Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Red Hat, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_alloc.h"
 15#include "xfs_btree.h"
 16#include "xfs_btree_staging.h"
 17#include "xfs_rmap.h"
 18#include "xfs_rmap_btree.h"
 
 19#include "xfs_trace.h"
 20#include "xfs_error.h"
 21#include "xfs_extent_busy.h"
 22#include "xfs_ag.h"
 23#include "xfs_ag_resv.h"
 
 
 24
 25static struct kmem_cache	*xfs_rmapbt_cur_cache;
 26
 27/*
 28 * Reverse map btree.
 29 *
 30 * This is a per-ag tree used to track the owner(s) of a given extent. With
 31 * reflink it is possible for there to be multiple owners, which is a departure
 32 * from classic XFS. Owner records for data extents are inserted when the
 33 * extent is mapped and removed when an extent is unmapped.  Owner records for
 34 * all other block types (i.e. metadata) are inserted when an extent is
 35 * allocated and removed when an extent is freed. There can only be one owner
 36 * of a metadata extent, usually an inode or some other metadata structure like
 37 * an AG btree.
 38 *
 39 * The rmap btree is part of the free space management, so blocks for the tree
 40 * are sourced from the agfl. Hence we need transaction reservation support for
 41 * this tree so that the freelist is always large enough. This also impacts on
 42 * the minimum space we need to leave free in the AG.
 43 *
 44 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 45 * but it is the only way to enforce unique keys when a block can be owned by
 46 * multiple files at any offset. There's no need to order/search by extent
 47 * size for online updating/management of the tree. It is intended that most
 48 * reverse lookups will be to find the owner(s) of a particular block, or to
 49 * try to recover tree and file data from corrupt primary metadata.
 50 */
 51
 52static struct xfs_btree_cur *
 53xfs_rmapbt_dup_cursor(
 54	struct xfs_btree_cur	*cur)
 55{
 56	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 57				cur->bc_ag.agbp, cur->bc_ag.pag);
 58}
 59
 60STATIC void
 61xfs_rmapbt_set_root(
 62	struct xfs_btree_cur		*cur,
 63	const union xfs_btree_ptr	*ptr,
 64	int				inc)
 65{
 66	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 67	struct xfs_agf		*agf = agbp->b_addr;
 68	int			btnum = cur->bc_btnum;
 69
 70	ASSERT(ptr->s != 0);
 71
 72	agf->agf_roots[btnum] = ptr->s;
 73	be32_add_cpu(&agf->agf_levels[btnum], inc);
 74	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 75
 76	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 77}
 78
 79STATIC int
 80xfs_rmapbt_alloc_block(
 81	struct xfs_btree_cur		*cur,
 82	const union xfs_btree_ptr	*start,
 83	union xfs_btree_ptr		*new,
 84	int				*stat)
 85{
 86	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 87	struct xfs_agf		*agf = agbp->b_addr;
 88	struct xfs_perag	*pag = cur->bc_ag.pag;
 89	int			error;
 90	xfs_agblock_t		bno;
 91
 92	/* Allocate the new block from the freelist. If we can't, give up.  */
 93	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
 94				       &bno, 1);
 95	if (error)
 96		return error;
 97
 98	trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
 99	if (bno == NULLAGBLOCK) {
100		*stat = 0;
101		return 0;
102	}
103
104	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
105
106	new->s = cpu_to_be32(bno);
107	be32_add_cpu(&agf->agf_rmap_blocks, 1);
108	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
109
110	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
111
112	*stat = 1;
113	return 0;
114}
115
116STATIC int
117xfs_rmapbt_free_block(
118	struct xfs_btree_cur	*cur,
119	struct xfs_buf		*bp)
120{
121	struct xfs_buf		*agbp = cur->bc_ag.agbp;
122	struct xfs_agf		*agf = agbp->b_addr;
123	struct xfs_perag	*pag = cur->bc_ag.pag;
124	xfs_agblock_t		bno;
125	int			error;
126
127	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
128	trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
129			bno, 1);
130	be32_add_cpu(&agf->agf_rmap_blocks, -1);
131	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
132	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
133	if (error)
134		return error;
135
136	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
137			      XFS_EXTENT_BUSY_SKIP_DISCARD);
138
139	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
140	return 0;
141}
142
143STATIC int
144xfs_rmapbt_get_minrecs(
145	struct xfs_btree_cur	*cur,
146	int			level)
147{
148	return cur->bc_mp->m_rmap_mnr[level != 0];
149}
150
151STATIC int
152xfs_rmapbt_get_maxrecs(
153	struct xfs_btree_cur	*cur,
154	int			level)
155{
156	return cur->bc_mp->m_rmap_mxr[level != 0];
157}
158
 
 
 
 
 
 
 
 
 
 
159STATIC void
160xfs_rmapbt_init_key_from_rec(
161	union xfs_btree_key		*key,
162	const union xfs_btree_rec	*rec)
163{
164	key->rmap.rm_startblock = rec->rmap.rm_startblock;
165	key->rmap.rm_owner = rec->rmap.rm_owner;
166	key->rmap.rm_offset = rec->rmap.rm_offset;
167}
168
169/*
170 * The high key for a reverse mapping record can be computed by shifting
171 * the startblock and offset to the highest value that would still map
172 * to that record.  In practice this means that we add blockcount-1 to
173 * the startblock for all records, and if the record is for a data/attr
174 * fork mapping, we add blockcount-1 to the offset too.
175 */
176STATIC void
177xfs_rmapbt_init_high_key_from_rec(
178	union xfs_btree_key		*key,
179	const union xfs_btree_rec	*rec)
180{
181	uint64_t			off;
182	int				adj;
183
184	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
185
186	key->rmap.rm_startblock = rec->rmap.rm_startblock;
187	be32_add_cpu(&key->rmap.rm_startblock, adj);
188	key->rmap.rm_owner = rec->rmap.rm_owner;
189	key->rmap.rm_offset = rec->rmap.rm_offset;
190	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
191	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
192		return;
193	off = be64_to_cpu(key->rmap.rm_offset);
194	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
195	key->rmap.rm_offset = cpu_to_be64(off);
196}
197
198STATIC void
199xfs_rmapbt_init_rec_from_cur(
200	struct xfs_btree_cur	*cur,
201	union xfs_btree_rec	*rec)
202{
203	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
204	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
205	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
206	rec->rmap.rm_offset = cpu_to_be64(
207			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
208}
209
210STATIC void
211xfs_rmapbt_init_ptr_from_cur(
212	struct xfs_btree_cur	*cur,
213	union xfs_btree_ptr	*ptr)
214{
215	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
216
217	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
218
219	ptr->s = agf->agf_roots[cur->bc_btnum];
 
