Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4 *
   5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/pci.h>
  10#include <linux/wait.h>
  11#include <linux/spi/spi.h>
  12#include <linux/interrupt.h>
  13#include <linux/sched.h>
  14#include <linux/spi/spidev.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18
  19#include <linux/dmaengine.h>
  20#include <linux/pch_dma.h>
  21
  22/* Register offsets */
  23#define PCH_SPCR		0x00	/* SPI control register */
  24#define PCH_SPBRR		0x04	/* SPI baud rate register */
  25#define PCH_SPSR		0x08	/* SPI status register */
  26#define PCH_SPDWR		0x0C	/* SPI write data register */
  27#define PCH_SPDRR		0x10	/* SPI read data register */
  28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  29#define PCH_SRST		0x1C	/* SPI reset register */
  30#define PCH_ADDRESS_SIZE	0x20
  31
  32#define PCH_SPSR_TFD		0x000007C0
  33#define PCH_SPSR_RFD		0x0000F800
  34
  35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  37
  38#define PCH_RX_THOLD		7
  39#define PCH_RX_THOLD_MAX	15
  40
  41#define PCH_TX_THOLD		2
  42
  43#define PCH_MAX_BAUDRATE	5000000
  44#define PCH_MAX_FIFO_DEPTH	16
  45
  46#define STATUS_RUNNING		1
  47#define STATUS_EXITING		2
  48#define PCH_SLEEP_TIME		10
  49
  50#define SSN_LOW			0x02U
  51#define SSN_HIGH		0x03U
  52#define SSN_NO_CONTROL		0x00U
  53#define PCH_MAX_CS		0xFF
  54#define PCI_DEVICE_ID_GE_SPI	0x8816
  55
  56#define SPCR_SPE_BIT		(1 << 0)
  57#define SPCR_MSTR_BIT		(1 << 1)
  58#define SPCR_LSBF_BIT		(1 << 4)
  59#define SPCR_CPHA_BIT		(1 << 5)
  60#define SPCR_CPOL_BIT		(1 << 6)
  61#define SPCR_TFIE_BIT		(1 << 8)
  62#define SPCR_RFIE_BIT		(1 << 9)
  63#define SPCR_FIE_BIT		(1 << 10)
  64#define SPCR_ORIE_BIT		(1 << 11)
  65#define SPCR_MDFIE_BIT		(1 << 12)
  66#define SPCR_FICLR_BIT		(1 << 24)
  67#define SPSR_TFI_BIT		(1 << 0)
  68#define SPSR_RFI_BIT		(1 << 1)
  69#define SPSR_FI_BIT		(1 << 2)
  70#define SPSR_ORF_BIT		(1 << 3)
  71#define SPBRR_SIZE_BIT		(1 << 10)
  72
  73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75
  76#define SPCR_RFIC_FIELD		20
  77#define SPCR_TFIC_FIELD		16
  78
  79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  82
  83#define PCH_CLOCK_HZ		50000000
  84#define PCH_MAX_SPBR		1023
  85
  86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  90
  91/*
  92 * Set the number of SPI instance max
  93 * Intel EG20T PCH :		1ch
  94 * LAPIS Semiconductor ML7213 IOH :	2ch
  95 * LAPIS Semiconductor ML7223 IOH :	1ch
  96 * LAPIS Semiconductor ML7831 IOH :	1ch
  97*/
  98#define PCH_SPI_MAX_DEV			2
  99
 100#define PCH_BUF_SIZE		4096
 101#define PCH_DMA_TRANS_SIZE	12
 102
 103static int use_dma = 1;
 104
 105struct pch_spi_dma_ctrl {
 106	struct pci_dev		*dma_dev;
 107	struct dma_async_tx_descriptor	*desc_tx;
 108	struct dma_async_tx_descriptor	*desc_rx;
 109	struct pch_dma_slave		param_tx;
 110	struct pch_dma_slave		param_rx;
 111	struct dma_chan		*chan_tx;
 112	struct dma_chan		*chan_rx;
 113	struct scatterlist		*sg_tx_p;
 114	struct scatterlist		*sg_rx_p;
 115	struct scatterlist		sg_tx;
 116	struct scatterlist		sg_rx;
 117	int				nent;
 118	void				*tx_buf_virt;
 119	void				*rx_buf_virt;
 120	dma_addr_t			tx_buf_dma;
 121	dma_addr_t			rx_buf_dma;
 122};
 123/**
 124 * struct pch_spi_data - Holds the SPI channel specific details
 125 * @io_remap_addr:		The remapped PCI base address
 126 * @io_base_addr:		Base address
 127 * @master:			Pointer to the SPI master structure
 128 * @work:			Reference to work queue handler
 129 * @wait:			Wait queue for waking up upon receiving an
 130 *				interrupt.
 131 * @transfer_complete:		Status of SPI Transfer
 132 * @bcurrent_msg_processing:	Status flag for message processing
 133 * @lock:			Lock for protecting this structure
 134 * @queue:			SPI Message queue
 135 * @status:			Status of the SPI driver
 136 * @bpw_len:			Length of data to be transferred in bits per
 137 *				word
 138 * @transfer_active:		Flag showing active transfer
 139 * @tx_index:			Transmit data count; for bookkeeping during
 140 *				transfer
 141 * @rx_index:			Receive data count; for bookkeeping during
 142 *				transfer
 143 * @pkt_tx_buff:		Buffer for data to be transmitted
 144 * @pkt_rx_buff:		Buffer for received data
 145 * @n_curnt_chip:		The chip number that this SPI driver currently
 146 *				operates on
 147 * @current_chip:		Reference to the current chip that this SPI
 148 *				driver currently operates on
 149 * @current_msg:		The current message that this SPI driver is
 150 *				handling
 151 * @cur_trans:			The current transfer that this SPI driver is
 152 *				handling
 153 * @board_dat:			Reference to the SPI device data structure
 154 * @plat_dev:			platform_device structure
 155 * @ch:				SPI channel number
 156 * @dma:			Local DMA information
 157 * @use_dma:			True if DMA is to be used
 158 * @irq_reg_sts:		Status of IRQ registration
 159 * @save_total_len:		Save length while data is being transferred
 160 */
 161struct pch_spi_data {
 162	void __iomem *io_remap_addr;
 163	unsigned long io_base_addr;
 164	struct spi_master *master;
 165	struct work_struct work;
 166	wait_queue_head_t wait;
 167	u8 transfer_complete;
 168	u8 bcurrent_msg_processing;
 169	spinlock_t lock;
 170	struct list_head queue;
 171	u8 status;
 172	u32 bpw_len;
 173	u8 transfer_active;
 174	u32 tx_index;
 175	u32 rx_index;
 176	u16 *pkt_tx_buff;
 177	u16 *pkt_rx_buff;
 178	u8 n_curnt_chip;
 179	struct spi_device *current_chip;
 180	struct spi_message *current_msg;
 181	struct spi_transfer *cur_trans;
 182	struct pch_spi_board_data *board_dat;
 183	struct platform_device	*plat_dev;
 184	int ch;
 185	struct pch_spi_dma_ctrl dma;
 186	int use_dma;
 187	u8 irq_reg_sts;
 188	int save_total_len;
 189};
 190
 191/**
 192 * struct pch_spi_board_data - Holds the SPI device specific details
 193 * @pdev:		Pointer to the PCI device
 194 * @suspend_sts:	Status of suspend
 195 * @num:		The number of SPI device instance
 196 */
 197struct pch_spi_board_data {
 198	struct pci_dev *pdev;
 199	u8 suspend_sts;
 200	int num;
 201};
 202
 203struct pch_pd_dev_save {
 204	int num;
 205	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 206	struct pch_spi_board_data *board_dat;
 207};
 208
 209static const struct pci_device_id pch_spi_pcidev_id[] = {
 210	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 213	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 214	{ }
 215};
 216
 217/**
 218 * pch_spi_writereg() - Performs  register writes
 219 * @master:	Pointer to struct spi_master.
 220 * @idx:	Register offset.
 221 * @val:	Value to be written to register.
 222 */
 223static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 224{
 225	struct pch_spi_data *data = spi_master_get_devdata(master);
 226	iowrite32(val, (data->io_remap_addr + idx));
 227}
 228
 229/**
 230 * pch_spi_readreg() - Performs register reads
 231 * @master:	Pointer to struct spi_master.
 232 * @idx:	Register offset.
 233 */
 234static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 235{
 236	struct pch_spi_data *data = spi_master_get_devdata(master);
 237	return ioread32(data->io_remap_addr + idx);
 238}
 239
 240static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 241				      u32 set, u32 clr)
 242{
 243	u32 tmp = pch_spi_readreg(master, idx);
 244	tmp = (tmp & ~clr) | set;
 245	pch_spi_writereg(master, idx, tmp);
 246}
 247
 248static void pch_spi_set_master_mode(struct spi_master *master)
 249{
 250	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 251}
 252
 253/**
 254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 255 * @master:	Pointer to struct spi_master.
 256 */
 257static void pch_spi_clear_fifo(struct spi_master *master)
 258{
 259	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 260	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 261}
 262
 263static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 264				void __iomem *io_remap_addr)
 265{
 266	u32 n_read, tx_index, rx_index, bpw_len;
 267	u16 *pkt_rx_buffer, *pkt_tx_buff;
 268	int read_cnt;
 269	u32 reg_spcr_val;
 270	void __iomem *spsr;
 271	void __iomem *spdrr;
 272	void __iomem *spdwr;
 273
 274	spsr = io_remap_addr + PCH_SPSR;
 275	iowrite32(reg_spsr_val, spsr);
 276
 277	if (data->transfer_active) {
 278		rx_index = data->rx_index;
 279		tx_index = data->tx_index;
 280		bpw_len = data->bpw_len;
 281		pkt_rx_buffer = data->pkt_rx_buff;
 282		pkt_tx_buff = data->pkt_tx_buff;
 283
 284		spdrr = io_remap_addr + PCH_SPDRR;
 285		spdwr = io_remap_addr + PCH_SPDWR;
 286
 287		n_read = PCH_READABLE(reg_spsr_val);
 288
 289		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 290			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 291			if (tx_index < bpw_len)
 292				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 293		}
 294
 295		/* disable RFI if not needed */
 296		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 297			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 298			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 299
 300			/* reset rx threshold */
 301			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 302			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 303
 304			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 305		}
 306
 307		/* update counts */
 308		data->tx_index = tx_index;
 309		data->rx_index = rx_index;
 310
 311		/* if transfer complete interrupt */
 312		if (reg_spsr_val & SPSR_FI_BIT) {
 313			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 314				/* disable interrupts */
 315				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 316						   PCH_ALL);
 317
 318				/* transfer is completed;
 319				   inform pch_spi_process_messages */
 320				data->transfer_complete = true;
 321				data->transfer_active = false;
 322				wake_up(&data->wait);
 323			} else {
 324				dev_vdbg(&data->master->dev,
 325					"%s : Transfer is not completed",
 326					__func__);
 327			}
 328		}
 329	}
 330}
 331
 332/**
 333 * pch_spi_handler() - Interrupt handler
 334 * @irq:	The interrupt number.
 335 * @dev_id:	Pointer to struct pch_spi_board_data.
 336 */
 337static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 338{
 339	u32 reg_spsr_val;
 340	void __iomem *spsr;
 341	void __iomem *io_remap_addr;
 342	irqreturn_t ret = IRQ_NONE;
 343	struct pch_spi_data *data = dev_id;
 344	struct pch_spi_board_data *board_dat = data->board_dat;
 345
 346	if (board_dat->suspend_sts) {
 347		dev_dbg(&board_dat->pdev->dev,
 348			"%s returning due to suspend\n", __func__);
 349		return IRQ_NONE;
 350	}
 351
 352	io_remap_addr = data->io_remap_addr;
 353	spsr = io_remap_addr + PCH_SPSR;
 354
 355	reg_spsr_val = ioread32(spsr);
 356
 357	if (reg_spsr_val & SPSR_ORF_BIT) {
 358		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 359		if (data->current_msg->complete) {
 360			data->transfer_complete = true;
 361			data->current_msg->status = -EIO;
 362			data->current_msg->complete(data->current_msg->context);
 363			data->bcurrent_msg_processing = false;
 364			data->current_msg = NULL;
 365			data->cur_trans = NULL;
 366		}
 367	}
 368
 369	if (data->use_dma)
 370		return IRQ_NONE;
 371
 372	/* Check if the interrupt is for SPI device */
 373	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 374		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 375		ret = IRQ_HANDLED;
 376	}
 377
 378	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 379		__func__, ret);
 380
 381	return ret;
 382}
 383
 384/**
 385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 386 * @master:	Pointer to struct spi_master.
 387 * @speed_hz:	Baud rate.
 388 */
 389static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 390{
 391	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 392
 393	/* if baud rate is less than we can support limit it */
 394	if (n_spbr > PCH_MAX_SPBR)
 395		n_spbr = PCH_MAX_SPBR;
 396
 397	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 398}
 399
 400/**
 401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 402 * @master:		Pointer to struct spi_master.
