Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
 
  52#include "raid1-10.c"
  53
  54#define START(node) ((node)->start)
  55#define LAST(node) ((node)->last)
  56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  57		     START, LAST, static inline, raid1_rb);
  58
  59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  60				struct serial_info *si, int idx)
  61{
  62	unsigned long flags;
  63	int ret = 0;
  64	sector_t lo = r1_bio->sector;
  65	sector_t hi = lo + r1_bio->sectors;
  66	struct serial_in_rdev *serial = &rdev->serial[idx];
  67
  68	spin_lock_irqsave(&serial->serial_lock, flags);
  69	/* collision happened */
  70	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  71		ret = -EBUSY;
  72	else {
  73		si->start = lo;
  74		si->last = hi;
  75		raid1_rb_insert(si, &serial->serial_rb);
  76	}
  77	spin_unlock_irqrestore(&serial->serial_lock, flags);
  78
  79	return ret;
  80}
  81
  82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  83{
  84	struct mddev *mddev = rdev->mddev;
  85	struct serial_info *si;
  86	int idx = sector_to_idx(r1_bio->sector);
  87	struct serial_in_rdev *serial = &rdev->serial[idx];
  88
  89	if (WARN_ON(!mddev->serial_info_pool))
  90		return;
  91	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  92	wait_event(serial->serial_io_wait,
  93		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  94}
  95
  96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  97{
  98	struct serial_info *si;
  99	unsigned long flags;
 100	int found = 0;
 101	struct mddev *mddev = rdev->mddev;
 102	int idx = sector_to_idx(lo);
 103	struct serial_in_rdev *serial = &rdev->serial[idx];
 104
 105	spin_lock_irqsave(&serial->serial_lock, flags);
 106	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 107	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 108		if (si->start == lo && si->last == hi) {
 109			raid1_rb_remove(si, &serial->serial_rb);
 110			mempool_free(si, mddev->serial_info_pool);
 111			found = 1;
 112			break;
 113		}
 114	}
 115	if (!found)
 116		WARN(1, "The write IO is not recorded for serialization\n");
 117	spin_unlock_irqrestore(&serial->serial_lock, flags);
 118	wake_up(&serial->serial_io_wait);
 119}
 120
 121/*
 122 * for resync bio, r1bio pointer can be retrieved from the per-bio
 123 * 'struct resync_pages'.
 124 */
 125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 126{
 127	return get_resync_pages(bio)->raid_bio;
 128}
 129
 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 131{
 132	struct pool_info *pi = data;
 133	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 134
 135	/* allocate a r1bio with room for raid_disks entries in the bios array */
 136	return kzalloc(size, gfp_flags);
 137}
 138
 139#define RESYNC_DEPTH 32
 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 145
 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 147{
 148	struct pool_info *pi = data;
 149	struct r1bio *r1_bio;
 150	struct bio *bio;
 151	int need_pages;
 152	int j;
 153	struct resync_pages *rps;
 154
 155	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 156	if (!r1_bio)
 157		return NULL;
 158
 159	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 160			    gfp_flags);
 161	if (!rps)
 162		goto out_free_r1bio;
 163
 164	/*
 165	 * Allocate bios : 1 for reading, n-1 for writing
 166	 */
 167	for (j = pi->raid_disks ; j-- ; ) {
 168		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 169		if (!bio)
 170			goto out_free_bio;
 171		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 172		r1_bio->bios[j] = bio;
 173	}
 174	/*
 175	 * Allocate RESYNC_PAGES data pages and attach them to
 176	 * the first bio.
 177	 * If this is a user-requested check/repair, allocate
 178	 * RESYNC_PAGES for each bio.
 179	 */
 180	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 181		need_pages = pi->raid_disks;
 182	else
 183		need_pages = 1;
 184	for (j = 0; j < pi->raid_disks; j++) {
 185		struct resync_pages *rp = &rps[j];
 186
 187		bio = r1_bio->bios[j];
 188
 189		if (j < need_pages) {
 190			if (resync_alloc_pages(rp, gfp_flags))
 191				goto out_free_pages;
 192		} else {
 193			memcpy(rp, &rps[0], sizeof(*rp));
 194			resync_get_all_pages(rp);
 195		}
 196
 197		rp->raid_bio = r1_bio;
 198		bio->bi_private = rp;
 199	}
 200
 201	r1_bio->master_bio = NULL;
 202
 203	return r1_bio;
 204
 205out_free_pages:
 206	while (--j >= 0)
 207		resync_free_pages(&rps[j]);
 208
 209out_free_bio:
 210	while (++j < pi->raid_disks) {
 211		bio_uninit(r1_bio->bios[j]);
 212		kfree(r1_bio->bios[j]);
 213	}
 214	kfree(rps);
 215
 216out_free_r1bio:
 217	rbio_pool_free(r1_bio, data);
 218	return NULL;
 219}
 220
 221static void r1buf_pool_free(void *__r1_bio, void *data)
 222{
 223	struct pool_info *pi = data;
 224	int i;
 225	struct r1bio *r1bio = __r1_bio;
 226	struct resync_pages *rp = NULL;
 227
 228	for (i = pi->raid_disks; i--; ) {
 229		rp = get_resync_pages(r1bio->bios[i]);
 230		resync_free_pages(rp);
 231		bio_uninit(r1bio->bios[i]);
 232		kfree(r1bio->bios[i]);
 233	}
 234
 235	/* resync pages array stored in the 1st bio's .bi_private */
 236	kfree(rp);
 237
 238	rbio_pool_free(r1bio, data);
 239}
 240
 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 242{
 243	int i;
 244
 245	for (i = 0; i < conf->raid_disks * 2; i++) {
 246		struct bio **bio = r1_bio->bios + i;
 247		if (!BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r1bio(struct r1bio *r1_bio)
 254{
 255	struct r1conf *conf = r1_bio->mddev->private;
 256
 257	put_all_bios(conf, r1_bio);
 258	mempool_free(r1_bio, &conf->r1bio_pool);
 259}
 260
 261static void put_buf(struct r1bio *r1_bio)
 262{
 263	struct r1conf *conf = r1_bio->mddev->private;
 264	sector_t sect = r1_bio->sector;
 265	int i;
 266
 267	for (i = 0; i < conf->raid_disks * 2; i++) {
 268		struct bio *bio = r1_bio->bios[i];
 269		if (bio->bi_end_io)
 270			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 271	}
 272
 273	mempool_free(r1_bio, &conf->r1buf_pool);
 274
 275	lower_barrier(conf, sect);
 276}
 277
 278static void reschedule_retry(struct r1bio *r1_bio)
 279{
 280	unsigned long flags;
 281	struct mddev *mddev = r1_bio->mddev;
 282	struct r1conf *conf = mddev->private;
 283	int idx;
 284
 285	idx = sector_to_idx(r1_bio->sector);
 286	spin_lock_irqsave(&conf->device_lock, flags);
 287	list_add(&r1_bio->retry_list, &conf->retry_list);
 288	atomic_inc(&conf->nr_queued[idx]);
 289	spin_unlock_irqrestore(&conf->device_lock, flags);
 290
 291	wake_up(&conf->wait_barrier);
 292	md_wakeup_thread(mddev->thread);
 293}
 294
 295/*
 296 * raid_end_bio_io() is called when we have finished servicing a mirrored
 297 * operation and are ready to return a success/failure code to the buffer
 298 * cache layer.
 299 */
 300static void call_bio_endio(struct r1bio *r1_bio)
 301{
 302	struct bio *bio = r1_bio->master_bio;
 303
 304	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 305		bio->bi_status = BLK_STS_IOERR;
 306
 307	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 308		bio_end_io_acct(bio, r1_bio->start_time);
 309	bio_endio(bio);
 310}
 311
 312static void raid_end_bio_io(struct r1bio *r1_bio)
 313{
 314	struct bio *bio = r1_bio->master_bio;
 315	struct r1conf *conf = r1_bio->mddev->private;
 
 316
 317	/* if nobody has done the final endio yet, do it now */
 318	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321			 (unsigned long long) bio->bi_iter.bi_sector,
 322			 (unsigned long long) bio_end_sector(bio) - 1);
 323
 324		call_bio_endio(r1_bio);
 325	}
 
 
 326	/*
 327	 * Wake up any possible resync thread that waits for the device
 328	 * to go idle.  All I/Os, even write-behind writes, are done.
 329	 */
 330	allow_barrier(conf, r1_bio->sector);
 331
 332	free_r1bio(r1_bio);
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340	struct r1conf *conf = r1_bio->mddev->private;
 341
 342	conf->mirrors[disk].head_position =
 343		r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 351	int mirror;
 352	struct r1conf *conf = r1_bio->mddev->private;
 353	int raid_disks = conf->raid_disks;
 354
 355	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356		if (r1_bio->bios[mirror] == bio)
 357			break;
 358
 359	BUG_ON(mirror == raid_disks * 2);
 360	update_head_pos(mirror, r1_bio);
 361
 362	return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367	int uptodate = !bio->bi_status;
 368	struct r1bio *r1_bio = bio->bi_private;
 369	struct r1conf *conf = r1_bio->mddev->private;
 370	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 372	/*
 373	 * this branch is our 'one mirror IO has finished' event handler:
 374	 */
 375	update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377	if (uptodate)
 378		set_bit(R1BIO_Uptodate, &r1_bio->state);
 379	else if (test_bit(FailFast, &rdev->flags) &&
 380		 test_bit(R1BIO_FailFast, &r1_bio->state))
 381		/* This was a fail-fast read so we definitely
 382		 * want to retry */
 383		;
 384	else {
 385		/* If all other devices have failed, we want to return
 386		 * the error upwards rather than fail the last device.
 387		 * Here we redefine "uptodate" to mean "Don't want to retry"
 388		 */
 389		unsigned long flags;
 390		spin_lock_irqsave(&conf->device_lock, flags);
 391		if (r1_bio->mddev->degraded == conf->raid_disks ||
 392		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393		     test_bit(In_sync, &rdev->flags)))
 394			uptodate = 1;
 395		spin_unlock_irqrestore(&conf->device_lock, flags);
 396	}
 397
 398	if (uptodate) {
 399		raid_end_bio_io(r1_bio);
 400		rdev_dec_pending(rdev, conf->mddev);
 401	} else {
 402		/*
 403		 * oops, read error:
 404		 */
 405		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 406				   mdname(conf->mddev),
 407				   rdev->bdev,
 408				   (unsigned long long)r1_bio->sector);
 409		set_bit(R1BIO_ReadError, &r1_bio->state);
 410		reschedule_retry(r1_bio);
 411		/* don't drop the reference on read_disk yet */
 412	}
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417	/* it really is the end of this request */
 418	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419		bio_free_pages(r1_bio->behind_master_bio);
 420		bio_put(r1_bio->behind_master_bio);
 421		r1_bio->behind_master_bio = NULL;
 422	}
 423	/* clear the bitmap if all writes complete successfully */
 424	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425			   r1_bio->sectors,
 426			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 427			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 428	md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433	if (!atomic_dec_and_test(&r1_bio->remaining))
 434		return;
 435
 436	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437		reschedule_retry(r1_bio);
 438	else {
 439		close_write(r1_bio);
 440		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441			reschedule_retry(r1_bio);
 442		else
 443			raid_end_bio_io(r1_bio);
 444	}
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 449	struct r1bio *r1_bio = bio->bi_private;
 450	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451	struct r1conf *conf = r1_bio->mddev->private;
 452	struct bio *to_put = NULL;
 453	int mirror = find_bio_disk(r1_bio, bio);
 454	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455	bool discard_error;
 456	sector_t lo = r1_bio->sector;
 457	sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 460
 461	/*
 462	 * 'one mirror IO has finished' event handler:
 463	 */
 464	if (bio->bi_status && !discard_error) {
 465		set_bit(WriteErrorSeen,	&rdev->flags);
 466		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 467			set_bit(MD_RECOVERY_NEEDED, &
 468				conf->mddev->recovery);
 469
 470		if (test_bit(FailFast, &rdev->flags) &&
 471		    (bio->bi_opf & MD_FAILFAST) &&
 472		    /* We never try FailFast to WriteMostly devices */
 473		    !test_bit(WriteMostly, &rdev->flags)) {
 474			md_error(r1_bio->mddev, rdev);
 475		}
 476
 477		/*
 478		 * When the device is faulty, it is not necessary to
 479		 * handle write error.
 480		 */
 481		if (!test_bit(Faulty, &rdev->flags))
 482			set_bit(R1BIO_WriteError, &r1_bio->state);
 483		else {
 484			/* Fail the request */
 485			set_bit(R1BIO_Degraded, &r1_bio->state);
 486			/* Finished with this branch */
 487			r1_bio->bios[mirror] = NULL;
 488			to_put = bio;
 489		}
 490	} else {
 491		/*
 492		 * Set R1BIO_Uptodate in our master bio, so that we
 493		 * will return a good error code for to the higher
 494		 * levels even if IO on some other mirrored buffer
 495		 * fails.
 496		 *
 497		 * The 'master' represents the composite IO operation
 498		 * to user-side. So if something waits for IO, then it
 499		 * will wait for the 'master' bio.
 500		 */
 501		sector_t first_bad;
 502		int bad_sectors;
 503
 504		r1_bio->bios[mirror] = NULL;
 505		to_put = bio;
 506		/*
 507		 * Do not set R1BIO_Uptodate if the current device is
 508		 * rebuilding or Faulty. This is because we cannot use
 509		 * such device for properly reading the data back (we could
 510		 * potentially use it, if the current write would have felt
 511		 * before rdev->recovery_offset, but for simplicity we don't
 512		 * check this here.
 513		 */
 514		if (test_bit(In_sync, &rdev->flags) &&
 515		    !test_bit(Faulty, &rdev->flags))
 516			set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518		/* Maybe we can clear some bad blocks. */
 519		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520				&first_bad, &bad_sectors) && !discard_error) {
 521			r1_bio->bios[mirror] = IO_MADE_GOOD;
 522			set_bit(R1BIO_MadeGood, &r1_bio->state);
 523		}
 524	}
 525
 526	if (behind) {
 527		if (test_bit(CollisionCheck, &rdev->flags))
 528			remove_serial(rdev, lo, hi);
 529		if (test_bit(WriteMostly, &rdev->flags))
 530			atomic_dec(&r1_bio->behind_remaining);
 531
 532		/*
 533		 * In behind mode, we ACK the master bio once the I/O
 534		 * has safely reached all non-writemostly
 535		 * disks. Setting the Returned bit ensures that this
 536		 * gets done only once -- we don't ever want to return
 537		 * -EIO here, instead we'll wait
 538		 */
 539		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541			/* Maybe we can return now */
 542			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543				struct bio *mbio = r1_bio->master_bio;
 544				pr_debug("raid1: behind end write sectors"
 545					 " %llu-%llu\n",
 546					 (unsigned long long) mbio->bi_iter.bi_sector,
 547					 (unsigned long long) bio_end_sector(mbio) - 1);
 548				call_bio_endio(r1_bio);
 549			}
 550		}
 551	} else if (rdev->mddev->serialize_policy)
 552		remove_serial(rdev, lo, hi);
 553	if (r1_bio->bios[mirror] == NULL)
 554		rdev_dec_pending(rdev, conf->mddev);
 555
 556	/*
 557	 * Let's see if all mirrored write operations have finished
 558	 * already.
 559	 */
 560	r1_bio_write_done(r1_bio);
 561
 562	if (to_put)
 563		bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567					  sector_t sectors)
 568{
 569	sector_t len;
 570
 571	WARN_ON(sectors == 0);
 572	/*
 573	 * len is the number of sectors from start_sector to end of the
 574	 * barrier unit which start_sector belongs to.
 575	 */
 576	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577	      start_sector;
 578
 579	if (len > sectors)
 580		len = sectors;
 581
 582	return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601	const sector_t this_sector = r1_bio->sector;
 602	int sectors;
 603	int best_good_sectors;
 604	int best_disk, best_dist_disk, best_pending_disk;
 605	int has_nonrot_disk;
 606	int disk;
 607	sector_t best_dist;
 608	unsigned int min_pending;
 609	struct md_rdev *rdev;
 610	int choose_first;
 611	int choose_next_idle;
 612
 613	rcu_read_lock();
 614	/*
 615	 * Check if we can balance. We can balance on the whole
 616	 * device if no resync is going on, or below the resync window.
 617	 * We take the first readable disk when above the resync window.
 618	 */
 619 retry:
 620	sectors = r1_bio->sectors;
 621	best_disk = -1;
 622	best_dist_disk = -1;
 623	best_dist = MaxSector;
 624	best_pending_disk = -1;
 625	min_pending = UINT_MAX;
 626	best_good_sectors = 0;
 627	has_nonrot_disk = 0;
 628	choose_next_idle = 0;
 629	clear_bit(R1BIO_FailFast, &r1_bio->state);
 630
 631	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 632	    (mddev_is_clustered(conf->mddev) &&
 633	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 634		    this_sector + sectors)))
 635		choose_first = 1;
 636	else
 637		choose_first = 0;
 638
 639	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 640		sector_t dist;
 641		sector_t first_bad;
 642		int bad_sectors;
 643		unsigned int pending;
 644		bool nonrot;
 645
 646		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 647		if (r1_bio->bios[disk] == IO_BLOCKED
 648		    || rdev == NULL
 649		    || test_bit(Faulty, &rdev->flags))
 650			continue;
 651		if (!test_bit(In_sync, &rdev->flags) &&
 652		    rdev->recovery_offset < this_sector + sectors)
 653			continue;
 654		if (test_bit(WriteMostly, &rdev->flags)) {
 655			/* Don't balance among write-mostly, just
 656			 * use the first as a last resort */
 657			if (best_dist_disk < 0) {
 658				if (is_badblock(rdev, this_sector, sectors,
 659						&first_bad, &bad_sectors)) {
 660					if (first_bad <= this_sector)
 661						/* Cannot use this */
 662						continue;
 663					best_good_sectors = first_bad - this_sector;
 664				} else
 665					best_good_sectors = sectors;
 666				best_dist_disk = disk;
 667				best_pending_disk = disk;
 668			}
 669			continue;
 670		}
 671		/* This is a reasonable device to use.  It might
 672		 * even be best.
 673		 */
 674		if (is_badblock(rdev, this_sector, sectors,
 675				&first_bad, &bad_sectors)) {
 676			if (best_dist < MaxSector)
 677				/* already have a better device */
 678				continue;
 679			if (first_bad <= this_sector) {
 680				/* cannot read here. If this is the 'primary'
 681				 * device, then we must not read beyond
 682				 * bad_sectors from another device..
 683				 */
 684				bad_sectors -= (this_sector - first_bad);
 685				if (choose_first && sectors > bad_sectors)
 686					sectors = bad_sectors;
 687				if (best_good_sectors > sectors)
 688					best_good_sectors = sectors;
 689
 690			} else {
 691				sector_t good_sectors = first_bad - this_sector;
 692				if (good_sectors > best_good_sectors) {
 693					best_good_sectors = good_sectors;
 694					best_disk = disk;
 695				}
 696				if (choose_first)
 697					break;
 698			}
 699			continue;
 700		} else {
 701			if ((sectors > best_good_sectors) && (best_disk >= 0))
 702				best_disk = -1;
 703			best_good_sectors = sectors;
 704		}
 705
 706		if (best_disk >= 0)
 707			/* At least two disks to choose from so failfast is OK */
 708			set_bit(R1BIO_FailFast, &r1_bio->state);
 709
 710		nonrot = bdev_nonrot(rdev->bdev);
 711		has_nonrot_disk |= nonrot;
 712		pending = atomic_read(&rdev->nr_pending);
 713		dist = abs(this_sector - conf->mirrors[disk].head_position);
 714		if (choose_first) {
 715			best_disk = disk;
 716			break;
 717		}
 718		/* Don't change to another disk for sequential reads */
 719		if (conf->mirrors[disk].next_seq_sect == this_sector
 720		    || dist == 0) {
 721			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 722			struct raid1_info *mirror = &conf->mirrors[disk];
 723
 724			best_disk = disk;
 725			/*
 726			 * If buffered sequential IO size exceeds optimal
 727			 * iosize, check if there is idle disk. If yes, choose
 728			 * the idle disk. read_balance could already choose an
 729			 * idle disk before noticing it's a sequential IO in
 730			 * this disk. This doesn't matter because this disk
 731			 * will idle, next time it will be utilized after the
 732			 * first disk has IO size exceeds optimal iosize. In
 733			 * this way, iosize of the first disk will be optimal
 734			 * iosize at least. iosize of the second disk might be
 735			 * small, but not a big deal since when the second disk
 736			 * starts IO, the first disk is likely still busy.
 737			 */
 738			if (nonrot && opt_iosize > 0 &&
 739			    mirror->seq_start != MaxSector &&
 740			    mirror->next_seq_sect > opt_iosize &&
 741			    mirror->next_seq_sect - opt_iosize >=
 742			    mirror->seq_start) {
 743				choose_next_idle = 1;
 744				continue;
 745			}
 746			break;
 747		}
 748
 749		if (choose_next_idle)
 750			continue;
 751
 752		if (min_pending > pending) {
 753			min_pending = pending;
 754			best_pending_disk = disk;
 755		}
 756
 757		if (dist < best_dist) {
 758			best_dist = dist;
 759			best_dist_disk = disk;
 760		}
 761	}
 762
 763	/*
 764	 * If all disks are rotational, choose the closest disk. If any disk is
 765	 * non-rotational, choose the disk with less pending request even the
 766	 * disk is rotational, which might/might not be optimal for raids with
 767	 * mixed ratation/non-rotational disks depending on workload.
 768	 */
 769	if (best_disk == -1) {
 770		if (has_nonrot_disk || min_pending == 0)
 771			best_disk = best_pending_disk;
 772		else
 773			best_disk = best_dist_disk;
 774	}
 775
 776	if (best_disk >= 0) {
 777		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 778		if (!rdev)
 779			goto retry;
 780		atomic_inc(&rdev->nr_pending);
 781		sectors = best_good_sectors;
 782
 783		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 784			conf->mirrors[best_disk].seq_start = this_sector;
 785
 786		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 787	}
 788	rcu_read_unlock();
 789	*max_sectors = sectors;
 790
 791	return best_disk;
 792}
 793
 
 
 
 
 
