Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
  30#include <linux/usb/composite.h>
  31
  32
  33#include "core.h"
  34#include "hw.h"
  35
  36/* conversion functions */
  37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  38{
  39	return container_of(req, struct dwc2_hsotg_req, req);
  40}
  41
  42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  43{
  44	return container_of(ep, struct dwc2_hsotg_ep, ep);
  45}
  46
  47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  48{
  49	return container_of(gadget, struct dwc2_hsotg, gadget);
  50}
  51
  52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  53{
  54	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  55}
  56
  57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  58{
  59	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  60}
  61
  62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  63						u32 ep_index, u32 dir_in)
  64{
  65	if (dir_in)
  66		return hsotg->eps_in[ep_index];
  67	else
  68		return hsotg->eps_out[ep_index];
  69}
  70
  71/* forward declaration of functions */
  72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  73
  74/**
  75 * using_dma - return the DMA status of the driver.
  76 * @hsotg: The driver state.
  77 *
  78 * Return true if we're using DMA.
  79 *
  80 * Currently, we have the DMA support code worked into everywhere
  81 * that needs it, but the AMBA DMA implementation in the hardware can
  82 * only DMA from 32bit aligned addresses. This means that gadgets such
  83 * as the CDC Ethernet cannot work as they often pass packets which are
  84 * not 32bit aligned.
  85 *
  86 * Unfortunately the choice to use DMA or not is global to the controller
  87 * and seems to be only settable when the controller is being put through
  88 * a core reset. This means we either need to fix the gadgets to take
  89 * account of DMA alignment, or add bounce buffers (yuerk).
  90 *
  91 * g_using_dma is set depending on dts flag.
  92 */
  93static inline bool using_dma(struct dwc2_hsotg *hsotg)
  94{
  95	return hsotg->params.g_dma;
  96}
  97
  98/*
  99 * using_desc_dma - return the descriptor DMA status of the driver.
 100 * @hsotg: The driver state.
 101 *
 102 * Return true if we're using descriptor DMA.
 103 */
 104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 105{
 106	return hsotg->params.g_dma_desc;
 107}
 108
 109/**
 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 111 * @hs_ep: The endpoint
 112 *
 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 115 */
 116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 117{
 118	struct dwc2_hsotg *hsotg = hs_ep->parent;
 119	u16 limit = DSTS_SOFFN_LIMIT;
 120
 121	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 122		limit >>= 3;
 123
 124	hs_ep->target_frame += hs_ep->interval;
 125	if (hs_ep->target_frame > limit) {
 126		hs_ep->frame_overrun = true;
 127		hs_ep->target_frame &= limit;
 128	} else {
 129		hs_ep->frame_overrun = false;
 130	}
 131}
 132
 133/**
 134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 135 *                                    by one.
 136 * @hs_ep: The endpoint.
 137 *
 138 * This function used in service interval based scheduling flow to calculate
 139 * descriptor frame number filed value. For service interval mode frame
 140 * number in descriptor should point to last (u)frame in the interval.
 141 *
 142 */
 143static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 144{
 145	struct dwc2_hsotg *hsotg = hs_ep->parent;
 146	u16 limit = DSTS_SOFFN_LIMIT;
 147
 148	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 149		limit >>= 3;
 150
 151	if (hs_ep->target_frame)
 152		hs_ep->target_frame -= 1;
 153	else
 154		hs_ep->target_frame = limit;
 155}
 156
 157/**
 158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 159 * @hsotg: The device state
 160 * @ints: A bitmask of the interrupts to enable
 161 */
 162static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 163{
 164	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 165	u32 new_gsintmsk;
 166
 167	new_gsintmsk = gsintmsk | ints;
 168
 169	if (new_gsintmsk != gsintmsk) {
 170		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 171		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 172	}
 173}
 174
 175/**
 176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 177 * @hsotg: The device state
 178 * @ints: A bitmask of the interrupts to enable
 179 */
 180static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 181{
 182	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 183	u32 new_gsintmsk;
 184
 185	new_gsintmsk = gsintmsk & ~ints;
 186
 187	if (new_gsintmsk != gsintmsk)
 188		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 189}
 190
 191/**
 192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 193 * @hsotg: The device state
 194 * @ep: The endpoint index
 195 * @dir_in: True if direction is in.
 196 * @en: The enable value, true to enable
 197 *
 198 * Set or clear the mask for an individual endpoint's interrupt
 199 * request.
 200 */
 201static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 202				  unsigned int ep, unsigned int dir_in,
 203				 unsigned int en)
 204{
 205	unsigned long flags;
 206	u32 bit = 1 << ep;
 207	u32 daint;
 208
 209	if (!dir_in)
 210		bit <<= 16;
 211
 212	local_irq_save(flags);
 213	daint = dwc2_readl(hsotg, DAINTMSK);
 214	if (en)
 215		daint |= bit;
 216	else
 217		daint &= ~bit;
 218	dwc2_writel(hsotg, daint, DAINTMSK);
 219	local_irq_restore(flags);
 220}
 221
 222/**
 223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 224 *
 225 * @hsotg: Programming view of the DWC_otg controller
 226 */
 227int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 228{
 229	if (hsotg->hw_params.en_multiple_tx_fifo)
 230		/* In dedicated FIFO mode we need count of IN EPs */
 231		return hsotg->hw_params.num_dev_in_eps;
 232	else
 233		/* In shared FIFO mode we need count of Periodic IN EPs */
 234		return hsotg->hw_params.num_dev_perio_in_ep;
 235}
 236
 237/**
 238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 239 * device mode TX FIFOs
 240 *
 241 * @hsotg: Programming view of the DWC_otg controller
 242 */
 243int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 244{
 245	int addr;
 246	int tx_addr_max;
 247	u32 np_tx_fifo_size;
 248
 249	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 250				hsotg->params.g_np_tx_fifo_size);
 251
 252	/* Get Endpoint Info Control block size in DWORDs. */
 253	tx_addr_max = hsotg->hw_params.total_fifo_size;
 254
 255	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 256	if (tx_addr_max <= addr)
 257		return 0;
 258
 259	return tx_addr_max - addr;
 260}
 261
 262/**
 263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 264 *
 265 * @hsotg: Programming view of the DWC_otg controller
 266 *
 267 */
 268static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 269{
 270	u32 gintsts2;
 271	u32 gintmsk2;
 272
 273	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 274	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 275	gintsts2 &= gintmsk2;
 276
 277	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 278		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 279		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 280		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 281	}
 282}
 283
 284/**
 285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 286 * TX FIFOs
 287 *
 288 * @hsotg: Programming view of the DWC_otg controller
 289 */
 290int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 291{
 292	int tx_fifo_count;
 293	int tx_fifo_depth;
 294
 295	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 296
 297	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 298
 299	if (!tx_fifo_count)
 300		return tx_fifo_depth;
 301	else
 302		return tx_fifo_depth / tx_fifo_count;
 303}
 304
 305/**
 306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 307 * @hsotg: The device instance.
 308 */
 309static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 310{
 311	unsigned int ep;
 312	unsigned int addr;
 313	int timeout;
 314
 315	u32 val;
 316	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 317
 318	/* Reset fifo map if not correctly cleared during previous session */
 319	WARN_ON(hsotg->fifo_map);
 320	hsotg->fifo_map = 0;
 321
 322	/* set RX/NPTX FIFO sizes */
 323	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 324	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 325		    FIFOSIZE_STARTADDR_SHIFT) |
 326		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 327		    GNPTXFSIZ);
 328
 329	/*
 330	 * arange all the rest of the TX FIFOs, as some versions of this
 331	 * block have overlapping default addresses. This also ensures
 332	 * that if the settings have been changed, then they are set to
 333	 * known values.
 334	 */
 335
 336	/* start at the end of the GNPTXFSIZ, rounded up */
 337	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 338
 339	/*
 340	 * Configure fifos sizes from provided configuration and assign
 341	 * them to endpoints dynamically according to maxpacket size value of
 342	 * given endpoint.
 343	 */
 344	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 345		if (!txfsz[ep])
 346			continue;
 347		val = addr;
 348		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 349		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 350			  "insufficient fifo memory");
 351		addr += txfsz[ep];
 352
 353		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 354		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 355	}
 356
 357	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 358		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 359		    GDFIFOCFG);
 360	/*
 361	 * according to p428 of the design guide, we need to ensure that
 362	 * all fifos are flushed before continuing
 363	 */
 364
 365	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 366	       GRSTCTL_RXFFLSH, GRSTCTL);
 367
 368	/* wait until the fifos are both flushed */
 369	timeout = 100;
 370	while (1) {
 371		val = dwc2_readl(hsotg, GRSTCTL);
 372
 373		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 374			break;
 375
 376		if (--timeout == 0) {
 377			dev_err(hsotg->dev,
 378				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 379				__func__, val);
 380			break;
 381		}
 382
 383		udelay(1);
 384	}
 385
 386	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 387}
 388
 389/**
 390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 391 * @ep: USB endpoint to allocate request for.
 392 * @flags: Allocation flags
 393 *
 394 * Allocate a new USB request structure appropriate for the specified endpoint
 395 */
 396static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 397						       gfp_t flags)
 398{
 399	struct dwc2_hsotg_req *req;
 400
 401	req = kzalloc(sizeof(*req), flags);
 402	if (!req)
 403		return NULL;
 404
 405	INIT_LIST_HEAD(&req->queue);
 406
 407	return &req->req;
 408}
 409
 410/**
 411 * is_ep_periodic - return true if the endpoint is in periodic mode.
 412 * @hs_ep: The endpoint to query.
 413 *
 414 * Returns true if the endpoint is in periodic mode, meaning it is being
 415 * used for an Interrupt or ISO transfer.
 416 */
 417static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 418{
 419	return hs_ep->periodic;
 420}
 421
 422/**
 423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 424 * @hsotg: The device state.
 425 * @hs_ep: The endpoint for the request
 426 * @hs_req: The request being processed.
 427 *
 428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 429 * of a request to ensure the buffer is ready for access by the caller.
 430 */
 431static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 432				 struct dwc2_hsotg_ep *hs_ep,
 433				struct dwc2_hsotg_req *hs_req)
 434{
 435	struct usb_request *req = &hs_req->req;
 436
 437	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
 438}
 439
 440/*
 441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 442 * for Control endpoint
 443 * @hsotg: The device state.
 444 *
 445 * This function will allocate 4 descriptor chains for EP 0: 2 for
 446 * Setup stage, per one for IN and OUT data/status transactions.
 447 */
 448static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 449{
 450	hsotg->setup_desc[0] =
 451		dmam_alloc_coherent(hsotg->dev,
 452				    sizeof(struct dwc2_dma_desc),
 453				    &hsotg->setup_desc_dma[0],
 454				    GFP_KERNEL);
 455	if (!hsotg->setup_desc[0])
 456		goto fail;
 457
 458	hsotg->setup_desc[1] =
 459		dmam_alloc_coherent(hsotg->dev,
 460				    sizeof(struct dwc2_dma_desc),
 461				    &hsotg->setup_desc_dma[1],
 462				    GFP_KERNEL);
 463	if (!hsotg->setup_desc[1])
 464		goto fail;
 465
 466	hsotg->ctrl_in_desc =
 467		dmam_alloc_coherent(hsotg->dev,
 468				    sizeof(struct dwc2_dma_desc),
 469				    &hsotg->ctrl_in_desc_dma,
 470				    GFP_KERNEL);
 471	if (!hsotg->ctrl_in_desc)
 472		goto fail;
 473
 474	hsotg->ctrl_out_desc =
 475		dmam_alloc_coherent(hsotg->dev,
 476				    sizeof(struct dwc2_dma_desc),
 477				    &hsotg->ctrl_out_desc_dma,
 478				    GFP_KERNEL);
 479	if (!hsotg->ctrl_out_desc)
 480		goto fail;
 481
 482	return 0;
 483
 484fail:
 485	return -ENOMEM;
 486}
 487
 488/**
 489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 490 * @hsotg: The controller state.
 491 * @hs_ep: The endpoint we're going to write for.
 492 * @hs_req: The request to write data for.
 493 *
 494 * This is called when the TxFIFO has some space in it to hold a new
 495 * transmission and we have something to give it. The actual setup of
 496 * the data size is done elsewhere, so all we have to do is to actually
 497 * write the data.
 498 *
 499 * The return value is zero if there is more space (or nothing was done)
 500 * otherwise -ENOSPC is returned if the FIFO space was used up.
 501 *
 502 * This routine is only needed for PIO
 503 */
 504static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 505				 struct dwc2_hsotg_ep *hs_ep,
 506				struct dwc2_hsotg_req *hs_req)
 507{
 508	bool periodic = is_ep_periodic(hs_ep);
 509	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 510	int buf_pos = hs_req->req.actual;
 511	int to_write = hs_ep->size_loaded;
 512	void *data;
 513	int can_write;
 514	int pkt_round;
 515	int max_transfer;
 516
 517	to_write -= (buf_pos - hs_ep->last_load);
 518
 519	/* if there's nothing to write, get out early */
 520	if (to_write == 0)
 521		return 0;
 522
 523	if (periodic && !hsotg->dedicated_fifos) {
 524		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 525		int size_left;
 526		int size_done;
 527
 528		/*
 529		 * work out how much data was loaded so we can calculate
 530		 * how much data is left in the fifo.
 531		 */
 532
 533		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 534
 535		/*
 536		 * if shared fifo, we cannot write anything until the
 537		 * previous data has been completely sent.
 538		 */
 539		if (hs_ep->fifo_load != 0) {
 540			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 541			return -ENOSPC;
 542		}
 543
 544		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 545			__func__, size_left,
 546			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 547
 548		/* how much of the data has moved */
 549		size_done = hs_ep->size_loaded - size_left;
 550
 551		/* how much data is left in the fifo */
 552		can_write = hs_ep->fifo_load - size_done;
 553		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 554			__func__, can_write);
 555
 556		can_write = hs_ep->fifo_size - can_write;
 557		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 558			__func__, can_write);
 559
 560		if (can_write <= 0) {
 561			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 562			return -ENOSPC;
 563		}
 564	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 565		can_write = dwc2_readl(hsotg,
 566				       DTXFSTS(hs_ep->fifo_index));
 567
 568		can_write &= 0xffff;
 569		can_write *= 4;
 570	} else {
 571		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 572			dev_dbg(hsotg->dev,
 573				"%s: no queue slots available (0x%08x)\n",
 574				__func__, gnptxsts);
 575
 576			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 577			return -ENOSPC;
 578		}
 579
 580		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 581		can_write *= 4;	/* fifo size is in 32bit quantities. */
 582	}
 583
 584	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 585
 586	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 587		__func__, gnptxsts, can_write, to_write, max_transfer);
 588
 589	/*
 590	 * limit to 512 bytes of data, it seems at least on the non-periodic
 591	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 592	 * fragment of the end of the transfer in it.
 593	 */
 594	if (can_write > 512 && !periodic)
 595		can_write = 512;
 596
 597	/*
 598	 * limit the write to one max-packet size worth of data, but allow
 599	 * the transfer to return that it did not run out of fifo space
 600	 * doing it.
 601	 */
 602	if (to_write > max_transfer) {
 603		to_write = max_transfer;
 604
 605		/* it's needed only when we do not use dedicated fifos */
 606		if (!hsotg->dedicated_fifos)
 607			dwc2_hsotg_en_gsint(hsotg,
 608					    periodic ? GINTSTS_PTXFEMP :
 609					   GINTSTS_NPTXFEMP);
 610	}
 611
 612	/* see if we can write data */
 613
 614	if (to_write > can_write) {
 615		to_write = can_write;
 616		pkt_round = to_write % max_transfer;
 617
 618		/*
 619		 * Round the write down to an
 620		 * exact number of packets.
 621		 *
 622		 * Note, we do not currently check to see if we can ever
 623		 * write a full packet or not to the FIFO.
 624		 */
 625
 626		if (pkt_round)
 627			to_write -= pkt_round;
 628
 629		/*
 630		 * enable correct FIFO interrupt to alert us when there
 631		 * is more room left.
 632		 */
 633
 634		/* it's needed only when we do not use dedicated fifos */
 635		if (!hsotg->dedicated_fifos)
 636			dwc2_hsotg_en_gsint(hsotg,
 637					    periodic ? GINTSTS_PTXFEMP :
 638					   GINTSTS_NPTXFEMP);
 639	}
 640
 641	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 642		to_write, hs_req->req.length, can_write, buf_pos);
 643
 644	if (to_write <= 0)
 645		return -ENOSPC;
 646
 647	hs_req->req.actual = buf_pos + to_write;
 648	hs_ep->total_data += to_write;
 649
 650	if (periodic)
 651		hs_ep->fifo_load += to_write;
 652
 653	to_write = DIV_ROUND_UP(to_write, 4);
 654	data = hs_req->req.buf + buf_pos;
 655
 656	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 657
 658	return (to_write >= can_write) ? -ENOSPC : 0;
 659}
 660
 661/**
 662 * get_ep_limit - get the maximum data legnth for this endpoint
 663 * @hs_ep: The endpoint
 664 *
 665 * Return the maximum data that can be queued in one go on a given endpoint
 666 * so that transfers that are too long can be split.
 667 */
 668static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 669{
 670	int index = hs_ep->index;
 671	unsigned int maxsize;
 672	unsigned int maxpkt;
 673
 674	if (index != 0) {
 675		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 676		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 677	} else {
 678		maxsize = 64 + 64;
 679		if (hs_ep->dir_in)
 680			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 681		else
 682			maxpkt = 2;
 683	}
 684
 685	/* we made the constant loading easier above by using +1 */
 686	maxpkt--;
 687	maxsize--;
 688
 689	/*
 690	 * constrain by packet count if maxpkts*pktsize is greater
 691	 * than the length register size.
 692	 */
 693
 694	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 695		maxsize = maxpkt * hs_ep->ep.maxpacket;
 696
 697	return maxsize;
 698}
 699
 700/**
 701 * dwc2_hsotg_read_frameno - read current frame number
 702 * @hsotg: The device instance
 703 *
 704 * Return the current frame number
 705 */
 706static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 707{
 708	u32 dsts;
 709
 710	dsts = dwc2_readl(hsotg, DSTS);
 711	dsts &= DSTS_SOFFN_MASK;
 712	dsts >>= DSTS_SOFFN_SHIFT;
 713
 714	return dsts;
 715}
 716
 717/**
 718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 719 * DMA descriptor chain prepared for specific endpoint
 720 * @hs_ep: The endpoint
 721 *
 722 * Return the maximum data that can be queued in one go on a given endpoint
 723 * depending on its descriptor chain capacity so that transfers that
 724 * are too long can be split.
 725 */
 726static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 727{
 728	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 729	int is_isoc = hs_ep->isochronous;
 730	unsigned int maxsize;
 731	u32 mps = hs_ep->ep.maxpacket;
 732	int dir_in = hs_ep->dir_in;
 733
 734	if (is_isoc)
 735		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 736					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 737					   MAX_DMA_DESC_NUM_HS_ISOC;
 738	else
 739		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 740
 741	/* Interrupt OUT EP with mps not multiple of 4 */
 742	if (hs_ep->index)
 743		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
 744			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
 745
 746	return maxsize;
 747}
 748
 749/*
 750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 751 * @hs_ep: The endpoint
 752 * @mask: RX/TX bytes mask to be defined
 753 *
 754 * Returns maximum data payload for one descriptor after analyzing endpoint
 755 * characteristics.
 756 * DMA descriptor transfer bytes limit depends on EP type:
 757 * Control out - MPS,
 758 * Isochronous - descriptor rx/tx bytes bitfield limit,
 759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 760 * have concatenations from various descriptors within one packet.
 761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
 762 * to a single descriptor.
 763 *
 764 * Selects corresponding mask for RX/TX bytes as well.
 765 */
 766static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 767{
 768	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 769	u32 mps = hs_ep->ep.maxpacket;
 770	int dir_in = hs_ep->dir_in;
 771	u32 desc_size = 0;
 772
 773	if (!hs_ep->index && !dir_in) {
 774		desc_size = mps;
 775		*mask = DEV_DMA_NBYTES_MASK;
 776	} else if (hs_ep->isochronous) {
 777		if (dir_in) {
 778			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 779			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 780		} else {
 781			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 782			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 783		}
 784	} else {
 785		desc_size = DEV_DMA_NBYTES_LIMIT;
 786		*mask = DEV_DMA_NBYTES_MASK;
 787
 788		/* Round down desc_size to be mps multiple */
 789		desc_size -= desc_size % mps;
 790	}
 791
 792	/* Interrupt OUT EP with mps not multiple of 4 */
 793	if (hs_ep->index)
 794		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
 795			desc_size = mps;
 796			*mask = DEV_DMA_NBYTES_MASK;
 797		}
 798
 799	return desc_size;
 800}
 801
 802static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 803						 struct dwc2_dma_desc **desc,
 804						 dma_addr_t dma_buff,
 805						 unsigned int len,
 806						 bool true_last)
 807{
 808	int dir_in = hs_ep->dir_in;
 809	u32 mps = hs_ep->ep.maxpacket;
 810	u32 maxsize = 0;
 811	u32 offset = 0;
 812	u32 mask = 0;
 813	int i;
 814
 815	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 816
 817	hs_ep->desc_count = (len / maxsize) +
 818				((len % maxsize) ? 1 : 0);
 819	if (len == 0)
 820		hs_ep->desc_count = 1;
 821
 822	for (i = 0; i < hs_ep->desc_count; ++i) {
 823		(*desc)->status = 0;
 824		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 825				 << DEV_DMA_BUFF_STS_SHIFT);
 826
 827		if (len > maxsize) {
 828			if (!hs_ep->index && !dir_in)
 829				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 830
 831			(*desc)->status |=
 832				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 833			(*desc)->buf = dma_buff + offset;
 834
 835			len -= maxsize;
 836			offset += maxsize;
 837		} else {
 838			if (true_last)
 839				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 840
 841			if (dir_in)
 842				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 843					((hs_ep->send_zlp && true_last) ?
 844					DEV_DMA_SHORT : 0);
 845
 846			(*desc)->status |=
 847				len << DEV_DMA_NBYTES_SHIFT & mask;
 848			(*desc)->buf = dma_buff + offset;
 849		}
 850
 851		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 852		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 853				 << DEV_DMA_BUFF_STS_SHIFT);
 854		(*desc)++;
 855	}
 856}
 857
 858/*
 859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 860 * @hs_ep: The endpoint
 861 * @ureq: Request to transfer
 862 * @offset: offset in bytes
 863 * @len: Length of the transfer
 864 *
 865 * This function will iterate over descriptor chain and fill its entries
 866 * with corresponding information based on transfer data.
 867 */
 868static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 869						 dma_addr_t dma_buff,
 870						 unsigned int len)
 871{
 872	struct usb_request *ureq = NULL;
 873	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 874	struct scatterlist *sg;
 875	int i;
 876	u8 desc_count = 0;
 877
 878	if (hs_ep->req)
 879		ureq = &hs_ep->req->req;
 880
 881	/* non-DMA sg buffer */
 882	if (!ureq || !ureq->num_sgs) {
 883		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 884			dma_buff, len, true);
 885		return;
 886	}
 887
 888	/* DMA sg buffer */
 889	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
 890		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 891			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 892			sg_is_last(sg));
 893		desc_count += hs_ep->desc_count;
 894	}
 895
 896	hs_ep->desc_count = desc_count;
 897}
 898
 899/*
 900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 901 * @hs_ep: The isochronous endpoint.
 902 * @dma_buff: usb requests dma buffer.
 903 * @len: usb request transfer length.
 904 *
 905 * Fills next free descriptor with the data of the arrived usb request,
 906 * frame info, sets Last and IOC bits increments next_desc. If filled
 907 * descriptor is not the first one, removes L bit from the previous descriptor
 908 * status.
 909 */
 910static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 911				      dma_addr_t dma_buff, unsigned int len)
 912{
 913	struct dwc2_dma_desc *desc;
 914	struct dwc2_hsotg *hsotg = hs_ep->parent;
 915	u32 index;
 916	u32 mask = 0;
 917	u8 pid = 0;
 918
 919	dwc2_gadget_get_desc_params(hs_ep, &mask);
 920
 921	index = hs_ep->next_desc;
 922	desc = &hs_ep->desc_list[index];
 923
 924	/* Check if descriptor chain full */
 925	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 926	    DEV_DMA_BUFF_STS_HREADY) {
 927		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 928		return 1;
 929	}
 930
 931	/* Clear L bit of previous desc if more than one entries in the chain */
 932	if (hs_ep->next_desc)
 933		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 934
 935	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 936		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 937
 938	desc->status = 0;
 939	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 940
 941	desc->buf = dma_buff;
 942	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 943			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 944
 945	if (hs_ep->dir_in) {
 946		if (len)
 947			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 948		else
 949			pid = 1;
 950		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 951				 DEV_DMA_ISOC_PID_MASK) |
 952				((len % hs_ep->ep.maxpacket) ?
 953				 DEV_DMA_SHORT : 0) |
 954				((hs_ep->target_frame <<
 955				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 956				 DEV_DMA_ISOC_FRNUM_MASK);
 957	}
 958
 959	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 960	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 961
 962	/* Increment frame number by interval for IN */
 963	if (hs_ep->dir_in)
 964		dwc2_gadget_incr_frame_num(hs_ep);
 965
 966	/* Update index of last configured entry in the chain */
 967	hs_ep->next_desc++;
 968	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 969		hs_ep->next_desc = 0;
 970
 971	return 0;
 972}
 973
 974/*
 975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 976 * @hs_ep: The isochronous endpoint.
 977 *
 978 * Prepare descriptor chain for isochronous endpoints. Afterwards
 979 * write DMA address to HW and enable the endpoint.
 980 */
 981static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 982{
 983	struct dwc2_hsotg *hsotg = hs_ep->parent;
 984	struct dwc2_hsotg_req *hs_req, *treq;
 985	int index = hs_ep->index;
 986	int ret;
 987	int i;
 988	u32 dma_reg;
 989	u32 depctl;
 990	u32 ctrl;
 991	struct dwc2_dma_desc *desc;
 992
 993	if (list_empty(&hs_ep->queue)) {
 994		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 995		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 996		return;
 997	}
 998
 999	/* Initialize descriptor chain by Host Busy status */
1000	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001		desc = &hs_ep->desc_list[i];
1002		desc->status = 0;
1003		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004				    << DEV_DMA_BUFF_STS_SHIFT);
1005	}
1006
1007	hs_ep->next_desc = 0;
1008	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009		dma_addr_t dma_addr = hs_req->req.dma;
1010
1011		if (hs_req->req.num_sgs) {
1012			WARN_ON(hs_req->req.num_sgs > 1);
1013			dma_addr = sg_dma_address(hs_req->req.sg);
1014		}
1015		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016						 hs_req->req.length);
1017		if (ret)
1018			break;
1019	}
1020
1021	hs_ep->compl_desc = 0;
1022	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024
1025	/* write descriptor chain address to control register */
1026	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027
1028	ctrl = dwc2_readl(hsotg, depctl);
1029	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030	dwc2_writel(hsotg, ctrl, depctl);
1031}
1032
1033static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035					struct dwc2_hsotg_ep *hs_ep,
1036				       struct dwc2_hsotg_req *hs_req,
1037				       int result);
1038
1039/**
1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041 * @hsotg: The controller state.
1042 * @hs_ep: The endpoint to process a request for
1043 * @hs_req: The request to start.
1044 * @continuing: True if we are doing more for the current request.
1045 *
1046 * Start the given request running by setting the endpoint registers
1047 * appropriately, and writing any data to the FIFOs.
1048 */
1049static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050				 struct dwc2_hsotg_ep *hs_ep,
1051				struct dwc2_hsotg_req *hs_req,
1052				bool continuing)
1053{
1054	struct usb_request *ureq = &hs_req->req;
1055	int index = hs_ep->index;
1056	int dir_in = hs_ep->dir_in;
1057	u32 epctrl_reg;
1058	u32 epsize_reg;
1059	u32 epsize;
1060	u32 ctrl;
1061	unsigned int length;
1062	unsigned int packets;
1063	unsigned int maxreq;
1064	unsigned int dma_reg;
1065
1066	if (index != 0) {
1067		if (hs_ep->req && !continuing) {
1068			dev_err(hsotg->dev, "%s: active request\n", __func__);
1069			WARN_ON(1);
1070			return;
1071		} else if (hs_ep->req != hs_req && continuing) {
1072			dev_err(hsotg->dev,
1073				"%s: continue different req\n", __func__);
1074			WARN_ON(1);
1075			return;
1076		}
1077	}
1078
1079	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082
1083	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1085		hs_ep->dir_in ? "in" : "out");
1086
1087	/* If endpoint is stalled, we will restart request later */
1088	ctrl = dwc2_readl(hsotg, epctrl_reg);
1089
1090	if (index && ctrl & DXEPCTL_STALL) {
1091		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092		return;
1093	}
1094
1095	length = ureq->length - ureq->actual;
1096	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097		ureq->length, ureq->actual);
1098
1099	if (!using_desc_dma(hsotg))
1100		maxreq = get_ep_limit(hs_ep);
1101	else
1102		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103
1104	if (length > maxreq) {
1105		int round = maxreq % hs_ep->ep.maxpacket;
1106
1107		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108			__func__, length, maxreq, round);
1109
1110		/* round down to multiple of packets */
1111		if (round)
1112			maxreq -= round;
1113
1114		length = maxreq;
1115	}
1116
1117	if (length)
1118		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119	else
1120		packets = 1;	/* send one packet if length is zero. */
1121
1122	if (dir_in && index != 0)
1123		if (hs_ep->isochronous)
1124			epsize = DXEPTSIZ_MC(packets);
1125		else
1126			epsize = DXEPTSIZ_MC(1);
1127	else
1128		epsize = 0;
1129
1130	/*
1131	 * zero length packet should be programmed on its own and should not
1132	 * be counted in DIEPTSIZ.PktCnt with other packets.
1133	 */
1134	if (dir_in && ureq->zero && !continuing) {
1135		/* Test if zlp is actually required. */
1136		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137		    !(ureq->length % hs_ep->ep.maxpacket))
1138			hs_ep->send_zlp = 1;
1139	}
1140
1141	epsize |= DXEPTSIZ_PKTCNT(packets);
1142	epsize |= DXEPTSIZ_XFERSIZE(length);
1143
1144	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145		__func__, packets, length, ureq->length, epsize, epsize_reg);
1146
1147	/* store the request as the current one we're doing */
1148	hs_ep->req = hs_req;
1149
1150	if (using_desc_dma(hsotg)) {
1151		u32 offset = 0;
1152		u32 mps = hs_ep->ep.maxpacket;
1153
1154		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155		if (!dir_in) {
1156			if (!index)
1157				length = mps;
1158			else if (length % mps)
1159				length += (mps - (length % mps));
1160		}
1161
1162		if (continuing)
1163			offset = ureq->actual;
1164
1165		/* Fill DDMA chain entries */
1166		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167						     length);
1168
1169		/* write descriptor chain address to control register */
1170		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171
1172		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174	} else {
1175		/* write size / packets */
1176		dwc2_writel(hsotg, epsize, epsize_reg);
1177
1178		if (using_dma(hsotg) && !continuing && (length != 0)) {
1179			/*
1180			 * write DMA address to control register, buffer
1181			 * already synced by dwc2_hsotg_ep_queue().
1182			 */
1183
1184			dwc2_writel(hsotg, ureq->dma, dma_reg);
1185
1186			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187				__func__, &ureq->dma, dma_reg);
1188		}
1189	}
1190
1191	if (hs_ep->isochronous) {
1192		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193			if (hs_ep->interval == 1) {
1194				if (hs_ep->target_frame & 0x1)
1195					ctrl |= DXEPCTL_SETODDFR;
1196				else
1197					ctrl |= DXEPCTL_SETEVENFR;
1198			}
1199			ctrl |= DXEPCTL_CNAK;
1200		} else {
1201			hs_req->req.frame_number = hs_ep->target_frame;
1202			hs_req->req.actual = 0;
1203			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1204			return;
1205		}
1206	}
1207
1208	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1209
1210	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1211
1212	/* For Setup request do not clear NAK */
1213	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1214		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1215
1216	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1217	dwc2_writel(hsotg, ctrl, epctrl_reg);
1218
1219	/*
1220	 * set these, it seems that DMA support increments past the end
1221	 * of the packet buffer so we need to calculate the length from
1222	 * this information.
1223	 */
1224	hs_ep->size_loaded = length;
1225	hs_ep->last_load = ureq->actual;
1226
1227	if (dir_in && !using_dma(hsotg)) {
1228		/* set these anyway, we may need them for non-periodic in */
1229		hs_ep->fifo_load = 0;
1230
1231		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1232	}
1233
1234	/*
1235	 * Note, trying to clear the NAK here causes problems with transmit
1236	 * on the S3C6400 ending up with the TXFIFO becoming full.
1237	 */
1238
1239	/* check ep is enabled */
1240	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1241		dev_dbg(hsotg->dev,
1242			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1243			 index, dwc2_readl(hsotg, epctrl_reg));
1244
1245	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1246		__func__, dwc2_readl(hsotg, epctrl_reg));
1247
1248	/* enable ep interrupts */
1249	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1250}
1251
1252/**
1253 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1254 * @hsotg: The device state.
1255 * @hs_ep: The endpoint the request is on.
1256 * @req: The request being processed.
1257 *
1258 * We've been asked to queue a request, so ensure that the memory buffer
1259 * is correctly setup for DMA. If we've been passed an extant DMA address
1260 * then ensure the buffer has been synced to memory. If our buffer has no
1261 * DMA memory, then we map the memory and mark our request to allow us to
1262 * cleanup on completion.
1263 */
1264static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1265			      struct dwc2_hsotg_ep *hs_ep,
1266			     struct usb_request *req)
1267{
1268	int ret;
1269
1270	hs_ep->map_dir = hs_ep->dir_in;
1271	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1272	if (ret)
1273		goto dma_error;
1274
1275	return 0;
1276
1277dma_error:
1278	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1279		__func__, req->buf, req->length);
1280
1281	return -EIO;
1282}
1283
1284static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1285						 struct dwc2_hsotg_ep *hs_ep,
1286						 struct dwc2_hsotg_req *hs_req)
1287{
1288	void *req_buf = hs_req->req.buf;
1289
1290	/* If dma is not being used or buffer is aligned */
1291	if (!using_dma(hsotg) || !((long)req_buf & 3))
1292		return 0;
1293
1294	WARN_ON(hs_req->saved_req_buf);
1295
1296	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1297		hs_ep->ep.name, req_buf, hs_req->req.length);
1298
1299	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1300	if (!hs_req->req.buf) {
1301		hs_req->req.buf = req_buf;
1302		dev_err(hsotg->dev,
1303			"%s: unable to allocate memory for bounce buffer\n",
1304			__func__);
1305		return -ENOMEM;
1306	}
1307
1308	/* Save actual buffer */
1309	hs_req->saved_req_buf = req_buf;
1310
1311	if (hs_ep->dir_in)
1312		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1313	return 0;
1314}
1315
1316static void
1317dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1318					 struct dwc2_hsotg_ep *hs_ep,
1319					 struct dwc2_hsotg_req *hs_req)
1320{
1321	/* If dma is not being used or buffer was aligned */
1322	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1323		return;
1324
1325	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1326		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1327
1328	/* Copy data from bounce buffer on successful out transfer */
1329	if (!hs_ep->dir_in && !hs_req->req.status)
1330		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1331		       hs_req->req.actual);
1332
1333	/* Free bounce buffer */
1334	kfree(hs_req->req.buf);
1335
1336	hs_req->req.buf = hs_req->saved_req_buf;
1337	hs_req->saved_req_buf = NULL;
1338}
1339
1340/**
1341 * dwc2_gadget_target_frame_elapsed - Checks target frame
1342 * @hs_ep: The driver endpoint to check
1343 *
1344 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1345 * corresponding transfer.
1346 */
1347static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1348{
1349	struct dwc2_hsotg *hsotg = hs_ep->parent;
1350	u32 target_frame = hs_ep->target_frame;
1351	u32 current_frame = hsotg->frame_number;
1352	bool frame_overrun = hs_ep->frame_overrun;
1353	u16 limit = DSTS_SOFFN_LIMIT;
1354
1355	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1356		limit >>= 3;
1357
1358	if (!frame_overrun && current_frame >= target_frame)
1359		return true;
1360
1361	if (frame_overrun && current_frame >= target_frame &&
1362	    ((current_frame - target_frame) < limit / 2))
1363		return true;
1364
1365	return false;
1366}
1367
1368/*
1369 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1370 * @hsotg: The driver state
1371 * @hs_ep: the ep descriptor chain is for
1372 *
1373 * Called to update EP0 structure's pointers depend on stage of
1374 * control transfer.
1375 */
1376static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1377					  struct dwc2_hsotg_ep *hs_ep)
1378{
1379	switch (hsotg->ep0_state) {
1380	case DWC2_EP0_SETUP:
1381	case DWC2_EP0_STATUS_OUT:
1382		hs_ep->desc_list = hsotg->setup_desc[0];
1383		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1384		break;
1385	case DWC2_EP0_DATA_IN:
1386	case DWC2_EP0_STATUS_IN:
1387		hs_ep->desc_list = hsotg->ctrl_in_desc;
1388		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1389		break;
1390	case DWC2_EP0_DATA_OUT:
1391		hs_ep->desc_list = hsotg->ctrl_out_desc;
1392		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1393		break;
1394	default:
1395		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1396			hsotg->ep0_state);
1397		return -EINVAL;
1398	}
1399
1400	return 0;
1401}
1402
1403static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1404			       gfp_t gfp_flags)
1405{
1406	struct dwc2_hsotg_req *hs_req = our_req(req);
1407	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1408	struct dwc2_hsotg *hs = hs_ep->parent;
1409	bool first;
1410	int ret;
1411	u32 maxsize = 0;
1412	u32 mask = 0;
1413
1414
1415	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1416		ep->name, req, req->length, req->buf, req->no_interrupt,
1417		req->zero, req->short_not_ok);
1418
1419	/* Prevent new request submission when controller is suspended */
1420	if (hs->lx_state != DWC2_L0) {
1421		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1422			__func__);
1423		return -EAGAIN;
1424	}
1425
1426	/* initialise status of the request */
1427	INIT_LIST_HEAD(&hs_req->queue);
1428	req->actual = 0;
1429	req->status = -EINPROGRESS;
1430
1431	/* Don't queue ISOC request if length greater than mps*mc */
1432	if (hs_ep->isochronous &&
1433	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1434		dev_err(hs->dev, "req length > maxpacket*mc\n");
1435		return -EINVAL;
1436	}
1437
1438	/* In DDMA mode for ISOC's don't queue request if length greater
1439	 * than descriptor limits.