 403 * @bits_per_word:	Bits per word for SPI transfer.
 404 */
 405static void pch_spi_set_bits_per_word(struct spi_master *master,
 406				      u8 bits_per_word)
 407{
 408	if (bits_per_word == 8)
 409		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 410	else
 411		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 412}
 413
 414/**
 415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 416 * @spi:	Pointer to struct spi_device.
 417 */
 418static void pch_spi_setup_transfer(struct spi_device *spi)
 419{
 420	u32 flags = 0;
 421
 422	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 423		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 424		spi->max_speed_hz);
 425	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 426
 427	/* set bits per word */
 428	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 429
 430	if (!(spi->mode & SPI_LSB_FIRST))
 431		flags |= SPCR_LSBF_BIT;
 432	if (spi->mode & SPI_CPOL)
 433		flags |= SPCR_CPOL_BIT;
 434	if (spi->mode & SPI_CPHA)
 435		flags |= SPCR_CPHA_BIT;
 436	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 437			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 438
 439	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 440	pch_spi_clear_fifo(spi->master);
 441}
 442
 443/**
 444 * pch_spi_reset() - Clears SPI registers
 445 * @master:	Pointer to struct spi_master.
 446 */
 447static void pch_spi_reset(struct spi_master *master)
 448{
 449	/* write 1 to reset SPI */
 450	pch_spi_writereg(master, PCH_SRST, 0x1);
 451
 452	/* clear reset */
 453	pch_spi_writereg(master, PCH_SRST, 0x0);
 454}
 455
 456static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 457{
 458	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 459	int retval;
 460	unsigned long flags;
 461
 462	/* We won't process any messages if we have been asked to terminate */
 463	if (data->status == STATUS_EXITING) {
 464		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 465		retval = -ESHUTDOWN;
 466		goto err_out;
 467	}
 468
 469	/* If suspended ,return -EINVAL */
 470	if (data->board_dat->suspend_sts) {
 471		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 472		retval = -EINVAL;
 473		goto err_out;
 474	}
 475
 476	/* set status of message */
 477	pmsg->actual_length = 0;
 478	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 479
 480	pmsg->status = -EINPROGRESS;
 481	spin_lock_irqsave(&data->lock, flags);
 482	/* add message to queue */
 483	list_add_tail(&pmsg->queue, &data->queue);
 484	spin_unlock_irqrestore(&data->lock, flags);
 485
 486	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 487
 488	schedule_work(&data->work);
 489	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 490
 491	retval = 0;
 492
 493err_out:
 494	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 495	return retval;
 496}
 497
 498static inline void pch_spi_select_chip(struct pch_spi_data *data,
 499				       struct spi_device *pspi)
 500{
 501	if (data->current_chip != NULL) {
 502		if (pspi->chip_select != data->n_curnt_chip) {
 503			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 504			data->current_chip = NULL;
 505		}
 506	}
 507
 508	data->current_chip = pspi;
 509
 510	data->n_curnt_chip = data->current_chip->chip_select;
 511
 512	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 513	pch_spi_setup_transfer(pspi);
 514}
 515
 516static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 517{
 518	int size;
 519	u32 n_writes;
 520	int j;
 521	struct spi_message *pmsg, *tmp;
 522	const u8 *tx_buf;
 523	const u16 *tx_sbuf;
 524
 525	/* set baud rate if needed */
 526	if (data->cur_trans->speed_hz) {
 527		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 528		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 529	}
 530
 531	/* set bits per word if needed */
 532	if (data->cur_trans->bits_per_word &&
 533	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 534		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 535		pch_spi_set_bits_per_word(data->master,
 536					  data->cur_trans->bits_per_word);
 537		*bpw = data->cur_trans->bits_per_word;
 538	} else {
 539		*bpw = data->current_msg->spi->bits_per_word;
 540	}
 541
 542	/* reset Tx/Rx index */
 543	data->tx_index = 0;
 544	data->rx_index = 0;
 545
 546	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 547
 548	/* find alloc size */
 549	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 550
 551	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 552	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 553	if (data->pkt_tx_buff != NULL) {
 554		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 555		if (!data->pkt_rx_buff) {
 556			kfree(data->pkt_tx_buff);
 557			data->pkt_tx_buff = NULL;
 558		}
 559	}
 560
 561	if (!data->pkt_rx_buff) {
 562		/* flush queue and set status of all transfers to -ENOMEM */
 563		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 564			pmsg->status = -ENOMEM;
 565
 566			if (pmsg->complete)
 567				pmsg->complete(pmsg->context);
 568
 569			/* delete from queue */
 570			list_del_init(&pmsg->queue);
 571		}
 572		return;
 573	}
 574
 575	/* copy Tx Data */
 576	if (data->cur_trans->tx_buf != NULL) {
 577		if (*bpw == 8) {
 578			tx_buf = data->cur_trans->tx_buf;
 579			for (j = 0; j < data->bpw_len; j++)
 580				data->pkt_tx_buff[j] = *tx_buf++;
 581		} else {
 582			tx_sbuf = data->cur_trans->tx_buf;
 583			for (j = 0; j < data->bpw_len; j++)
 584				data->pkt_tx_buff[j] = *tx_sbuf++;
 585		}
 586	}
 587
 588	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 589	n_writes = data->bpw_len;
 590	if (n_writes > PCH_MAX_FIFO_DEPTH)
 591		n_writes = PCH_MAX_FIFO_DEPTH;
 592
 593	dev_dbg(&data->master->dev,
 594		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 595		__func__);
 596	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 597
 598	for (j = 0; j < n_writes; j++)
 599		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 600
 601	/* update tx_index */
 602	data->tx_index = j;
 603
 604	/* reset transfer complete flag */
 605	data->transfer_complete = false;
 606	data->transfer_active = true;
 607}
 608
 609static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 610{
 611	struct spi_message *pmsg, *tmp;
 612	dev_dbg(&data->master->dev, "%s called\n", __func__);
 613	/* Invoke complete callback
 614	 * [To the spi core..indicating end of transfer] */
 615	data->current_msg->status = 0;
 616
 617	if (data->current_msg->complete) {
 618		dev_dbg(&data->master->dev,
 619			"%s:Invoking callback of SPI core\n", __func__);
 620		data->current_msg->complete(data->current_msg->context);
 621	}
 622
 623	/* update status in global variable */
 624	data->bcurrent_msg_processing = false;
 625
 626	dev_dbg(&data->master->dev,
 627		"%s:data->bcurrent_msg_processing = false\n", __func__);
 628
 629	data->current_msg = NULL;
 630	data->cur_trans = NULL;
 631
 632	/* check if we have items in list and not suspending
 633	 * return 1 if list empty */
 634	if ((list_empty(&data->queue) == 0) &&
 635	    (!data->board_dat->suspend_sts) &&
 636	    (data->status != STATUS_EXITING)) {
 637		/* We have some more work to do (either there is more tranint
 638		 * bpw;sfer requests in the current message or there are
 639		 *more messages)
 640		 */
 641		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 642		schedule_work(&data->work);
 643	} else if (data->board_dat->suspend_sts ||
 644		   data->status == STATUS_EXITING) {
 645		dev_dbg(&data->master->dev,
 646			"%s suspend/remove initiated, flushing queue\n",
 647			__func__);
 648		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 649			pmsg->status = -EIO;
 650
 651			if (pmsg->complete)
 652				pmsg->complete(pmsg->context);
 653
 654			/* delete from queue */
 655			list_del_init(&pmsg->queue);
 656		}
 657	}
 658}
 659
 660static void pch_spi_set_ir(struct pch_spi_data *data)
 661{
 662	/* enable interrupts, set threshold, enable SPI */
 663	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 664		/* set receive threshold to PCH_RX_THOLD */
 665		pch_spi_setclr_reg(data->master, PCH_SPCR,
 666				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 667				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 668				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 669				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 670	else
 671		/* set receive threshold to maximum */
 672		pch_spi_setclr_reg(data->master, PCH_SPCR,
 673				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 674				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 675				   SPCR_SPE_BIT,
 676				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 677
 678	/* Wait until the transfer completes; go to sleep after
 679				 initiating the transfer. */
 680	dev_dbg(&data->master->dev,
 681		"%s:waiting for transfer to get over\n", __func__);
 682
 683	wait_event_interruptible(data->wait, data->transfer_complete);
 684
 685	/* clear all interrupts */
 686	pch_spi_writereg(data->master, PCH_SPSR,
 687			 pch_spi_readreg(data->master, PCH_SPSR));
 688	/* Disable interrupts and SPI transfer */
 689	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 690	/* clear FIFO */
 691	pch_spi_clear_fifo(data->master);
 692}
 693
 694static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 695{
 696	int j;
 697	u8 *rx_buf;
 698	u16 *rx_sbuf;
 699
 700	/* copy Rx Data */
 701	if (!data->cur_trans->rx_buf)
 702		return;
 703
 704	if (bpw == 8) {
 705		rx_buf = data->cur_trans->rx_buf;
 706		for (j = 0; j < data->bpw_len; j++)
 707			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 708	} else {
 709		rx_sbuf = data->cur_trans->rx_buf;
 710		for (j = 0; j < data->bpw_len; j++)
 711			*rx_sbuf++ = data->pkt_rx_buff[j];
 712	}
 713}
 714
 715static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 716{
 717	int j;
 718	u8 *rx_buf;
 719	u16 *rx_sbuf;
 720	const u8 *rx_dma_buf;
 721	const u16 *rx_dma_sbuf;
 722
 723	/* copy Rx Data */
 724	if (!data->cur_trans->rx_buf)
 725		return;
 726
 727	if (bpw == 8) {
 728		rx_buf = data->cur_trans->rx_buf;
 729		rx_dma_buf = data->dma.rx_buf_virt;
 730		for (j = 0; j < data->bpw_len; j++)
 731			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 732		data->cur_trans->rx_buf = rx_buf;
 733	} else {
 734		rx_sbuf = data->cur_trans->rx_buf;
 735		rx_dma_sbuf = data->dma.rx_buf_virt;
 736		for (j = 0; j < data->bpw_len; j++)
 737			*rx_sbuf++ = *rx_dma_sbuf++;
 738		data->cur_trans->rx_buf = rx_sbuf;
 739	}
 740}
 741
 742static int pch_spi_start_transfer(struct pch_spi_data *data)
 743{
 744	struct pch_spi_dma_ctrl *dma;
 745	unsigned long flags;
 746	int rtn;
 747
 748	dma = &data->dma;
 749
 750	spin_lock_irqsave(&data->lock, flags);
 751
 752	/* disable interrupts, SPI set enable */
 753	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 754
 755	spin_unlock_irqrestore(&data->lock, flags);
 756
 757	/* Wait until the transfer completes; go to sleep after
 758				 initiating the transfer. */
 759	dev_dbg(&data->master->dev,
 760		"%s:waiting for transfer to get over\n", __func__);
 761	rtn = wait_event_interruptible_timeout(data->wait,
 762					       data->transfer_complete,
 763					       msecs_to_jiffies(2 * HZ));
 764	if (!rtn)
 765		dev_err(&data->master->dev,
 766			"%s wait-event timeout\n", __func__);
 767
 768	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 769			    DMA_FROM_DEVICE);
 770
 771	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 772			    DMA_FROM_DEVICE);
 773	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 774
 775	async_tx_ack(dma->desc_rx);
 776	async_tx_ack(dma->desc_tx);
 777	kfree(dma->sg_tx_p);
 778	kfree(dma->sg_rx_p);
 779
 780	spin_lock_irqsave(&data->lock, flags);
 781
 782	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 783	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 784			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 785			   SPCR_SPE_BIT);
 786	/* clear all interrupts */
 787	pch_spi_writereg(data->master, PCH_SPSR,
 788			 pch_spi_readreg(data->master, PCH_SPSR));
 789	/* clear FIFO */
 790	pch_spi_clear_fifo(data->master);
 791
 792	spin_unlock_irqrestore(&data->lock, flags);
 793
 794	return rtn;
 795}
 796
 797static void pch_dma_rx_complete(void *arg)
 798{
 799	struct pch_spi_data *data = arg;
 800
 801	/* transfer is completed;inform pch_spi_process_messages_dma */
 802	data->transfer_complete = true;
 803	wake_up_interruptible(&data->wait);
 804}
 805
 806static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 807{
 808	struct pch_dma_slave *param = slave;
 809
 810	if ((chan->chan_id == param->chan_id) &&
 811	    (param->dma_dev == chan->device->dev)) {
 812		chan->private = param;
 813		return true;
 814	} else {
 815		return false;
 816	}
 817}
 818
 819static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 820{
 821	dma_cap_mask_t mask;
 822	struct dma_chan *chan;
 823	struct pci_dev *dma_dev;
 824	struct pch_dma_slave *param;
 825	struct pch_spi_dma_ctrl *dma;
 826	unsigned int width;
 827
 828	if (bpw == 8)
 829		width = PCH_DMA_WIDTH_1_BYTE;
 830	else
 831		width = PCH_DMA_WIDTH_2_BYTES;
 832
 833	dma = &data->dma;
 834	dma_cap_zero(mask);
 835	dma_cap_set(DMA_SLAVE, mask);
 836
 837	/* Get DMA's dev information */
 838	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 839			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 840
 841	/* Set Tx DMA */
 842	param = &dma->param_tx;
 843	param->dma_dev = &dma_dev->dev;
 844	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
 845	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 846	param->width = width;
 847	chan = dma_request_channel(mask, pch_spi_filter, param);
 848	if (!chan) {
 849		dev_err(&data->master->dev,
 850			"ERROR: dma_request_channel FAILS(Tx)\n");
 851		goto out;
 852	}
 853	dma->chan_tx = chan;
 854
 855	/* Set Rx DMA */
 856	param = &dma->param_rx;