 
 794static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 795{
 796	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 797	md_bitmap_unplug(conf->mddev->bitmap);
 798	wake_up(&conf->wait_barrier);
 799
 800	while (bio) { /* submit pending writes */
 801		struct bio *next = bio->bi_next;
 802		struct md_rdev *rdev = (void *)bio->bi_bdev;
 803		bio->bi_next = NULL;
 804		bio_set_dev(bio, rdev->bdev);
 805		if (test_bit(Faulty, &rdev->flags)) {
 806			bio_io_error(bio);
 807		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 808				    !bdev_max_discard_sectors(bio->bi_bdev)))
 809			/* Just ignore it */
 810			bio_endio(bio);
 811		else
 812			submit_bio_noacct(bio);
 813		bio = next;
 814		cond_resched();
 815	}
 816}
 817
 818static void flush_pending_writes(struct r1conf *conf)
 819{
 820	/* Any writes that have been queued but are awaiting
 821	 * bitmap updates get flushed here.
 822	 */
 823	spin_lock_irq(&conf->device_lock);
 824
 825	if (conf->pending_bio_list.head) {
 826		struct blk_plug plug;
 827		struct bio *bio;
 828
 829		bio = bio_list_get(&conf->pending_bio_list);
 830		spin_unlock_irq(&conf->device_lock);
 831
 832		/*
 833		 * As this is called in a wait_event() loop (see freeze_array),
 834		 * current->state might be TASK_UNINTERRUPTIBLE which will
 835		 * cause a warning when we prepare to wait again.  As it is
 836		 * rare that this path is taken, it is perfectly safe to force
 837		 * us to go around the wait_event() loop again, so the warning
 838		 * is a false-positive.  Silence the warning by resetting
 839		 * thread state
 840		 */
 841		__set_current_state(TASK_RUNNING);
 842		blk_start_plug(&plug);
 843		flush_bio_list(conf, bio);
 844		blk_finish_plug(&plug);
 845	} else
 846		spin_unlock_irq(&conf->device_lock);
 847}
 848
 849/* Barriers....
 850 * Sometimes we need to suspend IO while we do something else,
 851 * either some resync/recovery, or reconfigure the array.
 852 * To do this we raise a 'barrier'.
 853 * The 'barrier' is a counter that can be raised multiple times
 854 * to count how many activities are happening which preclude
 855 * normal IO.
 856 * We can only raise the barrier if there is no pending IO.
 857 * i.e. if nr_pending == 0.
 858 * We choose only to raise the barrier if no-one is waiting for the
 859 * barrier to go down.  This means that as soon as an IO request
 860 * is ready, no other operations which require a barrier will start
 861 * until the IO request has had a chance.
 862 *
 863 * So: regular IO calls 'wait_barrier'.  When that returns there
 864 *    is no backgroup IO happening,  It must arrange to call
 865 *    allow_barrier when it has finished its IO.
 866 * backgroup IO calls must call raise_barrier.  Once that returns
 867 *    there is no normal IO happeing.  It must arrange to call
 868 *    lower_barrier when the particular background IO completes.
 869 *
 870 * If resync/recovery is interrupted, returns -EINTR;
 871 * Otherwise, returns 0.
 872 */
 873static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 874{
 875	int idx = sector_to_idx(sector_nr);
 876
 877	spin_lock_irq(&conf->resync_lock);
 878
 879	/* Wait until no block IO is waiting */
 880	wait_event_lock_irq(conf->wait_barrier,
 881			    !atomic_read(&conf->nr_waiting[idx]),
 882			    conf->resync_lock);
 883
 884	/* block any new IO from starting */
 885	atomic_inc(&conf->barrier[idx]);
 886	/*
 887	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 888	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 889	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 890	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 891	 * be fetched before conf->barrier[idx] is increased. Otherwise
 892	 * there will be a race between raise_barrier() and _wait_barrier().
 893	 */
 894	smp_mb__after_atomic();
 895
 896	/* For these conditions we must wait:
 897	 * A: while the array is in frozen state
 898	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 899	 *    existing in corresponding I/O barrier bucket.
 900	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 901	 *    max resync count which allowed on current I/O barrier bucket.
 902	 */
 903	wait_event_lock_irq(conf->wait_barrier,
 904			    (!conf->array_frozen &&
 905			     !atomic_read(&conf->nr_pending[idx]) &&
 906			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 907				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 908			    conf->resync_lock);
 909
 910	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 911		atomic_dec(&conf->barrier[idx]);
 912		spin_unlock_irq(&conf->resync_lock);
 913		wake_up(&conf->wait_barrier);
 914		return -EINTR;
 915	}
 916
 917	atomic_inc(&conf->nr_sync_pending);
 918	spin_unlock_irq(&conf->resync_lock);
 919
 920	return 0;
 921}
 922
 923static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 924{
 925	int idx = sector_to_idx(sector_nr);
 926
 927	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 928
 929	atomic_dec(&conf->barrier[idx]);
 930	atomic_dec(&conf->nr_sync_pending);
 931	wake_up(&conf->wait_barrier);
 932}
 933
 934static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 935{
 936	bool ret = true;
 937
 938	/*
 939	 * We need to increase conf->nr_pending[idx] very early here,
 940	 * then raise_barrier() can be blocked when it waits for
 941	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 942	 * conf->resync_lock when there is no barrier raised in same
 943	 * barrier unit bucket. Also if the array is frozen, I/O
 944	 * should be blocked until array is unfrozen.
 945	 */
 946	atomic_inc(&conf->nr_pending[idx]);
 947	/*
 948	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 949	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 950	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 951	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 952	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 953	 * will be a race between _wait_barrier() and raise_barrier().
 954	 */
 955	smp_mb__after_atomic();
 956
 957	/*
 958	 * Don't worry about checking two atomic_t variables at same time
 959	 * here. If during we check conf->barrier[idx], the array is
 960	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 961	 * 0, it is safe to return and make the I/O continue. Because the
 962	 * array is frozen, all I/O returned here will eventually complete
 963	 * or be queued, no race will happen. See code comment in
 964	 * frozen_array().
 965	 */
 966	if (!READ_ONCE(conf->array_frozen) &&
 967	    !atomic_read(&conf->barrier[idx]))
 968		return ret;
 969
 970	/*
 971	 * After holding conf->resync_lock, conf->nr_pending[idx]
 972	 * should be decreased before waiting for barrier to drop.
 973	 * Otherwise, we may encounter a race condition because
 974	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 975	 * to be 0 at same time.
 976	 */
 977	spin_lock_irq(&conf->resync_lock);
 978	atomic_inc(&conf->nr_waiting[idx]);
 979	atomic_dec(&conf->nr_pending[idx]);
 980	/*
 981	 * In case freeze_array() is waiting for
 982	 * get_unqueued_pending() == extra
 983	 */
 984	wake_up(&conf->wait_barrier);
 985	/* Wait for the barrier in same barrier unit bucket to drop. */
 986
 987	/* Return false when nowait flag is set */
 988	if (nowait) {
 989		ret = false;
 990	} else {
 991		wait_event_lock_irq(conf->wait_barrier,
 992				!conf->array_frozen &&
 993				!atomic_read(&conf->barrier[idx]),
 994				conf->resync_lock);
 995		atomic_inc(&conf->nr_pending[idx]);
 996	}
 997
 998	atomic_dec(&conf->nr_waiting[idx]);
 999	spin_unlock_irq(&conf->resync_lock);
1000	return ret;
1001}
1002
1003static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1004{
1005	int idx = sector_to_idx(sector_nr);
1006	bool ret = true;
1007
1008	/*
1009	 * Very similar to _wait_barrier(). The difference is, for read
1010	 * I/O we don't need wait for sync I/O, but if the whole array
1011	 * is frozen, the read I/O still has to wait until the array is
1012	 * unfrozen. Since there is no ordering requirement with
1013	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1014	 */
1015	atomic_inc(&conf->nr_pending[idx]);
1016
1017	if (!READ_ONCE(conf->array_frozen))
1018		return ret;
1019
1020	spin_lock_irq(&conf->resync_lock);
1021	atomic_inc(&conf->nr_waiting[idx]);
1022	atomic_dec(&conf->nr_pending[idx]);
1023	/*
1024	 * In case freeze_array() is waiting for
1025	 * get_unqueued_pending() == extra
1026	 */
1027	wake_up(&conf->wait_barrier);
1028	/* Wait for array to be unfrozen */
1029
1030	/* Return false when nowait flag is set */
1031	if (nowait) {
1032		/* Return false when nowait flag is set */
1033		ret = false;
1034	} else {
1035		wait_event_lock_irq(conf->wait_barrier,
1036				!conf->array_frozen,
1037				conf->resync_lock);
1038		atomic_inc(&conf->nr_pending[idx]);
1039	}
1040
1041	atomic_dec(&conf->nr_waiting[idx]);
1042	spin_unlock_irq(&conf->resync_lock);
1043	return ret;
1044}
1045
1046static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1047{
1048	int idx = sector_to_idx(sector_nr);
1049
1050	return _wait_barrier(conf, idx, nowait);
1051}
1052
1053static void _allow_barrier(struct r1conf *conf, int idx)
1054{
1055	atomic_dec(&conf->nr_pending[idx]);
1056	wake_up(&conf->wait_barrier);
1057}
1058
1059static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1060{
1061	int idx = sector_to_idx(sector_nr);
1062
1063	_allow_barrier(conf, idx);
1064}
1065
1066/* conf->resync_lock should be held */
1067static int get_unqueued_pending(struct r1conf *conf)
1068{
1069	int idx, ret;
1070
1071	ret = atomic_read(&conf->nr_sync_pending);
1072	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1073		ret += atomic_read(&conf->nr_pending[idx]) -
1074			atomic_read(&conf->nr_queued[idx]);
1075
1076	return ret;
1077}
1078
1079static void freeze_array(struct r1conf *conf, int extra)
1080{
1081	/* Stop sync I/O and normal I/O and wait for everything to
1082	 * go quiet.
1083	 * This is called in two situations:
1084	 * 1) management command handlers (reshape, remove disk, quiesce).
1085	 * 2) one normal I/O request failed.
1086
1087	 * After array_frozen is set to 1, new sync IO will be blocked at
1088	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1089	 * or wait_read_barrier(). The flying I/Os will either complete or be
1090	 * queued. When everything goes quite, there are only queued I/Os left.
1091
1092	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1093	 * barrier bucket index which this I/O request hits. When all sync and
1094	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1095	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1096	 * in handle_read_error(), we may call freeze_array() before trying to
1097	 * fix the read error. In this case, the error read I/O is not queued,
1098	 * so get_unqueued_pending() == 1.
1099	 *
1100	 * Therefore before this function returns, we need to wait until
1101	 * get_unqueued_pendings(conf) gets equal to extra. For
1102	 * normal I/O context, extra is 1, in rested situations extra is 0.
1103	 */
1104	spin_lock_irq(&conf->resync_lock);
1105	conf->array_frozen = 1;
1106	raid1_log(conf->mddev, "wait freeze");
1107	wait_event_lock_irq_cmd(
1108		conf->wait_barrier,
1109		get_unqueued_pending(conf) == extra,
1110		conf->resync_lock,
1111		flush_pending_writes(conf));
1112	spin_unlock_irq(&conf->resync_lock);
1113}
1114static void unfreeze_array(struct r1conf *conf)
1115{
1116	/* reverse the effect of the freeze */
1117	spin_lock_irq(&conf->resync_lock);
1118	conf->array_frozen = 0;
1119	spin_unlock_irq(&conf->resync_lock);
1120	wake_up(&conf->wait_barrier);
1121}
1122
1123static void alloc_behind_master_bio(struct r1bio *r1_bio,
1124					   struct bio *bio)
1125{
1126	int size = bio->bi_iter.bi_size;
1127	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128	int i = 0;
1129	struct bio *behind_bio = NULL;
1130
1131	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1132				      &r1_bio->mddev->bio_set);
1133	if (!behind_bio)
1134		return;
1135
1136	/* discard op, we don't support writezero/writesame yet */
1137	if (!bio_has_data(bio)) {
1138		behind_bio->bi_iter.bi_size = size;
1139		goto skip_copy;
1140	}
1141
1142	while (i < vcnt && size) {
1143		struct page *page;
1144		int len = min_t(int, PAGE_SIZE, size);
1145
1146		page = alloc_page(GFP_NOIO);
1147		if (unlikely(!page))
1148			goto free_pages;
1149
1150		bio_add_page(behind_bio, page, len, 0);
 
 
 
1151
1152		size -= len;
1153		i++;
1154	}
1155
1156	bio_copy_data(behind_bio, bio);
1157skip_copy:
1158	r1_bio->behind_master_bio = behind_bio;
1159	set_bit(R1BIO_BehindIO, &r1_bio->state);
1160
1161	return;
1162
1163free_pages:
1164	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1165		 bio->bi_iter.bi_size);
1166	bio_free_pages(behind_bio);
1167	bio_put(behind_bio);
1168}
1169
1170static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1171{
1172	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1173						  cb);
1174	struct mddev *mddev = plug->cb.data;
1175	struct r1conf *conf = mddev->private;
1176	struct bio *bio;
1177
1178	if (from_schedule || current->bio_list) {
1179		spin_lock_irq(&conf->device_lock);
1180		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1181		spin_unlock_irq(&conf->device_lock);
1182		wake_up(&conf->wait_barrier);
1183		md_wakeup_thread(mddev->thread);
1184		kfree(plug);
1185		return;
1186	}
1187
1188	/* we aren't scheduling, so we can do the write-out directly. */
1189	bio = bio_list_get(&plug->pending);
1190	flush_bio_list(conf, bio);
1191	kfree(plug);
1192}
1193
1194static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1195{
1196	r1_bio->master_bio = bio;
1197	r1_bio->sectors = bio_sectors(bio);
1198	r1_bio->state = 0;
1199	r1_bio->mddev = mddev;
1200	r1_bio->sector = bio->bi_iter.bi_sector;
1201}
1202
1203static inline struct r1bio *
1204alloc_r1bio(struct mddev *mddev, struct bio *bio)
1205{
1206	struct r1conf *conf = mddev->private;
1207	struct r1bio *r1_bio;
1208
1209	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1210	/* Ensure no bio records IO_BLOCKED */
1211	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1212	init_r1bio(r1_bio, mddev, bio);
1213	return r1_bio;
1214}
1215
1216static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1217			       int max_read_sectors, struct r1bio *r1_bio)
1218{
1219	struct r1conf *conf = mddev->private;
1220	struct raid1_info *mirror;
1221	struct bio *read_bio;
1222	struct bitmap *bitmap = mddev->bitmap;
1223	const enum req_op op = bio_op(bio);
1224	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1225	int max_sectors;
1226	int rdisk;
1227	bool r1bio_existed = !!r1_bio;
1228	char b[BDEVNAME_SIZE];
1229
1230	/*
1231	 * If r1_bio is set, we are blocking the raid1d thread
1232	 * so there is a tiny risk of deadlock.  So ask for
1233	 * emergency memory if needed.
1234	 */
1235	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1236
1237	if (r1bio_existed) {
1238		/* Need to get the block device name carefully */
1239		struct md_rdev *rdev;
1240		rcu_read_lock();
1241		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1242		if (rdev)
1243			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1244		else
1245			strcpy(b, "???");
1246		rcu_read_unlock();
1247	}
1248
1249	/*
1250	 * Still need barrier for READ in case that whole
1251	 * array is frozen.
1252	 */
1253	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1254				bio->bi_opf & REQ_NOWAIT)) {
1255		bio_wouldblock_error(bio);
1256		return;
1257	}
1258
1259	if (!r1_bio)
1260		r1_bio = alloc_r1bio(mddev, bio);
1261	else
1262		init_r1bio(r1_bio, mddev, bio);
1263	r1_bio->sectors = max_read_sectors;
1264
1265	/*
1266	 * make_request() can abort the operation when read-ahead is being
1267	 * used and no empty request is available.
1268	 */
1269	rdisk = read_balance(conf, r1_bio, &max_sectors);
1270
1271	if (rdisk < 0) {
1272		/* couldn't find anywhere to read from */
1273		if (r1bio_existed) {
1274			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1275					    mdname(mddev),
1276					    b,
1277					    (unsigned long long)r1_bio->sector);
1278		}
1279		raid_end_bio_io(r1_bio);
1280		return;
1281	}
1282	mirror = conf->mirrors + rdisk;
1283
1284	if (r1bio_existed)
1285		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1286				    mdname(mddev),
1287				    (unsigned long long)r1_bio->sector,
1288				    mirror->rdev->bdev);
1289
1290	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1291	    bitmap) {
1292		/*
1293		 * Reading from a write-mostly device must take care not to
1294		 * over-take any writes that are 'behind'
1295		 */
1296		raid1_log(mddev, "wait behind writes");
1297		wait_event(bitmap->behind_wait,
1298			   atomic_read(&bitmap->behind_writes) == 0);
1299	}
1300
1301	if (max_sectors < bio_sectors(bio)) {
1302		struct bio *split = bio_split(bio, max_sectors,
1303					      gfp, &conf->bio_split);
1304		bio_chain(split, bio);
1305		submit_bio_noacct(bio);
1306		bio = split;
1307		r1_bio->master_bio = bio;
1308		r1_bio->sectors = max_sectors;
1309	}
1310
1311	r1_bio->read_disk = rdisk;
1312
1313	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1314		r1_bio->start_time = bio_start_io_acct(bio);
1315
1316	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1317				   &mddev->bio_set);
1318
1319	r1_bio->bios[rdisk] = read_bio;
1320
1321	read_bio->bi_iter.bi_sector = r1_bio->sector +
1322		mirror->rdev->data_offset;
1323	read_bio->bi_end_io = raid1_end_read_request;
1324	read_bio->bi_opf = op | do_sync;
1325	if (test_bit(FailFast, &mirror->rdev->flags) &&
1326	    test_bit(R1BIO_FailFast, &r1_bio->state))
1327	        read_bio->bi_opf |= MD_FAILFAST;
1328	read_bio->bi_private = r1_bio;
1329
1330	if (mddev->gendisk)
1331	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1332				      r1_bio->sector);
1333
1334	submit_bio_noacct(read_bio);
1335}
1336
1337static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1338				int max_write_sectors)
1339{
1340	struct r1conf *conf = mddev->private;
1341	struct r1bio *r1_bio;
1342	int i, disks;
1343	struct bitmap *bitmap = mddev->bitmap;
1344	unsigned long flags;
1345	struct md_rdev *blocked_rdev;
1346	struct blk_plug_cb *cb;
1347	struct raid1_plug_cb *plug = NULL;
1348	int first_clone;
1349	int max_sectors;
1350	bool write_behind = false;
 
1351
1352	if (mddev_is_clustered(mddev) &&
1353	     md_cluster_ops->area_resyncing(mddev, WRITE,
1354		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1355
1356		DEFINE_WAIT(w);
1357		if (bio->bi_opf & REQ_NOWAIT) {
1358			bio_wouldblock_error(bio);
1359			return;
1360		}
1361		for (;;) {
1362			prepare_to_wait(&conf->wait_barrier,
1363					&w, TASK_IDLE);
1364			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1365							bio->bi_iter.bi_sector,
1366							bio_end_sector(bio)))
1367				break;
1368			schedule();
1369		}
1370		finish_wait(&conf->wait_barrier, &w);
1371	}
1372
1373	/*
1374	 * Register the new request and wait if the reconstruction
1375	 * thread has put up a bar for new requests.
1376	 * Continue immediately if no resync is active currently.
1377	 */
1378	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1379				bio->bi_opf & REQ_NOWAIT)) {
1380		bio_wouldblock_error(bio);
1381		return;
1382	}
1383
 
