Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4 *
   5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/pci.h>
  10#include <linux/wait.h>
  11#include <linux/spi/spi.h>
  12#include <linux/interrupt.h>
  13#include <linux/sched.h>
  14#include <linux/spi/spidev.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18
  19#include <linux/dmaengine.h>
  20#include <linux/pch_dma.h>
  21
  22/* Register offsets */
  23#define PCH_SPCR		0x00	/* SPI control register */
  24#define PCH_SPBRR		0x04	/* SPI baud rate register */
  25#define PCH_SPSR		0x08	/* SPI status register */
  26#define PCH_SPDWR		0x0C	/* SPI write data register */
  27#define PCH_SPDRR		0x10	/* SPI read data register */
  28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  29#define PCH_SRST		0x1C	/* SPI reset register */
  30#define PCH_ADDRESS_SIZE	0x20
  31
  32#define PCH_SPSR_TFD		0x000007C0
  33#define PCH_SPSR_RFD		0x0000F800
  34
  35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  37
  38#define PCH_RX_THOLD		7
  39#define PCH_RX_THOLD_MAX	15
  40
  41#define PCH_TX_THOLD		2
  42
  43#define PCH_MAX_BAUDRATE	5000000
  44#define PCH_MAX_FIFO_DEPTH	16
  45
  46#define STATUS_RUNNING		1
  47#define STATUS_EXITING		2
  48#define PCH_SLEEP_TIME		10
  49
  50#define SSN_LOW			0x02U
  51#define SSN_HIGH		0x03U
  52#define SSN_NO_CONTROL		0x00U
  53#define PCH_MAX_CS		0xFF
  54#define PCI_DEVICE_ID_GE_SPI	0x8816
  55
  56#define SPCR_SPE_BIT		(1 << 0)
  57#define SPCR_MSTR_BIT		(1 << 1)
  58#define SPCR_LSBF_BIT		(1 << 4)
  59#define SPCR_CPHA_BIT		(1 << 5)
  60#define SPCR_CPOL_BIT		(1 << 6)
  61#define SPCR_TFIE_BIT		(1 << 8)
  62#define SPCR_RFIE_BIT		(1 << 9)
  63#define SPCR_FIE_BIT		(1 << 10)
  64#define SPCR_ORIE_BIT		(1 << 11)
  65#define SPCR_MDFIE_BIT		(1 << 12)
  66#define SPCR_FICLR_BIT		(1 << 24)
  67#define SPSR_TFI_BIT		(1 << 0)
  68#define SPSR_RFI_BIT		(1 << 1)
  69#define SPSR_FI_BIT		(1 << 2)
  70#define SPSR_ORF_BIT		(1 << 3)
  71#define SPBRR_SIZE_BIT		(1 << 10)
  72
  73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75
  76#define SPCR_RFIC_FIELD		20
  77#define SPCR_TFIC_FIELD		16
  78
  79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  82
  83#define PCH_CLOCK_HZ		50000000
  84#define PCH_MAX_SPBR		1023
  85
  86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  90
  91/*
  92 * Set the number of SPI instance max
  93 * Intel EG20T PCH :		1ch
  94 * LAPIS Semiconductor ML7213 IOH :	2ch
  95 * LAPIS Semiconductor ML7223 IOH :	1ch
  96 * LAPIS Semiconductor ML7831 IOH :	1ch
  97*/
  98#define PCH_SPI_MAX_DEV			2
  99
 100#define PCH_BUF_SIZE		4096
 101#define PCH_DMA_TRANS_SIZE	12
 102
 103static int use_dma = 1;
 104
 105struct pch_spi_dma_ctrl {
 106	struct pci_dev		*dma_dev;
 107	struct dma_async_tx_descriptor	*desc_tx;
 108	struct dma_async_tx_descriptor	*desc_rx;
 109	struct pch_dma_slave		param_tx;
 110	struct pch_dma_slave		param_rx;
 111	struct dma_chan		*chan_tx;
 112	struct dma_chan		*chan_rx;
 113	struct scatterlist		*sg_tx_p;
 114	struct scatterlist		*sg_rx_p;
 115	struct scatterlist		sg_tx;
 116	struct scatterlist		sg_rx;
 117	int				nent;
 118	void				*tx_buf_virt;
 119	void				*rx_buf_virt;
 120	dma_addr_t			tx_buf_dma;
 121	dma_addr_t			rx_buf_dma;
 122};
 123/**
 124 * struct pch_spi_data - Holds the SPI channel specific details
 125 * @io_remap_addr:		The remapped PCI base address
 126 * @io_base_addr:		Base address
 127 * @master:			Pointer to the SPI master structure
 128 * @work:			Reference to work queue handler
 129 * @wait:			Wait queue for waking up upon receiving an
 130 *				interrupt.
 131 * @transfer_complete:		Status of SPI Transfer
 132 * @bcurrent_msg_processing:	Status flag for message processing
 133 * @lock:			Lock for protecting this structure
 134 * @queue:			SPI Message queue
 135 * @status:			Status of the SPI driver
 136 * @bpw_len:			Length of data to be transferred in bits per
 137 *				word
 138 * @transfer_active:		Flag showing active transfer
 139 * @tx_index:			Transmit data count; for bookkeeping during
 140 *				transfer
 141 * @rx_index:			Receive data count; for bookkeeping during
 142 *				transfer
 143 * @pkt_tx_buff:		Buffer for data to be transmitted
 144 * @pkt_rx_buff:		Buffer for received data
 145 * @n_curnt_chip:		The chip number that this SPI driver currently
 146 *				operates on
 147 * @current_chip:		Reference to the current chip that this SPI
 148 *				driver currently operates on
 149 * @current_msg:		The current message that this SPI driver is
 150 *				handling
 151 * @cur_trans:			The current transfer that this SPI driver is
 152 *				handling
 153 * @board_dat:			Reference to the SPI device data structure
 154 * @plat_dev:			platform_device structure
 155 * @ch:				SPI channel number
 156 * @dma:			Local DMA information
 157 * @use_dma:			True if DMA is to be used
 158 * @irq_reg_sts:		Status of IRQ registration
 159 * @save_total_len:		Save length while data is being transferred
 160 */
 161struct pch_spi_data {
 162	void __iomem *io_remap_addr;
 163	unsigned long io_base_addr;
 164	struct spi_master *master;
 165	struct work_struct work;
 166	wait_queue_head_t wait;
 167	u8 transfer_complete;
 168	u8 bcurrent_msg_processing;
 169	spinlock_t lock;
 170	struct list_head queue;
 171	u8 status;
 172	u32 bpw_len;
 173	u8 transfer_active;
 174	u32 tx_index;
 175	u32 rx_index;
 176	u16 *pkt_tx_buff;
 177	u16 *pkt_rx_buff;
 178	u8 n_curnt_chip;
 179	struct spi_device *current_chip;
 180	struct spi_message *current_msg;
 181	struct spi_transfer *cur_trans;
 182	struct pch_spi_board_data *board_dat;
 183	struct platform_device	*plat_dev;
 184	int ch;
 185	struct pch_spi_dma_ctrl dma;
 186	int use_dma;
 187	u8 irq_reg_sts;
 188	int save_total_len;
 189};
 190
 191/**
 192 * struct pch_spi_board_data - Holds the SPI device specific details
 193 * @pdev:		Pointer to the PCI device
 194 * @suspend_sts:	Status of suspend
 195 * @num:		The number of SPI device instance
 196 */
 197struct pch_spi_board_data {
 198	struct pci_dev *pdev;
 199	u8 suspend_sts;
 200	int num;
 201};
 202
 203struct pch_pd_dev_save {
 204	int num;
 205	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 206	struct pch_spi_board_data *board_dat;
 207};
 208
 209static const struct pci_device_id pch_spi_pcidev_id[] = {
 210	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 213	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 214	{ }
 215};
 216
 217/**
 218 * pch_spi_writereg() - Performs  register writes
 219 * @master:	Pointer to struct spi_master.
 220 * @idx:	Register offset.
 221 * @val:	Value to be written to register.
 222 */
 223static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 224{
 225	struct pch_spi_data *data = spi_master_get_devdata(master);
 226	iowrite32(val, (data->io_remap_addr + idx));
 227}
 228
 229/**
 230 * pch_spi_readreg() - Performs register reads
 231 * @master:	Pointer to struct spi_master.
 232 * @idx:	Register offset.
 233 */
 234static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 235{
 236	struct pch_spi_data *data = spi_master_get_devdata(master);
 237	return ioread32(data->io_remap_addr + idx);
 238}
 239
 240static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 241				      u32 set, u32 clr)
 242{
 243	u32 tmp = pch_spi_readreg(master, idx);
 244	tmp = (tmp & ~clr) | set;
 245	pch_spi_writereg(master, idx, tmp);
 246}
 247
 248static void pch_spi_set_master_mode(struct spi_master *master)
 249{
 250	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 251}
 252
 253/**
 254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 255 * @master:	Pointer to struct spi_master.
 256 */
 257static void pch_spi_clear_fifo(struct spi_master *master)
 258{
 259	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 260	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 261}
 262
 263static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 264				void __iomem *io_remap_addr)
 265{
 266	u32 n_read, tx_index, rx_index, bpw_len;
 267	u16 *pkt_rx_buffer, *pkt_tx_buff;
 268	int read_cnt;
 269	u32 reg_spcr_val;
 270	void __iomem *spsr;
 271	void __iomem *spdrr;
 272	void __iomem *spdwr;
 273
 274	spsr = io_remap_addr + PCH_SPSR;
 275	iowrite32(reg_spsr_val, spsr);
 276
 277	if (data->transfer_active) {
 278		rx_index = data->rx_index;
 279		tx_index = data->tx_index;
 280		bpw_len = data->bpw_len;
 281		pkt_rx_buffer = data->pkt_rx_buff;
 282		pkt_tx_buff = data->pkt_tx_buff;
 283
 284		spdrr = io_remap_addr + PCH_SPDRR;
 285		spdwr = io_remap_addr + PCH_SPDWR;
 286
 287		n_read = PCH_READABLE(reg_spsr_val);
 288
 289		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 290			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 291			if (tx_index < bpw_len)
 292				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 293		}
 294
 295		/* disable RFI if not needed */
 296		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 297			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 298			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 299
 300			/* reset rx threshold */
 301			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 302			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 303
 304			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 305		}
 306
 307		/* update counts */
 308		data->tx_index = tx_index;
 309		data->rx_index = rx_index;
 310
 311		/* if transfer complete interrupt */
 312		if (reg_spsr_val & SPSR_FI_BIT) {
 313			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 314				/* disable interrupts */
 315				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 316						   PCH_ALL);
 317
 318				/* transfer is completed;
 319				   inform pch_spi_process_messages */
 320				data->transfer_complete = true;
 321				data->transfer_active = false;
 322				wake_up(&data->wait);
 323			} else {
 324				dev_vdbg(&data->master->dev,
 325					"%s : Transfer is not completed",
 326					__func__);
 327			}
 328		}
 329	}
 330}
 331
 332/**
 333 * pch_spi_handler() - Interrupt handler
 334 * @irq:	The interrupt number.
 335 * @dev_id:	Pointer to struct pch_spi_board_data.
 336 */
 337static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 338{
 339	u32 reg_spsr_val;
 340	void __iomem *spsr;
 341	void __iomem *io_remap_addr;
 342	irqreturn_t ret = IRQ_NONE;
 343	struct pch_spi_data *data = dev_id;
 344	struct pch_spi_board_data *board_dat = data->board_dat;
 345
 346	if (board_dat->suspend_sts) {
 347		dev_dbg(&board_dat->pdev->dev,
 348			"%s returning due to suspend\n", __func__);
 349		return IRQ_NONE;
 350	}
 351
 352	io_remap_addr = data->io_remap_addr;
 353	spsr = io_remap_addr + PCH_SPSR;
 354
 355	reg_spsr_val = ioread32(spsr);
 356
 357	if (reg_spsr_val & SPSR_ORF_BIT) {
 358		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 359		if (data->current_msg->complete) {
 360			data->transfer_complete = true;
 361			data->current_msg->status = -EIO;
 362			data->current_msg->complete(data->current_msg->context);
 363			data->bcurrent_msg_processing = false;
 364			data->current_msg = NULL;
 365			data->cur_trans = NULL;
 366		}
 367	}
 368
 369	if (data->use_dma)
 370		return IRQ_NONE;
 371
 372	/* Check if the interrupt is for SPI device */
 373	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 374		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 375		ret = IRQ_HANDLED;
 376	}
 377
 378	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 379		__func__, ret);
 380
 381	return ret;
 382}
 383
 384/**
 385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 386 * @master:	Pointer to struct spi_master.
 387 * @speed_hz:	Baud rate.
 388 */
 389static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 390{
 391	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 392
 393	/* if baud rate is less than we can support limit it */
 394	if (n_spbr > PCH_MAX_SPBR)
 395		n_spbr = PCH_MAX_SPBR;
 396
 397	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 398}
 399
 400/**
 401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 402 * @master:		Pointer to struct spi_master.
 403 * @bits_per_word:	Bits per word for SPI transfer.
 404 */
 405static void pch_spi_set_bits_per_word(struct spi_master *master,
 406				      u8 bits_per_word)
 407{
 408	if (bits_per_word == 8)
 409		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 410	else
 411		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 412}
 413
 414/**
 415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 416 * @spi:	Pointer to struct spi_device.
 417 */
 418static void pch_spi_setup_transfer(struct spi_device *spi)
 419{
 420	u32 flags = 0;
 421
 422	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 423		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 424		spi->max_speed_hz);
 425	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 426
 427	/* set bits per word */
 428	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 429
 430	if (!(spi->mode & SPI_LSB_FIRST))
 431		flags |= SPCR_LSBF_BIT;
 432	if (spi->mode & SPI_CPOL)
 433		flags |= SPCR_CPOL_BIT;
 434	if (spi->mode & SPI_CPHA)
 435		flags |= SPCR_CPHA_BIT;
 436	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 437			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 438
 439	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 440	pch_spi_clear_fifo(spi->master);
 441}
 442
 443/**
 444 * pch_spi_reset() - Clears SPI registers
 445 * @master:	Pointer to struct spi_master.
 446 */
 447static void pch_spi_reset(struct spi_master *master)
 448{
 449	/* write 1 to reset SPI */
 450	pch_spi_writereg(master, PCH_SRST, 0x1);
 451
 452	/* clear reset */
 453	pch_spi_writereg(master, PCH_SRST, 0x0);
 454}
 455
 456static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 457{
 