 857	param->dma_dev = &dma_dev->dev;
 858	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
 859	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 860	param->width = width;
 861	chan = dma_request_channel(mask, pch_spi_filter, param);
 862	if (!chan) {
 863		dev_err(&data->master->dev,
 864			"ERROR: dma_request_channel FAILS(Rx)\n");
 865		dma_release_channel(dma->chan_tx);
 866		dma->chan_tx = NULL;
 867		goto out;
 868	}
 869	dma->chan_rx = chan;
 870
 871	dma->dma_dev = dma_dev;
 872	return;
 873out:
 874	pci_dev_put(dma_dev);
 875	data->use_dma = 0;
 876}
 877
 878static void pch_spi_release_dma(struct pch_spi_data *data)
 879{
 880	struct pch_spi_dma_ctrl *dma;
 881
 882	dma = &data->dma;
 883	if (dma->chan_tx) {
 884		dma_release_channel(dma->chan_tx);
 885		dma->chan_tx = NULL;
 886	}
 887	if (dma->chan_rx) {
 888		dma_release_channel(dma->chan_rx);
 889		dma->chan_rx = NULL;
 890	}
 891
 892	pci_dev_put(dma->dma_dev);
 893}
 894
 895static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 896{
 897	const u8 *tx_buf;
 898	const u16 *tx_sbuf;
 899	u8 *tx_dma_buf;
 900	u16 *tx_dma_sbuf;
 901	struct scatterlist *sg;
 902	struct dma_async_tx_descriptor *desc_tx;
 903	struct dma_async_tx_descriptor *desc_rx;
 904	int num;
 905	int i;
 906	int size;
 907	int rem;
 908	int head;
 909	unsigned long flags;
 910	struct pch_spi_dma_ctrl *dma;
 911
 912	dma = &data->dma;
 913
 914	/* set baud rate if needed */
 915	if (data->cur_trans->speed_hz) {
 916		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 917		spin_lock_irqsave(&data->lock, flags);
 918		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 919		spin_unlock_irqrestore(&data->lock, flags);
 920	}
 921
 922	/* set bits per word if needed */
 923	if (data->cur_trans->bits_per_word &&
 924	    (data->current_msg->spi->bits_per_word !=
 925	     data->cur_trans->bits_per_word)) {
 926		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 927		spin_lock_irqsave(&data->lock, flags);
 928		pch_spi_set_bits_per_word(data->master,
 929					  data->cur_trans->bits_per_word);
 930		spin_unlock_irqrestore(&data->lock, flags);
 931		*bpw = data->cur_trans->bits_per_word;
 932	} else {
 933		*bpw = data->current_msg->spi->bits_per_word;
 934	}
 935	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 936
 937	if (data->bpw_len > PCH_BUF_SIZE) {
 938		data->bpw_len = PCH_BUF_SIZE;
 939		data->cur_trans->len -= PCH_BUF_SIZE;
 940	}
 941
 942	/* copy Tx Data */
 943	if (data->cur_trans->tx_buf != NULL) {
 944		if (*bpw == 8) {
 945			tx_buf = data->cur_trans->tx_buf;
 946			tx_dma_buf = dma->tx_buf_virt;
 947			for (i = 0; i < data->bpw_len; i++)
 948				*tx_dma_buf++ = *tx_buf++;
 949		} else {
 950			tx_sbuf = data->cur_trans->tx_buf;
 951			tx_dma_sbuf = dma->tx_buf_virt;
 952			for (i = 0; i < data->bpw_len; i++)
 953				*tx_dma_sbuf++ = *tx_sbuf++;
 954		}
 955	}
 956
 957	/* Calculate Rx parameter for DMA transmitting */
 958	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 959		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 960			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 961			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 962		} else {
 963			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 964			rem = PCH_DMA_TRANS_SIZE;
 965		}
 966		size = PCH_DMA_TRANS_SIZE;
 967	} else {
 968		num = 1;
 969		size = data->bpw_len;
 970		rem = data->bpw_len;
 971	}
 972	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
 973		__func__, num, size, rem);
 974	spin_lock_irqsave(&data->lock, flags);
 975
 976	/* set receive fifo threshold and transmit fifo threshold */
 977	pch_spi_setclr_reg(data->master, PCH_SPCR,
 978			   ((size - 1) << SPCR_RFIC_FIELD) |
 979			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 980			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 981
 982	spin_unlock_irqrestore(&data->lock, flags);
 983
 984	/* RX */
 985	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
 986	if (!dma->sg_rx_p)
 987		return;
 988
 989	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
 990	/* offset, length setting */
 991	sg = dma->sg_rx_p;
 992	for (i = 0; i < num; i++, sg++) {
 993		if (i == (num - 2)) {
 994			sg->offset = size * i;
 995			sg->offset = sg->offset * (*bpw / 8);
 996			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
 997				    sg->offset);
 998			sg_dma_len(sg) = rem;
 999		} else if (i == (num - 1)) {
1000			sg->offset = size * (i - 1) + rem;
1001			sg->offset = sg->offset * (*bpw / 8);
1002			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003				    sg->offset);
1004			sg_dma_len(sg) = size;
1005		} else {
1006			sg->offset = size * i;
1007			sg->offset = sg->offset * (*bpw / 8);
1008			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009				    sg->offset);
1010			sg_dma_len(sg) = size;
1011		}
1012		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013	}
1014	sg = dma->sg_rx_p;
1015	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016					num, DMA_DEV_TO_MEM,
1017					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018	if (!desc_rx) {
1019		dev_err(&data->master->dev,
1020			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021		return;
1022	}
1023	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1024	desc_rx->callback = pch_dma_rx_complete;
1025	desc_rx->callback_param = data;
1026	dma->nent = num;
1027	dma->desc_rx = desc_rx;
1028
1029	/* Calculate Tx parameter for DMA transmitting */
1030	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035		} else {
1036			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038			      PCH_DMA_TRANS_SIZE - head;
1039		}
1040		size = PCH_DMA_TRANS_SIZE;
1041	} else {
1042		num = 1;
1043		size = data->bpw_len;
1044		rem = data->bpw_len;
1045		head = 0;
1046	}
1047
1048	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049	if (!dma->sg_tx_p)
1050		return;
1051
1052	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_tx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == 0) {
1057			sg->offset = 0;
1058			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059				    sg->offset);
1060			sg_dma_len(sg) = size + head;
1061		} else if (i == (num - 1)) {
1062			sg->offset = head + size * i;
1063			sg->offset = sg->offset * (*bpw / 8);
1064			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065				    sg->offset);
1066			sg_dma_len(sg) = rem;
1067		} else {
1068			sg->offset = head + size * i;
1069			sg->offset = sg->offset * (*bpw / 8);
1070			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071				    sg->offset);
1072			sg_dma_len(sg) = size;
1073		}
1074		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075	}
1076	sg = dma->sg_tx_p;
1077	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078					sg, num, DMA_MEM_TO_DEV,
1079					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080	if (!desc_tx) {
1081		dev_err(&data->master->dev,
1082			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083		return;
1084	}
1085	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1086	desc_tx->callback = NULL;
1087	desc_tx->callback_param = data;
1088	dma->nent = num;
1089	dma->desc_tx = desc_tx;
1090
1091	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092
1093	spin_lock_irqsave(&data->lock, flags);
1094	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1095	desc_rx->tx_submit(desc_rx);
1096	desc_tx->tx_submit(desc_tx);
1097	spin_unlock_irqrestore(&data->lock, flags);
1098
1099	/* reset transfer complete flag */
1100	data->transfer_complete = false;
1101}
1102
1103static void pch_spi_process_messages(struct work_struct *pwork)
1104{
1105	struct spi_message *pmsg, *tmp;
1106	struct pch_spi_data *data;
1107	int bpw;
1108
1109	data = container_of(pwork, struct pch_spi_data, work);
1110	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1111
1112	spin_lock(&data->lock);
1113	/* check if suspend has been initiated;if yes flush queue */
1114	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115		dev_dbg(&data->master->dev,
1116			"%s suspend/remove initiated, flushing queue\n", __func__);
1117		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118			pmsg->status = -EIO;
1119
1120			if (pmsg->complete) {
1121				spin_unlock(&data->lock);
1122				pmsg->complete(pmsg->context);
1123				spin_lock(&data->lock);
1124			}
1125
1126			/* delete from queue */
1127			list_del_init(&pmsg->queue);
1128		}
1129
1130		spin_unlock(&data->lock);
1131		return;
1132	}
1133
1134	data->bcurrent_msg_processing = true;
1135	dev_dbg(&data->master->dev,
1136		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138	/* Get the message from the queue and delete it from there. */
1139	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140					queue);
1141
1142	list_del_init(&data->current_msg->queue);
1143
1144	data->current_msg->status = 0;
1145
1146	pch_spi_select_chip(data, data->current_msg->spi);
1147
1148	spin_unlock(&data->lock);
1149
1150	if (data->use_dma)
1151		pch_spi_request_dma(data,
1152				    data->current_msg->spi->bits_per_word);
1153	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1154	do {
1155		int cnt;
1156		/* If we are already processing a message get the next
1157		transfer structure from the message otherwise retrieve
1158		the 1st transfer request from the message. */
1159		spin_lock(&data->lock);
1160		if (data->cur_trans == NULL) {
1161			data->cur_trans =
1162				list_entry(data->current_msg->transfers.next,
1163					   struct spi_transfer, transfer_list);
1164			dev_dbg(&data->master->dev,
1165				"%s :Getting 1st transfer message\n",
1166				__func__);
1167		} else {
1168			data->cur_trans =
1169				list_entry(data->cur_trans->transfer_list.next,
1170					   struct spi_transfer, transfer_list);
1171			dev_dbg(&data->master->dev,
1172				"%s :Getting next transfer message\n",
1173				__func__);
1174		}
1175		spin_unlock(&data->lock);
1176
1177		if (!data->cur_trans->len)
1178			goto out;
1179		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180		data->save_total_len = data->cur_trans->len;
1181		if (data->use_dma) {
1182			int i;
1183			char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185			for (i = 0; i < cnt; i++) {
1186				pch_spi_handle_dma(data, &bpw);
1187				if (!pch_spi_start_transfer(data)) {
1188					data->transfer_complete = true;
1189					data->current_msg->status = -EIO;
1190					data->current_msg->complete
1191						   (data->current_msg->context);
1192					data->bcurrent_msg_processing = false;
1193					data->current_msg = NULL;
1194					data->cur_trans = NULL;
1195					goto out;
1196				}
1197				pch_spi_copy_rx_data_for_dma(data, bpw);
1198			}
1199			data->cur_trans->rx_buf = save_rx_buf;
1200		} else {
1201			pch_spi_set_tx(data, &bpw);
1202			pch_spi_set_ir(data);
1203			pch_spi_copy_rx_data(data, bpw);
1204			kfree(data->pkt_rx_buff);
1205			data->pkt_rx_buff = NULL;
1206			kfree(data->pkt_tx_buff);
1207			data->pkt_tx_buff = NULL;
1208		}
1209		/* increment message count */
1210		data->cur_trans->len = data->save_total_len;
1211		data->current_msg->actual_length += data->cur_trans->len;
1212
1213		dev_dbg(&data->master->dev,
1214			"%s:data->current_msg->actual_length=%d\n",
1215			__func__, data->current_msg->actual_length);
1216
1217		spi_transfer_delay_exec(data->cur_trans);
1218
1219		spin_lock(&data->lock);
1220
1221		/* No more transfer in this message. */
1222		if ((data->cur_trans->transfer_list.next) ==
1223		    &(data->current_msg->transfers)) {
1224			pch_spi_nomore_transfer(data);
1225		}
1226
1227		spin_unlock(&data->lock);
1228
1229	} while (data->cur_trans != NULL);
1230
1231out:
1232	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1233	if (data->use_dma)
1234		pch_spi_release_dma(data);
1235}
1236
1237static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238				   struct pch_spi_data *data)
1239{
1240	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242	flush_work(&data->work);
1243}
1244
1245static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246				 struct pch_spi_data *data)
1247{
1248	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
1250	/* reset PCH SPI h/w */
1251	pch_spi_reset(data->master);
1252	dev_dbg(&board_dat->pdev->dev,
1253		"%s pch_spi_reset invoked successfully\n", __func__);
1254
1255	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257	return 0;
1258}
1259
1260static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261			     struct pch_spi_data *data)
1262{
1263	struct pch_spi_dma_ctrl *dma;
1264
1265	dma = &data->dma;
1266	if (dma->tx_buf_dma)
1267		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268				  dma->tx_buf_virt, dma->tx_buf_dma);
1269	if (dma->rx_buf_dma)
1270		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271				  dma->rx_buf_virt, dma->rx_buf_dma);
1272}
1273
1274static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275			      struct pch_spi_data *data)
1276{
1277	struct pch_spi_dma_ctrl *dma;
1278	int ret;
1279
1280	dma = &data->dma;
1281	ret = 0;
1282	/* Get Consistent memory for Tx DMA */
1283	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285	if (!dma->tx_buf_virt)
1286		ret = -ENOMEM;
1287
1288	/* Get Consistent memory for Rx DMA */
1289	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291	if (!dma->rx_buf_virt)
1292		ret = -ENOMEM;
1293
1294	return ret;
1295}
1296
1297static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298{
1299	int ret;
1300	struct spi_master *master;
1301	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302	struct pch_spi_data *data;
1303
1304	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306	master = spi_alloc_master(&board_dat->pdev->dev,
1307				  sizeof(struct pch_spi_data));
1308	if (!master) {
1309		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1310			plat_dev->id);
1311		return -ENOMEM;
1312	}
1313
1314	data = spi_master_get_devdata(master);
1315	data->master = master;
1316