1384	r1_bio = alloc_r1bio(mddev, bio);
1385	r1_bio->sectors = max_write_sectors;
1386
1387	/* first select target devices under rcu_lock and
1388	 * inc refcount on their rdev.  Record them by setting
1389	 * bios[x] to bio
1390	 * If there are known/acknowledged bad blocks on any device on
1391	 * which we have seen a write error, we want to avoid writing those
1392	 * blocks.
1393	 * This potentially requires several writes to write around
1394	 * the bad blocks.  Each set of writes gets it's own r1bio
1395	 * with a set of bios attached.
1396	 */
1397
1398	disks = conf->raid_disks * 2;
1399 retry_write:
1400	blocked_rdev = NULL;
1401	rcu_read_lock();
1402	max_sectors = r1_bio->sectors;
1403	for (i = 0;  i < disks; i++) {
1404		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1405
1406		/*
1407		 * The write-behind io is only attempted on drives marked as
1408		 * write-mostly, which means we could allocate write behind
1409		 * bio later.
1410		 */
1411		if (rdev && test_bit(WriteMostly, &rdev->flags))
1412			write_behind = true;
1413
1414		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1415			atomic_inc(&rdev->nr_pending);
1416			blocked_rdev = rdev;
1417			break;
1418		}
1419		r1_bio->bios[i] = NULL;
1420		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1421			if (i < conf->raid_disks)
1422				set_bit(R1BIO_Degraded, &r1_bio->state);
1423			continue;
1424		}
1425
1426		atomic_inc(&rdev->nr_pending);
1427		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1428			sector_t first_bad;
1429			int bad_sectors;
1430			int is_bad;
1431
1432			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1433					     &first_bad, &bad_sectors);
1434			if (is_bad < 0) {
1435				/* mustn't write here until the bad block is
1436				 * acknowledged*/
1437				set_bit(BlockedBadBlocks, &rdev->flags);
1438				blocked_rdev = rdev;
1439				break;
1440			}
1441			if (is_bad && first_bad <= r1_bio->sector) {
1442				/* Cannot write here at all */
1443				bad_sectors -= (r1_bio->sector - first_bad);
1444				if (bad_sectors < max_sectors)
1445					/* mustn't write more than bad_sectors
1446					 * to other devices yet
1447					 */
1448					max_sectors = bad_sectors;
1449				rdev_dec_pending(rdev, mddev);
1450				/* We don't set R1BIO_Degraded as that
1451				 * only applies if the disk is
1452				 * missing, so it might be re-added,
1453				 * and we want to know to recover this
1454				 * chunk.
1455				 * In this case the device is here,
1456				 * and the fact that this chunk is not
1457				 * in-sync is recorded in the bad
1458				 * block log
1459				 */
1460				continue;
1461			}
1462			if (is_bad) {
1463				int good_sectors = first_bad - r1_bio->sector;
1464				if (good_sectors < max_sectors)
1465					max_sectors = good_sectors;
1466			}
1467		}
1468		r1_bio->bios[i] = bio;
1469	}
1470	rcu_read_unlock();
1471
1472	if (unlikely(blocked_rdev)) {
1473		/* Wait for this device to become unblocked */
1474		int j;
1475
1476		for (j = 0; j < i; j++)
1477			if (r1_bio->bios[j])
1478				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1479		r1_bio->state = 0;
1480		allow_barrier(conf, bio->bi_iter.bi_sector);
1481
1482		if (bio->bi_opf & REQ_NOWAIT) {
1483			bio_wouldblock_error(bio);
1484			return;
1485		}
1486		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1487		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1489		goto retry_write;
1490	}
1491
1492	/*
1493	 * When using a bitmap, we may call alloc_behind_master_bio below.
1494	 * alloc_behind_master_bio allocates a copy of the data payload a page
1495	 * at a time and thus needs a new bio that can fit the whole payload
1496	 * this bio in page sized chunks.
1497	 */
1498	if (write_behind && bitmap)
1499		max_sectors = min_t(int, max_sectors,
1500				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1501	if (max_sectors < bio_sectors(bio)) {
1502		struct bio *split = bio_split(bio, max_sectors,
1503					      GFP_NOIO, &conf->bio_split);
1504		bio_chain(split, bio);
1505		submit_bio_noacct(bio);
1506		bio = split;
1507		r1_bio->master_bio = bio;
1508		r1_bio->sectors = max_sectors;
1509	}
1510
1511	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1512		r1_bio->start_time = bio_start_io_acct(bio);
1513	atomic_set(&r1_bio->remaining, 1);
1514	atomic_set(&r1_bio->behind_remaining, 0);
1515
1516	first_clone = 1;
1517
1518	for (i = 0; i < disks; i++) {
1519		struct bio *mbio = NULL;
1520		struct md_rdev *rdev = conf->mirrors[i].rdev;
1521		if (!r1_bio->bios[i])
1522			continue;
1523
1524		if (first_clone) {
1525			/* do behind I/O ?
1526			 * Not if there are too many, or cannot
1527			 * allocate memory, or a reader on WriteMostly
1528			 * is waiting for behind writes to flush */
1529			if (bitmap &&
1530			    test_bit(WriteMostly, &rdev->flags) &&
1531			    (atomic_read(&bitmap->behind_writes)
1532			     < mddev->bitmap_info.max_write_behind) &&
1533			    !waitqueue_active(&bitmap->behind_wait)) {
1534				alloc_behind_master_bio(r1_bio, bio);
1535			}
1536
1537			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1538					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1539			first_clone = 0;
1540		}
1541
1542		if (r1_bio->behind_master_bio) {
1543			mbio = bio_alloc_clone(rdev->bdev,
1544					       r1_bio->behind_master_bio,
1545					       GFP_NOIO, &mddev->bio_set);
1546			if (test_bit(CollisionCheck, &rdev->flags))
1547				wait_for_serialization(rdev, r1_bio);
1548			if (test_bit(WriteMostly, &rdev->flags))
1549				atomic_inc(&r1_bio->behind_remaining);
1550		} else {
1551			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1552					       &mddev->bio_set);
1553
1554			if (mddev->serialize_policy)
1555				wait_for_serialization(rdev, r1_bio);
1556		}
1557
1558		r1_bio->bios[i] = mbio;
1559
1560		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1561		mbio->bi_end_io	= raid1_end_write_request;
1562		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1563		if (test_bit(FailFast, &rdev->flags) &&
1564		    !test_bit(WriteMostly, &rdev->flags) &&
1565		    conf->raid_disks - mddev->degraded > 1)
1566			mbio->bi_opf |= MD_FAILFAST;
1567		mbio->bi_private = r1_bio;
1568
1569		atomic_inc(&r1_bio->remaining);
1570
1571		if (mddev->gendisk)
1572			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1573					      r1_bio->sector);
1574		/* flush_pending_writes() needs access to the rdev so...*/
1575		mbio->bi_bdev = (void *)rdev;
1576
1577		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1578		if (cb)
1579			plug = container_of(cb, struct raid1_plug_cb, cb);
1580		else
1581			plug = NULL;
1582		if (plug) {
1583			bio_list_add(&plug->pending, mbio);
1584		} else {
1585			spin_lock_irqsave(&conf->device_lock, flags);
1586			bio_list_add(&conf->pending_bio_list, mbio);
1587			spin_unlock_irqrestore(&conf->device_lock, flags);
1588			md_wakeup_thread(mddev->thread);
1589		}
1590	}
1591
1592	r1_bio_write_done(r1_bio);
1593
1594	/* In case raid1d snuck in to freeze_array */
1595	wake_up(&conf->wait_barrier);
1596}
1597
1598static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1599{
1600	sector_t sectors;
1601
1602	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1603	    && md_flush_request(mddev, bio))
1604		return true;
1605
1606	/*
1607	 * There is a limit to the maximum size, but
1608	 * the read/write handler might find a lower limit
1609	 * due to bad blocks.  To avoid multiple splits,
1610	 * we pass the maximum number of sectors down
1611	 * and let the lower level perform the split.
1612	 */
1613	sectors = align_to_barrier_unit_end(
1614		bio->bi_iter.bi_sector, bio_sectors(bio));
1615
1616	if (bio_data_dir(bio) == READ)
1617		raid1_read_request(mddev, bio, sectors, NULL);
1618	else {
1619		if (!md_write_start(mddev,bio))
1620			return false;
1621		raid1_write_request(mddev, bio, sectors);
1622	}
1623	return true;
1624}
1625
1626static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1627{
1628	struct r1conf *conf = mddev->private;
1629	int i;
1630
 
 
1631	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1632		   conf->raid_disks - mddev->degraded);
1633	rcu_read_lock();
1634	for (i = 0; i < conf->raid_disks; i++) {
1635		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
1636		seq_printf(seq, "%s",
1637			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1638	}
1639	rcu_read_unlock();
1640	seq_printf(seq, "]");
1641}
1642
1643/**
1644 * raid1_error() - RAID1 error handler.
1645 * @mddev: affected md device.
1646 * @rdev: member device to fail.
1647 *
1648 * The routine acknowledges &rdev failure and determines new @mddev state.
1649 * If it failed, then:
1650 *	- &MD_BROKEN flag is set in &mddev->flags.
1651 *	- recovery is disabled.
1652 * Otherwise, it must be degraded:
1653 *	- recovery is interrupted.
1654 *	- &mddev->degraded is bumped.
1655 *
1656 * @rdev is marked as &Faulty excluding case when array is failed and
1657 * &mddev->fail_last_dev is off.
1658 */
1659static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1660{
1661	struct r1conf *conf = mddev->private;
1662	unsigned long flags;
1663
1664	spin_lock_irqsave(&conf->device_lock, flags);
1665
1666	if (test_bit(In_sync, &rdev->flags) &&
1667	    (conf->raid_disks - mddev->degraded) == 1) {
1668		set_bit(MD_BROKEN, &mddev->flags);
1669
1670		if (!mddev->fail_last_dev) {
1671			conf->recovery_disabled = mddev->recovery_disabled;
1672			spin_unlock_irqrestore(&conf->device_lock, flags);
1673			return;
1674		}
1675	}
1676	set_bit(Blocked, &rdev->flags);
1677	if (test_and_clear_bit(In_sync, &rdev->flags))
1678		mddev->degraded++;
1679	set_bit(Faulty, &rdev->flags);
1680	spin_unlock_irqrestore(&conf->device_lock, flags);
1681	/*
1682	 * if recovery is running, make sure it aborts.
1683	 */
1684	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1685	set_mask_bits(&mddev->sb_flags, 0,
1686		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1687	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1688		"md/raid1:%s: Operation continuing on %d devices.\n",
1689		mdname(mddev), rdev->bdev,
1690		mdname(mddev), conf->raid_disks - mddev->degraded);
1691}
1692
1693static void print_conf(struct r1conf *conf)
1694{
1695	int i;
1696
1697	pr_debug("RAID1 conf printout:\n");
1698	if (!conf) {
1699		pr_debug("(!conf)\n");
1700		return;
1701	}
1702	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1703		 conf->raid_disks);
1704
1705	rcu_read_lock();
1706	for (i = 0; i < conf->raid_disks; i++) {
1707		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1708		if (rdev)
1709			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1710				 i, !test_bit(In_sync, &rdev->flags),
1711				 !test_bit(Faulty, &rdev->flags),
1712				 rdev->bdev);
1713	}
1714	rcu_read_unlock();
1715}
1716
1717static void close_sync(struct r1conf *conf)
1718{
1719	int idx;
1720
1721	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1722		_wait_barrier(conf, idx, false);
1723		_allow_barrier(conf, idx);
1724	}
1725
1726	mempool_exit(&conf->r1buf_pool);
1727}
1728
1729static int raid1_spare_active(struct mddev *mddev)
1730{
1731	int i;
1732	struct r1conf *conf = mddev->private;
1733	int count = 0;
1734	unsigned long flags;
1735
1736	/*
1737	 * Find all failed disks within the RAID1 configuration
1738	 * and mark them readable.
1739	 * Called under mddev lock, so rcu protection not needed.
1740	 * device_lock used to avoid races with raid1_end_read_request
1741	 * which expects 'In_sync' flags and ->degraded to be consistent.
1742	 */
1743	spin_lock_irqsave(&conf->device_lock, flags);
1744	for (i = 0; i < conf->raid_disks; i++) {
1745		struct md_rdev *rdev = conf->mirrors[i].rdev;
1746		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747		if (repl
1748		    && !test_bit(Candidate, &repl->flags)
1749		    && repl->recovery_offset == MaxSector
1750		    && !test_bit(Faulty, &repl->flags)
1751		    && !test_and_set_bit(In_sync, &repl->flags)) {
1752			/* replacement has just become active */
1753			if (!rdev ||
1754			    !test_and_clear_bit(In_sync, &rdev->flags))
1755				count++;
1756			if (rdev) {
1757				/* Replaced device not technically
1758				 * faulty, but we need to be sure
1759				 * it gets removed and never re-added
1760				 */
1761				set_bit(Faulty, &rdev->flags);
1762				sysfs_notify_dirent_safe(
1763					rdev->sysfs_state);
1764			}
1765		}
1766		if (rdev
1767		    && rdev->recovery_offset == MaxSector
1768		    && !test_bit(Faulty, &rdev->flags)
1769		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1770			count++;
1771			sysfs_notify_dirent_safe(rdev->sysfs_state);
1772		}
1773	}
1774	mddev->degraded -= count;
1775	spin_unlock_irqrestore(&conf->device_lock, flags);
1776
1777	print_conf(conf);
1778	return count;
1779}
1780
1781static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1782{
1783	struct r1conf *conf = mddev->private;
1784	int err = -EEXIST;
1785	int mirror = 0;
1786	struct raid1_info *p;
1787	int first = 0;
1788	int last = conf->raid_disks - 1;
1789
1790	if (mddev->recovery_disabled == conf->recovery_disabled)
1791		return -EBUSY;
1792
1793	if (md_integrity_add_rdev(rdev, mddev))
1794		return -ENXIO;
1795
1796	if (rdev->raid_disk >= 0)
1797		first = last = rdev->raid_disk;
1798
1799	/*
1800	 * find the disk ... but prefer rdev->saved_raid_disk
1801	 * if possible.
1802	 */
1803	if (rdev->saved_raid_disk >= 0 &&
1804	    rdev->saved_raid_disk >= first &&
1805	    rdev->saved_raid_disk < conf->raid_disks &&
1806	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807		first = last = rdev->saved_raid_disk;
1808
1809	for (mirror = first; mirror <= last; mirror++) {
1810		p = conf->mirrors + mirror;
1811		if (!p->rdev) {
1812			if (mddev->gendisk)
1813				disk_stack_limits(mddev->gendisk, rdev->bdev,
1814						  rdev->data_offset << 9);
1815
1816			p->head_position = 0;
1817			rdev->raid_disk = mirror;
1818			err = 0;
1819			/* As all devices are equivalent, we don't need a full recovery
1820			 * if this was recently any drive of the array
1821			 */
1822			if (rdev->saved_raid_disk < 0)
1823				conf->fullsync = 1;
1824			rcu_assign_pointer(p->rdev, rdev);
1825			break;
1826		}
1827		if (test_bit(WantReplacement, &p->rdev->flags) &&
1828		    p[conf->raid_disks].rdev == NULL) {
1829			/* Add this device as a replacement */
1830			clear_bit(In_sync, &rdev->flags);
1831			set_bit(Replacement, &rdev->flags);
1832			rdev->raid_disk = mirror;
1833			err = 0;
1834			conf->fullsync = 1;
1835			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836			break;
1837		}
 
 
 
1838	}
 
1839	print_conf(conf);
1840	return err;
1841}
1842
1843static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1844{
1845	struct r1conf *conf = mddev->private;
1846	int err = 0;
1847	int number = rdev->raid_disk;
1848	struct raid1_info *p = conf->mirrors + number;
1849
 
 
 
1850	if (rdev != p->rdev)
1851		p = conf->mirrors + conf->raid_disks + number;
1852
1853	print_conf(conf);
1854	if (rdev == p->rdev) {
1855		if (test_bit(In_sync, &rdev->flags) ||
1856		    atomic_read(&rdev->nr_pending)) {
1857			err = -EBUSY;
1858			goto abort;
1859		}
1860		/* Only remove non-faulty devices if recovery
1861		 * is not possible.
1862		 */
1863		if (!test_bit(Faulty, &rdev->flags) &&
1864		    mddev->recovery_disabled != conf->recovery_disabled &&
1865		    mddev->degraded < conf->raid_disks) {
1866			err = -EBUSY;
1867			goto abort;
1868		}
1869		p->rdev = NULL;
1870		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1871			synchronize_rcu();
1872			if (atomic_read(&rdev->nr_pending)) {
1873				/* lost the race, try later */
1874				err = -EBUSY;
1875				p->rdev = rdev;
1876				goto abort;
1877			}
1878		}
1879		if (conf->mirrors[conf->raid_disks + number].rdev) {
1880			/* We just removed a device that is being replaced.
1881			 * Move down the replacement.  We drain all IO before
1882			 * doing this to avoid confusion.
1883			 */
1884			struct md_rdev *repl =
1885				conf->mirrors[conf->raid_disks + number].rdev;
1886			freeze_array(conf, 0);
1887			if (atomic_read(&repl->nr_pending)) {
1888				/* It means that some queued IO of retry_list
1889				 * hold repl. Thus, we cannot set replacement
1890				 * as NULL, avoiding rdev NULL pointer
1891				 * dereference in sync_request_write and
1892				 * handle_write_finished.
1893				 */
1894				err = -EBUSY;
1895				unfreeze_array(conf);
1896				goto abort;
1897			}
1898			clear_bit(Replacement, &repl->flags);
1899			p->rdev = repl;
1900			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1901			unfreeze_array(conf);
1902		}
1903
1904		clear_bit(WantReplacement, &rdev->flags);
1905		err = md_integrity_register(mddev);
1906	}
1907abort:
1908
1909	print_conf(conf);
1910	return err;
1911}
1912
1913static void end_sync_read(struct bio *bio)
1914{
1915	struct r1bio *r1_bio = get_resync_r1bio(bio);
1916
1917	update_head_pos(r1_bio->read_disk, r1_bio);
1918
1919	/*
1920	 * we have read a block, now it needs to be re-written,
1921	 * or re-read if the read failed.
1922	 * We don't do much here, just schedule handling by raid1d
1923	 */
1924	if (!bio->bi_status)
1925		set_bit(R1BIO_Uptodate, &r1_bio->state);
1926
1927	if (atomic_dec_and_test(&r1_bio->remaining))
1928		reschedule_retry(r1_bio);
1929}
1930
1931static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1932{
1933	sector_t sync_blocks = 0;
1934	sector_t s = r1_bio->sector;
1935	long sectors_to_go = r1_bio->sectors;
1936
1937	/* make sure these bits don't get cleared. */
1938	do {
1939		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1940		s += sync_blocks;
1941		sectors_to_go -= sync_blocks;
1942	} while (sectors_to_go > 0);
1943}
1944
1945static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1946{
1947	if (atomic_dec_and_test(&r1_bio->remaining)) {
1948		struct mddev *mddev = r1_bio->mddev;
1949		int s = r1_bio->sectors;
1950
1951		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1952		    test_bit(R1BIO_WriteError, &r1_bio->state))
1953			reschedule_retry(r1_bio);
1954		else {
1955			put_buf(r1_bio);
1956			md_done_sync(mddev, s, uptodate);
1957		}
1958	}
1959}
1960
1961static void end_sync_write(struct bio *bio)
1962{
1963	int uptodate = !bio->bi_status;
1964	struct r1bio *r1_bio = get_resync_r1bio(bio);
1965	struct mddev *mddev = r1_bio->mddev;
1966	struct r1conf *conf = mddev->private;
1967	sector_t first_bad;
1968	int bad_sectors;
1969	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1970
1971	if (!uptodate) {
1972		abort_sync_write(mddev, r1_bio);
1973		set_bit(WriteErrorSeen, &rdev->flags);
1974		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1975			set_bit(MD_RECOVERY_NEEDED, &
1976				mddev->recovery);
1977		set_bit(R1BIO_WriteError, &r1_bio->state);
1978	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1979			       &first_bad, &bad_sectors) &&
1980		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1981				r1_bio->sector,
1982				r1_bio->sectors,
1983				&first_bad, &bad_sectors)
1984		)
1985		set_bit(R1BIO_MadeGood, &r1_bio->state);
1986
1987	put_sync_write_buf(r1_bio, uptodate);
1988}
1989
1990static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1991			   int sectors, struct page *page, int rw)
1992{
1993	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1994		/* success */
1995		return 1;
1996	if (rw == WRITE) {
1997		set_bit(WriteErrorSeen, &rdev->flags);
1998		if (!test_and_set_bit(WantReplacement,
1999				      &rdev->flags))
2000			set_bit(MD_RECOVERY_NEEDED, &
2001				rdev->mddev->recovery);
2002	}
2003	/* need to record an error - either for the block or the device */
2004	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2005		md_error(rdev->mddev, rdev);
2006	return 0;
2007}
2008
2009static int fix_sync_read_error(struct r1bio *r1_bio)
2010{
2011	/* Try some synchronous reads of other devices to get
2012	 * good data, much like with normal read errors.  Only
2013	 * read into the pages we already have so we don't
2014	 * need to re-issue the read request.
2015	 * We don't need to freeze the array, because being in an
2016	 * active sync request, there is no normal IO, and
2017	 * no overlapping syncs.
2018	 * We don't need to check is_badblock() again as we
2019	 * made sure that anything with a bad block in range
2020	 * will have bi_end_io clear.
2021	 */
2022	struct mddev *mddev = r1_bio->mddev;
2023	struct r1conf *conf = mddev->private;
2024	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2025	struct page **pages = get_resync_pages(bio)->pages;
2026	sector_t sect = r1_bio->sector;
2027	int sectors = r1_bio->sectors;
2028	int idx = 0;
2029	struct md_rdev *rdev;
2030
2031	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2032	if (test_bit(FailFast, &rdev->flags)) {
2033		/* Don't try recovering from here - just fail it
2034		 * ... unless it is the last working device of course */
2035		md_error(mddev, rdev);
2036		if (test_bit(Faulty, &rdev->flags))
2037			/* Don't try to read from here, but make sure
2038			 * put_buf does it's thing
2039			 */
2040			bio->bi_end_io = end_sync_write;
2041	}
2042
2043	while(sectors) {
2044		int s = sectors;
2045		int d = r1_bio->read_disk;
2046		int success = 0;
2047		int start;
2048
2049		if (s > (PAGE_SIZE>>9))
2050			s = PAGE_SIZE >> 9;
2051		do {
2052			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2053				/* No rcu protection needed here devices
2054				 * can only be removed when no resync is
2055				 * active, and resync is currently active
2056				 */
2057				rdev = conf->mirrors[d].rdev;
2058				if (sync_page_io(rdev, sect, s<<9,
2059						 pages[idx],
2060						 REQ_OP_READ, false)) {
2061					success = 1;
2062					break;
2063				}
2064			}
2065			d++;
2066			if (d == conf->raid_disks * 2)
2067				d = 0;
2068		} while (!success && d != r1_bio->read_disk);
2069
2070		if (!success) {
2071			int abort = 0;
2072			/* Cannot read from anywhere, this block is lost.
2073			 * Record a bad block on each device.  If that doesn't
2074			 * work just disable and interrupt the recovery.
2075			 * Don't fail devices as that won't really help.
2076			 */
2077			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2078					    mdname(mddev), bio->bi_bdev,
2079					    (unsigned long long)r1_bio->sector);
2080			for (d = 0; d < conf->raid_disks * 2; d++) {
2081				rdev = conf->mirrors[d].rdev;
2082				if (!rdev || test_bit(Faulty, &rdev->flags))
2083					continue;
2084				if (!rdev_set_badblocks(rdev, sect, s, 0))
2085					abort = 1;
2086			}
2087			if (abort) {
2088				conf->recovery_disabled =
2089					mddev->recovery_disabled;
2090				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2091				md_done_sync(mddev, r1_bio->sectors, 0);
2092				put_buf(r1_bio);
2093				return 0;
2094			}
2095			/* Try next page */
2096			sectors -= s;
2097			sect += s;
2098			idx++;
2099			continue;
2100		}
2101
2102		start = d;
2103		/* write it back and re-read */
2104		while (d != r1_bio->read_disk) {
2105			if (d == 0)
2106				d = conf->raid_disks * 2;
2107			d--;
2108			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2109				continue;
2110			rdev = conf->mirrors[d].rdev;
2111			if (r1_sync_page_io(rdev, sect, s,
2112					    pages[idx],
2113					    WRITE) == 0) {
2114				r1_bio->bios[d]->bi_end_io = NULL;
2115				rdev_dec_pending(rdev, mddev);
2116			}
2117		}
2118		d = start;
2119		while (d != r1_bio->read_disk) {
2120			if (d == 0)
2121				d = conf->raid_disks * 2;
2122			d--;
2123			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2124				continue;
2125			rdev = conf->mirrors[d].rdev;
2126			if (r1_sync_page_io(rdev, sect, s,
2127					    pages[idx],
2128					    READ) != 0)
2129				atomic_add(s, &rdev->corrected_errors);
2130		}
2131		sectors -= s;
2132		sect += s;
2133		idx ++;
2134	}
2135	set_bit(R1BIO_Uptodate, &r1_bio->state);
2136	bio->bi_status = 0;
2137	return 1;
2138}
2139
2140static void process_checks(struct r1bio *r1_bio)
2141{
2142	/* We have read all readable devices.  If we haven't
2143	 * got the block, then there is no hope left.
2144	 * If we have, then we want to do a comparison
2145	 * and skip the write if everything is the same.
2146	 * If any blocks failed to read, then we need to
2147	 * attempt an over-write
2148	 */
2149	struct mddev *mddev = r1_bio->mddev;
2150	struct r1conf *conf = mddev->private;
2151	int primary;
2152	int i;
2153	int vcnt;
2154
2155	/* Fix variable parts of all bios */
2156	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2157	for (i = 0; i < conf->raid_disks * 2; i++) {
2158		blk_status_t status;
2159		struct bio *b = r1_bio->bios[i];
2160		struct resync_pages *rp = get_resync_pages(b);
2161		if (b->bi_end_io != end_sync_read)
2162			continue;
2163		/* fixup the bio for reuse, but preserve errno */
2164		status = b->bi_status;
2165		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2166		b->bi_status = status;
2167		b->bi_iter.bi_sector = r1_bio->sector +
2168			conf->mirrors[i].rdev->data_offset;
2169		b->bi_end_io = end_sync_read;
2170		rp->raid_bio = r1_bio;
2171		b->bi_private = rp;
2172
2173		/* initialize bvec table again */
2174		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2175	}
2176	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2177		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2178		    !r1_bio->bios[primary]->bi_status) {
2179			r1_bio->bios[primary]->bi_end_io = NULL;
2180			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2181			break;
2182		}
2183	r1_bio->read_disk = primary;
2184	for (i = 0; i < conf->raid_disks * 2; i++) {
2185		int j = 0;
2186		struct bio *pbio = r1_bio->bios[primary];
2187		struct bio *sbio = r1_bio->bios[i];
2188		blk_status_t status = sbio->bi_status;
2189		struct page **ppages = get_resync_pages(pbio)->pages;
2190		struct page **spages = get_resync_pages(sbio)->pages;
2191		struct bio_vec *bi;
2192		int page_len[RESYNC_PAGES] = { 0 };
2193		struct bvec_iter_all iter_all;
2194
2195		if (sbio->bi_end_io != end_sync_read)
2196			continue;
2197		/* Now we can 'fixup' the error value */
2198		sbio->bi_status = 0;
2199
2200		bio_for_each_segment_all(bi, sbio, iter_all)
2201			page_len[j++] = bi->bv_len;
2202
2203		if (!status) {
2204			for (j = vcnt; j-- ; ) {
2205				if (memcmp(page_address(ppages[j]),
2206					   page_address(spages[j]),
2207					   page_len[j]))
2208					break;
2209			}
2210		} else
2211			j = 0;
2212		if (j >= 0)
2213			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2214		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2215			      && !status)) {
2216			/* No need to write to this device. */
2217			sbio->bi_end_io = NULL;
2218			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2219			continue;
2220		}
2221
2222		bio_copy_data(sbio, pbio);
2223	}
2224}
2225
2226static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2227{
2228	struct r1conf *conf = mddev->private;
2229	int i;
2230	int disks = conf->raid_disks * 2;
2231	struct bio *wbio;
2232
2233	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2234		/* ouch - failed to read all of that. */
2235		if (!fix_sync_read_error(r1_bio))
2236			return;
2237
2238	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2239		process_checks(r1_bio);
2240
2241	/*
2242	 * schedule writes
2243	 */
2244	atomic_set(&r1_bio->remaining, 1);
2245	for (i = 0; i < disks ; i++) {
2246		wbio = r1_bio->bios[i];
2247		if (wbio->bi_end_io == NULL ||
2248		    (wbio->bi_end_io == end_sync_read &&
2249		     (i == r1_bio->read_disk ||
2250		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2251			continue;
2252		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2253			abort_sync_write(mddev, r1_bio);
2254			continue;
2255		}
2256
2257		wbio->bi_opf = REQ_OP_WRITE;
2258		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2259			wbio->bi_opf |= MD_FAILFAST;
2260
2261		wbio->bi_end_io = end_sync_write;
2262		atomic_inc(&r1_bio->remaining);
2263		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2264
2265		submit_bio_noacct(wbio);
2266	}
2267
2268	put_sync_write_buf(r1_bio, 1);
2269}
2270
2271/*
2272 * This is a kernel thread which:
2273 *
2274 *	1.	Retries failed read operations on working mirrors.
2275 *	2.	Updates the raid superblock when problems encounter.
2276 *	3.	Performs writes following reads for array synchronising.
2277 */
2278
2279static void fix_read_error(struct r1conf *conf, int read_disk,
2280			   sector_t sect, int sectors)
2281{
 