 
 
 
 
 
 
 
 
 
220}
221
222STATIC int64_t
223xfs_rmapbt_key_diff(
224	struct xfs_btree_cur		*cur,
225	const union xfs_btree_key	*key)
226{
227	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
228	const struct xfs_rmap_key	*kp = &key->rmap;
229	__u64				x, y;
230	int64_t				d;
231
232	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
233	if (d)
234		return d;
235
236	x = be64_to_cpu(kp->rm_owner);
237	y = rec->rm_owner;
238	if (x > y)
239		return 1;
240	else if (y > x)
241		return -1;
242
243	x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
244	y = rec->rm_offset;
245	if (x > y)
246		return 1;
247	else if (y > x)
248		return -1;
249	return 0;
250}
251
252STATIC int64_t
253xfs_rmapbt_diff_two_keys(
254	struct xfs_btree_cur		*cur,
255	const union xfs_btree_key	*k1,
256	const union xfs_btree_key	*k2)
 
257{
258	const struct xfs_rmap_key	*kp1 = &k1->rmap;
259	const struct xfs_rmap_key	*kp2 = &k2->rmap;
260	int64_t				d;
261	__u64				x, y;
262
 
 
 
263	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
264		       be32_to_cpu(kp2->rm_startblock);
265	if (d)
266		return d;
267
268	x = be64_to_cpu(kp1->rm_owner);
269	y = be64_to_cpu(kp2->rm_owner);
270	if (x > y)
271		return 1;
272	else if (y > x)
273		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
275	x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
276	y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
277	if (x > y)
278		return 1;
279	else if (y > x)
280		return -1;
281	return 0;
282}
283
284static xfs_failaddr_t
285xfs_rmapbt_verify(
286	struct xfs_buf		*bp)
287{
288	struct xfs_mount	*mp = bp->b_mount;
289	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
290	struct xfs_perag	*pag = bp->b_pag;
291	xfs_failaddr_t		fa;
292	unsigned int		level;
293
294	/*
295	 * magic number and level verification
296	 *
297	 * During growfs operations, we can't verify the exact level or owner as
298	 * the perag is not fully initialised and hence not attached to the
299	 * buffer.  In this case, check against the maximum tree depth.
300	 *
301	 * Similarly, during log recovery we will have a perag structure
302	 * attached, but the agf information will not yet have been initialised
303	 * from the on disk AGF. Again, we can only check against maximum limits
304	 * in this case.
305	 */
306	if (!xfs_verify_magic(bp, block->bb_magic))
307		return __this_address;
308
309	if (!xfs_has_rmapbt(mp))
310		return __this_address;
311	fa = xfs_btree_sblock_v5hdr_verify(bp);
312	if (fa)
313		return fa;
314
315	level = be16_to_cpu(block->bb_level);
316	if (pag && pag->pagf_init) {
317		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
 
 
 
 
 
 
 
 
 
 
 
318			return __this_address;
319	} else if (level >= mp->m_rmap_maxlevels)
320		return __this_address;
321
322	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
323}
324
325static void
326xfs_rmapbt_read_verify(
327	struct xfs_buf	*bp)
328{
329	xfs_failaddr_t	fa;
330
331	if (!xfs_btree_sblock_verify_crc(bp))
332		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333	else {
334		fa = xfs_rmapbt_verify(bp);
335		if (fa)
336			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337	}
338
339	if (bp->b_error)
340		trace_xfs_btree_corrupt(bp, _RET_IP_);
341}
342
343static void
344xfs_rmapbt_write_verify(
345	struct xfs_buf	*bp)
346{
347	xfs_failaddr_t	fa;
348
349	fa = xfs_rmapbt_verify(bp);
350	if (fa) {
351		trace_xfs_btree_corrupt(bp, _RET_IP_);
352		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353		return;
354	}
355	xfs_btree_sblock_calc_crc(bp);
356
357}
358
359const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
360	.name			= "xfs_rmapbt",
361	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
362	.verify_read		= xfs_rmapbt_read_verify,
363	.verify_write		= xfs_rmapbt_write_verify,
364	.verify_struct		= xfs_rmapbt_verify,
365};
366
367STATIC int
368xfs_rmapbt_keys_inorder(
369	struct xfs_btree_cur		*cur,
370	const union xfs_btree_key	*k1,
371	const union xfs_btree_key	*k2)
372{
373	uint32_t		x;
374	uint32_t		y;
375	uint64_t		a;
376	uint64_t		b;
377
378	x = be32_to_cpu(k1->rmap.rm_startblock);
379	y = be32_to_cpu(k2->rmap.rm_startblock);
380	if (x < y)
381		return 1;
382	else if (x > y)
383		return 0;
384	a = be64_to_cpu(k1->rmap.rm_owner);
385	b = be64_to_cpu(k2->rmap.rm_owner);
386	if (a < b)
387		return 1;
388	else if (a > b)
389		return 0;
390	a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
391	b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
392	if (a <= b)
393		return 1;
394	return 0;
395}
396
397STATIC int
398xfs_rmapbt_recs_inorder(
399	struct xfs_btree_cur		*cur,
400	const union xfs_btree_rec	*r1,
401	const union xfs_btree_rec	*r2)
402{
403	uint32_t		x;
404	uint32_t		y;
405	uint64_t		a;
406	uint64_t		b;
407
408	x = be32_to_cpu(r1->rmap.rm_startblock);
409	y = be32_to_cpu(r2->rmap.rm_startblock);
410	if (x < y)
411		return 1;
412	else if (x > y)
413		return 0;
414	a = be64_to_cpu(r1->rmap.rm_owner);
415	b = be64_to_cpu(r2->rmap.rm_owner);
416	if (a < b)
417		return 1;
418	else if (a > b)
419		return 0;
420	a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
421	b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
422	if (a <= b)
423		return 1;
424	return 0;
425}
426
427static const struct xfs_btree_ops xfs_rmapbt_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428	.rec_len		= sizeof(struct xfs_rmap_rec),
 
