union xfs_btree_ptr	*start,
 83	union xfs_btree_ptr		*new,
 84	int				*stat)
 85{
 86	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 87	struct xfs_agf		*agf = agbp->b_addr;
 88	struct xfs_perag	*pag = cur->bc_ag.pag;
 89	int			error;
 90	xfs_agblock_t		bno;
 91
 92	/* Allocate the new block from the freelist. If we can't, give up.  */
 93	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
 94				       &bno, 1);
 95	if (error)
 96		return error;
 97
 98	trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
 99	if (bno == NULLAGBLOCK) {
100		*stat = 0;
101		return 0;
102	}
103
104	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
105
106	new->s = cpu_to_be32(bno);
107	be32_add_cpu(&agf->agf_rmap_blocks, 1);
108	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
109
110	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
111
112	*stat = 1;
113	return 0;
114}
115
116STATIC int
117xfs_rmapbt_free_block(
118	struct xfs_btree_cur	*cur,
119	struct xfs_buf		*bp)
120{
121	struct xfs_buf		*agbp = cur->bc_ag.agbp;
122	struct xfs_agf		*agf = agbp->b_addr;
123	struct xfs_perag	*pag = cur->bc_ag.pag;
124	xfs_agblock_t		bno;
125	int			error;
126
127	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
128	trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
129			bno, 1);
130	be32_add_cpu(&agf->agf_rmap_blocks, -1);
131	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
132	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
133	if (error)
134		return error;
135
136	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
137			      XFS_EXTENT_BUSY_SKIP_DISCARD);
138
139	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
140	return 0;
141}
142
143STATIC int
144xfs_rmapbt_get_minrecs(
145	struct xfs_btree_cur	*cur,
146	int			level)
147{
148	return cur->bc_mp->m_rmap_mnr[level != 0];
149}
150
151STATIC int
152xfs_rmapbt_get_maxrecs(
153	struct xfs_btree_cur	*cur,
154	int			level)
155{
156	return cur->bc_mp->m_rmap_mxr[level != 0];
157}
158
159/*
160 * Convert the ondisk record's offset field into the ondisk key's offset field.
161 * Fork and bmbt are significant parts of the rmap record key, but written
162 * status is merely a record attribute.
163 */
164static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
165{
166	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
167}
168
169STATIC void
170xfs_rmapbt_init_key_from_rec(
171	union xfs_btree_key		*key,
172	const union xfs_btree_rec	*rec)
173{
174	key->rmap.rm_startblock = rec->rmap.rm_startblock;
175	key->rmap.rm_owner = rec->rmap.rm_owner;
176	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
177}
178
179/*
180 * The high key for a reverse mapping record can be computed by shifting
181 * the startblock and offset to the highest value that would still map
182 * to that record.  In practice this means that we add blockcount-1 to
183 * the startblock for all records, and if the record is for a data/attr
184 * fork mapping, we add blockcount-1 to the offset too.
185 */
186STATIC void
187xfs_rmapbt_init_high_key_from_rec(
188	union xfs_btree_key		*key,
189	const union xfs_btree_rec	*rec)
190{
191	uint64_t			off;
192	int				adj;
193
194	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
195
196	key->rmap.rm_startblock = rec->rmap.rm_startblock;
197	be32_add_cpu(&key->rmap.rm_startblock, adj);
198	key->rmap.rm_owner = rec->rmap.rm_owner;
199	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
200	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
201	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
202		return;
203	off = be64_to_cpu(key->rmap.rm_offset);
204	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
205	key->rmap.rm_offset = cpu_to_be64(off);
206}
207
208STATIC void
209xfs_rmapbt_init_rec_from_cur(
210	struct xfs_btree_cur	*cur,
211	union xfs_btree_rec	*rec)
212{
213	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
214	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
215	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
216	rec->rmap.rm_offset = cpu_to_be64(
217			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
218}
219
220STATIC void
221xfs_rmapbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232/*
233 * Mask the appropriate parts of the ondisk key field for a key comparison.
234 * Fork and bmbt are significant parts of the rmap record key, but written
235 * status is merely a record attribute.