1440	 */
1441	if (using_desc_dma(hs) && hs_ep->isochronous) {
1442		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1443		if (hs_ep->dir_in && req->length > maxsize) {
1444			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1445				req->length, maxsize);
1446			return -EINVAL;
1447		}
1448
1449		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1450			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1451				req->length, hs_ep->ep.maxpacket);
1452			return -EINVAL;
1453		}
1454	}
1455
1456	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1457	if (ret)
1458		return ret;
1459
1460	/* if we're using DMA, sync the buffers as necessary */
1461	if (using_dma(hs)) {
1462		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1463		if (ret)
1464			return ret;
1465	}
1466	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1467	if (using_desc_dma(hs) && !hs_ep->index) {
1468		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1469		if (ret)
1470			return ret;
1471	}
1472
1473	first = list_empty(&hs_ep->queue);
1474	list_add_tail(&hs_req->queue, &hs_ep->queue);
1475
1476	/*
1477	 * Handle DDMA isochronous transfers separately - just add new entry
1478	 * to the descriptor chain.
1479	 * Transfer will be started once SW gets either one of NAK or
1480	 * OutTknEpDis interrupts.
1481	 */
1482	if (using_desc_dma(hs) && hs_ep->isochronous) {
1483		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1484			dma_addr_t dma_addr = hs_req->req.dma;
1485
1486			if (hs_req->req.num_sgs) {
1487				WARN_ON(hs_req->req.num_sgs > 1);
1488				dma_addr = sg_dma_address(hs_req->req.sg);
1489			}
1490			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1491						   hs_req->req.length);
1492		}
1493		return 0;
1494	}
1495
1496	/* Change EP direction if status phase request is after data out */
1497	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1498	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1499		hs_ep->dir_in = 1;
1500
1501	if (first) {
1502		if (!hs_ep->isochronous) {
1503			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1504			return 0;
1505		}
1506
1507		/* Update current frame number value. */
1508		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1509		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1510			dwc2_gadget_incr_frame_num(hs_ep);
1511			/* Update current frame number value once more as it
1512			 * changes here.
1513			 */
1514			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1515		}
1516
1517		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1518			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1519	}
1520	return 0;
1521}
1522
1523static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1524				    gfp_t gfp_flags)
1525{
1526	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1527	struct dwc2_hsotg *hs = hs_ep->parent;
1528	unsigned long flags;
1529	int ret;
1530
1531	spin_lock_irqsave(&hs->lock, flags);
1532	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1533	spin_unlock_irqrestore(&hs->lock, flags);
1534
1535	return ret;
1536}
1537
1538static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1539				       struct usb_request *req)
1540{
1541	struct dwc2_hsotg_req *hs_req = our_req(req);
1542
1543	kfree(hs_req);
1544}
1545
1546/**
1547 * dwc2_hsotg_complete_oursetup - setup completion callback
1548 * @ep: The endpoint the request was on.
1549 * @req: The request completed.
1550 *
1551 * Called on completion of any requests the driver itself
1552 * submitted that need cleaning up.
1553 */
1554static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1555					 struct usb_request *req)
1556{
1557	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1558	struct dwc2_hsotg *hsotg = hs_ep->parent;
1559
1560	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1561
1562	dwc2_hsotg_ep_free_request(ep, req);
1563}
1564
1565/**
1566 * ep_from_windex - convert control wIndex value to endpoint
1567 * @hsotg: The driver state.
1568 * @windex: The control request wIndex field (in host order).
1569 *
1570 * Convert the given wIndex into a pointer to an driver endpoint
1571 * structure, or return NULL if it is not a valid endpoint.
1572 */
1573static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1574					    u32 windex)
1575{
1576	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1577	int idx = windex & 0x7F;
1578
1579	if (windex >= 0x100)
1580		return NULL;
1581
1582	if (idx > hsotg->num_of_eps)
1583		return NULL;
1584
1585	return index_to_ep(hsotg, idx, dir);
1586}
1587
1588/**
1589 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1590 * @hsotg: The driver state.
1591 * @testmode: requested usb test mode
1592 * Enable usb Test Mode requested by the Host.
1593 */
1594int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1595{
1596	int dctl = dwc2_readl(hsotg, DCTL);
1597
1598	dctl &= ~DCTL_TSTCTL_MASK;
1599	switch (testmode) {
1600	case USB_TEST_J:
1601	case USB_TEST_K:
1602	case USB_TEST_SE0_NAK:
1603	case USB_TEST_PACKET:
1604	case USB_TEST_FORCE_ENABLE:
1605		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1606		break;
1607	default:
1608		return -EINVAL;
1609	}
1610	dwc2_writel(hsotg, dctl, DCTL);
1611	return 0;
1612}
1613
1614/**
1615 * dwc2_hsotg_send_reply - send reply to control request
1616 * @hsotg: The device state
1617 * @ep: Endpoint 0
1618 * @buff: Buffer for request
1619 * @length: Length of reply.
1620 *
1621 * Create a request and queue it on the given endpoint. This is useful as
1622 * an internal method of sending replies to certain control requests, etc.
1623 */
1624static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1625				 struct dwc2_hsotg_ep *ep,
1626				void *buff,
1627				int length)
1628{
1629	struct usb_request *req;
1630	int ret;
1631
1632	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1633
1634	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1635	hsotg->ep0_reply = req;
1636	if (!req) {
1637		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1638		return -ENOMEM;
1639	}
1640
1641	req->buf = hsotg->ep0_buff;
1642	req->length = length;
1643	/*
1644	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1645	 * STATUS stage.
1646	 */
1647	req->zero = 0;
1648	req->complete = dwc2_hsotg_complete_oursetup;
1649
1650	if (length)
1651		memcpy(req->buf, buff, length);
1652
1653	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1654	if (ret) {
1655		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1656		return ret;
1657	}
1658
1659	return 0;
1660}
1661
1662/**
1663 * dwc2_hsotg_process_req_status - process request GET_STATUS
1664 * @hsotg: The device state
1665 * @ctrl: USB control request
1666 */
1667static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1668					 struct usb_ctrlrequest *ctrl)
1669{
1670	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671	struct dwc2_hsotg_ep *ep;
1672	__le16 reply;
1673	u16 status;
1674	int ret;
1675
1676	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1677
1678	if (!ep0->dir_in) {
1679		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1680		return -EINVAL;
1681	}
1682
1683	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1684	case USB_RECIP_DEVICE:
1685		status = hsotg->gadget.is_selfpowered <<
1686			 USB_DEVICE_SELF_POWERED;
1687		status |= hsotg->remote_wakeup_allowed <<
1688			  USB_DEVICE_REMOTE_WAKEUP;
1689		reply = cpu_to_le16(status);
1690		break;
1691
1692	case USB_RECIP_INTERFACE:
1693		/* currently, the data result should be zero */
1694		reply = cpu_to_le16(0);
1695		break;
1696
1697	case USB_RECIP_ENDPOINT:
1698		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1699		if (!ep)
1700			return -ENOENT;
1701
1702		reply = cpu_to_le16(ep->halted ? 1 : 0);
1703		break;
1704
1705	default:
1706		return 0;
1707	}
1708
1709	if (le16_to_cpu(ctrl->wLength) != 2)
1710		return -EINVAL;
1711
1712	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1713	if (ret) {
1714		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1715		return ret;
1716	}
1717
1718	return 1;
1719}
1720
1721static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1722
1723/**
1724 * get_ep_head - return the first request on the endpoint
1725 * @hs_ep: The controller endpoint to get
1726 *
1727 * Get the first request on the endpoint.
1728 */
1729static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1730{
1731	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1732					queue);
1733}
1734
1735/**
1736 * dwc2_gadget_start_next_request - Starts next request from ep queue
1737 * @hs_ep: Endpoint structure
1738 *
1739 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1740 * in its handler. Hence we need to unmask it here to be able to do
1741 * resynchronization.
1742 */
1743static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1744{
1745	struct dwc2_hsotg *hsotg = hs_ep->parent;
1746	int dir_in = hs_ep->dir_in;
1747	struct dwc2_hsotg_req *hs_req;
1748
1749	if (!list_empty(&hs_ep->queue)) {
1750		hs_req = get_ep_head(hs_ep);
1751		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1752		return;
1753	}
1754	if (!hs_ep->isochronous)
1755		return;
1756
1757	if (dir_in) {
1758		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1759			__func__);
1760	} else {
1761		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1762			__func__);
1763	}
1764}
1765
1766/**
1767 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1768 * @hsotg: The device state
1769 * @ctrl: USB control request
1770 */
1771static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1772					  struct usb_ctrlrequest *ctrl)
1773{
1774	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1775	struct dwc2_hsotg_req *hs_req;
1776	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1777	struct dwc2_hsotg_ep *ep;
1778	int ret;
1779	bool halted;
1780	u32 recip;
1781	u32 wValue;
1782	u32 wIndex;
1783
1784	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1785		__func__, set ? "SET" : "CLEAR");
1786
1787	wValue = le16_to_cpu(ctrl->wValue);
1788	wIndex = le16_to_cpu(ctrl->wIndex);
1789	recip = ctrl->bRequestType & USB_RECIP_MASK;
1790
1791	switch (recip) {
1792	case USB_RECIP_DEVICE:
1793		switch (wValue) {
1794		case USB_DEVICE_REMOTE_WAKEUP:
1795			if (set)
1796				hsotg->remote_wakeup_allowed = 1;
1797			else
1798				hsotg->remote_wakeup_allowed = 0;
1799			break;
1800
1801		case USB_DEVICE_TEST_MODE:
1802			if ((wIndex & 0xff) != 0)
1803				return -EINVAL;
1804			if (!set)
1805				return -EINVAL;
1806
1807			hsotg->test_mode = wIndex >> 8;
1808			break;
1809		default:
1810			return -ENOENT;
1811		}
1812
1813		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814		if (ret) {
1815			dev_err(hsotg->dev,
1816				"%s: failed to send reply\n", __func__);
1817			return ret;
1818		}
1819		break;
1820
1821	case USB_RECIP_ENDPOINT:
1822		ep = ep_from_windex(hsotg, wIndex);
1823		if (!ep) {
1824			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1825				__func__, wIndex);
1826			return -ENOENT;
1827		}
1828
1829		switch (wValue) {
1830		case USB_ENDPOINT_HALT:
1831			halted = ep->halted;
1832
1833			if (!ep->wedged)
1834				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1835
1836			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1837			if (ret) {
1838				dev_err(hsotg->dev,
1839					"%s: failed to send reply\n", __func__);
1840				return ret;
1841			}
1842
1843			/*
1844			 * we have to complete all requests for ep if it was
1845			 * halted, and the halt was cleared by CLEAR_FEATURE
1846			 */
1847
1848			if (!set && halted) {
1849				/*
1850				 * If we have request in progress,
1851				 * then complete it
1852				 */
1853				if (ep->req) {
1854					hs_req = ep->req;
1855					ep->req = NULL;
1856					list_del_init(&hs_req->queue);
1857					if (hs_req->req.complete) {
1858						spin_unlock(&hsotg->lock);
1859						usb_gadget_giveback_request(
1860							&ep->ep, &hs_req->req);
1861						spin_lock(&hsotg->lock);
1862					}
1863				}
1864
1865				/* If we have pending request, then start it */
1866				if (!ep->req)
1867					dwc2_gadget_start_next_request(ep);
1868			}
1869
1870			break;
1871
1872		default:
1873			return -ENOENT;
1874		}
1875		break;
1876	default:
1877		return -ENOENT;
1878	}
1879	return 1;
1880}
1881
1882static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1883
1884/**
1885 * dwc2_hsotg_stall_ep0 - stall ep0
1886 * @hsotg: The device state
1887 *
1888 * Set stall for ep0 as response for setup request.
1889 */
1890static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1891{
1892	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1893	u32 reg;
1894	u32 ctrl;
1895
1896	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1897	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1898
1899	/*
1900	 * DxEPCTL_Stall will be cleared by EP once it has
1901	 * taken effect, so no need to clear later.
1902	 */
1903
1904	ctrl = dwc2_readl(hsotg, reg);
1905	ctrl |= DXEPCTL_STALL;
1906	ctrl |= DXEPCTL_CNAK;
1907	dwc2_writel(hsotg, ctrl, reg);
1908
1909	dev_dbg(hsotg->dev,
1910		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1911		ctrl, reg, dwc2_readl(hsotg, reg));
1912
1913	 /*
1914	  * complete won't be called, so we enqueue
1915	  * setup request here
1916	  */
1917	 dwc2_hsotg_enqueue_setup(hsotg);
1918}
1919
1920/**
1921 * dwc2_hsotg_process_control - process a control request
1922 * @hsotg: The device state
1923 * @ctrl: The control request received
1924 *
1925 * The controller has received the SETUP phase of a control request, and
1926 * needs to work out what to do next (and whether to pass it on to the
1927 * gadget driver).
1928 */
1929static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1930				       struct usb_ctrlrequest *ctrl)
1931{
1932	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1933	int ret = 0;
1934	u32 dcfg;
1935
1936	dev_dbg(hsotg->dev,
1937		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1938		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1939		ctrl->wIndex, ctrl->wLength);
1940
1941	if (ctrl->wLength == 0) {
1942		ep0->dir_in = 1;
1943		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1944	} else if (ctrl->bRequestType & USB_DIR_IN) {
1945		ep0->dir_in = 1;
1946		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1947	} else {
1948		ep0->dir_in = 0;
1949		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1950	}
1951
1952	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1953		switch (ctrl->bRequest) {
1954		case USB_REQ_SET_ADDRESS:
1955			hsotg->connected = 1;
1956			dcfg = dwc2_readl(hsotg, DCFG);
1957			dcfg &= ~DCFG_DEVADDR_MASK;
1958			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1959				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1960			dwc2_writel(hsotg, dcfg, DCFG);
1961
1962			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1963
1964			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1965			return;
1966
1967		case USB_REQ_GET_STATUS:
1968			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1969			break;
1970
1971		case USB_REQ_CLEAR_FEATURE:
1972		case USB_REQ_SET_FEATURE:
1973			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1974			break;
1975		}
1976	}
1977
1978	/* as a fallback, try delivering it to the driver to deal with */
1979
1980	if (ret == 0 && hsotg->driver) {
1981		spin_unlock(&hsotg->lock);
1982		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1983		spin_lock(&hsotg->lock);
1984		if (ret < 0)
1985			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1986	}
1987
1988	hsotg->delayed_status = false;
1989	if (ret == USB_GADGET_DELAYED_STATUS)
1990		hsotg->delayed_status = true;
1991
1992	/*
1993	 * the request is either unhandlable, or is not formatted correctly
1994	 * so respond with a STALL for the status stage to indicate failure.
1995	 */
1996
1997	if (ret < 0)
1998		dwc2_hsotg_stall_ep0(hsotg);
1999}
2000
2001/**
2002 * dwc2_hsotg_complete_setup - completion of a setup transfer
2003 * @ep: The endpoint the request was on.
2004 * @req: The request completed.
2005 *
2006 * Called on completion of any requests the driver itself submitted for
2007 * EP0 setup packets
2008 */
2009static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2010				      struct usb_request *req)
2011{
2012	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2013	struct dwc2_hsotg *hsotg = hs_ep->parent;
2014
2015	if (req->status < 0) {
2016		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2017		return;
2018	}
2019
2020	spin_lock(&hsotg->lock);
2021	if (req->actual == 0)
2022		dwc2_hsotg_enqueue_setup(hsotg);
2023	else
2024		dwc2_hsotg_process_control(hsotg, req->buf);
2025	spin_unlock(&hsotg->lock);
2026}
2027
2028/**
2029 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2030 * @hsotg: The device state.
2031 *
2032 * Enqueue a request on EP0 if necessary to received any SETUP packets
2033 * received from the host.
2034 */
2035static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2036{
2037	struct usb_request *req = hsotg->ctrl_req;
2038	struct dwc2_hsotg_req *hs_req = our_req(req);
2039	int ret;
2040
2041	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2042
2043	req->zero = 0;
2044	req->length = 8;
2045	req->buf = hsotg->ctrl_buff;
2046	req->complete = dwc2_hsotg_complete_setup;
2047
2048	if (!list_empty(&hs_req->queue)) {
2049		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2050		return;
2051	}
2052
2053	hsotg->eps_out[0]->dir_in = 0;
2054	hsotg->eps_out[0]->send_zlp = 0;
2055	hsotg->ep0_state = DWC2_EP0_SETUP;
2056
2057	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2058	if (ret < 0) {
2059		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2060		/*
2061		 * Don't think there's much we can do other than watch the
2062		 * driver fail.
2063		 */
2064	}
2065}
2066
2067static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2068				   struct dwc2_hsotg_ep *hs_ep)
2069{
2070	u32 ctrl;
2071	u8 index = hs_ep->index;
2072	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2073	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2074
2075	if (hs_ep->dir_in)
2076		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2077			index);
2078	else
2079		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2080			index);
2081	if (using_desc_dma(hsotg)) {
2082		/* Not specific buffer needed for ep0 ZLP */
2083		dma_addr_t dma = hs_ep->desc_list_dma;
2084
2085		if (!index)
2086			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2087
2088		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2089	} else {
2090		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2091			    DXEPTSIZ_XFERSIZE(0),
2092			    epsiz_reg);
2093	}
2094
2095	ctrl = dwc2_readl(hsotg, epctl_reg);
2096	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2097	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2098	ctrl |= DXEPCTL_USBACTEP;
2099	dwc2_writel(hsotg, ctrl, epctl_reg);
2100}
2101
2102/**
2103 * dwc2_hsotg_complete_request - complete a request given to us
2104 * @hsotg: The device state.
2105 * @hs_ep: The endpoint the request was on.
2106 * @hs_req: The request to complete.
2107 * @result: The result code (0 => Ok, otherwise errno)
2108 *
2109 * The given request has finished, so call the necessary completion
2110 * if it has one and then look to see if we can start a new request
2111 * on the endpoint.
2112 *
2113 * Note, expects the ep to already be locked as appropriate.
2114 */
2115static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2116					struct dwc2_hsotg_ep *hs_ep,
2117				       struct dwc2_hsotg_req *hs_req,
2118				       int result)
2119{
2120	if (!hs_req) {
2121		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2122		return;
2123	}
2124
2125	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2126		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2127
2128	/*
2129	 * only replace the status if we've not already set an error
2130	 * from a previous transaction
2131	 */
2132
2133	if (hs_req->req.status == -EINPROGRESS)
2134		hs_req->req.status = result;
2135
2136	if (using_dma(hsotg))
2137		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2138
2139	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2140
2141	hs_ep->req = NULL;
2142	list_del_init(&hs_req->queue);
2143
2144	/*
2145	 * call the complete request with the locks off, just in case the
2146	 * request tries to queue more work for this endpoint.
2147	 */
2148
2149	if (hs_req->req.complete) {
2150		spin_unlock(&hsotg->lock);
2151		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2152		spin_lock(&hsotg->lock);
2153	}
2154
2155	/* In DDMA don't need to proceed to starting of next ISOC request */
2156	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2157		return;
2158
2159	/*
2160	 * Look to see if there is anything else to do. Note, the completion
2161	 * of the previous request may have caused a new request to be started
2162	 * so be careful when doing this.
2163	 */
2164
2165	if (!hs_ep->req && result >= 0)
2166		dwc2_gadget_start_next_request(hs_ep);
2167}
2168
2169/*
2170 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2171 * @hs_ep: The endpoint the request was on.
2172 *
2173 * Get first request from the ep queue, determine descriptor on which complete
2174 * happened. SW discovers which descriptor currently in use by HW, adjusts
2175 * dma_address and calculates index of completed descriptor based on the value
2176 * of DEPDMA register. Update actual length of request, giveback to gadget.
2177 */
2178static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2179{
2180	struct dwc2_hsotg *hsotg = hs_ep->parent;
2181	struct dwc2_hsotg_req *hs_req;
2182	struct usb_request *ureq;
2183	u32 desc_sts;
2184	u32 mask;
2185
2186	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2187
2188	/* Process only descriptors with buffer status set to DMA done */
2189	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2190		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2191
2192		hs_req = get_ep_head(hs_ep);
2193		if (!hs_req) {
2194			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2195			return;
2196		}
2197		ureq = &hs_req->req;
2198
2199		/* Check completion status */
2200		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2201			DEV_DMA_STS_SUCC) {
2202			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2203				DEV_DMA_ISOC_RX_NBYTES_MASK;
2204			ureq->actual = ureq->length - ((desc_sts & mask) >>
2205				DEV_DMA_ISOC_NBYTES_SHIFT);
2206
2207			/* Adjust actual len for ISOC Out if len is
2208			 * not align of 4
2209			 */
2210			if (!hs_ep->dir_in && ureq->length & 0x3)
2211				ureq->actual += 4 - (ureq->length & 0x3);
2212
2213			/* Set actual frame number for completed transfers */
2214			ureq->frame_number =
2215				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2216				DEV_DMA_ISOC_FRNUM_SHIFT;
2217		}
2218
2219		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2220
2221		hs_ep->compl_desc++;
2222		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2223			hs_ep->compl_desc = 0;
2224		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2225	}
2226}
2227
2228/*
2229 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2230 * @hs_ep: The isochronous endpoint.
2231 *
2232 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2233 * interrupt. Reset target frame and next_desc to allow to start
2234 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2235 * interrupt for OUT direction.
2236 */
2237static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2238{
2239	struct dwc2_hsotg *hsotg = hs_ep->parent;
2240
2241	if (!hs_ep->dir_in)
2242		dwc2_flush_rx_fifo(hsotg);
2243	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2244
2245	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2246	hs_ep->next_desc = 0;
2247	hs_ep->compl_desc = 0;
2248}
2249
2250/**
2251 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2252 * @hsotg: The device state.
2253 * @ep_idx: The endpoint index for the data
2254 * @size: The size of data in the fifo, in bytes
2255 *
2256 * The FIFO status shows there is data to read from the FIFO for a given
2257 * endpoint, so sort out whether we need to read the data into a request
2258 * that has been made for that endpoint.
2259 */
2260static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2261{
2262	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2263	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2264	int to_read;
2265	int max_req;
2266	int read_ptr;
2267
2268	if (!hs_req) {
2269		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2270		int ptr;
2271
2272		dev_dbg(hsotg->dev,
2273			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2274			 __func__, size, ep_idx, epctl);
2275
2276		/* dump the data from the FIFO, we've nothing we can do */
2277		for (ptr = 0; ptr < size; ptr += 4)
2278			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2279
2280		return;
2281	}
2282
2283	to_read = size;
2284	read_ptr = hs_req->req.actual;
2285	max_req = hs_req->req.length - read_ptr;
2286
2287	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2288		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2289
2290	if (to_read > max_req) {
2291		/*
2292		 * more data appeared than we where willing
2293		 * to deal with in this request.
2294		 */
2295
2296		/* currently we don't deal this */
2297		WARN_ON_ONCE(1);
2298	}
2299
2300	hs_ep->total_data += to_read;
2301	hs_req->req.actual += to_read;
2302	to_read = DIV_ROUND_UP(to_read, 4);
2303
2304	/*
2305	 * note, we might over-write the buffer end by 3 bytes depending on
2306	 * alignment of the data.
2307	 */
2308	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2309		       hs_req->req.buf + read_ptr, to_read);
2310}
2311
2312/**
2313 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2314 * @hsotg: The device instance
2315 * @dir_in: If IN zlp
2316 *
2317 * Generate a zero-length IN packet request for terminating a SETUP
2318 * transaction.
2319 *
2320 * Note, since we don't write any data to the TxFIFO, then it is
2321 * currently believed that we do not need to wait for any space in
2322 * the TxFIFO.
2323 */
2324static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2325{
2326	/* eps_out[0] is used in both directions */
2327	hsotg->eps_out[0]->dir_in = dir_in;
2328	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2329
2330	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2331}
2332
2333/*
2334 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2335 * @hs_ep - The endpoint on which transfer went
2336 *
2337 * Iterate over endpoints descriptor chain and get info on bytes remained
2338 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2339 */
2340static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2341{
2342	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2343	struct dwc2_hsotg *hsotg = hs_ep->parent;
2344	unsigned int bytes_rem = 0;
2345	unsigned int bytes_rem_correction = 0;
2346	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2347	int i;
2348	u32 status;
2349	u32 mps = hs_ep->ep.maxpacket;
2350	int dir_in = hs_ep->dir_in;
2351
2352	if (!desc)
2353		return -EINVAL;
2354
2355	/* Interrupt OUT EP with mps not multiple of 4 */
2356	if (hs_ep->index)
2357		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2358			bytes_rem_correction = 4 - (mps % 4);
2359
2360	for (i = 0; i < hs_ep->desc_count; ++i) {
2361		status = desc->status;
2362		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2363		bytes_rem -= bytes_rem_correction;
2364
2365		if (status & DEV_DMA_STS_MASK)
2366			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2367				i, status & DEV_DMA_STS_MASK);
2368
2369		if (status & DEV_DMA_L)
2370			break;
2371
2372		desc++;
2373	}
2374
2375	return bytes_rem;
2376}
2377
2378/**
2379 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2380 * @hsotg: The device instance
2381 * @epnum: The endpoint received from
2382 *
2383 * The RXFIFO has delivered an OutDone event, which means that the data
2384 * transfer for an OUT endpoint has been completed, either by a short
2385 * packet or by the finish of a transfer.
2386 */
2387static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2388{
2389	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2390	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2391	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2392	struct usb_request *req = &hs_req->req;
2393	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2394	int result = 0;
2395
2396	if (!hs_req) {
2397		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2398		return;
2399	}
2400
2401	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2402		dev_dbg(hsotg->dev, "zlp packet received\n");
2403		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2404		dwc2_hsotg_enqueue_setup(hsotg);
2405		return;
2406	}
2407
2408	if (using_desc_dma(hsotg))
2409		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2410
2411	if (using_dma(hsotg)) {
2412		unsigned int size_done;
2413
2414		/*
2415		 * Calculate the size of the transfer by checking how much
2416		 * is left in the endpoint size register and then working it
2417		 * out from the amount we loaded for the transfer.
2418		 *
2419		 * We need to do this as DMA pointers are always 32bit aligned
2420		 * so may overshoot/undershoot the transfer.
2421		 */
2422
2423		size_done = hs_ep->size_loaded - size_left;
2424		size_done += hs_ep->last_load;
2425
2426		req->actual = size_done;
2427	}
2428
2429	/* if there is more request to do, schedule new transfer */
2430	if (req->actual < req->length && size_left == 0) {
2431		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2432		return;
2433	}
2434
2435	if (req->actual < req->length && req->short_not_ok) {
2436		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2437			__func__, req->actual, req->length);
2438
2439		/*
2440		 * todo - what should we return here? there's no one else
2441		 * even bothering to check the status.
2442		 */
2443	}
2444
2445	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2446	if (!using_desc_dma(hsotg) && epnum == 0 &&
2447	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2448		/* Move to STATUS IN */
2449		if (!hsotg->delayed_status)
2450			dwc2_hsotg_ep0_zlp(hsotg, true);
2451	}
2452
2453	/* Set actual frame number for completed transfers */
2454	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2455		req->frame_number = hs_ep->target_frame;
2456		dwc2_gadget_incr_frame_num(hs_ep);
2457	}
2458
2459	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2460}
2461
2462/**
2463 * dwc2_hsotg_handle_rx - RX FIFO has data
2464 * @hsotg: The device instance
2465 *
2466 * The IRQ handler has detected that the RX FIFO has some data in it
2467 * that requires processing, so find out what is in there and do the
2468 * appropriate read.
2469 *
2470 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2471 * chunks, so if you have x packets received on an endpoint you'll get x
2472 * FIFO events delivered, each with a packet's worth of data in it.
2473 *
2474 * When using DMA, we should not be processing events from the RXFIFO
2475 * as the actual data should be sent to the memory directly and we turn
2476 * on the completion interrupts to get notifications of transfer completion.
2477 */
2478static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2479{
2480	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2481	u32 epnum, status, size;
2482
2483	WARN_ON(using_dma(hsotg));
2484
2485	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2486	status = grxstsr & GRXSTS_PKTSTS_MASK;
2487
2488	size = grxstsr & GRXSTS_BYTECNT_MASK;
2489	size >>= GRXSTS_BYTECNT_SHIFT;
2490
2491	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2492		__func__, grxstsr, size, epnum);
2493
2494	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2495	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2496		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2497		break;
2498
2499	case GRXSTS_PKTSTS_OUTDONE:
2500		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2501			dwc2_hsotg_read_frameno(hsotg));
2502
2503		if (!using_dma(hsotg))
2504			dwc2_hsotg_handle_outdone(hsotg, epnum);
2505		break;
2506
2507	case GRXSTS_PKTSTS_SETUPDONE:
2508		dev_dbg(hsotg->dev,
2509			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2510			dwc2_hsotg_read_frameno(hsotg),
2511			dwc2_readl(hsotg, DOEPCTL(0)));
2512		/*
2513		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2514		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2515		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2516		 */
2517		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2518			dwc2_hsotg_handle_outdone(hsotg, epnum);
2519		break;
2520
2521	case GRXSTS_PKTSTS_OUTRX:
2522		dwc2_hsotg_rx_data(hsotg, epnum, size);
2523		break;
2524
2525	case GRXSTS_PKTSTS_SETUPRX:
2526		dev_dbg(hsotg->dev,
2527			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2528			dwc2_hsotg_read_frameno(hsotg),
2529			dwc2_readl(hsotg, DOEPCTL(0)));
2530
2531		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2532
2533		dwc2_hsotg_rx_data(hsotg, epnum, size);
2534		break;
2535
2536	default:
2537		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2538			 __func__, grxstsr);
2539
2540		dwc2_hsotg_dump(hsotg);
2541		break;
2542	}
2543}
2544
2545/**
2546 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2547 * @mps: The maximum packet size in bytes.
2548 */
2549static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2550{
2551	switch (mps) {
2552	case 64:
2553		return D0EPCTL_MPS_64;
2554	case 32:
2555		return D0EPCTL_MPS_32;
2556	case 16:
2557		return D0EPCTL_MPS_16;
2558	case 8:
2559		return D0EPCTL_MPS_8;
2560	}
2561
2562	/* bad max packet size, warn and return invalid result */
2563	WARN_ON(1);
2564	return (u32)-1;
2565}
2566
2567/**
2568 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2569 * @hsotg: The driver state.
2570 * @ep: The index number of the endpoint
2571 * @mps: The maximum packet size in bytes
2572 * @mc: The multicount value
2573 * @dir_in: True if direction is in.
2574 *
2575 * Configure the maximum packet size for the given endpoint, updating
2576 * the hardware control registers to reflect this.
2577 */
2578static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2579					unsigned int ep, unsigned int mps,
2580					unsigned int mc, unsigned int dir_in)
2581{
2582	struct dwc2_hsotg_ep *hs_ep;
2583	u32 reg;
2584
2585	hs_ep = index_to_ep(hsotg, ep, dir_in);
2586	if (!hs_ep)
2587		return;
2588
2589	if (ep == 0) {
2590		u32 mps_bytes = mps;
2591
2592		/* EP0 is a special case */
2593		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2594		if (mps > 3)
2595			goto bad_mps;
2596		hs_ep->ep.maxpacket = mps_bytes;
2597		hs_ep->mc = 1;
2598	} else {
2599		if (mps > 1024)
2600			goto bad_mps;
2601		hs_ep->mc = mc;
2602		if (mc > 3)
2603			goto bad_mps;
2604		hs_ep->ep.maxpacket = mps;
2605	}
2606
2607	if (dir_in) {
2608		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2609		reg &= ~DXEPCTL_MPS_MASK;
2610		reg |= mps;
2611		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2612	} else {
2613		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2614		reg &= ~DXEPCTL_MPS_MASK;
2615		reg |= mps;
2616		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2617	}
2618
2619	return;
2620
2621bad_mps:
2622	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2623}
2624
2625/**
2626 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2627 * @hsotg: The driver state
2628 * @idx: The index for the endpoint (0..15)
2629 */
2630static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2631{
2632	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2633		    GRSTCTL);
2634
2635	/* wait until the fifo is flushed */
2636	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2637		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2638			 __func__);
2639}
2640
2641/**
2642 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2643 * @hsotg: The driver state
2644 * @hs_ep: The driver endpoint to check.
2645 *
2646 * Check to see if there is a request that has data to send, and if so
2647 * make an attempt to write data into the FIFO.
2648 */
2649static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2650			    struct dwc2_hsotg_ep *hs_ep)
2651{
2652	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2653
2654	if (!hs_ep->dir_in || !hs_req) {
2655		/**
2656		 * if request is not enqueued, we disable interrupts
2657		 * for endpoints, excepting ep0
2658		 */
2659		if (hs_ep->index != 0)
2660			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2661					      hs_ep->dir_in, 0);
2662		return 0;
2663	}
2664
2665	if (hs_req->req.actual < hs_req->req.length) {
2666		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2667			hs_ep->index);
2668		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2669	}
2670
2671	return 0;
2672}
2673
2674/**
2675 * dwc2_hsotg_complete_in - complete IN transfer
2676 * @hsotg: The device state.
2677 * @hs_ep: The endpoint that has just completed.
2678 *
2679 * An IN transfer has been completed, update the transfer's state and then
2680 * call the relevant completion routines.
2681 */
2682static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2683				   struct dwc2_hsotg_ep *hs_ep)
2684{
2685	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2686	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2687	int size_left, size_done;
2688
2689	if (!hs_req) {
2690		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2691		return;
2692	}
2693
2694	/* Finish ZLP handling for IN EP0 transactions */
2695	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2696		dev_dbg(hsotg->dev, "zlp packet sent\n");
2697
2698		/*
2699		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2700		 * changed to IN. Change back to complete OUT transfer request
2701		 */
2702		hs_ep->dir_in = 0;
2703
2704		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2705		if (hsotg->test_mode) {
2706			int ret;
2707
2708			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2709			if (ret < 0) {
2710				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2711					hsotg->test_mode);
2712				dwc2_hsotg_stall_ep0(hsotg);
2713				return;
2714			}
2715		}
2716		dwc2_hsotg_enqueue_setup(hsotg);
2717		return;
2718	}
2719
2720	/*
2721	 * Calculate the size of the transfer by checking how much is left
2722	 * in the endpoint size register and then working it out from
2723	 * the amount we loaded for the transfer.
2724	 *
2725	 * We do this even for DMA, as the transfer may have incremented
2726	 * past the end of the buffer (DMA transfers are always 32bit
2727	 * aligned).
2728	 */
2729	if (using_desc_dma(hsotg)) {
2730		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2731		if (size_left < 0)
2732			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2733				size_left);
2734	} else {
2735		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2736	}
2737
2738	size_done = hs_ep->size_loaded - size_left;
2739	size_done += hs_ep->last_load;
2740
2741	if (hs_req->req.actual != size_done)
2742		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2743			__func__, hs_req->req.actual, size_done);
2744
2745	hs_req->req.actual = size_done;
2746	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2747		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2748
2749	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2750		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2751		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2752		return;
2753	}
2754
2755	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2756	if (hs_ep->send_zlp) {
2757		hs_ep->send_zlp = 0;
2758		if (!using_desc_dma(hsotg)) {
2759			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2760			/* transfer will be completed on next complete interrupt */
2761			return;
2762		}
2763	}
2764
2765	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2766		/* Move to STATUS OUT */
2767		dwc2_hsotg_ep0_zlp(hsotg, false);
2768		return;
2769	}
2770
2771	/* Set actual frame number for completed transfers */
2772	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2773		hs_req->req.frame_number = hs_ep->target_frame;
2774		dwc2_gadget_incr_frame_num(hs_ep);
2775	}
2776
2777	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2778}
2779
2780/**
2781 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2782 * @hsotg: The device state.
2783 * @idx: Index of ep.
2784 * @dir_in: Endpoint direction 1-in 0-out.
2785 *
2786 * Reads for endpoint with given index and direction, by masking
2787 * epint_reg with coresponding mask.
2788 */
2789static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2790					  unsigned int idx, int dir_in)
2791{
2792	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2793	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2794	u32 ints;
2795	u32 mask;
2796	u32 diepempmsk;
2797
2798	mask = dwc2_readl(hsotg, epmsk_reg);
2799	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2800	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2801	mask |= DXEPINT_SETUP_RCVD;
2802
2803	ints = dwc2_readl(hsotg, epint_reg);
2804	ints &= mask;
2805	return ints;
2806}
2807
2808/**
2809 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2810 * @hs_ep: The endpoint on which interrupt is asserted.
2811 *
2812 * This interrupt indicates that the endpoint has been disabled per the
2813 * application's request.
2814 *
2815 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2816 * in case of ISOC completes current request.
2817 *
2818 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2819 * request starts it.
2820 */
2821static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2822{
2823	struct dwc2_hsotg *hsotg = hs_ep->parent;
2824	struct dwc2_hsotg_req *hs_req;
2825	unsigned char idx = hs_ep->index;
2826	int dir_in = hs_ep->dir_in;
2827	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2828	int dctl = dwc2_readl(hsotg, DCTL);
2829
2830	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2831
2832	if (dir_in) {
2833		int epctl = dwc2_readl(hsotg, epctl_reg);
2834
2835		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2836
2837		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2838			int dctl = dwc2_readl(hsotg, DCTL);
2839
2840			dctl |= DCTL_CGNPINNAK;
2841			dwc2_writel(hsotg, dctl, DCTL);
2842		}
2843	} else {
2844
2845		if (dctl & DCTL_GOUTNAKSTS) {
2846			dctl |= DCTL_CGOUTNAK;
2847			dwc2_writel(hsotg, dctl, DCTL);
2848		}
2849	}
2850
2851	if (!hs_ep->isochronous)
2852		return;
2853
2854	if (list_empty(&hs_ep->queue)) {
2855		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2856			__func__, hs_ep);
2857		return;
2858	}
2859
2860	do {
2861		hs_req = get_ep_head(hs_ep);
2862		if (hs_req) {
2863			hs_req->req.frame_number = hs_ep->target_frame;
2864			hs_req->req.actual = 0;
2865			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2866						    -ENODATA);
2867		}
2868		dwc2_gadget_incr_frame_num(hs_ep);
2869		/* Update current frame number value. */
2870		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2871	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2872}
2873
2874/**
2875 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2876 * @ep: The endpoint on which interrupt is asserted.