429	.key_len		= 2 * sizeof(struct xfs_rmap_key),
 
 
 
 
 
430
431	.dup_cursor		= xfs_rmapbt_dup_cursor,
432	.set_root		= xfs_rmapbt_set_root,
433	.alloc_block		= xfs_rmapbt_alloc_block,
434	.free_block		= xfs_rmapbt_free_block,
435	.get_minrecs		= xfs_rmapbt_get_minrecs,
436	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
437	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
438	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
439	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
440	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
441	.key_diff		= xfs_rmapbt_key_diff,
442	.buf_ops		= &xfs_rmapbt_buf_ops,
443	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
444	.keys_inorder		= xfs_rmapbt_keys_inorder,
445	.recs_inorder		= xfs_rmapbt_recs_inorder,
 
446};
447
448static struct xfs_btree_cur *
449xfs_rmapbt_init_common(
 
 
 
 
 
450	struct xfs_mount	*mp,
451	struct xfs_trans	*tp,
 
452	struct xfs_perag	*pag)
453{
454	struct xfs_btree_cur	*cur;
455
456	/* Overlapping btree; 2 keys per pointer. */
457	cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RMAP,
458			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
459	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
460	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
461	cur->bc_ops = &xfs_rmapbt_ops;
462
463	/* take a reference for the cursor */
464	atomic_inc(&pag->pag_ref);
465	cur->bc_ag.pag = pag;
466
 
 
467	return cur;
468}
469
470/* Create a new reverse mapping btree cursor. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471struct xfs_btree_cur *
472xfs_rmapbt_init_cursor(
473	struct xfs_mount	*mp,
474	struct xfs_trans	*tp,
475	struct xfs_buf		*agbp,
476	struct xfs_perag	*pag)
477{
478	struct xfs_agf		*agf = agbp->b_addr;
479	struct xfs_btree_cur	*cur;
 
480
481	cur = xfs_rmapbt_init_common(mp, tp, pag);
482	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
483	cur->bc_ag.agbp = agbp;
 
 
 
484	return cur;
485}
486
487/* Create a new reverse mapping btree cursor with a fake root for staging. */
488struct xfs_btree_cur *
489xfs_rmapbt_stage_cursor(
490	struct xfs_mount	*mp,
491	struct xbtree_afakeroot	*afake,
492	struct xfs_perag	*pag)
 
493{
494	struct xfs_btree_cur	*cur;
 
 
495
496	cur = xfs_rmapbt_init_common(mp, NULL, pag);
497	xfs_btree_stage_afakeroot(cur, afake);
498	return cur;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499}
 
 
 
500
501/*
502 * Install a new reverse mapping btree root.  Caller is responsible for
503 * invalidating and freeing the old btree blocks.
504 */
505void
506xfs_rmapbt_commit_staged_btree(
507	struct xfs_btree_cur	*cur,
508	struct xfs_trans	*tp,
509	struct xfs_buf		*agbp)
510{
511	struct xfs_agf		*agf = agbp->b_addr;
512	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
513
514	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
515
516	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
517	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
518	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
519	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
520				    XFS_AGF_RMAP_BLOCKS);
521	xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
522}
523
524/* Calculate number of records in a reverse mapping btree block. */
525static inline unsigned int
526xfs_rmapbt_block_maxrecs(
527	unsigned int		blocklen,
528	bool			leaf)
529{
530	if (leaf)
531		return blocklen / sizeof(struct xfs_rmap_rec);
532	return blocklen /
533		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
534}
535
536/*
537 * Calculate number of records in an rmap btree block.
538 */
539int
540xfs_rmapbt_maxrecs(
541	int			blocklen,
542	int			leaf)
543{
544	blocklen -= XFS_RMAP_BLOCK_LEN;
545	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
546}
547
548/* Compute the max possible height for reverse mapping btrees. */
549unsigned int
550xfs_rmapbt_maxlevels_ondisk(void)
551{
552	unsigned int		minrecs[2];
553	unsigned int		blocklen;
554
555	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
556
557	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
558	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
559
560	/*
561	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
562	 *
563	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
564	 * refcount record format) owners, which means that theoretically we
565	 * could face up to 2^64 rmap records.  However, we're likely to run
566	 * out of blocks in the AG long before that happens, which means that
567	 * we must compute the max height based on what the btree will look
568	 * like if it consumes almost all the blocks in the AG due to maximal
569	 * sharing factor.
570	 */
571	return xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS);
 