 
 458	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 459	int retval;
 460	unsigned long flags;
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	/* We won't process any messages if we have been asked to terminate */
 463	if (data->status == STATUS_EXITING) {
 464		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 465		retval = -ESHUTDOWN;
 466		goto err_out;
 467	}
 468
 469	/* If suspended ,return -EINVAL */
 470	if (data->board_dat->suspend_sts) {
 471		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 472		retval = -EINVAL;
 473		goto err_out;
 474	}
 475
 476	/* set status of message */
 477	pmsg->actual_length = 0;
 478	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 479
 480	pmsg->status = -EINPROGRESS;
 481	spin_lock_irqsave(&data->lock, flags);
 482	/* add message to queue */
 483	list_add_tail(&pmsg->queue, &data->queue);
 484	spin_unlock_irqrestore(&data->lock, flags);
 485
 486	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 487
 488	schedule_work(&data->work);
 489	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 490
 491	retval = 0;
 492
 493err_out:
 494	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 495	return retval;
 
 
 
 
 496}
 497
 498static inline void pch_spi_select_chip(struct pch_spi_data *data,
 499				       struct spi_device *pspi)
 500{
 501	if (data->current_chip != NULL) {
 502		if (pspi->chip_select != data->n_curnt_chip) {
 503			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 504			data->current_chip = NULL;
 505		}
 506	}
 507
 508	data->current_chip = pspi;
 509
 510	data->n_curnt_chip = data->current_chip->chip_select;
 511
 512	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 513	pch_spi_setup_transfer(pspi);
 514}
 515
 516static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 517{
 518	int size;
 519	u32 n_writes;
 520	int j;
 521	struct spi_message *pmsg, *tmp;
 522	const u8 *tx_buf;
 523	const u16 *tx_sbuf;
 524
 525	/* set baud rate if needed */
 526	if (data->cur_trans->speed_hz) {
 527		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 528		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 529	}
 530
 531	/* set bits per word if needed */
 532	if (data->cur_trans->bits_per_word &&
 533	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 534		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 535		pch_spi_set_bits_per_word(data->master,
 536					  data->cur_trans->bits_per_word);
 537		*bpw = data->cur_trans->bits_per_word;
 538	} else {
 539		*bpw = data->current_msg->spi->bits_per_word;
 540	}
 541
 542	/* reset Tx/Rx index */
 543	data->tx_index = 0;
 544	data->rx_index = 0;
 545
 546	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 547
 548	/* find alloc size */
 549	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 550
 551	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 552	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 553	if (data->pkt_tx_buff != NULL) {
 554		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 555		if (!data->pkt_rx_buff) {
 556			kfree(data->pkt_tx_buff);
 557			data->pkt_tx_buff = NULL;
 558		}
 559	}
 560
 561	if (!data->pkt_rx_buff) {
 562		/* flush queue and set status of all transfers to -ENOMEM */
 563		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 564			pmsg->status = -ENOMEM;
 565
 566			if (pmsg->complete)
 567				pmsg->complete(pmsg->context);
 568
 569			/* delete from queue */
 570			list_del_init(&pmsg->queue);
 571		}
 572		return;
 573	}
 574
 575	/* copy Tx Data */
 576	if (data->cur_trans->tx_buf != NULL) {
 577		if (*bpw == 8) {
 578			tx_buf = data->cur_trans->tx_buf;
 579			for (j = 0; j < data->bpw_len; j++)
 580				data->pkt_tx_buff[j] = *tx_buf++;
 581		} else {
 582			tx_sbuf = data->cur_trans->tx_buf;
 583			for (j = 0; j < data->bpw_len; j++)
 584				data->pkt_tx_buff[j] = *tx_sbuf++;
 585		}
 586	}
 587
 588	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 589	n_writes = data->bpw_len;
 590	if (n_writes > PCH_MAX_FIFO_DEPTH)
 591		n_writes = PCH_MAX_FIFO_DEPTH;
 592
 593	dev_dbg(&data->master->dev,
 594		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 595		__func__);
 596	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 597
 598	for (j = 0; j < n_writes; j++)
 599		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 600
 601	/* update tx_index */
 602	data->tx_index = j;
 603
 604	/* reset transfer complete flag */
 605	data->transfer_complete = false;
 606	data->transfer_active = true;
 607}
 608
 609static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 610{
 611	struct spi_message *pmsg, *tmp;
 612	dev_dbg(&data->master->dev, "%s called\n", __func__);
 613	/* Invoke complete callback
 614	 * [To the spi core..indicating end of transfer] */
 615	data->current_msg->status = 0;
 616
 617	if (data->current_msg->complete) {
 618		dev_dbg(&data->master->dev,
 619			"%s:Invoking callback of SPI core\n", __func__);
 620		data->current_msg->complete(data->current_msg->context);
 621	}
 622
 623	/* update status in global variable */
 624	data->bcurrent_msg_processing = false;
 625
 626	dev_dbg(&data->master->dev,
 627		"%s:data->bcurrent_msg_processing = false\n", __func__);
 628
 629	data->current_msg = NULL;
 630	data->cur_trans = NULL;
 631
 632	/* check if we have items in list and not suspending
 633	 * return 1 if list empty */
 634	if ((list_empty(&data->queue) == 0) &&
 635	    (!data->board_dat->suspend_sts) &&
 636	    (data->status != STATUS_EXITING)) {
 637		/* We have some more work to do (either there is more tranint
 638		 * bpw;sfer requests in the current message or there are
 639		 *more messages)
 640		 */
 641		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 642		schedule_work(&data->work);
 643	} else if (data->board_dat->suspend_sts ||
 644		   data->status == STATUS_EXITING) {
 645		dev_dbg(&data->master->dev,
 646			"%s suspend/remove initiated, flushing queue\n",
 647			__func__);
 648		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 649			pmsg->status = -EIO;
 650
 651			if (pmsg->complete)
 652				pmsg->complete(pmsg->context);
 653
 654			/* delete from queue */
 655			list_del_init(&pmsg->queue);
 656		}
 657	}
 658}
 659
 660static void pch_spi_set_ir(struct pch_spi_data *data)
 661{
 662	/* enable interrupts, set threshold, enable SPI */
 663	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 664		/* set receive threshold to PCH_RX_THOLD */
 665		pch_spi_setclr_reg(data->master, PCH_SPCR,
 666				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 667				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 668				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 669				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 670	else
 671		/* set receive threshold to maximum */
 672		pch_spi_setclr_reg(data->master, PCH_SPCR,
 673				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 674				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 675				   SPCR_SPE_BIT,
 676				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 677
 678	/* Wait until the transfer completes; go to sleep after
 679				 initiating the transfer. */
 680	dev_dbg(&data->master->dev,
 681		"%s:waiting for transfer to get over\n", __func__);
 682
 683	wait_event_interruptible(data->wait, data->transfer_complete);
 684
 685	/* clear all interrupts */
 686	pch_spi_writereg(data->master, PCH_SPSR,
 687			 pch_spi_readreg(data->master, PCH_SPSR));
 688	/* Disable interrupts and SPI transfer */
 689	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 690	/* clear FIFO */
 691	pch_spi_clear_fifo(data->master);
 692}
 693
 694static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 695{
 696	int j;
 697	u8 *rx_buf;
 698	u16 *rx_sbuf;
 699
 700	/* copy Rx Data */
 701	if (!data->cur_trans->rx_buf)
 702		return;
 703
 704	if (bpw == 8) {
 705		rx_buf = data->cur_trans->rx_buf;
 706		for (j = 0; j < data->bpw_len; j++)
 707			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 708	} else {
 709		rx_sbuf = data->cur_trans->rx_buf;
 710		for (j = 0; j < data->bpw_len; j++)
 711			*rx_sbuf++ = data->pkt_rx_buff[j];
 712	}
 713}
 714
 715static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 716{
 717	int j;
 718	u8 *rx_buf;
 719	u16 *rx_sbuf;
 720	const u8 *rx_dma_buf;
 721	const u16 *rx_dma_sbuf;
 722
 723	/* copy Rx Data */
 724	if (!data->cur_trans->rx_buf)
 725		return;
 726
 727	if (bpw == 8) {
 728		rx_buf = data->cur_trans->rx_buf;
 729		rx_dma_buf = data->dma.rx_buf_virt;
 730		for (j = 0; j < data->bpw_len; j++)
 731			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 732		data->cur_trans->rx_buf = rx_buf;
 733	} else {
 734		rx_sbuf = data->cur_trans->rx_buf;
 735		rx_dma_sbuf = data->dma.rx_buf_virt;
 736		for (j = 0; j < data->bpw_len; j++)
 737			*rx_sbuf++ = *rx_dma_sbuf++;
 738		data->cur_trans->rx_buf = rx_sbuf;
 739	}
 740}
 741
 742static int pch_spi_start_transfer(struct pch_spi_data *data)
 743{
 744	struct pch_spi_dma_ctrl *dma;
 745	unsigned long flags;
 746	int rtn;
 747
 748	dma = &data->dma;
 749
 750	spin_lock_irqsave(&data->lock, flags);
 751
 752	/* disable interrupts, SPI set enable */
 753	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 754
 755	spin_unlock_irqrestore(&data->lock, flags);
 756
 757	/* Wait until the transfer completes; go to sleep after
 758				 initiating the transfer. */
 759	dev_dbg(&data->master->dev,
 760		"%s:waiting for transfer to get over\n", __func__);
 761	rtn = wait_event_interruptible_timeout(data->wait,
 762					       data->transfer_complete,
 763					       msecs_to_jiffies(2 * HZ));
 764	if (!rtn)
 765		dev_err(&data->master->dev,
 766			"%s wait-event timeout\n", __func__);
 767
 768	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 769			    DMA_FROM_DEVICE);
 770
 771	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 772			    DMA_FROM_DEVICE);
 773	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 774
 775	async_tx_ack(dma->desc_rx);
 776	async_tx_ack(dma->desc_tx);
 777	kfree(dma->sg_tx_p);
 778	kfree(dma->sg_rx_p);
 779
 780	spin_lock_irqsave(&data->lock, flags);
 781
 782	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 783	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 784			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 785			   SPCR_SPE_BIT);
 786	/* clear all interrupts */
 787	pch_spi_writereg(data->master, PCH_SPSR,
 788			 pch_spi_readreg(data->master, PCH_SPSR));
 789	/* clear FIFO */
 790	pch_spi_clear_fifo(data->master);
 791
 792	spin_unlock_irqrestore(&data->lock, flags);
 793
 794	return rtn;
 795}
 796
 797static void pch_dma_rx_complete(void *arg)
 798{
 799	struct pch_spi_data *data = arg;
 800
 801	/* transfer is completed;inform pch_spi_process_messages_dma */
 802	data->transfer_complete = true;
 803	wake_up_interruptible(&data->wait);
 804}
 805
 806static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 807{
 808	struct pch_dma_slave *param = slave;
 809
 810	if ((chan->chan_id == param->chan_id) &&
 811	    (param->dma_dev == chan->device->dev)) {
 812		chan->private = param;
 813		return true;
 814	} else {
 815		return false;
 816	}
 817}
 818
 819static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 820{
 821	dma_cap_mask_t mask;
 822	struct dma_chan *chan;
 823	struct pci_dev *dma_dev;
 824	struct pch_dma_slave *param;
 825	struct pch_spi_dma_ctrl *dma;
 826	unsigned int width;
 827
 828	if (bpw == 8)
 829		width = PCH_DMA_WIDTH_1_BYTE;
 830	else
 831		width = PCH_DMA_WIDTH_2_BYTES;
 832
 833	dma = &data->dma;
 834	dma_cap_zero(mask);
 835	dma_cap_set(DMA_SLAVE, mask);
 836
 837	/* Get DMA's dev information */
 838	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 839			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 840
 841	/* Set Tx DMA */
 842	param = &dma->param_tx;
 843	param->dma_dev = &dma_dev->dev;
 844	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
 845	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 846	param->width = width;
 847	chan = dma_request_channel(mask, pch_spi_filter, param);
 848	if (!chan) {
 849		dev_err(&data->master->dev,
 850			"ERROR: dma_request_channel FAILS(Tx)\n");
 851		goto out;
 