1317	platform_set_drvdata(plat_dev, data);
1318
1319	/* baseaddress + address offset) */
1320	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321					 PCH_ADDRESS_SIZE * plat_dev->id;
1322	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323	if (!data->io_remap_addr) {
1324		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325		ret = -ENOMEM;
1326		goto err_pci_iomap;
1327	}
1328	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331		plat_dev->id, data->io_remap_addr);
1332
1333	/* initialize members of SPI master */
1334	master->num_chipselect = PCH_MAX_CS;
1335	master->transfer = pch_spi_transfer;
1336	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338	master->max_speed_hz = PCH_MAX_BAUDRATE;
1339	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341	data->board_dat = board_dat;
1342	data->plat_dev = plat_dev;
1343	data->n_curnt_chip = 255;
1344	data->status = STATUS_RUNNING;
1345	data->ch = plat_dev->id;
1346	data->use_dma = use_dma;
1347
1348	INIT_LIST_HEAD(&data->queue);
1349	spin_lock_init(&data->lock);
1350	INIT_WORK(&data->work, pch_spi_process_messages);
1351	init_waitqueue_head(&data->wait);
1352
1353	ret = pch_spi_get_resources(board_dat, data);
1354	if (ret) {
1355		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356		goto err_spi_get_resources;
1357	}
1358
1359	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360			  IRQF_SHARED, KBUILD_MODNAME, data);
1361	if (ret) {
1362		dev_err(&plat_dev->dev,
1363			"%s request_irq failed\n", __func__);
1364		goto err_request_irq;
1365	}
1366	data->irq_reg_sts = true;
1367
1368	pch_spi_set_master_mode(master);
1369
1370	if (use_dma) {
1371		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372		ret = pch_alloc_dma_buf(board_dat, data);
1373		if (ret)
1374			goto err_spi_register_master;
1375	}
1376
1377	ret = spi_register_master(master);
1378	if (ret != 0) {
1379		dev_err(&plat_dev->dev,
1380			"%s spi_register_master FAILED\n", __func__);
1381		goto err_spi_register_master;
1382	}
1383
1384	return 0;
1385
1386err_spi_register_master:
1387	pch_free_dma_buf(board_dat, data);
1388	free_irq(board_dat->pdev->irq, data);
1389err_request_irq:
1390	pch_spi_free_resources(board_dat, data);
1391err_spi_get_resources:
1392	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393err_pci_iomap:
1394	spi_master_put(master);
1395
1396	return ret;
1397}
1398
1399static int pch_spi_pd_remove(struct platform_device *plat_dev)
1400{
1401	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403	int count;
1404	unsigned long flags;
1405
1406	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407		__func__, plat_dev->id, board_dat->pdev->irq);
1408
1409	if (use_dma)
1410		pch_free_dma_buf(board_dat, data);
1411
1412	/* check for any pending messages; no action is taken if the queue
1413	 * is still full; but at least we tried.  Unload anyway */
1414	count = 500;
1415	spin_lock_irqsave(&data->lock, flags);
1416	data->status = STATUS_EXITING;
1417	while ((list_empty(&data->queue) == 0) && --count) {
1418		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419			__func__);
1420		spin_unlock_irqrestore(&data->lock, flags);
1421		msleep(PCH_SLEEP_TIME);
1422		spin_lock_irqsave(&data->lock, flags);
1423	}
1424	spin_unlock_irqrestore(&data->lock, flags);
1425
1426	pch_spi_free_resources(board_dat, data);
1427	/* disable interrupts & free IRQ */
1428	if (data->irq_reg_sts) {
1429		/* disable interrupts */
1430		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1431		data->irq_reg_sts = false;
1432		free_irq(board_dat->pdev->irq, data);
1433	}
1434
1435	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436	spi_unregister_master(data->master);
1437
1438	return 0;
1439}
1440#ifdef CONFIG_PM
1441static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1442			      pm_message_t state)
1443{
1444	u8 count;
1445	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1446	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1447
1448	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1449
1450	if (!board_dat) {
1451		dev_err(&pd_dev->dev,
1452			"%s pci_get_drvdata returned NULL\n", __func__);
1453		return -EFAULT;
1454	}
1455
1456	/* check if the current message is processed:
1457	   Only after thats done the transfer will be suspended */
1458	count = 255;
1459	while ((--count) > 0) {
1460		if (!(data->bcurrent_msg_processing))
1461			break;
1462		msleep(PCH_SLEEP_TIME);
1463	}
1464
1465	/* Free IRQ */
1466	if (data->irq_reg_sts) {
1467		/* disable all interrupts */
1468		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1469		pch_spi_reset(data->master);
1470		free_irq(board_dat->pdev->irq, data);
1471
1472		data->irq_reg_sts = false;
1473		dev_dbg(&pd_dev->dev,
1474			"%s free_irq invoked successfully.\n", __func__);
1475	}
1476
1477	return 0;
1478}
1479
1480static int pch_spi_pd_resume(struct platform_device *pd_dev)
1481{
1482	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1483	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1484	int retval;
1485
1486	if (!board_dat) {
1487		dev_err(&pd_dev->dev,
1488			"%s pci_get_drvdata returned NULL\n", __func__);
1489		return -EFAULT;
1490	}
1491
1492	if (!data->irq_reg_sts) {
1493		/* register IRQ */
1494		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1495				     IRQF_SHARED, KBUILD_MODNAME, data);
1496		if (retval < 0) {
1497			dev_err(&pd_dev->dev,
1498				"%s request_irq failed\n", __func__);
1499			return retval;
1500		}
1501
1502		/* reset PCH SPI h/w */
1503		pch_spi_reset(data->master);
1504		pch_spi_set_master_mode(data->master);
1505		data->irq_reg_sts = true;
1506	}
1507	return 0;
1508}
1509#else
1510#define pch_spi_pd_suspend NULL
1511#define pch_spi_pd_resume NULL
1512#endif
1513
1514static struct platform_driver pch_spi_pd_driver = {
1515	.driver = {
1516		.name = "pch-spi",
1517	},
1518	.probe = pch_spi_pd_probe,
1519	.remove = pch_spi_pd_remove,
1520	.suspend = pch_spi_pd_suspend,
1521	.resume = pch_spi_pd_resume
1522};
1523
1524static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1525{
1526	struct pch_spi_board_data *board_dat;
1527	struct platform_device *pd_dev = NULL;
1528	int retval;
1529	int i;
1530	struct pch_pd_dev_save *pd_dev_save;
1531
1532	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1533	if (!pd_dev_save)
1534		return -ENOMEM;
1535
1536	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1537	if (!board_dat) {
1538		retval = -ENOMEM;
1539		goto err_no_mem;
1540	}
1541
1542	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1543	if (retval) {
1544		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1545		goto pci_request_regions;
1546	}
1547
1548	board_dat->pdev = pdev;
1549	board_dat->num = id->driver_data;
1550	pd_dev_save->num = id->driver_data;
1551	pd_dev_save->board_dat = board_dat;
1552
1553	retval = pci_enable_device(pdev);
1554	if (retval) {
1555		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1556		goto pci_enable_device;
1557	}
1558
1559	for (i = 0; i < board_dat->num; i++) {
1560		pd_dev = platform_device_alloc("pch-spi", i);
1561		if (!pd_dev) {
1562			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1563			retval = -ENOMEM;
1564			goto err_platform_device;
1565		}
1566		pd_dev_save->pd_save[i] = pd_dev;
1567		pd_dev->dev.parent = &pdev->dev;
1568
1569		retval = platform_device_add_data(pd_dev, board_dat,
1570						  sizeof(*board_dat));
1571		if (retval) {
1572			dev_err(&pdev->dev,
1573				"platform_device_add_data failed\n");
1574			platform_device_put(pd_dev);
1575			goto err_platform_device;
1576		}
1577
1578		retval = platform_device_add(pd_dev);
1579		if (retval) {
1580			dev_err(&pdev->dev, "platform_device_add failed\n");
1581			platform_device_put(pd_dev);
1582			goto err_platform_device;
1583		}
1584	}
1585
1586	pci_set_drvdata(pdev, pd_dev_save);
1587
1588	return 0;
1589
1590err_platform_device:
1591	while (--i >= 0)
1592		platform_device_unregister(pd_dev_save->pd_save[i]);
1593	pci_disable_device(pdev);
1594pci_enable_device:
1595	pci_release_regions(pdev);
1596pci_request_regions:
1597	kfree(board_dat);
1598err_no_mem:
1599	kfree(pd_dev_save);
1600
1601	return retval;
1602}
1603
1604static void pch_spi_remove(struct pci_dev *pdev)
1605{
1606	int i;
1607	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1608
1609	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1610
1611	for (i = 0; i < pd_dev_save->num; i++)
1612		platform_device_unregister(pd_dev_save->pd_save[i]);
1613
1614	pci_disable_device(pdev);
1615	pci_release_regions(pdev);
1616	kfree(pd_dev_save->board_dat);
1617	kfree(pd_dev_save);
1618}
1619
1620static int __maybe_unused pch_spi_suspend(struct device *dev)
1621{
1622	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1623
1624	dev_dbg(dev, "%s ENTRY\n", __func__);
1625
1626	pd_dev_save->board_dat->suspend_sts = true;
1627
1628	return 0;
1629}
1630
1631static int __maybe_unused pch_spi_resume(struct device *dev)
1632{
1633	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1634
1635	dev_dbg(dev, "%s ENTRY\n", __func__);
1636
1637	/* set suspend status to false */
1638	pd_dev_save->board_dat->suspend_sts = false;
1639
1640	return 0;
1641}
1642
1643static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1644
1645static struct pci_driver pch_spi_pcidev_driver = {
1646	.name = "pch_spi",
1647	.id_table = pch_spi_pcidev_id,
1648	.probe = pch_spi_probe,
1649	.remove = pch_spi_remove,
1650	.driver.pm = &pch_spi_pm_ops,
1651};
1652
1653static int __init pch_spi_init(void)
1654{
1655	int ret;
1656	ret = platform_driver_register(&pch_spi_pd_driver);
1657	if (ret)
1658		return ret;
1659
1660	ret = pci_register_driver(&pch_spi_pcidev_driver);
1661	if (ret) {
1662		platform_driver_unregister(&pch_spi_pd_driver);
1663		return ret;
1664	}
1665
1666	return 0;
1667}
1668module_init(pch_spi_init);
1669
1670static void __exit pch_spi_exit(void)
1671{
1672	pci_unregister_driver(&pch_spi_pcidev_driver);
1673	platform_driver_unregister(&pch_spi_pd_driver);
1674}
1675module_exit(pch_spi_exit);
1676
1677module_param(use_dma, int, 0644);
1678MODULE_PARM_DESC(use_dma,
1679		 "to use DMA for data transfers pass 1 else 0; default 1");
1680
1681MODULE_LICENSE("GPL");
1682MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1683MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1684
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4 *
   5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/pci.h>
  10#include <linux/wait.h>
  11#include <linux/spi/spi.h>
  12#include <linux/interrupt.h>
  13#include <linux/sched.h>
  14#include <linux/spi/spidev.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18
  19#include <linux/dmaengine.h>
  20#include <linux/pch_dma.h>
  21
  22/* Register offsets */
  23#define PCH_SPCR		0x00	/* SPI control register */
  24#define PCH_SPBRR		0x04	/* SPI baud rate register */
  25#define PCH_SPSR		0x08	/* SPI status register */
  26#define PCH_SPDWR		0x0C	/* SPI write data register */
  27#define PCH_SPDRR		0x10	/* SPI read data register */
  28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  29#define PCH_SRST		0x1C	/* SPI reset register */
  30#define PCH_ADDRESS_SIZE	0x20
  31
  32#define PCH_SPSR_TFD		0x000007C0
  33#define PCH_SPSR_RFD		0x0000F800
  34
  35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  37
  38#define PCH_RX_THOLD		7
  39#define PCH_RX_THOLD_MAX	15
  40
  41#define PCH_TX_THOLD		2
  42
  43#define PCH_MAX_BAUDRATE	5000000
  44#define PCH_MAX_FIFO_DEPTH	16
  45
  46#define STATUS_RUNNING		1
  47#define STATUS_EXITING		2
  48#define PCH_SLEEP_TIME		10
  49
  50#define SSN_LOW			0x02U
  51#define SSN_HIGH		0x03U
  52#define SSN_NO_CONTROL		0x00U
  53#define PCH_MAX_CS		0xFF
  54#define PCI_DEVICE_ID_GE_SPI	0x8816
  55
  56#define SPCR_SPE_BIT		(1 << 0)
  57#define SPCR_MSTR_BIT		(1 << 1)
  58#define SPCR_LSBF_BIT		(1 << 4)
  59#define SPCR_CPHA_BIT		(1 << 5)
  60#define SPCR_CPOL_BIT		(1 << 6)
  61#define SPCR_TFIE_BIT		(1 << 8)
  62#define SPCR_RFIE_BIT		(1 << 9)
  63#define SPCR_FIE_BIT		(1 << 10)
  64#define SPCR_ORIE_BIT		(1 << 11)
  65#define SPCR_MDFIE_BIT		(1 << 12)
  66#define SPCR_FICLR_BIT		(1 << 24)
  67#define SPSR_TFI_BIT		(1 << 0)
  68#define SPSR_RFI_BIT		(1 << 1)
  69#define SPSR_FI_BIT		(1 << 2)
  70#define SPSR_ORF_BIT		(1 << 3)
  71#define SPBRR_SIZE_BIT		(1 << 10)
  72
  73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75
  76#define SPCR_RFIC_FIELD		20
  77#define SPCR_TFIC_FIELD		16
  78
  79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  82
  83#define PCH_CLOCK_HZ		50000000
  84#define PCH_MAX_SPBR		1023
  85
  86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  90
  91/*
  92 * Set the number of SPI instance max
  93 * Intel EG20T PCH :		1ch
  94 * LAPIS Semiconductor ML7213 IOH :	2ch
  95 * LAPIS Semiconductor ML7223 IOH :	1ch
  96 * LAPIS Semiconductor ML7831 IOH :	1ch
  97*/
  98#define PCH_SPI_MAX_DEV			2
  99
 100#define PCH_BUF_SIZE		4096
 101#define PCH_DMA_TRANS_SIZE	12
 102
 103static int use_dma = 1;
 104
 105struct pch_spi_dma_ctrl {
 106	struct pci_dev		*dma_dev;
 107	struct dma_async_tx_descriptor	*desc_tx;
 108	struct dma_async_tx_descriptor	*desc_rx;
 109	struct pch_dma_slave		param_tx;
 110	struct pch_dma_slave		param_rx;
 111	struct dma_chan		*chan_tx;
 112	struct dma_chan		*chan_rx;
 113	struct scatterlist		*sg_tx_p;
 114	struct scatterlist		*sg_rx_p;
 115	struct scatterlist		sg_tx;
 116	struct scatterlist		sg_rx;
 117	int				nent;
 118	void				*tx_buf_virt;
 119	void				*rx_buf_virt;
 120	dma_addr_t			tx_buf_dma;
 121	dma_addr_t			rx_buf_dma;
 122};
 123/**
 124 * struct pch_spi_data - Holds the SPI channel specific details
 125 * @io_remap_addr:		The remapped PCI base address
 126 * @io_base_addr:		Base address
 127 * @host:			Pointer to the SPI controller structure
 128 * @work:			Reference to work queue handler
 129 * @wait:			Wait queue for waking up upon receiving an
 130 *				interrupt.