2877 *
2878 * This is starting point for ISOC-OUT transfer, synchronization done with
2879 * first out token received from host while corresponding EP is disabled.
2880 *
2881 * Device does not know initial frame in which out token will come. For this
2882 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2883 * getting this interrupt SW starts calculation for next transfer frame.
2884 */
2885static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2886{
2887	struct dwc2_hsotg *hsotg = ep->parent;
2888	struct dwc2_hsotg_req *hs_req;
2889	int dir_in = ep->dir_in;
2890
2891	if (dir_in || !ep->isochronous)
2892		return;
2893
2894	if (using_desc_dma(hsotg)) {
2895		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2896			/* Start first ISO Out */
2897			ep->target_frame = hsotg->frame_number;
2898			dwc2_gadget_start_isoc_ddma(ep);
2899		}
2900		return;
2901	}
2902
2903	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2904		u32 ctrl;
2905
2906		ep->target_frame = hsotg->frame_number;
2907		if (ep->interval > 1) {
2908			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2909			if (ep->target_frame & 0x1)
2910				ctrl |= DXEPCTL_SETODDFR;
2911			else
2912				ctrl |= DXEPCTL_SETEVENFR;
2913
2914			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2915		}
2916	}
2917
2918	while (dwc2_gadget_target_frame_elapsed(ep)) {
2919		hs_req = get_ep_head(ep);
2920		if (hs_req) {
2921			hs_req->req.frame_number = ep->target_frame;
2922			hs_req->req.actual = 0;
2923			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2924		}
2925
2926		dwc2_gadget_incr_frame_num(ep);
2927		/* Update current frame number value. */
2928		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2929	}
2930
2931	if (!ep->req)
2932		dwc2_gadget_start_next_request(ep);
2933
2934}
2935
2936static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2937				   struct dwc2_hsotg_ep *hs_ep);
2938
2939/**
2940 * dwc2_gadget_handle_nak - handle NAK interrupt
2941 * @hs_ep: The endpoint on which interrupt is asserted.
2942 *
2943 * This is starting point for ISOC-IN transfer, synchronization done with
2944 * first IN token received from host while corresponding EP is disabled.
2945 *
2946 * Device does not know when first one token will arrive from host. On first
2947 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2948 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2949 * sent in response to that as there was no data in FIFO. SW is basing on this
2950 * interrupt to obtain frame in which token has come and then based on the
2951 * interval calculates next frame for transfer.
2952 */
2953static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2954{
2955	struct dwc2_hsotg *hsotg = hs_ep->parent;
2956	struct dwc2_hsotg_req *hs_req;
2957	int dir_in = hs_ep->dir_in;
2958	u32 ctrl;
2959
2960	if (!dir_in || !hs_ep->isochronous)
2961		return;
2962
2963	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2964
2965		if (using_desc_dma(hsotg)) {
2966			hs_ep->target_frame = hsotg->frame_number;
2967			dwc2_gadget_incr_frame_num(hs_ep);
2968
2969			/* In service interval mode target_frame must
2970			 * be set to last (u)frame of the service interval.
2971			 */
2972			if (hsotg->params.service_interval) {
2973				/* Set target_frame to the first (u)frame of
2974				 * the service interval
2975				 */
2976				hs_ep->target_frame &= ~hs_ep->interval + 1;
2977
2978				/* Set target_frame to the last (u)frame of
2979				 * the service interval
2980				 */
2981				dwc2_gadget_incr_frame_num(hs_ep);
2982				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2983			}
2984
2985			dwc2_gadget_start_isoc_ddma(hs_ep);
2986			return;
2987		}
2988
2989		hs_ep->target_frame = hsotg->frame_number;
2990		if (hs_ep->interval > 1) {
2991			u32 ctrl = dwc2_readl(hsotg,
2992					      DIEPCTL(hs_ep->index));
2993			if (hs_ep->target_frame & 0x1)
2994				ctrl |= DXEPCTL_SETODDFR;
2995			else
2996				ctrl |= DXEPCTL_SETEVENFR;
2997
2998			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2999		}
3000	}
3001
3002	if (using_desc_dma(hsotg))
3003		return;
3004
3005	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3006	if (ctrl & DXEPCTL_EPENA)
3007		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3008	else
3009		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3010
3011	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3012		hs_req = get_ep_head(hs_ep);
3013		if (hs_req) {
3014			hs_req->req.frame_number = hs_ep->target_frame;
3015			hs_req->req.actual = 0;
3016			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3017		}
3018
3019		dwc2_gadget_incr_frame_num(hs_ep);
3020		/* Update current frame number value. */
3021		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3022	}
3023
3024	if (!hs_ep->req)
3025		dwc2_gadget_start_next_request(hs_ep);
3026}
3027
3028/**
3029 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3030 * @hsotg: The driver state
3031 * @idx: The index for the endpoint (0..15)
3032 * @dir_in: Set if this is an IN endpoint
3033 *
3034 * Process and clear any interrupt pending for an individual endpoint
3035 */
3036static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3037			     int dir_in)
3038{
3039	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3040	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3041	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3042	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3043	u32 ints;
3044
3045	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3046
3047	/* Clear endpoint interrupts */
3048	dwc2_writel(hsotg, ints, epint_reg);
3049
3050	if (!hs_ep) {
3051		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3052			__func__, idx, dir_in ? "in" : "out");
3053		return;
3054	}
3055
3056	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3057		__func__, idx, dir_in ? "in" : "out", ints);
3058
3059	/* Don't process XferCompl interrupt if it is a setup packet */
3060	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3061		ints &= ~DXEPINT_XFERCOMPL;
3062
3063	/*
3064	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3065	 * stage and xfercomplete was generated without SETUP phase done
3066	 * interrupt. SW should parse received setup packet only after host's
3067	 * exit from setup phase of control transfer.
3068	 */
3069	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3070	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3071		ints &= ~DXEPINT_XFERCOMPL;
3072
3073	if (ints & DXEPINT_XFERCOMPL) {
3074		dev_dbg(hsotg->dev,
3075			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3076			__func__, dwc2_readl(hsotg, epctl_reg),
3077			dwc2_readl(hsotg, epsiz_reg));
3078
3079		/* In DDMA handle isochronous requests separately */
3080		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3081			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3082		} else if (dir_in) {
3083			/*
3084			 * We get OutDone from the FIFO, so we only
3085			 * need to look at completing IN requests here
3086			 * if operating slave mode
3087			 */
3088			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3089				dwc2_hsotg_complete_in(hsotg, hs_ep);
3090
3091			if (idx == 0 && !hs_ep->req)
3092				dwc2_hsotg_enqueue_setup(hsotg);
3093		} else if (using_dma(hsotg)) {
3094			/*
3095			 * We're using DMA, we need to fire an OutDone here
3096			 * as we ignore the RXFIFO.
3097			 */
3098			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3099				dwc2_hsotg_handle_outdone(hsotg, idx);
3100		}
3101	}
3102
3103	if (ints & DXEPINT_EPDISBLD)
3104		dwc2_gadget_handle_ep_disabled(hs_ep);
3105
3106	if (ints & DXEPINT_OUTTKNEPDIS)
3107		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3108
3109	if (ints & DXEPINT_NAKINTRPT)
3110		dwc2_gadget_handle_nak(hs_ep);
3111
3112	if (ints & DXEPINT_AHBERR)
3113		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3114
3115	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3116		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3117
3118		if (using_dma(hsotg) && idx == 0) {
3119			/*
3120			 * this is the notification we've received a
3121			 * setup packet. In non-DMA mode we'd get this
3122			 * from the RXFIFO, instead we need to process
3123			 * the setup here.
3124			 */
3125
3126			if (dir_in)
3127				WARN_ON_ONCE(1);
3128			else
3129				dwc2_hsotg_handle_outdone(hsotg, 0);
3130		}
3131	}
3132
3133	if (ints & DXEPINT_STSPHSERCVD) {
3134		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3135
3136		/* Safety check EP0 state when STSPHSERCVD asserted */
3137		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3138			/* Move to STATUS IN for DDMA */
3139			if (using_desc_dma(hsotg)) {
3140				if (!hsotg->delayed_status)
3141					dwc2_hsotg_ep0_zlp(hsotg, true);
3142				else
3143				/* In case of 3 stage Control Write with delayed
3144				 * status, when Status IN transfer started
3145				 * before STSPHSERCVD asserted, NAKSTS bit not
3146				 * cleared by CNAK in dwc2_hsotg_start_req()
3147				 * function. Clear now NAKSTS to allow complete
3148				 * transfer.
3149				 */
3150					dwc2_set_bit(hsotg, DIEPCTL(0),
3151						     DXEPCTL_CNAK);
3152			}
3153		}
3154
3155	}
3156
3157	if (ints & DXEPINT_BACK2BACKSETUP)
3158		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3159
3160	if (ints & DXEPINT_BNAINTR) {
3161		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3162		if (hs_ep->isochronous)
3163			dwc2_gadget_handle_isoc_bna(hs_ep);
3164	}
3165
3166	if (dir_in && !hs_ep->isochronous) {
3167		/* not sure if this is important, but we'll clear it anyway */
3168		if (ints & DXEPINT_INTKNTXFEMP) {
3169			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3170				__func__, idx);
3171		}
3172
3173		/* this probably means something bad is happening */
3174		if (ints & DXEPINT_INTKNEPMIS) {
3175			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3176				 __func__, idx);
3177		}
3178
3179		/* FIFO has space or is empty (see GAHBCFG) */
3180		if (hsotg->dedicated_fifos &&
3181		    ints & DXEPINT_TXFEMP) {
3182			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3183				__func__, idx);
3184			if (!using_dma(hsotg))
3185				dwc2_hsotg_trytx(hsotg, hs_ep);
3186		}
3187	}
3188}
3189
3190/**
3191 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3192 * @hsotg: The device state.
3193 *
3194 * Handle updating the device settings after the enumeration phase has
3195 * been completed.
3196 */
3197static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3198{
3199	u32 dsts = dwc2_readl(hsotg, DSTS);
3200	int ep0_mps = 0, ep_mps = 8;
3201
3202	/*
3203	 * This should signal the finish of the enumeration phase
3204	 * of the USB handshaking, so we should now know what rate
3205	 * we connected at.
3206	 */
3207
3208	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3209
3210	/*
3211	 * note, since we're limited by the size of transfer on EP0, and
3212	 * it seems IN transfers must be a even number of packets we do
3213	 * not advertise a 64byte MPS on EP0.
3214	 */
3215
3216	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3217	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3218	case DSTS_ENUMSPD_FS:
3219	case DSTS_ENUMSPD_FS48:
3220		hsotg->gadget.speed = USB_SPEED_FULL;
3221		ep0_mps = EP0_MPS_LIMIT;
3222		ep_mps = 1023;
3223		break;
3224
3225	case DSTS_ENUMSPD_HS:
3226		hsotg->gadget.speed = USB_SPEED_HIGH;
3227		ep0_mps = EP0_MPS_LIMIT;
3228		ep_mps = 1024;
3229		break;
3230
3231	case DSTS_ENUMSPD_LS:
3232		hsotg->gadget.speed = USB_SPEED_LOW;
3233		ep0_mps = 8;
3234		ep_mps = 8;
3235		/*
3236		 * note, we don't actually support LS in this driver at the
3237		 * moment, and the documentation seems to imply that it isn't
3238		 * supported by the PHYs on some of the devices.
3239		 */
3240		break;
3241	}
3242	dev_info(hsotg->dev, "new device is %s\n",
3243		 usb_speed_string(hsotg->gadget.speed));
3244
3245	/*
3246	 * we should now know the maximum packet size for an
3247	 * endpoint, so set the endpoints to a default value.
3248	 */
3249
3250	if (ep0_mps) {
3251		int i;
3252		/* Initialize ep0 for both in and out directions */
3253		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3254		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3255		for (i = 1; i < hsotg->num_of_eps; i++) {
3256			if (hsotg->eps_in[i])
3257				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3258							    0, 1);
3259			if (hsotg->eps_out[i])
3260				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261							    0, 0);
3262		}
3263	}
3264
3265	/* ensure after enumeration our EP0 is active */
3266
3267	dwc2_hsotg_enqueue_setup(hsotg);
3268
3269	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3270		dwc2_readl(hsotg, DIEPCTL0),
3271		dwc2_readl(hsotg, DOEPCTL0));
3272}
3273
3274/**
3275 * kill_all_requests - remove all requests from the endpoint's queue
3276 * @hsotg: The device state.
3277 * @ep: The endpoint the requests may be on.
3278 * @result: The result code to use.
3279 *
3280 * Go through the requests on the given endpoint and mark them
3281 * completed with the given result code.
3282 */
3283static void kill_all_requests(struct dwc2_hsotg *hsotg,
3284			      struct dwc2_hsotg_ep *ep,
3285			      int result)
3286{
3287	unsigned int size;
3288
3289	ep->req = NULL;
3290
3291	while (!list_empty(&ep->queue)) {
3292		struct dwc2_hsotg_req *req = get_ep_head(ep);
3293
3294		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3295	}
3296
3297	if (!hsotg->dedicated_fifos)
3298		return;
3299	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3300	if (size < ep->fifo_size)
3301		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3302}
3303
3304/**
3305 * dwc2_hsotg_disconnect - disconnect service
3306 * @hsotg: The device state.
3307 *
3308 * The device has been disconnected. Remove all current
3309 * transactions and signal the gadget driver that this
3310 * has happened.
3311 */
3312void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3313{
3314	unsigned int ep;
3315
3316	if (!hsotg->connected)
3317		return;
3318
3319	hsotg->connected = 0;
3320	hsotg->test_mode = 0;
3321
3322	/* all endpoints should be shutdown */
3323	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3324		if (hsotg->eps_in[ep])
3325			kill_all_requests(hsotg, hsotg->eps_in[ep],
3326					  -ESHUTDOWN);
3327		if (hsotg->eps_out[ep])
3328			kill_all_requests(hsotg, hsotg->eps_out[ep],
3329					  -ESHUTDOWN);
3330	}
3331
3332	call_gadget(hsotg, disconnect);
3333	hsotg->lx_state = DWC2_L3;
3334
3335	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3336}
3337
3338/**
3339 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3340 * @hsotg: The device state:
3341 * @periodic: True if this is a periodic FIFO interrupt
3342 */
3343static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3344{
3345	struct dwc2_hsotg_ep *ep;
3346	int epno, ret;
3347
3348	/* look through for any more data to transmit */
3349	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3350		ep = index_to_ep(hsotg, epno, 1);
3351
3352		if (!ep)
3353			continue;
3354
3355		if (!ep->dir_in)
3356			continue;
3357
3358		if ((periodic && !ep->periodic) ||
3359		    (!periodic && ep->periodic))
3360			continue;
3361
3362		ret = dwc2_hsotg_trytx(hsotg, ep);
3363		if (ret < 0)
3364			break;
3365	}
3366}
3367
3368/* IRQ flags which will trigger a retry around the IRQ loop */
3369#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3370			GINTSTS_PTXFEMP |  \
3371			GINTSTS_RXFLVL)
3372
3373static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3374/**
3375 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3376 * @hsotg: The device state
3377 * @is_usb_reset: Usb resetting flag
3378 *
3379 * Issue a soft reset to the core, and await the core finishing it.
3380 */
3381void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3382				       bool is_usb_reset)
3383{
3384	u32 intmsk;
3385	u32 val;
3386	u32 usbcfg;
3387	u32 dcfg = 0;
3388	int ep;
3389
3390	/* Kill any ep0 requests as controller will be reinitialized */
3391	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3392
3393	if (!is_usb_reset) {
3394		if (dwc2_core_reset(hsotg, true))
3395			return;
3396	} else {
3397		/* all endpoints should be shutdown */
3398		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3399			if (hsotg->eps_in[ep])
3400				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3401			if (hsotg->eps_out[ep])
3402				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3403		}
3404	}
3405
3406	/*
3407	 * we must now enable ep0 ready for host detection and then
3408	 * set configuration.
3409	 */
3410
3411	/* keep other bits untouched (so e.g. forced modes are not lost) */
3412	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3413	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3414	usbcfg |= GUSBCFG_TOUTCAL(7);
3415
3416	/* remove the HNP/SRP and set the PHY */
3417	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3418        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3419
3420	dwc2_phy_init(hsotg, true);
3421
3422	dwc2_hsotg_init_fifo(hsotg);
3423
3424	if (!is_usb_reset)
3425		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3426
3427	dcfg |= DCFG_EPMISCNT(1);
3428
3429	switch (hsotg->params.speed) {
3430	case DWC2_SPEED_PARAM_LOW:
3431		dcfg |= DCFG_DEVSPD_LS;
3432		break;
3433	case DWC2_SPEED_PARAM_FULL:
3434		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3435			dcfg |= DCFG_DEVSPD_FS48;
3436		else
3437			dcfg |= DCFG_DEVSPD_FS;
3438		break;
3439	default:
3440		dcfg |= DCFG_DEVSPD_HS;
3441	}
3442
3443	if (hsotg->params.ipg_isoc_en)
3444		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3445
3446	dwc2_writel(hsotg, dcfg,  DCFG);
3447
3448	/* Clear any pending OTG interrupts */
3449	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3450
3451	/* Clear any pending interrupts */
3452	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3453	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3454		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3455		GINTSTS_USBRST | GINTSTS_RESETDET |
3456		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3457		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3458		GINTSTS_LPMTRANRCVD;
3459
3460	if (!using_desc_dma(hsotg))
3461		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3462
3463	if (!hsotg->params.external_id_pin_ctl)
3464		intmsk |= GINTSTS_CONIDSTSCHNG;
3465
3466	dwc2_writel(hsotg, intmsk, GINTMSK);
3467
3468	if (using_dma(hsotg)) {
3469		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3470			    hsotg->params.ahbcfg,
3471			    GAHBCFG);
3472
3473		/* Set DDMA mode support in the core if needed */
3474		if (using_desc_dma(hsotg))
3475			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3476
3477	} else {
3478		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3479						(GAHBCFG_NP_TXF_EMP_LVL |
3480						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3481			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3482	}
3483
3484	/*
3485	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3486	 * when we have no data to transfer. Otherwise we get being flooded by
3487	 * interrupts.
3488	 */
3489
3490	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3491		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3492		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3493		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3494		DIEPMSK);
3495
3496	/*
3497	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3498	 * DMA mode we may need this and StsPhseRcvd.
3499	 */
3500	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3501		DOEPMSK_STSPHSERCVDMSK) : 0) |
3502		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3503		DOEPMSK_SETUPMSK,
3504		DOEPMSK);
3505
3506	/* Enable BNA interrupt for DDMA */
3507	if (using_desc_dma(hsotg)) {
3508		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3509		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3510	}
3511
3512	/* Enable Service Interval mode if supported */
3513	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3514		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3515
3516	dwc2_writel(hsotg, 0, DAINTMSK);
3517
3518	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3519		dwc2_readl(hsotg, DIEPCTL0),
3520		dwc2_readl(hsotg, DOEPCTL0));
3521
3522	/* enable in and out endpoint interrupts */
3523	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3524
3525	/*
3526	 * Enable the RXFIFO when in slave mode, as this is how we collect
3527	 * the data. In DMA mode, we get events from the FIFO but also
3528	 * things we cannot process, so do not use it.
3529	 */
3530	if (!using_dma(hsotg))
3531		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3532
3533	/* Enable interrupts for EP0 in and out */
3534	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3535	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3536
3537	if (!is_usb_reset) {
3538		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3539		udelay(10);  /* see openiboot */
3540		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3541	}
3542
3543	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3544
3545	/*
3546	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3547	 * writing to the EPCTL register..
3548	 */
3549
3550	/* set to read 1 8byte packet */
3551	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3552	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3553
3554	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3555	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3556	       DXEPCTL_USBACTEP,
3557	       DOEPCTL0);
3558
3559	/* enable, but don't activate EP0in */
3560	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3561	       DXEPCTL_USBACTEP, DIEPCTL0);
3562
3563	/* clear global NAKs */
3564	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3565	if (!is_usb_reset)
3566		val |= DCTL_SFTDISCON;
3567	dwc2_set_bit(hsotg, DCTL, val);
3568
3569	/* configure the core to support LPM */
3570	dwc2_gadget_init_lpm(hsotg);
3571
3572	/* program GREFCLK register if needed */
3573	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3574		dwc2_gadget_program_ref_clk(hsotg);
3575
3576	/* must be at-least 3ms to allow bus to see disconnect */
3577	mdelay(3);
3578
3579	hsotg->lx_state = DWC2_L0;
3580
3581	dwc2_hsotg_enqueue_setup(hsotg);
3582
3583	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3584		dwc2_readl(hsotg, DIEPCTL0),
3585		dwc2_readl(hsotg, DOEPCTL0));
3586}
3587
3588void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3589{
3590	/* set the soft-disconnect bit */
3591	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3592}
3593
3594void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3595{
3596	/* remove the soft-disconnect and let's go */
3597	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3598		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3599}
3600
3601/**
3602 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3603 * @hsotg: The device state:
3604 *
3605 * This interrupt indicates one of the following conditions occurred while
3606 * transmitting an ISOC transaction.
3607 * - Corrupted IN Token for ISOC EP.
3608 * - Packet not complete in FIFO.
3609 *
3610 * The following actions will be taken:
3611 * - Determine the EP
3612 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3613 */
3614static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3615{
3616	struct dwc2_hsotg_ep *hs_ep;
3617	u32 epctrl;
3618	u32 daintmsk;
3619	u32 idx;
3620
3621	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3622
3623	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3624
3625	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3626		hs_ep = hsotg->eps_in[idx];
3627		/* Proceed only unmasked ISOC EPs */
3628		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3629			continue;
3630
3631		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3632		if ((epctrl & DXEPCTL_EPENA) &&
3633		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3634			epctrl |= DXEPCTL_SNAK;
3635			epctrl |= DXEPCTL_EPDIS;
3636			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3637		}
3638	}
3639
3640	/* Clear interrupt */
3641	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3642}
3643
3644/**
3645 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3646 * @hsotg: The device state:
3647 *
3648 * This interrupt indicates one of the following conditions occurred while
3649 * transmitting an ISOC transaction.
3650 * - Corrupted OUT Token for ISOC EP.
3651 * - Packet not complete in FIFO.
3652 *
3653 * The following actions will be taken:
3654 * - Determine the EP
3655 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3656 */
3657static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3658{
3659	u32 gintsts;
3660	u32 gintmsk;
3661	u32 daintmsk;
3662	u32 epctrl;
3663	struct dwc2_hsotg_ep *hs_ep;
3664	int idx;
3665
3666	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3667
3668	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3669	daintmsk >>= DAINT_OUTEP_SHIFT;
3670
3671	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3672		hs_ep = hsotg->eps_out[idx];
3673		/* Proceed only unmasked ISOC EPs */
3674		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3675			continue;
3676
3677		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3678		if ((epctrl & DXEPCTL_EPENA) &&
3679		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3680			/* Unmask GOUTNAKEFF interrupt */
3681			gintmsk = dwc2_readl(hsotg, GINTMSK);
3682			gintmsk |= GINTSTS_GOUTNAKEFF;
3683			dwc2_writel(hsotg, gintmsk, GINTMSK);
3684
3685			gintsts = dwc2_readl(hsotg, GINTSTS);
3686			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3687				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3688				break;
3689			}
3690		}
3691	}
3692
3693	/* Clear interrupt */
3694	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3695}
3696
3697/**
3698 * dwc2_hsotg_irq - handle device interrupt
3699 * @irq: The IRQ number triggered
3700 * @pw: The pw value when registered the handler.
3701 */
3702static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3703{
3704	struct dwc2_hsotg *hsotg = pw;
3705	int retry_count = 8;
3706	u32 gintsts;
3707	u32 gintmsk;
3708
3709	if (!dwc2_is_device_mode(hsotg))
3710		return IRQ_NONE;
3711
3712	spin_lock(&hsotg->lock);
3713irq_retry:
3714	gintsts = dwc2_readl(hsotg, GINTSTS);
3715	gintmsk = dwc2_readl(hsotg, GINTMSK);
3716
3717	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3718		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3719
3720	gintsts &= gintmsk;
3721
3722	if (gintsts & GINTSTS_RESETDET) {
3723		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3724
3725		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3726
3727		/* This event must be used only if controller is suspended */
3728		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3729			dwc2_exit_partial_power_down(hsotg, 0, true);
3730
3731		hsotg->lx_state = DWC2_L0;
3732	}
3733
3734	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3735		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3736		u32 connected = hsotg->connected;
3737
3738		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3739		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3740			dwc2_readl(hsotg, GNPTXSTS));
3741
3742		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3743
3744		/* Report disconnection if it is not already done. */
3745		dwc2_hsotg_disconnect(hsotg);
3746
3747		/* Reset device address to zero */
3748		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3749
3750		if (usb_status & GOTGCTL_BSESVLD && connected)
3751			dwc2_hsotg_core_init_disconnected(hsotg, true);
3752	}
3753
3754	if (gintsts & GINTSTS_ENUMDONE) {
3755		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3756
3757		dwc2_hsotg_irq_enumdone(hsotg);
3758	}
3759
3760	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3761		u32 daint = dwc2_readl(hsotg, DAINT);
3762		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3763		u32 daint_out, daint_in;
3764		int ep;
3765
3766		daint &= daintmsk;
3767		daint_out = daint >> DAINT_OUTEP_SHIFT;
3768		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3769
3770		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3771
3772		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3773						ep++, daint_out >>= 1) {
3774			if (daint_out & 1)
3775				dwc2_hsotg_epint(hsotg, ep, 0);
3776		}
3777
3778		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3779						ep++, daint_in >>= 1) {
3780			if (daint_in & 1)
3781				dwc2_hsotg_epint(hsotg, ep, 1);
3782		}
3783	}
3784
3785	/* check both FIFOs */
3786
3787	if (gintsts & GINTSTS_NPTXFEMP) {
3788		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3789
3790		/*
3791		 * Disable the interrupt to stop it happening again
3792		 * unless one of these endpoint routines decides that
3793		 * it needs re-enabling
3794		 */
3795
3796		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3797		dwc2_hsotg_irq_fifoempty(hsotg, false);
3798	}
3799
3800	if (gintsts & GINTSTS_PTXFEMP) {
3801		dev_dbg(hsotg->dev, "PTxFEmp\n");
3802
3803		/* See note in GINTSTS_NPTxFEmp */
3804
3805		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3806		dwc2_hsotg_irq_fifoempty(hsotg, true);
3807	}
3808
3809	if (gintsts & GINTSTS_RXFLVL) {
3810		/*
3811		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3812		 * we need to retry dwc2_hsotg_handle_rx if this is still
3813		 * set.
3814		 */
3815
3816		dwc2_hsotg_handle_rx(hsotg);
3817	}
3818
3819	if (gintsts & GINTSTS_ERLYSUSP) {
3820		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3821		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3822	}
3823
3824	/*
3825	 * these next two seem to crop-up occasionally causing the core
3826	 * to shutdown the USB transfer, so try clearing them and logging
3827	 * the occurrence.
3828	 */
3829
3830	if (gintsts & GINTSTS_GOUTNAKEFF) {
3831		u8 idx;
3832		u32 epctrl;
3833		u32 gintmsk;
3834		u32 daintmsk;
3835		struct dwc2_hsotg_ep *hs_ep;
3836
3837		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3838		daintmsk >>= DAINT_OUTEP_SHIFT;
3839		/* Mask this interrupt */
3840		gintmsk = dwc2_readl(hsotg, GINTMSK);
3841		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3842		dwc2_writel(hsotg, gintmsk, GINTMSK);
3843
3844		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3845		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3846			hs_ep = hsotg->eps_out[idx];
3847			/* Proceed only unmasked ISOC EPs */
3848			if (BIT(idx) & ~daintmsk)
3849				continue;
3850
3851			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3852
3853			//ISOC Ep's only
3854			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3855				epctrl |= DXEPCTL_SNAK;
3856				epctrl |= DXEPCTL_EPDIS;
3857				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3858				continue;
3859			}
3860
3861			//Non-ISOC EP's
3862			if (hs_ep->halted) {
3863				if (!(epctrl & DXEPCTL_EPENA))
3864					epctrl |= DXEPCTL_EPENA;
3865				epctrl |= DXEPCTL_EPDIS;
3866				epctrl |= DXEPCTL_STALL;
3867				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3868			}
3869		}
3870
3871		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3872	}
3873
3874	if (gintsts & GINTSTS_GINNAKEFF) {
3875		dev_info(hsotg->dev, "GINNakEff triggered\n");
3876
3877		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3878
3879		dwc2_hsotg_dump(hsotg);
3880	}
3881
3882	if (gintsts & GINTSTS_INCOMPL_SOIN)
3883		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3884
3885	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3886		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3887
3888	/*
3889	 * if we've had fifo events, we should try and go around the
3890	 * loop again to see if there's any point in returning yet.
3891	 */
3892
3893	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3894		goto irq_retry;
3895
3896	/* Check WKUP_ALERT interrupt*/
3897	if (hsotg->params.service_interval)
3898		dwc2_gadget_wkup_alert_handler(hsotg);
3899
3900	spin_unlock(&hsotg->lock);
3901
3902	return IRQ_HANDLED;
3903}
3904
3905static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3906				   struct dwc2_hsotg_ep *hs_ep)
3907{
3908	u32 epctrl_reg;
3909	u32 epint_reg;
3910
3911	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3912		DOEPCTL(hs_ep->index);
3913	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3914		DOEPINT(hs_ep->index);
3915
3916	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3917		hs_ep->name);
3918
3919	if (hs_ep->dir_in) {
3920		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3921			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3922			/* Wait for Nak effect */
3923			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3924						    DXEPINT_INEPNAKEFF, 100))
3925				dev_warn(hsotg->dev,
3926					 "%s: timeout DIEPINT.NAKEFF\n",
3927					 __func__);
3928		} else {
3929			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3930			/* Wait for Nak effect */
3931			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3932						    GINTSTS_GINNAKEFF, 100))
3933				dev_warn(hsotg->dev,
3934					 "%s: timeout GINTSTS.GINNAKEFF\n",
3935					 __func__);
3936		}
3937	} else {
3938		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3939		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3940
3941		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3942			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3943
3944		if (!using_dma(hsotg)) {
3945			/* Wait for GINTSTS_RXFLVL interrupt */
3946			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3947						    GINTSTS_RXFLVL, 100)) {
3948				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3949					 __func__);
3950			} else {
3951				/*
3952				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3953				 * to assert GOUTNAKEFF interrupt
3954				 */
3955				dwc2_readl(hsotg, GRXSTSP);
3956			}
3957		}
3958
3959		/* Wait for global nak to take effect */
3960		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3961					    GINTSTS_GOUTNAKEFF, 100))
3962			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3963				 __func__);
3964	}
3965
3966	/* Disable ep */
3967	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3968
3969	/* Wait for ep to be disabled */
3970	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3971		dev_warn(hsotg->dev,
3972			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3973
3974	/* Clear EPDISBLD interrupt */
3975	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3976
3977	if (hs_ep->dir_in) {
3978		unsigned short fifo_index;
3979
3980		if (hsotg->dedicated_fifos || hs_ep->periodic)
3981			fifo_index = hs_ep->fifo_index;
3982		else
3983			fifo_index = 0;
3984
3985		/* Flush TX FIFO */
3986		dwc2_flush_tx_fifo(hsotg, fifo_index);
3987
3988		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3989		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3990			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3991
3992	} else {
3993		/* Remove global NAKs */
3994		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3995	}
3996}
3997
3998/**
3999 * dwc2_hsotg_ep_enable - enable the given endpoint
4000 * @ep: The USB endpint to configure
4001 * @desc: The USB endpoint descriptor to configure with.
4002 *
4003 * This is called from the USB gadget code's usb_ep_enable().
4004 */
4005static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4006				const struct usb_endpoint_descriptor *desc)
4007{
4008	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4009	struct dwc2_hsotg *hsotg = hs_ep->parent;
4010	unsigned long flags;
4011	unsigned int index = hs_ep->index;
4012	u32 epctrl_reg;
4013	u32 epctrl;
4014	u32 mps;
4015	u32 mc;
4016	u32 mask;
4017	unsigned int dir_in;
4018	unsigned int i, val, size;
4019	int ret = 0;
4020	unsigned char ep_type;
4021	int desc_num;
4022
4023	dev_dbg(hsotg->dev,
4024		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4025		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4026		desc->wMaxPacketSize, desc->bInterval);
4027
4028	/* not to be called for EP0 */
4029	if (index == 0) {
4030		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4031		return -EINVAL;
4032	}
4033
4034	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4035	if (dir_in != hs_ep->dir_in) {
4036		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4037		return -EINVAL;
4038	}
4039
4040	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4041	mps = usb_endpoint_maxp(desc);
4042	mc = usb_endpoint_maxp_mult(desc);
4043
4044	/* ISOC IN in DDMA supported bInterval up to 10 */
4045	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4046	    dir_in && desc->bInterval > 10) {
4047		dev_err(hsotg->dev,
4048			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4049		return -EINVAL;
4050	}
4051
4052	/* High bandwidth ISOC OUT in DDMA not supported */
4053	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4054	    !dir_in && mc > 1) {
4055		dev_err(hsotg->dev,
4056			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4057		return -EINVAL;
4058	}
4059
4060	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4061
4062	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4063	epctrl = dwc2_readl(hsotg, epctrl_reg);
4064
4065	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4066		__func__, epctrl, epctrl_reg);
4067
4068	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4069		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4070	else
4071		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4072
4073	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4074	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4075		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4076			desc_num * sizeof(struct dwc2_dma_desc),
4077			&hs_ep->desc_list_dma, GFP_ATOMIC);
4078		if (!hs_ep->desc_list) {
4079			ret = -ENOMEM;
4080			goto error2;
4081		}
4082	}
4083
4084	spin_lock_irqsave(&hsotg->lock, flags);
4085
4086	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4087	epctrl |= DXEPCTL_MPS(mps);
4088
4089	/*
4090	 * mark the endpoint as active, otherwise the core may ignore
4091	 * transactions entirely for this endpoint
4092	 */
4093	epctrl |= DXEPCTL_USBACTEP;
4094
4095	/* update the endpoint state */
4096	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4097
4098	/* default, set to non-periodic */
4099	hs_ep->isochronous = 0;
4100	hs_ep->periodic = 0;
4101	hs_ep->halted = 0;
4102	hs_ep->wedged = 0;
4103	hs_ep->interval = desc->bInterval;
4104
4105	switch (ep_type) {
4106	case USB_ENDPOINT_XFER_ISOC:
4107		epctrl |= DXEPCTL_EPTYPE_ISO;
4108		epctrl |= DXEPCTL_SETEVENFR;
4109		hs_ep->isochronous = 1;
4110		hs_ep->interval = 1 << (desc->bInterval - 1);
4111		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4112		hs_ep->next_desc = 0;
4113		hs_ep->compl_desc = 0;
4114		if (dir_in) {
4115			hs_ep->periodic = 1;
4116			mask = dwc2_readl(hsotg, DIEPMSK);
4117			mask |= DIEPMSK_NAKMSK;
4118			dwc2_writel(hsotg, mask, DIEPMSK);
4119		} else {
4120			epctrl |= DXEPCTL_SNAK;
4121			mask = dwc2_readl(hsotg, DOEPMSK);
4122			mask |= DOEPMSK_OUTTKNEPDISMSK;
4123			dwc2_writel(hsotg, mask, DOEPMSK);
4124		}
4125		break;
4126
4127	case USB_ENDPOINT_XFER_BULK:
4128		epctrl |= DXEPCTL_EPTYPE_BULK;
4129		break;
4130
4131	case USB_ENDPOINT_XFER_INT:
4132		if (dir_in)
4133			hs_ep->periodic = 1;
4134
4135		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4136			hs_ep->interval = 1 << (desc->bInterval - 1);
4137
4138		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4139		break;
4140
4141	case USB_ENDPOINT_XFER_CONTROL:
4142		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4143		break;
4144	}
4145
4146	/*
4147	 * if the hardware has dedicated fifos, we must give each IN EP
4148	 * a unique tx-fifo even if it is non-periodic.
4149	 */
4150	if (dir_in && hsotg->dedicated_fifos) {
4151		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4152		u32 fifo_index = 0;
4153		u32 fifo_size = UINT_MAX;
4154
4155		size = hs_ep->ep.maxpacket * hs_ep->mc;
4156		for (i = 1; i <= fifo_count; ++i) {
4157			if (hsotg->fifo_map & (1 << i))
4158				continue;
4159			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4160			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4161			if (val < size)
4162				continue;
4163			/* Search for smallest acceptable fifo */
4164			if (val < fifo_size) {
4165				fifo_size = val;
4166				fifo_index = i;
4167			}
4168		}
4169		if (!fifo_index) {
4170			dev_err(hsotg->dev,
4171				"%s: No suitable fifo found\n", __func__);
4172			ret = -ENOMEM;
4173			goto error1;
4174		}
4175		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4176		hsotg->fifo_map |= 1 << fifo_index;
4177		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4178		hs_ep->fifo_index = fifo_index;
4179		hs_ep->fifo_size = fifo_size;
4180	}
4181
4182	/* for non control endpoints, set PID to D0 */
4183	if (index && !hs_ep->isochronous)
4184		epctrl |= DXEPCTL_SETD0PID;
4185
4186	/* WA for Full speed ISOC IN in DDMA mode.