 
 
2282	struct mddev *mddev = conf->mddev;
 
 
 
 
 
 
 
2283	while(sectors) {
2284		int s = sectors;
2285		int d = read_disk;
2286		int success = 0;
2287		int start;
2288		struct md_rdev *rdev;
2289
2290		if (s > (PAGE_SIZE>>9))
2291			s = PAGE_SIZE >> 9;
2292
2293		do {
2294			sector_t first_bad;
2295			int bad_sectors;
2296
2297			rcu_read_lock();
2298			rdev = rcu_dereference(conf->mirrors[d].rdev);
2299			if (rdev &&
2300			    (test_bit(In_sync, &rdev->flags) ||
2301			     (!test_bit(Faulty, &rdev->flags) &&
2302			      rdev->recovery_offset >= sect + s)) &&
2303			    is_badblock(rdev, sect, s,
2304					&first_bad, &bad_sectors) == 0) {
2305				atomic_inc(&rdev->nr_pending);
2306				rcu_read_unlock();
2307				if (sync_page_io(rdev, sect, s<<9,
2308					 conf->tmppage, REQ_OP_READ, false))
2309					success = 1;
2310				rdev_dec_pending(rdev, mddev);
2311				if (success)
2312					break;
2313			} else
2314				rcu_read_unlock();
2315			d++;
2316			if (d == conf->raid_disks * 2)
2317				d = 0;
2318		} while (!success && d != read_disk);
2319
2320		if (!success) {
2321			/* Cannot read from anywhere - mark it bad */
2322			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2323			if (!rdev_set_badblocks(rdev, sect, s, 0))
2324				md_error(mddev, rdev);
2325			break;
2326		}
2327		/* write it back and re-read */
2328		start = d;
2329		while (d != read_disk) {
2330			if (d==0)
2331				d = conf->raid_disks * 2;
2332			d--;
2333			rcu_read_lock();
2334			rdev = rcu_dereference(conf->mirrors[d].rdev);
2335			if (rdev &&
2336			    !test_bit(Faulty, &rdev->flags)) {
2337				atomic_inc(&rdev->nr_pending);
2338				rcu_read_unlock();
2339				r1_sync_page_io(rdev, sect, s,
2340						conf->tmppage, WRITE);
2341				rdev_dec_pending(rdev, mddev);
2342			} else
2343				rcu_read_unlock();
2344		}
2345		d = start;
2346		while (d != read_disk) {
2347			if (d==0)
2348				d = conf->raid_disks * 2;
2349			d--;
2350			rcu_read_lock();
2351			rdev = rcu_dereference(conf->mirrors[d].rdev);
2352			if (rdev &&
2353			    !test_bit(Faulty, &rdev->flags)) {
2354				atomic_inc(&rdev->nr_pending);
2355				rcu_read_unlock();
2356				if (r1_sync_page_io(rdev, sect, s,
2357						    conf->tmppage, READ)) {
2358					atomic_add(s, &rdev->corrected_errors);
2359					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2360						mdname(mddev), s,
2361						(unsigned long long)(sect +
2362								     rdev->data_offset),
2363						rdev->bdev);
2364				}
2365				rdev_dec_pending(rdev, mddev);
2366			} else
2367				rcu_read_unlock();
2368		}
2369		sectors -= s;
2370		sect += s;
2371	}
2372}
2373
2374static int narrow_write_error(struct r1bio *r1_bio, int i)
2375{
2376	struct mddev *mddev = r1_bio->mddev;
2377	struct r1conf *conf = mddev->private;
2378	struct md_rdev *rdev = conf->mirrors[i].rdev;
2379
2380	/* bio has the data to be written to device 'i' where
2381	 * we just recently had a write error.
2382	 * We repeatedly clone the bio and trim down to one block,
2383	 * then try the write.  Where the write fails we record
2384	 * a bad block.
2385	 * It is conceivable that the bio doesn't exactly align with
2386	 * blocks.  We must handle this somehow.
2387	 *
2388	 * We currently own a reference on the rdev.
2389	 */
2390
2391	int block_sectors;
2392	sector_t sector;
2393	int sectors;
2394	int sect_to_write = r1_bio->sectors;
2395	int ok = 1;
2396
2397	if (rdev->badblocks.shift < 0)
2398		return 0;
2399
2400	block_sectors = roundup(1 << rdev->badblocks.shift,
2401				bdev_logical_block_size(rdev->bdev) >> 9);
2402	sector = r1_bio->sector;
2403	sectors = ((sector + block_sectors)
2404		   & ~(sector_t)(block_sectors - 1))
2405		- sector;
2406
2407	while (sect_to_write) {
2408		struct bio *wbio;
2409		if (sectors > sect_to_write)
2410			sectors = sect_to_write;
2411		/* Write at 'sector' for 'sectors'*/
2412
2413		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2414			wbio = bio_alloc_clone(rdev->bdev,
2415					       r1_bio->behind_master_bio,
2416					       GFP_NOIO, &mddev->bio_set);
2417		} else {
2418			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2419					       GFP_NOIO, &mddev->bio_set);
2420		}
2421
2422		wbio->bi_opf = REQ_OP_WRITE;
2423		wbio->bi_iter.bi_sector = r1_bio->sector;
2424		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2425
2426		bio_trim(wbio, sector - r1_bio->sector, sectors);
2427		wbio->bi_iter.bi_sector += rdev->data_offset;
2428
2429		if (submit_bio_wait(wbio) < 0)
2430			/* failure! */
2431			ok = rdev_set_badblocks(rdev, sector,
2432						sectors, 0)
2433				&& ok;
2434
2435		bio_put(wbio);
2436		sect_to_write -= sectors;
2437		sector += sectors;
2438		sectors = block_sectors;
2439	}
2440	return ok;
2441}
2442
2443static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2444{
2445	int m;
2446	int s = r1_bio->sectors;
2447	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2448		struct md_rdev *rdev = conf->mirrors[m].rdev;
2449		struct bio *bio = r1_bio->bios[m];
2450		if (bio->bi_end_io == NULL)
2451			continue;
2452		if (!bio->bi_status &&
2453		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2454			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2455		}
2456		if (bio->bi_status &&
2457		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2458			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2459				md_error(conf->mddev, rdev);
2460		}
2461	}
2462	put_buf(r1_bio);
2463	md_done_sync(conf->mddev, s, 1);
2464}
2465
2466static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2467{
2468	int m, idx;
2469	bool fail = false;
2470
2471	for (m = 0; m < conf->raid_disks * 2 ; m++)
2472		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2473			struct md_rdev *rdev = conf->mirrors[m].rdev;
2474			rdev_clear_badblocks(rdev,
2475					     r1_bio->sector,
2476					     r1_bio->sectors, 0);
2477			rdev_dec_pending(rdev, conf->mddev);
2478		} else if (r1_bio->bios[m] != NULL) {
2479			/* This drive got a write error.  We need to
2480			 * narrow down and record precise write
2481			 * errors.
2482			 */
2483			fail = true;
2484			if (!narrow_write_error(r1_bio, m)) {
2485				md_error(conf->mddev,
2486					 conf->mirrors[m].rdev);
2487				/* an I/O failed, we can't clear the bitmap */
2488				set_bit(R1BIO_Degraded, &r1_bio->state);
2489			}
2490			rdev_dec_pending(conf->mirrors[m].rdev,
2491					 conf->mddev);
2492		}
2493	if (fail) {
2494		spin_lock_irq(&conf->device_lock);
2495		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2496		idx = sector_to_idx(r1_bio->sector);
2497		atomic_inc(&conf->nr_queued[idx]);
2498		spin_unlock_irq(&conf->device_lock);
2499		/*
2500		 * In case freeze_array() is waiting for condition
2501		 * get_unqueued_pending() == extra to be true.
2502		 */
2503		wake_up(&conf->wait_barrier);
2504		md_wakeup_thread(conf->mddev->thread);
2505	} else {
2506		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507			close_write(r1_bio);
2508		raid_end_bio_io(r1_bio);
2509	}
2510}
2511
2512static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2513{
2514	struct mddev *mddev = conf->mddev;
2515	struct bio *bio;
2516	struct md_rdev *rdev;
 
2517
2518	clear_bit(R1BIO_ReadError, &r1_bio->state);
2519	/* we got a read error. Maybe the drive is bad.  Maybe just
2520	 * the block and we can fix it.
2521	 * We freeze all other IO, and try reading the block from
2522	 * other devices.  When we find one, we re-write
2523	 * and check it that fixes the read error.
2524	 * This is all done synchronously while the array is
2525	 * frozen
2526	 */
2527
2528	bio = r1_bio->bios[r1_bio->read_disk];
2529	bio_put(bio);
2530	r1_bio->bios[r1_bio->read_disk] = NULL;
2531
2532	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2533	if (mddev->ro == 0
2534	    && !test_bit(FailFast, &rdev->flags)) {
2535		freeze_array(conf, 1);
2536		fix_read_error(conf, r1_bio->read_disk,
2537			       r1_bio->sector, r1_bio->sectors);
2538		unfreeze_array(conf);
2539	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2540		md_error(mddev, rdev);
2541	} else {
2542		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2543	}
2544
2545	rdev_dec_pending(rdev, conf->mddev);
2546	allow_barrier(conf, r1_bio->sector);
2547	bio = r1_bio->master_bio;
2548
2549	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2550	r1_bio->state = 0;
2551	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 
2552}
2553
2554static void raid1d(struct md_thread *thread)
2555{
2556	struct mddev *mddev = thread->mddev;
2557	struct r1bio *r1_bio;
2558	unsigned long flags;
2559	struct r1conf *conf = mddev->private;
2560	struct list_head *head = &conf->retry_list;
2561	struct blk_plug plug;
2562	int idx;
2563
2564	md_check_recovery(mddev);
2565
2566	if (!list_empty_careful(&conf->bio_end_io_list) &&
2567	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2568		LIST_HEAD(tmp);
2569		spin_lock_irqsave(&conf->device_lock, flags);
2570		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2571			list_splice_init(&conf->bio_end_io_list, &tmp);
2572		spin_unlock_irqrestore(&conf->device_lock, flags);
2573		while (!list_empty(&tmp)) {
2574			r1_bio = list_first_entry(&tmp, struct r1bio,
2575						  retry_list);
2576			list_del(&r1_bio->retry_list);
2577			idx = sector_to_idx(r1_bio->sector);
2578			atomic_dec(&conf->nr_queued[idx]);
2579			if (mddev->degraded)
2580				set_bit(R1BIO_Degraded, &r1_bio->state);
2581			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2582				close_write(r1_bio);
2583			raid_end_bio_io(r1_bio);
2584		}
2585	}
2586
2587	blk_start_plug(&plug);
2588	for (;;) {
2589
2590		flush_pending_writes(conf);
2591
2592		spin_lock_irqsave(&conf->device_lock, flags);
2593		if (list_empty(head)) {
2594			spin_unlock_irqrestore(&conf->device_lock, flags);
2595			break;
2596		}
2597		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2598		list_del(head->prev);
2599		idx = sector_to_idx(r1_bio->sector);
2600		atomic_dec(&conf->nr_queued[idx]);
2601		spin_unlock_irqrestore(&conf->device_lock, flags);
2602
2603		mddev = r1_bio->mddev;
2604		conf = mddev->private;
2605		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2606			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2607			    test_bit(R1BIO_WriteError, &r1_bio->state))
2608				handle_sync_write_finished(conf, r1_bio);
2609			else
2610				sync_request_write(mddev, r1_bio);
2611		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2612			   test_bit(R1BIO_WriteError, &r1_bio->state))
2613			handle_write_finished(conf, r1_bio);
2614		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2615			handle_read_error(conf, r1_bio);
2616		else
2617			WARN_ON_ONCE(1);
2618
2619		cond_resched();
2620		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2621			md_check_recovery(mddev);
2622	}
2623	blk_finish_plug(&plug);
2624}
2625
2626static int init_resync(struct r1conf *conf)
2627{
2628	int buffs;
2629
2630	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2631	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2632
2633	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2634			    r1buf_pool_free, conf->poolinfo);
2635}
2636
2637static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2638{
2639	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2640	struct resync_pages *rps;
2641	struct bio *bio;
2642	int i;
2643
2644	for (i = conf->poolinfo->raid_disks; i--; ) {
2645		bio = r1bio->bios[i];
2646		rps = bio->bi_private;
2647		bio_reset(bio, NULL, 0);
2648		bio->bi_private = rps;
2649	}
2650	r1bio->master_bio = NULL;
2651	return r1bio;
2652}
2653
2654/*
2655 * perform a "sync" on one "block"
2656 *
2657 * We need to make sure that no normal I/O request - particularly write
2658 * requests - conflict with active sync requests.
2659 *
2660 * This is achieved by tracking pending requests and a 'barrier' concept
2661 * that can be installed to exclude normal IO requests.
2662 */
2663
2664static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2665				   int *skipped)
2666{
2667	struct r1conf *conf = mddev->private;
2668	struct r1bio *r1_bio;
2669	struct bio *bio;
2670	sector_t max_sector, nr_sectors;
2671	int disk = -1;
2672	int i;
2673	int wonly = -1;
2674	int write_targets = 0, read_targets = 0;
2675	sector_t sync_blocks;
2676	int still_degraded = 0;
2677	int good_sectors = RESYNC_SECTORS;
2678	int min_bad = 0; /* number of sectors that are bad in all devices */
2679	int idx = sector_to_idx(sector_nr);
2680	int page_idx = 0;
2681
2682	if (!mempool_initialized(&conf->r1buf_pool))
2683		if (init_resync(conf))
2684			return 0;
2685
2686	max_sector = mddev->dev_sectors;
2687	if (sector_nr >= max_sector) {
2688		/* If we aborted, we need to abort the
2689		 * sync on the 'current' bitmap chunk (there will
2690		 * only be one in raid1 resync.
2691		 * We can find the current addess in mddev->curr_resync
2692		 */
2693		if (mddev->curr_resync < max_sector) /* aborted */
2694			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2695					   &sync_blocks, 1);
2696		else /* completed sync */
2697			conf->fullsync = 0;
2698
2699		md_bitmap_close_sync(mddev->bitmap);
2700		close_sync(conf);
2701
2702		if (mddev_is_clustered(mddev)) {
2703			conf->cluster_sync_low = 0;
2704			conf->cluster_sync_high = 0;
2705		}
2706		return 0;
2707	}
2708
2709	if (mddev->bitmap == NULL &&
2710	    mddev->recovery_cp == MaxSector &&
2711	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2712	    conf->fullsync == 0) {
2713		*skipped = 1;
2714		return max_sector - sector_nr;
2715	}
2716	/* before building a request, check if we can skip these blocks..
2717	 * This call the bitmap_start_sync doesn't actually record anything
2718	 */
2719	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2720	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2721		/* We can skip this block, and probably several more */
2722		*skipped = 1;
2723		return sync_blocks;
2724	}
2725
2726	/*
2727	 * If there is non-resync activity waiting for a turn, then let it
2728	 * though before starting on this new sync request.
2729	 */
2730	if (atomic_read(&conf->nr_waiting[idx]))
2731		schedule_timeout_uninterruptible(1);
2732
2733	/* we are incrementing sector_nr below. To be safe, we check against
2734	 * sector_nr + two times RESYNC_SECTORS
2735	 */
2736
2737	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2738		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2739
2740
2741	if (raise_barrier(conf, sector_nr))
2742		return 0;
2743
2744	r1_bio = raid1_alloc_init_r1buf(conf);
2745
2746	rcu_read_lock();
2747	/*
2748	 * If we get a correctably read error during resync or recovery,
2749	 * we might want to read from a different device.  So we
2750	 * flag all drives that could conceivably be read from for READ,
2751	 * and any others (which will be non-In_sync devices) for WRITE.
2752	 * If a read fails, we try reading from something else for which READ
2753	 * is OK.
2754	 */
2755
2756	r1_bio->mddev = mddev;
2757	r1_bio->sector = sector_nr;
2758	r1_bio->state = 0;
2759	set_bit(R1BIO_IsSync, &r1_bio->state);
2760	/* make sure good_sectors won't go across barrier unit boundary */
2761	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2762
2763	for (i = 0; i < conf->raid_disks * 2; i++) {
2764		struct md_rdev *rdev;
2765		bio = r1_bio->bios[i];
2766
2767		rdev = rcu_dereference(conf->mirrors[i].rdev);
2768		if (rdev == NULL ||
2769		    test_bit(Faulty, &rdev->flags)) {
2770			if (i < conf->raid_disks)
2771				still_degraded = 1;
2772		} else if (!test_bit(In_sync, &rdev->flags)) {
2773			bio->bi_opf = REQ_OP_WRITE;
2774			bio->bi_end_io = end_sync_write;
2775			write_targets ++;
2776		} else {
2777			/* may need to read from here */
2778			sector_t first_bad = MaxSector;
2779			int bad_sectors;
2780
2781			if (is_badblock(rdev, sector_nr, good_sectors,
2782					&first_bad, &bad_sectors)) {
2783				if (first_bad > sector_nr)
2784					good_sectors = first_bad - sector_nr;
2785				else {
2786					bad_sectors -= (sector_nr - first_bad);
2787					if (min_bad == 0 ||
2788					    min_bad > bad_sectors)
2789						min_bad = bad_sectors;
2790				}
2791			}
2792			if (sector_nr < first_bad) {
2793				if (test_bit(WriteMostly, &rdev->flags)) {
2794					if (wonly < 0)
2795						wonly = i;
2796				} else {
2797					if (disk < 0)
2798						disk = i;
2799				}
2800				bio->bi_opf = REQ_OP_READ;
2801				bio->bi_end_io = end_sync_read;
2802				read_targets++;
2803			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2804				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2805				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2806				/*
2807				 * The device is suitable for reading (InSync),
2808				 * but has bad block(s) here. Let's try to correct them,
2809				 * if we are doing resync or repair. Otherwise, leave
2810				 * this device alone for this sync request.
2811				 */
2812				bio->bi_opf = REQ_OP_WRITE;
2813				bio->bi_end_io = end_sync_write;
2814				write_targets++;
2815			}
2816		}
2817		if (rdev && bio->bi_end_io) {
2818			atomic_inc(&rdev->nr_pending);
2819			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2820			bio_set_dev(bio, rdev->bdev);
2821			if (test_bit(FailFast, &rdev->flags))
2822				bio->bi_opf |= MD_FAILFAST;
2823		}
2824	}
2825	rcu_read_unlock();
2826	if (disk < 0)
2827		disk = wonly;
2828	r1_bio->read_disk = disk;
2829
2830	if (read_targets == 0 && min_bad > 0) {
2831		/* These sectors are bad on all InSync devices, so we
2832		 * need to mark them bad on all write targets
2833		 */
2834		int ok = 1;
2835		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2836			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2837				struct md_rdev *rdev = conf->mirrors[i].rdev;
2838				ok = rdev_set_badblocks(rdev, sector_nr,
2839							min_bad, 0
2840					) && ok;
2841			}
2842		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2843		*skipped = 1;
2844		put_buf(r1_bio);
2845
2846		if (!ok) {
2847			/* Cannot record the badblocks, so need to
2848			 * abort the resync.
2849			 * If there are multiple read targets, could just
2850			 * fail the really bad ones ???
2851			 */
2852			conf->recovery_disabled = mddev->recovery_disabled;
2853			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2854			return 0;
2855		} else
2856			return min_bad;
2857
2858	}
2859	if (min_bad > 0 && min_bad < good_sectors) {
2860		/* only resync enough to reach the next bad->good
2861		 * transition */
2862		good_sectors = min_bad;
2863	}
2864
2865	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2866		/* extra read targets are also write targets */
2867		write_targets += read_targets-1;
2868
2869	if (write_targets == 0 || read_targets == 0) {
2870		/* There is nowhere to write, so all non-sync
2871		 * drives must be failed - so we are finished
2872		 */
2873		sector_t rv;
2874		if (min_bad > 0)
2875			max_sector = sector_nr + min_bad;
2876		rv = max_sector - sector_nr;
2877		*skipped = 1;
2878		put_buf(r1_bio);
2879		return rv;
2880	}
2881
2882	if (max_sector > mddev->resync_max)
2883		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2884	if (max_sector > sector_nr + good_sectors)
2885		max_sector = sector_nr + good_sectors;
2886	nr_sectors = 0;
2887	sync_blocks = 0;
2888	do {
2889		struct page *page;
2890		int len = PAGE_SIZE;
2891		if (sector_nr + (len>>9) > max_sector)
2892			len = (max_sector - sector_nr) << 9;
2893		if (len == 0)
2894			break;
2895		if (sync_blocks == 0) {
2896			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2897						  &sync_blocks, still_degraded) &&
2898			    !conf->fullsync &&
2899			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2900				break;
2901			if ((len >> 9) > sync_blocks)
2902				len = sync_blocks<<9;
2903		}
2904
2905		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2906			struct resync_pages *rp;
2907
2908			bio = r1_bio->bios[i];
2909			rp = get_resync_pages(bio);
2910			if (bio->bi_end_io) {
2911				page = resync_fetch_page(rp, page_idx);
2912
2913				/*
2914				 * won't fail because the vec table is big
2915				 * enough to hold all these pages
2916				 */
2917				bio_add_page(bio, page, len, 0);
2918			}
2919		}
2920		nr_sectors += len>>9;
2921		sector_nr += len>>9;
2922		sync_blocks -= (len>>9);
2923	} while (++page_idx < RESYNC_PAGES);
2924
2925	r1_bio->sectors = nr_sectors;
2926
2927	if (mddev_is_clustered(mddev) &&
2928			conf->cluster_sync_high < sector_nr + nr_sectors) {
2929		conf->cluster_sync_low = mddev->curr_resync_completed;
2930		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2931		/* Send resync message */
2932		md_cluster_ops->resync_info_update(mddev,
2933				conf->cluster_sync_low,
2934				conf->cluster_sync_high);
2935	}
2936
2937	/* For a user-requested sync, we read all readable devices and do a
2938	 * compare
2939	 */
2940	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2941		atomic_set(&r1_bio->remaining, read_targets);
2942		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2943			bio = r1_bio->bios[i];
2944			if (bio->bi_end_io == end_sync_read) {
2945				read_targets--;
2946				md_sync_acct_bio(bio, nr_sectors);
2947				if (read_targets == 1)
2948					bio->bi_opf &= ~MD_FAILFAST;
2949				submit_bio_noacct(bio);
2950			}
2951		}
2952	} else {
2953		atomic_set(&r1_bio->remaining, 1);
2954		bio = r1_bio->bios[r1_bio->read_disk];
2955		md_sync_acct_bio(bio, nr_sectors);
2956		if (read_targets == 1)
2957			bio->bi_opf &= ~MD_FAILFAST;
2958		submit_bio_noacct(bio);
2959	}
2960	return nr_sectors;
2961}
2962
2963static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2964{
2965	if (sectors)
2966		return sectors;
2967
2968	return mddev->dev_sectors;
2969}
2970
2971static struct r1conf *setup_conf(struct mddev *mddev)
2972{
2973	struct r1conf *conf;
2974	int i;
2975	struct raid1_info *disk;
2976	struct md_rdev *rdev;
2977	int err = -ENOMEM;
2978
2979	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2980	if (!conf)
2981		goto abort;
2982
2983	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2984				   sizeof(atomic_t), GFP_KERNEL);
2985	if (!conf->nr_pending)
2986		goto abort;
2987
2988	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2989				   sizeof(atomic_t), GFP_KERNEL);
2990	if (!conf->nr_waiting)
2991		goto abort;
2992
2993	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2994				  sizeof(atomic_t), GFP_KERNEL);
2995	if (!conf->nr_queued)
2996		goto abort;
2997
2998	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2999				sizeof(atomic_t), GFP_KERNEL);
3000	if (!conf->barrier)
3001		goto abort;
3002
3003	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3004					    mddev->raid_disks, 2),
3005				GFP_KERNEL);
3006	if (!conf->mirrors)
3007		goto abort;
3008
3009	conf->tmppage = alloc_page(GFP_KERNEL);
3010	if (!conf->tmppage)
3011		goto abort;
3012
3013	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3014	if (!conf->poolinfo)
3015		goto abort;
3016	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3017	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3018			   rbio_pool_free, conf->poolinfo);
3019	if (err)
3020		goto abort;
3021
3022	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3023	if (err)
3024		goto abort;
3025
3026	conf->poolinfo->mddev = mddev;
3027
3028	err = -EINVAL;
3029	spin_lock_init(&conf->device_lock);
3030	rdev_for_each(rdev, mddev) {
3031		int disk_idx = rdev->raid_disk;
3032		if (disk_idx >= mddev->raid_disks
3033		    || disk_idx < 0)
3034			continue;
3035		if (test_bit(Replacement, &rdev->flags))
3036			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3037		else
3038			disk = conf->mirrors + disk_idx;
3039
3040		if (disk->rdev)
3041			goto abort;
3042		disk->rdev = rdev;
3043		disk->head_position = 0;
3044		disk->seq_start = MaxSector;
3045	}
3046	conf->raid_disks = mddev->raid_disks;
3047	conf->mddev = mddev;
3048	INIT_LIST_HEAD(&conf->retry_list);
3049	INIT_LIST_HEAD(&conf->bio_end_io_list);
3050
3051	spin_lock_init(&conf->resync_lock);
3052	init_waitqueue_head(&conf->wait_barrier);
3053
3054	bio_list_init(&conf->pending_bio_list);
3055	conf->recovery_disabled = mddev->recovery_disabled - 1;
3056
3057	err = -EIO;
3058	for (i = 0; i < conf->raid_disks * 2; i++) {
3059
3060		disk = conf->mirrors + i;
3061
3062		if (i < conf->raid_disks &&
3063		    disk[conf->raid_disks].rdev) {
3064			/* This slot has a replacement. */
3065			if (!disk->rdev) {
3066				/* No original, just make the replacement
3067				 * a recovering spare
3068				 */
3069				disk->rdev =
3070					disk[conf->raid_disks].rdev;
3071				disk[conf->raid_disks].rdev = NULL;
3072			} else if (!test_bit(In_sync, &disk->rdev->flags))
3073				/* Original is not in_sync - bad */
3074				goto abort;
3075		}
3076
3077		if (!disk->rdev ||
3078		    !test_bit(In_sync, &disk->rdev->flags)) {
3079			disk->head_position = 0;
3080			if (disk->rdev &&
3081			    (disk->rdev->saved_raid_disk < 0))
3082				conf->fullsync = 1;
3083		}
3084	}
3085
3086	err = -ENOMEM;
3087	conf->thread = md_register_thread(raid1d, mddev, "raid1");
 