572}
573
574/* Compute the maximum height of an rmap btree. */
575void
576xfs_rmapbt_compute_maxlevels(
577	struct xfs_mount		*mp)
578{
579	if (!xfs_has_rmapbt(mp)) {
580		mp->m_rmap_maxlevels = 0;
581		return;
582	}
583
584	if (xfs_has_reflink(mp)) {
585		/*
586		 * Compute the asymptotic maxlevels for an rmap btree on a
587		 * filesystem that supports reflink.
588		 *
589		 * On a reflink filesystem, each AG block can have up to 2^32
590		 * (per the refcount record format) owners, which means that
591		 * theoretically we could face up to 2^64 rmap records.
592		 * However, we're likely to run out of blocks in the AG long
593		 * before that happens, which means that we must compute the
594		 * max height based on what the btree will look like if it
595		 * consumes almost all the blocks in the AG due to maximal
596		 * sharing factor.
597		 */
598		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
599				mp->m_sb.sb_agblocks);
600	} else {
601		/*
602		 * If there's no block sharing, compute the maximum rmapbt
603		 * height assuming one rmap record per AG block.
604		 */
605		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
606				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
607	}
608	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
609}
610
611/* Calculate the refcount btree size for some records. */
612xfs_extlen_t
613xfs_rmapbt_calc_size(
614	struct xfs_mount	*mp,
615	unsigned long long	len)
616{
617	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
618}
619
620/*
621 * Calculate the maximum refcount btree size.
622 */
623xfs_extlen_t
624xfs_rmapbt_max_size(
625	struct xfs_mount	*mp,
626	xfs_agblock_t		agblocks)
627{
628	/* Bail out if we're uninitialized, which can happen in mkfs. */
629	if (mp->m_rmap_mxr[0] == 0)
630		return 0;
631
632	return xfs_rmapbt_calc_size(mp, agblocks);
633}
634
635/*
636 * Figure out how many blocks to reserve and how many are used by this btree.
637 */
638int
639xfs_rmapbt_calc_reserves(
640	struct xfs_mount	*mp,
641	struct xfs_trans	*tp,
642	struct xfs_perag	*pag,
643	xfs_extlen_t		*ask,
644	xfs_extlen_t		*used)
645{
646	struct xfs_buf		*agbp;
647	struct xfs_agf		*agf;
648	xfs_agblock_t		agblocks;
649	xfs_extlen_t		tree_len;
650	int			error;
651
652	if (!xfs_has_rmapbt(mp))
653		return 0;
654
655	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
656	if (error)
657		return error;
658
659	agf = agbp->b_addr;
660	agblocks = be32_to_cpu(agf->agf_length);
661	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
662	xfs_trans_brelse(tp, agbp);
663
664	/*
665	 * The log is permanently allocated, so the space it occupies will
666	 * never be available for the kinds of things that would require btree
667	 * expansion.  We therefore can pretend the space isn't there.
668	 */
669	if (xfs_ag_contains_log(mp, pag->pag_agno))
670		agblocks -= mp->m_sb.sb_logblocks;
671
672	/* Reserve 1% of the AG or enough for 1 block per record. */
673	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
674	*used += tree_len;
675
676	return error;
677}
678
679int __init
680xfs_rmapbt_init_cur_cache(void)
681{
682	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
683			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
684			0, 0, NULL);
685
686	if (!xfs_rmapbt_cur_cache)
687		return -ENOMEM;
688	return 0;
689}
690
691void
692xfs_rmapbt_destroy_cur_cache(void)
693{
694	kmem_cache_destroy(xfs_rmapbt_cur_cache);
695	xfs_rmapbt_cur_cache = NULL;
696}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Red Hat, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 14#include "xfs_alloc.h"
 15#include "xfs_btree.h"
 16#include "xfs_btree_staging.h"
 17#include "xfs_rmap.h"
 18#include "xfs_rmap_btree.h"
 19#include "xfs_health.h"
 20#include "xfs_trace.h"
 21#include "xfs_error.h"
 22#include "xfs_extent_busy.h"
 23#include "xfs_ag.h"
 24#include "xfs_ag_resv.h"
 25#include "xfs_buf_mem.h"
 26#include "xfs_btree_mem.h"
 27
 28static struct kmem_cache	*xfs_rmapbt_cur_cache;
 29
 30/*
 31 * Reverse map btree.
 32 *
 33 * This is a per-ag tree used to track the owner(s) of a given extent. With
 34 * reflink it is possible for there to be multiple owners, which is a departure
 35 * from classic XFS. Owner records for data extents are inserted when the
 36 * extent is mapped and removed when an extent is unmapped.  Owner records for
 37 * all other block types (i.e. metadata) are inserted when an extent is
 38 * allocated and removed when an extent is freed. There can only be one owner
 39 * of a metadata extent, usually an inode or some other metadata structure like
 40 * an AG btree.
 41 *
 42 * The rmap btree is part of the free space management, so blocks for the tree
 43 * are sourced from the agfl. Hence we need transaction reservation support for
 44 * this tree so that the freelist is always large enough. This also impacts on
 45 * the minimum space we need to leave free in the AG.
 46 *
 47 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
 48 * but it is the only way to enforce unique keys when a block can be owned by
 49 * multiple files at any offset. There's no need to order/search by extent
 50 * size for online updating/management of the tree. It is intended that most
 51 * reverse lookups will be to find the owner(s) of a particular block, or to
 52 * try to recover tree and file data from corrupt primary metadata.
 53 */
 54
 55static struct xfs_btree_cur *
 56xfs_rmapbt_dup_cursor(
 57	struct xfs_btree_cur	*cur)
 58{
 59	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
 60				cur->bc_ag.agbp, cur->bc_ag.pag);
 61}
 62
 63STATIC void
 64xfs_rmapbt_set_root(
 65	struct xfs_btree_cur		*cur,
 66	const union xfs_btree_ptr	*ptr,
 67	int				inc)
 68{
 69	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 70	struct xfs_agf		*agf = agbp->b_addr;
 
 71
 72	ASSERT(ptr->s != 0);
 73
 74	agf->agf_rmap_root = ptr->s;
 75	be32_add_cpu(&agf->agf_rmap_level, inc);
 76	cur->bc_ag.pag->pagf_rmap_level += inc;
 77
 78	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 79}
 80
 81STATIC int
 82xfs_rmapbt_alloc_block(
 83	struct xfs_btree_cur		*cur,
 84	const union xfs_btree_ptr	*start,
 85	union xfs_btree_ptr		*new,
 86	int				*stat)
 87{
 88	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 89	struct xfs_agf		*agf = agbp->b_addr;
 90	struct xfs_perag	*pag = cur->bc_ag.pag;
 91	int			error;
 92	xfs_agblock_t		bno;
 93
 94	/* Allocate the new block from the freelist. If we can't, give up.  */
 95	error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
 96				       &bno, 1);
 97	if (error)
 98		return error;
 