4187	 * By Clear NAK status of EP, core will send ZLP
4188	 * to IN token and assert NAK interrupt relying
4189	 * on TxFIFO status only
4190	 */
4191
4192	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4193	    hs_ep->isochronous && dir_in) {
4194		/* The WA applies only to core versions from 2.72a
4195		 * to 4.00a (including both). Also for FS_IOT_1.00a
4196		 * and HS_IOT_1.00a.
4197		 */
4198		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4199
4200		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4201		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4202		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4203		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4204			epctrl |= DXEPCTL_CNAK;
4205	}
4206
4207	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4208		__func__, epctrl);
4209
4210	dwc2_writel(hsotg, epctrl, epctrl_reg);
4211	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4212		__func__, dwc2_readl(hsotg, epctrl_reg));
4213
4214	/* enable the endpoint interrupt */
4215	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4216
4217error1:
4218	spin_unlock_irqrestore(&hsotg->lock, flags);
4219
4220error2:
4221	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4222		dmam_free_coherent(hsotg->dev, desc_num *
4223			sizeof(struct dwc2_dma_desc),
4224			hs_ep->desc_list, hs_ep->desc_list_dma);
4225		hs_ep->desc_list = NULL;
4226	}
4227
4228	return ret;
4229}
4230
4231/**
4232 * dwc2_hsotg_ep_disable - disable given endpoint
4233 * @ep: The endpoint to disable.
4234 */
4235static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4236{
4237	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4238	struct dwc2_hsotg *hsotg = hs_ep->parent;
4239	int dir_in = hs_ep->dir_in;
4240	int index = hs_ep->index;
4241	u32 epctrl_reg;
4242	u32 ctrl;
4243
4244	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4245
4246	if (ep == &hsotg->eps_out[0]->ep) {
4247		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4248		return -EINVAL;
4249	}
4250
4251	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4252		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4253		return -EINVAL;
4254	}
4255
4256	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4257
4258	ctrl = dwc2_readl(hsotg, epctrl_reg);
4259
4260	if (ctrl & DXEPCTL_EPENA)
4261		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4262
4263	ctrl &= ~DXEPCTL_EPENA;
4264	ctrl &= ~DXEPCTL_USBACTEP;
4265	ctrl |= DXEPCTL_SNAK;
4266
4267	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4268	dwc2_writel(hsotg, ctrl, epctrl_reg);
4269
4270	/* disable endpoint interrupts */
4271	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4272
4273	/* terminate all requests with shutdown */
4274	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4275
4276	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4277	hs_ep->fifo_index = 0;
4278	hs_ep->fifo_size = 0;
4279
4280	return 0;
4281}
4282
4283static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4284{
4285	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4286	struct dwc2_hsotg *hsotg = hs_ep->parent;
4287	unsigned long flags;
4288	int ret;
4289
4290	spin_lock_irqsave(&hsotg->lock, flags);
4291	ret = dwc2_hsotg_ep_disable(ep);
4292	spin_unlock_irqrestore(&hsotg->lock, flags);
4293	return ret;
4294}
4295
4296/**
4297 * on_list - check request is on the given endpoint
4298 * @ep: The endpoint to check.
4299 * @test: The request to test if it is on the endpoint.
4300 */
4301static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4302{
4303	struct dwc2_hsotg_req *req, *treq;
4304
4305	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4306		if (req == test)
4307			return true;
4308	}
4309
4310	return false;
4311}
4312
4313/**
4314 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4315 * @ep: The endpoint to dequeue.
4316 * @req: The request to be removed from a queue.
4317 */
4318static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4319{
4320	struct dwc2_hsotg_req *hs_req = our_req(req);
4321	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4322	struct dwc2_hsotg *hs = hs_ep->parent;
4323	unsigned long flags;
4324
4325	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4326
4327	spin_lock_irqsave(&hs->lock, flags);
4328
4329	if (!on_list(hs_ep, hs_req)) {
4330		spin_unlock_irqrestore(&hs->lock, flags);
4331		return -EINVAL;
4332	}
4333
4334	/* Dequeue already started request */
4335	if (req == &hs_ep->req->req)
4336		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4337
4338	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4339	spin_unlock_irqrestore(&hs->lock, flags);
4340
4341	return 0;
4342}
4343
4344/**
4345 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4346 * @ep: The endpoint to be wedged.
4347 *
4348 */
4349static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4350{
4351	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4352	struct dwc2_hsotg *hs = hs_ep->parent;
4353
4354	unsigned long	flags;
4355	int		ret;
4356
4357	spin_lock_irqsave(&hs->lock, flags);
4358	hs_ep->wedged = 1;
4359	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4360	spin_unlock_irqrestore(&hs->lock, flags);
4361
4362	return ret;
4363}
4364
4365/**
4366 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4367 * @ep: The endpoint to set halt.
4368 * @value: Set or unset the halt.
4369 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4370 *       the endpoint is busy processing requests.
4371 *
4372 * We need to stall the endpoint immediately if request comes from set_feature
4373 * protocol command handler.
4374 */
4375static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4376{
4377	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4378	struct dwc2_hsotg *hs = hs_ep->parent;
4379	int index = hs_ep->index;
4380	u32 epreg;
4381	u32 epctl;
4382	u32 xfertype;
4383
4384	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4385
4386	if (index == 0) {
4387		if (value)
4388			dwc2_hsotg_stall_ep0(hs);
4389		else
4390			dev_warn(hs->dev,
4391				 "%s: can't clear halt on ep0\n", __func__);
4392		return 0;
4393	}
4394
4395	if (hs_ep->isochronous) {
4396		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4397		return -EINVAL;
4398	}
4399
4400	if (!now && value && !list_empty(&hs_ep->queue)) {
4401		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4402			ep->name);
4403		return -EAGAIN;
4404	}
4405
4406	if (hs_ep->dir_in) {
4407		epreg = DIEPCTL(index);
4408		epctl = dwc2_readl(hs, epreg);
4409
4410		if (value) {
4411			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4412			if (epctl & DXEPCTL_EPENA)
4413				epctl |= DXEPCTL_EPDIS;
4414		} else {
4415			epctl &= ~DXEPCTL_STALL;
4416			hs_ep->wedged = 0;
4417			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4418			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4419			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4420				epctl |= DXEPCTL_SETD0PID;
4421		}
4422		dwc2_writel(hs, epctl, epreg);
4423	} else {
4424		epreg = DOEPCTL(index);
4425		epctl = dwc2_readl(hs, epreg);
4426
4427		if (value) {
4428			/* Unmask GOUTNAKEFF interrupt */
4429			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4430
4431			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4432				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4433			// STALL bit will be set in GOUTNAKEFF interrupt handler
4434		} else {
4435			epctl &= ~DXEPCTL_STALL;
4436			hs_ep->wedged = 0;
4437			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4438			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4439			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4440				epctl |= DXEPCTL_SETD0PID;
4441			dwc2_writel(hs, epctl, epreg);
4442		}
4443	}
4444
4445	hs_ep->halted = value;
4446	return 0;
4447}
4448
4449/**
4450 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4451 * @ep: The endpoint to set halt.
4452 * @value: Set or unset the halt.
4453 */
4454static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4455{
4456	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4457	struct dwc2_hsotg *hs = hs_ep->parent;
4458	unsigned long flags;
4459	int ret;
4460
4461	spin_lock_irqsave(&hs->lock, flags);
4462	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4463	spin_unlock_irqrestore(&hs->lock, flags);
4464
4465	return ret;
4466}
4467
4468static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4469	.enable		= dwc2_hsotg_ep_enable,
4470	.disable	= dwc2_hsotg_ep_disable_lock,
4471	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4472	.free_request	= dwc2_hsotg_ep_free_request,
4473	.queue		= dwc2_hsotg_ep_queue_lock,
4474	.dequeue	= dwc2_hsotg_ep_dequeue,
4475	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4476	.set_wedge	= dwc2_gadget_ep_set_wedge,
4477	/* note, don't believe we have any call for the fifo routines */
4478};
4479
4480/**
4481 * dwc2_hsotg_init - initialize the usb core
4482 * @hsotg: The driver state
4483 */
4484static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4485{
4486	/* unmask subset of endpoint interrupts */
4487
4488	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4489		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4490		    DIEPMSK);
4491
4492	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4493		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4494		    DOEPMSK);
4495
4496	dwc2_writel(hsotg, 0, DAINTMSK);
4497
4498	/* Be in disconnected state until gadget is registered */
4499	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4500
4501	/* setup fifos */
4502
4503	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4504		dwc2_readl(hsotg, GRXFSIZ),
4505		dwc2_readl(hsotg, GNPTXFSIZ));
4506
4507	dwc2_hsotg_init_fifo(hsotg);
4508
4509	if (using_dma(hsotg))
4510		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4511}
4512
4513/**
4514 * dwc2_hsotg_udc_start - prepare the udc for work
4515 * @gadget: The usb gadget state
4516 * @driver: The usb gadget driver
4517 *
4518 * Perform initialization to prepare udc device and driver
4519 * to work.
4520 */
4521static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4522				struct usb_gadget_driver *driver)
4523{
4524	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4525	unsigned long flags;
4526	int ret;
4527
4528	if (!hsotg) {
4529		pr_err("%s: called with no device\n", __func__);
4530		return -ENODEV;
4531	}
4532
4533	if (!driver) {
4534		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4535		return -EINVAL;
4536	}
4537
4538	if (driver->max_speed < USB_SPEED_FULL)
4539		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4540
4541	if (!driver->setup) {
4542		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4543		return -EINVAL;
4544	}
4545
4546	WARN_ON(hsotg->driver);
4547
4548	hsotg->driver = driver;
4549	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4550	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4551
4552	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL ||
4553	    (hsotg->dr_mode == USB_DR_MODE_OTG && dwc2_is_device_mode(hsotg))) {
4554		ret = dwc2_lowlevel_hw_enable(hsotg);
4555		if (ret)
4556			goto err;
4557	}
4558
4559	if (!IS_ERR_OR_NULL(hsotg->uphy))
4560		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4561
4562	spin_lock_irqsave(&hsotg->lock, flags);
4563	if (dwc2_hw_is_device(hsotg)) {
4564		dwc2_hsotg_init(hsotg);
4565		dwc2_hsotg_core_init_disconnected(hsotg, false);
4566	}
4567
4568	hsotg->enabled = 0;
4569	spin_unlock_irqrestore(&hsotg->lock, flags);
4570
4571	gadget->sg_supported = using_desc_dma(hsotg);
4572	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4573
4574	return 0;
4575
4576err:
4577	hsotg->driver = NULL;
4578	return ret;
4579}
4580
4581/**
4582 * dwc2_hsotg_udc_stop - stop the udc
4583 * @gadget: The usb gadget state
4584 *
4585 * Stop udc hw block and stay tunned for future transmissions
4586 */
4587static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4588{
4589	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4590	unsigned long flags;
4591	int ep;
4592
4593	if (!hsotg)
4594		return -ENODEV;
4595
4596	/* all endpoints should be shutdown */
4597	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4598		if (hsotg->eps_in[ep])
4599			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4600		if (hsotg->eps_out[ep])
4601			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4602	}
4603
4604	spin_lock_irqsave(&hsotg->lock, flags);
4605
4606	hsotg->driver = NULL;
4607	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4608	hsotg->enabled = 0;
4609
4610	spin_unlock_irqrestore(&hsotg->lock, flags);
4611
4612	if (!IS_ERR_OR_NULL(hsotg->uphy))
4613		otg_set_peripheral(hsotg->uphy->otg, NULL);
4614
4615	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL ||
4616	    (hsotg->dr_mode == USB_DR_MODE_OTG && dwc2_is_device_mode(hsotg)))
4617		dwc2_lowlevel_hw_disable(hsotg);
4618
4619	return 0;
4620}
4621
4622/**
4623 * dwc2_hsotg_gadget_getframe - read the frame number
4624 * @gadget: The usb gadget state
4625 *
4626 * Read the {micro} frame number
4627 */
4628static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4629{
4630	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4631}
4632
4633/**
4634 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4635 * @gadget: The usb gadget state
4636 * @is_selfpowered: Whether the device is self-powered
4637 *
4638 * Set if the device is self or bus powered.
4639 */
4640static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4641				      int is_selfpowered)
4642{
4643	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4644	unsigned long flags;
4645
4646	spin_lock_irqsave(&hsotg->lock, flags);
4647	gadget->is_selfpowered = !!is_selfpowered;
4648	spin_unlock_irqrestore(&hsotg->lock, flags);
4649
4650	return 0;
4651}
4652
4653/**
4654 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4655 * @gadget: The usb gadget state
4656 * @is_on: Current state of the USB PHY
4657 *
4658 * Connect/Disconnect the USB PHY pullup
4659 */
4660static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4661{
4662	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4663	unsigned long flags;
4664
4665	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4666		hsotg->op_state);
4667
4668	/* Don't modify pullup state while in host mode */
4669	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4670		hsotg->enabled = is_on;
4671		return 0;
4672	}
4673
4674	spin_lock_irqsave(&hsotg->lock, flags);
4675	if (is_on) {
4676		hsotg->enabled = 1;
4677		dwc2_hsotg_core_init_disconnected(hsotg, false);
4678		/* Enable ACG feature in device mode,if supported */
4679		dwc2_enable_acg(hsotg);
4680		dwc2_hsotg_core_connect(hsotg);
4681	} else {
4682		dwc2_hsotg_core_disconnect(hsotg);
4683		dwc2_hsotg_disconnect(hsotg);
4684		hsotg->enabled = 0;
4685	}
4686
4687	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4688	spin_unlock_irqrestore(&hsotg->lock, flags);
4689
4690	return 0;
4691}
4692
4693static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4694{
4695	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4696	unsigned long flags;
4697
4698	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4699	spin_lock_irqsave(&hsotg->lock, flags);
4700
4701	/*
4702	 * If controller is in partial power down state, it must exit from
4703	 * that state before being initialized / de-initialized
4704	 */
4705	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4706		/*
4707		 * No need to check the return value as
4708		 * registers are not being restored.
4709		 */
4710		dwc2_exit_partial_power_down(hsotg, 0, false);
4711
4712	if (is_active) {
4713		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4714
4715		dwc2_hsotg_core_init_disconnected(hsotg, false);
4716		if (hsotg->enabled) {
4717			/* Enable ACG feature in device mode,if supported */
4718			dwc2_enable_acg(hsotg);
4719			dwc2_hsotg_core_connect(hsotg);
4720		}
4721	} else {
4722		dwc2_hsotg_core_disconnect(hsotg);
4723		dwc2_hsotg_disconnect(hsotg);
4724	}
4725
4726	spin_unlock_irqrestore(&hsotg->lock, flags);
4727	return 0;
4728}
4729
4730/**
4731 * dwc2_hsotg_vbus_draw - report bMaxPower field
4732 * @gadget: The usb gadget state
4733 * @mA: Amount of current
4734 *
4735 * Report how much power the device may consume to the phy.
4736 */
4737static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4738{
4739	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4740
4741	if (IS_ERR_OR_NULL(hsotg->uphy))
4742		return -ENOTSUPP;
4743	return usb_phy_set_power(hsotg->uphy, mA);
4744}
4745
4746static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4747{
4748	struct dwc2_hsotg *hsotg = to_hsotg(g);
4749	unsigned long		flags;
4750
4751	spin_lock_irqsave(&hsotg->lock, flags);
4752	switch (speed) {
4753	case USB_SPEED_HIGH:
4754		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4755		break;
4756	case USB_SPEED_FULL:
4757		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4758		break;
4759	case USB_SPEED_LOW:
4760		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4761		break;
4762	default:
4763		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4764	}
4765	spin_unlock_irqrestore(&hsotg->lock, flags);
4766}
4767
4768static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4769	.get_frame	= dwc2_hsotg_gadget_getframe,
4770	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4771	.udc_start		= dwc2_hsotg_udc_start,
4772	.udc_stop		= dwc2_hsotg_udc_stop,
4773	.pullup                 = dwc2_hsotg_pullup,
4774	.udc_set_speed		= dwc2_gadget_set_speed,
4775	.vbus_session		= dwc2_hsotg_vbus_session,
4776	.vbus_draw		= dwc2_hsotg_vbus_draw,
4777};
4778
4779/**
4780 * dwc2_hsotg_initep - initialise a single endpoint
4781 * @hsotg: The device state.
4782 * @hs_ep: The endpoint to be initialised.
4783 * @epnum: The endpoint number
4784 * @dir_in: True if direction is in.
4785 *
4786 * Initialise the given endpoint (as part of the probe and device state
4787 * creation) to give to the gadget driver. Setup the endpoint name, any
4788 * direction information and other state that may be required.
4789 */
4790static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4791			      struct dwc2_hsotg_ep *hs_ep,
4792				       int epnum,
4793				       bool dir_in)
4794{
4795	char *dir;
4796
4797	if (epnum == 0)
4798		dir = "";
4799	else if (dir_in)
4800		dir = "in";
4801	else
4802		dir = "out";
4803
4804	hs_ep->dir_in = dir_in;
4805	hs_ep->index = epnum;
4806
4807	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4808
4809	INIT_LIST_HEAD(&hs_ep->queue);
4810	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4811
4812	/* add to the list of endpoints known by the gadget driver */
4813	if (epnum)
4814		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4815
4816	hs_ep->parent = hsotg;
4817	hs_ep->ep.name = hs_ep->name;
4818
4819	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4820		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4821	else
4822		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4823					   epnum ? 1024 : EP0_MPS_LIMIT);
4824	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4825
4826	if (epnum == 0) {
4827		hs_ep->ep.caps.type_control = true;
4828	} else {
4829		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4830			hs_ep->ep.caps.type_iso = true;
4831			hs_ep->ep.caps.type_bulk = true;
4832		}
4833		hs_ep->ep.caps.type_int = true;
4834	}
4835
4836	if (dir_in)
4837		hs_ep->ep.caps.dir_in = true;
4838	else
4839		hs_ep->ep.caps.dir_out = true;
4840
4841	/*
4842	 * if we're using dma, we need to set the next-endpoint pointer
4843	 * to be something valid.
4844	 */
4845
4846	if (using_dma(hsotg)) {
4847		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4848
4849		if (dir_in)
4850			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4851		else
4852			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4853	}
4854}
4855
4856/**
4857 * dwc2_hsotg_hw_cfg - read HW configuration registers
4858 * @hsotg: Programming view of the DWC_otg controller
4859 *
4860 * Read the USB core HW configuration registers
4861 */
4862static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4863{
4864	u32 cfg;
4865	u32 ep_type;
4866	u32 i;
4867
4868	/* check hardware configuration */
4869
4870	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4871
4872	/* Add ep0 */
4873	hsotg->num_of_eps++;
4874
4875	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4876					sizeof(struct dwc2_hsotg_ep),
4877					GFP_KERNEL);
4878	if (!hsotg->eps_in[0])
4879		return -ENOMEM;
4880	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4881	hsotg->eps_out[0] = hsotg->eps_in[0];
4882
4883	cfg = hsotg->hw_params.dev_ep_dirs;
4884	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4885		ep_type = cfg & 3;
4886		/* Direction in or both */
4887		if (!(ep_type & 2)) {
4888			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4889				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4890			if (!hsotg->eps_in[i])
4891				return -ENOMEM;
4892		}
4893		/* Direction out or both */
4894		if (!(ep_type & 1)) {
4895			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4896				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4897			if (!hsotg->eps_out[i])
4898				return -ENOMEM;
4899		}
4900	}
4901
4902	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4903	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4904
4905	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4906		 hsotg->num_of_eps,
4907		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4908		 hsotg->fifo_mem);
4909	return 0;
4910}
4911
4912/**
4913 * dwc2_hsotg_dump - dump state of the udc
4914 * @hsotg: Programming view of the DWC_otg controller
4915 *
4916 */
4917static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4918{
4919#ifdef DEBUG
4920	struct device *dev = hsotg->dev;
4921	u32 val;
4922	int idx;
4923
4924	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4925		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4926		 dwc2_readl(hsotg, DIEPMSK));
4927
4928	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4929		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4930
4931	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4932		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4933
4934	/* show periodic fifo settings */
4935
4936	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4937		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4938		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4939			 val >> FIFOSIZE_DEPTH_SHIFT,
4940			 val & FIFOSIZE_STARTADDR_MASK);
4941	}
4942
4943	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4944		dev_info(dev,
4945			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4946			 dwc2_readl(hsotg, DIEPCTL(idx)),
4947			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4948			 dwc2_readl(hsotg, DIEPDMA(idx)));
4949
4950		val = dwc2_readl(hsotg, DOEPCTL(idx));
4951		dev_info(dev,
4952			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4953			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4954			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4955			 dwc2_readl(hsotg, DOEPDMA(idx)));
4956	}
4957
4958	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4959		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4960#endif
4961}
4962
4963/**
4964 * dwc2_gadget_init - init function for gadget
4965 * @hsotg: Programming view of the DWC_otg controller
4966 *
4967 */
4968int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4969{
4970	struct device *dev = hsotg->dev;
4971	int epnum;
4972	int ret;
4973
4974	/* Dump fifo information */
4975	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4976		hsotg->params.g_np_tx_fifo_size);
4977	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4978
4979	switch (hsotg->params.speed) {
4980	case DWC2_SPEED_PARAM_LOW:
4981		hsotg->gadget.max_speed = USB_SPEED_LOW;
4982		break;
4983	case DWC2_SPEED_PARAM_FULL:
4984		hsotg->gadget.max_speed = USB_SPEED_FULL;
4985		break;
4986	default:
4987		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4988		break;
4989	}
4990
4991	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4992	hsotg->gadget.name = dev_name(dev);
4993	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4994	hsotg->remote_wakeup_allowed = 0;
4995
4996	if (hsotg->params.lpm)
4997		hsotg->gadget.lpm_capable = true;
4998
4999	if (hsotg->dr_mode == USB_DR_MODE_OTG)
5000		hsotg->gadget.is_otg = 1;
5001	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5002		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5003
5004	ret = dwc2_hsotg_hw_cfg(hsotg);
5005	if (ret) {
5006		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5007		return ret;
5008	}
5009
5010	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5011			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5012	if (!hsotg->ctrl_buff)
5013		return -ENOMEM;
5014
5015	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5016			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5017	if (!hsotg->ep0_buff)
5018		return -ENOMEM;
5019
5020	if (using_desc_dma(hsotg)) {
5021		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5022		if (ret < 0)
5023			return ret;
5024	}
5025
5026	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5027			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5028	if (ret < 0) {
5029		dev_err(dev, "cannot claim IRQ for gadget\n");
5030		return ret;
5031	}
5032
5033	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5034
5035	if (hsotg->num_of_eps == 0) {
5036		dev_err(dev, "wrong number of EPs (zero)\n");
5037		return -EINVAL;
5038	}
5039
5040	/* setup endpoint information */
5041
5042	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5043	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5044
5045	/* allocate EP0 request */
5046
5047	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5048						     GFP_KERNEL);
5049	if (!hsotg->ctrl_req) {
5050		dev_err(dev, "failed to allocate ctrl req\n");
5051		return -ENOMEM;
5052	}
5053
5054	/* initialise the endpoints now the core has been initialised */
5055	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5056		if (hsotg->eps_in[epnum])
5057			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5058					  epnum, 1);
5059		if (hsotg->eps_out[epnum])
5060			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5061					  epnum, 0);
5062	}
5063
5064	dwc2_hsotg_dump(hsotg);
5065
5066	return 0;
5067}
5068
5069/**
5070 * dwc2_hsotg_remove - remove function for hsotg driver
5071 * @hsotg: Programming view of the DWC_otg controller
5072 *
5073 */
5074int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5075{
5076	usb_del_gadget_udc(&hsotg->gadget);
5077	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5078
5079	return 0;
5080}
5081
5082int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5083{
5084	unsigned long flags;
5085
5086	if (hsotg->lx_state != DWC2_L0)
5087		return 0;
5088
5089	if (hsotg->driver) {
5090		int ep;
5091
5092		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5093			 hsotg->driver->driver.name);
5094
5095		spin_lock_irqsave(&hsotg->lock, flags);
5096		if (hsotg->enabled)
5097			dwc2_hsotg_core_disconnect(hsotg);
5098		dwc2_hsotg_disconnect(hsotg);
5099		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5100		spin_unlock_irqrestore(&hsotg->lock, flags);
5101
5102		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5103			if (hsotg->eps_in[ep])
5104				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5105			if (hsotg->eps_out[ep])
5106				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5107		}
5108	}
5109
5110	return 0;
5111}
5112
5113int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5114{
5115	unsigned long flags;
5116
5117	if (hsotg->lx_state == DWC2_L2)
5118		return 0;
5119
5120	if (hsotg->driver) {
5121		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5122			 hsotg->driver->driver.name);
5123
5124		spin_lock_irqsave(&hsotg->lock, flags);
5125		dwc2_hsotg_core_init_disconnected(hsotg, false);
5126		if (hsotg->enabled) {
5127			/* Enable ACG feature in device mode,if supported */
5128			dwc2_enable_acg(hsotg);
5129			dwc2_hsotg_core_connect(hsotg);
5130		}
5131		spin_unlock_irqrestore(&hsotg->lock, flags);
5132	}
5133
5134	return 0;
5135}
5136
5137/**
5138 * dwc2_backup_device_registers() - Backup controller device registers.
5139 * When suspending usb bus, registers needs to be backuped
5140 * if controller power is disabled once suspended.
5141 *
5142 * @hsotg: Programming view of the DWC_otg controller
5143 */
5144int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5145{
5146	struct dwc2_dregs_backup *dr;
5147	int i;
5148
5149	dev_dbg(hsotg->dev, "%s\n", __func__);
5150
5151	/* Backup dev regs */
5152	dr = &hsotg->dr_backup;
5153
5154	dr->dcfg = dwc2_readl(hsotg, DCFG);
5155	dr->dctl = dwc2_readl(hsotg, DCTL);
5156	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5157	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5158	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5159
5160	for (i = 0; i < hsotg->num_of_eps; i++) {
5161		/* Backup IN EPs */
5162		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5163
5164		/* Ensure DATA PID is correctly configured */
5165		if (dr->diepctl[i] & DXEPCTL_DPID)
5166			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5167		else
5168			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5169
5170		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5171		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5172
5173		/* Backup OUT EPs */
5174		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5175
5176		/* Ensure DATA PID is correctly configured */
5177		if (dr->doepctl[i] & DXEPCTL_DPID)
5178			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5179		else
5180			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5181
5182		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5183		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5184		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5185	}
5186	dr->valid = true;
5187	return 0;
5188}
5189
5190/**
5191 * dwc2_restore_device_registers() - Restore controller device registers.
5192 * When resuming usb bus, device registers needs to be restored
5193 * if controller power were disabled.
5194 *
5195 * @hsotg: Programming view of the DWC_otg controller
5196 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5197 *
5198 * Return: 0 if successful, negative error code otherwise
5199 */
5200int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5201{
5202	struct dwc2_dregs_backup *dr;
5203	int i;
5204
5205	dev_dbg(hsotg->dev, "%s\n", __func__);
5206
5207	/* Restore dev regs */
5208	dr = &hsotg->dr_backup;
5209	if (!dr->valid) {
5210		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5211			__func__);
5212		return -EINVAL;
5213	}
5214	dr->valid = false;
5215
5216	if (!remote_wakeup)
5217		dwc2_writel(hsotg, dr->dctl, DCTL);
5218
5219	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5220	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5221	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5222
5223	for (i = 0; i < hsotg->num_of_eps; i++) {
5224		/* Restore IN EPs */
5225		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5226		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5227		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5228		/** WA for enabled EPx's IN in DDMA mode. On entering to
5229		 * hibernation wrong value read and saved from DIEPDMAx,
5230		 * as result BNA interrupt asserted on hibernation exit
5231		 * by restoring from saved area.
5232		 */
5233		if (using_desc_dma(hsotg) &&
5234		    (dr->diepctl[i] & DXEPCTL_EPENA))
5235			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5236		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5237		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5238		/* Restore OUT EPs */
5239		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5240		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5241		 * hibernation wrong value read and saved from DOEPDMAx,
5242		 * as result BNA interrupt asserted on hibernation exit
5243		 * by restoring from saved area.
5244		 */
5245		if (using_desc_dma(hsotg) &&
5246		    (dr->doepctl[i] & DXEPCTL_EPENA))
5247			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5248		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5249		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5250	}
5251
5252	return 0;
5253}
5254
5255/**
5256 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5257 *
5258 * @hsotg: Programming view of DWC_otg controller
5259 *
5260 */
5261void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5262{
5263	u32 val;
5264
5265	if (!hsotg->params.lpm)
5266		return;
5267
5268	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5269	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5270	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5271	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5272	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5273	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5274	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5275	dwc2_writel(hsotg, val, GLPMCFG);
5276	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5277
5278	/* Unmask WKUP_ALERT Interrupt */
5279	if (hsotg->params.service_interval)
5280		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5281}
5282
5283/**
5284 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5285 *
5286 * @hsotg: Programming view of DWC_otg controller
5287 *
5288 */
5289void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5290{
5291	u32 val = 0;
5292
5293	val |= GREFCLK_REF_CLK_MODE;
5294	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5295	val |= hsotg->params.sof_cnt_wkup_alert <<
5296	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5297
5298	dwc2_writel(hsotg, val, GREFCLK);
5299	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5300}
5301
5302/**
5303 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5304 *
5305 * @hsotg: Programming view of the DWC_otg controller
5306 *
5307 * Return non-zero if failed to enter to hibernation.
5308 */
5309int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5310{
5311	u32 gpwrdn;
5312	int ret = 0;
5313
5314	/* Change to L2(suspend) state */
5315	hsotg->lx_state = DWC2_L2;
5316	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5317	ret = dwc2_backup_global_registers(hsotg);
5318	if (ret) {
5319		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5320			__func__);
5321		return ret;
5322	}
5323	ret = dwc2_backup_device_registers(hsotg);
5324	if (ret) {
5325		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5326			__func__);
5327		return ret;
5328	}
5329
5330	gpwrdn = GPWRDN_PWRDNRSTN;
5331	gpwrdn |= GPWRDN_PMUACTV;
5332	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5333	udelay(10);
5334
5335	/* Set flag to indicate that we are in hibernation */
5336	hsotg->hibernated = 1;
5337
5338	/* Enable interrupts from wake up logic */
5339	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5340	gpwrdn |= GPWRDN_PMUINTSEL;
5341	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5342	udelay(10);
5343
5344	/* Unmask device mode interrupts in GPWRDN */
5345	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5346	gpwrdn |= GPWRDN_RST_DET_MSK;
5347	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5348	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5349	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5350	udelay(10);
5351
5352	/* Enable Power Down Clamp */
5353	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5354	gpwrdn |= GPWRDN_PWRDNCLMP;
5355	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5356	udelay(10);
5357
5358	/* Switch off VDD */
5359	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5360	gpwrdn |= GPWRDN_PWRDNSWTCH;
5361	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5362	udelay(10);
5363
5364	/* Save gpwrdn register for further usage if stschng interrupt */
5365	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5366	dev_dbg(hsotg->dev, "Hibernation completed\n");
5367
5368	return ret;
5369}
5370
5371/**
5372 * dwc2_gadget_exit_hibernation()
5373 * This function is for exiting from Device mode hibernation by host initiated
5374 * resume/reset and device initiated remote-wakeup.
5375 *
5376 * @hsotg: Programming view of the DWC_otg controller
5377 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5378 * @reset: indicates whether resume is initiated by Reset.
5379 *
5380 * Return non-zero if failed to exit from hibernation.
5381 */
5382int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5383				 int rem_wakeup, int reset)
5384{
5385	u32 pcgcctl;
5386	u32 gpwrdn;
5387	u32 dctl;
5388	int ret = 0;
5389	struct dwc2_gregs_backup *gr;
5390	struct dwc2_dregs_backup *dr;
5391
5392	gr = &hsotg->gr_backup;
5393	dr = &hsotg->dr_backup;
5394
5395	if (!hsotg->hibernated) {
5396		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5397		return 1;
5398	}
5399	dev_dbg(hsotg->dev,
5400		"%s: called with rem_wakeup = %d reset = %d\n",
5401		__func__, rem_wakeup, reset);
5402
5403	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5404
5405	if (!reset) {
5406		/* Clear all pending interupts */
5407		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5408	}
5409
5410	/* De-assert Restore */
5411	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5412	gpwrdn &= ~GPWRDN_RESTORE;
5413	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5414	udelay(10);
5415
5416	if (!rem_wakeup) {
5417		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5418		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5419		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5420	}
5421
5422	/* Restore GUSBCFG, DCFG and DCTL */
5423	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5424	dwc2_writel(hsotg, dr->dcfg, DCFG);
5425	dwc2_writel(hsotg, dr->dctl, DCTL);
5426
5427	/* On USB Reset, reset device address to zero */
5428	if (reset)
5429		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5430
5431	/* De-assert Wakeup Logic */
5432	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5433	gpwrdn &= ~GPWRDN_PMUACTV;
5434	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5435
5436	if (rem_wakeup) {
5437		udelay(10);
5438		/* Start Remote Wakeup Signaling */
5439		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5440	} else {
5441		udelay(50);
5442		/* Set Device programming done bit */
5443		dctl = dwc2_readl(hsotg, DCTL);
5444		dctl |= DCTL_PWRONPRGDONE;
5445		dwc2_writel(hsotg, dctl, DCTL);
5446	}
5447	/* Wait for interrupts which must be cleared */
5448	mdelay(2);
5449	/* Clear all pending interupts */
5450	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5451
5452	/* Restore global registers */
5453	ret = dwc2_restore_global_registers(hsotg);
5454	if (ret) {
5455		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5456			__func__);
5457		return ret;
5458	}
5459
5460	/* Restore device registers */
5461	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5462	if (ret) {
5463		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5464			__func__);
5465		return ret;
5466	}
5467
5468	if (rem_wakeup) {
5469		mdelay(10);
5470		dctl = dwc2_readl(hsotg, DCTL);
5471		dctl &= ~DCTL_RMTWKUPSIG;
5472		dwc2_writel(hsotg, dctl, DCTL);
5473	}
5474
5475	hsotg->hibernated = 0;
5476	hsotg->lx_state = DWC2_L0;
5477	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5478
5479	return ret;
5480}
5481
5482/**
5483 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5484 * power down.
5485 *
5486 * @hsotg: Programming view of the DWC_otg controller
5487 *
5488 * Return: non-zero if failed to enter device partial power down.
5489 *
5490 * This function is for entering device mode partial power down.
5491 */
5492int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5493{
5494	u32 pcgcctl;
5495	int ret = 0;
5496
5497	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5498
5499	/* Backup all registers */
5500	ret = dwc2_backup_global_registers(hsotg);
5501	if (ret) {
5502		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5503			__func__);
5504		return ret;
5505	}
5506
5507	ret = dwc2_backup_device_registers(hsotg);
5508	if (ret) {
5509		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5510			__func__);
5511		return ret;
5512	}
5513
5514	/*
5515	 * Clear any pending interrupts since dwc2 will not be able to
5516	 * clear them after entering partial_power_down.
5517	 */
5518	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5519
5520	/* Put the controller in low power state */
5521	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5522
5523	pcgcctl |= PCGCTL_PWRCLMP;
5524	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5525	udelay(5);
5526
5527	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5528	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5529	udelay(5);
5530
5531	pcgcctl |= PCGCTL_STOPPCLK;
5532	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5533
5534	/* Set in_ppd flag to 1 as here core enters suspend. */
5535	hsotg->in_ppd = 1;
5536	hsotg->lx_state = DWC2_L2;
5537
5538	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5539
5540	return ret;
5541}
5542
5543/*
5544 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5545 * power down.
5546 *
5547 * @hsotg: Programming view of the DWC_otg controller
5548 * @restore: indicates whether need to restore the registers or not.
5549 *
5550 * Return: non-zero if failed to exit device partial power down.
5551 *
5552 * This function is for exiting from device mode partial power down.
5553 */
5554int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5555					bool restore)
5556{
5557	u32 pcgcctl;
5558	u32 dctl;
5559	struct dwc2_dregs_backup *dr;
5560	int ret = 0;
5561
5562	dr = &hsotg->dr_backup;
5563
5564	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5565
5566	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5567	pcgcctl &= ~PCGCTL_STOPPCLK;
5568	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5569
5570	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5571	pcgcctl &= ~PCGCTL_PWRCLMP;
5572	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5573
5574	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5575	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5576	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5577
5578	udelay(100);
5579	if (restore) {
5580		ret = dwc2_restore_global_registers(hsotg);
5581		if (ret) {
5582			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5583				__func__);
5584			return ret;
5585		}
5586		/* Restore DCFG */
5587		dwc2_writel(hsotg, dr->dcfg, DCFG);
5588
5589		ret = dwc2_restore_device_registers(hsotg, 0);
5590		if (ret) {
5591			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5592				__func__);
5593			return ret;
5594		}
5595	}
5596
5597	/* Set the Power-On Programming done bit */
5598	dctl = dwc2_readl(hsotg, DCTL);
5599	dctl |= DCTL_PWRONPRGDONE;
5600	dwc2_writel(hsotg, dctl, DCTL);
5601
5602	/* Set in_ppd flag to 0 as here core exits from suspend. */
5603	hsotg->in_ppd = 0;
5604	hsotg->lx_state = DWC2_L0;
5605
5606	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5607	return ret;
5608}
5609
5610/**
5611 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5612 *
5613 * @hsotg: Programming view of the DWC_otg controller
5614 *
5615 * Return: non-zero if failed to enter device partial power down.
5616 *
5617 * This function is for entering device mode clock gating.
5618 */
5619void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5620{
5621	u32 pcgctl;
5622
5623	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5624
5625	/* Set the Phy Clock bit as suspend is received. */
5626	pcgctl = dwc2_readl(hsotg, PCGCTL);
5627	pcgctl |= PCGCTL_STOPPCLK;
5628	dwc2_writel(hsotg, pcgctl, PCGCTL);
5629	udelay(5);
5630
5631	/* Set the Gate hclk as suspend is received. */
5632	pcgctl = dwc2_readl(hsotg, PCGCTL);
5633	pcgctl |= PCGCTL_GATEHCLK;
5634	dwc2_writel(hsotg, pcgctl, PCGCTL);
5635	udelay(5);
5636
5637	hsotg->lx_state = DWC2_L2;
5638	hsotg->bus_suspended = true;
5639}
5640
5641/*
5642 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5643 *
5644 * @hsotg: Programming view of the DWC_otg controller
5645 * @rem_wakeup: indicates whether remote wake up is enabled.