236 */
237static inline uint64_t offset_keymask(uint64_t offset)
238{
239	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
240}
241
242STATIC int64_t
243xfs_rmapbt_key_diff(
244	struct xfs_btree_cur		*cur,
245	const union xfs_btree_key	*key)
246{
247	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
248	const struct xfs_rmap_key	*kp = &key->rmap;
249	__u64				x, y;
250	int64_t				d;
251
252	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
253	if (d)
254		return d;
255
256	x = be64_to_cpu(kp->rm_owner);
257	y = rec->rm_owner;
258	if (x > y)
259		return 1;
260	else if (y > x)
261		return -1;
262
263	x = offset_keymask(be64_to_cpu(kp->rm_offset));
264	y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
265	if (x > y)
266		return 1;
267	else if (y > x)
268		return -1;
269	return 0;
270}
271
272STATIC int64_t
273xfs_rmapbt_diff_two_keys(
274	struct xfs_btree_cur		*cur,
275	const union xfs_btree_key	*k1,
276	const union xfs_btree_key	*k2,
277	const union xfs_btree_key	*mask)
278{
279	const struct xfs_rmap_key	*kp1 = &k1->rmap;
280	const struct xfs_rmap_key	*kp2 = &k2->rmap;
281	int64_t				d;
282	__u64				x, y;
283
284	/* Doesn't make sense to mask off the physical space part */
285	ASSERT(!mask || mask->rmap.rm_startblock);
286
287	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
288		     be32_to_cpu(kp2->rm_startblock);
289	if (d)
290		return d;
291
292	if (!mask || mask->rmap.rm_owner) {
293		x = be64_to_cpu(kp1->rm_owner);
294		y = be64_to_cpu(kp2->rm_owner);
295		if (x > y)
296			return 1;
297		else if (y > x)
298			return -1;
299	}
300
301	if (!mask || mask->rmap.rm_offset) {
302		/* Doesn't make sense to allow offset but not owner */
303		ASSERT(!mask || mask->rmap.rm_owner);
304
305		x = offset_keymask(be64_to_cpu(kp1->rm_offset));
306		y = offset_keymask(be64_to_cpu(kp2->rm_offset));
307		if (x > y)
308			return 1;
309		else if (y > x)
310			return -1;
311	}
312
 
 
 
 
 
 
313	return 0;
314}
315
316static xfs_failaddr_t
317xfs_rmapbt_verify(
318	struct xfs_buf		*bp)
319{
320	struct xfs_mount	*mp = bp->b_mount;
321	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
322	struct xfs_perag	*pag = bp->b_pag;
323	xfs_failaddr_t		fa;
324	unsigned int		level;
325
326	/*
327	 * magic number and level verification
328	 *
329	 * During growfs operations, we can't verify the exact level or owner as
330	 * the perag is not fully initialised and hence not attached to the
331	 * buffer.  In this case, check against the maximum tree depth.
332	 *
333	 * Similarly, during log recovery we will have a perag structure
334	 * attached, but the agf information will not yet have been initialised
335	 * from the on disk AGF. Again, we can only check against maximum limits
336	 * in this case.
337	 */
338	if (!xfs_verify_magic(bp, block->bb_magic))
339		return __this_address;
340
341	if (!xfs_has_rmapbt(mp))
342		return __this_address;
343	fa = xfs_btree_sblock_v5hdr_verify(bp);
344	if (fa)
345		return fa;
346
347	level = be16_to_cpu(block->bb_level);
348	if (pag && xfs_perag_initialised_agf(pag)) {
349		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
350			return __this_address;
351	} else if (level >= mp->m_rmap_maxlevels)
352		return __this_address;
353
354	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
355}
356
357static void
358xfs_rmapbt_read_verify(
359	struct xfs_buf	*bp)
360{
361	xfs_failaddr_t	fa;
362
363	if (!xfs_btree_sblock_verify_crc(bp))
364		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
365	else {
366		fa = xfs_rmapbt_verify(bp);
367		if (fa)
368			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
369	}
370
371	if (bp->b_error)
372		trace_xfs_btree_corrupt(bp, _RET_IP_);
373}
374
375static void
376xfs_rmapbt_write_verify(
377	struct xfs_buf	*bp)
378{
379	xfs_failaddr_t	fa;
380
381	fa = xfs_rmapbt_verify(bp);
382	if (fa) {
383		trace_xfs_btree_corrupt(bp, _RET_IP_);
384		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
385		return;
386	}
387	xfs_btree_sblock_calc_crc(bp);
388
389}
390
391const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
392	.name			= "xfs_rmapbt",
393	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
394	.verify_read		= xfs_rmapbt_read_verify,
395	.verify_write		= xfs_rmapbt_write_verify,
396	.verify_struct		= xfs_rmapbt_verify,
397};
398
399STATIC int
400xfs_rmapbt_keys_inorder(
401	struct xfs_btree_cur		*cur,
402	const union xfs_btree_key	*k1,
403	const union xfs_btree_key	*k2)
404{
405	uint32_t		x;
406	uint32_t		y;
407	uint64_t		a;
408	uint64_t		b;
409
410	x = be32_to_cpu(k1->rmap.rm_startblock);
411	y = be32_to_cpu(k2->rmap.rm_startblock);
412	if (x < y)
413		return 1;
414	else if (x > y)
415		return 0;
416	a = be64_to_cpu(k1->rmap.rm_owner);
417	b = be64_to_cpu(k2->rmap.rm_owner);
418	if (a < b)
419		return 1;
420	else if (a > b)
421		return 0;
422	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
423	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
424	if (a <= b)
425		return 1;
426	return 0;
427}
428
429STATIC int
430xfs_rmapbt_recs_inorder(
431	struct xfs_btree_cur		*cur,
432	const union xfs_btree_rec	*r1,
433	const union xfs_btree_rec	*r2)
434{
435	uint32_t		x;
436	uint32_t		y;
437	uint64_t		a;
438	uint64_t		b;
439
440	x = be32_to_cpu(r1->rmap.rm_startblock);
441	y = be32_to_cpu(r2->rmap.rm_startblock);
442	if (x < y)
443		return 1;
444	else if (x > y)
445		return 0;
446	a = be64_to_cpu(r1->rmap.rm_owner);
447	b = be64_to_cpu(r2->rmap.rm_owner);
448	if (a < b)
449		return 1;
450	else if (a > b)
451		return 0;
452	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
453	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
454	if (a <= b)
455		return 1;
456	return 0;
457}
458
459STATIC enum xbtree_key_contig
460xfs_rmapbt_keys_contiguous(
461	struct xfs_btree_cur		*cur,
462	const union xfs_btree_key	*key1,
463	const union xfs_btree_key	*key2,
464	const union xfs_btree_key	*mask)
465{
466	ASSERT(!mask || mask->rmap.rm_startblock);
467
468	/*
469	 * We only support checking contiguity of the physical space component.