 
 99	if (bno == NULLAGBLOCK) {
100		*stat = 0;
101		return 0;
102	}
103
104	xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
105
106	new->s = cpu_to_be32(bno);
107	be32_add_cpu(&agf->agf_rmap_blocks, 1);
108	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
109
110	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
111
112	*stat = 1;
113	return 0;
114}
115
116STATIC int
117xfs_rmapbt_free_block(
118	struct xfs_btree_cur	*cur,
119	struct xfs_buf		*bp)
120{
121	struct xfs_buf		*agbp = cur->bc_ag.agbp;
122	struct xfs_agf		*agf = agbp->b_addr;
123	struct xfs_perag	*pag = cur->bc_ag.pag;
124	xfs_agblock_t		bno;
125	int			error;
126
127	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
 
 
128	be32_add_cpu(&agf->agf_rmap_blocks, -1);
129	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
130	error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
131	if (error)
132		return error;
133
134	xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
135			      XFS_EXTENT_BUSY_SKIP_DISCARD);
136
137	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
138	return 0;
139}
140
141STATIC int
142xfs_rmapbt_get_minrecs(
143	struct xfs_btree_cur	*cur,
144	int			level)
145{
146	return cur->bc_mp->m_rmap_mnr[level != 0];
147}
148
149STATIC int
150xfs_rmapbt_get_maxrecs(
151	struct xfs_btree_cur	*cur,
152	int			level)
153{
154	return cur->bc_mp->m_rmap_mxr[level != 0];
155}
156
157/*
158 * Convert the ondisk record's offset field into the ondisk key's offset field.
159 * Fork and bmbt are significant parts of the rmap record key, but written
160 * status is merely a record attribute.
161 */
162static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
163{
164	return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
165}
166
167STATIC void
168xfs_rmapbt_init_key_from_rec(
169	union xfs_btree_key		*key,
170	const union xfs_btree_rec	*rec)
171{
172	key->rmap.rm_startblock = rec->rmap.rm_startblock;
173	key->rmap.rm_owner = rec->rmap.rm_owner;
174	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
175}
176
177/*
178 * The high key for a reverse mapping record can be computed by shifting
179 * the startblock and offset to the highest value that would still map
180 * to that record.  In practice this means that we add blockcount-1 to
181 * the startblock for all records, and if the record is for a data/attr
182 * fork mapping, we add blockcount-1 to the offset too.
183 */
184STATIC void
185xfs_rmapbt_init_high_key_from_rec(
186	union xfs_btree_key		*key,
187	const union xfs_btree_rec	*rec)
188{
189	uint64_t			off;
190	int				adj;
191
192	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
193
194	key->rmap.rm_startblock = rec->rmap.rm_startblock;
195	be32_add_cpu(&key->rmap.rm_startblock, adj);
196	key->rmap.rm_owner = rec->rmap.rm_owner;
197	key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
198	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
199	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
200		return;
201	off = be64_to_cpu(key->rmap.rm_offset);
202	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
203	key->rmap.rm_offset = cpu_to_be64(off);
204}
205
206STATIC void
207xfs_rmapbt_init_rec_from_cur(
208	struct xfs_btree_cur	*cur,
209	union xfs_btree_rec	*rec)
210{
211	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
212	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
213	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
214	rec->rmap.rm_offset = cpu_to_be64(
215			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
216}
217
218STATIC void
219xfs_rmapbt_init_ptr_from_cur(
220	struct xfs_btree_cur	*cur,
221	union xfs_btree_ptr	*ptr)
222{
223	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
224
225	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226
227	ptr->s = agf->agf_rmap_root;
228}
229
230/*
231 * Mask the appropriate parts of the ondisk key field for a key comparison.
232 * Fork and bmbt are significant parts of the rmap record key, but written
233 * status is merely a record attribute.
234 */
235static inline uint64_t offset_keymask(uint64_t offset)
236{
237	return offset & ~XFS_RMAP_OFF_UNWRITTEN;
238}
239
240STATIC int64_t
241xfs_rmapbt_key_diff(
242	struct xfs_btree_cur		*cur,
243	const union xfs_btree_key	*key)
244{
245	struct xfs_rmap_irec		*rec = &cur->bc_rec.r;
246	const struct xfs_rmap_key	*kp = &key->rmap;
247	__u64				x, y;
248	int64_t				d;
249
250	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
251	if (d)
252		return d;
253
254	x = be64_to_cpu(kp->rm_owner);
255	y = rec->rm_owner;
256	if (x > y)
257		return 1;
258	else if (y > x)
259		return -1;
260
261	x = offset_keymask(be64_to_cpu(kp->rm_offset));
262	y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
263	if (x > y)
264		return 1;
265	else if (y > x)
266		return -1;
267	return 0;
268}
269
270STATIC int64_t
271xfs_rmapbt_diff_two_keys(
272	struct xfs_btree_cur		*cur,
273	const union xfs_btree_key	*k1,
274	const union xfs_btree_key	*k2,
275	const union xfs_btree_key	*mask)
276{
277	const struct xfs_rmap_key	*kp1 = &k1->rmap;
278	const struct xfs_rmap_key	*kp2 = &k2->rmap;
279	int64_t				d;
280	__u64				x, y;
281
282	/* Doesn't make sense to mask off the physical space part */
283	ASSERT(!mask || mask->rmap.rm_startblock);
284
285	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
286		     be32_to_cpu(kp2->rm_startblock);
287	if (d)
288		return d;
289
290	if (!mask || mask->rmap.rm_owner) {
291		x = be64_to_cpu(kp1->rm_owner);
292		y = be64_to_cpu(kp2->rm_owner);
293		if (x > y)
294			return 1;
295		else if (y > x)
296			return -1;
297	}
298
299	if (!mask || mask->rmap.rm_offset) {
300		/* Doesn't make sense to allow offset but not owner */
301		ASSERT(!mask || mask->rmap.rm_owner);
302
303		x = offset_keymask(be64_to_cpu(kp1->rm_offset));
304		y = offset_keymask(be64_to_cpu(kp2->rm_offset));
305		if (x > y)
306			return 1;
307		else if (y > x)
308			return -1;
309	}
310
 