5646 *
5647 * This function is for exiting from device mode clock gating.
5648 */
5649void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5650{
5651	u32 pcgctl;
5652	u32 dctl;
5653
5654	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5655
5656	/* Clear the Gate hclk. */
5657	pcgctl = dwc2_readl(hsotg, PCGCTL);
5658	pcgctl &= ~PCGCTL_GATEHCLK;
5659	dwc2_writel(hsotg, pcgctl, PCGCTL);
5660	udelay(5);
5661
5662	/* Phy Clock bit. */
5663	pcgctl = dwc2_readl(hsotg, PCGCTL);
5664	pcgctl &= ~PCGCTL_STOPPCLK;
5665	dwc2_writel(hsotg, pcgctl, PCGCTL);
5666	udelay(5);
5667
5668	if (rem_wakeup) {
5669		/* Set Remote Wakeup Signaling */
5670		dctl = dwc2_readl(hsotg, DCTL);
5671		dctl |= DCTL_RMTWKUPSIG;
5672		dwc2_writel(hsotg, dctl, DCTL);
5673	}
5674
5675	/* Change to L0 state */
5676	call_gadget(hsotg, resume);
5677	hsotg->lx_state = DWC2_L0;
5678	hsotg->bus_suspended = false;
5679}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
 
  25
  26#include <linux/usb/ch9.h>
  27#include <linux/usb/gadget.h>
  28#include <linux/usb/phy.h>
  29#include <linux/usb/composite.h>
  30
  31
  32#include "core.h"
  33#include "hw.h"
  34
  35/* conversion functions */
  36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  37{
  38	return container_of(req, struct dwc2_hsotg_req, req);
  39}
  40
  41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  42{
  43	return container_of(ep, struct dwc2_hsotg_ep, ep);
  44}
  45
  46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  47{
  48	return container_of(gadget, struct dwc2_hsotg, gadget);
  49}
  50
  51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  52{
  53	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  54}
  55
  56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  57{
  58	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  59}
  60
  61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  62						u32 ep_index, u32 dir_in)
  63{
  64	if (dir_in)
  65		return hsotg->eps_in[ep_index];
  66	else
  67		return hsotg->eps_out[ep_index];
  68}
  69
  70/* forward declaration of functions */
  71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  72
  73/**
  74 * using_dma - return the DMA status of the driver.
  75 * @hsotg: The driver state.
  76 *
  77 * Return true if we're using DMA.
  78 *
  79 * Currently, we have the DMA support code worked into everywhere
  80 * that needs it, but the AMBA DMA implementation in the hardware can
  81 * only DMA from 32bit aligned addresses. This means that gadgets such
  82 * as the CDC Ethernet cannot work as they often pass packets which are
  83 * not 32bit aligned.
  84 *
  85 * Unfortunately the choice to use DMA or not is global to the controller
  86 * and seems to be only settable when the controller is being put through
  87 * a core reset. This means we either need to fix the gadgets to take
  88 * account of DMA alignment, or add bounce buffers (yuerk).
  89 *
  90 * g_using_dma is set depending on dts flag.
  91 */
  92static inline bool using_dma(struct dwc2_hsotg *hsotg)
  93{
  94	return hsotg->params.g_dma;
  95}
  96
  97/*
  98 * using_desc_dma - return the descriptor DMA status of the driver.
  99 * @hsotg: The driver state.
 100 *
 101 * Return true if we're using descriptor DMA.
 102 */
 103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 104{
 105	return hsotg->params.g_dma_desc;
 106}
 107
 108/**
 109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 110 * @hs_ep: The endpoint
 111 *
 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 114 */
 115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 116{
 117	struct dwc2_hsotg *hsotg = hs_ep->parent;
 118	u16 limit = DSTS_SOFFN_LIMIT;
 119
 120	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 121		limit >>= 3;
 122
 123	hs_ep->target_frame += hs_ep->interval;
 124	if (hs_ep->target_frame > limit) {
 125		hs_ep->frame_overrun = true;
 126		hs_ep->target_frame &= limit;
 127	} else {
 128		hs_ep->frame_overrun = false;
 129	}
 130}
 131
 132/**
 133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 134 *                                    by one.
 135 * @hs_ep: The endpoint.
 136 *
 137 * This function used in service interval based scheduling flow to calculate
 138 * descriptor frame number filed value. For service interval mode frame
 139 * number in descriptor should point to last (u)frame in the interval.
 140 *
 141 */
 142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 143{
 144	struct dwc2_hsotg *hsotg = hs_ep->parent;
 145	u16 limit = DSTS_SOFFN_LIMIT;
 146
 147	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 148		limit >>= 3;
 149
 150	if (hs_ep->target_frame)
 151		hs_ep->target_frame -= 1;
 152	else
 153		hs_ep->target_frame = limit;
 154}
 155
 156/**
 157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 158 * @hsotg: The device state
 159 * @ints: A bitmask of the interrupts to enable
 160 */
 161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 162{
 163	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 164	u32 new_gsintmsk;
 165
 166	new_gsintmsk = gsintmsk | ints;
 167
 168	if (new_gsintmsk != gsintmsk) {
 169		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 170		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 171	}
 172}
 173
 174/**
 175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 176 * @hsotg: The device state
 177 * @ints: A bitmask of the interrupts to enable
 178 */
 179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 180{
 181	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 182	u32 new_gsintmsk;
 183
 184	new_gsintmsk = gsintmsk & ~ints;
 185
 186	if (new_gsintmsk != gsintmsk)
 187		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 188}
 189
 190/**
 191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 192 * @hsotg: The device state
 193 * @ep: The endpoint index
 194 * @dir_in: True if direction is in.
 195 * @en: The enable value, true to enable
 196 *
 197 * Set or clear the mask for an individual endpoint's interrupt
 198 * request.
 199 */
 200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 201				  unsigned int ep, unsigned int dir_in,
 202				 unsigned int en)
 203{
 204	unsigned long flags;
 205	u32 bit = 1 << ep;
 206	u32 daint;
 207
 208	if (!dir_in)
 209		bit <<= 16;
 210
 211	local_irq_save(flags);
 212	daint = dwc2_readl(hsotg, DAINTMSK);
 213	if (en)
 214		daint |= bit;
 215	else
 216		daint &= ~bit;
 217	dwc2_writel(hsotg, daint, DAINTMSK);
 218	local_irq_restore(flags);
 219}
 220
 221/**
 222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 223 *
 224 * @hsotg: Programming view of the DWC_otg controller
 225 */
 226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 227{
 228	if (hsotg->hw_params.en_multiple_tx_fifo)
 229		/* In dedicated FIFO mode we need count of IN EPs */
 230		return hsotg->hw_params.num_dev_in_eps;
 231	else
 232		/* In shared FIFO mode we need count of Periodic IN EPs */
 233		return hsotg->hw_params.num_dev_perio_in_ep;
 234}
 235
 236/**
 237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 238 * device mode TX FIFOs
 239 *
 240 * @hsotg: Programming view of the DWC_otg controller
 241 */
 242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 243{
 244	int addr;
 245	int tx_addr_max;
 246	u32 np_tx_fifo_size;
 247
 248	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 249				hsotg->params.g_np_tx_fifo_size);
 250
 251	/* Get Endpoint Info Control block size in DWORDs. */
 252	tx_addr_max = hsotg->hw_params.total_fifo_size;
 253
 254	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 255	if (tx_addr_max <= addr)
 256		return 0;
 257
 258	return tx_addr_max - addr;
 259}
 260
 261/**
 262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 263 *
 264 * @hsotg: Programming view of the DWC_otg controller
 265 *
 266 */
 267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 268{
 269	u32 gintsts2;
 270	u32 gintmsk2;
 271
 272	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 273	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 274	gintsts2 &= gintmsk2;
 275
 276	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 277		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 278		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 279		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 280	}
 281}
 282
 283/**
 284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 285 * TX FIFOs
 286 *
 287 * @hsotg: Programming view of the DWC_otg controller
 288 */
 289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 290{
 291	int tx_fifo_count;
 292	int tx_fifo_depth;
 293
 294	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 295
 296	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 297
 298	if (!tx_fifo_count)
 299		return tx_fifo_depth;
 300	else
 301		return tx_fifo_depth / tx_fifo_count;
 302}
 303
 304/**
 305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 306 * @hsotg: The device instance.
 307 */
 308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 309{
 310	unsigned int ep;
 311	unsigned int addr;
 312	int timeout;
 313
 314	u32 val;
 315	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 316
 317	/* Reset fifo map if not correctly cleared during previous session */
 318	WARN_ON(hsotg->fifo_map);
 319	hsotg->fifo_map = 0;
 320
 321	/* set RX/NPTX FIFO sizes */
 322	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 323	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 324		    FIFOSIZE_STARTADDR_SHIFT) |
 325		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 326		    GNPTXFSIZ);
 327
 328	/*
 329	 * arange all the rest of the TX FIFOs, as some versions of this
 330	 * block have overlapping default addresses. This also ensures
 331	 * that if the settings have been changed, then they are set to
 332	 * known values.
 333	 */
 334
 335	/* start at the end of the GNPTXFSIZ, rounded up */
 336	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 337
 338	/*
 339	 * Configure fifos sizes from provided configuration and assign
 340	 * them to endpoints dynamically according to maxpacket size value of
 341	 * given endpoint.
 342	 */
 343	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 344		if (!txfsz[ep])
 345			continue;
 346		val = addr;
 347		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 348		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 349			  "insufficient fifo memory");
 350		addr += txfsz[ep];
 351
 352		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 353		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 354	}
 355
 356	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 357		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 358		    GDFIFOCFG);
 359	/*
 360	 * according to p428 of the design guide, we need to ensure that
 361	 * all fifos are flushed before continuing
 362	 */
 363
 364	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 365	       GRSTCTL_RXFFLSH, GRSTCTL);
 366
 367	/* wait until the fifos are both flushed */
 368	timeout = 100;
 369	while (1) {
 370		val = dwc2_readl(hsotg, GRSTCTL);
 371
 372		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 373			break;
 374
 375		if (--timeout == 0) {
 376			dev_err(hsotg->dev,
 377				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 378				__func__, val);
 379			break;
 380		}
 381
 382		udelay(1);
 383	}
 384
 385	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 386}
 387
 388/**
 389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 390 * @ep: USB endpoint to allocate request for.
 391 * @flags: Allocation flags
 392 *
 393 * Allocate a new USB request structure appropriate for the specified endpoint
 394 */
 395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 396						       gfp_t flags)
 397{
 398	struct dwc2_hsotg_req *req;
 399
 400	req = kzalloc(sizeof(*req), flags);
 401	if (!req)
 402		return NULL;
 403
 404	INIT_LIST_HEAD(&req->queue);
 405
 406	return &req->req;
 407}
 408
 409/**
 410 * is_ep_periodic - return true if the endpoint is in periodic mode.
 411 * @hs_ep: The endpoint to query.
 412 *
 413 * Returns true if the endpoint is in periodic mode, meaning it is being
 414 * used for an Interrupt or ISO transfer.
 415 */
 416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 417{
 418	return hs_ep->periodic;
 419}
 420
 421/**
 422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 423 * @hsotg: The device state.
 424 * @hs_ep: The endpoint for the request
 425 * @hs_req: The request being processed.
 426 *
 427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 428 * of a request to ensure the buffer is ready for access by the caller.
 429 */
 430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 431				 struct dwc2_hsotg_ep *hs_ep,
 432				struct dwc2_hsotg_req *hs_req)
 433{
 434	struct usb_request *req = &hs_req->req;
 435
 436	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
 437}
 438
 439/*
 440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 441 * for Control endpoint
 442 * @hsotg: The device state.
 443 *
 444 * This function will allocate 4 descriptor chains for EP 0: 2 for
 445 * Setup stage, per one for IN and OUT data/status transactions.
 446 */
 447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 448{
 449	hsotg->setup_desc[0] =
 450		dmam_alloc_coherent(hsotg->dev,
 451				    sizeof(struct dwc2_dma_desc),
 452				    &hsotg->setup_desc_dma[0],
 453				    GFP_KERNEL);
 454	if (!hsotg->setup_desc[0])
 455		goto fail;
 456
 457	hsotg->setup_desc[1] =
 458		dmam_alloc_coherent(hsotg->dev,
 459				    sizeof(struct dwc2_dma_desc),
 460				    &hsotg->setup_desc_dma[1],
 461				    GFP_KERNEL);
 462	if (!hsotg->setup_desc[1])
 463		goto fail;
 464
 465	hsotg->ctrl_in_desc =
 466		dmam_alloc_coherent(hsotg->dev,
 467				    sizeof(struct dwc2_dma_desc),
 468				    &hsotg->ctrl_in_desc_dma,
 469				    GFP_KERNEL);
 470	if (!hsotg->ctrl_in_desc)
 471		goto fail;
 472
 473	hsotg->ctrl_out_desc =
 474		dmam_alloc_coherent(hsotg->dev,
 475				    sizeof(struct dwc2_dma_desc),
 476				    &hsotg->ctrl_out_desc_dma,
 477				    GFP_KERNEL);
 478	if (!hsotg->ctrl_out_desc)
 479		goto fail;
 480
 481	return 0;
 482
 483fail:
 484	return -ENOMEM;
 485}
 486
 487/**
 488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 489 * @hsotg: The controller state.
 490 * @hs_ep: The endpoint we're going to write for.
 491 * @hs_req: The request to write data for.
 492 *
 493 * This is called when the TxFIFO has some space in it to hold a new
 494 * transmission and we have something to give it. The actual setup of
 495 * the data size is done elsewhere, so all we have to do is to actually
 496 * write the data.
 497 *
 498 * The return value is zero if there is more space (or nothing was done)
 499 * otherwise -ENOSPC is returned if the FIFO space was used up.
 500 *
 501 * This routine is only needed for PIO
 502 */
 503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 504				 struct dwc2_hsotg_ep *hs_ep,
 505				struct dwc2_hsotg_req *hs_req)
 506{
 507	bool periodic = is_ep_periodic(hs_ep);
 508	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 509	int buf_pos = hs_req->req.actual;
 510	int to_write = hs_ep->size_loaded;
 511	void *data;
 512	int can_write;
 513	int pkt_round;
 514	int max_transfer;
 515
 516	to_write -= (buf_pos - hs_ep->last_load);
 517
 518	/* if there's nothing to write, get out early */
 519	if (to_write == 0)
 520		return 0;
 521
 522	if (periodic && !hsotg->dedicated_fifos) {
 523		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 524		int size_left;
 525		int size_done;
 526
 527		/*
 528		 * work out how much data was loaded so we can calculate
 529		 * how much data is left in the fifo.
 530		 */
 531
 532		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 533
 534		/*
 535		 * if shared fifo, we cannot write anything until the
 536		 * previous data has been completely sent.
 537		 */
 538		if (hs_ep->fifo_load != 0) {
 539			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 540			return -ENOSPC;
 541		}
 542
 543		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 544			__func__, size_left,
 545			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 546
 547		/* how much of the data has moved */
 548		size_done = hs_ep->size_loaded - size_left;
 549
 550		/* how much data is left in the fifo */
 551		can_write = hs_ep->fifo_load - size_done;
 552		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 553			__func__, can_write);
 554
 555		can_write = hs_ep->fifo_size - can_write;
 556		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 557			__func__, can_write);
 558
 559		if (can_write <= 0) {
 560			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 561			return -ENOSPC;
 562		}
 563	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 564		can_write = dwc2_readl(hsotg,
 565				       DTXFSTS(hs_ep->fifo_index));
 566
 567		can_write &= 0xffff;
 568		can_write *= 4;
 569	} else {
 570		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 571			dev_dbg(hsotg->dev,
 572				"%s: no queue slots available (0x%08x)\n",
 573				__func__, gnptxsts);
 574
 575			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 576			return -ENOSPC;
 577		}
 578
 579		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 580		can_write *= 4;	/* fifo size is in 32bit quantities. */
 581	}
 582
 583	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 584
 585	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 586		__func__, gnptxsts, can_write, to_write, max_transfer);
 587
 588	/*
 589	 * limit to 512 bytes of data, it seems at least on the non-periodic
 590	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 591	 * fragment of the end of the transfer in it.
 592	 */
 593	if (can_write > 512 && !periodic)
 594		can_write = 512;
 595
 596	/*
 597	 * limit the write to one max-packet size worth of data, but allow
 598	 * the transfer to return that it did not run out of fifo space
 599	 * doing it.
 600	 */
 601	if (to_write > max_transfer) {
 602		to_write = max_transfer;
 603
 604		/* it's needed only when we do not use dedicated fifos */
 605		if (!hsotg->dedicated_fifos)
 606			dwc2_hsotg_en_gsint(hsotg,
 607					    periodic ? GINTSTS_PTXFEMP :
 608					   GINTSTS_NPTXFEMP);
 609	}
 610
 611	/* see if we can write data */
 612
 613	if (to_write > can_write) {
 614		to_write = can_write;
 615		pkt_round = to_write % max_transfer;
 616
 617		/*
 618		 * Round the write down to an
 619		 * exact number of packets.
 620		 *
 621		 * Note, we do not currently check to see if we can ever
 622		 * write a full packet or not to the FIFO.
 623		 */
 624
 625		if (pkt_round)
 626			to_write -= pkt_round;
 627
 628		/*
 629		 * enable correct FIFO interrupt to alert us when there
 630		 * is more room left.
 631		 */
 632
 633		/* it's needed only when we do not use dedicated fifos */
 634		if (!hsotg->dedicated_fifos)
 635			dwc2_hsotg_en_gsint(hsotg,
 636					    periodic ? GINTSTS_PTXFEMP :
 637					   GINTSTS_NPTXFEMP);
 638	}
 639
 640	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 641		to_write, hs_req->req.length, can_write, buf_pos);
 642
 643	if (to_write <= 0)
 644		return -ENOSPC;
 645
 646	hs_req->req.actual = buf_pos + to_write;
 647	hs_ep->total_data += to_write;
 648
 649	if (periodic)
 650		hs_ep->fifo_load += to_write;
 651
 652	to_write = DIV_ROUND_UP(to_write, 4);
 653	data = hs_req->req.buf + buf_pos;
 654
 655	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 656
 657	return (to_write >= can_write) ? -ENOSPC : 0;
 658}
 659
 660/**
 661 * get_ep_limit - get the maximum data legnth for this endpoint
 662 * @hs_ep: The endpoint
 663 *
 664 * Return the maximum data that can be queued in one go on a given endpoint
 665 * so that transfers that are too long can be split.
 666 */
 667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 668{
 669	int index = hs_ep->index;
 670	unsigned int maxsize;
 671	unsigned int maxpkt;
 672
 673	if (index != 0) {
 674		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 675		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 676	} else {
 677		maxsize = 64 + 64;
 678		if (hs_ep->dir_in)
 679			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 680		else
 681			maxpkt = 2;
 682	}
 683
 684	/* we made the constant loading easier above by using +1 */
 685	maxpkt--;
 686	maxsize--;
 687
 688	/*
 689	 * constrain by packet count if maxpkts*pktsize is greater
 690	 * than the length register size.
 691	 */
 692
 693	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 694		maxsize = maxpkt * hs_ep->ep.maxpacket;
 695
 696	return maxsize;
 697}
 698
 699/**
 700 * dwc2_hsotg_read_frameno - read current frame number
 701 * @hsotg: The device instance
 702 *
 703 * Return the current frame number
 704 */
 705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 706{
 707	u32 dsts;
 708
 709	dsts = dwc2_readl(hsotg, DSTS);
 710	dsts &= DSTS_SOFFN_MASK;
 711	dsts >>= DSTS_SOFFN_SHIFT;
 712
 713	return dsts;
 714}
 715
 716/**
 717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 718 * DMA descriptor chain prepared for specific endpoint
 719 * @hs_ep: The endpoint
 720 *
 721 * Return the maximum data that can be queued in one go on a given endpoint
 722 * depending on its descriptor chain capacity so that transfers that
 723 * are too long can be split.
 724 */
 725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 726{
 727	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 728	int is_isoc = hs_ep->isochronous;
 729	unsigned int maxsize;
 730	u32 mps = hs_ep->ep.maxpacket;
 731	int dir_in = hs_ep->dir_in;
 732
 733	if (is_isoc)
 734		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 735					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 736					   MAX_DMA_DESC_NUM_HS_ISOC;
 737	else
 738		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 739
 740	/* Interrupt OUT EP with mps not multiple of 4 */
 741	if (hs_ep->index)
 742		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
 743			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
 744
 745	return maxsize;
 746}
 747
 748/*
 749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 750 * @hs_ep: The endpoint
 751 * @mask: RX/TX bytes mask to be defined
 752 *
 753 * Returns maximum data payload for one descriptor after analyzing endpoint
 754 * characteristics.
 755 * DMA descriptor transfer bytes limit depends on EP type:
 756 * Control out - MPS,
 757 * Isochronous - descriptor rx/tx bytes bitfield limit,
 758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 759 * have concatenations from various descriptors within one packet.
 760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
 761 * to a single descriptor.
 762 *
 763 * Selects corresponding mask for RX/TX bytes as well.
 764 */
 765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 766{
 767	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 768	u32 mps = hs_ep->ep.maxpacket;
 769	int dir_in = hs_ep->dir_in;
 770	u32 desc_size = 0;
 771
 772	if (!hs_ep->index && !dir_in) {
 773		desc_size = mps;
 774		*mask = DEV_DMA_NBYTES_MASK;
 775	} else if (hs_ep->isochronous) {
 776		if (dir_in) {
 777			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 778			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 779		} else {
 780			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 781			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 782		}
 783	} else {
 784		desc_size = DEV_DMA_NBYTES_LIMIT;
 785		*mask = DEV_DMA_NBYTES_MASK;
 786
 787		/* Round down desc_size to be mps multiple */
 788		desc_size -= desc_size % mps;
 789	}
 790
 791	/* Interrupt OUT EP with mps not multiple of 4 */
 792	if (hs_ep->index)
 793		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
 794			desc_size = mps;
 795			*mask = DEV_DMA_NBYTES_MASK;
 796		}
 797
 798	return desc_size;
 799}
 800
 801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 802						 struct dwc2_dma_desc **desc,
 803						 dma_addr_t dma_buff,
 804						 unsigned int len,
 805						 bool true_last)
 806{
 807	int dir_in = hs_ep->dir_in;
 808	u32 mps = hs_ep->ep.maxpacket;
 809	u32 maxsize = 0;
 810	u32 offset = 0;
 811	u32 mask = 0;
 812	int i;
 813
 814	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 815
 816	hs_ep->desc_count = (len / maxsize) +
 817				((len % maxsize) ? 1 : 0);
 818	if (len == 0)
 819		hs_ep->desc_count = 1;
 820
 821	for (i = 0; i < hs_ep->desc_count; ++i) {
 822		(*desc)->status = 0;
 823		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 824				 << DEV_DMA_BUFF_STS_SHIFT);
 825
 826		if (len > maxsize) {
 827			if (!hs_ep->index && !dir_in)
 828				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 829
 830			(*desc)->status |=
 831				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 832			(*desc)->buf = dma_buff + offset;
 833
 834			len -= maxsize;
 835			offset += maxsize;
 836		} else {
 837			if (true_last)
 838				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 839
 840			if (dir_in)
 841				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 842					((hs_ep->send_zlp && true_last) ?
 843					DEV_DMA_SHORT : 0);
 844
 845			(*desc)->status |=
 846				len << DEV_DMA_NBYTES_SHIFT & mask;
 847			(*desc)->buf = dma_buff + offset;
 848		}
 849
 850		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 851		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 852				 << DEV_DMA_BUFF_STS_SHIFT);
 853		(*desc)++;
 854	}
 855}
 856
 857/*
 858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 859 * @hs_ep: The endpoint
 860 * @ureq: Request to transfer
 861 * @offset: offset in bytes
 862 * @len: Length of the transfer
 863 *
 864 * This function will iterate over descriptor chain and fill its entries
 865 * with corresponding information based on transfer data.
 866 */
 867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 868						 dma_addr_t dma_buff,
 869						 unsigned int len)
 870{
 871	struct usb_request *ureq = NULL;
 872	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 873	struct scatterlist *sg;
 874	int i;
 875	u8 desc_count = 0;
 876
 877	if (hs_ep->req)
 878		ureq = &hs_ep->req->req;
 879
 880	/* non-DMA sg buffer */
 881	if (!ureq || !ureq->num_sgs) {
 882		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 883			dma_buff, len, true);
 884		return;
 885	}
 886
 887	/* DMA sg buffer */
 888	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
 889		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 890			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 891			sg_is_last(sg));
 892		desc_count += hs_ep->desc_count;
 893	}
 894
 895	hs_ep->desc_count = desc_count;
 896}
 897
 898/*
 899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 900 * @hs_ep: The isochronous endpoint.
 901 * @dma_buff: usb requests dma buffer.
 902 * @len: usb request transfer length.
 903 *
 904 * Fills next free descriptor with the data of the arrived usb request,
 905 * frame info, sets Last and IOC bits increments next_desc. If filled
 906 * descriptor is not the first one, removes L bit from the previous descriptor
 907 * status.
 908 */
 909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 910				      dma_addr_t dma_buff, unsigned int len)
 911{
 912	struct dwc2_dma_desc *desc;
 913	struct dwc2_hsotg *hsotg = hs_ep->parent;
 914	u32 index;
 915	u32 mask = 0;
 916	u8 pid = 0;
 917
 918	dwc2_gadget_get_desc_params(hs_ep, &mask);
 919
 920	index = hs_ep->next_desc;
 921	desc = &hs_ep->desc_list[index];
 922
 923	/* Check if descriptor chain full */
 924	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 925	    DEV_DMA_BUFF_STS_HREADY) {
 926		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 927		return 1;
 928	}
 929
 930	/* Clear L bit of previous desc if more than one entries in the chain */
 931	if (hs_ep->next_desc)
 932		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 933
 934	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 935		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 936
 937	desc->status = 0;
 938	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 939
 940	desc->buf = dma_buff;
 941	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 942			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 943
 944	if (hs_ep->dir_in) {
 945		if (len)
 946			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 947		else
 948			pid = 1;
 949		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 950				 DEV_DMA_ISOC_PID_MASK) |
 951				((len % hs_ep->ep.maxpacket) ?
 952				 DEV_DMA_SHORT : 0) |
 953				((hs_ep->target_frame <<
 954				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 955				 DEV_DMA_ISOC_FRNUM_MASK);
 956	}
 957
 958	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 959	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 960
 961	/* Increment frame number by interval for IN */
 962	if (hs_ep->dir_in)
 963		dwc2_gadget_incr_frame_num(hs_ep);
 964
 965	/* Update index of last configured entry in the chain */
 966	hs_ep->next_desc++;
 967	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 968		hs_ep->next_desc = 0;
 969
 970	return 0;
 971}
 972
 973/*
 974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 975 * @hs_ep: The isochronous endpoint.
 976 *
 977 * Prepare descriptor chain for isochronous endpoints. Afterwards
 978 * write DMA address to HW and enable the endpoint.
 979 */
 980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 981{
 982	struct dwc2_hsotg *hsotg = hs_ep->parent;
 983	struct dwc2_hsotg_req *hs_req, *treq;
 984	int index = hs_ep->index;
 985	int ret;
 986	int i;
 987	u32 dma_reg;
 988	u32 depctl;
 989	u32 ctrl;
 990	struct dwc2_dma_desc *desc;
 991
 992	if (list_empty(&hs_ep->queue)) {
 993		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 994		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 995		return;
 996	}
 997
 998	/* Initialize descriptor chain by Host Busy status */
 999	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000		desc = &hs_ep->desc_list[i];
1001		desc->status = 0;
1002		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003				    << DEV_DMA_BUFF_STS_SHIFT);
1004	}
1005
1006	hs_ep->next_desc = 0;
1007	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008		dma_addr_t dma_addr = hs_req->req.dma;
1009
1010		if (hs_req->req.num_sgs) {
1011			WARN_ON(hs_req->req.num_sgs > 1);
1012			dma_addr = sg_dma_address(hs_req->req.sg);
1013		}
1014		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015						 hs_req->req.length);
1016		if (ret)
1017			break;
1018	}
1019
1020	hs_ep->compl_desc = 0;
1021	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024	/* write descriptor chain address to control register */
1025	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027	ctrl = dwc2_readl(hsotg, depctl);
1028	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029	dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034					struct dwc2_hsotg_ep *hs_ep,
1035				       struct dwc2_hsotg_req *hs_req,
1036				       int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049				 struct dwc2_hsotg_ep *hs_ep,
1050				struct dwc2_hsotg_req *hs_req,
1051				bool continuing)
1052{
1053	struct usb_request *ureq = &hs_req->req;
1054	int index = hs_ep->index;
1055	int dir_in = hs_ep->dir_in;
1056	u32 epctrl_reg;
1057	u32 epsize_reg;
1058	u32 epsize;
1059	u32 ctrl;
1060	unsigned int length;
1061	unsigned int packets;
1062	unsigned int maxreq;
1063	unsigned int dma_reg;
1064
1065	if (index != 0) {
1066		if (hs_ep->req && !continuing) {
1067			dev_err(hsotg->dev, "%s: active request\n", __func__);
1068			WARN_ON(1);
1069			return;
1070		} else if (hs_ep->req != hs_req && continuing) {
1071			dev_err(hsotg->dev,
1072				"%s: continue different req\n", __func__);
1073			WARN_ON(1);
1074			return;
1075		}
1076	}
1077
1078	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1084		hs_ep->dir_in ? "in" : "out");
1085
1086	/* If endpoint is stalled, we will restart request later */
1087	ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089	if (index && ctrl & DXEPCTL_STALL) {
1090		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091		return;
1092	}
1093
1094	length = ureq->length - ureq->actual;
1095	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096		ureq->length, ureq->actual);
1097
1098	if (!using_desc_dma(hsotg))
1099		maxreq = get_ep_limit(hs_ep);
1100	else
1101		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103	if (length > maxreq) {
1104		int round = maxreq % hs_ep->ep.maxpacket;
1105
1106		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107			__func__, length, maxreq, round);
1108
1109		/* round down to multiple of packets */
1110		if (round)
1111			maxreq -= round;
1112
1113		length = maxreq;
1114	}
1115
1116	if (length)
1117		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118	else
1119		packets = 1;	/* send one packet if length is zero. */
1120
1121	if (dir_in && index != 0)
1122		if (hs_ep->isochronous)
1123			epsize = DXEPTSIZ_MC(packets);
1124		else
1125			epsize = DXEPTSIZ_MC(1);
1126	else
1127		epsize = 0;
1128
1129	/*
1130	 * zero length packet should be programmed on its own and should not
1131	 * be counted in DIEPTSIZ.PktCnt with other packets.
1132	 */
1133	if (dir_in && ureq->zero && !continuing) {
1134		/* Test if zlp is actually required. */
1135		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136		    !(ureq->length % hs_ep->ep.maxpacket))
1137			hs_ep->send_zlp = 1;
1138	}
1139
1140	epsize |= DXEPTSIZ_PKTCNT(packets);
1141	epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144		__func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146	/* store the request as the current one we're doing */
1147	hs_ep->req = hs_req;
1148
1149	if (using_desc_dma(hsotg)) {
1150		u32 offset = 0;
1151		u32 mps = hs_ep->ep.maxpacket;
1152
1153		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154		if (!dir_in) {
1155			if (!index)
1156				length = mps;
1157			else if (length % mps)
1158				length += (mps - (length % mps));
1159		}
1160
1161		if (continuing)
1162			offset = ureq->actual;
1163
1164		/* Fill DDMA chain entries */
1165		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166						     length);
1167
1168		/* write descriptor chain address to control register */
1169		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173	} else {
1174		/* write size / packets */
1175		dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177		if (using_dma(hsotg) && !continuing && (length != 0)) {
1178			/*
1179			 * write DMA address to control register, buffer
1180			 * already synced by dwc2_hsotg_ep_queue().
1181			 */
1182
1183			dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186				__func__, &ureq->dma, dma_reg);
1187		}
1188	}
1189
1190	if (hs_ep->isochronous) {
1191		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192			if (hs_ep->interval == 1) {
1193				if (hs_ep->target_frame & 0x1)
1194					ctrl |= DXEPCTL_SETODDFR;
1195				else
1196					ctrl |= DXEPCTL_SETEVENFR;
1197			}
1198			ctrl |= DXEPCTL_CNAK;
1199		} else {
1200			hs_req->req.frame_number = hs_ep->target_frame;
1201			hs_req->req.actual = 0;
1202			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203			return;
1204		}
1205	}
1206
1207	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1208
1209	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211	/* For Setup request do not clear NAK */
1212	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1214
1215	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216	dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218	/*
1219	 * set these, it seems that DMA support increments past the end
1220	 * of the packet buffer so we need to calculate the length from
1221	 * this information.
1222	 */
1223	hs_ep->size_loaded = length;
1224	hs_ep->last_load = ureq->actual;
1225
1226	if (dir_in && !using_dma(hsotg)) {
1227		/* set these anyway, we may need them for non-periodic in */
1228		hs_ep->fifo_load = 0;
1229
1230		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231	}
1232
1233	/*
1234	 * Note, trying to clear the NAK here causes problems with transmit
1235	 * on the S3C6400 ending up with the TXFIFO becoming full.
1236	 */
1237
1238	/* check ep is enabled */
1239	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240		dev_dbg(hsotg->dev,
1241			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242			 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245		__func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247	/* enable ep interrupts */
1248	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264			      struct dwc2_hsotg_ep *hs_ep,
1265			     struct usb_request *req)
1266{
1267	int ret;
1268
1269	hs_ep->map_dir = hs_ep->dir_in;
1270	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271	if (ret)
1272		goto dma_error;
1273
1274	return 0;
1275
1276dma_error:
1277	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278		__func__, req->buf, req->length);
1279
1280	return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284						 struct dwc2_hsotg_ep *hs_ep,
1285						 struct dwc2_hsotg_req *hs_req)
1286{
1287	void *req_buf = hs_req->req.buf;
1288
1289	/* If dma is not being used or buffer is aligned */
1290	if (!using_dma(hsotg) || !((long)req_buf & 3))
1291		return 0;
1292
1293	WARN_ON(hs_req->saved_req_buf);
1294
1295	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296		hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299	if (!hs_req->req.buf) {
1300		hs_req->req.buf = req_buf;
1301		dev_err(hsotg->dev,
1302			"%s: unable to allocate memory for bounce buffer\n",
1303			__func__);
1304		return -ENOMEM;
1305	}
1306
1307	/* Save actual buffer */
1308	hs_req->saved_req_buf = req_buf;
1309
1310	if (hs_ep->dir_in)
1311		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312	return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317					 struct dwc2_hsotg_ep *hs_ep,
1318					 struct dwc2_hsotg_req *hs_req)
1319{
1320	/* If dma is not being used or buffer was aligned */
1321	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322		return;
1323
1324	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327	/* Copy data from bounce buffer on successful out transfer */
1328	if (!hs_ep->dir_in && !hs_req->req.status)
1329		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330		       hs_req->req.actual);
1331
1332	/* Free bounce buffer */
1333	kfree(hs_req->req.buf);
1334
1335	hs_req->req.buf = hs_req->saved_req_buf;
1336	hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348	struct dwc2_hsotg *hsotg = hs_ep->parent;
1349	u32 target_frame = hs_ep->target_frame;
1350	u32 current_frame = hsotg->frame_number;
1351	bool frame_overrun = hs_ep->frame_overrun;
1352	u16 limit = DSTS_SOFFN_LIMIT;
1353
1354	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355		limit >>= 3;
1356
1357	if (!frame_overrun && current_frame >= target_frame)
1358		return true;
1359
1360	if (frame_overrun && current_frame >= target_frame &&
1361	    ((current_frame - target_frame) < limit / 2))
1362		return true;
1363
1364	return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376					  struct dwc2_hsotg_ep *hs_ep)
1377{
1378	switch (hsotg->ep0_state) {
1379	case DWC2_EP0_SETUP:
1380	case DWC2_EP0_STATUS_OUT:
1381		hs_ep->desc_list = hsotg->setup_desc[0];
1382		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383		break;
1384	case DWC2_EP0_DATA_IN:
1385	case DWC2_EP0_STATUS_IN:
1386		hs_ep->desc_list = hsotg->ctrl_in_desc;
1387		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388		break;
1389	case DWC2_EP0_DATA_OUT:
1390		hs_ep->desc_list = hsotg->ctrl_out_desc;
1391		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392		break;
1393	default:
1394		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395			hsotg->ep0_state);
1396		return -EINVAL;
1397	}
1398
1399	return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403			       gfp_t gfp_flags)
1404{
1405	struct dwc2_hsotg_req *hs_req = our_req(req);
1406	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407	struct dwc2_hsotg *hs = hs_ep->parent;
1408	bool first;
1409	int ret;
1410	u32 maxsize = 0;
1411	u32 mask = 0;
1412
1413
1414	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415		ep->name, req, req->length, req->buf, req->no_interrupt,
1416		req->zero, req->short_not_ok);
1417
1418	/* Prevent new request submission when controller is suspended */
1419	if (hs->lx_state != DWC2_L0) {
1420		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1421			__func__);
1422		return -EAGAIN;
1423	}
1424
1425	/* initialise status of the request */
1426	INIT_LIST_HEAD(&hs_req->queue);
1427	req->actual = 0;
1428	req->status = -EINPROGRESS;
1429
1430	/* Don't queue ISOC request if length greater than mps*mc */
1431	if (hs_ep->isochronous &&
1432	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1433		dev_err(hs->dev, "req length > maxpacket*mc\n");
1434		return -EINVAL;
1435	}
1436
1437	/* In DDMA mode for ISOC's don't queue request if length greater
1438	 * than descriptor limits.