 852	}
 853	dma->chan_tx = chan;
 854
 855	/* Set Rx DMA */
 856	param = &dma->param_rx;
 857	param->dma_dev = &dma_dev->dev;
 858	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
 859	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 860	param->width = width;
 861	chan = dma_request_channel(mask, pch_spi_filter, param);
 862	if (!chan) {
 863		dev_err(&data->master->dev,
 864			"ERROR: dma_request_channel FAILS(Rx)\n");
 865		dma_release_channel(dma->chan_tx);
 866		dma->chan_tx = NULL;
 867		goto out;
 
 868	}
 869	dma->chan_rx = chan;
 870
 871	dma->dma_dev = dma_dev;
 872	return;
 873out:
 874	pci_dev_put(dma_dev);
 875	data->use_dma = 0;
 876}
 877
 878static void pch_spi_release_dma(struct pch_spi_data *data)
 879{
 880	struct pch_spi_dma_ctrl *dma;
 881
 882	dma = &data->dma;
 883	if (dma->chan_tx) {
 884		dma_release_channel(dma->chan_tx);
 885		dma->chan_tx = NULL;
 886	}
 887	if (dma->chan_rx) {
 888		dma_release_channel(dma->chan_rx);
 889		dma->chan_rx = NULL;
 890	}
 891
 892	pci_dev_put(dma->dma_dev);
 893}
 894
 895static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 896{
 897	const u8 *tx_buf;
 898	const u16 *tx_sbuf;
 899	u8 *tx_dma_buf;
 900	u16 *tx_dma_sbuf;
 901	struct scatterlist *sg;
 902	struct dma_async_tx_descriptor *desc_tx;
 903	struct dma_async_tx_descriptor *desc_rx;
 904	int num;
 905	int i;
 906	int size;
 907	int rem;
 908	int head;
 909	unsigned long flags;
 910	struct pch_spi_dma_ctrl *dma;
 911
 912	dma = &data->dma;
 913
 914	/* set baud rate if needed */
 915	if (data->cur_trans->speed_hz) {
 916		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 917		spin_lock_irqsave(&data->lock, flags);
 918		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 919		spin_unlock_irqrestore(&data->lock, flags);
 920	}
 921
 922	/* set bits per word if needed */
 923	if (data->cur_trans->bits_per_word &&
 924	    (data->current_msg->spi->bits_per_word !=
 925	     data->cur_trans->bits_per_word)) {
 926		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 927		spin_lock_irqsave(&data->lock, flags);
 928		pch_spi_set_bits_per_word(data->master,
 929					  data->cur_trans->bits_per_word);
 930		spin_unlock_irqrestore(&data->lock, flags);
 931		*bpw = data->cur_trans->bits_per_word;
 932	} else {
 933		*bpw = data->current_msg->spi->bits_per_word;
 934	}
 935	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 936
 937	if (data->bpw_len > PCH_BUF_SIZE) {
 938		data->bpw_len = PCH_BUF_SIZE;
 939		data->cur_trans->len -= PCH_BUF_SIZE;
 940	}
 941
 942	/* copy Tx Data */
 943	if (data->cur_trans->tx_buf != NULL) {
 944		if (*bpw == 8) {
 945			tx_buf = data->cur_trans->tx_buf;
 946			tx_dma_buf = dma->tx_buf_virt;
 947			for (i = 0; i < data->bpw_len; i++)
 948				*tx_dma_buf++ = *tx_buf++;
 949		} else {
 950			tx_sbuf = data->cur_trans->tx_buf;
 951			tx_dma_sbuf = dma->tx_buf_virt;
 952			for (i = 0; i < data->bpw_len; i++)
 953				*tx_dma_sbuf++ = *tx_sbuf++;
 954		}
 955	}
 956
 957	/* Calculate Rx parameter for DMA transmitting */
 958	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 959		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 960			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 961			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 962		} else {
 963			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 964			rem = PCH_DMA_TRANS_SIZE;
 965		}
 966		size = PCH_DMA_TRANS_SIZE;
 967	} else {
 968		num = 1;
 969		size = data->bpw_len;
 970		rem = data->bpw_len;
 971	}
 972	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
 973		__func__, num, size, rem);
 974	spin_lock_irqsave(&data->lock, flags);
 975
 976	/* set receive fifo threshold and transmit fifo threshold */
 977	pch_spi_setclr_reg(data->master, PCH_SPCR,
 978			   ((size - 1) << SPCR_RFIC_FIELD) |
 979			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 980			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 981
 982	spin_unlock_irqrestore(&data->lock, flags);
 983
 984	/* RX */
 985	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
 986	if (!dma->sg_rx_p)
 987		return;
 988
 989	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
 990	/* offset, length setting */
 991	sg = dma->sg_rx_p;
 992	for (i = 0; i < num; i++, sg++) {
 993		if (i == (num - 2)) {
 994			sg->offset = size * i;
 995			sg->offset = sg->offset * (*bpw / 8);
 996			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
 997				    sg->offset);
 998			sg_dma_len(sg) = rem;
 999		} else if (i == (num - 1)) {
1000			sg->offset = size * (i - 1) + rem;
1001			sg->offset = sg->offset * (*bpw / 8);
1002			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003				    sg->offset);
1004			sg_dma_len(sg) = size;
1005		} else {
1006			sg->offset = size * i;
1007			sg->offset = sg->offset * (*bpw / 8);
1008			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009				    sg->offset);
1010			sg_dma_len(sg) = size;
1011		}
1012		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013	}
1014	sg = dma->sg_rx_p;
1015	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016					num, DMA_DEV_TO_MEM,
1017					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018	if (!desc_rx) {
1019		dev_err(&data->master->dev,
1020			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021		return;
1022	}
1023	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1024	desc_rx->callback = pch_dma_rx_complete;
1025	desc_rx->callback_param = data;
1026	dma->nent = num;
1027	dma->desc_rx = desc_rx;
1028
1029	/* Calculate Tx parameter for DMA transmitting */
1030	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035		} else {
1036			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038			      PCH_DMA_TRANS_SIZE - head;
1039		}
1040		size = PCH_DMA_TRANS_SIZE;
1041	} else {
1042		num = 1;
1043		size = data->bpw_len;
1044		rem = data->bpw_len;
1045		head = 0;
1046	}
1047
1048	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049	if (!dma->sg_tx_p)
1050		return;
1051
1052	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_tx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == 0) {
1057			sg->offset = 0;
1058			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059				    sg->offset);
1060			sg_dma_len(sg) = size + head;
1061		} else if (i == (num - 1)) {
1062			sg->offset = head + size * i;
1063			sg->offset = sg->offset * (*bpw / 8);
1064			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065				    sg->offset);
1066			sg_dma_len(sg) = rem;
1067		} else {
1068			sg->offset = head + size * i;
1069			sg->offset = sg->offset * (*bpw / 8);
1070			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071				    sg->offset);
1072			sg_dma_len(sg) = size;
1073		}
1074		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075	}
1076	sg = dma->sg_tx_p;
1077	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078					sg, num, DMA_MEM_TO_DEV,
1079					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080	if (!desc_tx) {
1081		dev_err(&data->master->dev,
1082			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083		return;
1084	}
1085	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1086	desc_tx->callback = NULL;
1087	desc_tx->callback_param = data;
1088	dma->nent = num;
1089	dma->desc_tx = desc_tx;
1090
1091	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092
1093	spin_lock_irqsave(&data->lock, flags);
1094	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1095	desc_rx->tx_submit(desc_rx);
1096	desc_tx->tx_submit(desc_tx);
1097	spin_unlock_irqrestore(&data->lock, flags);
1098
1099	/* reset transfer complete flag */
1100	data->transfer_complete = false;
1101}
1102
1103static void pch_spi_process_messages(struct work_struct *pwork)
1104{
1105	struct spi_message *pmsg, *tmp;
1106	struct pch_spi_data *data;
1107	int bpw;
1108
1109	data = container_of(pwork, struct pch_spi_data, work);
1110	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1111
1112	spin_lock(&data->lock);
1113	/* check if suspend has been initiated;if yes flush queue */
1114	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115		dev_dbg(&data->master->dev,
1116			"%s suspend/remove initiated, flushing queue\n", __func__);
1117		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118			pmsg->status = -EIO;
1119
1120			if (pmsg->complete) {
1121				spin_unlock(&data->lock);
1122				pmsg->complete(pmsg->context);
1123				spin_lock(&data->lock);
1124			}
1125
1126			/* delete from queue */
1127			list_del_init(&pmsg->queue);
1128		}
1129
1130		spin_unlock(&data->lock);
1131		return;
1132	}
1133
1134	data->bcurrent_msg_processing = true;
1135	dev_dbg(&data->master->dev,
1136		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138	/* Get the message from the queue and delete it from there. */
1139	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140					queue);
1141
1142	list_del_init(&data->current_msg->queue);
1143
1144	data->current_msg->status = 0;
1145
1146	pch_spi_select_chip(data, data->current_msg->spi);
1147
1148	spin_unlock(&data->lock);
1149
1150	if (data->use_dma)
1151		pch_spi_request_dma(data,
1152				    data->current_msg->spi->bits_per_word);
1153	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1154	do {
1155		int cnt;
1156		/* If we are already processing a message get the next
1157		transfer structure from the message otherwise retrieve
1158		the 1st transfer request from the message. */
1159		spin_lock(&data->lock);
1160		if (data->cur_trans == NULL) {
1161			data->cur_trans =
1162				list_entry(data->current_msg->transfers.next,
1163					   struct spi_transfer, transfer_list);
1164			dev_dbg(&data->master->dev,
1165				"%s :Getting 1st transfer message\n",
1166				__func__);
1167		} else {
1168			data->cur_trans =
1169				list_entry(data->cur_trans->transfer_list.next,
1170					   struct spi_transfer, transfer_list);
1171			dev_dbg(&data->master->dev,
1172				"%s :Getting next transfer message\n",
1173				__func__);
1174		}
1175		spin_unlock(&data->lock);
1176
1177		if (!data->cur_trans->len)
1178			goto out;
1179		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180		data->save_total_len = data->cur_trans->len;
1181		if (data->use_dma) {
1182			int i;
1183			char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185			for (i = 0; i < cnt; i++) {
1186				pch_spi_handle_dma(data, &bpw);
1187				if (!pch_spi_start_transfer(data)) {
1188					data->transfer_complete = true;
1189					data->current_msg->status = -EIO;
1190					data->current_msg->complete
1191						   (data->current_msg->context);
1192					data->bcurrent_msg_processing = false;
1193					data->current_msg = NULL;
1194					data->cur_trans = NULL;
1195					goto out;
1196				}
1197				pch_spi_copy_rx_data_for_dma(data, bpw);
1198			}
1199			data->cur_trans->rx_buf = save_rx_buf;
1200		} else {
1201			pch_spi_set_tx(data, &bpw);
1202			pch_spi_set_ir(data);
1203			pch_spi_copy_rx_data(data, bpw);
1204			kfree(data->pkt_rx_buff);
1205			data->pkt_rx_buff = NULL;
1206			kfree(data->pkt_tx_buff);
1207			data->pkt_tx_buff = NULL;
1208		}
1209		/* increment message count */
1210		data->cur_trans->len = data->save_total_len;
1211		data->current_msg->actual_length += data->cur_trans->len;
1212
1213		dev_dbg(&data->master->dev,
1214			"%s:data->current_msg->actual_length=%d\n",
1215			__func__, data->current_msg->actual_length);
1216
1217		spi_transfer_delay_exec(data->cur_trans);
 
 
 
 
 