 
 
 
 
 
311	return 0;
312}
313
314static xfs_failaddr_t
315xfs_rmapbt_verify(
316	struct xfs_buf		*bp)
317{
318	struct xfs_mount	*mp = bp->b_mount;
319	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
320	struct xfs_perag	*pag = bp->b_pag;
321	xfs_failaddr_t		fa;
322	unsigned int		level;
323
324	/*
325	 * magic number and level verification
326	 *
327	 * During growfs operations, we can't verify the exact level or owner as
328	 * the perag is not fully initialised and hence not attached to the
329	 * buffer.  In this case, check against the maximum tree depth.
330	 *
331	 * Similarly, during log recovery we will have a perag structure
332	 * attached, but the agf information will not yet have been initialised
333	 * from the on disk AGF. Again, we can only check against maximum limits
334	 * in this case.
335	 */
336	if (!xfs_verify_magic(bp, block->bb_magic))
337		return __this_address;
338
339	if (!xfs_has_rmapbt(mp))
340		return __this_address;
341	fa = xfs_btree_agblock_v5hdr_verify(bp);
342	if (fa)
343		return fa;
344
345	level = be16_to_cpu(block->bb_level);
346	if (pag && xfs_perag_initialised_agf(pag)) {
347		unsigned int	maxlevel = pag->pagf_rmap_level;
348
349#ifdef CONFIG_XFS_ONLINE_REPAIR
350		/*
351		 * Online repair could be rewriting the free space btrees, so
352		 * we'll validate against the larger of either tree while this
353		 * is going on.
354		 */
355		maxlevel = max_t(unsigned int, maxlevel,
356				pag->pagf_repair_rmap_level);
357#endif
358		if (level >= maxlevel)
359			return __this_address;
360	} else if (level >= mp->m_rmap_maxlevels)
361		return __this_address;
362
363	return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
364}
365
366static void
367xfs_rmapbt_read_verify(
368	struct xfs_buf	*bp)
369{
370	xfs_failaddr_t	fa;
371
372	if (!xfs_btree_agblock_verify_crc(bp))
373		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
374	else {
375		fa = xfs_rmapbt_verify(bp);
376		if (fa)
377			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
378	}
379
380	if (bp->b_error)
381		trace_xfs_btree_corrupt(bp, _RET_IP_);
382}
383
384static void
385xfs_rmapbt_write_verify(
386	struct xfs_buf	*bp)
387{
388	xfs_failaddr_t	fa;
389
390	fa = xfs_rmapbt_verify(bp);
391	if (fa) {
392		trace_xfs_btree_corrupt(bp, _RET_IP_);
393		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
394		return;
395	}
396	xfs_btree_agblock_calc_crc(bp);
397
398}
399
400const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
401	.name			= "xfs_rmapbt",
402	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
403	.verify_read		= xfs_rmapbt_read_verify,
404	.verify_write		= xfs_rmapbt_write_verify,
405	.verify_struct		= xfs_rmapbt_verify,
406};
407
408STATIC int
409xfs_rmapbt_keys_inorder(
410	struct xfs_btree_cur		*cur,
411	const union xfs_btree_key	*k1,
412	const union xfs_btree_key	*k2)
413{
414	uint32_t		x;
415	uint32_t		y;
416	uint64_t		a;
417	uint64_t		b;
418
419	x = be32_to_cpu(k1->rmap.rm_startblock);
420	y = be32_to_cpu(k2->rmap.rm_startblock);
421	if (x < y)
422		return 1;
423	else if (x > y)
424		return 0;
425	a = be64_to_cpu(k1->rmap.rm_owner);
426	b = be64_to_cpu(k2->rmap.rm_owner);
427	if (a < b)
428		return 1;
429	else if (a > b)
430		return 0;
431	a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
432	b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
433	if (a <= b)
434		return 1;
435	return 0;
436}
437
438STATIC int
439xfs_rmapbt_recs_inorder(
440	struct xfs_btree_cur		*cur,
441	const union xfs_btree_rec	*r1,
442	const union xfs_btree_rec	*r2)
443{
444	uint32_t		x;
445	uint32_t		y;
446	uint64_t		a;
447	uint64_t		b;
448
449	x = be32_to_cpu(r1->rmap.rm_startblock);
450	y = be32_to_cpu(r2->rmap.rm_startblock);
451	if (x < y)
452		return 1;
453	else if (x > y)
454		return 0;
455	a = be64_to_cpu(r1->rmap.rm_owner);
456	b = be64_to_cpu(r2->rmap.rm_owner);
457	if (a < b)
458		return 1;
459	else if (a > b)
460		return 0;
461	a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
462	b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
463	if (a <= b)
464		return 1;
465	return 0;
466}
467
468STATIC enum xbtree_key_contig
469xfs_rmapbt_keys_contiguous(
470	struct xfs_btree_cur		*cur,
471	const union xfs_btree_key	*key1,
472	const union xfs_btree_key	*key2,
473	const union xfs_btree_key	*mask)
474{
475	ASSERT(!mask || mask->rmap.rm_startblock);
476
477	/*
478	 * We only support checking contiguity of the physical space component.
479	 * If any callers ever need more specificity than that, they'll have to
480	 * implement it here.
481	 */
482	ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
483
484	return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
485				 be32_to_cpu(key2->rmap.rm_startblock));
486}
487
488const struct xfs_btree_ops xfs_rmapbt_ops = {
489	.name			= "rmap",
490	.type			= XFS_BTREE_TYPE_AG,
491	.geom_flags		= XFS_BTGEO_OVERLAPPING,
492
493	.rec_len		= sizeof(struct xfs_rmap_rec),
494	/* Overlapping btree; 2 keys per pointer. */
495	.key_len		= 2 * sizeof(struct xfs_rmap_key),
496	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
497
498	.lru_refs		= XFS_RMAP_BTREE_REF,
499	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_2),
500	.sick_mask		= XFS_SICK_AG_RMAPBT,
501
502	.dup_cursor		= xfs_rmapbt_dup_cursor,
503	.set_root		= xfs_rmapbt_set_root,
504	.alloc_block		= xfs_rmapbt_alloc_block,
505	.free_block		= xfs_rmapbt_free_block,
506	.get_minrecs		= xfs_rmapbt_get_minrecs,
507	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
508	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
509	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
510	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
511	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
512	.key_diff		= xfs_rmapbt_key_diff,
513	.buf_ops		= &xfs_rmapbt_buf_ops,
514	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
515	.keys_inorder		= xfs_rmapbt_keys_inorder,
516	.recs_inorder		= xfs_rmapbt_recs_inorder,
517	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
518};
519
520/*
521 * Create a new reverse mapping btree cursor.
522 *
523 * For staging cursors tp and agbp are NULL.
524 */
525struct xfs_btree_cur *
526xfs_rmapbt_init_cursor(
527	struct xfs_mount	*mp,
528	struct xfs_trans	*tp,
529	struct xfs_buf		*agbp,
530	struct xfs_perag	*pag)
531{
532	struct xfs_btree_cur	*cur;
533
534	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
 