3088	if (!conf->thread)
3089		goto abort;
3090
3091	return conf;
3092
3093 abort:
3094	if (conf) {
3095		mempool_exit(&conf->r1bio_pool);
3096		kfree(conf->mirrors);
3097		safe_put_page(conf->tmppage);
3098		kfree(conf->poolinfo);
3099		kfree(conf->nr_pending);
3100		kfree(conf->nr_waiting);
3101		kfree(conf->nr_queued);
3102		kfree(conf->barrier);
3103		bioset_exit(&conf->bio_split);
3104		kfree(conf);
3105	}
3106	return ERR_PTR(err);
3107}
3108
3109static void raid1_free(struct mddev *mddev, void *priv);
3110static int raid1_run(struct mddev *mddev)
3111{
3112	struct r1conf *conf;
3113	int i;
3114	struct md_rdev *rdev;
3115	int ret;
3116
3117	if (mddev->level != 1) {
3118		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3119			mdname(mddev), mddev->level);
3120		return -EIO;
3121	}
3122	if (mddev->reshape_position != MaxSector) {
3123		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3124			mdname(mddev));
3125		return -EIO;
3126	}
3127	if (mddev_init_writes_pending(mddev) < 0)
3128		return -ENOMEM;
3129	/*
3130	 * copy the already verified devices into our private RAID1
3131	 * bookkeeping area. [whatever we allocate in run(),
3132	 * should be freed in raid1_free()]
3133	 */
3134	if (mddev->private == NULL)
3135		conf = setup_conf(mddev);
3136	else
3137		conf = mddev->private;
3138
3139	if (IS_ERR(conf))
3140		return PTR_ERR(conf);
3141
3142	if (mddev->queue)
3143		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3144
3145	rdev_for_each(rdev, mddev) {
3146		if (!mddev->gendisk)
3147			continue;
3148		disk_stack_limits(mddev->gendisk, rdev->bdev,
3149				  rdev->data_offset << 9);
3150	}
3151
3152	mddev->degraded = 0;
3153	for (i = 0; i < conf->raid_disks; i++)
3154		if (conf->mirrors[i].rdev == NULL ||
3155		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3156		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3157			mddev->degraded++;
3158	/*
3159	 * RAID1 needs at least one disk in active
3160	 */
3161	if (conf->raid_disks - mddev->degraded < 1) {
3162		md_unregister_thread(&conf->thread);
3163		ret = -EINVAL;
3164		goto abort;
3165	}
3166
3167	if (conf->raid_disks - mddev->degraded == 1)
3168		mddev->recovery_cp = MaxSector;
3169
3170	if (mddev->recovery_cp != MaxSector)
3171		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3172			mdname(mddev));
3173	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3174		mdname(mddev), mddev->raid_disks - mddev->degraded,
3175		mddev->raid_disks);
3176
3177	/*
3178	 * Ok, everything is just fine now
3179	 */
3180	mddev->thread = conf->thread;
3181	conf->thread = NULL;
3182	mddev->private = conf;
3183	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3184
3185	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3186
3187	ret = md_integrity_register(mddev);
3188	if (ret) {
3189		md_unregister_thread(&mddev->thread);
3190		goto abort;
3191	}
3192	return 0;
3193
3194abort:
3195	raid1_free(mddev, conf);
3196	return ret;
3197}
3198
3199static void raid1_free(struct mddev *mddev, void *priv)
3200{
3201	struct r1conf *conf = priv;
3202
3203	mempool_exit(&conf->r1bio_pool);
3204	kfree(conf->mirrors);
3205	safe_put_page(conf->tmppage);
3206	kfree(conf->poolinfo);
3207	kfree(conf->nr_pending);
3208	kfree(conf->nr_waiting);
3209	kfree(conf->nr_queued);
3210	kfree(conf->barrier);
3211	bioset_exit(&conf->bio_split);
3212	kfree(conf);
3213}
3214
3215static int raid1_resize(struct mddev *mddev, sector_t sectors)
3216{
3217	/* no resync is happening, and there is enough space
3218	 * on all devices, so we can resize.
3219	 * We need to make sure resync covers any new space.
3220	 * If the array is shrinking we should possibly wait until
3221	 * any io in the removed space completes, but it hardly seems
3222	 * worth it.
3223	 */
3224	sector_t newsize = raid1_size(mddev, sectors, 0);
3225	if (mddev->external_size &&
3226	    mddev->array_sectors > newsize)
3227		return -EINVAL;
3228	if (mddev->bitmap) {
3229		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3230		if (ret)
3231			return ret;
3232	}
3233	md_set_array_sectors(mddev, newsize);
3234	if (sectors > mddev->dev_sectors &&
3235	    mddev->recovery_cp > mddev->dev_sectors) {
3236		mddev->recovery_cp = mddev->dev_sectors;
3237		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3238	}
3239	mddev->dev_sectors = sectors;
3240	mddev->resync_max_sectors = sectors;
3241	return 0;
3242}
3243
3244static int raid1_reshape(struct mddev *mddev)
3245{
3246	/* We need to:
3247	 * 1/ resize the r1bio_pool
3248	 * 2/ resize conf->mirrors
3249	 *
3250	 * We allocate a new r1bio_pool if we can.
3251	 * Then raise a device barrier and wait until all IO stops.
3252	 * Then resize conf->mirrors and swap in the new r1bio pool.
3253	 *
3254	 * At the same time, we "pack" the devices so that all the missing
3255	 * devices have the higher raid_disk numbers.
3256	 */
3257	mempool_t newpool, oldpool;
3258	struct pool_info *newpoolinfo;
3259	struct raid1_info *newmirrors;
3260	struct r1conf *conf = mddev->private;
3261	int cnt, raid_disks;
3262	unsigned long flags;
3263	int d, d2;
3264	int ret;
3265
3266	memset(&newpool, 0, sizeof(newpool));
3267	memset(&oldpool, 0, sizeof(oldpool));
3268
3269	/* Cannot change chunk_size, layout, or level */
3270	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3271	    mddev->layout != mddev->new_layout ||
3272	    mddev->level != mddev->new_level) {
3273		mddev->new_chunk_sectors = mddev->chunk_sectors;
3274		mddev->new_layout = mddev->layout;
3275		mddev->new_level = mddev->level;
3276		return -EINVAL;
3277	}
3278
3279	if (!mddev_is_clustered(mddev))
3280		md_allow_write(mddev);
3281
3282	raid_disks = mddev->raid_disks + mddev->delta_disks;
3283
3284	if (raid_disks < conf->raid_disks) {
3285		cnt=0;
3286		for (d= 0; d < conf->raid_disks; d++)
3287			if (conf->mirrors[d].rdev)
3288				cnt++;
3289		if (cnt > raid_disks)
3290			return -EBUSY;
3291	}
3292
3293	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3294	if (!newpoolinfo)
3295		return -ENOMEM;
3296	newpoolinfo->mddev = mddev;
3297	newpoolinfo->raid_disks = raid_disks * 2;
3298
3299	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3300			   rbio_pool_free, newpoolinfo);
3301	if (ret) {
3302		kfree(newpoolinfo);
3303		return ret;
3304	}
3305	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3306					 raid_disks, 2),
3307			     GFP_KERNEL);
3308	if (!newmirrors) {
3309		kfree(newpoolinfo);
3310		mempool_exit(&newpool);
3311		return -ENOMEM;
3312	}
3313
3314	freeze_array(conf, 0);
3315
3316	/* ok, everything is stopped */
3317	oldpool = conf->r1bio_pool;
3318	conf->r1bio_pool = newpool;
3319
3320	for (d = d2 = 0; d < conf->raid_disks; d++) {
3321		struct md_rdev *rdev = conf->mirrors[d].rdev;
3322		if (rdev && rdev->raid_disk != d2) {
3323			sysfs_unlink_rdev(mddev, rdev);
3324			rdev->raid_disk = d2;
3325			sysfs_unlink_rdev(mddev, rdev);
3326			if (sysfs_link_rdev(mddev, rdev))
3327				pr_warn("md/raid1:%s: cannot register rd%d\n",
3328					mdname(mddev), rdev->raid_disk);
3329		}
3330		if (rdev)
3331			newmirrors[d2++].rdev = rdev;
3332	}
3333	kfree(conf->mirrors);
3334	conf->mirrors = newmirrors;
3335	kfree(conf->poolinfo);
3336	conf->poolinfo = newpoolinfo;
3337
3338	spin_lock_irqsave(&conf->device_lock, flags);
3339	mddev->degraded += (raid_disks - conf->raid_disks);
3340	spin_unlock_irqrestore(&conf->device_lock, flags);
3341	conf->raid_disks = mddev->raid_disks = raid_disks;
3342	mddev->delta_disks = 0;
3343
3344	unfreeze_array(conf);
3345
3346	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3347	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3348	md_wakeup_thread(mddev->thread);
3349
3350	mempool_exit(&oldpool);
3351	return 0;
3352}
3353
3354static void raid1_quiesce(struct mddev *mddev, int quiesce)
3355{
3356	struct r1conf *conf = mddev->private;
3357
3358	if (quiesce)
3359		freeze_array(conf, 0);
3360	else
3361		unfreeze_array(conf);
3362}
3363
3364static void *raid1_takeover(struct mddev *mddev)
3365{
3366	/* raid1 can take over:
3367	 *  raid5 with 2 devices, any layout or chunk size
3368	 */
3369	if (mddev->level == 5 && mddev->raid_disks == 2) {
3370		struct r1conf *conf;
3371		mddev->new_level = 1;
3372		mddev->new_layout = 0;
3373		mddev->new_chunk_sectors = 0;
3374		conf = setup_conf(mddev);
3375		if (!IS_ERR(conf)) {
3376			/* Array must appear to be quiesced */
3377			conf->array_frozen = 1;
3378			mddev_clear_unsupported_flags(mddev,
3379				UNSUPPORTED_MDDEV_FLAGS);
3380		}
3381		return conf;
3382	}
3383	return ERR_PTR(-EINVAL);
3384}
3385
3386static struct md_personality raid1_personality =
3387{
3388	.name		= "raid1",
3389	.level		= 1,
3390	.owner		= THIS_MODULE,
3391	.make_request	= raid1_make_request,
3392	.run		= raid1_run,
3393	.free		= raid1_free,
3394	.status		= raid1_status,
3395	.error_handler	= raid1_error,
3396	.hot_add_disk	= raid1_add_disk,
3397	.hot_remove_disk= raid1_remove_disk,
3398	.spare_active	= raid1_spare_active,
3399	.sync_request	= raid1_sync_request,
3400	.resize		= raid1_resize,
3401	.size		= raid1_size,
3402	.check_reshape	= raid1_reshape,
3403	.quiesce	= raid1_quiesce,
3404	.takeover	= raid1_takeover,
3405};
3406
3407static int __init raid_init(void)
3408{
3409	return register_md_personality(&raid1_personality);
3410}
3411
3412static void raid_exit(void)
3413{
3414	unregister_md_personality(&raid1_personality);
3415}
3416
3417module_init(raid_init);
3418module_exit(raid_exit);
3419MODULE_LICENSE("GPL");
3420MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3421MODULE_ALIAS("md-personality-3"); /* RAID1 */
3422MODULE_ALIAS("md-raid1");
3423MODULE_ALIAS("md-level-1");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#define RAID_1_10_NAME "raid1"
  53#include "raid1-10.c"
  54
  55#define START(node) ((node)->start)
  56#define LAST(node) ((node)->last)
  57INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  58		     START, LAST, static inline, raid1_rb);
  59
  60static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  61				struct serial_info *si, int idx)
  62{
  63	unsigned long flags;
  64	int ret = 0;
  65	sector_t lo = r1_bio->sector;
  66	sector_t hi = lo + r1_bio->sectors;
  67	struct serial_in_rdev *serial = &rdev->serial[idx];
  68
  69	spin_lock_irqsave(&serial->serial_lock, flags);
  70	/* collision happened */
  71	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  72		ret = -EBUSY;
  73	else {
  74		si->start = lo;
  75		si->last = hi;
  76		raid1_rb_insert(si, &serial->serial_rb);
  77	}
  78	spin_unlock_irqrestore(&serial->serial_lock, flags);
  79
  80	return ret;
  81}
  82
  83static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  84{
  85	struct mddev *mddev = rdev->mddev;
  86	struct serial_info *si;
  87	int idx = sector_to_idx(r1_bio->sector);
  88	struct serial_in_rdev *serial = &rdev->serial[idx];
  89
  90	if (WARN_ON(!mddev->serial_info_pool))
  91		return;
  92	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  93	wait_event(serial->serial_io_wait,
  94		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  95}
  96
  97static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  98{
  99	struct serial_info *si;
 100	unsigned long flags;
 101	int found = 0;
 102	struct mddev *mddev = rdev->mddev;
 103	int idx = sector_to_idx(lo);
 104	struct serial_in_rdev *serial = &rdev->serial[idx];
 105
 106	spin_lock_irqsave(&serial->serial_lock, flags);
 107	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 108	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 109		if (si->start == lo && si->last == hi) {
 110			raid1_rb_remove(si, &serial->serial_rb);
 111			mempool_free(si, mddev->serial_info_pool);
 112			found = 1;
 113			break;
 114		}
 115	}
 116	if (!found)
 117		WARN(1, "The write IO is not recorded for serialization\n");
 118	spin_unlock_irqrestore(&serial->serial_lock, flags);
 119	wake_up(&serial->serial_io_wait);
 120}
 121
 122/*
 123 * for resync bio, r1bio pointer can be retrieved from the per-bio
 124 * 'struct resync_pages'.
 125 */
 126static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 127{
 128	return get_resync_pages(bio)->raid_bio;
 129}
 130
 131static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 132{
 133	struct pool_info *pi = data;
 134	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 135
 136	/* allocate a r1bio with room for raid_disks entries in the bios array */
 137	return kzalloc(size, gfp_flags);
 138}
 139
 140#define RESYNC_DEPTH 32
 141#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 142#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 143#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 144#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 146
 147static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 148{
 149	struct pool_info *pi = data;
 150	struct r1bio *r1_bio;
 151	struct bio *bio;
 152	int need_pages;
 153	int j;
 154	struct resync_pages *rps;
 155
 156	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 157	if (!r1_bio)
 158		return NULL;
 159
 160	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 161			    gfp_flags);
 162	if (!rps)
 163		goto out_free_r1bio;
 164
 165	/*
 166	 * Allocate bios : 1 for reading, n-1 for writing
 167	 */
 168	for (j = pi->raid_disks ; j-- ; ) {
 169		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 170		if (!bio)
 171			goto out_free_bio;
 172		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 173		r1_bio->bios[j] = bio;
 174	}
 175	/*
 176	 * Allocate RESYNC_PAGES data pages and attach them to
 177	 * the first bio.
 178	 * If this is a user-requested check/repair, allocate
 179	 * RESYNC_PAGES for each bio.
 180	 */
 181	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 182		need_pages = pi->raid_disks;
 183	else
 184		need_pages = 1;
 185	for (j = 0; j < pi->raid_disks; j++) {
 186		struct resync_pages *rp = &rps[j];
 187
 188		bio = r1_bio->bios[j];
 189
 190		if (j < need_pages) {
 191			if (resync_alloc_pages(rp, gfp_flags))
 192				goto out_free_pages;
 193		} else {
 194			memcpy(rp, &rps[0], sizeof(*rp));
 195			resync_get_all_pages(rp);
 196		}
 197
 198		rp->raid_bio = r1_bio;
 199		bio->bi_private = rp;
 200	}
 201
 202	r1_bio->master_bio = NULL;
 203
 204	return r1_bio;
 205
 206out_free_pages:
 207	while (--j >= 0)
 208		resync_free_pages(&rps[j]);
 209
 210out_free_bio:
 211	while (++j < pi->raid_disks) {
 212		bio_uninit(r1_bio->bios[j]);
 213		kfree(r1_bio->bios[j]);
 214	}
 215	kfree(rps);
 216
 217out_free_r1bio:
 218	rbio_pool_free(r1_bio, data);
 219	return NULL;
 220}
 221
 222static void r1buf_pool_free(void *__r1_bio, void *data)
 223{
 224	struct pool_info *pi = data;
 225	int i;
 226	struct r1bio *r1bio = __r1_bio;
 227	struct resync_pages *rp = NULL;
 228
 229	for (i = pi->raid_disks; i--; ) {
 230		rp = get_resync_pages(r1bio->bios[i]);
 231		resync_free_pages(rp);
 232		bio_uninit(r1bio->bios[i]);
 233		kfree(r1bio->bios[i]);
 234	}
 235
 236	/* resync pages array stored in the 1st bio's .bi_private */
 237	kfree(rp);
 238
 239	rbio_pool_free(r1bio, data);
 240}
 241
 242static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 243{
 244	int i;
 245
 246	for (i = 0; i < conf->raid_disks * 2; i++) {
 247		struct bio **bio = r1_bio->bios + i;
 248		if (!BIO_SPECIAL(*bio))
 249			bio_put(*bio);
 250		*bio = NULL;
 251	}
 252}
 253
 254static void free_r1bio(struct r1bio *r1_bio)
 255{
 256	struct r1conf *conf = r1_bio->mddev->private;
 257
 258	put_all_bios(conf, r1_bio);
 259	mempool_free(r1_bio, &conf->r1bio_pool);
 260}
 261
 262static void put_buf(struct r1bio *r1_bio)
 263{
 264	struct r1conf *conf = r1_bio->mddev->private;
 265	sector_t sect = r1_bio->sector;
 266	int i;
 267
 268	for (i = 0; i < conf->raid_disks * 2; i++) {
 269		struct bio *bio = r1_bio->bios[i];
 270		if (bio->bi_end_io)
 271			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 272	}
 273
 274	mempool_free(r1_bio, &conf->r1buf_pool);
 275
 276	lower_barrier(conf, sect);
 277}
 278
 279static void reschedule_retry(struct r1bio *r1_bio)
 280{
 281	unsigned long flags;
 282	struct mddev *mddev = r1_bio->mddev;
 283	struct r1conf *conf = mddev->private;
 284	int idx;
 285
 286	idx = sector_to_idx(r1_bio->sector);
 287	spin_lock_irqsave(&conf->device_lock, flags);
 288	list_add(&r1_bio->retry_list, &conf->retry_list);
 289	atomic_inc(&conf->nr_queued[idx]);
 290	spin_unlock_irqrestore(&conf->device_lock, flags);
 291
 292	wake_up(&conf->wait_barrier);
 293	md_wakeup_thread(mddev->thread);
 294}
 295
 296/*
 297 * raid_end_bio_io() is called when we have finished servicing a mirrored
 298 * operation and are ready to return a success/failure code to the buffer
 299 * cache layer.
 300 */
 301static void call_bio_endio(struct r1bio *r1_bio)
 302{
 303	struct bio *bio = r1_bio->master_bio;
 304
 305	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 306		bio->bi_status = BLK_STS_IOERR;
 307
 