1218
1219		spin_lock(&data->lock);
1220
1221		/* No more transfer in this message. */
1222		if ((data->cur_trans->transfer_list.next) ==
1223		    &(data->current_msg->transfers)) {
1224			pch_spi_nomore_transfer(data);
1225		}
1226
1227		spin_unlock(&data->lock);
1228
1229	} while (data->cur_trans != NULL);
1230
1231out:
1232	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1233	if (data->use_dma)
1234		pch_spi_release_dma(data);
1235}
1236
1237static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238				   struct pch_spi_data *data)
1239{
1240	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242	flush_work(&data->work);
1243}
1244
1245static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246				 struct pch_spi_data *data)
1247{
1248	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
1250	/* reset PCH SPI h/w */
1251	pch_spi_reset(data->master);
1252	dev_dbg(&board_dat->pdev->dev,
1253		"%s pch_spi_reset invoked successfully\n", __func__);
1254
1255	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257	return 0;
1258}
1259
1260static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261			     struct pch_spi_data *data)
1262{
1263	struct pch_spi_dma_ctrl *dma;
1264
1265	dma = &data->dma;
1266	if (dma->tx_buf_dma)
1267		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268				  dma->tx_buf_virt, dma->tx_buf_dma);
1269	if (dma->rx_buf_dma)
1270		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271				  dma->rx_buf_virt, dma->rx_buf_dma);
1272}
1273
1274static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275			      struct pch_spi_data *data)
1276{
1277	struct pch_spi_dma_ctrl *dma;
1278	int ret;
1279
1280	dma = &data->dma;
1281	ret = 0;
1282	/* Get Consistent memory for Tx DMA */
1283	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285	if (!dma->tx_buf_virt)
1286		ret = -ENOMEM;
1287
1288	/* Get Consistent memory for Rx DMA */
1289	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291	if (!dma->rx_buf_virt)
1292		ret = -ENOMEM;
1293
1294	return ret;
1295}
1296
1297static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298{
1299	int ret;
1300	struct spi_master *master;
1301	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302	struct pch_spi_data *data;
1303
1304	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306	master = spi_alloc_master(&board_dat->pdev->dev,
1307				  sizeof(struct pch_spi_data));
1308	if (!master) {
1309		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1310			plat_dev->id);
1311		return -ENOMEM;
1312	}
1313
1314	data = spi_master_get_devdata(master);
1315	data->master = master;
1316
1317	platform_set_drvdata(plat_dev, data);
1318
1319	/* baseaddress + address offset) */
1320	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321					 PCH_ADDRESS_SIZE * plat_dev->id;
1322	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323	if (!data->io_remap_addr) {
1324		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325		ret = -ENOMEM;
1326		goto err_pci_iomap;
1327	}
1328	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331		plat_dev->id, data->io_remap_addr);
1332
1333	/* initialize members of SPI master */
1334	master->num_chipselect = PCH_MAX_CS;
1335	master->transfer = pch_spi_transfer;
1336	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338	master->max_speed_hz = PCH_MAX_BAUDRATE;
1339	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341	data->board_dat = board_dat;
1342	data->plat_dev = plat_dev;
1343	data->n_curnt_chip = 255;
1344	data->status = STATUS_RUNNING;
1345	data->ch = plat_dev->id;
1346	data->use_dma = use_dma;
1347
1348	INIT_LIST_HEAD(&data->queue);
1349	spin_lock_init(&data->lock);
1350	INIT_WORK(&data->work, pch_spi_process_messages);
1351	init_waitqueue_head(&data->wait);
1352
1353	ret = pch_spi_get_resources(board_dat, data);
1354	if (ret) {
1355		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356		goto err_spi_get_resources;
1357	}
1358
1359	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360			  IRQF_SHARED, KBUILD_MODNAME, data);
1361	if (ret) {
1362		dev_err(&plat_dev->dev,
1363			"%s request_irq failed\n", __func__);
1364		goto err_request_irq;
1365	}
1366	data->irq_reg_sts = true;
1367
1368	pch_spi_set_master_mode(master);
1369
1370	if (use_dma) {
1371		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372		ret = pch_alloc_dma_buf(board_dat, data);
1373		if (ret)
1374			goto err_spi_register_master;
1375	}
1376
1377	ret = spi_register_master(master);
1378	if (ret != 0) {
1379		dev_err(&plat_dev->dev,
1380			"%s spi_register_master FAILED\n", __func__);
1381		goto err_spi_register_master;
1382	}
1383
1384	return 0;
1385
1386err_spi_register_master:
1387	pch_free_dma_buf(board_dat, data);
1388	free_irq(board_dat->pdev->irq, data);
1389err_request_irq:
1390	pch_spi_free_resources(board_dat, data);
1391err_spi_get_resources:
1392	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393err_pci_iomap:
1394	spi_master_put(master);
1395
1396	return ret;
1397}
1398
1399static int pch_spi_pd_remove(struct platform_device *plat_dev)
1400{
1401	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403	int count;
1404	unsigned long flags;
1405
1406	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407		__func__, plat_dev->id, board_dat->pdev->irq);
1408
1409	if (use_dma)
1410		pch_free_dma_buf(board_dat, data);
1411
1412	/* check for any pending messages; no action is taken if the queue
1413	 * is still full; but at least we tried.  Unload anyway */
1414	count = 500;
1415	spin_lock_irqsave(&data->lock, flags);
1416	data->status = STATUS_EXITING;
1417	while ((list_empty(&data->queue) == 0) && --count) {
1418		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419			__func__);
1420		spin_unlock_irqrestore(&data->lock, flags);
1421		msleep(PCH_SLEEP_TIME);
1422		spin_lock_irqsave(&data->lock, flags);
1423	}
1424	spin_unlock_irqrestore(&data->lock, flags);
1425
1426	pch_spi_free_resources(board_dat, data);
1427	/* disable interrupts & free IRQ */
1428	if (data->irq_reg_sts) {
1429		/* disable interrupts */
1430		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1431		data->irq_reg_sts = false;
1432		free_irq(board_dat->pdev->irq, data);
1433	}
1434
1435	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436	spi_unregister_master(data->master);
1437
1438	return 0;
1439}
1440#ifdef CONFIG_PM
1441static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1442			      pm_message_t state)
1443{
1444	u8 count;
1445	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1446	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1447
1448	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1449
1450	if (!board_dat) {
1451		dev_err(&pd_dev->dev,
1452			"%s pci_get_drvdata returned NULL\n", __func__);
1453		return -EFAULT;
1454	}
1455
1456	/* check if the current message is processed:
1457	   Only after thats done the transfer will be suspended */
1458	count = 255;
1459	while ((--count) > 0) {
1460		if (!(data->bcurrent_msg_processing))
1461			break;
1462		msleep(PCH_SLEEP_TIME);
1463	}
1464
1465	/* Free IRQ */
1466	if (data->irq_reg_sts) {
1467		/* disable all interrupts */
1468		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1469		pch_spi_reset(data->master);
1470		free_irq(board_dat->pdev->irq, data);
1471
1472		data->irq_reg_sts = false;
1473		dev_dbg(&pd_dev->dev,
1474			"%s free_irq invoked successfully.\n", __func__);
1475	}
1476
1477	return 0;
1478}
1479
1480static int pch_spi_pd_resume(struct platform_device *pd_dev)
1481{
1482	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1483	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1484	int retval;
1485
1486	if (!board_dat) {
1487		dev_err(&pd_dev->dev,
1488			"%s pci_get_drvdata returned NULL\n", __func__);
1489		return -EFAULT;
1490	}
1491
1492	if (!data->irq_reg_sts) {
1493		/* register IRQ */
1494		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1495				     IRQF_SHARED, KBUILD_MODNAME, data);
1496		if (retval < 0) {
1497			dev_err(&pd_dev->dev,
1498				"%s request_irq failed\n", __func__);
1499			return retval;
1500		}
1501
1502		/* reset PCH SPI h/w */
1503		pch_spi_reset(data->master);
1504		pch_spi_set_master_mode(data->master);
1505		data->irq_reg_sts = true;
1506	}
1507	return 0;
1508}
1509#else
1510#define pch_spi_pd_suspend NULL
1511#define pch_spi_pd_resume NULL
1512#endif
1513
1514static struct platform_driver pch_spi_pd_driver = {
1515	.driver = {
1516		.name = "pch-spi",
1517	},
1518	.probe = pch_spi_pd_probe,
1519	.remove = pch_spi_pd_remove,
1520	.suspend = pch_spi_pd_suspend,
1521	.resume = pch_spi_pd_resume
1522};
1523
1524static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1525{
1526	struct pch_spi_board_data *board_dat;
1527	struct platform_device *pd_dev = NULL;
1528	int retval;
1529	int i;
1530	struct pch_pd_dev_save *pd_dev_save;
1531
1532	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1533	if (!pd_dev_save)
1534		return -ENOMEM;
1535
1536	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1537	if (!board_dat) {
1538		retval = -ENOMEM;
1539		goto err_no_mem;
1540	}
1541
1542	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1543	if (retval) {
1544		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1545		goto pci_request_regions;
1546	}
1547
1548	board_dat->pdev = pdev;
1549	board_dat->num = id->driver_data;
1550	pd_dev_save->num = id->driver_data;
1551	pd_dev_save->board_dat = board_dat;
1552
1553	retval = pci_enable_device(pdev);
1554	if (retval) {
1555		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1556		goto pci_enable_device;
1557	}
1558
1559	for (i = 0; i < board_dat->num; i++) {
1560		pd_dev = platform_device_alloc("pch-spi", i);
1561		if (!pd_dev) {
1562			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1563			retval = -ENOMEM;
1564			goto err_platform_device;
1565		}
1566		pd_dev_save->pd_save[i] = pd_dev;
1567		pd_dev->dev.parent = &pdev->dev;
1568
1569		retval = platform_device_add_data(pd_dev, board_dat,
1570						  sizeof(*board_dat));
1571		if (retval) {
1572			dev_err(&pdev->dev,
1573				"platform_device_add_data failed\n");
1574			platform_device_put(pd_dev);
1575			goto err_platform_device;
1576		}
1577
1578		retval = platform_device_add(pd_dev);
1579		if (retval) {
1580			dev_err(&pdev->dev, "platform_device_add failed\n");
1581			platform_device_put(pd_dev);
1582			goto err_platform_device;
1583		}
1584	}
1585
1586	pci_set_drvdata(pdev, pd_dev_save);
1587
1588	return 0;
1589
1590err_platform_device:
1591	while (--i >= 0)
1592		platform_device_unregister(pd_dev_save->pd_save[i]);
1593	pci_disable_device(pdev);
1594pci_enable_device:
1595	pci_release_regions(pdev);
1596pci_request_regions:
1597	kfree(board_dat);
1598err_no_mem:
1599	kfree(pd_dev_save);
1600
1601	return retval;
1602}
1603
1604static void pch_spi_remove(struct pci_dev *pdev)
1605{
1606	int i;
1607	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1608
1609	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1610
1611	for (i = 0; i < pd_dev_save->num; i++)
1612		platform_device_unregister(pd_dev_save->pd_save[i]);
1613
1614	pci_disable_device(pdev);
1615	pci_release_regions(pdev);
1616	kfree(pd_dev_save->board_dat);
1617	kfree(pd_dev_save);
1618}
1619
1620static int __maybe_unused pch_spi_suspend(struct device *dev)
 
1621{
1622	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
 
1623
1624	dev_dbg(dev, "%s ENTRY\n", __func__);
1625
1626	pd_dev_save->board_dat->suspend_sts = true;
1627
1628	return 0;
 
 
 
 
 
 
 
 
 
 
1629}
1630
1631static int __maybe_unused pch_spi_resume(struct device *dev)
1632{
1633	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
 
 
1634
1635	dev_dbg(dev, "%s ENTRY\n", __func__);
 
1636
1637	/* set suspend status to false */
1638	pd_dev_save->board_dat->suspend_sts = false;
 
 
 
 
1639
1640	return 0;
 
 
 
 
1641}
 
 
 
1642
1643static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1644
1645static struct pci_driver pch_spi_pcidev_driver = {
1646	.name = "pch_spi",
1647	.id_table = pch_spi_pcidev_id,
1648	.probe = pch_spi_probe,
1649	.remove = pch_spi_remove,
1650	.driver.pm = &pch_spi_pm_ops,
 
1651};
1652
1653static int __init pch_spi_init(void)
1654{
1655	int ret;
1656	ret = platform_driver_register(&pch_spi_pd_driver);
1657	if (ret)
1658		return ret;
1659
1660	ret = pci_register_driver(&pch_spi_pcidev_driver);
1661	if (ret) {
1662		platform_driver_unregister(&pch_spi_pd_driver);
1663		return ret;
1664	}
1665
1666	return 0;
1667}
1668module_init(pch_spi_init);
1669
1670static void __exit pch_spi_exit(void)
1671{
1672	pci_unregister_driver(&pch_spi_pcidev_driver);
1673	platform_driver_unregister(&pch_spi_pd_driver);
1674}
1675module_exit(pch_spi_exit);
1676
1677module_param(use_dma, int, 0644);
1678MODULE_PARM_DESC(use_dma,
1679		 "to use DMA for data transfers pass 1 else 0; default 1");
1680
1681MODULE_LICENSE("GPL");
1682MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1683MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1684
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
   4 *
   5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/pci.h>
  10#include <linux/wait.h>
  11#include <linux/spi/spi.h>
  12#include <linux/interrupt.h>
  13#include <linux/sched.h>
  14#include <linux/spi/spidev.h>
  15#include <linux/module.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18
  19#include <linux/dmaengine.h>
  20#include <linux/pch_dma.h>
  21
  22/* Register offsets */
  23#define PCH_SPCR		0x00	/* SPI control register */
  24#define PCH_SPBRR		0x04	/* SPI baud rate register */
  25#define PCH_SPSR		0x08	/* SPI status register */
  26#define PCH_SPDWR		0x0C	/* SPI write data register */
  27#define PCH_SPDRR		0x10	/* SPI read data register */
  28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
  29#define PCH_SRST		0x1C	/* SPI reset register */
  30#define PCH_ADDRESS_SIZE	0x20
  31
  32#define PCH_SPSR_TFD		0x000007C0
  33#define PCH_SPSR_RFD		0x0000F800
  34
  35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
  36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
  37
  38#define PCH_RX_THOLD		7
  39#define PCH_RX_THOLD_MAX	15
  40
  41#define PCH_TX_THOLD		2
  42
  43#define PCH_MAX_BAUDRATE	5000000
  44#define PCH_MAX_FIFO_DEPTH	16
  45
  46#define STATUS_RUNNING		1
  47#define STATUS_EXITING		2
  48#define PCH_SLEEP_TIME		10
  49
  50#define SSN_LOW			0x02U
  51#define SSN_HIGH		0x03U
  52#define SSN_NO_CONTROL		0x00U
  53#define PCH_MAX_CS		0xFF
  54#define PCI_DEVICE_ID_GE_SPI	0x8816
  55
  56#define SPCR_SPE_BIT		(1 << 0)
  57#define SPCR_MSTR_BIT		(1 << 1)
  58#define SPCR_LSBF_BIT		(1 << 4)
  59#define SPCR_CPHA_BIT		(1 << 5)
  60#define SPCR_CPOL_BIT		(1 << 6)
  61#define SPCR_TFIE_BIT		(1 << 8)
  62#define SPCR_RFIE_BIT		(1 << 9)
  63#define SPCR_FIE_BIT		(1 << 10)
  64#define SPCR_ORIE_BIT		(1 << 11)
  65#define SPCR_MDFIE_BIT		(1 << 12)
  66#define SPCR_FICLR_BIT		(1 << 24)
  67#define SPSR_TFI_BIT		(1 << 0)
  68#define SPSR_RFI_BIT		(1 << 1)
  69#define SPSR_FI_BIT		(1 << 2)
  70#define SPSR_ORF_BIT		(1 << 3)
  71#define SPBRR_SIZE_BIT		(1 << 10)
  72
  73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75
  76#define SPCR_RFIC_FIELD		20
  77#define SPCR_TFIC_FIELD		16
  78
  79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
  80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
  81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
  82
  83#define PCH_CLOCK_HZ		50000000
  84#define PCH_MAX_SPBR		1023
  85
  86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
  88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
  89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
  90
  91/*
  92 * Set the number of SPI instance max
  93 * Intel EG20T PCH :		1ch
  94 * LAPIS Semiconductor ML7213 IOH :	2ch
  95 * LAPIS Semiconductor ML7223 IOH :	1ch
  96 * LAPIS Semiconductor ML7831 IOH :	1ch
  97*/
  98#define PCH_SPI_MAX_DEV			2
  99
 100#define PCH_BUF_SIZE		4096
 101#define PCH_DMA_TRANS_SIZE	12
 102
 103static int use_dma = 1;
 104
 105struct pch_spi_dma_ctrl {
 