535			mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
536	cur->bc_ag.pag = xfs_perag_hold(pag);
537	cur->bc_ag.agbp = agbp;
538	if (agbp) {
539		struct xfs_agf		*agf = agbp->b_addr;
 
 
 
540
541		cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
542	}
543	return cur;
544}
545
546#ifdef CONFIG_XFS_BTREE_IN_MEM
547static inline unsigned int
548xfs_rmapbt_mem_block_maxrecs(
549	unsigned int		blocklen,
550	bool			leaf)
551{
552	if (leaf)
553		return blocklen / sizeof(struct xfs_rmap_rec);
554	return blocklen /
555		(2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
556}
557
558/*
559 * Validate an in-memory rmap btree block.  Callers are allowed to generate an
560 * in-memory btree even if the ondisk feature is not enabled.
561 */
562static xfs_failaddr_t
563xfs_rmapbt_mem_verify(
564	struct xfs_buf		*bp)
565{
566	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
567	xfs_failaddr_t		fa;
568	unsigned int		level;
569	unsigned int		maxrecs;
570
571	if (!xfs_verify_magic(bp, block->bb_magic))
572		return __this_address;
573
574	fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
575	if (fa)
576		return fa;
577
578	level = be16_to_cpu(block->bb_level);
579	if (level >= xfs_rmapbt_maxlevels_ondisk())
580		return __this_address;
581
582	maxrecs = xfs_rmapbt_mem_block_maxrecs(
583			XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
584	return xfs_btree_memblock_verify(bp, maxrecs);
585}
586
587static void
588xfs_rmapbt_mem_rw_verify(
589	struct xfs_buf	*bp)
590{
591	xfs_failaddr_t	fa = xfs_rmapbt_mem_verify(bp);
592
593	if (fa)
594		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
595}
596
597/* skip crc checks on in-memory btrees to save time */
598static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
599	.name			= "xfs_rmapbt_mem",
600	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
601	.verify_read		= xfs_rmapbt_mem_rw_verify,
602	.verify_write		= xfs_rmapbt_mem_rw_verify,
603	.verify_struct		= xfs_rmapbt_mem_verify,
604};
605
606const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
607	.name			= "mem_rmap",
608	.type			= XFS_BTREE_TYPE_MEM,
609	.geom_flags		= XFS_BTGEO_OVERLAPPING,
610
611	.rec_len		= sizeof(struct xfs_rmap_rec),
612	/* Overlapping btree; 2 keys per pointer. */
613	.key_len		= 2 * sizeof(struct xfs_rmap_key),
614	.ptr_len		= XFS_BTREE_LONG_PTR_LEN,
615
616	.lru_refs		= XFS_RMAP_BTREE_REF,
617	.statoff		= XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
618
619	.dup_cursor		= xfbtree_dup_cursor,
620	.set_root		= xfbtree_set_root,
621	.alloc_block		= xfbtree_alloc_block,
622	.free_block		= xfbtree_free_block,
623	.get_minrecs		= xfbtree_get_minrecs,
624	.get_maxrecs		= xfbtree_get_maxrecs,
625	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
626	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
627	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
628	.init_ptr_from_cur	= xfbtree_init_ptr_from_cur,
629	.key_diff		= xfs_rmapbt_key_diff,
630	.buf_ops		= &xfs_rmapbt_mem_buf_ops,
631	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
632	.keys_inorder		= xfs_rmapbt_keys_inorder,
633	.recs_inorder		= xfs_rmapbt_recs_inorder,
634	.keys_contiguous	= xfs_rmapbt_keys_contiguous,
635};
636
637/* Create a cursor for an in-memory btree. */
638struct xfs_btree_cur *
639xfs_rmapbt_mem_cursor(
640	struct xfs_perag	*pag,
641	struct xfs_trans	*tp,
642	struct xfbtree		*xfbt)
 