1439	 */
1440	if (using_desc_dma(hs) && hs_ep->isochronous) {
1441		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1442		if (hs_ep->dir_in && req->length > maxsize) {
1443			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1444				req->length, maxsize);
1445			return -EINVAL;
1446		}
1447
1448		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1449			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1450				req->length, hs_ep->ep.maxpacket);
1451			return -EINVAL;
1452		}
1453	}
1454
1455	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1456	if (ret)
1457		return ret;
1458
1459	/* if we're using DMA, sync the buffers as necessary */
1460	if (using_dma(hs)) {
1461		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1462		if (ret)
1463			return ret;
1464	}
1465	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1466	if (using_desc_dma(hs) && !hs_ep->index) {
1467		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1468		if (ret)
1469			return ret;
1470	}
1471
1472	first = list_empty(&hs_ep->queue);
1473	list_add_tail(&hs_req->queue, &hs_ep->queue);
1474
1475	/*
1476	 * Handle DDMA isochronous transfers separately - just add new entry
1477	 * to the descriptor chain.
1478	 * Transfer will be started once SW gets either one of NAK or
1479	 * OutTknEpDis interrupts.
1480	 */
1481	if (using_desc_dma(hs) && hs_ep->isochronous) {
1482		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1483			dma_addr_t dma_addr = hs_req->req.dma;
1484
1485			if (hs_req->req.num_sgs) {
1486				WARN_ON(hs_req->req.num_sgs > 1);
1487				dma_addr = sg_dma_address(hs_req->req.sg);
1488			}
1489			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1490						   hs_req->req.length);
1491		}
1492		return 0;
1493	}
1494
1495	/* Change EP direction if status phase request is after data out */
1496	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1497	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1498		hs_ep->dir_in = 1;
1499
1500	if (first) {
1501		if (!hs_ep->isochronous) {
1502			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1503			return 0;
1504		}
1505
1506		/* Update current frame number value. */
1507		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1508		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1509			dwc2_gadget_incr_frame_num(hs_ep);
1510			/* Update current frame number value once more as it
1511			 * changes here.
1512			 */
1513			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1514		}
1515
1516		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1517			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1518	}
1519	return 0;
1520}
1521
1522static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1523				    gfp_t gfp_flags)
1524{
1525	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1526	struct dwc2_hsotg *hs = hs_ep->parent;
1527	unsigned long flags;
1528	int ret;
1529
1530	spin_lock_irqsave(&hs->lock, flags);
1531	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1532	spin_unlock_irqrestore(&hs->lock, flags);
1533
1534	return ret;
1535}
1536
1537static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1538				       struct usb_request *req)
1539{
1540	struct dwc2_hsotg_req *hs_req = our_req(req);
1541
1542	kfree(hs_req);
1543}
1544
1545/**
1546 * dwc2_hsotg_complete_oursetup - setup completion callback
1547 * @ep: The endpoint the request was on.
1548 * @req: The request completed.
1549 *
1550 * Called on completion of any requests the driver itself
1551 * submitted that need cleaning up.
1552 */
1553static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1554					 struct usb_request *req)
1555{
1556	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1557	struct dwc2_hsotg *hsotg = hs_ep->parent;
1558
1559	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1560
1561	dwc2_hsotg_ep_free_request(ep, req);
1562}
1563
1564/**
1565 * ep_from_windex - convert control wIndex value to endpoint
1566 * @hsotg: The driver state.
1567 * @windex: The control request wIndex field (in host order).
1568 *
1569 * Convert the given wIndex into a pointer to an driver endpoint
1570 * structure, or return NULL if it is not a valid endpoint.
1571 */
1572static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1573					    u32 windex)
1574{
1575	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1576	int idx = windex & 0x7F;
1577
1578	if (windex >= 0x100)
1579		return NULL;
1580
1581	if (idx > hsotg->num_of_eps)
1582		return NULL;
1583
1584	return index_to_ep(hsotg, idx, dir);
1585}
1586
1587/**
1588 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1589 * @hsotg: The driver state.
1590 * @testmode: requested usb test mode
1591 * Enable usb Test Mode requested by the Host.
1592 */
1593int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1594{
1595	int dctl = dwc2_readl(hsotg, DCTL);
1596
1597	dctl &= ~DCTL_TSTCTL_MASK;
1598	switch (testmode) {
1599	case USB_TEST_J:
1600	case USB_TEST_K:
1601	case USB_TEST_SE0_NAK:
1602	case USB_TEST_PACKET:
1603	case USB_TEST_FORCE_ENABLE:
1604		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1605		break;
1606	default:
1607		return -EINVAL;
1608	}
1609	dwc2_writel(hsotg, dctl, DCTL);
1610	return 0;
1611}
1612
1613/**
1614 * dwc2_hsotg_send_reply - send reply to control request
1615 * @hsotg: The device state
1616 * @ep: Endpoint 0
1617 * @buff: Buffer for request
1618 * @length: Length of reply.
1619 *
1620 * Create a request and queue it on the given endpoint. This is useful as
1621 * an internal method of sending replies to certain control requests, etc.
1622 */
1623static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1624				 struct dwc2_hsotg_ep *ep,
1625				void *buff,
1626				int length)
1627{
1628	struct usb_request *req;
1629	int ret;
1630
1631	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1632
1633	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1634	hsotg->ep0_reply = req;
1635	if (!req) {
1636		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1637		return -ENOMEM;
1638	}
1639
1640	req->buf = hsotg->ep0_buff;
1641	req->length = length;
1642	/*
1643	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1644	 * STATUS stage.
1645	 */
1646	req->zero = 0;
1647	req->complete = dwc2_hsotg_complete_oursetup;
1648
1649	if (length)
1650		memcpy(req->buf, buff, length);
1651
1652	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1653	if (ret) {
1654		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1655		return ret;
1656	}
1657
1658	return 0;
1659}
1660
1661/**
1662 * dwc2_hsotg_process_req_status - process request GET_STATUS
1663 * @hsotg: The device state
1664 * @ctrl: USB control request
1665 */
1666static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1667					 struct usb_ctrlrequest *ctrl)
1668{
1669	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1670	struct dwc2_hsotg_ep *ep;
1671	__le16 reply;
1672	u16 status;
1673	int ret;
1674
1675	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1676
1677	if (!ep0->dir_in) {
1678		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1679		return -EINVAL;
1680	}
1681
1682	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1683	case USB_RECIP_DEVICE:
1684		status = hsotg->gadget.is_selfpowered <<
1685			 USB_DEVICE_SELF_POWERED;
1686		status |= hsotg->remote_wakeup_allowed <<
1687			  USB_DEVICE_REMOTE_WAKEUP;
1688		reply = cpu_to_le16(status);
1689		break;
1690
1691	case USB_RECIP_INTERFACE:
1692		/* currently, the data result should be zero */
1693		reply = cpu_to_le16(0);
1694		break;
1695
1696	case USB_RECIP_ENDPOINT:
1697		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1698		if (!ep)
1699			return -ENOENT;
1700
1701		reply = cpu_to_le16(ep->halted ? 1 : 0);
1702		break;
1703
1704	default:
1705		return 0;
1706	}
1707
1708	if (le16_to_cpu(ctrl->wLength) != 2)
1709		return -EINVAL;
1710
1711	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1712	if (ret) {
1713		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1714		return ret;
1715	}
1716
1717	return 1;
1718}
1719
1720static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1721
1722/**
1723 * get_ep_head - return the first request on the endpoint
1724 * @hs_ep: The controller endpoint to get
1725 *
1726 * Get the first request on the endpoint.
1727 */
1728static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1729{
1730	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1731					queue);
1732}
1733
1734/**
1735 * dwc2_gadget_start_next_request - Starts next request from ep queue
1736 * @hs_ep: Endpoint structure
1737 *
1738 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1739 * in its handler. Hence we need to unmask it here to be able to do
1740 * resynchronization.
1741 */
1742static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1743{
1744	struct dwc2_hsotg *hsotg = hs_ep->parent;
1745	int dir_in = hs_ep->dir_in;
1746	struct dwc2_hsotg_req *hs_req;
1747
1748	if (!list_empty(&hs_ep->queue)) {
1749		hs_req = get_ep_head(hs_ep);
1750		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1751		return;
1752	}
1753	if (!hs_ep->isochronous)
1754		return;
1755
1756	if (dir_in) {
1757		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1758			__func__);
1759	} else {
1760		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1761			__func__);
1762	}
1763}
1764
1765/**
1766 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1767 * @hsotg: The device state
1768 * @ctrl: USB control request
1769 */
1770static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1771					  struct usb_ctrlrequest *ctrl)
1772{
1773	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1774	struct dwc2_hsotg_req *hs_req;
1775	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1776	struct dwc2_hsotg_ep *ep;
1777	int ret;
1778	bool halted;
1779	u32 recip;
1780	u32 wValue;
1781	u32 wIndex;
1782
1783	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1784		__func__, set ? "SET" : "CLEAR");
1785
1786	wValue = le16_to_cpu(ctrl->wValue);
1787	wIndex = le16_to_cpu(ctrl->wIndex);
1788	recip = ctrl->bRequestType & USB_RECIP_MASK;
1789
1790	switch (recip) {
1791	case USB_RECIP_DEVICE:
1792		switch (wValue) {
1793		case USB_DEVICE_REMOTE_WAKEUP:
1794			if (set)
1795				hsotg->remote_wakeup_allowed = 1;
1796			else
1797				hsotg->remote_wakeup_allowed = 0;
1798			break;
1799
1800		case USB_DEVICE_TEST_MODE:
1801			if ((wIndex & 0xff) != 0)
1802				return -EINVAL;
1803			if (!set)
1804				return -EINVAL;
1805
1806			hsotg->test_mode = wIndex >> 8;
1807			break;
1808		default:
1809			return -ENOENT;
1810		}
1811
1812		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1813		if (ret) {
1814			dev_err(hsotg->dev,
1815				"%s: failed to send reply\n", __func__);
1816			return ret;
1817		}
1818		break;
1819
1820	case USB_RECIP_ENDPOINT:
1821		ep = ep_from_windex(hsotg, wIndex);
1822		if (!ep) {
1823			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1824				__func__, wIndex);
1825			return -ENOENT;
1826		}
1827
1828		switch (wValue) {
1829		case USB_ENDPOINT_HALT:
1830			halted = ep->halted;
1831
1832			if (!ep->wedged)
1833				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1834
1835			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1836			if (ret) {
1837				dev_err(hsotg->dev,
1838					"%s: failed to send reply\n", __func__);
1839				return ret;
1840			}
1841
1842			/*
1843			 * we have to complete all requests for ep if it was
1844			 * halted, and the halt was cleared by CLEAR_FEATURE
1845			 */
1846
1847			if (!set && halted) {
1848				/*
1849				 * If we have request in progress,
1850				 * then complete it
1851				 */
1852				if (ep->req) {
1853					hs_req = ep->req;
1854					ep->req = NULL;
1855					list_del_init(&hs_req->queue);
1856					if (hs_req->req.complete) {
1857						spin_unlock(&hsotg->lock);
1858						usb_gadget_giveback_request(
1859							&ep->ep, &hs_req->req);
1860						spin_lock(&hsotg->lock);
1861					}
1862				}
1863
1864				/* If we have pending request, then start it */
1865				if (!ep->req)
1866					dwc2_gadget_start_next_request(ep);
1867			}
1868
1869			break;
1870
1871		default:
1872			return -ENOENT;
1873		}
1874		break;
1875	default:
1876		return -ENOENT;
1877	}
1878	return 1;
1879}
1880
1881static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1882
1883/**
1884 * dwc2_hsotg_stall_ep0 - stall ep0
1885 * @hsotg: The device state
1886 *
1887 * Set stall for ep0 as response for setup request.
1888 */
1889static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1890{
1891	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1892	u32 reg;
1893	u32 ctrl;
1894
1895	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1896	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1897
1898	/*
1899	 * DxEPCTL_Stall will be cleared by EP once it has
1900	 * taken effect, so no need to clear later.
1901	 */
1902
1903	ctrl = dwc2_readl(hsotg, reg);
1904	ctrl |= DXEPCTL_STALL;
1905	ctrl |= DXEPCTL_CNAK;
1906	dwc2_writel(hsotg, ctrl, reg);
1907
1908	dev_dbg(hsotg->dev,
1909		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1910		ctrl, reg, dwc2_readl(hsotg, reg));
1911
1912	 /*
1913	  * complete won't be called, so we enqueue
1914	  * setup request here
1915	  */
1916	 dwc2_hsotg_enqueue_setup(hsotg);
1917}
1918
1919/**
1920 * dwc2_hsotg_process_control - process a control request
1921 * @hsotg: The device state
1922 * @ctrl: The control request received
1923 *
1924 * The controller has received the SETUP phase of a control request, and
1925 * needs to work out what to do next (and whether to pass it on to the
1926 * gadget driver).
1927 */
1928static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1929				       struct usb_ctrlrequest *ctrl)
1930{
1931	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1932	int ret = 0;
1933	u32 dcfg;
1934
1935	dev_dbg(hsotg->dev,
1936		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1937		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1938		ctrl->wIndex, ctrl->wLength);
1939
1940	if (ctrl->wLength == 0) {
1941		ep0->dir_in = 1;
1942		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1943	} else if (ctrl->bRequestType & USB_DIR_IN) {
1944		ep0->dir_in = 1;
1945		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1946	} else {
1947		ep0->dir_in = 0;
1948		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1949	}
1950
1951	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1952		switch (ctrl->bRequest) {
1953		case USB_REQ_SET_ADDRESS:
1954			hsotg->connected = 1;
1955			dcfg = dwc2_readl(hsotg, DCFG);
1956			dcfg &= ~DCFG_DEVADDR_MASK;
1957			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1958				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1959			dwc2_writel(hsotg, dcfg, DCFG);
1960
1961			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1962
1963			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1964			return;
1965
1966		case USB_REQ_GET_STATUS:
1967			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1968			break;
1969
1970		case USB_REQ_CLEAR_FEATURE:
1971		case USB_REQ_SET_FEATURE:
1972			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1973			break;
1974		}
1975	}
1976
1977	/* as a fallback, try delivering it to the driver to deal with */
1978
1979	if (ret == 0 && hsotg->driver) {
1980		spin_unlock(&hsotg->lock);
1981		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1982		spin_lock(&hsotg->lock);
1983		if (ret < 0)
1984			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1985	}
1986
1987	hsotg->delayed_status = false;
1988	if (ret == USB_GADGET_DELAYED_STATUS)
1989		hsotg->delayed_status = true;
1990
1991	/*
1992	 * the request is either unhandlable, or is not formatted correctly
1993	 * so respond with a STALL for the status stage to indicate failure.
1994	 */
1995
1996	if (ret < 0)
1997		dwc2_hsotg_stall_ep0(hsotg);
1998}
1999
2000/**
2001 * dwc2_hsotg_complete_setup - completion of a setup transfer
2002 * @ep: The endpoint the request was on.
2003 * @req: The request completed.
2004 *
2005 * Called on completion of any requests the driver itself submitted for
2006 * EP0 setup packets
2007 */
2008static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2009				      struct usb_request *req)
2010{
2011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2012	struct dwc2_hsotg *hsotg = hs_ep->parent;
2013
2014	if (req->status < 0) {
2015		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2016		return;
2017	}
2018
2019	spin_lock(&hsotg->lock);
2020	if (req->actual == 0)
2021		dwc2_hsotg_enqueue_setup(hsotg);
2022	else
2023		dwc2_hsotg_process_control(hsotg, req->buf);
2024	spin_unlock(&hsotg->lock);
2025}
2026
2027/**
2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2029 * @hsotg: The device state.
2030 *
2031 * Enqueue a request on EP0 if necessary to received any SETUP packets
2032 * received from the host.
2033 */
2034static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2035{
2036	struct usb_request *req = hsotg->ctrl_req;
2037	struct dwc2_hsotg_req *hs_req = our_req(req);
2038	int ret;
2039
2040	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2041
2042	req->zero = 0;
2043	req->length = 8;
2044	req->buf = hsotg->ctrl_buff;
2045	req->complete = dwc2_hsotg_complete_setup;
2046
2047	if (!list_empty(&hs_req->queue)) {
2048		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2049		return;
2050	}
2051
2052	hsotg->eps_out[0]->dir_in = 0;
2053	hsotg->eps_out[0]->send_zlp = 0;
2054	hsotg->ep0_state = DWC2_EP0_SETUP;
2055
2056	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2057	if (ret < 0) {
2058		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2059		/*
2060		 * Don't think there's much we can do other than watch the
2061		 * driver fail.
2062		 */
2063	}
2064}
2065
2066static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2067				   struct dwc2_hsotg_ep *hs_ep)
2068{
2069	u32 ctrl;
2070	u8 index = hs_ep->index;
2071	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2072	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2073
2074	if (hs_ep->dir_in)
2075		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2076			index);
2077	else
2078		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2079			index);
2080	if (using_desc_dma(hsotg)) {
2081		/* Not specific buffer needed for ep0 ZLP */
2082		dma_addr_t dma = hs_ep->desc_list_dma;
2083
2084		if (!index)
2085			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2086
2087		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2088	} else {
2089		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2090			    DXEPTSIZ_XFERSIZE(0),
2091			    epsiz_reg);
2092	}
2093
2094	ctrl = dwc2_readl(hsotg, epctl_reg);
2095	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2096	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2097	ctrl |= DXEPCTL_USBACTEP;
2098	dwc2_writel(hsotg, ctrl, epctl_reg);
2099}
2100
2101/**
2102 * dwc2_hsotg_complete_request - complete a request given to us
2103 * @hsotg: The device state.
2104 * @hs_ep: The endpoint the request was on.
2105 * @hs_req: The request to complete.
2106 * @result: The result code (0 => Ok, otherwise errno)
2107 *
2108 * The given request has finished, so call the necessary completion
2109 * if it has one and then look to see if we can start a new request
2110 * on the endpoint.
2111 *
2112 * Note, expects the ep to already be locked as appropriate.
2113 */
2114static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2115					struct dwc2_hsotg_ep *hs_ep,
2116				       struct dwc2_hsotg_req *hs_req,
2117				       int result)
2118{
2119	if (!hs_req) {
2120		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2121		return;
2122	}
2123
2124	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2125		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2126
2127	/*
2128	 * only replace the status if we've not already set an error
2129	 * from a previous transaction
2130	 */
2131
2132	if (hs_req->req.status == -EINPROGRESS)
2133		hs_req->req.status = result;
2134
2135	if (using_dma(hsotg))
2136		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2137
2138	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2139
2140	hs_ep->req = NULL;
2141	list_del_init(&hs_req->queue);
2142
2143	/*
2144	 * call the complete request with the locks off, just in case the
2145	 * request tries to queue more work for this endpoint.
2146	 */
2147
2148	if (hs_req->req.complete) {
2149		spin_unlock(&hsotg->lock);
2150		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2151		spin_lock(&hsotg->lock);
2152	}
2153
2154	/* In DDMA don't need to proceed to starting of next ISOC request */
2155	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2156		return;
2157
2158	/*
2159	 * Look to see if there is anything else to do. Note, the completion
2160	 * of the previous request may have caused a new request to be started
2161	 * so be careful when doing this.
2162	 */
2163
2164	if (!hs_ep->req && result >= 0)
2165		dwc2_gadget_start_next_request(hs_ep);
2166}
2167
2168/*
2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2170 * @hs_ep: The endpoint the request was on.
2171 *
2172 * Get first request from the ep queue, determine descriptor on which complete
2173 * happened. SW discovers which descriptor currently in use by HW, adjusts
2174 * dma_address and calculates index of completed descriptor based on the value
2175 * of DEPDMA register. Update actual length of request, giveback to gadget.
2176 */
2177static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2178{
2179	struct dwc2_hsotg *hsotg = hs_ep->parent;
2180	struct dwc2_hsotg_req *hs_req;
2181	struct usb_request *ureq;
2182	u32 desc_sts;
2183	u32 mask;
2184
2185	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186
2187	/* Process only descriptors with buffer status set to DMA done */
2188	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2189		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2190
2191		hs_req = get_ep_head(hs_ep);
2192		if (!hs_req) {
2193			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2194			return;
2195		}
2196		ureq = &hs_req->req;
2197
2198		/* Check completion status */
2199		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2200			DEV_DMA_STS_SUCC) {
2201			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2202				DEV_DMA_ISOC_RX_NBYTES_MASK;
2203			ureq->actual = ureq->length - ((desc_sts & mask) >>
2204				DEV_DMA_ISOC_NBYTES_SHIFT);
2205
2206			/* Adjust actual len for ISOC Out if len is
2207			 * not align of 4
2208			 */
2209			if (!hs_ep->dir_in && ureq->length & 0x3)
2210				ureq->actual += 4 - (ureq->length & 0x3);
2211
2212			/* Set actual frame number for completed transfers */
2213			ureq->frame_number =
2214				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2215				DEV_DMA_ISOC_FRNUM_SHIFT;
2216		}
2217
2218		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2219
2220		hs_ep->compl_desc++;
2221		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2222			hs_ep->compl_desc = 0;
2223		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2224	}
2225}
2226
2227/*
2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2229 * @hs_ep: The isochronous endpoint.
2230 *
2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2232 * interrupt. Reset target frame and next_desc to allow to start
2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2234 * interrupt for OUT direction.
2235 */
2236static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2237{
2238	struct dwc2_hsotg *hsotg = hs_ep->parent;
2239
2240	if (!hs_ep->dir_in)
2241		dwc2_flush_rx_fifo(hsotg);
2242	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2243
2244	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2245	hs_ep->next_desc = 0;
2246	hs_ep->compl_desc = 0;
2247}
2248
2249/**
2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2251 * @hsotg: The device state.
2252 * @ep_idx: The endpoint index for the data
2253 * @size: The size of data in the fifo, in bytes
2254 *
2255 * The FIFO status shows there is data to read from the FIFO for a given
2256 * endpoint, so sort out whether we need to read the data into a request
2257 * that has been made for that endpoint.
2258 */
2259static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2260{
2261	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2262	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2263	int to_read;
2264	int max_req;
2265	int read_ptr;
2266
2267	if (!hs_req) {
2268		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2269		int ptr;
2270
2271		dev_dbg(hsotg->dev,
2272			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2273			 __func__, size, ep_idx, epctl);
2274
2275		/* dump the data from the FIFO, we've nothing we can do */
2276		for (ptr = 0; ptr < size; ptr += 4)
2277			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2278
2279		return;
2280	}
2281
2282	to_read = size;
2283	read_ptr = hs_req->req.actual;
2284	max_req = hs_req->req.length - read_ptr;
2285
2286	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2287		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2288
2289	if (to_read > max_req) {
2290		/*
2291		 * more data appeared than we where willing
2292		 * to deal with in this request.
2293		 */
2294
2295		/* currently we don't deal this */
2296		WARN_ON_ONCE(1);
2297	}
2298
2299	hs_ep->total_data += to_read;
2300	hs_req->req.actual += to_read;
2301	to_read = DIV_ROUND_UP(to_read, 4);
2302
2303	/*
2304	 * note, we might over-write the buffer end by 3 bytes depending on
2305	 * alignment of the data.
2306	 */
2307	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2308		       hs_req->req.buf + read_ptr, to_read);
2309}
2310
2311/**
2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2313 * @hsotg: The device instance
2314 * @dir_in: If IN zlp
2315 *
2316 * Generate a zero-length IN packet request for terminating a SETUP
2317 * transaction.
2318 *
2319 * Note, since we don't write any data to the TxFIFO, then it is
2320 * currently believed that we do not need to wait for any space in
2321 * the TxFIFO.
2322 */
2323static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2324{
2325	/* eps_out[0] is used in both directions */
2326	hsotg->eps_out[0]->dir_in = dir_in;
2327	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2328
2329	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2330}
2331
2332/*
2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2334 * @hs_ep - The endpoint on which transfer went
2335 *
2336 * Iterate over endpoints descriptor chain and get info on bytes remained
2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2338 */
2339static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2340{
2341	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2342	struct dwc2_hsotg *hsotg = hs_ep->parent;
2343	unsigned int bytes_rem = 0;
2344	unsigned int bytes_rem_correction = 0;
2345	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2346	int i;
2347	u32 status;
2348	u32 mps = hs_ep->ep.maxpacket;
2349	int dir_in = hs_ep->dir_in;
2350
2351	if (!desc)
2352		return -EINVAL;
2353
2354	/* Interrupt OUT EP with mps not multiple of 4 */
2355	if (hs_ep->index)
2356		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2357			bytes_rem_correction = 4 - (mps % 4);
2358
2359	for (i = 0; i < hs_ep->desc_count; ++i) {
2360		status = desc->status;
2361		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2362		bytes_rem -= bytes_rem_correction;
2363
2364		if (status & DEV_DMA_STS_MASK)
2365			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2366				i, status & DEV_DMA_STS_MASK);
2367
2368		if (status & DEV_DMA_L)
2369			break;
2370
2371		desc++;
2372	}
2373
2374	return bytes_rem;
2375}
2376
2377/**
2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2379 * @hsotg: The device instance
2380 * @epnum: The endpoint received from
2381 *
2382 * The RXFIFO has delivered an OutDone event, which means that the data
2383 * transfer for an OUT endpoint has been completed, either by a short
2384 * packet or by the finish of a transfer.
2385 */
2386static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2387{
2388	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2389	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2390	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2391	struct usb_request *req = &hs_req->req;
2392	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2393	int result = 0;
2394
2395	if (!hs_req) {
2396		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2397		return;
2398	}
2399
2400	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2401		dev_dbg(hsotg->dev, "zlp packet received\n");
2402		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2403		dwc2_hsotg_enqueue_setup(hsotg);
2404		return;
2405	}
2406
2407	if (using_desc_dma(hsotg))
2408		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2409
2410	if (using_dma(hsotg)) {
2411		unsigned int size_done;
2412
2413		/*
2414		 * Calculate the size of the transfer by checking how much
2415		 * is left in the endpoint size register and then working it
2416		 * out from the amount we loaded for the transfer.
2417		 *
2418		 * We need to do this as DMA pointers are always 32bit aligned
2419		 * so may overshoot/undershoot the transfer.
2420		 */
2421
2422		size_done = hs_ep->size_loaded - size_left;
2423		size_done += hs_ep->last_load;
2424
2425		req->actual = size_done;
2426	}
2427
2428	/* if there is more request to do, schedule new transfer */
2429	if (req->actual < req->length && size_left == 0) {
2430		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2431		return;
2432	}
2433
2434	if (req->actual < req->length && req->short_not_ok) {
2435		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2436			__func__, req->actual, req->length);
2437
2438		/*
2439		 * todo - what should we return here? there's no one else
2440		 * even bothering to check the status.
2441		 */
2442	}
2443
2444	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2445	if (!using_desc_dma(hsotg) && epnum == 0 &&
2446	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2447		/* Move to STATUS IN */
2448		if (!hsotg->delayed_status)
2449			dwc2_hsotg_ep0_zlp(hsotg, true);
2450	}
2451
2452	/* Set actual frame number for completed transfers */
2453	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2454		req->frame_number = hs_ep->target_frame;
2455		dwc2_gadget_incr_frame_num(hs_ep);
2456	}
2457
2458	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2459}
2460
2461/**
2462 * dwc2_hsotg_handle_rx - RX FIFO has data
2463 * @hsotg: The device instance
2464 *
2465 * The IRQ handler has detected that the RX FIFO has some data in it
2466 * that requires processing, so find out what is in there and do the
2467 * appropriate read.
2468 *
2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2470 * chunks, so if you have x packets received on an endpoint you'll get x
2471 * FIFO events delivered, each with a packet's worth of data in it.
2472 *
2473 * When using DMA, we should not be processing events from the RXFIFO
2474 * as the actual data should be sent to the memory directly and we turn
2475 * on the completion interrupts to get notifications of transfer completion.
2476 */
2477static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2478{
2479	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2480	u32 epnum, status, size;
2481
2482	WARN_ON(using_dma(hsotg));
2483
2484	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2485	status = grxstsr & GRXSTS_PKTSTS_MASK;
2486
2487	size = grxstsr & GRXSTS_BYTECNT_MASK;
2488	size >>= GRXSTS_BYTECNT_SHIFT;
2489
2490	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2491		__func__, grxstsr, size, epnum);
2492
2493	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2494	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2495		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496		break;
2497
2498	case GRXSTS_PKTSTS_OUTDONE:
2499		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2500			dwc2_hsotg_read_frameno(hsotg));
2501
2502		if (!using_dma(hsotg))
2503			dwc2_hsotg_handle_outdone(hsotg, epnum);
2504		break;
2505
2506	case GRXSTS_PKTSTS_SETUPDONE:
2507		dev_dbg(hsotg->dev,
2508			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2509			dwc2_hsotg_read_frameno(hsotg),
2510			dwc2_readl(hsotg, DOEPCTL(0)));
2511		/*
2512		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2513		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2514		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2515		 */
2516		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2517			dwc2_hsotg_handle_outdone(hsotg, epnum);
2518		break;
2519
2520	case GRXSTS_PKTSTS_OUTRX:
2521		dwc2_hsotg_rx_data(hsotg, epnum, size);
2522		break;
2523
2524	case GRXSTS_PKTSTS_SETUPRX:
2525		dev_dbg(hsotg->dev,
2526			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527			dwc2_hsotg_read_frameno(hsotg),
2528			dwc2_readl(hsotg, DOEPCTL(0)));
2529
2530		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2531
2532		dwc2_hsotg_rx_data(hsotg, epnum, size);
2533		break;
2534
2535	default:
2536		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537			 __func__, grxstsr);
2538
2539		dwc2_hsotg_dump(hsotg);
2540		break;
2541	}
2542}
2543
2544/**
2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2546 * @mps: The maximum packet size in bytes.
2547 */
2548static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2549{
2550	switch (mps) {
2551	case 64:
2552		return D0EPCTL_MPS_64;
2553	case 32:
2554		return D0EPCTL_MPS_32;
2555	case 16:
2556		return D0EPCTL_MPS_16;
2557	case 8:
2558		return D0EPCTL_MPS_8;
2559	}
2560
2561	/* bad max packet size, warn and return invalid result */
2562	WARN_ON(1);
2563	return (u32)-1;
2564}
2565
2566/**
2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2568 * @hsotg: The driver state.
2569 * @ep: The index number of the endpoint
2570 * @mps: The maximum packet size in bytes
2571 * @mc: The multicount value
2572 * @dir_in: True if direction is in.
2573 *
2574 * Configure the maximum packet size for the given endpoint, updating
2575 * the hardware control registers to reflect this.
2576 */
2577static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2578					unsigned int ep, unsigned int mps,
2579					unsigned int mc, unsigned int dir_in)
2580{
2581	struct dwc2_hsotg_ep *hs_ep;
2582	u32 reg;
2583
2584	hs_ep = index_to_ep(hsotg, ep, dir_in);
2585	if (!hs_ep)
2586		return;
2587
2588	if (ep == 0) {
2589		u32 mps_bytes = mps;
2590
2591		/* EP0 is a special case */
2592		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593		if (mps > 3)
2594			goto bad_mps;
2595		hs_ep->ep.maxpacket = mps_bytes;
2596		hs_ep->mc = 1;
2597	} else {
2598		if (mps > 1024)
2599			goto bad_mps;
2600		hs_ep->mc = mc;
2601		if (mc > 3)
2602			goto bad_mps;
2603		hs_ep->ep.maxpacket = mps;
2604	}
2605
2606	if (dir_in) {
2607		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2608		reg &= ~DXEPCTL_MPS_MASK;
2609		reg |= mps;
2610		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2611	} else {
2612		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2613		reg &= ~DXEPCTL_MPS_MASK;
2614		reg |= mps;
2615		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2616	}
2617
2618	return;
2619
2620bad_mps:
2621	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2622}
2623
2624/**
2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2626 * @hsotg: The driver state
2627 * @idx: The index for the endpoint (0..15)
2628 */
2629static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2630{
2631	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632		    GRSTCTL);
2633
2634	/* wait until the fifo is flushed */
2635	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2636		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2637			 __func__);
2638}
2639
2640/**
2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2642 * @hsotg: The driver state
2643 * @hs_ep: The driver endpoint to check.
2644 *
2645 * Check to see if there is a request that has data to send, and if so
2646 * make an attempt to write data into the FIFO.
2647 */
2648static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2649			    struct dwc2_hsotg_ep *hs_ep)
2650{
2651	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2652
2653	if (!hs_ep->dir_in || !hs_req) {
2654		/**
2655		 * if request is not enqueued, we disable interrupts
2656		 * for endpoints, excepting ep0
2657		 */
2658		if (hs_ep->index != 0)
2659			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2660					      hs_ep->dir_in, 0);
2661		return 0;
2662	}
2663
2664	if (hs_req->req.actual < hs_req->req.length) {
2665		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2666			hs_ep->index);
2667		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2668	}
2669
2670	return 0;
2671}
2672
2673/**
2674 * dwc2_hsotg_complete_in - complete IN transfer
2675 * @hsotg: The device state.
2676 * @hs_ep: The endpoint that has just completed.
2677 *
2678 * An IN transfer has been completed, update the transfer's state and then
2679 * call the relevant completion routines.
2680 */
2681static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2682				   struct dwc2_hsotg_ep *hs_ep)
2683{
2684	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2685	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2686	int size_left, size_done;
2687
2688	if (!hs_req) {
2689		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2690		return;
2691	}
2692
2693	/* Finish ZLP handling for IN EP0 transactions */
2694	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2695		dev_dbg(hsotg->dev, "zlp packet sent\n");
2696
2697		/*
2698		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2699		 * changed to IN. Change back to complete OUT transfer request
2700		 */
2701		hs_ep->dir_in = 0;
2702
2703		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2704		if (hsotg->test_mode) {
2705			int ret;
2706
2707			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2708			if (ret < 0) {
2709				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2710					hsotg->test_mode);
2711				dwc2_hsotg_stall_ep0(hsotg);
2712				return;
2713			}
2714		}
2715		dwc2_hsotg_enqueue_setup(hsotg);
2716		return;
2717	}
2718
2719	/*
2720	 * Calculate the size of the transfer by checking how much is left
2721	 * in the endpoint size register and then working it out from
2722	 * the amount we loaded for the transfer.
2723	 *
2724	 * We do this even for DMA, as the transfer may have incremented
2725	 * past the end of the buffer (DMA transfers are always 32bit
2726	 * aligned).
2727	 */
2728	if (using_desc_dma(hsotg)) {
2729		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2730		if (size_left < 0)
2731			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732				size_left);
2733	} else {
2734		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735	}
2736
2737	size_done = hs_ep->size_loaded - size_left;
2738	size_done += hs_ep->last_load;
2739
2740	if (hs_req->req.actual != size_done)
2741		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2742			__func__, hs_req->req.actual, size_done);
2743
2744	hs_req->req.actual = size_done;
2745	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2746		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2747
2748	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2749		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2750		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2751		return;
2752	}
2753
2754	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2755	if (hs_ep->send_zlp) {
2756		hs_ep->send_zlp = 0;
2757		if (!using_desc_dma(hsotg)) {
2758			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2759			/* transfer will be completed on next complete interrupt */
2760			return;
2761		}
2762	}
2763
2764	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2765		/* Move to STATUS OUT */
2766		dwc2_hsotg_ep0_zlp(hsotg, false);
2767		return;
2768	}
2769
2770	/* Set actual frame number for completed transfers */
2771	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2772		hs_req->req.frame_number = hs_ep->target_frame;
2773		dwc2_gadget_incr_frame_num(hs_ep);
2774	}
2775
2776	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2777}
2778
2779/**
2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2781 * @hsotg: The device state.
2782 * @idx: Index of ep.
2783 * @dir_in: Endpoint direction 1-in 0-out.
2784 *
2785 * Reads for endpoint with given index and direction, by masking
2786 * epint_reg with coresponding mask.
2787 */
2788static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2789					  unsigned int idx, int dir_in)
2790{
2791	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2792	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2793	u32 ints;
2794	u32 mask;
2795	u32 diepempmsk;
2796
2797	mask = dwc2_readl(hsotg, epmsk_reg);
2798	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2799	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2800	mask |= DXEPINT_SETUP_RCVD;
2801
2802	ints = dwc2_readl(hsotg, epint_reg);
2803	ints &= mask;
2804	return ints;
2805}
2806
2807/**
2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2809 * @hs_ep: The endpoint on which interrupt is asserted.
2810 *
2811 * This interrupt indicates that the endpoint has been disabled per the
2812 * application's request.
2813 *
2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2815 * in case of ISOC completes current request.
2816 *
2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2818 * request starts it.
2819 */
2820static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2821{
2822	struct dwc2_hsotg *hsotg = hs_ep->parent;
2823	struct dwc2_hsotg_req *hs_req;
2824	unsigned char idx = hs_ep->index;
2825	int dir_in = hs_ep->dir_in;
2826	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2827	int dctl = dwc2_readl(hsotg, DCTL);
2828
2829	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2830
2831	if (dir_in) {
2832		int epctl = dwc2_readl(hsotg, epctl_reg);
2833
2834		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2835
2836		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837			int dctl = dwc2_readl(hsotg, DCTL);
2838
2839			dctl |= DCTL_CGNPINNAK;
2840			dwc2_writel(hsotg, dctl, DCTL);
2841		}
2842	} else {
2843
2844		if (dctl & DCTL_GOUTNAKSTS) {
2845			dctl |= DCTL_CGOUTNAK;
2846			dwc2_writel(hsotg, dctl, DCTL);
2847		}
2848	}
2849
2850	if (!hs_ep->isochronous)
2851		return;
2852
2853	if (list_empty(&hs_ep->queue)) {
2854		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855			__func__, hs_ep);
2856		return;
2857	}
2858
2859	do {
2860		hs_req = get_ep_head(hs_ep);
2861		if (hs_req) {
2862			hs_req->req.frame_number = hs_ep->target_frame;
2863			hs_req->req.actual = 0;
2864			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2865						    -ENODATA);
2866		}
2867		dwc2_gadget_incr_frame_num(hs_ep);
2868		/* Update current frame number value. */
2869		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2870	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2871}
2872
2873/**
2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2875 * @ep: The endpoint on which interrupt is asserted.
2876 *
2877 * This is starting point for ISOC-OUT transfer, synchronization done with
2878 * first out token received from host while corresponding EP is disabled.
2879 *
2880 * Device does not know initial frame in which out token will come. For this
2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2882 * getting this interrupt SW starts calculation for next transfer frame.