 106	struct dma_async_tx_descriptor	*desc_tx;
 107	struct dma_async_tx_descriptor	*desc_rx;
 108	struct pch_dma_slave		param_tx;
 109	struct pch_dma_slave		param_rx;
 110	struct dma_chan		*chan_tx;
 111	struct dma_chan		*chan_rx;
 112	struct scatterlist		*sg_tx_p;
 113	struct scatterlist		*sg_rx_p;
 114	struct scatterlist		sg_tx;
 115	struct scatterlist		sg_rx;
 116	int				nent;
 117	void				*tx_buf_virt;
 118	void				*rx_buf_virt;
 119	dma_addr_t			tx_buf_dma;
 120	dma_addr_t			rx_buf_dma;
 121};
 122/**
 123 * struct pch_spi_data - Holds the SPI channel specific details
 124 * @io_remap_addr:		The remapped PCI base address
 
 125 * @master:			Pointer to the SPI master structure
 126 * @work:			Reference to work queue handler
 127 * @wait:			Wait queue for waking up upon receiving an
 128 *				interrupt.
 129 * @transfer_complete:		Status of SPI Transfer
 130 * @bcurrent_msg_processing:	Status flag for message processing
 131 * @lock:			Lock for protecting this structure
 132 * @queue:			SPI Message queue
 133 * @status:			Status of the SPI driver
 134 * @bpw_len:			Length of data to be transferred in bits per
 135 *				word
 136 * @transfer_active:		Flag showing active transfer
 137 * @tx_index:			Transmit data count; for bookkeeping during
 138 *				transfer
 139 * @rx_index:			Receive data count; for bookkeeping during
 140 *				transfer
 141 * @tx_buff:			Buffer for data to be transmitted
 142 * @rx_index:			Buffer for Received data
 143 * @n_curnt_chip:		The chip number that this SPI driver currently
 144 *				operates on
 145 * @current_chip:		Reference to the current chip that this SPI
 146 *				driver currently operates on
 147 * @current_msg:		The current message that this SPI driver is
 148 *				handling
 149 * @cur_trans:			The current transfer that this SPI driver is
 150 *				handling
 151 * @board_dat:			Reference to the SPI device data structure
 152 * @plat_dev:			platform_device structure
 153 * @ch:				SPI channel number
 
 
 154 * @irq_reg_sts:		Status of IRQ registration
 
 155 */
 156struct pch_spi_data {
 157	void __iomem *io_remap_addr;
 158	unsigned long io_base_addr;
 159	struct spi_master *master;
 160	struct work_struct work;
 161	wait_queue_head_t wait;
 162	u8 transfer_complete;
 163	u8 bcurrent_msg_processing;
 164	spinlock_t lock;
 165	struct list_head queue;
 166	u8 status;
 167	u32 bpw_len;
 168	u8 transfer_active;
 169	u32 tx_index;
 170	u32 rx_index;
 171	u16 *pkt_tx_buff;
 172	u16 *pkt_rx_buff;
 173	u8 n_curnt_chip;
 174	struct spi_device *current_chip;
 175	struct spi_message *current_msg;
 176	struct spi_transfer *cur_trans;
 177	struct pch_spi_board_data *board_dat;
 178	struct platform_device	*plat_dev;
 179	int ch;
 180	struct pch_spi_dma_ctrl dma;
 181	int use_dma;
 182	u8 irq_reg_sts;
 183	int save_total_len;
 184};
 185
 186/**
 187 * struct pch_spi_board_data - Holds the SPI device specific details
 188 * @pdev:		Pointer to the PCI device
 189 * @suspend_sts:	Status of suspend
 190 * @num:		The number of SPI device instance
 191 */
 192struct pch_spi_board_data {
 193	struct pci_dev *pdev;
 194	u8 suspend_sts;
 195	int num;
 196};
 197
 198struct pch_pd_dev_save {
 199	int num;
 200	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
 201	struct pch_spi_board_data *board_dat;
 202};
 203
 204static const struct pci_device_id pch_spi_pcidev_id[] = {
 205	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
 206	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
 207	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
 208	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
 209	{ }
 210};
 211
 212/**
 213 * pch_spi_writereg() - Performs  register writes
 214 * @master:	Pointer to struct spi_master.
 215 * @idx:	Register offset.
 216 * @val:	Value to be written to register.
 217 */
 218static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
 219{
 220	struct pch_spi_data *data = spi_master_get_devdata(master);
 221	iowrite32(val, (data->io_remap_addr + idx));
 222}
 223
 224/**
 225 * pch_spi_readreg() - Performs register reads
 226 * @master:	Pointer to struct spi_master.
 227 * @idx:	Register offset.
 228 */
 229static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
 230{
 231	struct pch_spi_data *data = spi_master_get_devdata(master);
 232	return ioread32(data->io_remap_addr + idx);
 233}
 234
 235static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
 236				      u32 set, u32 clr)
 237{
 238	u32 tmp = pch_spi_readreg(master, idx);
 239	tmp = (tmp & ~clr) | set;
 240	pch_spi_writereg(master, idx, tmp);
 241}
 242
 243static void pch_spi_set_master_mode(struct spi_master *master)
 244{
 245	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
 246}
 247
 248/**
 249 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
 250 * @master:	Pointer to struct spi_master.
 251 */
 252static void pch_spi_clear_fifo(struct spi_master *master)
 253{
 254	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
 255	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
 256}
 257
 258static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
 259				void __iomem *io_remap_addr)
 260{
 261	u32 n_read, tx_index, rx_index, bpw_len;
 262	u16 *pkt_rx_buffer, *pkt_tx_buff;
 263	int read_cnt;
 264	u32 reg_spcr_val;
 265	void __iomem *spsr;
 266	void __iomem *spdrr;
 267	void __iomem *spdwr;
 268
 269	spsr = io_remap_addr + PCH_SPSR;
 270	iowrite32(reg_spsr_val, spsr);
 271
 272	if (data->transfer_active) {
 273		rx_index = data->rx_index;
 274		tx_index = data->tx_index;
 275		bpw_len = data->bpw_len;
 276		pkt_rx_buffer = data->pkt_rx_buff;
 277		pkt_tx_buff = data->pkt_tx_buff;
 278
 279		spdrr = io_remap_addr + PCH_SPDRR;
 280		spdwr = io_remap_addr + PCH_SPDWR;
 281
 282		n_read = PCH_READABLE(reg_spsr_val);
 283
 284		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
 285			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
 286			if (tx_index < bpw_len)
 287				iowrite32(pkt_tx_buff[tx_index++], spdwr);
 288		}
 289
 290		/* disable RFI if not needed */
 291		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
 292			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
 293			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
 294
 295			/* reset rx threshold */
 296			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
 297			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
 298
 299			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
 300		}
 301
 302		/* update counts */
 303		data->tx_index = tx_index;
 304		data->rx_index = rx_index;
 305
 306		/* if transfer complete interrupt */
 307		if (reg_spsr_val & SPSR_FI_BIT) {
 308			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
 309				/* disable interrupts */
 310				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 311						   PCH_ALL);
 312
 313				/* transfer is completed;
 314				   inform pch_spi_process_messages */
 315				data->transfer_complete = true;
 316				data->transfer_active = false;
 317				wake_up(&data->wait);
 318			} else {
 319				dev_vdbg(&data->master->dev,
 320					"%s : Transfer is not completed",
 321					__func__);
 322			}
 323		}
 324	}
 325}
 326
 327/**
 328 * pch_spi_handler() - Interrupt handler
 329 * @irq:	The interrupt number.
 330 * @dev_id:	Pointer to struct pch_spi_board_data.
 331 */
 332static irqreturn_t pch_spi_handler(int irq, void *dev_id)
 333{
 334	u32 reg_spsr_val;
 335	void __iomem *spsr;
 336	void __iomem *io_remap_addr;
 337	irqreturn_t ret = IRQ_NONE;
 338	struct pch_spi_data *data = dev_id;
 339	struct pch_spi_board_data *board_dat = data->board_dat;
 340
 341	if (board_dat->suspend_sts) {
 342		dev_dbg(&board_dat->pdev->dev,
 343			"%s returning due to suspend\n", __func__);
 344		return IRQ_NONE;
 345	}
 346
 347	io_remap_addr = data->io_remap_addr;
 348	spsr = io_remap_addr + PCH_SPSR;
 349
 350	reg_spsr_val = ioread32(spsr);
 351
 352	if (reg_spsr_val & SPSR_ORF_BIT) {
 353		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
 354		if (data->current_msg->complete) {
 355			data->transfer_complete = true;
 356			data->current_msg->status = -EIO;
 357			data->current_msg->complete(data->current_msg->context);
 358			data->bcurrent_msg_processing = false;
 359			data->current_msg = NULL;
 360			data->cur_trans = NULL;
 361		}
 362	}
 363
 364	if (data->use_dma)
 365		return IRQ_NONE;
 366
 367	/* Check if the interrupt is for SPI device */
 368	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
 369		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
 370		ret = IRQ_HANDLED;
 371	}
 372
 373	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
 374		__func__, ret);
 375
 376	return ret;
 377}
 378
 379/**
 380 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
 381 * @master:	Pointer to struct spi_master.
 382 * @speed_hz:	Baud rate.
 383 */
 384static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
 385{
 386	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
 387
 388	/* if baud rate is less than we can support limit it */
 389	if (n_spbr > PCH_MAX_SPBR)
 390		n_spbr = PCH_MAX_SPBR;
 391
 392	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
 393}
 394
 395/**
 396 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
 397 * @master:		Pointer to struct spi_master.
 398 * @bits_per_word:	Bits per word for SPI transfer.
 399 */
 400static void pch_spi_set_bits_per_word(struct spi_master *master,
 401				      u8 bits_per_word)
 402{
 403	if (bits_per_word == 8)
 404		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
 405	else
 406		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
 407}
 408
 409/**
 410 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
 411 * @spi:	Pointer to struct spi_device.
 412 */
 413static void pch_spi_setup_transfer(struct spi_device *spi)
 414{
 415	u32 flags = 0;
 416
 417	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
 418		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
 419		spi->max_speed_hz);
 420	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
 421
 422	/* set bits per word */
 423	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
 424
 425	if (!(spi->mode & SPI_LSB_FIRST))
 426		flags |= SPCR_LSBF_BIT;
 427	if (spi->mode & SPI_CPOL)
 428		flags |= SPCR_CPOL_BIT;
 429	if (spi->mode & SPI_CPHA)
 430		flags |= SPCR_CPHA_BIT;
 431	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
 432			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
 433
 434	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
 435	pch_spi_clear_fifo(spi->master);
 436}
 437
 438/**
 439 * pch_spi_reset() - Clears SPI registers
 440 * @master:	Pointer to struct spi_master.
 441 */
 442static void pch_spi_reset(struct spi_master *master)
 443{
 444	/* write 1 to reset SPI */
 445	pch_spi_writereg(master, PCH_SRST, 0x1);
 446
 447	/* clear reset */
 448	pch_spi_writereg(master, PCH_SRST, 0x0);
 449}
 450
 451static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
 452{
 453
 454	struct spi_transfer *transfer;
 455	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
 456	int retval;
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&data->lock, flags);
 460	/* validate Tx/Rx buffers and Transfer length */
 461	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
 462		if (!transfer->tx_buf && !transfer->rx_buf) {
 463			dev_err(&pspi->dev,
 464				"%s Tx and Rx buffer NULL\n", __func__);
 465			retval = -EINVAL;
 466			goto err_return_spinlock;
 467		}
 468
 469		if (!transfer->len) {
 470			dev_err(&pspi->dev, "%s Transfer length invalid\n",
 471				__func__);
 472			retval = -EINVAL;
 473			goto err_return_spinlock;
 474		}
 475
 476		dev_dbg(&pspi->dev,
 477			"%s Tx/Rx buffer valid. Transfer length valid\n",
 478			__func__);
 479	}
 480	spin_unlock_irqrestore(&data->lock, flags);
 481
 482	/* We won't process any messages if we have been asked to terminate */
 483	if (data->status == STATUS_EXITING) {
 484		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
 485		retval = -ESHUTDOWN;
 486		goto err_out;
 487	}
 488
 489	/* If suspended ,return -EINVAL */
 490	if (data->board_dat->suspend_sts) {
 491		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
 492		retval = -EINVAL;
 493		goto err_out;
 494	}
 495
 496	/* set status of message */
 497	pmsg->actual_length = 0;
 498	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
 499
 500	pmsg->status = -EINPROGRESS;
 501	spin_lock_irqsave(&data->lock, flags);
 502	/* add message to queue */
 503	list_add_tail(&pmsg->queue, &data->queue);
 504	spin_unlock_irqrestore(&data->lock, flags);
 505
 506	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
 507
 508	schedule_work(&data->work);
 509	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
 510
 511	retval = 0;
 512
 513err_out:
 514	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 515	return retval;
 516err_return_spinlock:
 517	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
 518	spin_unlock_irqrestore(&data->lock, flags);
 519	return retval;
 520}
 521
 522static inline void pch_spi_select_chip(struct pch_spi_data *data,
 523				       struct spi_device *pspi)
 524{
 525	if (data->current_chip != NULL) {
 526		if (pspi->chip_select != data->n_curnt_chip) {
 527			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
 528			data->current_chip = NULL;
 529		}
 530	}
 531
 532	data->current_chip = pspi;
 533
 534	data->n_curnt_chip = data->current_chip->chip_select;
 535
 536	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
 537	pch_spi_setup_transfer(pspi);
 538}
 539
 540static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
 541{
 542	int size;
 543	u32 n_writes;
 544	int j;
 545	struct spi_message *pmsg, *tmp;
 546	const u8 *tx_buf;
 547	const u16 *tx_sbuf;
 548
 549	/* set baud rate if needed */
 550	if (data->cur_trans->speed_hz) {
 551		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 552		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 553	}
 554
 555	/* set bits per word if needed */
 556	if (data->cur_trans->bits_per_word &&
 557	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
 558		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 559		pch_spi_set_bits_per_word(data->master,
 560					  data->cur_trans->bits_per_word);
 561		*bpw = data->cur_trans->bits_per_word;
 562	} else {
 563		*bpw = data->current_msg->spi->bits_per_word;
 564	}
 565
 566	/* reset Tx/Rx index */
 567	data->tx_index = 0;
 568	data->rx_index = 0;
 569
 570	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 571
 572	/* find alloc size */
 573	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
 574
 575	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
 576	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
 577	if (data->pkt_tx_buff != NULL) {
 578		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
 579		if (!data->pkt_rx_buff)
 580			kfree(data->pkt_tx_buff);
 