470	 * If any callers ever need more specificity than that, they'll have to
471	 * implement it here.
472	 */
473	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
474
475	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
476				 be32_to_cpu(key2->rmap.rm_startblock));
477}
478
479static const struct xfs_btree_ops xfs_rmapbt_ops = {
480	.rec_len		= sizeof(struct xfs_rmap_rec),
481	.key_len		= 2 * sizeof(struct xfs_rmap_key),
482
483	.dup_cursor		= xfs_rmapbt_dup_cursor,
484	.set_root		= xfs_rmapbt_set_root,
485	.alloc_block		= xfs_rmapbt_alloc_block,
486	.free_block		= xfs_rmapbt_free_block,
487	.get_minrecs		= xfs_rmapbt_get_minrecs,
488	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
489	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
490	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
491	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
492	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
493	.key_diff		= xfs_rmapbt_key_diff,
494	.buf_ops		= &xfs_rmapbt_buf_ops,
495	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
496	.keys_inorder		= xfs_rmapbt_keys_inorder,
497	.recs_inorder		= xfs_rmapbt_recs_inorder,
498	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
499};
500
501static struct xfs_btree_cur *
502xfs_rmapbt_init_common(
503	struct xfs_mount	*mp,
504	struct xfs_trans	*tp,
505	struct xfs_perag	*pag)
506{
507	struct xfs_btree_cur	*cur;
508
509	/* Overlapping btree; 2 keys per pointer. */
510	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RMAP,
511			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
512	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
513	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
514	cur->bc_ops = &xfs_rmapbt_ops;
515
516	cur->bc_ag.pag = xfs_perag_hold(pag);
 
 
 
517	return cur;
518}
519
520/* Create a new reverse mapping btree cursor. */
521struct xfs_btree_cur *
522xfs_rmapbt_init_cursor(
523	struct xfs_mount	*mp,
524	struct xfs_trans	*tp,
525	struct xfs_buf		*agbp,
526	struct xfs_perag	*pag)
527{
528	struct xfs_agf		*agf = agbp->b_addr;
529	struct xfs_btree_cur	*cur;
530
531	cur = xfs_rmapbt_init_common(mp, tp, pag);
532	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
533	cur->bc_ag.agbp = agbp;
534	return cur;
535}
536
537/* Create a new reverse mapping btree cursor with a fake root for staging. */
538struct xfs_btree_cur *
539xfs_rmapbt_stage_cursor(
540	struct xfs_mount	*mp,
541	struct xbtree_afakeroot	*afake,
542	struct xfs_perag	*pag)
543{
544	struct xfs_btree_cur	*cur;
545
546	cur = xfs_rmapbt_init_common(mp, NULL, pag);
547	xfs_btree_stage_afakeroot(cur, afake);
548	return cur;
549}
550
551/*
552 * Install a new reverse mapping btree root.  Caller is responsible for
553 * invalidating and freeing the old btree blocks.
554 */
555void
556xfs_rmapbt_commit_staged_btree(
557	struct xfs_btree_cur	*cur,
558	struct xfs_trans	*tp,
559	struct xfs_buf		*agbp)
560{
561	struct xfs_agf		*agf = agbp->b_addr;
562	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
563
564	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
565
566	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
567	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
568	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
569	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
570				    XFS_AGF_RMAP_BLOCKS);
571	xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
572}
573
574/* Calculate number of records in a reverse mapping btree block. */
575static inline unsigned int
576xfs_rmapbt_block_maxrecs(
577	unsigned int		blocklen,
578	bool			leaf)
579{
580	if (leaf)
581		return blocklen / sizeof(struct xfs_rmap_rec);
582	return blocklen /
583		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
584}
585
586/*
587 * Calculate number of records in an rmap btree block.