2883 */
2884static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885{
2886	struct dwc2_hsotg *hsotg = ep->parent;
2887	struct dwc2_hsotg_req *hs_req;
2888	int dir_in = ep->dir_in;
2889
2890	if (dir_in || !ep->isochronous)
2891		return;
2892
2893	if (using_desc_dma(hsotg)) {
2894		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2895			/* Start first ISO Out */
2896			ep->target_frame = hsotg->frame_number;
2897			dwc2_gadget_start_isoc_ddma(ep);
2898		}
2899		return;
2900	}
2901
2902	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2903		u32 ctrl;
2904
2905		ep->target_frame = hsotg->frame_number;
2906		if (ep->interval > 1) {
2907			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2908			if (ep->target_frame & 0x1)
2909				ctrl |= DXEPCTL_SETODDFR;
2910			else
2911				ctrl |= DXEPCTL_SETEVENFR;
2912
2913			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2914		}
2915	}
2916
2917	while (dwc2_gadget_target_frame_elapsed(ep)) {
2918		hs_req = get_ep_head(ep);
2919		if (hs_req) {
2920			hs_req->req.frame_number = ep->target_frame;
2921			hs_req->req.actual = 0;
2922			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2923		}
2924
2925		dwc2_gadget_incr_frame_num(ep);
2926		/* Update current frame number value. */
2927		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2928	}
2929
2930	if (!ep->req)
2931		dwc2_gadget_start_next_request(ep);
2932
2933}
2934
2935static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2936				   struct dwc2_hsotg_ep *hs_ep);
2937
2938/**
2939 * dwc2_gadget_handle_nak - handle NAK interrupt
2940 * @hs_ep: The endpoint on which interrupt is asserted.
2941 *
2942 * This is starting point for ISOC-IN transfer, synchronization done with
2943 * first IN token received from host while corresponding EP is disabled.
2944 *
2945 * Device does not know when first one token will arrive from host. On first
2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2948 * sent in response to that as there was no data in FIFO. SW is basing on this
2949 * interrupt to obtain frame in which token has come and then based on the
2950 * interval calculates next frame for transfer.
2951 */
2952static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2953{
2954	struct dwc2_hsotg *hsotg = hs_ep->parent;
2955	struct dwc2_hsotg_req *hs_req;
2956	int dir_in = hs_ep->dir_in;
2957	u32 ctrl;
2958
2959	if (!dir_in || !hs_ep->isochronous)
2960		return;
2961
2962	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2963
2964		if (using_desc_dma(hsotg)) {
2965			hs_ep->target_frame = hsotg->frame_number;
2966			dwc2_gadget_incr_frame_num(hs_ep);
2967
2968			/* In service interval mode target_frame must
2969			 * be set to last (u)frame of the service interval.
2970			 */
2971			if (hsotg->params.service_interval) {
2972				/* Set target_frame to the first (u)frame of
2973				 * the service interval
2974				 */
2975				hs_ep->target_frame &= ~hs_ep->interval + 1;
2976
2977				/* Set target_frame to the last (u)frame of
2978				 * the service interval
2979				 */
2980				dwc2_gadget_incr_frame_num(hs_ep);
2981				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2982			}
2983
2984			dwc2_gadget_start_isoc_ddma(hs_ep);
2985			return;
2986		}
2987
2988		hs_ep->target_frame = hsotg->frame_number;
2989		if (hs_ep->interval > 1) {
2990			u32 ctrl = dwc2_readl(hsotg,
2991					      DIEPCTL(hs_ep->index));
2992			if (hs_ep->target_frame & 0x1)
2993				ctrl |= DXEPCTL_SETODDFR;
2994			else
2995				ctrl |= DXEPCTL_SETEVENFR;
2996
2997			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2998		}
2999	}
3000
3001	if (using_desc_dma(hsotg))
3002		return;
3003
3004	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3005	if (ctrl & DXEPCTL_EPENA)
3006		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3007	else
3008		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3009
3010	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3011		hs_req = get_ep_head(hs_ep);
3012		if (hs_req) {
3013			hs_req->req.frame_number = hs_ep->target_frame;
3014			hs_req->req.actual = 0;
3015			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3016		}
3017
3018		dwc2_gadget_incr_frame_num(hs_ep);
3019		/* Update current frame number value. */
3020		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3021	}
3022
3023	if (!hs_ep->req)
3024		dwc2_gadget_start_next_request(hs_ep);
3025}
3026
3027/**
3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3029 * @hsotg: The driver state
3030 * @idx: The index for the endpoint (0..15)
3031 * @dir_in: Set if this is an IN endpoint
3032 *
3033 * Process and clear any interrupt pending for an individual endpoint
3034 */
3035static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3036			     int dir_in)
3037{
3038	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3039	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3040	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3041	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3042	u32 ints;
3043
3044	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3045
3046	/* Clear endpoint interrupts */
3047	dwc2_writel(hsotg, ints, epint_reg);
3048
3049	if (!hs_ep) {
3050		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3051			__func__, idx, dir_in ? "in" : "out");
3052		return;
3053	}
3054
3055	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3056		__func__, idx, dir_in ? "in" : "out", ints);
3057
3058	/* Don't process XferCompl interrupt if it is a setup packet */
3059	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3060		ints &= ~DXEPINT_XFERCOMPL;
3061
3062	/*
3063	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3064	 * stage and xfercomplete was generated without SETUP phase done
3065	 * interrupt. SW should parse received setup packet only after host's
3066	 * exit from setup phase of control transfer.
3067	 */
3068	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3069	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3070		ints &= ~DXEPINT_XFERCOMPL;
3071
3072	if (ints & DXEPINT_XFERCOMPL) {
3073		dev_dbg(hsotg->dev,
3074			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3075			__func__, dwc2_readl(hsotg, epctl_reg),
3076			dwc2_readl(hsotg, epsiz_reg));
3077
3078		/* In DDMA handle isochronous requests separately */
3079		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3080			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3081		} else if (dir_in) {
3082			/*
3083			 * We get OutDone from the FIFO, so we only
3084			 * need to look at completing IN requests here
3085			 * if operating slave mode
3086			 */
3087			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3088				dwc2_hsotg_complete_in(hsotg, hs_ep);
3089
3090			if (idx == 0 && !hs_ep->req)
3091				dwc2_hsotg_enqueue_setup(hsotg);
3092		} else if (using_dma(hsotg)) {
3093			/*
3094			 * We're using DMA, we need to fire an OutDone here
3095			 * as we ignore the RXFIFO.
3096			 */
3097			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3098				dwc2_hsotg_handle_outdone(hsotg, idx);
3099		}
3100	}
3101
3102	if (ints & DXEPINT_EPDISBLD)
3103		dwc2_gadget_handle_ep_disabled(hs_ep);
3104
3105	if (ints & DXEPINT_OUTTKNEPDIS)
3106		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3107
3108	if (ints & DXEPINT_NAKINTRPT)
3109		dwc2_gadget_handle_nak(hs_ep);
3110
3111	if (ints & DXEPINT_AHBERR)
3112		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3113
3114	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3115		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3116
3117		if (using_dma(hsotg) && idx == 0) {
3118			/*
3119			 * this is the notification we've received a
3120			 * setup packet. In non-DMA mode we'd get this
3121			 * from the RXFIFO, instead we need to process
3122			 * the setup here.
3123			 */
3124
3125			if (dir_in)
3126				WARN_ON_ONCE(1);
3127			else
3128				dwc2_hsotg_handle_outdone(hsotg, 0);
3129		}
3130	}
3131
3132	if (ints & DXEPINT_STSPHSERCVD) {
3133		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3134
3135		/* Safety check EP0 state when STSPHSERCVD asserted */
3136		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3137			/* Move to STATUS IN for DDMA */
3138			if (using_desc_dma(hsotg)) {
3139				if (!hsotg->delayed_status)
3140					dwc2_hsotg_ep0_zlp(hsotg, true);
3141				else
3142				/* In case of 3 stage Control Write with delayed
3143				 * status, when Status IN transfer started
3144				 * before STSPHSERCVD asserted, NAKSTS bit not
3145				 * cleared by CNAK in dwc2_hsotg_start_req()
3146				 * function. Clear now NAKSTS to allow complete
3147				 * transfer.
3148				 */
3149					dwc2_set_bit(hsotg, DIEPCTL(0),
3150						     DXEPCTL_CNAK);
3151			}
3152		}
3153
3154	}
3155
3156	if (ints & DXEPINT_BACK2BACKSETUP)
3157		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3158
3159	if (ints & DXEPINT_BNAINTR) {
3160		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3161		if (hs_ep->isochronous)
3162			dwc2_gadget_handle_isoc_bna(hs_ep);
3163	}
3164
3165	if (dir_in && !hs_ep->isochronous) {
3166		/* not sure if this is important, but we'll clear it anyway */
3167		if (ints & DXEPINT_INTKNTXFEMP) {
3168			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3169				__func__, idx);
3170		}
3171
3172		/* this probably means something bad is happening */
3173		if (ints & DXEPINT_INTKNEPMIS) {
3174			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3175				 __func__, idx);
3176		}
3177
3178		/* FIFO has space or is empty (see GAHBCFG) */
3179		if (hsotg->dedicated_fifos &&
3180		    ints & DXEPINT_TXFEMP) {
3181			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3182				__func__, idx);
3183			if (!using_dma(hsotg))
3184				dwc2_hsotg_trytx(hsotg, hs_ep);
3185		}
3186	}
3187}
3188
3189/**
3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3191 * @hsotg: The device state.
3192 *
3193 * Handle updating the device settings after the enumeration phase has
3194 * been completed.
3195 */
3196static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3197{
3198	u32 dsts = dwc2_readl(hsotg, DSTS);
3199	int ep0_mps = 0, ep_mps = 8;
3200
3201	/*
3202	 * This should signal the finish of the enumeration phase
3203	 * of the USB handshaking, so we should now know what rate
3204	 * we connected at.
3205	 */
3206
3207	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3208
3209	/*
3210	 * note, since we're limited by the size of transfer on EP0, and
3211	 * it seems IN transfers must be a even number of packets we do
3212	 * not advertise a 64byte MPS on EP0.
3213	 */
3214
3215	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3216	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3217	case DSTS_ENUMSPD_FS:
3218	case DSTS_ENUMSPD_FS48:
3219		hsotg->gadget.speed = USB_SPEED_FULL;
3220		ep0_mps = EP0_MPS_LIMIT;
3221		ep_mps = 1023;
3222		break;
3223
3224	case DSTS_ENUMSPD_HS:
3225		hsotg->gadget.speed = USB_SPEED_HIGH;
3226		ep0_mps = EP0_MPS_LIMIT;
3227		ep_mps = 1024;
3228		break;
3229
3230	case DSTS_ENUMSPD_LS:
3231		hsotg->gadget.speed = USB_SPEED_LOW;
3232		ep0_mps = 8;
3233		ep_mps = 8;
3234		/*
3235		 * note, we don't actually support LS in this driver at the
3236		 * moment, and the documentation seems to imply that it isn't
3237		 * supported by the PHYs on some of the devices.
3238		 */
3239		break;
3240	}
3241	dev_info(hsotg->dev, "new device is %s\n",
3242		 usb_speed_string(hsotg->gadget.speed));
3243
3244	/*
3245	 * we should now know the maximum packet size for an
3246	 * endpoint, so set the endpoints to a default value.
3247	 */
3248
3249	if (ep0_mps) {
3250		int i;
3251		/* Initialize ep0 for both in and out directions */
3252		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3253		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3254		for (i = 1; i < hsotg->num_of_eps; i++) {
3255			if (hsotg->eps_in[i])
3256				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3257							    0, 1);
3258			if (hsotg->eps_out[i])
3259				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3260							    0, 0);
3261		}
3262	}
3263
3264	/* ensure after enumeration our EP0 is active */
3265
3266	dwc2_hsotg_enqueue_setup(hsotg);
3267
3268	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3269		dwc2_readl(hsotg, DIEPCTL0),
3270		dwc2_readl(hsotg, DOEPCTL0));
3271}
3272
3273/**
3274 * kill_all_requests - remove all requests from the endpoint's queue
3275 * @hsotg: The device state.
3276 * @ep: The endpoint the requests may be on.
3277 * @result: The result code to use.
3278 *
3279 * Go through the requests on the given endpoint and mark them
3280 * completed with the given result code.
3281 */
3282static void kill_all_requests(struct dwc2_hsotg *hsotg,
3283			      struct dwc2_hsotg_ep *ep,
3284			      int result)
3285{
3286	unsigned int size;
3287
3288	ep->req = NULL;
3289
3290	while (!list_empty(&ep->queue)) {
3291		struct dwc2_hsotg_req *req = get_ep_head(ep);
3292
3293		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3294	}
3295
3296	if (!hsotg->dedicated_fifos)
3297		return;
3298	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3299	if (size < ep->fifo_size)
3300		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3301}
3302
3303/**
3304 * dwc2_hsotg_disconnect - disconnect service
3305 * @hsotg: The device state.
3306 *
3307 * The device has been disconnected. Remove all current
3308 * transactions and signal the gadget driver that this
3309 * has happened.
3310 */
3311void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3312{
3313	unsigned int ep;
3314
3315	if (!hsotg->connected)
3316		return;
3317
3318	hsotg->connected = 0;
3319	hsotg->test_mode = 0;
3320
3321	/* all endpoints should be shutdown */
3322	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3323		if (hsotg->eps_in[ep])
3324			kill_all_requests(hsotg, hsotg->eps_in[ep],
3325					  -ESHUTDOWN);
3326		if (hsotg->eps_out[ep])
3327			kill_all_requests(hsotg, hsotg->eps_out[ep],
3328					  -ESHUTDOWN);
3329	}
3330
3331	call_gadget(hsotg, disconnect);
3332	hsotg->lx_state = DWC2_L3;
3333
3334	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3335}
3336
3337/**
3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3339 * @hsotg: The device state:
3340 * @periodic: True if this is a periodic FIFO interrupt
3341 */
3342static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3343{
3344	struct dwc2_hsotg_ep *ep;
3345	int epno, ret;
3346
3347	/* look through for any more data to transmit */
3348	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3349		ep = index_to_ep(hsotg, epno, 1);
3350
3351		if (!ep)
3352			continue;
3353
3354		if (!ep->dir_in)
3355			continue;
3356
3357		if ((periodic && !ep->periodic) ||
3358		    (!periodic && ep->periodic))
3359			continue;
3360
3361		ret = dwc2_hsotg_trytx(hsotg, ep);
3362		if (ret < 0)
3363			break;
3364	}
3365}
3366
3367/* IRQ flags which will trigger a retry around the IRQ loop */
3368#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3369			GINTSTS_PTXFEMP |  \
3370			GINTSTS_RXFLVL)
3371
3372static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3373/**
3374 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3375 * @hsotg: The device state
3376 * @is_usb_reset: Usb resetting flag
3377 *
3378 * Issue a soft reset to the core, and await the core finishing it.
3379 */
3380void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3381				       bool is_usb_reset)
3382{
3383	u32 intmsk;
3384	u32 val;
3385	u32 usbcfg;
3386	u32 dcfg = 0;
3387	int ep;
3388
3389	/* Kill any ep0 requests as controller will be reinitialized */
3390	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3391
3392	if (!is_usb_reset) {
3393		if (dwc2_core_reset(hsotg, true))
3394			return;
3395	} else {
3396		/* all endpoints should be shutdown */
3397		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3398			if (hsotg->eps_in[ep])
3399				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3400			if (hsotg->eps_out[ep])
3401				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3402		}
3403	}
3404
3405	/*
3406	 * we must now enable ep0 ready for host detection and then
3407	 * set configuration.
3408	 */
3409
3410	/* keep other bits untouched (so e.g. forced modes are not lost) */
3411	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3412	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3413	usbcfg |= GUSBCFG_TOUTCAL(7);
3414
3415	/* remove the HNP/SRP and set the PHY */
3416	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3417        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3418
3419	dwc2_phy_init(hsotg, true);
3420
3421	dwc2_hsotg_init_fifo(hsotg);
3422
3423	if (!is_usb_reset)
3424		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3425
3426	dcfg |= DCFG_EPMISCNT(1);
3427
3428	switch (hsotg->params.speed) {
3429	case DWC2_SPEED_PARAM_LOW:
3430		dcfg |= DCFG_DEVSPD_LS;
3431		break;
3432	case DWC2_SPEED_PARAM_FULL:
3433		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3434			dcfg |= DCFG_DEVSPD_FS48;
3435		else
3436			dcfg |= DCFG_DEVSPD_FS;
3437		break;
3438	default:
3439		dcfg |= DCFG_DEVSPD_HS;
3440	}
3441
3442	if (hsotg->params.ipg_isoc_en)
3443		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3444
3445	dwc2_writel(hsotg, dcfg,  DCFG);
3446
3447	/* Clear any pending OTG interrupts */
3448	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3449
3450	/* Clear any pending interrupts */
3451	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3452	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3453		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3454		GINTSTS_USBRST | GINTSTS_RESETDET |
3455		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3456		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3457		GINTSTS_LPMTRANRCVD;
3458
3459	if (!using_desc_dma(hsotg))
3460		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3461
3462	if (!hsotg->params.external_id_pin_ctl)
3463		intmsk |= GINTSTS_CONIDSTSCHNG;
3464
3465	dwc2_writel(hsotg, intmsk, GINTMSK);
3466
3467	if (using_dma(hsotg)) {
3468		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3469			    hsotg->params.ahbcfg,
3470			    GAHBCFG);
3471
3472		/* Set DDMA mode support in the core if needed */
3473		if (using_desc_dma(hsotg))
3474			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3475
3476	} else {
3477		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3478						(GAHBCFG_NP_TXF_EMP_LVL |
3479						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3480			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3481	}
3482
3483	/*
3484	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3485	 * when we have no data to transfer. Otherwise we get being flooded by
3486	 * interrupts.
3487	 */
3488
3489	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3490		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3491		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3492		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3493		DIEPMSK);
3494
3495	/*
3496	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3497	 * DMA mode we may need this and StsPhseRcvd.
3498	 */
3499	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3500		DOEPMSK_STSPHSERCVDMSK) : 0) |
3501		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3502		DOEPMSK_SETUPMSK,
3503		DOEPMSK);
3504
3505	/* Enable BNA interrupt for DDMA */
3506	if (using_desc_dma(hsotg)) {
3507		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3508		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3509	}
3510
3511	/* Enable Service Interval mode if supported */
3512	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3514
3515	dwc2_writel(hsotg, 0, DAINTMSK);
3516
3517	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3518		dwc2_readl(hsotg, DIEPCTL0),
3519		dwc2_readl(hsotg, DOEPCTL0));
3520
3521	/* enable in and out endpoint interrupts */
3522	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3523
3524	/*
3525	 * Enable the RXFIFO when in slave mode, as this is how we collect
3526	 * the data. In DMA mode, we get events from the FIFO but also
3527	 * things we cannot process, so do not use it.
3528	 */
3529	if (!using_dma(hsotg))
3530		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3531
3532	/* Enable interrupts for EP0 in and out */
3533	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3534	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3535
3536	if (!is_usb_reset) {
3537		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3538		udelay(10);  /* see openiboot */
3539		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3540	}
3541
3542	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3543
3544	/*
3545	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3546	 * writing to the EPCTL register..
3547	 */
3548
3549	/* set to read 1 8byte packet */
3550	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3551	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3552
3553	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3554	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3555	       DXEPCTL_USBACTEP,
3556	       DOEPCTL0);
3557
3558	/* enable, but don't activate EP0in */
3559	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3560	       DXEPCTL_USBACTEP, DIEPCTL0);
3561
3562	/* clear global NAKs */
3563	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3564	if (!is_usb_reset)
3565		val |= DCTL_SFTDISCON;
3566	dwc2_set_bit(hsotg, DCTL, val);
3567
3568	/* configure the core to support LPM */
3569	dwc2_gadget_init_lpm(hsotg);
3570
3571	/* program GREFCLK register if needed */
3572	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3573		dwc2_gadget_program_ref_clk(hsotg);
3574
3575	/* must be at-least 3ms to allow bus to see disconnect */
3576	mdelay(3);
3577
3578	hsotg->lx_state = DWC2_L0;
3579
3580	dwc2_hsotg_enqueue_setup(hsotg);
3581
3582	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3583		dwc2_readl(hsotg, DIEPCTL0),
3584		dwc2_readl(hsotg, DOEPCTL0));
3585}
3586
3587void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3588{
3589	/* set the soft-disconnect bit */
3590	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3591}
3592
3593void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3594{
3595	/* remove the soft-disconnect and let's go */
3596	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3597		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598}
3599
3600/**
3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3602 * @hsotg: The device state:
3603 *
3604 * This interrupt indicates one of the following conditions occurred while
3605 * transmitting an ISOC transaction.
3606 * - Corrupted IN Token for ISOC EP.
3607 * - Packet not complete in FIFO.
3608 *
3609 * The following actions will be taken:
3610 * - Determine the EP
3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3612 */
3613static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3614{
3615	struct dwc2_hsotg_ep *hs_ep;
3616	u32 epctrl;
3617	u32 daintmsk;
3618	u32 idx;
3619
3620	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3621
3622	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3623
3624	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3625		hs_ep = hsotg->eps_in[idx];
3626		/* Proceed only unmasked ISOC EPs */
3627		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3628			continue;
3629
3630		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3631		if ((epctrl & DXEPCTL_EPENA) &&
3632		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3633			epctrl |= DXEPCTL_SNAK;
3634			epctrl |= DXEPCTL_EPDIS;
3635			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3636		}
3637	}
3638
3639	/* Clear interrupt */
3640	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3641}
3642
3643/**
3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3645 * @hsotg: The device state:
3646 *
3647 * This interrupt indicates one of the following conditions occurred while
3648 * transmitting an ISOC transaction.
3649 * - Corrupted OUT Token for ISOC EP.
3650 * - Packet not complete in FIFO.
3651 *
3652 * The following actions will be taken:
3653 * - Determine the EP
3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3655 */
3656static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3657{
3658	u32 gintsts;
3659	u32 gintmsk;
3660	u32 daintmsk;
3661	u32 epctrl;
3662	struct dwc2_hsotg_ep *hs_ep;
3663	int idx;
3664
3665	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3666
3667	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3668	daintmsk >>= DAINT_OUTEP_SHIFT;
3669
3670	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3671		hs_ep = hsotg->eps_out[idx];
3672		/* Proceed only unmasked ISOC EPs */
3673		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3674			continue;
3675
3676		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3677		if ((epctrl & DXEPCTL_EPENA) &&
3678		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3679			/* Unmask GOUTNAKEFF interrupt */
3680			gintmsk = dwc2_readl(hsotg, GINTMSK);
3681			gintmsk |= GINTSTS_GOUTNAKEFF;
3682			dwc2_writel(hsotg, gintmsk, GINTMSK);
3683
3684			gintsts = dwc2_readl(hsotg, GINTSTS);
3685			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3686				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3687				break;
3688			}
3689		}
3690	}
3691
3692	/* Clear interrupt */
3693	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3694}
3695
3696/**
3697 * dwc2_hsotg_irq - handle device interrupt
3698 * @irq: The IRQ number triggered
3699 * @pw: The pw value when registered the handler.
3700 */
3701static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3702{
3703	struct dwc2_hsotg *hsotg = pw;
3704	int retry_count = 8;
3705	u32 gintsts;
3706	u32 gintmsk;
3707
3708	if (!dwc2_is_device_mode(hsotg))
3709		return IRQ_NONE;
3710
3711	spin_lock(&hsotg->lock);
3712irq_retry:
3713	gintsts = dwc2_readl(hsotg, GINTSTS);
3714	gintmsk = dwc2_readl(hsotg, GINTMSK);
3715
3716	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3717		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3718
3719	gintsts &= gintmsk;
3720
3721	if (gintsts & GINTSTS_RESETDET) {
3722		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3723
3724		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3725
3726		/* This event must be used only if controller is suspended */
3727		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3728			dwc2_exit_partial_power_down(hsotg, 0, true);
3729
3730		hsotg->lx_state = DWC2_L0;
3731	}
3732
3733	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3734		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3735		u32 connected = hsotg->connected;
3736
3737		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3738		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3739			dwc2_readl(hsotg, GNPTXSTS));
3740
3741		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3742
3743		/* Report disconnection if it is not already done. */
3744		dwc2_hsotg_disconnect(hsotg);
3745
3746		/* Reset device address to zero */
3747		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3748
3749		if (usb_status & GOTGCTL_BSESVLD && connected)
3750			dwc2_hsotg_core_init_disconnected(hsotg, true);
3751	}
3752
3753	if (gintsts & GINTSTS_ENUMDONE) {
3754		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3755
3756		dwc2_hsotg_irq_enumdone(hsotg);
3757	}
3758
3759	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3760		u32 daint = dwc2_readl(hsotg, DAINT);
3761		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3762		u32 daint_out, daint_in;
3763		int ep;
3764
3765		daint &= daintmsk;
3766		daint_out = daint >> DAINT_OUTEP_SHIFT;
3767		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3768
3769		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3770
3771		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3772						ep++, daint_out >>= 1) {
3773			if (daint_out & 1)
3774				dwc2_hsotg_epint(hsotg, ep, 0);
3775		}
3776
3777		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3778						ep++, daint_in >>= 1) {
3779			if (daint_in & 1)
3780				dwc2_hsotg_epint(hsotg, ep, 1);
3781		}
3782	}
3783
3784	/* check both FIFOs */
3785
3786	if (gintsts & GINTSTS_NPTXFEMP) {
3787		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3788
3789		/*
3790		 * Disable the interrupt to stop it happening again
3791		 * unless one of these endpoint routines decides that
3792		 * it needs re-enabling
3793		 */
3794
3795		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3796		dwc2_hsotg_irq_fifoempty(hsotg, false);
3797	}
3798
3799	if (gintsts & GINTSTS_PTXFEMP) {
3800		dev_dbg(hsotg->dev, "PTxFEmp\n");
3801
3802		/* See note in GINTSTS_NPTxFEmp */
3803
3804		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3805		dwc2_hsotg_irq_fifoempty(hsotg, true);
3806	}
3807
3808	if (gintsts & GINTSTS_RXFLVL) {
3809		/*
3810		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3811		 * we need to retry dwc2_hsotg_handle_rx if this is still
3812		 * set.
3813		 */
3814
3815		dwc2_hsotg_handle_rx(hsotg);
3816	}
3817
3818	if (gintsts & GINTSTS_ERLYSUSP) {
3819		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3820		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3821	}
3822
3823	/*
3824	 * these next two seem to crop-up occasionally causing the core
3825	 * to shutdown the USB transfer, so try clearing them and logging
3826	 * the occurrence.
3827	 */
3828
3829	if (gintsts & GINTSTS_GOUTNAKEFF) {
3830		u8 idx;
3831		u32 epctrl;
3832		u32 gintmsk;
3833		u32 daintmsk;
3834		struct dwc2_hsotg_ep *hs_ep;
3835
3836		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3837		daintmsk >>= DAINT_OUTEP_SHIFT;
3838		/* Mask this interrupt */
3839		gintmsk = dwc2_readl(hsotg, GINTMSK);
3840		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3841		dwc2_writel(hsotg, gintmsk, GINTMSK);
3842
3843		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3844		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3845			hs_ep = hsotg->eps_out[idx];
3846			/* Proceed only unmasked ISOC EPs */
3847			if (BIT(idx) & ~daintmsk)
3848				continue;
3849
3850			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3851
3852			//ISOC Ep's only
3853			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3854				epctrl |= DXEPCTL_SNAK;
3855				epctrl |= DXEPCTL_EPDIS;
3856				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3857				continue;
3858			}
3859
3860			//Non-ISOC EP's
3861			if (hs_ep->halted) {
3862				if (!(epctrl & DXEPCTL_EPENA))
3863					epctrl |= DXEPCTL_EPENA;
3864				epctrl |= DXEPCTL_EPDIS;
3865				epctrl |= DXEPCTL_STALL;
3866				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867			}
3868		}
3869
3870		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3871	}
3872
3873	if (gintsts & GINTSTS_GINNAKEFF) {
3874		dev_info(hsotg->dev, "GINNakEff triggered\n");
3875
3876		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3877
3878		dwc2_hsotg_dump(hsotg);
3879	}
3880
3881	if (gintsts & GINTSTS_INCOMPL_SOIN)
3882		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3883
3884	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3885		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3886
3887	/*
3888	 * if we've had fifo events, we should try and go around the
3889	 * loop again to see if there's any point in returning yet.
3890	 */
3891
3892	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3893		goto irq_retry;
3894
3895	/* Check WKUP_ALERT interrupt*/
3896	if (hsotg->params.service_interval)
3897		dwc2_gadget_wkup_alert_handler(hsotg);
3898
3899	spin_unlock(&hsotg->lock);
3900
3901	return IRQ_HANDLED;
3902}
3903
3904static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3905				   struct dwc2_hsotg_ep *hs_ep)
3906{
3907	u32 epctrl_reg;
3908	u32 epint_reg;
3909
3910	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3911		DOEPCTL(hs_ep->index);
3912	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3913		DOEPINT(hs_ep->index);
3914
3915	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3916		hs_ep->name);
3917
3918	if (hs_ep->dir_in) {
3919		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3920			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3921			/* Wait for Nak effect */
3922			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3923						    DXEPINT_INEPNAKEFF, 100))
3924				dev_warn(hsotg->dev,
3925					 "%s: timeout DIEPINT.NAKEFF\n",
3926					 __func__);
3927		} else {
3928			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3929			/* Wait for Nak effect */
3930			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3931						    GINTSTS_GINNAKEFF, 100))
3932				dev_warn(hsotg->dev,
3933					 "%s: timeout GINTSTS.GINNAKEFF\n",
3934					 __func__);
3935		}
3936	} else {
3937		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3938		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3939
3940		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3941			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3942
3943		if (!using_dma(hsotg)) {
3944			/* Wait for GINTSTS_RXFLVL interrupt */
3945			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3946						    GINTSTS_RXFLVL, 100)) {
3947				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3948					 __func__);
3949			} else {
3950				/*
3951				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3952				 * to assert GOUTNAKEFF interrupt
3953				 */
3954				dwc2_readl(hsotg, GRXSTSP);
3955			}
3956		}
3957
3958		/* Wait for global nak to take effect */
3959		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3960					    GINTSTS_GOUTNAKEFF, 100))
3961			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3962				 __func__);
3963	}
3964
3965	/* Disable ep */
3966	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3967
3968	/* Wait for ep to be disabled */
3969	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3970		dev_warn(hsotg->dev,
3971			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3972
3973	/* Clear EPDISBLD interrupt */
3974	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3975
3976	if (hs_ep->dir_in) {
3977		unsigned short fifo_index;
3978
3979		if (hsotg->dedicated_fifos || hs_ep->periodic)
3980			fifo_index = hs_ep->fifo_index;
3981		else
3982			fifo_index = 0;
3983
3984		/* Flush TX FIFO */
3985		dwc2_flush_tx_fifo(hsotg, fifo_index);
3986
3987		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3988		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3989			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3990
3991	} else {
3992		/* Remove global NAKs */
3993		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3994	}
3995}
3996
3997/**
3998 * dwc2_hsotg_ep_enable - enable the given endpoint
3999 * @ep: The USB endpint to configure
4000 * @desc: The USB endpoint descriptor to configure with.
4001 *
4002 * This is called from the USB gadget code's usb_ep_enable().
4003 */
4004static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4005				const struct usb_endpoint_descriptor *desc)
4006{
4007	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4008	struct dwc2_hsotg *hsotg = hs_ep->parent;
4009	unsigned long flags;
4010	unsigned int index = hs_ep->index;
4011	u32 epctrl_reg;
4012	u32 epctrl;
4013	u32 mps;
4014	u32 mc;
4015	u32 mask;
4016	unsigned int dir_in;
4017	unsigned int i, val, size;
4018	int ret = 0;
4019	unsigned char ep_type;
4020	int desc_num;
4021
4022	dev_dbg(hsotg->dev,
4023		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4024		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4025		desc->wMaxPacketSize, desc->bInterval);
4026
4027	/* not to be called for EP0 */
4028	if (index == 0) {
4029		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4030		return -EINVAL;
4031	}
4032
4033	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4034	if (dir_in != hs_ep->dir_in) {
4035		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4036		return -EINVAL;
4037	}
4038
4039	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4040	mps = usb_endpoint_maxp(desc);
4041	mc = usb_endpoint_maxp_mult(desc);
4042
4043	/* ISOC IN in DDMA supported bInterval up to 10 */
4044	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4045	    dir_in && desc->bInterval > 10) {
4046		dev_err(hsotg->dev,
4047			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4048		return -EINVAL;
4049	}
4050
4051	/* High bandwidth ISOC OUT in DDMA not supported */
4052	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4053	    !dir_in && mc > 1) {
4054		dev_err(hsotg->dev,
4055			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4056		return -EINVAL;
4057	}
4058
4059	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4060
4061	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4062	epctrl = dwc2_readl(hsotg, epctrl_reg);
4063
4064	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4065		__func__, epctrl, epctrl_reg);
4066
4067	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4068		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4069	else
4070		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4071
4072	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4073	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4074		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4075			desc_num * sizeof(struct dwc2_dma_desc),
4076			&hs_ep->desc_list_dma, GFP_ATOMIC);
4077		if (!hs_ep->desc_list) {
4078			ret = -ENOMEM;
4079			goto error2;
4080		}
4081	}
4082
4083	spin_lock_irqsave(&hsotg->lock, flags);
4084
4085	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4086	epctrl |= DXEPCTL_MPS(mps);
4087
4088	/*
4089	 * mark the endpoint as active, otherwise the core may ignore
4090	 * transactions entirely for this endpoint
4091	 */
4092	epctrl |= DXEPCTL_USBACTEP;
4093
4094	/* update the endpoint state */
4095	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4096
4097	/* default, set to non-periodic */
4098	hs_ep->isochronous = 0;
4099	hs_ep->periodic = 0;
4100	hs_ep->halted = 0;
4101	hs_ep->wedged = 0;
4102	hs_ep->interval = desc->bInterval;
4103
4104	switch (ep_type) {
4105	case USB_ENDPOINT_XFER_ISOC:
4106		epctrl |= DXEPCTL_EPTYPE_ISO;
4107		epctrl |= DXEPCTL_SETEVENFR;
4108		hs_ep->isochronous = 1;
4109		hs_ep->interval = 1 << (desc->bInterval - 1);
4110		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4111		hs_ep->next_desc = 0;
4112		hs_ep->compl_desc = 0;
4113		if (dir_in) {
4114			hs_ep->periodic = 1;
4115			mask = dwc2_readl(hsotg, DIEPMSK);
4116			mask |= DIEPMSK_NAKMSK;
4117			dwc2_writel(hsotg, mask, DIEPMSK);
4118		} else {
4119			epctrl |= DXEPCTL_SNAK;
4120			mask = dwc2_readl(hsotg, DOEPMSK);
4121			mask |= DOEPMSK_OUTTKNEPDISMSK;
4122			dwc2_writel(hsotg, mask, DOEPMSK);
4123		}
4124		break;
4125
4126	case USB_ENDPOINT_XFER_BULK:
4127		epctrl |= DXEPCTL_EPTYPE_BULK;
4128		break;
4129
4130	case USB_ENDPOINT_XFER_INT:
4131		if (dir_in)
4132			hs_ep->periodic = 1;
4133
4134		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4135			hs_ep->interval = 1 << (desc->bInterval - 1);
4136
4137		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4138		break;
4139
4140	case USB_ENDPOINT_XFER_CONTROL:
4141		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4142		break;
4143	}
4144
4145	/*
4146	 * if the hardware has dedicated fifos, we must give each IN EP
4147	 * a unique tx-fifo even if it is non-periodic.
4148	 */
4149	if (dir_in && hsotg->dedicated_fifos) {
4150		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4151		u32 fifo_index = 0;
4152		u32 fifo_size = UINT_MAX;
4153
4154		size = hs_ep->ep.maxpacket * hs_ep->mc;
4155		for (i = 1; i <= fifo_count; ++i) {
4156			if (hsotg->fifo_map & (1 << i))
4157				continue;
4158			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4159			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4160			if (val < size)
4161				continue;
4162			/* Search for smallest acceptable fifo */
4163			if (val < fifo_size) {
4164				fifo_size = val;
4165				fifo_index = i;
4166			}
4167		}
4168		if (!fifo_index) {
4169			dev_err(hsotg->dev,
4170				"%s: No suitable fifo found\n", __func__);
4171			ret = -ENOMEM;
4172			goto error1;
4173		}
4174		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4175		hsotg->fifo_map |= 1 << fifo_index;
4176		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4177		hs_ep->fifo_index = fifo_index;
4178		hs_ep->fifo_size = fifo_size;
4179	}
4180
4181	/* for non control endpoints, set PID to D0 */
4182	if (index && !hs_ep->isochronous)
4183		epctrl |= DXEPCTL_SETD0PID;
4184
4185	/* WA for Full speed ISOC IN in DDMA mode.
4186	 * By Clear NAK status of EP, core will send ZLP
4187	 * to IN token and assert NAK interrupt relying
4188	 * on TxFIFO status only
4189	 */
4190
4191	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4192	    hs_ep->isochronous && dir_in) {
4193		/* The WA applies only to core versions from 2.72a
4194		 * to 4.00a (including both). Also for FS_IOT_1.00a
4195		 * and HS_IOT_1.00a.
4196		 */
4197		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4198
4199		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4200		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4201		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4202		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4203			epctrl |= DXEPCTL_CNAK;
4204	}
4205
4206	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4207		__func__, epctrl);
4208
4209	dwc2_writel(hsotg, epctrl, epctrl_reg);
4210	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4211		__func__, dwc2_readl(hsotg, epctrl_reg));
4212
4213	/* enable the endpoint interrupt */
4214	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4215
4216error1:
4217	spin_unlock_irqrestore(&hsotg->lock, flags);
4218
4219error2:
4220	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4221		dmam_free_coherent(hsotg->dev, desc_num *
4222			sizeof(struct dwc2_dma_desc),
4223			hs_ep->desc_list, hs_ep->desc_list_dma);
4224		hs_ep->desc_list = NULL;
4225	}
4226
4227	return ret;
4228}
4229
4230/**
4231 * dwc2_hsotg_ep_disable - disable given endpoint
4232 * @ep: The endpoint to disable.