 
 581	}
 582
 583	if (!data->pkt_rx_buff) {
 584		/* flush queue and set status of all transfers to -ENOMEM */
 585		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 586			pmsg->status = -ENOMEM;
 587
 588			if (pmsg->complete)
 589				pmsg->complete(pmsg->context);
 590
 591			/* delete from queue */
 592			list_del_init(&pmsg->queue);
 593		}
 594		return;
 595	}
 596
 597	/* copy Tx Data */
 598	if (data->cur_trans->tx_buf != NULL) {
 599		if (*bpw == 8) {
 600			tx_buf = data->cur_trans->tx_buf;
 601			for (j = 0; j < data->bpw_len; j++)
 602				data->pkt_tx_buff[j] = *tx_buf++;
 603		} else {
 604			tx_sbuf = data->cur_trans->tx_buf;
 605			for (j = 0; j < data->bpw_len; j++)
 606				data->pkt_tx_buff[j] = *tx_sbuf++;
 607		}
 608	}
 609
 610	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
 611	n_writes = data->bpw_len;
 612	if (n_writes > PCH_MAX_FIFO_DEPTH)
 613		n_writes = PCH_MAX_FIFO_DEPTH;
 614
 615	dev_dbg(&data->master->dev,
 616		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
 617		__func__);
 618	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
 619
 620	for (j = 0; j < n_writes; j++)
 621		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
 622
 623	/* update tx_index */
 624	data->tx_index = j;
 625
 626	/* reset transfer complete flag */
 627	data->transfer_complete = false;
 628	data->transfer_active = true;
 629}
 630
 631static void pch_spi_nomore_transfer(struct pch_spi_data *data)
 632{
 633	struct spi_message *pmsg, *tmp;
 634	dev_dbg(&data->master->dev, "%s called\n", __func__);
 635	/* Invoke complete callback
 636	 * [To the spi core..indicating end of transfer] */
 637	data->current_msg->status = 0;
 638
 639	if (data->current_msg->complete) {
 640		dev_dbg(&data->master->dev,
 641			"%s:Invoking callback of SPI core\n", __func__);
 642		data->current_msg->complete(data->current_msg->context);
 643	}
 644
 645	/* update status in global variable */
 646	data->bcurrent_msg_processing = false;
 647
 648	dev_dbg(&data->master->dev,
 649		"%s:data->bcurrent_msg_processing = false\n", __func__);
 650
 651	data->current_msg = NULL;
 652	data->cur_trans = NULL;
 653
 654	/* check if we have items in list and not suspending
 655	 * return 1 if list empty */
 656	if ((list_empty(&data->queue) == 0) &&
 657	    (!data->board_dat->suspend_sts) &&
 658	    (data->status != STATUS_EXITING)) {
 659		/* We have some more work to do (either there is more tranint
 660		 * bpw;sfer requests in the current message or there are
 661		 *more messages)
 662		 */
 663		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
 664		schedule_work(&data->work);
 665	} else if (data->board_dat->suspend_sts ||
 666		   data->status == STATUS_EXITING) {
 667		dev_dbg(&data->master->dev,
 668			"%s suspend/remove initiated, flushing queue\n",
 669			__func__);
 670		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
 671			pmsg->status = -EIO;
 672
 673			if (pmsg->complete)
 674				pmsg->complete(pmsg->context);
 675
 676			/* delete from queue */
 677			list_del_init(&pmsg->queue);
 678		}
 679	}
 680}
 681
 682static void pch_spi_set_ir(struct pch_spi_data *data)
 683{
 684	/* enable interrupts, set threshold, enable SPI */
 685	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
 686		/* set receive threshold to PCH_RX_THOLD */
 687		pch_spi_setclr_reg(data->master, PCH_SPCR,
 688				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
 689				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
 690				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
 691				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 692	else
 693		/* set receive threshold to maximum */
 694		pch_spi_setclr_reg(data->master, PCH_SPCR,
 695				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
 696				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
 697				   SPCR_SPE_BIT,
 698				   MASK_RFIC_SPCR_BITS | PCH_ALL);
 699
 700	/* Wait until the transfer completes; go to sleep after
 701				 initiating the transfer. */
 702	dev_dbg(&data->master->dev,
 703		"%s:waiting for transfer to get over\n", __func__);
 704
 705	wait_event_interruptible(data->wait, data->transfer_complete);
 706
 707	/* clear all interrupts */
 708	pch_spi_writereg(data->master, PCH_SPSR,
 709			 pch_spi_readreg(data->master, PCH_SPSR));
 710	/* Disable interrupts and SPI transfer */
 711	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
 712	/* clear FIFO */
 713	pch_spi_clear_fifo(data->master);
 714}
 715
 716static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
 717{
 718	int j;
 719	u8 *rx_buf;
 720	u16 *rx_sbuf;
 721
 722	/* copy Rx Data */
 723	if (!data->cur_trans->rx_buf)
 724		return;
 725
 726	if (bpw == 8) {
 727		rx_buf = data->cur_trans->rx_buf;
 728		for (j = 0; j < data->bpw_len; j++)
 729			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
 730	} else {
 731		rx_sbuf = data->cur_trans->rx_buf;
 732		for (j = 0; j < data->bpw_len; j++)
 733			*rx_sbuf++ = data->pkt_rx_buff[j];
 734	}
 735}
 736
 737static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
 738{
 739	int j;
 740	u8 *rx_buf;
 741	u16 *rx_sbuf;
 742	const u8 *rx_dma_buf;
 743	const u16 *rx_dma_sbuf;
 744
 745	/* copy Rx Data */
 746	if (!data->cur_trans->rx_buf)
 747		return;
 748
 749	if (bpw == 8) {
 750		rx_buf = data->cur_trans->rx_buf;
 751		rx_dma_buf = data->dma.rx_buf_virt;
 752		for (j = 0; j < data->bpw_len; j++)
 753			*rx_buf++ = *rx_dma_buf++ & 0xFF;
 754		data->cur_trans->rx_buf = rx_buf;
 755	} else {
 756		rx_sbuf = data->cur_trans->rx_buf;
 757		rx_dma_sbuf = data->dma.rx_buf_virt;
 758		for (j = 0; j < data->bpw_len; j++)
 759			*rx_sbuf++ = *rx_dma_sbuf++;
 760		data->cur_trans->rx_buf = rx_sbuf;
 761	}
 762}
 763
 764static int pch_spi_start_transfer(struct pch_spi_data *data)
 765{
 766	struct pch_spi_dma_ctrl *dma;
 767	unsigned long flags;
 768	int rtn;
 769
 770	dma = &data->dma;
 771
 772	spin_lock_irqsave(&data->lock, flags);
 773
 774	/* disable interrupts, SPI set enable */
 775	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
 776
 777	spin_unlock_irqrestore(&data->lock, flags);
 778
 779	/* Wait until the transfer completes; go to sleep after
 780				 initiating the transfer. */
 781	dev_dbg(&data->master->dev,
 782		"%s:waiting for transfer to get over\n", __func__);
 783	rtn = wait_event_interruptible_timeout(data->wait,
 784					       data->transfer_complete,
 785					       msecs_to_jiffies(2 * HZ));
 786	if (!rtn)
 787		dev_err(&data->master->dev,
 788			"%s wait-event timeout\n", __func__);
 789
 790	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
 791			    DMA_FROM_DEVICE);
 792
 793	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
 794			    DMA_FROM_DEVICE);
 795	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
 796
 797	async_tx_ack(dma->desc_rx);
 798	async_tx_ack(dma->desc_tx);
 799	kfree(dma->sg_tx_p);
 800	kfree(dma->sg_rx_p);
 801
 802	spin_lock_irqsave(&data->lock, flags);
 803
 804	/* clear fifo threshold, disable interrupts, disable SPI transfer */
 805	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
 806			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
 807			   SPCR_SPE_BIT);
 808	/* clear all interrupts */
 809	pch_spi_writereg(data->master, PCH_SPSR,
 810			 pch_spi_readreg(data->master, PCH_SPSR));
 811	/* clear FIFO */
 812	pch_spi_clear_fifo(data->master);
 813
 814	spin_unlock_irqrestore(&data->lock, flags);
 815
 816	return rtn;
 817}
 818
 819static void pch_dma_rx_complete(void *arg)
 820{
 821	struct pch_spi_data *data = arg;
 822
 823	/* transfer is completed;inform pch_spi_process_messages_dma */
 824	data->transfer_complete = true;
 825	wake_up_interruptible(&data->wait);
 826}
 827
 828static bool pch_spi_filter(struct dma_chan *chan, void *slave)
 829{
 830	struct pch_dma_slave *param = slave;
 831
 832	if ((chan->chan_id == param->chan_id) &&
 833	    (param->dma_dev == chan->device->dev)) {
 834		chan->private = param;
 835		return true;
 836	} else {
 837		return false;
 838	}
 839}
 840
 841static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
 842{
 843	dma_cap_mask_t mask;
 844	struct dma_chan *chan;
 845	struct pci_dev *dma_dev;
 846	struct pch_dma_slave *param;
 847	struct pch_spi_dma_ctrl *dma;
 848	unsigned int width;
 849
 850	if (bpw == 8)
 851		width = PCH_DMA_WIDTH_1_BYTE;
 852	else
 853		width = PCH_DMA_WIDTH_2_BYTES;
 854
 855	dma = &data->dma;
 856	dma_cap_zero(mask);
 857	dma_cap_set(DMA_SLAVE, mask);
 858
 859	/* Get DMA's dev information */
 860	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
 861			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
 862
 863	/* Set Tx DMA */
 864	param = &dma->param_tx;
 865	param->dma_dev = &dma_dev->dev;
 866	param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
 867	param->tx_reg = data->io_base_addr + PCH_SPDWR;
 868	param->width = width;
 869	chan = dma_request_channel(mask, pch_spi_filter, param);
 870	if (!chan) {
 871		dev_err(&data->master->dev,
 872			"ERROR: dma_request_channel FAILS(Tx)\n");
 873		data->use_dma = 0;
 874		return;
 875	}
 876	dma->chan_tx = chan;
 877
 878	/* Set Rx DMA */
 879	param = &dma->param_rx;
 880	param->dma_dev = &dma_dev->dev;
 881	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
 882	param->rx_reg = data->io_base_addr + PCH_SPDRR;
 883	param->width = width;
 884	chan = dma_request_channel(mask, pch_spi_filter, param);
 885	if (!chan) {
 886		dev_err(&data->master->dev,
 887			"ERROR: dma_request_channel FAILS(Rx)\n");
 888		dma_release_channel(dma->chan_tx);
 889		dma->chan_tx = NULL;
 890		data->use_dma = 0;
 891		return;
 892	}
 893	dma->chan_rx = chan;
 