 
 308	bio_endio(bio);
 309}
 310
 311static void raid_end_bio_io(struct r1bio *r1_bio)
 312{
 313	struct bio *bio = r1_bio->master_bio;
 314	struct r1conf *conf = r1_bio->mddev->private;
 315	sector_t sector = r1_bio->sector;
 316
 317	/* if nobody has done the final endio yet, do it now */
 318	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321			 (unsigned long long) bio->bi_iter.bi_sector,
 322			 (unsigned long long) bio_end_sector(bio) - 1);
 323
 324		call_bio_endio(r1_bio);
 325	}
 326
 327	free_r1bio(r1_bio);
 328	/*
 329	 * Wake up any possible resync thread that waits for the device
 330	 * to go idle.  All I/Os, even write-behind writes, are done.
 331	 */
 332	allow_barrier(conf, sector);
 
 
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340	struct r1conf *conf = r1_bio->mddev->private;
 341
 342	conf->mirrors[disk].head_position =
 343		r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 351	int mirror;
 352	struct r1conf *conf = r1_bio->mddev->private;
 353	int raid_disks = conf->raid_disks;
 354
 355	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356		if (r1_bio->bios[mirror] == bio)
 357			break;
 358
 359	BUG_ON(mirror == raid_disks * 2);
 360	update_head_pos(mirror, r1_bio);
 361
 362	return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367	int uptodate = !bio->bi_status;
 368	struct r1bio *r1_bio = bio->bi_private;
 369	struct r1conf *conf = r1_bio->mddev->private;
 370	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 372	/*
 373	 * this branch is our 'one mirror IO has finished' event handler:
 374	 */
 375	update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377	if (uptodate)
 378		set_bit(R1BIO_Uptodate, &r1_bio->state);
 379	else if (test_bit(FailFast, &rdev->flags) &&
 380		 test_bit(R1BIO_FailFast, &r1_bio->state))
 381		/* This was a fail-fast read so we definitely
 382		 * want to retry */
 383		;
 384	else {
 385		/* If all other devices have failed, we want to return
 386		 * the error upwards rather than fail the last device.
 387		 * Here we redefine "uptodate" to mean "Don't want to retry"
 388		 */
 389		unsigned long flags;
 390		spin_lock_irqsave(&conf->device_lock, flags);
 391		if (r1_bio->mddev->degraded == conf->raid_disks ||
 392		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393		     test_bit(In_sync, &rdev->flags)))
 394			uptodate = 1;
 395		spin_unlock_irqrestore(&conf->device_lock, flags);
 396	}
 397
 398	if (uptodate) {
 399		raid_end_bio_io(r1_bio);
 400		rdev_dec_pending(rdev, conf->mddev);
 401	} else {
 402		/*
 403		 * oops, read error:
 404		 */
 405		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 406				   mdname(conf->mddev),
 407				   rdev->bdev,
 408				   (unsigned long long)r1_bio->sector);
 409		set_bit(R1BIO_ReadError, &r1_bio->state);
 410		reschedule_retry(r1_bio);
 411		/* don't drop the reference on read_disk yet */
 412	}
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417	/* it really is the end of this request */
 418	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419		bio_free_pages(r1_bio->behind_master_bio);
 420		bio_put(r1_bio->behind_master_bio);
 421		r1_bio->behind_master_bio = NULL;
 422	}
 423	/* clear the bitmap if all writes complete successfully */
 424	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425			   r1_bio->sectors,
 426			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 427			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 428	md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433	if (!atomic_dec_and_test(&r1_bio->remaining))
 434		return;
 435
 436	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437		reschedule_retry(r1_bio);
 438	else {
 439		close_write(r1_bio);
 440		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441			reschedule_retry(r1_bio);
 442		else
 443			raid_end_bio_io(r1_bio);
 444	}
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 449	struct r1bio *r1_bio = bio->bi_private;
 450	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451	struct r1conf *conf = r1_bio->mddev->private;
 452	struct bio *to_put = NULL;
 453	int mirror = find_bio_disk(r1_bio, bio);
 454	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455	bool discard_error;
 456	sector_t lo = r1_bio->sector;
 457	sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 460
 461	/*
 462	 * 'one mirror IO has finished' event handler:
 463	 */
 464	if (bio->bi_status && !discard_error) {
 465		set_bit(WriteErrorSeen,	&rdev->flags);
 466		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 467			set_bit(MD_RECOVERY_NEEDED, &
 468				conf->mddev->recovery);
 469
 470		if (test_bit(FailFast, &rdev->flags) &&
 471		    (bio->bi_opf & MD_FAILFAST) &&
 472		    /* We never try FailFast to WriteMostly devices */
 473		    !test_bit(WriteMostly, &rdev->flags)) {
 474			md_error(r1_bio->mddev, rdev);
 475		}
 476
 477		/*
 478		 * When the device is faulty, it is not necessary to
 479		 * handle write error.
 480		 */
 481		if (!test_bit(Faulty, &rdev->flags))
 482			set_bit(R1BIO_WriteError, &r1_bio->state);
 483		else {
 484			/* Fail the request */
 485			set_bit(R1BIO_Degraded, &r1_bio->state);
 486			/* Finished with this branch */
 487			r1_bio->bios[mirror] = NULL;
 488			to_put = bio;
 489		}
 490	} else {
 491		/*
 492		 * Set R1BIO_Uptodate in our master bio, so that we
 493		 * will return a good error code for to the higher
 494		 * levels even if IO on some other mirrored buffer
 495		 * fails.
 496		 *
 497		 * The 'master' represents the composite IO operation
 498		 * to user-side. So if something waits for IO, then it
 499		 * will wait for the 'master' bio.
 500		 */
 501		sector_t first_bad;
 502		int bad_sectors;
 503
 504		r1_bio->bios[mirror] = NULL;
 505		to_put = bio;
 506		/*
 507		 * Do not set R1BIO_Uptodate if the current device is
 508		 * rebuilding or Faulty. This is because we cannot use
 509		 * such device for properly reading the data back (we could
 510		 * potentially use it, if the current write would have felt
 511		 * before rdev->recovery_offset, but for simplicity we don't
 512		 * check this here.
 513		 */
 514		if (test_bit(In_sync, &rdev->flags) &&
 515		    !test_bit(Faulty, &rdev->flags))
 516			set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518		/* Maybe we can clear some bad blocks. */
 519		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520				&first_bad, &bad_sectors) && !discard_error) {
 521			r1_bio->bios[mirror] = IO_MADE_GOOD;
 522			set_bit(R1BIO_MadeGood, &r1_bio->state);
 523		}
 524	}
 525
 526	if (behind) {
 527		if (test_bit(CollisionCheck, &rdev->flags))
 528			remove_serial(rdev, lo, hi);
 529		if (test_bit(WriteMostly, &rdev->flags))
 530			atomic_dec(&r1_bio->behind_remaining);
 531
 532		/*
 533		 * In behind mode, we ACK the master bio once the I/O
 534		 * has safely reached all non-writemostly
 535		 * disks. Setting the Returned bit ensures that this
 536		 * gets done only once -- we don't ever want to return
 537		 * -EIO here, instead we'll wait
 538		 */
 539		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541			/* Maybe we can return now */
 542			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543				struct bio *mbio = r1_bio->master_bio;
 544				pr_debug("raid1: behind end write sectors"
 545					 " %llu-%llu\n",
 546					 (unsigned long long) mbio->bi_iter.bi_sector,
 547					 (unsigned long long) bio_end_sector(mbio) - 1);
 548				call_bio_endio(r1_bio);
 549			}
 550		}
 551	} else if (rdev->mddev->serialize_policy)
 552		remove_serial(rdev, lo, hi);
 553	if (r1_bio->bios[mirror] == NULL)
 554		rdev_dec_pending(rdev, conf->mddev);
 555
 556	/*
 557	 * Let's see if all mirrored write operations have finished
 558	 * already.
 559	 */
 560	r1_bio_write_done(r1_bio);
 561
 562	if (to_put)
 563		bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567					  sector_t sectors)
 568{
 569	sector_t len;
 570
 571	WARN_ON(sectors == 0);
 572	/*
 573	 * len is the number of sectors from start_sector to end of the
 574	 * barrier unit which start_sector belongs to.
 575	 */
 576	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577	      start_sector;
 578
 579	if (len > sectors)
 580		len = sectors;
 581
 582	return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601	const sector_t this_sector = r1_bio->sector;
 602	int sectors;
 603	int best_good_sectors;
 604	int best_disk, best_dist_disk, best_pending_disk;
 605	int has_nonrot_disk;
 606	int disk;
 607	sector_t best_dist;
 608	unsigned int min_pending;
 609	struct md_rdev *rdev;
 610	int choose_first;
 611	int choose_next_idle;
 612
 
 613	/*
 614	 * Check if we can balance. We can balance on the whole
 615	 * device if no resync is going on, or below the resync window.
 616	 * We take the first readable disk when above the resync window.
 617	 */
 618 retry:
 619	sectors = r1_bio->sectors;
 620	best_disk = -1;
 621	best_dist_disk = -1;
 622	best_dist = MaxSector;
 623	best_pending_disk = -1;
 624	min_pending = UINT_MAX;
 625	best_good_sectors = 0;
 626	has_nonrot_disk = 0;
 627	choose_next_idle = 0;
 628	clear_bit(R1BIO_FailFast, &r1_bio->state);
 629
 630	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 631	    (mddev_is_clustered(conf->mddev) &&
 632	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 633		    this_sector + sectors)))
 634		choose_first = 1;
 635	else
 636		choose_first = 0;
 637
 638	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 639		sector_t dist;
 640		sector_t first_bad;
 641		int bad_sectors;
 642		unsigned int pending;
 643		bool nonrot;
 644
 645		rdev = conf->mirrors[disk].rdev;
 646		if (r1_bio->bios[disk] == IO_BLOCKED
 647		    || rdev == NULL
 648		    || test_bit(Faulty, &rdev->flags))
 649			continue;
 650		if (!test_bit(In_sync, &rdev->flags) &&
 651		    rdev->recovery_offset < this_sector + sectors)
 652			continue;
 653		if (test_bit(WriteMostly, &rdev->flags)) {
 654			/* Don't balance among write-mostly, just
 655			 * use the first as a last resort */
 656			if (best_dist_disk < 0) {
 657				if (is_badblock(rdev, this_sector, sectors,
 658						&first_bad, &bad_sectors)) {
 659					if (first_bad <= this_sector)
 660						/* Cannot use this */
 661						continue;
 662					best_good_sectors = first_bad - this_sector;
 663				} else
 664					best_good_sectors = sectors;
 665				best_dist_disk = disk;
 666				best_pending_disk = disk;
 667			}
 668			continue;
 669		}
 670		/* This is a reasonable device to use.  It might
 671		 * even be best.
 672		 */
 673		if (is_badblock(rdev, this_sector, sectors,
 674				&first_bad, &bad_sectors)) {
 675			if (best_dist < MaxSector)
 676				/* already have a better device */
 677				continue;
 678			if (first_bad <= this_sector) {
 679				/* cannot read here. If this is the 'primary'
 680				 * device, then we must not read beyond
 681				 * bad_sectors from another device..
 682				 */
 683				bad_sectors -= (this_sector - first_bad);
 684				if (choose_first && sectors > bad_sectors)
 685					sectors = bad_sectors;
 686				if (best_good_sectors > sectors)
 687					best_good_sectors = sectors;
 688
 689			} else {
 690				sector_t good_sectors = first_bad - this_sector;
 691				if (good_sectors > best_good_sectors) {
 692					best_good_sectors = good_sectors;
 693					best_disk = disk;
 694				}
 695				if (choose_first)
 696					break;
 697			}
 698			continue;
 699		} else {
 700			if ((sectors > best_good_sectors) && (best_disk >= 0))
 701				best_disk = -1;
 702			best_good_sectors = sectors;
 703		}
 704
 705		if (best_disk >= 0)
 706			/* At least two disks to choose from so failfast is OK */
 707			set_bit(R1BIO_FailFast, &r1_bio->state);
 708
 709		nonrot = bdev_nonrot(rdev->bdev);
 710		has_nonrot_disk |= nonrot;
 711		pending = atomic_read(&rdev->nr_pending);
 712		dist = abs(this_sector - conf->mirrors[disk].head_position);
 713		if (choose_first) {
 714			best_disk = disk;
 715			break;
 716		}
 717		/* Don't change to another disk for sequential reads */
 718		if (conf->mirrors[disk].next_seq_sect == this_sector
 719		    || dist == 0) {
 720			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 721			struct raid1_info *mirror = &conf->mirrors[disk];
 722
 723			best_disk = disk;
 724			/*
 725			 * If buffered sequential IO size exceeds optimal
 726			 * iosize, check if there is idle disk. If yes, choose
 727			 * the idle disk. read_balance could already choose an
 728			 * idle disk before noticing it's a sequential IO in
 729			 * this disk. This doesn't matter because this disk
 730			 * will idle, next time it will be utilized after the
 731			 * first disk has IO size exceeds optimal iosize. In
 732			 * this way, iosize of the first disk will be optimal
 733			 * iosize at least. iosize of the second disk might be
 734			 * small, but not a big deal since when the second disk
 735			 * starts IO, the first disk is likely still busy.
 736			 */
 737			if (nonrot && opt_iosize > 0 &&
 738			    mirror->seq_start != MaxSector &&
 739			    mirror->next_seq_sect > opt_iosize &&
 740			    mirror->next_seq_sect - opt_iosize >=
 741			    mirror->seq_start) {
 742				choose_next_idle = 1;
 743				continue;
 744			}
 745			break;
 746		}
 747
 748		if (choose_next_idle)
 749			continue;
 750
 751		if (min_pending > pending) {
 752			min_pending = pending;
 753			best_pending_disk = disk;
 754		}
 755
 756		if (dist < best_dist) {
 757			best_dist = dist;
 758			best_dist_disk = disk;
 759		}
 760	}
 761
 762	/*
 763	 * If all disks are rotational, choose the closest disk. If any disk is
 764	 * non-rotational, choose the disk with less pending request even the
 765	 * disk is rotational, which might/might not be optimal for raids with
 766	 * mixed ratation/non-rotational disks depending on workload.
 767	 */
 768	if (best_disk == -1) {
 769		if (has_nonrot_disk || min_pending == 0)
 770			best_disk = best_pending_disk;
 771		else
 772			best_disk = best_dist_disk;
 773	}
 774
 775	if (best_disk >= 0) {
 776		rdev = conf->mirrors[best_disk].rdev;
 777		if (!rdev)
 778			goto retry;
 779		atomic_inc(&rdev->nr_pending);
 780		sectors = best_good_sectors;
 781
 782		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 783			conf->mirrors[best_disk].seq_start = this_sector;
 784
 785		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 786	}
 
 787	*max_sectors = sectors;
 788
 789	return best_disk;
 790}
 791
 792static void wake_up_barrier(struct r1conf *conf)
 793{
 794	if (wq_has_sleeper(&conf->wait_barrier))
 795		wake_up(&conf->wait_barrier);
 796}
 797
 798static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 799{
 800	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 801	raid1_prepare_flush_writes(conf->mddev->bitmap);
 802	wake_up_barrier(conf);
 803
 804	while (bio) { /* submit pending writes */
 805		struct bio *next = bio->bi_next;
 806
 807		raid1_submit_write(bio);
 
 
 
 
 
 
 
 
 