588 */
589int
590xfs_rmapbt_maxrecs(
591	int			blocklen,
592	int			leaf)
593{
594	blocklen -= XFS_RMAP_BLOCK_LEN;
595	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
596}
597
598/* Compute the max possible height for reverse mapping btrees. */
599unsigned int
600xfs_rmapbt_maxlevels_ondisk(void)
601{
602	unsigned int		minrecs[2];
603	unsigned int		blocklen;
604
605	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
606
607	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
608	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
609
610	/*
611	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
612	 *
613	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
614	 * refcount record format) owners, which means that theoretically we
615	 * could face up to 2^64 rmap records.  However, we're likely to run
616	 * out of blocks in the AG long before that happens, which means that
617	 * we must compute the max height based on what the btree will look
618	 * like if it consumes almost all the blocks in the AG due to maximal
619	 * sharing factor.
620	 */
621	return xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS);
622}
623
624/* Compute the maximum height of an rmap btree. */
625void
626xfs_rmapbt_compute_maxlevels(
627	struct xfs_mount		*mp)
628{
629	if (!xfs_has_rmapbt(mp)) {
630		mp->m_rmap_maxlevels = 0;
631		return;
632	}
633
634	if (xfs_has_reflink(mp)) {
635		/*
636		 * Compute the asymptotic maxlevels for an rmap btree on a
637		 * filesystem that supports reflink.
638		 *
639		 * On a reflink filesystem, each AG block can have up to 2^32
640		 * (per the refcount record format) owners, which means that
641		 * theoretically we could face up to 2^64 rmap records.
642		 * However, we're likely to run out of blocks in the AG long
643		 * before that happens, which means that we must compute the
644		 * max height based on what the btree will look like if it
645		 * consumes almost all the blocks in the AG due to maximal
646		 * sharing factor.
647		 */
648		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
649				mp->m_sb.sb_agblocks);
650	} else {
651		/*
652		 * If there's no block sharing, compute the maximum rmapbt
653		 * height assuming one rmap record per AG block.
654		 */
655		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
656				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
657	}
658	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
659}
660
661/* Calculate the refcount btree size for some records. */
662xfs_extlen_t
663xfs_rmapbt_calc_size(
664	struct xfs_mount	*mp,
665	unsigned long long	len)
666{
667	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
668}
669
670/*
671 * Calculate the maximum refcount btree size.
672 */
673xfs_extlen_t
674xfs_rmapbt_max_size(
675	struct xfs_mount	*mp,
676	xfs_agblock_t		agblocks)
677{
678	/* Bail out if we're uninitialized, which can happen in mkfs. */
679	if (mp->m_rmap_mxr[0] == 0)
680		return 0;
681
682	return xfs_rmapbt_calc_size(mp, agblocks);
683}
684
685/*
686 * Figure out how many blocks to reserve and how many are used by this btree.
687 */
688int
689xfs_rmapbt_calc_reserves(
690	struct xfs_mount	*mp,
691	struct xfs_trans	*tp,
692	struct xfs_perag	*pag,
693	xfs_extlen_t		*ask,
694	xfs_extlen_t		*used)
695{
696	struct xfs_buf		*agbp;
697	struct xfs_agf		*agf;
698	xfs_agblock_t		agblocks;
699	xfs_extlen_t		tree_len;
700	int			error;
701
702	if (!xfs_has_rmapbt(mp))
703		return 0;
704
705	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
706	if (error)
707		return error;
708
709	agf = agbp->b_addr;
710	agblocks = be32_to_cpu(agf->agf_length);
711	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
712	xfs_trans_brelse(tp, agbp);
713
714	/*
715	 * The log is permanently allocated, so the space it occupies will
716	 * never be available for the kinds of things that would require btree
717	 * expansion.  We therefore can pretend the space isn't there.
718	 */
719	if (xfs_ag_contains_log(mp, pag->pag_agno))
720		agblocks -= mp->m_sb.sb_logblocks;
721
722	/* Reserve 1% of the AG or enough for 1 block per record. */
723	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
724	*used += tree_len;
725
726	return error;
727}
728
729int __init
730xfs_rmapbt_init_cur_cache(void)
731{
732	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
733			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
734			0, 0, NULL);
735
736	if (!xfs_rmapbt_cur_cache)
737		return -ENOMEM;
738	return 0;
739}
740
741void
742xfs_rmapbt_destroy_cur_cache(void)
743{
744	kmem_cache_destroy(xfs_rmapbt_cur_cache);
745	xfs_rmapbt_cur_cache = NULL;
746}