 131 * @transfer_complete:		Status of SPI Transfer
 132 * @bcurrent_msg_processing:	Status flag for message processing
 133 * @lock:			Lock for protecting this structure
 134 * @queue:			SPI Message queue
 135 * @status:			Status of the SPI driver
 136 * @bpw_len:			Length of data to be transferred in bits per
 137 *				word
 138 * @transfer_active:		Flag showing active transfer
 139 * @tx_index:			Transmit data count; for bookkeeping during
 140 *				transfer
 141 * @rx_index:			Receive data count; for bookkeeping during
 142 *				transfer
 143 * @pkt_tx_buff:		Buffer for data to be transmitted
 144 * @pkt_rx_buff:		Buffer for received data
 145 * @n_curnt_chip:		The chip number that this SPI driver currently
 146 *				operates on
 147 * @current_chip:		Reference to the current chip that this SPI
 148 *				driver currently operates on
 149 * @current_msg:		The current message that this SPI driver is
 150 *				handling
 151 * @cur_trans:			The current transfer that this SPI driver is
 152 *				handling
 153 * @board_dat:			Reference to the SPI device data structure
 154 * @plat_dev:			platform_device structure
 155 * @ch:				SPI channel number
 156 * @dma:			Local DMA information
 157 * @use_dma:			True if DMA is to be used
 158 * @irq_reg_sts:		Status of IRQ registration
 159 * @save_total_len:		Save length while data is being transferred
 160 */
 161struct pch_spi_data {
 162	void __iomem *io_remap_addr;
 163	unsigned long io_base_addr;
 164	struct spi_controller *host;
 165	struct work_struct work;
 166	wait_queue_head_t wait;
 167	u8 transfer_complete;
 168	u8 bcurrent_msg_processing;
 169	spinlock_t lock;
 170	struct list_head queue;
 171	u8 status;
 172	u32 bpw_len;
 173	u8 transfer_active;
 174	u32 tx_index;
 175	u32 rx_index;
 176	u16 *pkt_tx_buff;
 177	u16 *pkt_rx_buff;
 178	u8 n_curnt_chip;
 179	struct spi_device *current_chip;
 180	struct spi_message *current_msg;
 181	struct spi_transfer *cur_trans;
 182	struct pch_spi_board_data *board_dat;
 183	struct platform_device	*plat_dev;
 184	int ch;
 185	struct pch_spi_dma_ctrl dma;
 186	int use_dma;
 187	u8 irq_reg_sts;
 188	int save_total_len;
 189};
 190
 191/**
 192 * struct pch_spi_board_data - Holds the SPI device specific details
 193 * @pdev:		Pointer to the PCI device
 194 * @suspend_sts:	Status of suspend
 195 * @num:		The number of SPI device instance
 196 */
 197struct pch_spi_board_data {
 198	struct pci_dev *pdev;
 199	u8 suspend_sts;
 200	int num;
 201};
 202
 203struct pch_pd_dev_save {
 204	int num;
 205	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 206	struct pch_spi_board_data *board_dat;
 207};
 208
 209static const struct pci_device_id pch_spi_pcidev_id[] = {
 210	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 213	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 214	{ }
 215};
 216
 217/**
 218 * pch_spi_writereg() - Performs  register writes
 219 * @host:	Pointer to struct spi_controller.
 220 * @idx:	Register offset.
 221 * @val:	Value to be written to register.
 222 */
 223static inline void pch_spi_writereg(struct spi_controller *host, int idx, u32 val)
 224{
 225	struct pch_spi_data *data = spi_controller_get_devdata(host);
 226	iowrite32(val, (data->io_remap_addr + idx));
 227}
 228
 229/**
 230 * pch_spi_readreg() - Performs register reads
 231 * @host:	Pointer to struct spi_controller.
 232 * @idx:	Register offset.
 233 */
 234static inline u32 pch_spi_readreg(struct spi_controller *host, int idx)
 235{
 236	struct pch_spi_data *data = spi_controller_get_devdata(host);
 237	return ioread32(data->io_remap_addr + idx);
 238}
 239
 240static inline void pch_spi_setclr_reg(struct spi_controller *host, int idx,
 241				      u32 set, u32 clr)
 242{
 243	u32 tmp = pch_spi_readreg(host, idx);
 244	tmp = (tmp & ~clr) | set;
 245	pch_spi_writereg(host, idx, tmp);
 246}
 247
 248static void pch_spi_set_host_mode(struct spi_controller *host)
 249{
 250	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_MSTR_BIT, 0);
 251}
 252
 253/**
 254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 255 * @host:	Pointer to struct spi_controller.
 256 */
 257static void pch_spi_clear_fifo(struct spi_controller *host)
 258{
 259	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_FICLR_BIT, 0);
 260	pch_spi_setclr_reg(host, PCH_SPCR, 0, SPCR_FICLR_BIT);
 261}
 262
 263static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 264				void __iomem *io_remap_addr)
 265{
 266	u32 n_read, tx_index, rx_index, bpw_len;
 267	u16 *pkt_rx_buffer, *pkt_tx_buff;
 268	int read_cnt;
 269	u32 reg_spcr_val;
 270	void __iomem *spsr;
 271	void __iomem *spdrr;
 272	void __iomem *spdwr;
 273
 274	spsr = io_remap_addr + PCH_SPSR;
 275	iowrite32(reg_spsr_val, spsr);
 276
 277	if (data->transfer_active) {
 278		rx_index = data->rx_index;
 279		tx_index = data->tx_index;
 280		bpw_len = data->bpw_len;
 281		pkt_rx_buffer = data->pkt_rx_buff;
 282		pkt_tx_buff = data->pkt_tx_buff;
 283
 284		spdrr = io_remap_addr + PCH_SPDRR;
 285		spdwr = io_remap_addr + PCH_SPDWR;
 286
 287		n_read = PCH_READABLE(reg_spsr_val);
 288
 289		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 290			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 291			if (tx_index < bpw_len)
 292				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 293		}
 294
 295		/* disable RFI if not needed */
 296		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 297			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 298			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 299
 300			/* reset rx threshold */
 301			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 302			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 303
 304			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 305		}
 306
 307		/* update counts */
 308		data->tx_index = tx_index;
 309		data->rx_index = rx_index;
 310
 311		/* if transfer complete interrupt */
 312		if (reg_spsr_val & SPSR_FI_BIT) {
 313			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 314				/* disable interrupts */
 315				pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
 316						   PCH_ALL);
 317
 318				/* transfer is completed;
 319				   inform pch_spi_process_messages */
 320				data->transfer_complete = true;
 321				data->transfer_active = false;
 322				wake_up(&data->wait);
 323			} else {
 324				dev_vdbg(&data->host->dev,
 325					"%s : Transfer is not completed",
 326					__func__);
 327			}
 328		}
 329	}
 330}
 331
 332/**
 333 * pch_spi_handler() - Interrupt handler
 334 * @irq:	The interrupt number.
 335 * @dev_id:	Pointer to struct pch_spi_board_data.
 336 */
 337static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 338{
 339	u32 reg_spsr_val;
 340	void __iomem *spsr;
 341	void __iomem *io_remap_addr;
 342	irqreturn_t ret = IRQ_NONE;
 343	struct pch_spi_data *data = dev_id;
 344	struct pch_spi_board_data *board_dat = data->board_dat;
 345
 346	if (board_dat->suspend_sts) {
 347		dev_dbg(&board_dat->pdev->dev,
 348			"%s returning due to suspend\n", __func__);
 349		return IRQ_NONE;
 350	}
 351
 352	io_remap_addr = data->io_remap_addr;
 353	spsr = io_remap_addr + PCH_SPSR;
 354
 355	reg_spsr_val = ioread32(spsr);
 356
 357	if (reg_spsr_val & SPSR_ORF_BIT) {
 358		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 359		if (data->current_msg->complete) {
 360			data->transfer_complete = true;
 361			data->current_msg->status = -EIO;
 362			data->current_msg->complete(data->current_msg->context);
 363			data->bcurrent_msg_processing = false;
 364			data->current_msg = NULL;
 365			data->cur_trans = NULL;
 366		}
 367	}
 368
 369	if (data->use_dma)
 370		return IRQ_NONE;
 371
 372	/* Check if the interrupt is for SPI device */
 373	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 374		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 375		ret = IRQ_HANDLED;
 376	}
 377
 378	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 379		__func__, ret);
 380
 381	return ret;
 382}
 383
 384/**
 385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 386 * @host:	Pointer to struct spi_controller.
 387 * @speed_hz:	Baud rate.
 388 */
 389static void pch_spi_set_baud_rate(struct spi_controller *host, u32 speed_hz)
 390{
 391	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 392
 393	/* if baud rate is less than we can support limit it */
 394	if (n_spbr > PCH_MAX_SPBR)
 395		n_spbr = PCH_MAX_SPBR;
 396
 397	pch_spi_setclr_reg(host, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 398}
 399
 400/**
 401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 402 * @host:		Pointer to struct spi_controller.
 403 * @bits_per_word:	Bits per word for SPI transfer.
 404 */
 405static void pch_spi_set_bits_per_word(struct spi_controller *host,
 406				      u8 bits_per_word)
 407{
 408	if (bits_per_word == 8)
 409		pch_spi_setclr_reg(host, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 410	else
 411		pch_spi_setclr_reg(host, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 412}
 413
 414/**
 415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 416 * @spi:	Pointer to struct spi_device.