 808		bio = next;
 809		cond_resched();
 810	}
 811}
 812
 813static void flush_pending_writes(struct r1conf *conf)
 814{
 815	/* Any writes that have been queued but are awaiting
 816	 * bitmap updates get flushed here.
 817	 */
 818	spin_lock_irq(&conf->device_lock);
 819
 820	if (conf->pending_bio_list.head) {
 821		struct blk_plug plug;
 822		struct bio *bio;
 823
 824		bio = bio_list_get(&conf->pending_bio_list);
 825		spin_unlock_irq(&conf->device_lock);
 826
 827		/*
 828		 * As this is called in a wait_event() loop (see freeze_array),
 829		 * current->state might be TASK_UNINTERRUPTIBLE which will
 830		 * cause a warning when we prepare to wait again.  As it is
 831		 * rare that this path is taken, it is perfectly safe to force
 832		 * us to go around the wait_event() loop again, so the warning
 833		 * is a false-positive.  Silence the warning by resetting
 834		 * thread state
 835		 */
 836		__set_current_state(TASK_RUNNING);
 837		blk_start_plug(&plug);
 838		flush_bio_list(conf, bio);
 839		blk_finish_plug(&plug);
 840	} else
 841		spin_unlock_irq(&conf->device_lock);
 842}
 843
 844/* Barriers....
 845 * Sometimes we need to suspend IO while we do something else,
 846 * either some resync/recovery, or reconfigure the array.
 847 * To do this we raise a 'barrier'.
 848 * The 'barrier' is a counter that can be raised multiple times
 849 * to count how many activities are happening which preclude
 850 * normal IO.
 851 * We can only raise the barrier if there is no pending IO.
 852 * i.e. if nr_pending == 0.
 853 * We choose only to raise the barrier if no-one is waiting for the
 854 * barrier to go down.  This means that as soon as an IO request
 855 * is ready, no other operations which require a barrier will start
 856 * until the IO request has had a chance.
 857 *
 858 * So: regular IO calls 'wait_barrier'.  When that returns there
 859 *    is no backgroup IO happening,  It must arrange to call
 860 *    allow_barrier when it has finished its IO.
 861 * backgroup IO calls must call raise_barrier.  Once that returns
 862 *    there is no normal IO happeing.  It must arrange to call
 863 *    lower_barrier when the particular background IO completes.
 864 *
 865 * If resync/recovery is interrupted, returns -EINTR;
 866 * Otherwise, returns 0.
 867 */
 868static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 869{
 870	int idx = sector_to_idx(sector_nr);
 871
 872	spin_lock_irq(&conf->resync_lock);
 873
 874	/* Wait until no block IO is waiting */
 875	wait_event_lock_irq(conf->wait_barrier,
 876			    !atomic_read(&conf->nr_waiting[idx]),
 877			    conf->resync_lock);
 878
 879	/* block any new IO from starting */
 880	atomic_inc(&conf->barrier[idx]);
 881	/*
 882	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 883	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 884	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 885	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 886	 * be fetched before conf->barrier[idx] is increased. Otherwise
 887	 * there will be a race between raise_barrier() and _wait_barrier().
 888	 */
 889	smp_mb__after_atomic();
 890
 891	/* For these conditions we must wait:
 892	 * A: while the array is in frozen state
 893	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 894	 *    existing in corresponding I/O barrier bucket.
 895	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 896	 *    max resync count which allowed on current I/O barrier bucket.
 897	 */
 898	wait_event_lock_irq(conf->wait_barrier,
 899			    (!conf->array_frozen &&
 900			     !atomic_read(&conf->nr_pending[idx]) &&
 901			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 902				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 903			    conf->resync_lock);
 904
 905	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 906		atomic_dec(&conf->barrier[idx]);
 907		spin_unlock_irq(&conf->resync_lock);
 908		wake_up(&conf->wait_barrier);
 909		return -EINTR;
 910	}
 911
 912	atomic_inc(&conf->nr_sync_pending);
 913	spin_unlock_irq(&conf->resync_lock);
 914
 915	return 0;
 916}
 917
 918static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 919{
 920	int idx = sector_to_idx(sector_nr);
 921
 922	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 923
 924	atomic_dec(&conf->barrier[idx]);
 925	atomic_dec(&conf->nr_sync_pending);
 926	wake_up(&conf->wait_barrier);
 927}
 928
 929static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 930{
 931	bool ret = true;
 932
 933	/*
 934	 * We need to increase conf->nr_pending[idx] very early here,
 935	 * then raise_barrier() can be blocked when it waits for
 936	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 937	 * conf->resync_lock when there is no barrier raised in same
 938	 * barrier unit bucket. Also if the array is frozen, I/O
 939	 * should be blocked until array is unfrozen.
 940	 */
 941	atomic_inc(&conf->nr_pending[idx]);
 942	/*
 943	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 944	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 945	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 946	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 947	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 948	 * will be a race between _wait_barrier() and raise_barrier().
 949	 */
 950	smp_mb__after_atomic();
 951
 952	/*
 953	 * Don't worry about checking two atomic_t variables at same time
 954	 * here. If during we check conf->barrier[idx], the array is
 955	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 956	 * 0, it is safe to return and make the I/O continue. Because the
 957	 * array is frozen, all I/O returned here will eventually complete
 958	 * or be queued, no race will happen. See code comment in
 959	 * frozen_array().
 960	 */
 961	if (!READ_ONCE(conf->array_frozen) &&
 962	    !atomic_read(&conf->barrier[idx]))
 963		return ret;
 964
 965	/*
 966	 * After holding conf->resync_lock, conf->nr_pending[idx]
 967	 * should be decreased before waiting for barrier to drop.
 968	 * Otherwise, we may encounter a race condition because
 969	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 970	 * to be 0 at same time.
 971	 */
 972	spin_lock_irq(&conf->resync_lock);
 973	atomic_inc(&conf->nr_waiting[idx]);
 974	atomic_dec(&conf->nr_pending[idx]);
 975	/*
 976	 * In case freeze_array() is waiting for
 977	 * get_unqueued_pending() == extra
 978	 */
 979	wake_up_barrier(conf);
 980	/* Wait for the barrier in same barrier unit bucket to drop. */
 981
 982	/* Return false when nowait flag is set */
 983	if (nowait) {
 984		ret = false;
 985	} else {
 986		wait_event_lock_irq(conf->wait_barrier,
 987				!conf->array_frozen &&
 988				!atomic_read(&conf->barrier[idx]),
 989				conf->resync_lock);
 990		atomic_inc(&conf->nr_pending[idx]);
 991	}
 992
 993	atomic_dec(&conf->nr_waiting[idx]);
 994	spin_unlock_irq(&conf->resync_lock);
 995	return ret;
 996}
 997
 998static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 999{
1000	int idx = sector_to_idx(sector_nr);
1001	bool ret = true;
1002
1003	/*
1004	 * Very similar to _wait_barrier(). The difference is, for read
1005	 * I/O we don't need wait for sync I/O, but if the whole array
1006	 * is frozen, the read I/O still has to wait until the array is
1007	 * unfrozen. Since there is no ordering requirement with
1008	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1009	 */
1010	atomic_inc(&conf->nr_pending[idx]);
1011
1012	if (!READ_ONCE(conf->array_frozen))
1013		return ret;
1014
1015	spin_lock_irq(&conf->resync_lock);
1016	atomic_inc(&conf->nr_waiting[idx]);
1017	atomic_dec(&conf->nr_pending[idx]);
1018	/*
1019	 * In case freeze_array() is waiting for
1020	 * get_unqueued_pending() == extra
1021	 */
1022	wake_up_barrier(conf);
1023	/* Wait for array to be unfrozen */
1024
1025	/* Return false when nowait flag is set */
1026	if (nowait) {
1027		/* Return false when nowait flag is set */
1028		ret = false;
1029	} else {
1030		wait_event_lock_irq(conf->wait_barrier,
1031				!conf->array_frozen,
1032				conf->resync_lock);
1033		atomic_inc(&conf->nr_pending[idx]);
1034	}
1035
1036	atomic_dec(&conf->nr_waiting[idx]);
1037	spin_unlock_irq(&conf->resync_lock);
1038	return ret;
1039}
1040
1041static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1042{
1043	int idx = sector_to_idx(sector_nr);
1044
1045	return _wait_barrier(conf, idx, nowait);
1046}
1047
1048static void _allow_barrier(struct r1conf *conf, int idx)
1049{
1050	atomic_dec(&conf->nr_pending[idx]);
1051	wake_up_barrier(conf);
1052}
1053
1054static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1055{
1056	int idx = sector_to_idx(sector_nr);
1057
1058	_allow_barrier(conf, idx);
1059}
1060
1061/* conf->resync_lock should be held */
1062static int get_unqueued_pending(struct r1conf *conf)
1063{
1064	int idx, ret;
1065
1066	ret = atomic_read(&conf->nr_sync_pending);
1067	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1068		ret += atomic_read(&conf->nr_pending[idx]) -
1069			atomic_read(&conf->nr_queued[idx]);
1070
1071	return ret;
1072}
1073
1074static void freeze_array(struct r1conf *conf, int extra)
1075{
1076	/* Stop sync I/O and normal I/O and wait for everything to
1077	 * go quiet.
1078	 * This is called in two situations:
1079	 * 1) management command handlers (reshape, remove disk, quiesce).
1080	 * 2) one normal I/O request failed.
1081
1082	 * After array_frozen is set to 1, new sync IO will be blocked at
1083	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1084	 * or wait_read_barrier(). The flying I/Os will either complete or be
1085	 * queued. When everything goes quite, there are only queued I/Os left.
1086
1087	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1088	 * barrier bucket index which this I/O request hits. When all sync and
1089	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1090	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1091	 * in handle_read_error(), we may call freeze_array() before trying to
1092	 * fix the read error. In this case, the error read I/O is not queued,
1093	 * so get_unqueued_pending() == 1.
1094	 *
1095	 * Therefore before this function returns, we need to wait until
1096	 * get_unqueued_pendings(conf) gets equal to extra. For
1097	 * normal I/O context, extra is 1, in rested situations extra is 0.
1098	 */
1099	spin_lock_irq(&conf->resync_lock);
1100	conf->array_frozen = 1;
1101	raid1_log(conf->mddev, "wait freeze");
1102	wait_event_lock_irq_cmd(
1103		conf->wait_barrier,
1104		get_unqueued_pending(conf) == extra,
1105		conf->resync_lock,
1106		flush_pending_writes(conf));
1107	spin_unlock_irq(&conf->resync_lock);
1108}
1109static void unfreeze_array(struct r1conf *conf)
1110{
1111	/* reverse the effect of the freeze */
1112	spin_lock_irq(&conf->resync_lock);
1113	conf->array_frozen = 0;
1114	spin_unlock_irq(&conf->resync_lock);
1115	wake_up(&conf->wait_barrier);
1116}
1117
1118static void alloc_behind_master_bio(struct r1bio *r1_bio,
1119					   struct bio *bio)
1120{
1121	int size = bio->bi_iter.bi_size;
1122	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123	int i = 0;
1124	struct bio *behind_bio = NULL;
1125
1126	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1127				      &r1_bio->mddev->bio_set);
 
 
1128
1129	/* discard op, we don't support writezero/writesame yet */
1130	if (!bio_has_data(bio)) {
1131		behind_bio->bi_iter.bi_size = size;
1132		goto skip_copy;
1133	}
1134
1135	while (i < vcnt && size) {
1136		struct page *page;
1137		int len = min_t(int, PAGE_SIZE, size);
1138
1139		page = alloc_page(GFP_NOIO);
1140		if (unlikely(!page))
1141			goto free_pages;
1142
1143		if (!bio_add_page(behind_bio, page, len, 0)) {
1144			put_page(page);
1145			goto free_pages;
1146		}
1147
1148		size -= len;
1149		i++;
1150	}
1151
1152	bio_copy_data(behind_bio, bio);
1153skip_copy:
1154	r1_bio->behind_master_bio = behind_bio;
1155	set_bit(R1BIO_BehindIO, &r1_bio->state);
1156
1157	return;
1158
1159free_pages:
1160	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1161		 bio->bi_iter.bi_size);
1162	bio_free_pages(behind_bio);
1163	bio_put(behind_bio);
1164}
1165
1166static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1167{
1168	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1169						  cb);
1170	struct mddev *mddev = plug->cb.data;
1171	struct r1conf *conf = mddev->private;
1172	struct bio *bio;
1173
1174	if (from_schedule) {
1175		spin_lock_irq(&conf->device_lock);
1176		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1177		spin_unlock_irq(&conf->device_lock);
1178		wake_up_barrier(conf);
1179		md_wakeup_thread(mddev->thread);
1180		kfree(plug);
1181		return;
1182	}
1183
1184	/* we aren't scheduling, so we can do the write-out directly. */
1185	bio = bio_list_get(&plug->pending);
1186	flush_bio_list(conf, bio);
1187	kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192	r1_bio->master_bio = bio;
1193	r1_bio->sectors = bio_sectors(bio);
1194	r1_bio->state = 0;
1195	r1_bio->mddev = mddev;
1196	r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202	struct r1conf *conf = mddev->private;
1203	struct r1bio *r1_bio;
1204
1205	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206	/* Ensure no bio records IO_BLOCKED */
1207	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208	init_r1bio(r1_bio, mddev, bio);
1209	return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213			       int max_read_sectors, struct r1bio *r1_bio)
1214{
1215	struct r1conf *conf = mddev->private;
1216	struct raid1_info *mirror;
1217	struct bio *read_bio;
1218	struct bitmap *bitmap = mddev->bitmap;
1219	const enum req_op op = bio_op(bio);
1220	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1221	int max_sectors;
1222	int rdisk;
1223	bool r1bio_existed = !!r1_bio;
1224	char b[BDEVNAME_SIZE];
1225
1226	/*
1227	 * If r1_bio is set, we are blocking the raid1d thread
1228	 * so there is a tiny risk of deadlock.  So ask for
1229	 * emergency memory if needed.
1230	 */
1231	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233	if (r1bio_existed) {
1234		/* Need to get the block device name carefully */
1235		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1236
 
1237		if (rdev)
1238			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1239		else
1240			strcpy(b, "???");
 
1241	}
1242
1243	/*
1244	 * Still need barrier for READ in case that whole
1245	 * array is frozen.
1246	 */
1247	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248				bio->bi_opf & REQ_NOWAIT)) {
1249		bio_wouldblock_error(bio);
1250		return;
1251	}
1252
1253	if (!r1_bio)
1254		r1_bio = alloc_r1bio(mddev, bio);
1255	else
1256		init_r1bio(r1_bio, mddev, bio);
1257	r1_bio->sectors = max_read_sectors;
1258
1259	/*
1260	 * make_request() can abort the operation when read-ahead is being
1261	 * used and no empty request is available.
1262	 */
1263	rdisk = read_balance(conf, r1_bio, &max_sectors);
1264
1265	if (rdisk < 0) {
1266		/* couldn't find anywhere to read from */
1267		if (r1bio_existed) {
1268			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269					    mdname(mddev),
1270					    b,
1271					    (unsigned long long)r1_bio->sector);
1272		}
1273		raid_end_bio_io(r1_bio);
1274		return;
1275	}
1276	mirror = conf->mirrors + rdisk;
1277
1278	if (r1bio_existed)
1279		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1280				    mdname(mddev),
1281				    (unsigned long long)r1_bio->sector,
1282				    mirror->rdev->bdev);
1283
1284	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1285	    bitmap) {
1286		/*
1287		 * Reading from a write-mostly device must take care not to
1288		 * over-take any writes that are 'behind'
1289		 */
1290		raid1_log(mddev, "wait behind writes");
1291		wait_event(bitmap->behind_wait,
1292			   atomic_read(&bitmap->behind_writes) == 0);
1293	}
1294
1295	if (max_sectors < bio_sectors(bio)) {
1296		struct bio *split = bio_split(bio, max_sectors,
1297					      gfp, &conf->bio_split);
1298		bio_chain(split, bio);
1299		submit_bio_noacct(bio);
1300		bio = split;
1301		r1_bio->master_bio = bio;
1302		r1_bio->sectors = max_sectors;
1303	}
1304
1305	r1_bio->read_disk = rdisk;
1306	if (!r1bio_existed) {
1307		md_account_bio(mddev, &bio);
1308		r1_bio->master_bio = bio;
1309	}
1310	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1311				   &mddev->bio_set);
1312
1313	r1_bio->bios[rdisk] = read_bio;
1314
1315	read_bio->bi_iter.bi_sector = r1_bio->sector +
1316		mirror->rdev->data_offset;
1317	read_bio->bi_end_io = raid1_end_read_request;
1318	read_bio->bi_opf = op | do_sync;
1319	if (test_bit(FailFast, &mirror->rdev->flags) &&
1320	    test_bit(R1BIO_FailFast, &r1_bio->state))
1321	        read_bio->bi_opf |= MD_FAILFAST;
1322	read_bio->bi_private = r1_bio;
1323
1324	if (mddev->gendisk)
1325	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1326				      r1_bio->sector);
1327
1328	submit_bio_noacct(read_bio);
1329}
1330
1331static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332				int max_write_sectors)
1333{
1334	struct r1conf *conf = mddev->private;
1335	struct r1bio *r1_bio;
1336	int i, disks;
1337	struct bitmap *bitmap = mddev->bitmap;
1338	unsigned long flags;
1339	struct md_rdev *blocked_rdev;
 
 
1340	int first_clone;
1341	int max_sectors;
1342	bool write_behind = false;
1343	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1344
1345	if (mddev_is_clustered(mddev) &&
1346	     md_cluster_ops->area_resyncing(mddev, WRITE,
1347		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1348
1349		DEFINE_WAIT(w);
1350		if (bio->bi_opf & REQ_NOWAIT) {
1351			bio_wouldblock_error(bio);
1352			return;
1353		}
1354		for (;;) {
1355			prepare_to_wait(&conf->wait_barrier,
1356					&w, TASK_IDLE);
1357			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1358							bio->bi_iter.bi_sector,
1359							bio_end_sector(bio)))
1360				break;
1361			schedule();
1362		}
1363		finish_wait(&conf->wait_barrier, &w);
1364	}
1365
1366	/*
1367	 * Register the new request and wait if the reconstruction
1368	 * thread has put up a bar for new requests.
1369	 * Continue immediately if no resync is active currently.
1370	 */
1371	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1372				bio->bi_opf & REQ_NOWAIT)) {
1373		bio_wouldblock_error(bio);
1374		return;
1375	}
1376
1377 retry_write:
1378	r1_bio = alloc_r1bio(mddev, bio);
1379	r1_bio->sectors = max_write_sectors;
1380
1381	/* first select target devices under rcu_lock and
1382	 * inc refcount on their rdev.  Record them by setting
1383	 * bios[x] to bio
1384	 * If there are known/acknowledged bad blocks on any device on
1385	 * which we have seen a write error, we want to avoid writing those
1386	 * blocks.
1387	 * This potentially requires several writes to write around
1388	 * the bad blocks.  Each set of writes gets it's own r1bio
1389	 * with a set of bios attached.
1390	 */
1391
1392	disks = conf->raid_disks * 2;
 
1393	blocked_rdev = NULL;
 
1394	max_sectors = r1_bio->sectors;
1395	for (i = 0;  i < disks; i++) {
1396		struct md_rdev *rdev = conf->mirrors[i].rdev;
1397
1398		/*
1399		 * The write-behind io is only attempted on drives marked as
1400		 * write-mostly, which means we could allocate write behind
1401		 * bio later.
1402		 */
1403		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1404			write_behind = true;
1405
1406		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407			atomic_inc(&rdev->nr_pending);
1408			blocked_rdev = rdev;
1409			break;
1410		}
1411		r1_bio->bios[i] = NULL;
1412		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1413			if (i < conf->raid_disks)
1414				set_bit(R1BIO_Degraded, &r1_bio->state);
1415			continue;
1416		}
1417
1418		atomic_inc(&rdev->nr_pending);
1419		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1420			sector_t first_bad;
1421			int bad_sectors;
1422			int is_bad;
1423
1424			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1425					     &first_bad, &bad_sectors);
1426			if (is_bad < 0) {
1427				/* mustn't write here until the bad block is
1428				 * acknowledged*/
1429				set_bit(BlockedBadBlocks, &rdev->flags);
1430				blocked_rdev = rdev;
1431				break;
1432			}
1433			if (is_bad && first_bad <= r1_bio->sector) {
1434				/* Cannot write here at all */
1435				bad_sectors -= (r1_bio->sector - first_bad);
1436				if (bad_sectors < max_sectors)
1437					/* mustn't write more than bad_sectors
1438					 * to other devices yet
1439					 */
1440					max_sectors = bad_sectors;
1441				rdev_dec_pending(rdev, mddev);
1442				/* We don't set R1BIO_Degraded as that
1443				 * only applies if the disk is
1444				 * missing, so it might be re-added,
1445				 * and we want to know to recover this
1446				 * chunk.
1447				 * In this case the device is here,
1448				 * and the fact that this chunk is not
1449				 * in-sync is recorded in the bad
1450				 * block log
1451				 */
1452				continue;
1453			}
1454			if (is_bad) {
1455				int good_sectors = first_bad - r1_bio->sector;
1456				if (good_sectors < max_sectors)
1457					max_sectors = good_sectors;
1458			}
1459		}
1460		r1_bio->bios[i] = bio;
1461	}
 
1462
1463	if (unlikely(blocked_rdev)) {
1464		/* Wait for this device to become unblocked */
1465		int j;
1466
1467		for (j = 0; j < i; j++)
1468			if (r1_bio->bios[j])
1469				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1470		free_r1bio(r1_bio);
1471		allow_barrier(conf, bio->bi_iter.bi_sector);
1472
1473		if (bio->bi_opf & REQ_NOWAIT) {
1474			bio_wouldblock_error(bio);
1475			return;
1476		}
1477		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1480		goto retry_write;
1481	}
1482
1483	/*
1484	 * When using a bitmap, we may call alloc_behind_master_bio below.
1485	 * alloc_behind_master_bio allocates a copy of the data payload a page
1486	 * at a time and thus needs a new bio that can fit the whole payload
1487	 * this bio in page sized chunks.
1488	 */
1489	if (write_behind && bitmap)
1490		max_sectors = min_t(int, max_sectors,
1491				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1492	if (max_sectors < bio_sectors(bio)) {
1493		struct bio *split = bio_split(bio, max_sectors,
1494					      GFP_NOIO, &conf->bio_split);
1495		bio_chain(split, bio);
1496		submit_bio_noacct(bio);
1497		bio = split;
1498		r1_bio->master_bio = bio;
1499		r1_bio->sectors = max_sectors;
1500	}
1501
1502	md_account_bio(mddev, &bio);
1503	r1_bio->master_bio = bio;
1504	atomic_set(&r1_bio->remaining, 1);
1505	atomic_set(&r1_bio->behind_remaining, 0);
1506
1507	first_clone = 1;
1508
1509	for (i = 0; i < disks; i++) {
1510		struct bio *mbio = NULL;
1511		struct md_rdev *rdev = conf->mirrors[i].rdev;
1512		if (!r1_bio->bios[i])
1513			continue;
1514
1515		if (first_clone) {
1516			/* do behind I/O ?
1517			 * Not if there are too many, or cannot
1518			 * allocate memory, or a reader on WriteMostly
1519			 * is waiting for behind writes to flush */
1520			if (bitmap && write_behind &&
 
1521			    (atomic_read(&bitmap->behind_writes)
1522			     < mddev->bitmap_info.max_write_behind) &&
1523			    !waitqueue_active(&bitmap->behind_wait)) {
1524				alloc_behind_master_bio(r1_bio, bio);
1525			}
1526
1527			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1528					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1529			first_clone = 0;
1530		}
1531
1532		if (r1_bio->behind_master_bio) {
1533			mbio = bio_alloc_clone(rdev->bdev,
1534					       r1_bio->behind_master_bio,
1535					       GFP_NOIO, &mddev->bio_set);
1536			if (test_bit(CollisionCheck, &rdev->flags))
1537				wait_for_serialization(rdev, r1_bio);
1538			if (test_bit(WriteMostly, &rdev->flags))
1539				atomic_inc(&r1_bio->behind_remaining);
1540		} else {
1541			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1542					       &mddev->bio_set);
1543
1544			if (mddev->serialize_policy)
1545				wait_for_serialization(rdev, r1_bio);
1546		}
1547
1548		r1_bio->bios[i] = mbio;
1549
1550		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1551		mbio->bi_end_io	= raid1_end_write_request;
1552		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1553		if (test_bit(FailFast, &rdev->flags) &&
1554		    !test_bit(WriteMostly, &rdev->flags) &&
1555		    conf->raid_disks - mddev->degraded > 1)
1556			mbio->bi_opf |= MD_FAILFAST;
1557		mbio->bi_private = r1_bio;
1558
1559		atomic_inc(&r1_bio->remaining);
1560
1561		if (mddev->gendisk)
1562			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1563					      r1_bio->sector);
1564		/* flush_pending_writes() needs access to the rdev so...*/
1565		mbio->bi_bdev = (void *)rdev;
1566		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
 
 
 
 
 
 
 
 
1567			spin_lock_irqsave(&conf->device_lock, flags);
1568			bio_list_add(&conf->pending_bio_list, mbio);
1569			spin_unlock_irqrestore(&conf->device_lock, flags);
1570			md_wakeup_thread(mddev->thread);
1571		}
1572	}
1573
1574	r1_bio_write_done(r1_bio);
1575
1576	/* In case raid1d snuck in to freeze_array */
1577	wake_up_barrier(conf);
1578}
1579
1580static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1581{
1582	sector_t sectors;
1583
1584	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1585	    && md_flush_request(mddev, bio))
1586		return true;
1587
1588	/*
1589	 * There is a limit to the maximum size, but
1590	 * the read/write handler might find a lower limit
1591	 * due to bad blocks.  To avoid multiple splits,
1592	 * we pass the maximum number of sectors down
1593	 * and let the lower level perform the split.
1594	 */
1595	sectors = align_to_barrier_unit_end(
1596		bio->bi_iter.bi_sector, bio_sectors(bio));
1597
1598	if (bio_data_dir(bio) == READ)
1599		raid1_read_request(mddev, bio, sectors, NULL);
1600	else {
1601		if (!md_write_start(mddev,bio))
1602			return false;
1603		raid1_write_request(mddev, bio, sectors);
1604	}
1605	return true;
1606}
1607
1608static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609{
1610	struct r1conf *conf = mddev->private;
1611	int i;
1612
1613	lockdep_assert_held(&mddev->lock);
1614
1615	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616		   conf->raid_disks - mddev->degraded);
 
1617	for (i = 0; i < conf->raid_disks; i++) {
1618		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1619
1620		seq_printf(seq, "%s",
1621			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1622	}
 