4233 */
4234static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4235{
4236	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4237	struct dwc2_hsotg *hsotg = hs_ep->parent;
4238	int dir_in = hs_ep->dir_in;
4239	int index = hs_ep->index;
4240	u32 epctrl_reg;
4241	u32 ctrl;
4242
4243	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4244
4245	if (ep == &hsotg->eps_out[0]->ep) {
4246		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4247		return -EINVAL;
4248	}
4249
4250	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4251		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4252		return -EINVAL;
4253	}
4254
4255	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4256
4257	ctrl = dwc2_readl(hsotg, epctrl_reg);
4258
4259	if (ctrl & DXEPCTL_EPENA)
4260		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4261
4262	ctrl &= ~DXEPCTL_EPENA;
4263	ctrl &= ~DXEPCTL_USBACTEP;
4264	ctrl |= DXEPCTL_SNAK;
4265
4266	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4267	dwc2_writel(hsotg, ctrl, epctrl_reg);
4268
4269	/* disable endpoint interrupts */
4270	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4271
4272	/* terminate all requests with shutdown */
4273	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4274
4275	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4276	hs_ep->fifo_index = 0;
4277	hs_ep->fifo_size = 0;
4278
4279	return 0;
4280}
4281
4282static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4283{
4284	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4285	struct dwc2_hsotg *hsotg = hs_ep->parent;
4286	unsigned long flags;
4287	int ret;
4288
4289	spin_lock_irqsave(&hsotg->lock, flags);
4290	ret = dwc2_hsotg_ep_disable(ep);
4291	spin_unlock_irqrestore(&hsotg->lock, flags);
4292	return ret;
4293}
4294
4295/**
4296 * on_list - check request is on the given endpoint
4297 * @ep: The endpoint to check.
4298 * @test: The request to test if it is on the endpoint.
4299 */
4300static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4301{
4302	struct dwc2_hsotg_req *req, *treq;
4303
4304	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4305		if (req == test)
4306			return true;
4307	}
4308
4309	return false;
4310}
4311
4312/**
4313 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4314 * @ep: The endpoint to dequeue.
4315 * @req: The request to be removed from a queue.
4316 */
4317static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4318{
4319	struct dwc2_hsotg_req *hs_req = our_req(req);
4320	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4321	struct dwc2_hsotg *hs = hs_ep->parent;
4322	unsigned long flags;
4323
4324	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4325
4326	spin_lock_irqsave(&hs->lock, flags);
4327
4328	if (!on_list(hs_ep, hs_req)) {
4329		spin_unlock_irqrestore(&hs->lock, flags);
4330		return -EINVAL;
4331	}
4332
4333	/* Dequeue already started request */
4334	if (req == &hs_ep->req->req)
4335		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4336
4337	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4338	spin_unlock_irqrestore(&hs->lock, flags);
4339
4340	return 0;
4341}
4342
4343/**
4344 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4345 * @ep: The endpoint to be wedged.
4346 *
4347 */
4348static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4349{
4350	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4351	struct dwc2_hsotg *hs = hs_ep->parent;
4352
4353	unsigned long	flags;
4354	int		ret;
4355
4356	spin_lock_irqsave(&hs->lock, flags);
4357	hs_ep->wedged = 1;
4358	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4359	spin_unlock_irqrestore(&hs->lock, flags);
4360
4361	return ret;
4362}
4363
4364/**
4365 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4366 * @ep: The endpoint to set halt.
4367 * @value: Set or unset the halt.
4368 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4369 *       the endpoint is busy processing requests.
4370 *
4371 * We need to stall the endpoint immediately if request comes from set_feature
4372 * protocol command handler.
4373 */
4374static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4375{
4376	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4377	struct dwc2_hsotg *hs = hs_ep->parent;
4378	int index = hs_ep->index;
4379	u32 epreg;
4380	u32 epctl;
4381	u32 xfertype;
4382
4383	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4384
4385	if (index == 0) {
4386		if (value)
4387			dwc2_hsotg_stall_ep0(hs);
4388		else
4389			dev_warn(hs->dev,
4390				 "%s: can't clear halt on ep0\n", __func__);
4391		return 0;
4392	}
4393
4394	if (hs_ep->isochronous) {
4395		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4396		return -EINVAL;
4397	}
4398
4399	if (!now && value && !list_empty(&hs_ep->queue)) {
4400		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4401			ep->name);
4402		return -EAGAIN;
4403	}
4404
4405	if (hs_ep->dir_in) {
4406		epreg = DIEPCTL(index);
4407		epctl = dwc2_readl(hs, epreg);
4408
4409		if (value) {
4410			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4411			if (epctl & DXEPCTL_EPENA)
4412				epctl |= DXEPCTL_EPDIS;
4413		} else {
4414			epctl &= ~DXEPCTL_STALL;
4415			hs_ep->wedged = 0;
4416			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4417			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4418			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4419				epctl |= DXEPCTL_SETD0PID;
4420		}
4421		dwc2_writel(hs, epctl, epreg);
4422	} else {
4423		epreg = DOEPCTL(index);
4424		epctl = dwc2_readl(hs, epreg);
4425
4426		if (value) {
4427			/* Unmask GOUTNAKEFF interrupt */
4428			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4429
4430			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4431				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4432			// STALL bit will be set in GOUTNAKEFF interrupt handler
4433		} else {
4434			epctl &= ~DXEPCTL_STALL;
4435			hs_ep->wedged = 0;
4436			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4437			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4438			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4439				epctl |= DXEPCTL_SETD0PID;
4440			dwc2_writel(hs, epctl, epreg);
4441		}
4442	}
4443
4444	hs_ep->halted = value;
4445	return 0;
4446}
4447
4448/**
4449 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4450 * @ep: The endpoint to set halt.
4451 * @value: Set or unset the halt.
4452 */
4453static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4454{
4455	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4456	struct dwc2_hsotg *hs = hs_ep->parent;
4457	unsigned long flags;
4458	int ret;
4459
4460	spin_lock_irqsave(&hs->lock, flags);
4461	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4462	spin_unlock_irqrestore(&hs->lock, flags);
4463
4464	return ret;
4465}
4466
4467static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4468	.enable		= dwc2_hsotg_ep_enable,
4469	.disable	= dwc2_hsotg_ep_disable_lock,
4470	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4471	.free_request	= dwc2_hsotg_ep_free_request,
4472	.queue		= dwc2_hsotg_ep_queue_lock,
4473	.dequeue	= dwc2_hsotg_ep_dequeue,
4474	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4475	.set_wedge	= dwc2_gadget_ep_set_wedge,
4476	/* note, don't believe we have any call for the fifo routines */
4477};
4478
4479/**
4480 * dwc2_hsotg_init - initialize the usb core
4481 * @hsotg: The driver state
4482 */
4483static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4484{
4485	/* unmask subset of endpoint interrupts */
4486
4487	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4488		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4489		    DIEPMSK);
4490
4491	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4492		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4493		    DOEPMSK);
4494
4495	dwc2_writel(hsotg, 0, DAINTMSK);
4496
4497	/* Be in disconnected state until gadget is registered */
4498	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4499
4500	/* setup fifos */
4501
4502	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4503		dwc2_readl(hsotg, GRXFSIZ),
4504		dwc2_readl(hsotg, GNPTXFSIZ));
4505
4506	dwc2_hsotg_init_fifo(hsotg);
4507
4508	if (using_dma(hsotg))
4509		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4510}
4511
4512/**
4513 * dwc2_hsotg_udc_start - prepare the udc for work
4514 * @gadget: The usb gadget state
4515 * @driver: The usb gadget driver
4516 *
4517 * Perform initialization to prepare udc device and driver
4518 * to work.
4519 */
4520static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4521				struct usb_gadget_driver *driver)
4522{
4523	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4524	unsigned long flags;
4525	int ret;
4526
4527	if (!hsotg) {
4528		pr_err("%s: called with no device\n", __func__);
4529		return -ENODEV;
4530	}
4531
4532	if (!driver) {
4533		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4534		return -EINVAL;
4535	}
4536
4537	if (driver->max_speed < USB_SPEED_FULL)
4538		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4539
4540	if (!driver->setup) {
4541		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4542		return -EINVAL;
4543	}
4544
4545	WARN_ON(hsotg->driver);
4546
4547	hsotg->driver = driver;
4548	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4549	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4550
4551	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
 
4552		ret = dwc2_lowlevel_hw_enable(hsotg);
4553		if (ret)
4554			goto err;
4555	}
4556
4557	if (!IS_ERR_OR_NULL(hsotg->uphy))
4558		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4559
4560	spin_lock_irqsave(&hsotg->lock, flags);
4561	if (dwc2_hw_is_device(hsotg)) {
4562		dwc2_hsotg_init(hsotg);
4563		dwc2_hsotg_core_init_disconnected(hsotg, false);
4564	}
4565
4566	hsotg->enabled = 0;
4567	spin_unlock_irqrestore(&hsotg->lock, flags);
4568
4569	gadget->sg_supported = using_desc_dma(hsotg);
4570	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4571
4572	return 0;
4573
4574err:
4575	hsotg->driver = NULL;
4576	return ret;
4577}
4578
4579/**
4580 * dwc2_hsotg_udc_stop - stop the udc
4581 * @gadget: The usb gadget state
4582 *
4583 * Stop udc hw block and stay tunned for future transmissions
4584 */
4585static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4586{
4587	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4588	unsigned long flags;
4589	int ep;
4590
4591	if (!hsotg)
4592		return -ENODEV;
4593
4594	/* all endpoints should be shutdown */
4595	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4596		if (hsotg->eps_in[ep])
4597			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4598		if (hsotg->eps_out[ep])
4599			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4600	}
4601
4602	spin_lock_irqsave(&hsotg->lock, flags);
4603
4604	hsotg->driver = NULL;
4605	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4606	hsotg->enabled = 0;
4607
4608	spin_unlock_irqrestore(&hsotg->lock, flags);
4609
4610	if (!IS_ERR_OR_NULL(hsotg->uphy))
4611		otg_set_peripheral(hsotg->uphy->otg, NULL);
4612
4613	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
 
4614		dwc2_lowlevel_hw_disable(hsotg);
4615
4616	return 0;
4617}
4618
4619/**
4620 * dwc2_hsotg_gadget_getframe - read the frame number
4621 * @gadget: The usb gadget state
4622 *
4623 * Read the {micro} frame number
4624 */
4625static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4626{
4627	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4628}
4629
4630/**
4631 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4632 * @gadget: The usb gadget state
4633 * @is_selfpowered: Whether the device is self-powered
4634 *
4635 * Set if the device is self or bus powered.
4636 */
4637static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4638				      int is_selfpowered)
4639{
4640	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4641	unsigned long flags;
4642
4643	spin_lock_irqsave(&hsotg->lock, flags);
4644	gadget->is_selfpowered = !!is_selfpowered;
4645	spin_unlock_irqrestore(&hsotg->lock, flags);
4646
4647	return 0;
4648}
4649
4650/**
4651 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4652 * @gadget: The usb gadget state
4653 * @is_on: Current state of the USB PHY
4654 *
4655 * Connect/Disconnect the USB PHY pullup
4656 */
4657static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4658{
4659	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4660	unsigned long flags;
4661
4662	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4663		hsotg->op_state);
4664
4665	/* Don't modify pullup state while in host mode */
4666	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4667		hsotg->enabled = is_on;
4668		return 0;
4669	}
4670
4671	spin_lock_irqsave(&hsotg->lock, flags);
4672	if (is_on) {
4673		hsotg->enabled = 1;
4674		dwc2_hsotg_core_init_disconnected(hsotg, false);
4675		/* Enable ACG feature in device mode,if supported */
4676		dwc2_enable_acg(hsotg);
4677		dwc2_hsotg_core_connect(hsotg);
4678	} else {
4679		dwc2_hsotg_core_disconnect(hsotg);
4680		dwc2_hsotg_disconnect(hsotg);
4681		hsotg->enabled = 0;
4682	}
4683
4684	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4685	spin_unlock_irqrestore(&hsotg->lock, flags);
4686
4687	return 0;
4688}
4689
4690static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4691{
4692	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4693	unsigned long flags;
4694
4695	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4696	spin_lock_irqsave(&hsotg->lock, flags);
4697
4698	/*
4699	 * If controller is in partial power down state, it must exit from
4700	 * that state before being initialized / de-initialized
4701	 */
4702	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4703		/*
4704		 * No need to check the return value as
4705		 * registers are not being restored.
4706		 */
4707		dwc2_exit_partial_power_down(hsotg, 0, false);
4708
4709	if (is_active) {
4710		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4711
4712		dwc2_hsotg_core_init_disconnected(hsotg, false);
4713		if (hsotg->enabled) {
4714			/* Enable ACG feature in device mode,if supported */
4715			dwc2_enable_acg(hsotg);
4716			dwc2_hsotg_core_connect(hsotg);
4717		}
4718	} else {
4719		dwc2_hsotg_core_disconnect(hsotg);
4720		dwc2_hsotg_disconnect(hsotg);
4721	}
4722
4723	spin_unlock_irqrestore(&hsotg->lock, flags);
4724	return 0;
4725}
4726
4727/**
4728 * dwc2_hsotg_vbus_draw - report bMaxPower field
4729 * @gadget: The usb gadget state
4730 * @mA: Amount of current
4731 *
4732 * Report how much power the device may consume to the phy.
4733 */
4734static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4735{
4736	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4737
4738	if (IS_ERR_OR_NULL(hsotg->uphy))
4739		return -ENOTSUPP;
4740	return usb_phy_set_power(hsotg->uphy, mA);
4741}
4742
4743static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4744{
4745	struct dwc2_hsotg *hsotg = to_hsotg(g);
4746	unsigned long		flags;
4747
4748	spin_lock_irqsave(&hsotg->lock, flags);
4749	switch (speed) {
4750	case USB_SPEED_HIGH:
4751		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4752		break;
4753	case USB_SPEED_FULL:
4754		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4755		break;
4756	case USB_SPEED_LOW:
4757		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4758		break;
4759	default:
4760		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4761	}
4762	spin_unlock_irqrestore(&hsotg->lock, flags);
4763}
4764
4765static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4766	.get_frame	= dwc2_hsotg_gadget_getframe,
4767	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4768	.udc_start		= dwc2_hsotg_udc_start,
4769	.udc_stop		= dwc2_hsotg_udc_stop,
4770	.pullup                 = dwc2_hsotg_pullup,
4771	.udc_set_speed		= dwc2_gadget_set_speed,
4772	.vbus_session		= dwc2_hsotg_vbus_session,
4773	.vbus_draw		= dwc2_hsotg_vbus_draw,
4774};
4775
4776/**
4777 * dwc2_hsotg_initep - initialise a single endpoint
4778 * @hsotg: The device state.
4779 * @hs_ep: The endpoint to be initialised.
4780 * @epnum: The endpoint number
4781 * @dir_in: True if direction is in.
4782 *
4783 * Initialise the given endpoint (as part of the probe and device state
4784 * creation) to give to the gadget driver. Setup the endpoint name, any
4785 * direction information and other state that may be required.
4786 */
4787static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4788			      struct dwc2_hsotg_ep *hs_ep,
4789				       int epnum,
4790				       bool dir_in)
4791{
4792	char *dir;
4793
4794	if (epnum == 0)
4795		dir = "";
4796	else if (dir_in)
4797		dir = "in";
4798	else
4799		dir = "out";
4800
4801	hs_ep->dir_in = dir_in;
4802	hs_ep->index = epnum;
4803
4804	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4805
4806	INIT_LIST_HEAD(&hs_ep->queue);
4807	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4808
4809	/* add to the list of endpoints known by the gadget driver */
4810	if (epnum)
4811		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4812
4813	hs_ep->parent = hsotg;
4814	hs_ep->ep.name = hs_ep->name;
4815
4816	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4817		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4818	else
4819		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4820					   epnum ? 1024 : EP0_MPS_LIMIT);
4821	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4822
4823	if (epnum == 0) {
4824		hs_ep->ep.caps.type_control = true;
4825	} else {
4826		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4827			hs_ep->ep.caps.type_iso = true;
4828			hs_ep->ep.caps.type_bulk = true;
4829		}
4830		hs_ep->ep.caps.type_int = true;
4831	}
4832
4833	if (dir_in)
4834		hs_ep->ep.caps.dir_in = true;
4835	else
4836		hs_ep->ep.caps.dir_out = true;
4837
4838	/*
4839	 * if we're using dma, we need to set the next-endpoint pointer
4840	 * to be something valid.
4841	 */
4842
4843	if (using_dma(hsotg)) {
4844		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4845
4846		if (dir_in)
4847			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4848		else
4849			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4850	}
4851}
4852
4853/**
4854 * dwc2_hsotg_hw_cfg - read HW configuration registers
4855 * @hsotg: Programming view of the DWC_otg controller
4856 *
4857 * Read the USB core HW configuration registers
4858 */
4859static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4860{
4861	u32 cfg;
4862	u32 ep_type;
4863	u32 i;
4864
4865	/* check hardware configuration */
4866
4867	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4868
4869	/* Add ep0 */
4870	hsotg->num_of_eps++;
4871
4872	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4873					sizeof(struct dwc2_hsotg_ep),
4874					GFP_KERNEL);
4875	if (!hsotg->eps_in[0])
4876		return -ENOMEM;
4877	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4878	hsotg->eps_out[0] = hsotg->eps_in[0];
4879
4880	cfg = hsotg->hw_params.dev_ep_dirs;
4881	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4882		ep_type = cfg & 3;
4883		/* Direction in or both */
4884		if (!(ep_type & 2)) {
4885			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4886				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4887			if (!hsotg->eps_in[i])
4888				return -ENOMEM;
4889		}
4890		/* Direction out or both */
4891		if (!(ep_type & 1)) {
4892			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4893				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4894			if (!hsotg->eps_out[i])
4895				return -ENOMEM;
4896		}
4897	}
4898
4899	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4900	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4901
4902	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4903		 hsotg->num_of_eps,
4904		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4905		 hsotg->fifo_mem);
4906	return 0;
4907}
4908
4909/**
4910 * dwc2_hsotg_dump - dump state of the udc
4911 * @hsotg: Programming view of the DWC_otg controller
4912 *
4913 */
4914static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4915{
4916#ifdef DEBUG
4917	struct device *dev = hsotg->dev;
4918	u32 val;
4919	int idx;
4920
4921	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4922		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4923		 dwc2_readl(hsotg, DIEPMSK));
4924
4925	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4926		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4927
4928	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4929		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4930
4931	/* show periodic fifo settings */
4932
4933	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4934		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4935		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4936			 val >> FIFOSIZE_DEPTH_SHIFT,
4937			 val & FIFOSIZE_STARTADDR_MASK);
4938	}
4939
4940	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4941		dev_info(dev,
4942			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4943			 dwc2_readl(hsotg, DIEPCTL(idx)),
4944			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4945			 dwc2_readl(hsotg, DIEPDMA(idx)));
4946
4947		val = dwc2_readl(hsotg, DOEPCTL(idx));
4948		dev_info(dev,
4949			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4950			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4951			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4952			 dwc2_readl(hsotg, DOEPDMA(idx)));
4953	}
4954
4955	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4956		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4957#endif
4958}
4959
4960/**
4961 * dwc2_gadget_init - init function for gadget
4962 * @hsotg: Programming view of the DWC_otg controller
4963 *
4964 */
4965int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4966{
4967	struct device *dev = hsotg->dev;
4968	int epnum;
4969	int ret;
4970
4971	/* Dump fifo information */
4972	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4973		hsotg->params.g_np_tx_fifo_size);
4974	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4975
4976	switch (hsotg->params.speed) {
4977	case DWC2_SPEED_PARAM_LOW:
4978		hsotg->gadget.max_speed = USB_SPEED_LOW;
4979		break;
4980	case DWC2_SPEED_PARAM_FULL:
4981		hsotg->gadget.max_speed = USB_SPEED_FULL;
4982		break;
4983	default:
4984		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4985		break;
4986	}
4987
4988	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4989	hsotg->gadget.name = dev_name(dev);
4990	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4991	hsotg->remote_wakeup_allowed = 0;
4992
4993	if (hsotg->params.lpm)
4994		hsotg->gadget.lpm_capable = true;
4995
4996	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4997		hsotg->gadget.is_otg = 1;
4998	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4999		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5000
5001	ret = dwc2_hsotg_hw_cfg(hsotg);
5002	if (ret) {
5003		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5004		return ret;
5005	}
5006
5007	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5008			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5009	if (!hsotg->ctrl_buff)
5010		return -ENOMEM;
5011
5012	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5013			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5014	if (!hsotg->ep0_buff)
5015		return -ENOMEM;
5016
5017	if (using_desc_dma(hsotg)) {
5018		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5019		if (ret < 0)
5020			return ret;
5021	}
5022
5023	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5024			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5025	if (ret < 0) {
5026		dev_err(dev, "cannot claim IRQ for gadget\n");
5027		return ret;
5028	}
5029
5030	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5031
5032	if (hsotg->num_of_eps == 0) {
5033		dev_err(dev, "wrong number of EPs (zero)\n");
5034		return -EINVAL;
5035	}
5036
5037	/* setup endpoint information */
5038
5039	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5040	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5041
5042	/* allocate EP0 request */
5043
5044	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5045						     GFP_KERNEL);
5046	if (!hsotg->ctrl_req) {
5047		dev_err(dev, "failed to allocate ctrl req\n");
5048		return -ENOMEM;
5049	}
5050
5051	/* initialise the endpoints now the core has been initialised */
5052	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5053		if (hsotg->eps_in[epnum])
5054			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5055					  epnum, 1);
5056		if (hsotg->eps_out[epnum])
5057			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5058					  epnum, 0);
5059	}
5060
5061	dwc2_hsotg_dump(hsotg);
5062
5063	return 0;
5064}
5065
5066/**
5067 * dwc2_hsotg_remove - remove function for hsotg driver
5068 * @hsotg: Programming view of the DWC_otg controller
5069 *
5070 */
5071int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5072{
5073	usb_del_gadget_udc(&hsotg->gadget);
5074	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5075
5076	return 0;
5077}
5078
5079int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5080{
5081	unsigned long flags;
5082
5083	if (hsotg->lx_state != DWC2_L0)
5084		return 0;
5085
5086	if (hsotg->driver) {
5087		int ep;
5088
5089		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5090			 hsotg->driver->driver.name);
5091
5092		spin_lock_irqsave(&hsotg->lock, flags);
5093		if (hsotg->enabled)
5094			dwc2_hsotg_core_disconnect(hsotg);
5095		dwc2_hsotg_disconnect(hsotg);
5096		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5097		spin_unlock_irqrestore(&hsotg->lock, flags);
5098
5099		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5100			if (hsotg->eps_in[ep])
5101				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5102			if (hsotg->eps_out[ep])
5103				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5104		}
5105	}
5106
5107	return 0;
5108}
5109
5110int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5111{
5112	unsigned long flags;
5113
5114	if (hsotg->lx_state == DWC2_L2)
5115		return 0;
5116
5117	if (hsotg->driver) {
5118		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5119			 hsotg->driver->driver.name);
5120
5121		spin_lock_irqsave(&hsotg->lock, flags);
5122		dwc2_hsotg_core_init_disconnected(hsotg, false);
5123		if (hsotg->enabled) {
5124			/* Enable ACG feature in device mode,if supported */
5125			dwc2_enable_acg(hsotg);
5126			dwc2_hsotg_core_connect(hsotg);
5127		}
5128		spin_unlock_irqrestore(&hsotg->lock, flags);
5129	}
5130
5131	return 0;
5132}
5133
5134/**
5135 * dwc2_backup_device_registers() - Backup controller device registers.
5136 * When suspending usb bus, registers needs to be backuped
5137 * if controller power is disabled once suspended.
5138 *
5139 * @hsotg: Programming view of the DWC_otg controller
5140 */
5141int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5142{
5143	struct dwc2_dregs_backup *dr;
5144	int i;
5145
5146	dev_dbg(hsotg->dev, "%s\n", __func__);
5147
5148	/* Backup dev regs */
5149	dr = &hsotg->dr_backup;
5150
5151	dr->dcfg = dwc2_readl(hsotg, DCFG);
5152	dr->dctl = dwc2_readl(hsotg, DCTL);
5153	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5154	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5155	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5156
5157	for (i = 0; i < hsotg->num_of_eps; i++) {
5158		/* Backup IN EPs */
5159		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5160
5161		/* Ensure DATA PID is correctly configured */
5162		if (dr->diepctl[i] & DXEPCTL_DPID)
5163			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5164		else
5165			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5166
5167		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5168		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5169
5170		/* Backup OUT EPs */
5171		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5172
5173		/* Ensure DATA PID is correctly configured */
5174		if (dr->doepctl[i] & DXEPCTL_DPID)
5175			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5176		else
5177			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5178
5179		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5180		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5181		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5182	}
5183	dr->valid = true;
5184	return 0;
5185}
5186
5187/**
5188 * dwc2_restore_device_registers() - Restore controller device registers.
5189 * When resuming usb bus, device registers needs to be restored
5190 * if controller power were disabled.
5191 *
5192 * @hsotg: Programming view of the DWC_otg controller
5193 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5194 *
5195 * Return: 0 if successful, negative error code otherwise
5196 */
5197int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5198{
5199	struct dwc2_dregs_backup *dr;
5200	int i;
5201
5202	dev_dbg(hsotg->dev, "%s\n", __func__);
5203
5204	/* Restore dev regs */
5205	dr = &hsotg->dr_backup;
5206	if (!dr->valid) {
5207		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5208			__func__);
5209		return -EINVAL;
5210	}
5211	dr->valid = false;
5212
5213	if (!remote_wakeup)
5214		dwc2_writel(hsotg, dr->dctl, DCTL);
5215
5216	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5217	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5218	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5219
5220	for (i = 0; i < hsotg->num_of_eps; i++) {
5221		/* Restore IN EPs */
5222		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5223		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5224		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5225		/** WA for enabled EPx's IN in DDMA mode. On entering to
5226		 * hibernation wrong value read and saved from DIEPDMAx,
5227		 * as result BNA interrupt asserted on hibernation exit
5228		 * by restoring from saved area.
5229		 */
5230		if (using_desc_dma(hsotg) &&
5231		    (dr->diepctl[i] & DXEPCTL_EPENA))
5232			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5233		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5234		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5235		/* Restore OUT EPs */
5236		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5237		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5238		 * hibernation wrong value read and saved from DOEPDMAx,
5239		 * as result BNA interrupt asserted on hibernation exit
5240		 * by restoring from saved area.
5241		 */
5242		if (using_desc_dma(hsotg) &&
5243		    (dr->doepctl[i] & DXEPCTL_EPENA))
5244			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5245		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5246		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5247	}
5248
5249	return 0;
5250}
5251
5252/**
5253 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5254 *
5255 * @hsotg: Programming view of DWC_otg controller
5256 *
5257 */
5258void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5259{
5260	u32 val;
5261
5262	if (!hsotg->params.lpm)
5263		return;
5264
5265	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5266	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5267	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5268	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5269	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5270	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5271	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5272	dwc2_writel(hsotg, val, GLPMCFG);
5273	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5274
5275	/* Unmask WKUP_ALERT Interrupt */
5276	if (hsotg->params.service_interval)
5277		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5278}
5279
5280/**
5281 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5282 *
5283 * @hsotg: Programming view of DWC_otg controller
5284 *
5285 */
5286void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5287{
5288	u32 val = 0;
5289
5290	val |= GREFCLK_REF_CLK_MODE;
5291	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5292	val |= hsotg->params.sof_cnt_wkup_alert <<
5293	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5294
5295	dwc2_writel(hsotg, val, GREFCLK);
5296	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5297}
5298
5299/**
5300 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5301 *
5302 * @hsotg: Programming view of the DWC_otg controller
5303 *
5304 * Return non-zero if failed to enter to hibernation.
5305 */
5306int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5307{
5308	u32 gpwrdn;
5309	int ret = 0;
5310
5311	/* Change to L2(suspend) state */
5312	hsotg->lx_state = DWC2_L2;
5313	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5314	ret = dwc2_backup_global_registers(hsotg);
5315	if (ret) {
5316		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5317			__func__);
5318		return ret;
5319	}
5320	ret = dwc2_backup_device_registers(hsotg);
5321	if (ret) {
5322		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5323			__func__);
5324		return ret;
5325	}
5326
5327	gpwrdn = GPWRDN_PWRDNRSTN;
5328	gpwrdn |= GPWRDN_PMUACTV;
5329	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5330	udelay(10);
5331
5332	/* Set flag to indicate that we are in hibernation */
5333	hsotg->hibernated = 1;
5334
5335	/* Enable interrupts from wake up logic */
5336	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5337	gpwrdn |= GPWRDN_PMUINTSEL;
5338	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5339	udelay(10);
5340
5341	/* Unmask device mode interrupts in GPWRDN */
5342	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5343	gpwrdn |= GPWRDN_RST_DET_MSK;
5344	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5345	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5346	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5347	udelay(10);
5348
5349	/* Enable Power Down Clamp */
5350	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5351	gpwrdn |= GPWRDN_PWRDNCLMP;
5352	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5353	udelay(10);
5354
5355	/* Switch off VDD */
5356	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5357	gpwrdn |= GPWRDN_PWRDNSWTCH;
5358	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5359	udelay(10);
5360
5361	/* Save gpwrdn register for further usage if stschng interrupt */
5362	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5363	dev_dbg(hsotg->dev, "Hibernation completed\n");
5364
5365	return ret;
5366}
5367
5368/**
5369 * dwc2_gadget_exit_hibernation()
5370 * This function is for exiting from Device mode hibernation by host initiated
5371 * resume/reset and device initiated remote-wakeup.
5372 *
5373 * @hsotg: Programming view of the DWC_otg controller
5374 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5375 * @reset: indicates whether resume is initiated by Reset.
5376 *
5377 * Return non-zero if failed to exit from hibernation.
5378 */
5379int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5380				 int rem_wakeup, int reset)
5381{
5382	u32 pcgcctl;
5383	u32 gpwrdn;
5384	u32 dctl;
5385	int ret = 0;
5386	struct dwc2_gregs_backup *gr;
5387	struct dwc2_dregs_backup *dr;
5388
5389	gr = &hsotg->gr_backup;
5390	dr = &hsotg->dr_backup;
5391
5392	if (!hsotg->hibernated) {
5393		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5394		return 1;
5395	}
5396	dev_dbg(hsotg->dev,
5397		"%s: called with rem_wakeup = %d reset = %d\n",
5398		__func__, rem_wakeup, reset);
5399
5400	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5401
5402	if (!reset) {
5403		/* Clear all pending interupts */
5404		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5405	}
5406
5407	/* De-assert Restore */
5408	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5409	gpwrdn &= ~GPWRDN_RESTORE;
5410	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5411	udelay(10);
5412
5413	if (!rem_wakeup) {
5414		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5416		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417	}
5418
5419	/* Restore GUSBCFG, DCFG and DCTL */
5420	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5421	dwc2_writel(hsotg, dr->dcfg, DCFG);
5422	dwc2_writel(hsotg, dr->dctl, DCTL);
5423
5424	/* On USB Reset, reset device address to zero */
5425	if (reset)
5426		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5427
5428	/* De-assert Wakeup Logic */
5429	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5430	gpwrdn &= ~GPWRDN_PMUACTV;
5431	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5432
5433	if (rem_wakeup) {
5434		udelay(10);
5435		/* Start Remote Wakeup Signaling */
5436		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5437	} else {
5438		udelay(50);
5439		/* Set Device programming done bit */
5440		dctl = dwc2_readl(hsotg, DCTL);
5441		dctl |= DCTL_PWRONPRGDONE;
5442		dwc2_writel(hsotg, dctl, DCTL);
5443	}
5444	/* Wait for interrupts which must be cleared */
5445	mdelay(2);
5446	/* Clear all pending interupts */
5447	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5448
5449	/* Restore global registers */
5450	ret = dwc2_restore_global_registers(hsotg);
5451	if (ret) {
5452		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5453			__func__);
5454		return ret;
5455	}
5456
5457	/* Restore device registers */
5458	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5459	if (ret) {
5460		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5461			__func__);
5462		return ret;
5463	}
5464
5465	if (rem_wakeup) {
5466		mdelay(10);
5467		dctl = dwc2_readl(hsotg, DCTL);
5468		dctl &= ~DCTL_RMTWKUPSIG;
5469		dwc2_writel(hsotg, dctl, DCTL);
5470	}
5471
5472	hsotg->hibernated = 0;
5473	hsotg->lx_state = DWC2_L0;
5474	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5475
5476	return ret;
5477}
5478
5479/**
5480 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5481 * power down.
5482 *
5483 * @hsotg: Programming view of the DWC_otg controller
5484 *
5485 * Return: non-zero if failed to enter device partial power down.
5486 *
5487 * This function is for entering device mode partial power down.
5488 */
5489int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5490{
5491	u32 pcgcctl;
5492	int ret = 0;
5493
5494	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5495
5496	/* Backup all registers */
5497	ret = dwc2_backup_global_registers(hsotg);
5498	if (ret) {
5499		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5500			__func__);
5501		return ret;
5502	}
5503
5504	ret = dwc2_backup_device_registers(hsotg);
5505	if (ret) {
5506		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5507			__func__);
5508		return ret;
5509	}
5510
5511	/*
5512	 * Clear any pending interrupts since dwc2 will not be able to
5513	 * clear them after entering partial_power_down.
5514	 */
5515	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5516
5517	/* Put the controller in low power state */
5518	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5519
5520	pcgcctl |= PCGCTL_PWRCLMP;
5521	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5522	udelay(5);
5523
5524	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5525	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5526	udelay(5);
5527
5528	pcgcctl |= PCGCTL_STOPPCLK;
5529	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5530
5531	/* Set in_ppd flag to 1 as here core enters suspend. */
5532	hsotg->in_ppd = 1;
5533	hsotg->lx_state = DWC2_L2;
5534
5535	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5536
5537	return ret;
5538}
5539
5540/*
5541 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5542 * power down.
5543 *
5544 * @hsotg: Programming view of the DWC_otg controller
5545 * @restore: indicates whether need to restore the registers or not.
5546 *
5547 * Return: non-zero if failed to exit device partial power down.
5548 *
5549 * This function is for exiting from device mode partial power down.
5550 */
5551int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5552					bool restore)
5553{
5554	u32 pcgcctl;
5555	u32 dctl;
5556	struct dwc2_dregs_backup *dr;
5557	int ret = 0;
5558
5559	dr = &hsotg->dr_backup;
5560
5561	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5562
5563	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5564	pcgcctl &= ~PCGCTL_STOPPCLK;
5565	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5566
5567	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5568	pcgcctl &= ~PCGCTL_PWRCLMP;
5569	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5570
5571	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5572	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5573	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5574
5575	udelay(100);
5576	if (restore) {
5577		ret = dwc2_restore_global_registers(hsotg);
5578		if (ret) {
5579			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5580				__func__);
5581			return ret;
5582		}
5583		/* Restore DCFG */
5584		dwc2_writel(hsotg, dr->dcfg, DCFG);
5585
5586		ret = dwc2_restore_device_registers(hsotg, 0);
5587		if (ret) {
5588			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5589				__func__);
5590			return ret;
5591		}
5592	}
5593
5594	/* Set the Power-On Programming done bit */
5595	dctl = dwc2_readl(hsotg, DCTL);
5596	dctl |= DCTL_PWRONPRGDONE;
5597	dwc2_writel(hsotg, dctl, DCTL);
5598
5599	/* Set in_ppd flag to 0 as here core exits from suspend. */
5600	hsotg->in_ppd = 0;
5601	hsotg->lx_state = DWC2_L0;
5602
5603	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5604	return ret;
5605}
5606
5607/**
5608 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5609 *
5610 * @hsotg: Programming view of the DWC_otg controller
5611 *
5612 * Return: non-zero if failed to enter device partial power down.
5613 *
5614 * This function is for entering device mode clock gating.
5615 */
5616void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5617{
5618	u32 pcgctl;
5619
5620	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5621
5622	/* Set the Phy Clock bit as suspend is received. */
5623	pcgctl = dwc2_readl(hsotg, PCGCTL);
5624	pcgctl |= PCGCTL_STOPPCLK;
5625	dwc2_writel(hsotg, pcgctl, PCGCTL);
5626	udelay(5);
5627
5628	/* Set the Gate hclk as suspend is received. */
5629	pcgctl = dwc2_readl(hsotg, PCGCTL);
5630	pcgctl |= PCGCTL_GATEHCLK;
5631	dwc2_writel(hsotg, pcgctl, PCGCTL);
5632	udelay(5);
5633
5634	hsotg->lx_state = DWC2_L2;
5635	hsotg->bus_suspended = true;
5636}
5637
5638/*
5639 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5640 *
5641 * @hsotg: Programming view of the DWC_otg controller
5642 * @rem_wakeup: indicates whether remote wake up is enabled.
5643 *
5644 * This function is for exiting from device mode clock gating.
5645 */
5646void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5647{
5648	u32 pcgctl;
5649	u32 dctl;
5650
5651	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5652
5653	/* Clear the Gate hclk. */
5654	pcgctl = dwc2_readl(hsotg, PCGCTL);
5655	pcgctl &= ~PCGCTL_GATEHCLK;
5656	dwc2_writel(hsotg, pcgctl, PCGCTL);
5657	udelay(5);
5658
5659	/* Phy Clock bit. */
5660	pcgctl = dwc2_readl(hsotg, PCGCTL);
5661	pcgctl &= ~PCGCTL_STOPPCLK;
5662	dwc2_writel(hsotg, pcgctl, PCGCTL);
5663	udelay(5);
5664
5665	if (rem_wakeup) {
5666		/* Set Remote Wakeup Signaling */
5667		dctl = dwc2_readl(hsotg, DCTL);
5668		dctl |= DCTL_RMTWKUPSIG;
5669		dwc2_writel(hsotg, dctl, DCTL);
5670	}
5671
5672	/* Change to L0 state */
5673	call_gadget(hsotg, resume);
5674	hsotg->lx_state = DWC2_L0;
5675	hsotg->bus_suspended = false;
5676}