 
 
 
 
 
 894}
 895
 896static void pch_spi_release_dma(struct pch_spi_data *data)
 897{
 898	struct pch_spi_dma_ctrl *dma;
 899
 900	dma = &data->dma;
 901	if (dma->chan_tx) {
 902		dma_release_channel(dma->chan_tx);
 903		dma->chan_tx = NULL;
 904	}
 905	if (dma->chan_rx) {
 906		dma_release_channel(dma->chan_rx);
 907		dma->chan_rx = NULL;
 908	}
 
 
 909}
 910
 911static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
 912{
 913	const u8 *tx_buf;
 914	const u16 *tx_sbuf;
 915	u8 *tx_dma_buf;
 916	u16 *tx_dma_sbuf;
 917	struct scatterlist *sg;
 918	struct dma_async_tx_descriptor *desc_tx;
 919	struct dma_async_tx_descriptor *desc_rx;
 920	int num;
 921	int i;
 922	int size;
 923	int rem;
 924	int head;
 925	unsigned long flags;
 926	struct pch_spi_dma_ctrl *dma;
 927
 928	dma = &data->dma;
 929
 930	/* set baud rate if needed */
 931	if (data->cur_trans->speed_hz) {
 932		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
 933		spin_lock_irqsave(&data->lock, flags);
 934		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
 935		spin_unlock_irqrestore(&data->lock, flags);
 936	}
 937
 938	/* set bits per word if needed */
 939	if (data->cur_trans->bits_per_word &&
 940	    (data->current_msg->spi->bits_per_word !=
 941	     data->cur_trans->bits_per_word)) {
 942		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
 943		spin_lock_irqsave(&data->lock, flags);
 944		pch_spi_set_bits_per_word(data->master,
 945					  data->cur_trans->bits_per_word);
 946		spin_unlock_irqrestore(&data->lock, flags);
 947		*bpw = data->cur_trans->bits_per_word;
 948	} else {
 949		*bpw = data->current_msg->spi->bits_per_word;
 950	}
 951	data->bpw_len = data->cur_trans->len / (*bpw / 8);
 952
 953	if (data->bpw_len > PCH_BUF_SIZE) {
 954		data->bpw_len = PCH_BUF_SIZE;
 955		data->cur_trans->len -= PCH_BUF_SIZE;
 956	}
 957
 958	/* copy Tx Data */
 959	if (data->cur_trans->tx_buf != NULL) {
 960		if (*bpw == 8) {
 961			tx_buf = data->cur_trans->tx_buf;
 962			tx_dma_buf = dma->tx_buf_virt;
 963			for (i = 0; i < data->bpw_len; i++)
 964				*tx_dma_buf++ = *tx_buf++;
 965		} else {
 966			tx_sbuf = data->cur_trans->tx_buf;
 967			tx_dma_sbuf = dma->tx_buf_virt;
 968			for (i = 0; i < data->bpw_len; i++)
 969				*tx_dma_sbuf++ = *tx_sbuf++;
 970		}
 971	}
 972
 973	/* Calculate Rx parameter for DMA transmitting */
 974	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
 975		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
 976			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
 977			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
 978		} else {
 979			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
 980			rem = PCH_DMA_TRANS_SIZE;
 981		}
 982		size = PCH_DMA_TRANS_SIZE;
 983	} else {
 984		num = 1;
 985		size = data->bpw_len;
 986		rem = data->bpw_len;
 987	}
 988	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
 989		__func__, num, size, rem);
 990	spin_lock_irqsave(&data->lock, flags);
 991
 992	/* set receive fifo threshold and transmit fifo threshold */
 993	pch_spi_setclr_reg(data->master, PCH_SPCR,
 994			   ((size - 1) << SPCR_RFIC_FIELD) |
 995			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
 996			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
 997
 998	spin_unlock_irqrestore(&data->lock, flags);
 999
1000	/* RX */
1001	dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1002	if (!dma->sg_rx_p)
1003		return;
1004
1005	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1006	/* offset, length setting */
1007	sg = dma->sg_rx_p;
1008	for (i = 0; i < num; i++, sg++) {
1009		if (i == (num - 2)) {
1010			sg->offset = size * i;
1011			sg->offset = sg->offset * (*bpw / 8);
1012			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1013				    sg->offset);
1014			sg_dma_len(sg) = rem;
1015		} else if (i == (num - 1)) {
1016			sg->offset = size * (i - 1) + rem;
1017			sg->offset = sg->offset * (*bpw / 8);
1018			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1019				    sg->offset);
1020			sg_dma_len(sg) = size;
1021		} else {
1022			sg->offset = size * i;
1023			sg->offset = sg->offset * (*bpw / 8);
1024			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025				    sg->offset);
1026			sg_dma_len(sg) = size;
1027		}
1028		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1029	}
1030	sg = dma->sg_rx_p;
1031	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1032					num, DMA_DEV_TO_MEM,
1033					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1034	if (!desc_rx) {
1035		dev_err(&data->master->dev,
1036			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1037		return;
1038	}
1039	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1040	desc_rx->callback = pch_dma_rx_complete;
1041	desc_rx->callback_param = data;
1042	dma->nent = num;
1043	dma->desc_rx = desc_rx;
1044
1045	/* Calculate Tx parameter for DMA transmitting */
1046	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1047		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1048		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1049			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1050			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1051		} else {
1052			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1053			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1054			      PCH_DMA_TRANS_SIZE - head;
1055		}
1056		size = PCH_DMA_TRANS_SIZE;
1057	} else {
1058		num = 1;
1059		size = data->bpw_len;
1060		rem = data->bpw_len;
1061		head = 0;
1062	}
1063
1064	dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1065	if (!dma->sg_tx_p)
1066		return;
1067
1068	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1069	/* offset, length setting */
1070	sg = dma->sg_tx_p;
1071	for (i = 0; i < num; i++, sg++) {
1072		if (i == 0) {
1073			sg->offset = 0;
1074			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1075				    sg->offset);
1076			sg_dma_len(sg) = size + head;
1077		} else if (i == (num - 1)) {
1078			sg->offset = head + size * i;
1079			sg->offset = sg->offset * (*bpw / 8);
1080			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1081				    sg->offset);
1082			sg_dma_len(sg) = rem;
1083		} else {
1084			sg->offset = head + size * i;
1085			sg->offset = sg->offset * (*bpw / 8);
1086			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1087				    sg->offset);
1088			sg_dma_len(sg) = size;
1089		}
1090		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1091	}
1092	sg = dma->sg_tx_p;
1093	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1094					sg, num, DMA_MEM_TO_DEV,
1095					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1096	if (!desc_tx) {
1097		dev_err(&data->master->dev,
1098			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1099		return;
1100	}
1101	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1102	desc_tx->callback = NULL;
1103	desc_tx->callback_param = data;
1104	dma->nent = num;
1105	dma->desc_tx = desc_tx;
1106
1107	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1108
1109	spin_lock_irqsave(&data->lock, flags);
1110	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1111	desc_rx->tx_submit(desc_rx);
1112	desc_tx->tx_submit(desc_tx);
1113	spin_unlock_irqrestore(&data->lock, flags);
1114
1115	/* reset transfer complete flag */
1116	data->transfer_complete = false;
1117}
1118
1119static void pch_spi_process_messages(struct work_struct *pwork)
1120{
1121	struct spi_message *pmsg, *tmp;
1122	struct pch_spi_data *data;
1123	int bpw;
1124
1125	data = container_of(pwork, struct pch_spi_data, work);
1126	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1127
1128	spin_lock(&data->lock);
1129	/* check if suspend has been initiated;if yes flush queue */
1130	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1131		dev_dbg(&data->master->dev,
1132			"%s suspend/remove initiated, flushing queue\n", __func__);
1133		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1134			pmsg->status = -EIO;
1135
1136			if (pmsg->complete) {
1137				spin_unlock(&data->lock);
1138				pmsg->complete(pmsg->context);
1139				spin_lock(&data->lock);
1140			}
1141
1142			/* delete from queue */
1143			list_del_init(&pmsg->queue);
1144		}
1145
1146		spin_unlock(&data->lock);
1147		return;
1148	}
1149
1150	data->bcurrent_msg_processing = true;
1151	dev_dbg(&data->master->dev,
1152		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1153
1154	/* Get the message from the queue and delete it from there. */
1155	data->current_msg = list_entry(data->queue.next, struct spi_message,
1156					queue);
1157
1158	list_del_init(&data->current_msg->queue);
1159
1160	data->current_msg->status = 0;
1161
1162	pch_spi_select_chip(data, data->current_msg->spi);
1163
1164	spin_unlock(&data->lock);
1165
1166	if (data->use_dma)
1167		pch_spi_request_dma(data,
1168				    data->current_msg->spi->bits_per_word);
1169	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1170	do {
1171		int cnt;
1172		/* If we are already processing a message get the next
1173		transfer structure from the message otherwise retrieve
1174		the 1st transfer request from the message. */
1175		spin_lock(&data->lock);
1176		if (data->cur_trans == NULL) {
1177			data->cur_trans =
1178				list_entry(data->current_msg->transfers.next,
1179					   struct spi_transfer, transfer_list);
1180			dev_dbg(&data->master->dev,
1181				"%s :Getting 1st transfer message\n",
1182				__func__);
1183		} else {
1184			data->cur_trans =
1185				list_entry(data->cur_trans->transfer_list.next,
1186					   struct spi_transfer, transfer_list);
1187			dev_dbg(&data->master->dev,
1188				"%s :Getting next transfer message\n",
1189				__func__);
1190		}
1191		spin_unlock(&data->lock);
1192
1193		if (!data->cur_trans->len)
1194			goto out;
1195		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1196		data->save_total_len = data->cur_trans->len;
1197		if (data->use_dma) {
1198			int i;
1199			char *save_rx_buf = data->cur_trans->rx_buf;
1200			for (i = 0; i < cnt; i ++) {
 
1201				pch_spi_handle_dma(data, &bpw);
1202				if (!pch_spi_start_transfer(data)) {
1203					data->transfer_complete = true;
1204					data->current_msg->status = -EIO;
1205					data->current_msg->complete
1206						   (data->current_msg->context);
1207					data->bcurrent_msg_processing = false;
1208					data->current_msg = NULL;
1209					data->cur_trans = NULL;
1210					goto out;
1211				}
1212				pch_spi_copy_rx_data_for_dma(data, bpw);
1213			}
1214			data->cur_trans->rx_buf = save_rx_buf;
1215		} else {
1216			pch_spi_set_tx(data, &bpw);
1217			pch_spi_set_ir(data);
1218			pch_spi_copy_rx_data(data, bpw);
1219			kfree(data->pkt_rx_buff);
1220			data->pkt_rx_buff = NULL;
1221			kfree(data->pkt_tx_buff);
1222			data->pkt_tx_buff = NULL;
1223		}
1224		/* increment message count */
1225		data->cur_trans->len = data->save_total_len;
1226		data->current_msg->actual_length += data->cur_trans->len;
1227
1228		dev_dbg(&data->master->dev,
1229			"%s:data->current_msg->actual_length=%d\n",
1230			__func__, data->current_msg->actual_length);
1231
1232		/* check for delay */
1233		if (data->cur_trans->delay_usecs) {
1234			dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1235				__func__, data->cur_trans->delay_usecs);
1236			udelay(data->cur_trans->delay_usecs);
1237		}
1238
1239		spin_lock(&data->lock);
1240
1241		/* No more transfer in this message. */
1242		if ((data->cur_trans->transfer_list.next) ==
1243		    &(data->current_msg->transfers)) {
1244			pch_spi_nomore_transfer(data);
1245		}
1246
1247		spin_unlock(&data->lock);
1248
1249	} while (data->cur_trans != NULL);
1250
1251out:
1252	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1253	if (data->use_dma)
1254		pch_spi_release_dma(data);
1255}
1256
1257static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1258				   struct pch_spi_data *data)
1259{
1260	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1261
1262	flush_work(&data->work);
1263}
1264
1265static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1266				 struct pch_spi_data *data)
1267{
1268	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1269
1270	/* reset PCH SPI h/w */
1271	pch_spi_reset(data->master);
1272	dev_dbg(&board_dat->pdev->dev,
1273		"%s pch_spi_reset invoked successfully\n", __func__);
1274
1275	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1276
1277	return 0;
1278}
1279
1280static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1281			     struct pch_spi_data *data)
1282{
1283	struct pch_spi_dma_ctrl *dma;
1284
1285	dma = &data->dma;
1286	if (dma->tx_buf_dma)
1287		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1288				  dma->tx_buf_virt, dma->tx_buf_dma);
1289	if (dma->rx_buf_dma)
1290		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291				  dma->rx_buf_virt, dma->rx_buf_dma);
1292}
1293
1294static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1295			      struct pch_spi_data *data)
1296{
1297	struct pch_spi_dma_ctrl *dma;
1298	int ret;
1299
1300	dma = &data->dma;
1301	ret = 0;
1302	/* Get Consistent memory for Tx DMA */
1303	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1304				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1305	if (!dma->tx_buf_virt)
1306		ret = -ENOMEM;
1307
1308	/* Get Consistent memory for Rx DMA */
1309	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1310				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1311	if (!dma->rx_buf_virt)
1312		ret = -ENOMEM;
1313
1314	return ret;
1315}
1316
1317static int pch_spi_pd_probe(struct platform_device *plat_dev)
1318{
1319	int ret;
1320	struct spi_master *master;
1321	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1322	struct pch_spi_data *data;
1323
1324	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1325
1326	master = spi_alloc_master(&board_dat->pdev->dev,
1327				  sizeof(struct pch_spi_data));
1328	if (!master) {
1329		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1330			plat_dev->id);
1331		return -ENOMEM;
1332	}
1333
1334	data = spi_master_get_devdata(master);
1335	data->master = master;
1336
1337	platform_set_drvdata(plat_dev, data);
1338
1339	/* baseaddress + address offset) */
1340	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1341					 PCH_ADDRESS_SIZE * plat_dev->id;
1342	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1343	if (!data->io_remap_addr) {
1344		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1345		ret = -ENOMEM;
1346		goto err_pci_iomap;
1347	}
1348	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1349
1350	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1351		plat_dev->id, data->io_remap_addr);
1352
1353	/* initialize members of SPI master */
1354	master->num_chipselect = PCH_MAX_CS;
1355	master->transfer = pch_spi_transfer;
1356	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1357	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1358	master->max_speed_hz = PCH_MAX_BAUDRATE;
 