 417 */
 418static void pch_spi_setup_transfer(struct spi_device *spi)
 419{
 420	u32 flags = 0;
 421
 422	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 423		__func__, pch_spi_readreg(spi->controller, PCH_SPBRR),
 424		spi->max_speed_hz);
 425	pch_spi_set_baud_rate(spi->controller, spi->max_speed_hz);
 426
 427	/* set bits per word */
 428	pch_spi_set_bits_per_word(spi->controller, spi->bits_per_word);
 429
 430	if (!(spi->mode & SPI_LSB_FIRST))
 431		flags |= SPCR_LSBF_BIT;
 432	if (spi->mode & SPI_CPOL)
 433		flags |= SPCR_CPOL_BIT;
 434	if (spi->mode & SPI_CPHA)
 435		flags |= SPCR_CPHA_BIT;
 436	pch_spi_setclr_reg(spi->controller, PCH_SPCR, flags,
 437			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 438
 439	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 440	pch_spi_clear_fifo(spi->controller);
 441}
 442
 443/**
 444 * pch_spi_reset() - Clears SPI registers
 445 * @host:	Pointer to struct spi_controller.
 446 */
 447static void pch_spi_reset(struct spi_controller *host)
 448{
 449	/* write 1 to reset SPI */
 450	pch_spi_writereg(host, PCH_SRST, 0x1);
 451
 452	/* clear reset */
 453	pch_spi_writereg(host, PCH_SRST, 0x0);
 454}
 455
 456static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 457{
 458	struct pch_spi_data *data = spi_controller_get_devdata(pspi->controller);
 459	int retval;
 460	unsigned long flags;
 461
 462	/* We won't process any messages if we have been asked to terminate */
 463	if (data->status == STATUS_EXITING) {
 464		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 465		retval = -ESHUTDOWN;
 466		goto err_out;
 467	}
 468
 469	/* If suspended ,return -EINVAL */
 470	if (data->board_dat->suspend_sts) {
 471		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 472		retval = -EINVAL;
 473		goto err_out;
 474	}
 475
 476	/* set status of message */
 477	pmsg->actual_length = 0;
 478	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 479
 480	pmsg->status = -EINPROGRESS;
 481	spin_lock_irqsave(&data->lock, flags);
 482	/* add message to queue */
 483	list_add_tail(&pmsg->queue, &data->queue);
 484	spin_unlock_irqrestore(&data->lock, flags);
 485
 486	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 487
 488	schedule_work(&data->work);
 489	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 490
 491	retval = 0;
 492
 493err_out:
 494	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 495	return retval;
 496}
 497
 498static inline void pch_spi_select_chip(struct pch_spi_data *data,
 499				       struct spi_device *pspi)
 500{
 501	if (data->current_chip != NULL) {
 502		if (spi_get_chipselect(pspi, 0) != data->n_curnt_chip) {
 503			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 504			data->current_chip = NULL;
 505		}
 506	}
 507
 508	data->current_chip = pspi;
 509
 510	data->n_curnt_chip = spi_get_chipselect(data->current_chip, 0);
 511
 512	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 513	pch_spi_setup_transfer(pspi);
 514}
 515
 516static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 517{
 518	int size;
 519	u32 n_writes;
 520	int j;
 521	struct spi_message *pmsg, *tmp;
 522	const u8 *tx_buf;
 523	const u16 *tx_sbuf;
 524
 525	/* set baud rate if needed */
 526	if (data->cur_trans->speed_hz) {
 527		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
 528		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
 529	}
 530
 531	/* set bits per word if needed */
 532	if (data->cur_trans->bits_per_word &&
 533	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 534		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
 535		pch_spi_set_bits_per_word(data->host,
 536					  data->cur_trans->bits_per_word);
 537		*bpw = data->cur_trans->bits_per_word;
 538	} else {
 539		*bpw = data->current_msg->spi->bits_per_word;
 540	}
 541
 542	/* reset Tx/Rx index */
 543	data->tx_index = 0;
 544	data->rx_index = 0;
 545
 546	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 547
 548	/* find alloc size */
 549	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 550
 551	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 552	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 553	if (data->pkt_tx_buff != NULL) {
 554		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 555		if (!data->pkt_rx_buff) {
 556			kfree(data->pkt_tx_buff);
 557			data->pkt_tx_buff = NULL;
 558		}
 559	}
 560
 561	if (!data->pkt_rx_buff) {
 562		/* flush queue and set status of all transfers to -ENOMEM */
 563		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 564			pmsg->status = -ENOMEM;
 565
 566			if (pmsg->complete)
 567				pmsg->complete(pmsg->context);
 568
 569			/* delete from queue */
 570			list_del_init(&pmsg->queue);
 571		}
 572		return;
 573	}
 574
 575	/* copy Tx Data */
 576	if (data->cur_trans->tx_buf != NULL) {
 577		if (*bpw == 8) {
 578			tx_buf = data->cur_trans->tx_buf;
 579			for (j = 0; j < data->bpw_len; j++)
 580				data->pkt_tx_buff[j] = *tx_buf++;
 581		} else {
 582			tx_sbuf = data->cur_trans->tx_buf;
 583			for (j = 0; j < data->bpw_len; j++)
 584				data->pkt_tx_buff[j] = *tx_sbuf++;
 585		}
 586	}
 587
 588	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 589	n_writes = data->bpw_len;
 590	if (n_writes > PCH_MAX_FIFO_DEPTH)
 591		n_writes = PCH_MAX_FIFO_DEPTH;
 592
 593	dev_dbg(&data->host->dev,
 594		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 595		__func__);
 596	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
 597
 598	for (j = 0; j < n_writes; j++)
 599		pch_spi_writereg(data->host, PCH_SPDWR, data->pkt_tx_buff[j]);
 600
 601	/* update tx_index */
 602	data->tx_index = j;
 603
 604	/* reset transfer complete flag */
 605	data->transfer_complete = false;
 606	data->transfer_active = true;
 607}
 608
 609static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 610{
 611	struct spi_message *pmsg, *tmp;
 612	dev_dbg(&data->host->dev, "%s called\n", __func__);
 613	/* Invoke complete callback
 614	 * [To the spi core..indicating end of transfer] */
 615	data->current_msg->status = 0;
 616
 617	if (data->current_msg->complete) {
 618		dev_dbg(&data->host->dev,
 619			"%s:Invoking callback of SPI core\n", __func__);
 620		data->current_msg->complete(data->current_msg->context);
 621	}
 622
 623	/* update status in global variable */
 624	data->bcurrent_msg_processing = false;
 625
 626	dev_dbg(&data->host->dev,
 627		"%s:data->bcurrent_msg_processing = false\n", __func__);
 628
 629	data->current_msg = NULL;
 630	data->cur_trans = NULL;
 631
 632	/* check if we have items in list and not suspending
 633	 * return 1 if list empty */
 634	if ((list_empty(&data->queue) == 0) &&
 635	    (!data->board_dat->suspend_sts) &&
 636	    (data->status != STATUS_EXITING)) {
 637		/* We have some more work to do (either there is more tranint
 638		 * bpw;sfer requests in the current message or there are
 639		 *more messages)
 640		 */
 641		dev_dbg(&data->host->dev, "%s:Invoke queue_work\n", __func__);
 642		schedule_work(&data->work);
 643	} else if (data->board_dat->suspend_sts ||
 644		   data->status == STATUS_EXITING) {
 645		dev_dbg(&data->host->dev,
 646			"%s suspend/remove initiated, flushing queue\n",
 647			__func__);
 648		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 649			pmsg->status = -EIO;
 650
 651			if (pmsg->complete)
 652				pmsg->complete(pmsg->context);
 653
 654			/* delete from queue */
 655			list_del_init(&pmsg->queue);
 656		}
 657	}
 658}
 659
 660static void pch_spi_set_ir(struct pch_spi_data *data)
 661{
 662	/* enable interrupts, set threshold, enable SPI */
 663	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 664		/* set receive threshold to PCH_RX_THOLD */
 665		pch_spi_setclr_reg(data->host, PCH_SPCR,
 666				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 667				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 668				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 669				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 670	else
 671		/* set receive threshold to maximum */
 672		pch_spi_setclr_reg(data->host, PCH_SPCR,
 673				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 674				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 675				   SPCR_SPE_BIT,
 676				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 677
 678	/* Wait until the transfer completes; go to sleep after
 679				 initiating the transfer. */
 680	dev_dbg(&data->host->dev,
 681		"%s:waiting for transfer to get over\n", __func__);
 682
 683	wait_event_interruptible(data->wait, data->transfer_complete);
 684
 685	/* clear all interrupts */
 686	pch_spi_writereg(data->host, PCH_SPSR,
 687			 pch_spi_readreg(data->host, PCH_SPSR));
 688	/* Disable interrupts and SPI transfer */
 689	pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 690	/* clear FIFO */
 691	pch_spi_clear_fifo(data->host);
 692}
 693
 694static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 695{
 696	int j;
 697	u8 *rx_buf;
 698	u16 *rx_sbuf;
 699
 700	/* copy Rx Data */
 701	if (!data->cur_trans->rx_buf)
 702		return;
 703
 704	if (bpw == 8) {
 705		rx_buf = data->cur_trans->rx_buf;
 706		for (j = 0; j < data->bpw_len; j++)
 707			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 708	} else {
 709		rx_sbuf = data->cur_trans->rx_buf;
 710		for (j = 0; j < data->bpw_len; j++)
 711			*rx_sbuf++ = data->pkt_rx_buff[j];
 712	}
 713}
 714
 715static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 716{
 717	int j;
 718	u8 *rx_buf;
 719	u16 *rx_sbuf;
 720	const u8 *rx_dma_buf;
 721	const u16 *rx_dma_sbuf;
 722
 723	/* copy Rx Data */
 724	if (!data->cur_trans->rx_buf)
 725		return;
 726
 727	if (bpw == 8) {
 728		rx_buf = data->cur_trans->rx_buf;
 729		rx_dma_buf = data->dma.rx_buf_virt;
 730		for (j = 0; j < data->bpw_len; j++)
 731			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 732		data->cur_trans->rx_buf = rx_buf;
 733	} else {
 734		rx_sbuf = data->cur_trans->rx_buf;
 735		rx_dma_sbuf = data->dma.rx_buf_virt;
 736		for (j = 0; j < data->bpw_len; j++)
 737			*rx_sbuf++ = *rx_dma_sbuf++;
 738		data->cur_trans->rx_buf = rx_sbuf;
 739	}
 740}
 741
 742static int pch_spi_start_transfer(struct pch_spi_data *data)
 743{
 744	struct pch_spi_dma_ctrl *dma;
 745	unsigned long flags;
 746	int rtn;
 747
 748	dma = &data->dma;
 749
 750	spin_lock_irqsave(&data->lock, flags);
 751
 752	/* disable interrupts, SPI set enable */
 753	pch_spi_setclr_reg(data->host, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 754
 755	spin_unlock_irqrestore(&data->lock, flags);
 756
 757	/* Wait until the transfer completes; go to sleep after
 758				 initiating the transfer. */
 759	dev_dbg(&data->host->dev,
 760		"%s:waiting for transfer to get over\n", __func__);
 761	rtn = wait_event_interruptible_timeout(data->wait,
 762					       data->transfer_complete,
 763					       msecs_to_jiffies(2 * HZ));
 764	if (!rtn)
 765		dev_err(&data->host->dev,
 766			"%s wait-event timeout\n", __func__);
 767
 768	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_rx_p, dma->nent,
 769			    DMA_FROM_DEVICE);
 770
 771	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_tx_p, dma->nent,
 772			    DMA_FROM_DEVICE);
 773	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 774
 775	async_tx_ack(dma->desc_rx);
 776	async_tx_ack(dma->desc_tx);
 777	kfree(dma->sg_tx_p);
 778	kfree(dma->sg_rx_p);
 779
 780	spin_lock_irqsave(&data->lock, flags);
 781
 782	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 783	pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
 784			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 785			   SPCR_SPE_BIT);
 786	/* clear all interrupts */
 787	pch_spi_writereg(data->host, PCH_SPSR,
 788			 pch_spi_readreg(data->host, PCH_SPSR));
 789	/* clear FIFO */
 790	pch_spi_clear_fifo(data->host);
 791
 792	spin_unlock_irqrestore(&data->lock, flags);
 793
 794	return rtn;
 795}
 796
 797static void pch_dma_rx_complete(void *arg)
 798{
 799	struct pch_spi_data *data = arg;
 800
 801	/* transfer is completed;inform pch_spi_process_messages_dma */
 802	data->transfer_complete = true;
 803	wake_up_interruptible(&data->wait);
 804}
 805
 806static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 807{
 808	struct pch_dma_slave *param = slave;
 809
 810	if ((chan->chan_id == param->chan_id) &&
 811	    (param->dma_dev == chan->device->dev)) {
 812		chan->private = param;
 813		return true;
 814	} else {
 815		return false;
 816	}
 817}
 818
 819static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 820{
 821	dma_cap_mask_t mask;
 822	struct dma_chan *chan;
 823	struct pci_dev *dma_dev;
 824	struct pch_dma_slave *param;