643{
 
644	struct xfs_btree_cur	*cur;
645	struct xfs_mount	*mp = pag->pag_mount;
646
647	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_mem_ops,
648			xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
649	cur->bc_mem.xfbtree = xfbt;
650	cur->bc_nlevels = xfbt->nlevels;
651
652	cur->bc_mem.pag = xfs_perag_hold(pag);
653	return cur;
654}
655
656/* Create an in-memory rmap btree. */
657int
658xfs_rmapbt_mem_init(
659	struct xfs_mount	*mp,
660	struct xfbtree		*xfbt,
661	struct xfs_buftarg	*btp,
662	xfs_agnumber_t		agno)
663{
664	xfbt->owner = agno;
665	return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
666}
667
668/* Compute the max possible height for reverse mapping btrees in memory. */
669static unsigned int
670xfs_rmapbt_mem_maxlevels(void)
671{
672	unsigned int		minrecs[2];
673	unsigned int		blocklen;
674
675	blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
676
677	minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
678	minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
679
680	/*
681	 * How tall can an in-memory rmap btree become if we filled the entire
682	 * AG with rmap records?
683	 */
684	return xfs_btree_compute_maxlevels(minrecs,
685			XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
686}
687#else
688# define xfs_rmapbt_mem_maxlevels()	(0)
689#endif /* CONFIG_XFS_BTREE_IN_MEM */
690
691/*
692 * Install a new reverse mapping btree root.  Caller is responsible for
693 * invalidating and freeing the old btree blocks.
694 */
695void
696xfs_rmapbt_commit_staged_btree(
697	struct xfs_btree_cur	*cur,
698	struct xfs_trans	*tp,
699	struct xfs_buf		*agbp)
700{
701	struct xfs_agf		*agf = agbp->b_addr;
702	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
703
704	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
705
706	agf->agf_rmap_root = cpu_to_be32(afake->af_root);
707	agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
708	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
709	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
710				    XFS_AGF_RMAP_BLOCKS);
711	xfs_btree_commit_afakeroot(cur, tp, agbp);
712}
713
714/* Calculate number of records in a reverse mapping btree block. */
715static inline unsigned int
716xfs_rmapbt_block_maxrecs(
717	unsigned int		blocklen,
718	bool			leaf)
719{
720	if (leaf)
721		return blocklen / sizeof(struct xfs_rmap_rec);
722	return blocklen /
723		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
724}
725
726/*
727 * Calculate number of records in an rmap btree block.
728 */
729int
730xfs_rmapbt_maxrecs(
731	int			blocklen,
732	int			leaf)
733{
734	blocklen -= XFS_RMAP_BLOCK_LEN;
735	return xfs_rmapbt_block_maxrecs(blocklen, leaf);
736}
737
738/* Compute the max possible height for reverse mapping btrees. */
739unsigned int
740xfs_rmapbt_maxlevels_ondisk(void)
741{
742	unsigned int		minrecs[2];
743	unsigned int		blocklen;
744
745	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
746
747	minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
748	minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
749
750	/*
751	 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
752	 *
753	 * On a reflink filesystem, each AG block can have up to 2^32 (per the
754	 * refcount record format) owners, which means that theoretically we
755	 * could face up to 2^64 rmap records.  However, we're likely to run
756	 * out of blocks in the AG long before that happens, which means that
757	 * we must compute the max height based on what the btree will look
758	 * like if it consumes almost all the blocks in the AG due to maximal
759	 * sharing factor.
760	 */
761	return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
762		   xfs_rmapbt_mem_maxlevels());
763}
764
765/* Compute the maximum height of an rmap btree. */
766void
767xfs_rmapbt_compute_maxlevels(
768	struct xfs_mount		*mp)
769{
770	if (!xfs_has_rmapbt(mp)) {
771		mp->m_rmap_maxlevels = 0;
772		return;
773	}
774
775	if (xfs_has_reflink(mp)) {
776		/*
777		 * Compute the asymptotic maxlevels for an rmap btree on a
778		 * filesystem that supports reflink.
779		 *
780		 * On a reflink filesystem, each AG block can have up to 2^32
781		 * (per the refcount record format) owners, which means that
782		 * theoretically we could face up to 2^64 rmap records.
783		 * However, we're likely to run out of blocks in the AG long
784		 * before that happens, which means that we must compute the
785		 * max height based on what the btree will look like if it
786		 * consumes almost all the blocks in the AG due to maximal
787		 * sharing factor.
788		 */
789		mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
790				mp->m_sb.sb_agblocks);
791	} else {
792		/*
793		 * If there's no block sharing, compute the maximum rmapbt
794		 * height assuming one rmap record per AG block.
795		 */
796		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
797				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
798	}
799	ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
800}
801
802/* Calculate the refcount btree size for some records. */
803xfs_extlen_t
804xfs_rmapbt_calc_size(
805	struct xfs_mount	*mp,
806	unsigned long long	len)
807{
808	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
809}
810
811/*
812 * Calculate the maximum refcount btree size.
813 */
814xfs_extlen_t
815xfs_rmapbt_max_size(
816	struct xfs_mount	*mp,
817	xfs_agblock_t		agblocks)
818{
819	/* Bail out if we're uninitialized, which can happen in mkfs. */
820	if (mp->m_rmap_mxr[0] == 0)
821		return 0;
822
823	return xfs_rmapbt_calc_size(mp, agblocks);
824}
825
826/*
827 * Figure out how many blocks to reserve and how many are used by this btree.
828 */
829int
830xfs_rmapbt_calc_reserves(
831	struct xfs_mount	*mp,
832	struct xfs_trans	*tp,
833	struct xfs_perag	*pag,
834	xfs_extlen_t		*ask,
835	xfs_extlen_t		*used)
836{
837	struct xfs_buf		*agbp;
838	struct xfs_agf		*agf;
839	xfs_agblock_t		agblocks;
840	xfs_extlen_t		tree_len;
841	int			error;
842
843	if (!xfs_has_rmapbt(mp))
844		return 0;
845
846	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
847	if (error)
848		return error;
849
850	agf = agbp->b_addr;
851	agblocks = be32_to_cpu(agf->agf_length);
852	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
853	xfs_trans_brelse(tp, agbp);
854
855	/*
856	 * The log is permanently allocated, so the space it occupies will
857	 * never be available for the kinds of things that would require btree
858	 * expansion.  We therefore can pretend the space isn't there.
859	 */
860	if (xfs_ag_contains_log(mp, pag->pag_agno))
861		agblocks -= mp->m_sb.sb_logblocks;
862
863	/* Reserve 1% of the AG or enough for 1 block per record. */
864	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
865	*used += tree_len;
866
867	return error;
868}
869
870int __init
871xfs_rmapbt_init_cur_cache(void)
872{
873	xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
874			xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
875			0, 0, NULL);
876
877	if (!xfs_rmapbt_cur_cache)
878		return -ENOMEM;
879	return 0;
880}
881
882void
883xfs_rmapbt_destroy_cur_cache(void)
884{
885	kmem_cache_destroy(xfs_rmapbt_cur_cache);
886	xfs_rmapbt_cur_cache = NULL;
887}