1359
1360	data->board_dat = board_dat;
1361	data->plat_dev = plat_dev;
1362	data->n_curnt_chip = 255;
1363	data->status = STATUS_RUNNING;
1364	data->ch = plat_dev->id;
1365	data->use_dma = use_dma;
1366
1367	INIT_LIST_HEAD(&data->queue);
1368	spin_lock_init(&data->lock);
1369	INIT_WORK(&data->work, pch_spi_process_messages);
1370	init_waitqueue_head(&data->wait);
1371
1372	ret = pch_spi_get_resources(board_dat, data);
1373	if (ret) {
1374		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1375		goto err_spi_get_resources;
1376	}
1377
1378	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1379			  IRQF_SHARED, KBUILD_MODNAME, data);
1380	if (ret) {
1381		dev_err(&plat_dev->dev,
1382			"%s request_irq failed\n", __func__);
1383		goto err_request_irq;
1384	}
1385	data->irq_reg_sts = true;
1386
1387	pch_spi_set_master_mode(master);
1388
1389	if (use_dma) {
1390		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1391		ret = pch_alloc_dma_buf(board_dat, data);
1392		if (ret)
1393			goto err_spi_register_master;
1394	}
1395
1396	ret = spi_register_master(master);
1397	if (ret != 0) {
1398		dev_err(&plat_dev->dev,
1399			"%s spi_register_master FAILED\n", __func__);
1400		goto err_spi_register_master;
1401	}
1402
1403	return 0;
1404
1405err_spi_register_master:
1406	pch_free_dma_buf(board_dat, data);
1407	free_irq(board_dat->pdev->irq, data);
1408err_request_irq:
1409	pch_spi_free_resources(board_dat, data);
1410err_spi_get_resources:
1411	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1412err_pci_iomap:
1413	spi_master_put(master);
1414
1415	return ret;
1416}
1417
1418static int pch_spi_pd_remove(struct platform_device *plat_dev)
1419{
1420	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1421	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1422	int count;
1423	unsigned long flags;
1424
1425	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1426		__func__, plat_dev->id, board_dat->pdev->irq);
1427
1428	if (use_dma)
1429		pch_free_dma_buf(board_dat, data);
1430
1431	/* check for any pending messages; no action is taken if the queue
1432	 * is still full; but at least we tried.  Unload anyway */
1433	count = 500;
1434	spin_lock_irqsave(&data->lock, flags);
1435	data->status = STATUS_EXITING;
1436	while ((list_empty(&data->queue) == 0) && --count) {
1437		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1438			__func__);
1439		spin_unlock_irqrestore(&data->lock, flags);
1440		msleep(PCH_SLEEP_TIME);
1441		spin_lock_irqsave(&data->lock, flags);
1442	}
1443	spin_unlock_irqrestore(&data->lock, flags);
1444
1445	pch_spi_free_resources(board_dat, data);
1446	/* disable interrupts & free IRQ */
1447	if (data->irq_reg_sts) {
1448		/* disable interrupts */
1449		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1450		data->irq_reg_sts = false;
1451		free_irq(board_dat->pdev->irq, data);
1452	}
1453
1454	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1455	spi_unregister_master(data->master);
1456
1457	return 0;
1458}
1459#ifdef CONFIG_PM
1460static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1461			      pm_message_t state)
1462{
1463	u8 count;
1464	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1465	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1466
1467	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1468
1469	if (!board_dat) {
1470		dev_err(&pd_dev->dev,
1471			"%s pci_get_drvdata returned NULL\n", __func__);
1472		return -EFAULT;
1473	}
1474
1475	/* check if the current message is processed:
1476	   Only after thats done the transfer will be suspended */
1477	count = 255;
1478	while ((--count) > 0) {
1479		if (!(data->bcurrent_msg_processing))
1480			break;
1481		msleep(PCH_SLEEP_TIME);
1482	}
1483
1484	/* Free IRQ */
1485	if (data->irq_reg_sts) {
1486		/* disable all interrupts */
1487		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1488		pch_spi_reset(data->master);
1489		free_irq(board_dat->pdev->irq, data);
1490
1491		data->irq_reg_sts = false;
1492		dev_dbg(&pd_dev->dev,
1493			"%s free_irq invoked successfully.\n", __func__);
1494	}
1495
1496	return 0;
1497}
1498
1499static int pch_spi_pd_resume(struct platform_device *pd_dev)
1500{
1501	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1502	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1503	int retval;
1504
1505	if (!board_dat) {
1506		dev_err(&pd_dev->dev,
1507			"%s pci_get_drvdata returned NULL\n", __func__);
1508		return -EFAULT;
1509	}
1510
1511	if (!data->irq_reg_sts) {
1512		/* register IRQ */
1513		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1514				     IRQF_SHARED, KBUILD_MODNAME, data);
1515		if (retval < 0) {
1516			dev_err(&pd_dev->dev,
1517				"%s request_irq failed\n", __func__);
1518			return retval;
1519		}
1520
1521		/* reset PCH SPI h/w */
1522		pch_spi_reset(data->master);
1523		pch_spi_set_master_mode(data->master);
1524		data->irq_reg_sts = true;
1525	}
1526	return 0;
1527}
1528#else
1529#define pch_spi_pd_suspend NULL
1530#define pch_spi_pd_resume NULL
1531#endif
1532
1533static struct platform_driver pch_spi_pd_driver = {
1534	.driver = {
1535		.name = "pch-spi",
1536	},
1537	.probe = pch_spi_pd_probe,
1538	.remove = pch_spi_pd_remove,
1539	.suspend = pch_spi_pd_suspend,
1540	.resume = pch_spi_pd_resume
1541};
1542
1543static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1544{
1545	struct pch_spi_board_data *board_dat;
1546	struct platform_device *pd_dev = NULL;
1547	int retval;
1548	int i;
1549	struct pch_pd_dev_save *pd_dev_save;
1550
1551	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1552	if (!pd_dev_save)
1553		return -ENOMEM;
1554
1555	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1556	if (!board_dat) {
1557		retval = -ENOMEM;
1558		goto err_no_mem;
1559	}
1560
1561	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1562	if (retval) {
1563		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1564		goto pci_request_regions;
1565	}
1566
1567	board_dat->pdev = pdev;
1568	board_dat->num = id->driver_data;
1569	pd_dev_save->num = id->driver_data;
1570	pd_dev_save->board_dat = board_dat;
1571
1572	retval = pci_enable_device(pdev);
1573	if (retval) {
1574		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1575		goto pci_enable_device;
1576	}
1577
1578	for (i = 0; i < board_dat->num; i++) {
1579		pd_dev = platform_device_alloc("pch-spi", i);
1580		if (!pd_dev) {
1581			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1582			retval = -ENOMEM;
1583			goto err_platform_device;
1584		}
1585		pd_dev_save->pd_save[i] = pd_dev;
1586		pd_dev->dev.parent = &pdev->dev;
1587
1588		retval = platform_device_add_data(pd_dev, board_dat,
1589						  sizeof(*board_dat));
1590		if (retval) {
1591			dev_err(&pdev->dev,
1592				"platform_device_add_data failed\n");
1593			platform_device_put(pd_dev);
1594			goto err_platform_device;
1595		}
1596
1597		retval = platform_device_add(pd_dev);
1598		if (retval) {
1599			dev_err(&pdev->dev, "platform_device_add failed\n");
1600			platform_device_put(pd_dev);
1601			goto err_platform_device;
1602		}
1603	}
1604
1605	pci_set_drvdata(pdev, pd_dev_save);
1606
1607	return 0;
1608
1609err_platform_device:
1610	while (--i >= 0)
1611		platform_device_unregister(pd_dev_save->pd_save[i]);
1612	pci_disable_device(pdev);
1613pci_enable_device:
1614	pci_release_regions(pdev);
1615pci_request_regions:
1616	kfree(board_dat);
1617err_no_mem:
1618	kfree(pd_dev_save);
1619
1620	return retval;
1621}
1622
1623static void pch_spi_remove(struct pci_dev *pdev)
1624{
1625	int i;
1626	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1627
1628	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1629
1630	for (i = 0; i < pd_dev_save->num; i++)
1631		platform_device_unregister(pd_dev_save->pd_save[i]);
1632
1633	pci_disable_device(pdev);
1634	pci_release_regions(pdev);
1635	kfree(pd_dev_save->board_dat);
1636	kfree(pd_dev_save);
1637}
1638
1639#ifdef CONFIG_PM
1640static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1641{
1642	int retval;
1643	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1644
1645	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1646
1647	pd_dev_save->board_dat->suspend_sts = true;
1648
1649	/* save config space */
1650	retval = pci_save_state(pdev);
1651	if (retval == 0) {
1652		pci_enable_wake(pdev, PCI_D3hot, 0);
1653		pci_disable_device(pdev);
1654		pci_set_power_state(pdev, PCI_D3hot);
1655	} else {
1656		dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1657	}
1658
1659	return retval;
1660}
1661
1662static int pch_spi_resume(struct pci_dev *pdev)
1663{
1664	int retval;
1665	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1666	dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1667
1668	pci_set_power_state(pdev, PCI_D0);
1669	pci_restore_state(pdev);
1670
1671	retval = pci_enable_device(pdev);
1672	if (retval < 0) {
1673		dev_err(&pdev->dev,
1674			"%s pci_enable_device failed\n", __func__);
1675	} else {
1676		pci_enable_wake(pdev, PCI_D3hot, 0);
1677
1678		/* set suspend status to false */
1679		pd_dev_save->board_dat->suspend_sts = false;
1680	}
1681
1682	return retval;
1683}
1684#else
1685#define pch_spi_suspend NULL
1686#define pch_spi_resume NULL
1687
1688#endif
1689
1690static struct pci_driver pch_spi_pcidev_driver = {
1691	.name = "pch_spi",
1692	.id_table = pch_spi_pcidev_id,
1693	.probe = pch_spi_probe,
1694	.remove = pch_spi_remove,
1695	.suspend = pch_spi_suspend,
1696	.resume = pch_spi_resume,
1697};
1698
1699static int __init pch_spi_init(void)
1700{
1701	int ret;
1702	ret = platform_driver_register(&pch_spi_pd_driver);
1703	if (ret)
1704		return ret;
1705
1706	ret = pci_register_driver(&pch_spi_pcidev_driver);
1707	if (ret) {
1708		platform_driver_unregister(&pch_spi_pd_driver);
1709		return ret;
1710	}
1711
1712	return 0;
1713}
1714module_init(pch_spi_init);
1715
1716static void __exit pch_spi_exit(void)
1717{
1718	pci_unregister_driver(&pch_spi_pcidev_driver);
1719	platform_driver_unregister(&pch_spi_pd_driver);
1720}
1721module_exit(pch_spi_exit);
1722
1723module_param(use_dma, int, 0644);
1724MODULE_PARM_DESC(use_dma,
1725		 "to use DMA for data transfers pass 1 else 0; default 1");
1726
1727MODULE_LICENSE("GPL");
1728MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1729MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1730