 825	struct pch_spi_dma_ctrl *dma;
 826	unsigned int width;
 827
 828	if (bpw == 8)
 829		width = PCH_DMA_WIDTH_1_BYTE;
 830	else
 831		width = PCH_DMA_WIDTH_2_BYTES;
 832
 833	dma = &data->dma;
 834	dma_cap_zero(mask);
 835	dma_cap_set(DMA_SLAVE, mask);
 836
 837	/* Get DMA's dev information */
 838	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 839			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 840
 841	/* Set Tx DMA */
 842	param = &dma->param_tx;
 843	param->dma_dev = &dma_dev->dev;
 844	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
 845	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 846	param->width = width;
 847	chan = dma_request_channel(mask, pch_spi_filter, param);
 848	if (!chan) {
 849		dev_err(&data->host->dev,
 850			"ERROR: dma_request_channel FAILS(Tx)\n");
 851		goto out;
 852	}
 853	dma->chan_tx = chan;
 854
 855	/* Set Rx DMA */
 856	param = &dma->param_rx;
 857	param->dma_dev = &dma_dev->dev;
 858	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
 859	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 860	param->width = width;
 861	chan = dma_request_channel(mask, pch_spi_filter, param);
 862	if (!chan) {
 863		dev_err(&data->host->dev,
 864			"ERROR: dma_request_channel FAILS(Rx)\n");
 865		dma_release_channel(dma->chan_tx);
 866		dma->chan_tx = NULL;
 867		goto out;
 868	}
 869	dma->chan_rx = chan;
 870
 871	dma->dma_dev = dma_dev;
 872	return;
 873out:
 874	pci_dev_put(dma_dev);
 875	data->use_dma = 0;
 876}
 877
 878static void pch_spi_release_dma(struct pch_spi_data *data)
 879{
 880	struct pch_spi_dma_ctrl *dma;
 881
 882	dma = &data->dma;
 883	if (dma->chan_tx) {
 884		dma_release_channel(dma->chan_tx);
 885		dma->chan_tx = NULL;
 886	}
 887	if (dma->chan_rx) {
 888		dma_release_channel(dma->chan_rx);
 889		dma->chan_rx = NULL;
 890	}
 891
 892	pci_dev_put(dma->dma_dev);
 893}
 894
 895static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 896{
 897	const u8 *tx_buf;
 898	const u16 *tx_sbuf;
 899	u8 *tx_dma_buf;
 900	u16 *tx_dma_sbuf;
 901	struct scatterlist *sg;
 902	struct dma_async_tx_descriptor *desc_tx;
 903	struct dma_async_tx_descriptor *desc_rx;
 904	int num;
 905	int i;
 906	int size;
 907	int rem;
 908	int head;
 909	unsigned long flags;
 910	struct pch_spi_dma_ctrl *dma;
 911
 912	dma = &data->dma;
 913
 914	/* set baud rate if needed */
 915	if (data->cur_trans->speed_hz) {
 916		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
 917		spin_lock_irqsave(&data->lock, flags);
 918		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
 919		spin_unlock_irqrestore(&data->lock, flags);
 920	}
 921
 922	/* set bits per word if needed */
 923	if (data->cur_trans->bits_per_word &&
 924	    (data->current_msg->spi->bits_per_word !=
 925	     data->cur_trans->bits_per_word)) {
 926		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
 927		spin_lock_irqsave(&data->lock, flags);
 928		pch_spi_set_bits_per_word(data->host,
 929					  data->cur_trans->bits_per_word);
 930		spin_unlock_irqrestore(&data->lock, flags);
 931		*bpw = data->cur_trans->bits_per_word;
 932	} else {
 933		*bpw = data->current_msg->spi->bits_per_word;
 934	}
 935	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 936
 937	if (data->bpw_len > PCH_BUF_SIZE) {
 938		data->bpw_len = PCH_BUF_SIZE;
 939		data->cur_trans->len -= PCH_BUF_SIZE;
 940	}
 941
 942	/* copy Tx Data */
 943	if (data->cur_trans->tx_buf != NULL) {
 944		if (*bpw == 8) {
 945			tx_buf = data->cur_trans->tx_buf;
 946			tx_dma_buf = dma->tx_buf_virt;
 947			for (i = 0; i < data->bpw_len; i++)
 948				*tx_dma_buf++ = *tx_buf++;
 949		} else {
 950			tx_sbuf = data->cur_trans->tx_buf;
 951			tx_dma_sbuf = dma->tx_buf_virt;
 952			for (i = 0; i < data->bpw_len; i++)
 953				*tx_dma_sbuf++ = *tx_sbuf++;
 954		}
 955	}
 956
 957	/* Calculate Rx parameter for DMA transmitting */
 958	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 959		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 960			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 961			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 962		} else {
 963			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 964			rem = PCH_DMA_TRANS_SIZE;
 965		}
 966		size = PCH_DMA_TRANS_SIZE;
 967	} else {
 968		num = 1;
 969		size = data->bpw_len;
 970		rem = data->bpw_len;
 971	}
 972	dev_dbg(&data->host->dev, "%s num=%d size=%d rem=%d\n",
 973		__func__, num, size, rem);
 974	spin_lock_irqsave(&data->lock, flags);
 975
 976	/* set receive fifo threshold and transmit fifo threshold */
 977	pch_spi_setclr_reg(data->host, PCH_SPCR,
 978			   ((size - 1) << SPCR_RFIC_FIELD) |
 979			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 980			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 981
 982	spin_unlock_irqrestore(&data->lock, flags);
 983
 984	/* RX */
 985	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
 986	if (!dma->sg_rx_p)
 987		return;
 988
 989	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
 990	/* offset, length setting */
 991	sg = dma->sg_rx_p;
 992	for (i = 0; i < num; i++, sg++) {
 993		if (i == (num - 2)) {
 994			sg->offset = size * i;
 995			sg->offset = sg->offset * (*bpw / 8);
 996			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
 997				    sg->offset);
 998			sg_dma_len(sg) = rem;
 999		} else if (i == (num - 1)) {
1000			sg->offset = size * (i - 1) + rem;
1001			sg->offset = sg->offset * (*bpw / 8);
1002			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003				    sg->offset);
1004			sg_dma_len(sg) = size;
1005		} else {
1006			sg->offset = size * i;
1007			sg->offset = sg->offset * (*bpw / 8);
1008			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009				    sg->offset);
1010			sg_dma_len(sg) = size;
1011		}
1012		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013	}
1014	sg = dma->sg_rx_p;
1015	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016					num, DMA_DEV_TO_MEM,
1017					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018	if (!desc_rx) {
1019		dev_err(&data->host->dev,
1020			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021		return;
1022	}
1023	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_FROM_DEVICE);
1024	desc_rx->callback = pch_dma_rx_complete;
1025	desc_rx->callback_param = data;
1026	dma->nent = num;
1027	dma->desc_rx = desc_rx;
1028
1029	/* Calculate Tx parameter for DMA transmitting */
1030	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035		} else {
1036			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038			      PCH_DMA_TRANS_SIZE - head;
1039		}
1040		size = PCH_DMA_TRANS_SIZE;
1041	} else {
1042		num = 1;
1043		size = data->bpw_len;
1044		rem = data->bpw_len;
1045		head = 0;
1046	}
1047
1048	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049	if (!dma->sg_tx_p)
1050		return;
1051
1052	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_tx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == 0) {
1057			sg->offset = 0;
1058			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059				    sg->offset);
1060			sg_dma_len(sg) = size + head;
1061		} else if (i == (num - 1)) {
1062			sg->offset = head + size * i;
1063			sg->offset = sg->offset * (*bpw / 8);
1064			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065				    sg->offset);
1066			sg_dma_len(sg) = rem;
1067		} else {
1068			sg->offset = head + size * i;
1069			sg->offset = sg->offset * (*bpw / 8);
1070			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071				    sg->offset);
1072			sg_dma_len(sg) = size;
1073		}
1074		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075	}
1076	sg = dma->sg_tx_p;
1077	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078					sg, num, DMA_MEM_TO_DEV,
1079					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080	if (!desc_tx) {
1081		dev_err(&data->host->dev,
1082			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083		return;
1084	}
1085	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_TO_DEVICE);
1086	desc_tx->callback = NULL;
1087	desc_tx->callback_param = data;
1088	dma->nent = num;
1089	dma->desc_tx = desc_tx;
1090
1091	dev_dbg(&data->host->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092
1093	spin_lock_irqsave(&data->lock, flags);
1094	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
1095	desc_rx->tx_submit(desc_rx);
1096	desc_tx->tx_submit(desc_tx);
1097	spin_unlock_irqrestore(&data->lock, flags);
1098
1099	/* reset transfer complete flag */
1100	data->transfer_complete = false;
1101}
1102
1103static void pch_spi_process_messages(struct work_struct *pwork)
1104{
1105	struct spi_message *pmsg, *tmp;
1106	struct pch_spi_data *data;
1107	int bpw;
1108
1109	data = container_of(pwork, struct pch_spi_data, work);
1110	dev_dbg(&data->host->dev, "%s data initialized\n", __func__);
1111
1112	spin_lock(&data->lock);
1113	/* check if suspend has been initiated;if yes flush queue */
1114	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115		dev_dbg(&data->host->dev,
1116			"%s suspend/remove initiated, flushing queue\n", __func__);
1117		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118			pmsg->status = -EIO;
1119
1120			if (pmsg->complete) {
1121				spin_unlock(&data->lock);
1122				pmsg->complete(pmsg->context);
1123				spin_lock(&data->lock);
1124			}
1125
1126			/* delete from queue */
1127			list_del_init(&pmsg->queue);
1128		}
1129
1130		spin_unlock(&data->lock);
1131		return;
1132	}
1133
1134	data->bcurrent_msg_processing = true;
1135	dev_dbg(&data->host->dev,
1136		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138	/* Get the message from the queue and delete it from there. */
1139	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140					queue);
1141
1142	list_del_init(&data->current_msg->queue);
1143
1144	data->current_msg->status = 0;
1145
1146	pch_spi_select_chip(data, data->current_msg->spi);
1147
1148	spin_unlock(&data->lock);
1149
1150	if (data->use_dma)
1151		pch_spi_request_dma(data,
1152				    data->current_msg->spi->bits_per_word);
1153	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_NO_CONTROL);
1154	do {
1155		int cnt;
1156		/* If we are already processing a message get the next
1157		transfer structure from the message otherwise retrieve
1158		the 1st transfer request from the message. */
1159		spin_lock(&data->lock);
1160		if (data->cur_trans == NULL) {
1161			data->cur_trans =
1162				list_entry(data->current_msg->transfers.next,
1163					   struct spi_transfer, transfer_list);
1164			dev_dbg(&data->host->dev,
1165				"%s :Getting 1st transfer message\n",
1166				__func__);
1167		} else {
1168			data->cur_trans =
1169				list_entry(data->cur_trans->transfer_list.next,
1170					   struct spi_transfer, transfer_list);
1171			dev_dbg(&data->host->dev,
1172				"%s :Getting next transfer message\n",
1173				__func__);
1174		}
1175		spin_unlock(&data->lock);
1176
1177		if (!data->cur_trans->len)
1178			goto out;
1179		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180		data->save_total_len = data->cur_trans->len;
1181		if (data->use_dma) {
1182			int i;
1183			char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185			for (i = 0; i < cnt; i++) {
1186				pch_spi_handle_dma(data, &bpw);
1187				if (!pch_spi_start_transfer(data)) {
1188					data->transfer_complete = true;
1189					data->current_msg->status = -EIO;
1190					data->current_msg->complete
1191						   (data->current_msg->context);
1192					data->bcurrent_msg_processing = false;
1193					data->current_msg = NULL;
1194					data->cur_trans = NULL;
1195					goto out;
1196				}
1197				pch_spi_copy_rx_data_for_dma(data, bpw);
1198			}
1199			data->cur_trans->rx_buf = save_rx_buf;
1200		} else {
1201			pch_spi_set_tx(data, &bpw);
1202			pch_spi_set_ir(data);
1203			pch_spi_copy_rx_data(data, bpw);
1204			kfree(data->pkt_rx_buff);
1205			data->pkt_rx_buff = NULL;
1206			kfree(data->pkt_tx_buff);
1207			data->pkt_tx_buff = NULL;
1208		}
1209		/* increment message count */
1210		data->cur_trans->len = data->save_total_len;
1211		data->current_msg->actual_length += data->cur_trans->len;
1212
1213		dev_dbg(&data->host->dev,
1214			"%s:data->current_msg->actual_length=%d\n",
1215			__func__, data->current_msg->actual_length);
1216
1217		spi_transfer_delay_exec(data->cur_trans);
1218
1219		spin_lock(&data->lock);
1220
1221		/* No more transfer in this message. */
1222		if ((data->cur_trans->transfer_list.next) ==
1223		    &(data->current_msg->transfers)) {
1224			pch_spi_nomore_transfer(data);
1225		}
1226
1227		spin_unlock(&data->lock);
1228
1229	} while (data->cur_trans != NULL);
1230
1231out:
1232	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_HIGH);
1233	if (data->use_dma)
1234		pch_spi_release_dma(data);
1235}
1236
1237static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238				   struct pch_spi_data *data)
1239{
1240	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242	flush_work(&data->work);
1243}
1244
1245static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246				 struct pch_spi_data *data)
1247{
1248	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
1250	/* reset PCH SPI h/w */
1251	pch_spi_reset(data->host);
1252	dev_dbg(&board_dat->pdev->dev,
1253		"%s pch_spi_reset invoked successfully\n", __func__);
1254
1255	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257	return 0;
1258}
1259
1260static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261			     struct pch_spi_data *data)
1262{
1263	struct pch_spi_dma_ctrl *dma;
1264
1265	dma = &data->dma;
1266	if (dma->tx_buf_dma)
1267		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268				  dma->tx_buf_virt, dma->tx_buf_dma);
1269	if (dma->rx_buf_dma)
1270		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271				  dma->rx_buf_virt, dma->rx_buf_dma);
1272}
1273
1274static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275			      struct pch_spi_data *data)
1276{
1277	struct pch_spi_dma_ctrl *dma;
1278	int ret;
1279
1280	dma = &data->dma;
1281	ret = 0;
1282	/* Get Consistent memory for Tx DMA */
1283	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285	if (!dma->tx_buf_virt)
1286		ret = -ENOMEM;
1287
1288	/* Get Consistent memory for Rx DMA */
1289	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291	if (!dma->rx_buf_virt)
1292		ret = -ENOMEM;
1293
1294	return ret;
1295}
1296
1297static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298{
1299	int ret;
1300	struct spi_controller *host;
1301	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302	struct pch_spi_data *data;
1303
1304	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306	host = spi_alloc_host(&board_dat->pdev->dev,
1307				  sizeof(struct pch_spi_data));
1308	if (!host) {
1309		dev_err(&plat_dev->dev, "spi_alloc_host[%d] failed.\n",
1310			plat_dev->id);
1311		return -ENOMEM;
1312	}
1313
1314	data = spi_controller_get_devdata(host);
1315	data->host = host;
1316
1317	platform_set_drvdata(plat_dev, data);
1318
1319	/* baseaddress + address offset) */
1320	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321					 PCH_ADDRESS_SIZE * plat_dev->id;
1322	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323	if (!data->io_remap_addr) {
1324		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325		ret = -ENOMEM;
1326		goto err_pci_iomap;
1327	}
1328	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331		plat_dev->id, data->io_remap_addr);
1332
1333	/* initialize members of SPI host */
1334	host->num_chipselect = PCH_MAX_CS;
1335	host->transfer = pch_spi_transfer;
1336	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337	host->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338	host->max_speed_hz = PCH_MAX_BAUDRATE;
1339	host->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341	data->board_dat = board_dat;
1342	data->plat_dev = plat_dev;
1343	data->n_curnt_chip = 255;
1344	data->status = STATUS_RUNNING;
1345	data->ch = plat_dev->id;
1346	data->use_dma = use_dma;
1347
1348	INIT_LIST_HEAD(&data->queue);
1349	spin_lock_init(&data->lock);
1350	INIT_WORK(&data->work, pch_spi_process_messages);
1351	init_waitqueue_head(&data->wait);
1352
1353	ret = pch_spi_get_resources(board_dat, data);
1354	if (ret) {
1355		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356		goto err_spi_get_resources;
1357	}
1358
1359	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360			  IRQF_SHARED, KBUILD_MODNAME, data);
1361	if (ret) {
1362		dev_err(&plat_dev->dev,
1363			"%s request_irq failed\n", __func__);
1364		goto err_request_irq;
1365	}
1366	data->irq_reg_sts = true;
1367
1368	pch_spi_set_host_mode(host);
1369
1370	if (use_dma) {
1371		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372		ret = pch_alloc_dma_buf(board_dat, data);
1373		if (ret)
1374			goto err_spi_register_controller;
1375	}
1376
1377	ret = spi_register_controller(host);
1378	if (ret != 0) {
1379		dev_err(&plat_dev->dev,
1380			"%s spi_register_controller FAILED\n", __func__);
1381		goto err_spi_register_controller;
1382	}
1383
1384	return 0;
1385
1386err_spi_register_controller:
1387	pch_free_dma_buf(board_dat, data);
1388	free_irq(board_dat->pdev->irq, data);
1389err_request_irq:
1390	pch_spi_free_resources(board_dat, data);
1391err_spi_get_resources:
1392	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393err_pci_iomap:
1394	spi_controller_put(host);
1395
1396	return ret;
1397}
1398
1399static void pch_spi_pd_remove(struct platform_device *plat_dev)
1400{
1401	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403	int count;
1404	unsigned long flags;
1405
1406	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407		__func__, plat_dev->id, board_dat->pdev->irq);
1408
1409	if (use_dma)
1410		pch_free_dma_buf(board_dat, data);
1411
1412	/* check for any pending messages; no action is taken if the queue
1413	 * is still full; but at least we tried.  Unload anyway */
1414	count = 500;
1415	spin_lock_irqsave(&data->lock, flags);
1416	data->status = STATUS_EXITING;
1417	while ((list_empty(&data->queue) == 0) && --count) {
1418		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419			__func__);
1420		spin_unlock_irqrestore(&data->lock, flags);
1421		msleep(PCH_SLEEP_TIME);
1422		spin_lock_irqsave(&data->lock, flags);
1423	}
1424	spin_unlock_irqrestore(&data->lock, flags);
1425
1426	pch_spi_free_resources(board_dat, data);
1427	/* disable interrupts & free IRQ */
1428	if (data->irq_reg_sts) {
1429		/* disable interrupts */
1430		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1431		data->irq_reg_sts = false;
1432		free_irq(board_dat->pdev->irq, data);
1433	}
1434
1435	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436	spi_unregister_controller(data->host);
 
 
1437}
1438#ifdef CONFIG_PM
1439static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1440			      pm_message_t state)
1441{
1442	u8 count;
1443	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1444	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1445
1446	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1447
1448	if (!board_dat) {
1449		dev_err(&pd_dev->dev,
1450			"%s pci_get_drvdata returned NULL\n", __func__);
1451		return -EFAULT;
1452	}
1453
1454	/* check if the current message is processed:
1455	   Only after thats done the transfer will be suspended */
1456	count = 255;
1457	while ((--count) > 0) {
1458		if (!(data->bcurrent_msg_processing))
1459			break;
1460		msleep(PCH_SLEEP_TIME);
1461	}
1462
1463	/* Free IRQ */
1464	if (data->irq_reg_sts) {
1465		/* disable all interrupts */
1466		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1467		pch_spi_reset(data->host);
1468		free_irq(board_dat->pdev->irq, data);
1469
1470		data->irq_reg_sts = false;
1471		dev_dbg(&pd_dev->dev,
1472			"%s free_irq invoked successfully.\n", __func__);
1473	}
1474
1475	return 0;
1476}
1477
1478static int pch_spi_pd_resume(struct platform_device *pd_dev)
1479{
1480	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1481	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1482	int retval;
1483
1484	if (!board_dat) {
1485		dev_err(&pd_dev->dev,
1486			"%s pci_get_drvdata returned NULL\n", __func__);
1487		return -EFAULT;
1488	}
1489
1490	if (!data->irq_reg_sts) {
1491		/* register IRQ */
1492		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1493				     IRQF_SHARED, KBUILD_MODNAME, data);
1494		if (retval < 0) {
1495			dev_err(&pd_dev->dev,
1496				"%s request_irq failed\n", __func__);
1497			return retval;
1498		}
1499
1500		/* reset PCH SPI h/w */
1501		pch_spi_reset(data->host);
1502		pch_spi_set_host_mode(data->host);
1503		data->irq_reg_sts = true;
1504	}
1505	return 0;
1506}
1507#else
1508#define pch_spi_pd_suspend NULL
1509#define pch_spi_pd_resume NULL
1510#endif
1511
1512static struct platform_driver pch_spi_pd_driver = {
1513	.driver = {
1514		.name = "pch-spi",
1515	},
1516	.probe = pch_spi_pd_probe,
1517	.remove_new = pch_spi_pd_remove,
1518	.suspend = pch_spi_pd_suspend,
1519	.resume = pch_spi_pd_resume
1520};
1521
1522static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1523{
1524	struct pch_spi_board_data *board_dat;
1525	struct platform_device *pd_dev = NULL;
1526	int retval;
1527	int i;
1528	struct pch_pd_dev_save *pd_dev_save;
1529
1530	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1531	if (!pd_dev_save)
1532		return -ENOMEM;
1533
1534	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1535	if (!board_dat) {
1536		retval = -ENOMEM;
1537		goto err_no_mem;
1538	}
1539
1540	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1541	if (retval) {
1542		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1543		goto pci_request_regions;
1544	}
1545
1546	board_dat->pdev = pdev;
1547	board_dat->num = id->driver_data;
1548	pd_dev_save->num = id->driver_data;
1549	pd_dev_save->board_dat = board_dat;
1550
1551	retval = pci_enable_device(pdev);
1552	if (retval) {
1553		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1554		goto pci_enable_device;
1555	}
1556
1557	for (i = 0; i < board_dat->num; i++) {
1558		pd_dev = platform_device_alloc("pch-spi", i);
1559		if (!pd_dev) {
1560			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1561			retval = -ENOMEM;
1562			goto err_platform_device;
1563		}
1564		pd_dev_save->pd_save[i] = pd_dev;
1565		pd_dev->dev.parent = &pdev->dev;
1566
1567		retval = platform_device_add_data(pd_dev, board_dat,
1568						  sizeof(*board_dat));
1569		if (retval) {
1570			dev_err(&pdev->dev,
1571				"platform_device_add_data failed\n");
1572			platform_device_put(pd_dev);
1573			goto err_platform_device;
1574		}
1575
1576		retval = platform_device_add(pd_dev);
1577		if (retval) {
1578			dev_err(&pdev->dev, "platform_device_add failed\n");
1579			platform_device_put(pd_dev);
1580			goto err_platform_device;
1581		}
1582	}
1583
1584	pci_set_drvdata(pdev, pd_dev_save);
1585
1586	return 0;
1587
1588err_platform_device:
1589	while (--i >= 0)
1590		platform_device_unregister(pd_dev_save->pd_save[i]);
1591	pci_disable_device(pdev);
1592pci_enable_device:
1593	pci_release_regions(pdev);
1594pci_request_regions:
1595	kfree(board_dat);
1596err_no_mem:
1597	kfree(pd_dev_save);
1598
1599	return retval;
1600}
1601
1602static void pch_spi_remove(struct pci_dev *pdev)
1603{
1604	int i;
1605	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1606
1607	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1608
1609	for (i = 0; i < pd_dev_save->num; i++)
1610		platform_device_unregister(pd_dev_save->pd_save[i]);
1611
1612	pci_disable_device(pdev);
1613	pci_release_regions(pdev);
1614	kfree(pd_dev_save->board_dat);
1615	kfree(pd_dev_save);
1616}
1617
1618static int __maybe_unused pch_spi_suspend(struct device *dev)
1619{
1620	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1621
1622	dev_dbg(dev, "%s ENTRY\n", __func__);
1623
1624	pd_dev_save->board_dat->suspend_sts = true;
1625
1626	return 0;
1627}
1628
1629static int __maybe_unused pch_spi_resume(struct device *dev)
1630{
1631	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1632
1633	dev_dbg(dev, "%s ENTRY\n", __func__);
1634
1635	/* set suspend status to false */
1636	pd_dev_save->board_dat->suspend_sts = false;
1637
1638	return 0;
1639}
1640
1641static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1642
1643static struct pci_driver pch_spi_pcidev_driver = {
1644	.name = "pch_spi",
1645	.id_table = pch_spi_pcidev_id,
1646	.probe = pch_spi_probe,
1647	.remove = pch_spi_remove,
1648	.driver.pm = &pch_spi_pm_ops,
1649};
1650
1651static int __init pch_spi_init(void)
1652{
1653	int ret;
1654	ret = platform_driver_register(&pch_spi_pd_driver);
1655	if (ret)
1656		return ret;
1657
1658	ret = pci_register_driver(&pch_spi_pcidev_driver);
1659	if (ret) {
1660		platform_driver_unregister(&pch_spi_pd_driver);
1661		return ret;
1662	}
1663
1664	return 0;
1665}
1666module_init(pch_spi_init);
1667
1668static void __exit pch_spi_exit(void)
1669{
1670	pci_unregister_driver(&pch_spi_pcidev_driver);
1671	platform_driver_unregister(&pch_spi_pd_driver);
1672}
1673module_exit(pch_spi_exit);
1674
1675module_param(use_dma, int, 0644);
1676MODULE_PARM_DESC(use_dma,
1677		 "to use DMA for data transfers pass 1 else 0; default 1");
1678
1679MODULE_LICENSE("GPL");
1680MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1681MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1682