1623	seq_printf(seq, "]");
1624}
1625
1626/**
1627 * raid1_error() - RAID1 error handler.
1628 * @mddev: affected md device.
1629 * @rdev: member device to fail.
1630 *
1631 * The routine acknowledges &rdev failure and determines new @mddev state.
1632 * If it failed, then:
1633 *	- &MD_BROKEN flag is set in &mddev->flags.
1634 *	- recovery is disabled.
1635 * Otherwise, it must be degraded:
1636 *	- recovery is interrupted.
1637 *	- &mddev->degraded is bumped.
1638 *
1639 * @rdev is marked as &Faulty excluding case when array is failed and
1640 * &mddev->fail_last_dev is off.
1641 */
1642static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1643{
1644	struct r1conf *conf = mddev->private;
1645	unsigned long flags;
1646
1647	spin_lock_irqsave(&conf->device_lock, flags);
1648
1649	if (test_bit(In_sync, &rdev->flags) &&
1650	    (conf->raid_disks - mddev->degraded) == 1) {
1651		set_bit(MD_BROKEN, &mddev->flags);
1652
1653		if (!mddev->fail_last_dev) {
1654			conf->recovery_disabled = mddev->recovery_disabled;
1655			spin_unlock_irqrestore(&conf->device_lock, flags);
1656			return;
1657		}
1658	}
1659	set_bit(Blocked, &rdev->flags);
1660	if (test_and_clear_bit(In_sync, &rdev->flags))
1661		mddev->degraded++;
1662	set_bit(Faulty, &rdev->flags);
1663	spin_unlock_irqrestore(&conf->device_lock, flags);
1664	/*
1665	 * if recovery is running, make sure it aborts.
1666	 */
1667	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1668	set_mask_bits(&mddev->sb_flags, 0,
1669		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1671		"md/raid1:%s: Operation continuing on %d devices.\n",
1672		mdname(mddev), rdev->bdev,
1673		mdname(mddev), conf->raid_disks - mddev->degraded);
1674}
1675
1676static void print_conf(struct r1conf *conf)
1677{
1678	int i;
1679
1680	pr_debug("RAID1 conf printout:\n");
1681	if (!conf) {
1682		pr_debug("(!conf)\n");
1683		return;
1684	}
1685	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1686		 conf->raid_disks);
1687
1688	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1689	for (i = 0; i < conf->raid_disks; i++) {
1690		struct md_rdev *rdev = conf->mirrors[i].rdev;
1691		if (rdev)
1692			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1693				 i, !test_bit(In_sync, &rdev->flags),
1694				 !test_bit(Faulty, &rdev->flags),
1695				 rdev->bdev);
1696	}
 
1697}
1698
1699static void close_sync(struct r1conf *conf)
1700{
1701	int idx;
1702
1703	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1704		_wait_barrier(conf, idx, false);
1705		_allow_barrier(conf, idx);
1706	}
1707
1708	mempool_exit(&conf->r1buf_pool);
1709}
1710
1711static int raid1_spare_active(struct mddev *mddev)
1712{
1713	int i;
1714	struct r1conf *conf = mddev->private;
1715	int count = 0;
1716	unsigned long flags;
1717
1718	/*
1719	 * Find all failed disks within the RAID1 configuration
1720	 * and mark them readable.
1721	 * Called under mddev lock, so rcu protection not needed.
1722	 * device_lock used to avoid races with raid1_end_read_request
1723	 * which expects 'In_sync' flags and ->degraded to be consistent.
1724	 */
1725	spin_lock_irqsave(&conf->device_lock, flags);
1726	for (i = 0; i < conf->raid_disks; i++) {
1727		struct md_rdev *rdev = conf->mirrors[i].rdev;
1728		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1729		if (repl
1730		    && !test_bit(Candidate, &repl->flags)
1731		    && repl->recovery_offset == MaxSector
1732		    && !test_bit(Faulty, &repl->flags)
1733		    && !test_and_set_bit(In_sync, &repl->flags)) {
1734			/* replacement has just become active */
1735			if (!rdev ||
1736			    !test_and_clear_bit(In_sync, &rdev->flags))
1737				count++;
1738			if (rdev) {
1739				/* Replaced device not technically
1740				 * faulty, but we need to be sure
1741				 * it gets removed and never re-added
1742				 */
1743				set_bit(Faulty, &rdev->flags);
1744				sysfs_notify_dirent_safe(
1745					rdev->sysfs_state);
1746			}
1747		}
1748		if (rdev
1749		    && rdev->recovery_offset == MaxSector
1750		    && !test_bit(Faulty, &rdev->flags)
1751		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1752			count++;
1753			sysfs_notify_dirent_safe(rdev->sysfs_state);
1754		}
1755	}
1756	mddev->degraded -= count;
1757	spin_unlock_irqrestore(&conf->device_lock, flags);
1758
1759	print_conf(conf);
1760	return count;
1761}
1762
1763static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1764{
1765	struct r1conf *conf = mddev->private;
1766	int err = -EEXIST;
1767	int mirror = 0, repl_slot = -1;
1768	struct raid1_info *p;
1769	int first = 0;
1770	int last = conf->raid_disks - 1;
1771
1772	if (mddev->recovery_disabled == conf->recovery_disabled)
1773		return -EBUSY;
1774
1775	if (md_integrity_add_rdev(rdev, mddev))
1776		return -ENXIO;
1777
1778	if (rdev->raid_disk >= 0)
1779		first = last = rdev->raid_disk;
1780
1781	/*
1782	 * find the disk ... but prefer rdev->saved_raid_disk
1783	 * if possible.
1784	 */
1785	if (rdev->saved_raid_disk >= 0 &&
1786	    rdev->saved_raid_disk >= first &&
1787	    rdev->saved_raid_disk < conf->raid_disks &&
1788	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1789		first = last = rdev->saved_raid_disk;
1790
1791	for (mirror = first; mirror <= last; mirror++) {
1792		p = conf->mirrors + mirror;
1793		if (!p->rdev) {
1794			if (mddev->gendisk)
1795				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796						  rdev->data_offset << 9);
1797
1798			p->head_position = 0;
1799			rdev->raid_disk = mirror;
1800			err = 0;
1801			/* As all devices are equivalent, we don't need a full recovery
1802			 * if this was recently any drive of the array
1803			 */
1804			if (rdev->saved_raid_disk < 0)
1805				conf->fullsync = 1;
1806			WRITE_ONCE(p->rdev, rdev);
1807			break;
1808		}
1809		if (test_bit(WantReplacement, &p->rdev->flags) &&
1810		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1811			repl_slot = mirror;
1812	}
1813
1814	if (err && repl_slot >= 0) {
1815		/* Add this device as a replacement */
1816		p = conf->mirrors + repl_slot;
1817		clear_bit(In_sync, &rdev->flags);
1818		set_bit(Replacement, &rdev->flags);
1819		rdev->raid_disk = repl_slot;
1820		err = 0;
1821		conf->fullsync = 1;
1822		WRITE_ONCE(p[conf->raid_disks].rdev, rdev);
1823	}
1824
1825	print_conf(conf);
1826	return err;
1827}
1828
1829static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1830{
1831	struct r1conf *conf = mddev->private;
1832	int err = 0;
1833	int number = rdev->raid_disk;
1834	struct raid1_info *p = conf->mirrors + number;
1835
1836	if (unlikely(number >= conf->raid_disks))
1837		goto abort;
1838
1839	if (rdev != p->rdev)
1840		p = conf->mirrors + conf->raid_disks + number;
1841
1842	print_conf(conf);
1843	if (rdev == p->rdev) {
1844		if (test_bit(In_sync, &rdev->flags) ||
1845		    atomic_read(&rdev->nr_pending)) {
1846			err = -EBUSY;
1847			goto abort;
1848		}
1849		/* Only remove non-faulty devices if recovery
1850		 * is not possible.
1851		 */
1852		if (!test_bit(Faulty, &rdev->flags) &&
1853		    mddev->recovery_disabled != conf->recovery_disabled &&
1854		    mddev->degraded < conf->raid_disks) {
1855			err = -EBUSY;
1856			goto abort;
1857		}
1858		WRITE_ONCE(p->rdev, NULL);
 
 
 
 
 
 
 
 
 
1859		if (conf->mirrors[conf->raid_disks + number].rdev) {
1860			/* We just removed a device that is being replaced.
1861			 * Move down the replacement.  We drain all IO before
1862			 * doing this to avoid confusion.
1863			 */
1864			struct md_rdev *repl =
1865				conf->mirrors[conf->raid_disks + number].rdev;
1866			freeze_array(conf, 0);
1867			if (atomic_read(&repl->nr_pending)) {
1868				/* It means that some queued IO of retry_list
1869				 * hold repl. Thus, we cannot set replacement
1870				 * as NULL, avoiding rdev NULL pointer
1871				 * dereference in sync_request_write and
1872				 * handle_write_finished.
1873				 */
1874				err = -EBUSY;
1875				unfreeze_array(conf);
1876				goto abort;
1877			}
1878			clear_bit(Replacement, &repl->flags);
1879			WRITE_ONCE(p->rdev, repl);
1880			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1881			unfreeze_array(conf);
1882		}
1883
1884		clear_bit(WantReplacement, &rdev->flags);
1885		err = md_integrity_register(mddev);
1886	}
1887abort:
1888
1889	print_conf(conf);
1890	return err;
1891}
1892
1893static void end_sync_read(struct bio *bio)
1894{
1895	struct r1bio *r1_bio = get_resync_r1bio(bio);
1896
1897	update_head_pos(r1_bio->read_disk, r1_bio);
1898
1899	/*
1900	 * we have read a block, now it needs to be re-written,
1901	 * or re-read if the read failed.
1902	 * We don't do much here, just schedule handling by raid1d
1903	 */
1904	if (!bio->bi_status)
1905		set_bit(R1BIO_Uptodate, &r1_bio->state);
1906
1907	if (atomic_dec_and_test(&r1_bio->remaining))
1908		reschedule_retry(r1_bio);
1909}
1910
1911static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1912{
1913	sector_t sync_blocks = 0;
1914	sector_t s = r1_bio->sector;
1915	long sectors_to_go = r1_bio->sectors;
1916
1917	/* make sure these bits don't get cleared. */
1918	do {
1919		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1920		s += sync_blocks;
1921		sectors_to_go -= sync_blocks;
1922	} while (sectors_to_go > 0);
1923}
1924
1925static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1926{
1927	if (atomic_dec_and_test(&r1_bio->remaining)) {
1928		struct mddev *mddev = r1_bio->mddev;
1929		int s = r1_bio->sectors;
1930
1931		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1932		    test_bit(R1BIO_WriteError, &r1_bio->state))
1933			reschedule_retry(r1_bio);
1934		else {
1935			put_buf(r1_bio);
1936			md_done_sync(mddev, s, uptodate);
1937		}
1938	}
1939}
1940
1941static void end_sync_write(struct bio *bio)
1942{
1943	int uptodate = !bio->bi_status;
1944	struct r1bio *r1_bio = get_resync_r1bio(bio);
1945	struct mddev *mddev = r1_bio->mddev;
1946	struct r1conf *conf = mddev->private;
1947	sector_t first_bad;
1948	int bad_sectors;
1949	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1950
1951	if (!uptodate) {
1952		abort_sync_write(mddev, r1_bio);
1953		set_bit(WriteErrorSeen, &rdev->flags);
1954		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1955			set_bit(MD_RECOVERY_NEEDED, &
1956				mddev->recovery);
1957		set_bit(R1BIO_WriteError, &r1_bio->state);
1958	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1959			       &first_bad, &bad_sectors) &&
1960		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1961				r1_bio->sector,
1962				r1_bio->sectors,
1963				&first_bad, &bad_sectors)
1964		)
1965		set_bit(R1BIO_MadeGood, &r1_bio->state);
1966
1967	put_sync_write_buf(r1_bio, uptodate);
1968}
1969
1970static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1971			   int sectors, struct page *page, blk_opf_t rw)
1972{
1973	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1974		/* success */
1975		return 1;
1976	if (rw == REQ_OP_WRITE) {
1977		set_bit(WriteErrorSeen, &rdev->flags);
1978		if (!test_and_set_bit(WantReplacement,
1979				      &rdev->flags))
1980			set_bit(MD_RECOVERY_NEEDED, &
1981				rdev->mddev->recovery);
1982	}
1983	/* need to record an error - either for the block or the device */
1984	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1985		md_error(rdev->mddev, rdev);
1986	return 0;
1987}
1988
1989static int fix_sync_read_error(struct r1bio *r1_bio)
1990{
1991	/* Try some synchronous reads of other devices to get
1992	 * good data, much like with normal read errors.  Only
1993	 * read into the pages we already have so we don't
1994	 * need to re-issue the read request.
1995	 * We don't need to freeze the array, because being in an
1996	 * active sync request, there is no normal IO, and
1997	 * no overlapping syncs.
1998	 * We don't need to check is_badblock() again as we
1999	 * made sure that anything with a bad block in range
2000	 * will have bi_end_io clear.
2001	 */
2002	struct mddev *mddev = r1_bio->mddev;
2003	struct r1conf *conf = mddev->private;
2004	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2005	struct page **pages = get_resync_pages(bio)->pages;
2006	sector_t sect = r1_bio->sector;
2007	int sectors = r1_bio->sectors;
2008	int idx = 0;
2009	struct md_rdev *rdev;
2010
2011	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2012	if (test_bit(FailFast, &rdev->flags)) {
2013		/* Don't try recovering from here - just fail it
2014		 * ... unless it is the last working device of course */
2015		md_error(mddev, rdev);
2016		if (test_bit(Faulty, &rdev->flags))
2017			/* Don't try to read from here, but make sure
2018			 * put_buf does it's thing
2019			 */
2020			bio->bi_end_io = end_sync_write;
2021	}
2022
2023	while(sectors) {
2024		int s = sectors;
2025		int d = r1_bio->read_disk;
2026		int success = 0;
2027		int start;
2028
2029		if (s > (PAGE_SIZE>>9))
2030			s = PAGE_SIZE >> 9;
2031		do {
2032			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2033				/* No rcu protection needed here devices
2034				 * can only be removed when no resync is
2035				 * active, and resync is currently active
2036				 */
2037				rdev = conf->mirrors[d].rdev;
2038				if (sync_page_io(rdev, sect, s<<9,
2039						 pages[idx],
2040						 REQ_OP_READ, false)) {
2041					success = 1;
2042					break;
2043				}
2044			}
2045			d++;
2046			if (d == conf->raid_disks * 2)
2047				d = 0;
2048		} while (!success && d != r1_bio->read_disk);
2049
2050		if (!success) {
2051			int abort = 0;
2052			/* Cannot read from anywhere, this block is lost.
2053			 * Record a bad block on each device.  If that doesn't
2054			 * work just disable and interrupt the recovery.
2055			 * Don't fail devices as that won't really help.
2056			 */
2057			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2058					    mdname(mddev), bio->bi_bdev,
2059					    (unsigned long long)r1_bio->sector);
2060			for (d = 0; d < conf->raid_disks * 2; d++) {
2061				rdev = conf->mirrors[d].rdev;
2062				if (!rdev || test_bit(Faulty, &rdev->flags))
2063					continue;
2064				if (!rdev_set_badblocks(rdev, sect, s, 0))
2065					abort = 1;
2066			}
2067			if (abort) {
2068				conf->recovery_disabled =
2069					mddev->recovery_disabled;
2070				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2071				md_done_sync(mddev, r1_bio->sectors, 0);
2072				put_buf(r1_bio);
2073				return 0;
2074			}
2075			/* Try next page */
2076			sectors -= s;
2077			sect += s;
2078			idx++;
2079			continue;
2080		}
2081
2082		start = d;
2083		/* write it back and re-read */
2084		while (d != r1_bio->read_disk) {
2085			if (d == 0)
2086				d = conf->raid_disks * 2;
2087			d--;
2088			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089				continue;
2090			rdev = conf->mirrors[d].rdev;
2091			if (r1_sync_page_io(rdev, sect, s,
2092					    pages[idx],
2093					    REQ_OP_WRITE) == 0) {
2094				r1_bio->bios[d]->bi_end_io = NULL;
2095				rdev_dec_pending(rdev, mddev);
2096			}
2097		}
2098		d = start;
2099		while (d != r1_bio->read_disk) {
2100			if (d == 0)
2101				d = conf->raid_disks * 2;
2102			d--;
2103			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104				continue;
2105			rdev = conf->mirrors[d].rdev;
2106			if (r1_sync_page_io(rdev, sect, s,
2107					    pages[idx],
2108					    REQ_OP_READ) != 0)
2109				atomic_add(s, &rdev->corrected_errors);
2110		}
2111		sectors -= s;
2112		sect += s;
2113		idx ++;
2114	}
2115	set_bit(R1BIO_Uptodate, &r1_bio->state);
2116	bio->bi_status = 0;
2117	return 1;
2118}
2119
2120static void process_checks(struct r1bio *r1_bio)
2121{
2122	/* We have read all readable devices.  If we haven't
2123	 * got the block, then there is no hope left.
2124	 * If we have, then we want to do a comparison
2125	 * and skip the write if everything is the same.
2126	 * If any blocks failed to read, then we need to
2127	 * attempt an over-write
2128	 */
2129	struct mddev *mddev = r1_bio->mddev;
2130	struct r1conf *conf = mddev->private;
2131	int primary;
2132	int i;
2133	int vcnt;
2134
2135	/* Fix variable parts of all bios */
2136	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2137	for (i = 0; i < conf->raid_disks * 2; i++) {
2138		blk_status_t status;
2139		struct bio *b = r1_bio->bios[i];
2140		struct resync_pages *rp = get_resync_pages(b);
2141		if (b->bi_end_io != end_sync_read)
2142			continue;
2143		/* fixup the bio for reuse, but preserve errno */
2144		status = b->bi_status;
2145		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2146		b->bi_status = status;
2147		b->bi_iter.bi_sector = r1_bio->sector +
2148			conf->mirrors[i].rdev->data_offset;
2149		b->bi_end_io = end_sync_read;
2150		rp->raid_bio = r1_bio;
2151		b->bi_private = rp;
2152
2153		/* initialize bvec table again */
2154		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2155	}
2156	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2157		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2158		    !r1_bio->bios[primary]->bi_status) {
2159			r1_bio->bios[primary]->bi_end_io = NULL;
2160			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2161			break;
2162		}
2163	r1_bio->read_disk = primary;
2164	for (i = 0; i < conf->raid_disks * 2; i++) {
2165		int j = 0;
2166		struct bio *pbio = r1_bio->bios[primary];
2167		struct bio *sbio = r1_bio->bios[i];
2168		blk_status_t status = sbio->bi_status;
2169		struct page **ppages = get_resync_pages(pbio)->pages;
2170		struct page **spages = get_resync_pages(sbio)->pages;
2171		struct bio_vec *bi;
2172		int page_len[RESYNC_PAGES] = { 0 };
2173		struct bvec_iter_all iter_all;
2174
2175		if (sbio->bi_end_io != end_sync_read)
2176			continue;
2177		/* Now we can 'fixup' the error value */
2178		sbio->bi_status = 0;
2179
2180		bio_for_each_segment_all(bi, sbio, iter_all)
2181			page_len[j++] = bi->bv_len;
2182
2183		if (!status) {
2184			for (j = vcnt; j-- ; ) {
2185				if (memcmp(page_address(ppages[j]),
2186					   page_address(spages[j]),
2187					   page_len[j]))
2188					break;
2189			}
2190		} else
2191			j = 0;
2192		if (j >= 0)
2193			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2194		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2195			      && !status)) {
2196			/* No need to write to this device. */
2197			sbio->bi_end_io = NULL;
2198			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2199			continue;
2200		}
2201
2202		bio_copy_data(sbio, pbio);
2203	}
2204}
2205
2206static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2207{
2208	struct r1conf *conf = mddev->private;
2209	int i;
2210	int disks = conf->raid_disks * 2;
2211	struct bio *wbio;
2212
2213	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2214		/* ouch - failed to read all of that. */
2215		if (!fix_sync_read_error(r1_bio))
2216			return;
2217
2218	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2219		process_checks(r1_bio);
2220
2221	/*
2222	 * schedule writes
2223	 */
2224	atomic_set(&r1_bio->remaining, 1);
2225	for (i = 0; i < disks ; i++) {
2226		wbio = r1_bio->bios[i];
2227		if (wbio->bi_end_io == NULL ||
2228		    (wbio->bi_end_io == end_sync_read &&
2229		     (i == r1_bio->read_disk ||
2230		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2231			continue;
2232		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2233			abort_sync_write(mddev, r1_bio);
2234			continue;
2235		}
2236
2237		wbio->bi_opf = REQ_OP_WRITE;
2238		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2239			wbio->bi_opf |= MD_FAILFAST;
2240
2241		wbio->bi_end_io = end_sync_write;
2242		atomic_inc(&r1_bio->remaining);
2243		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2244
2245		submit_bio_noacct(wbio);
2246	}
2247
2248	put_sync_write_buf(r1_bio, 1);
2249}
2250
2251/*
2252 * This is a kernel thread which:
2253 *
2254 *	1.	Retries failed read operations on working mirrors.
2255 *	2.	Updates the raid superblock when problems encounter.
2256 *	3.	Performs writes following reads for array synchronising.
2257 */
2258
2259static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 
2260{
2261	sector_t sect = r1_bio->sector;
2262	int sectors = r1_bio->sectors;
2263	int read_disk = r1_bio->read_disk;
2264	struct mddev *mddev = conf->mddev;
2265	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2266
2267	if (exceed_read_errors(mddev, rdev)) {
2268		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2269		return;
2270	}
2271
2272	while(sectors) {
2273		int s = sectors;
2274		int d = read_disk;
2275		int success = 0;
2276		int start;
 
2277
2278		if (s > (PAGE_SIZE>>9))
2279			s = PAGE_SIZE >> 9;
2280
2281		do {
2282			sector_t first_bad;
2283			int bad_sectors;
2284
2285			rdev = conf->mirrors[d].rdev;
 
2286			if (rdev &&
2287			    (test_bit(In_sync, &rdev->flags) ||
2288			     (!test_bit(Faulty, &rdev->flags) &&
2289			      rdev->recovery_offset >= sect + s)) &&
2290			    is_badblock(rdev, sect, s,
2291					&first_bad, &bad_sectors) == 0) {
2292				atomic_inc(&rdev->nr_pending);
 
2293				if (sync_page_io(rdev, sect, s<<9,
2294					 conf->tmppage, REQ_OP_READ, false))
2295					success = 1;
2296				rdev_dec_pending(rdev, mddev);
2297				if (success)
2298					break;
2299			}
2300
2301			d++;
2302			if (d == conf->raid_disks * 2)
2303				d = 0;
2304		} while (d != read_disk);
2305
2306		if (!success) {
2307			/* Cannot read from anywhere - mark it bad */
2308			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2309			if (!rdev_set_badblocks(rdev, sect, s, 0))
2310				md_error(mddev, rdev);
2311			break;
2312		}
2313		/* write it back and re-read */
2314		start = d;
2315		while (d != read_disk) {
2316			if (d==0)
2317				d = conf->raid_disks * 2;
2318			d--;
2319			rdev = conf->mirrors[d].rdev;
 
2320			if (rdev &&
2321			    !test_bit(Faulty, &rdev->flags)) {
2322				atomic_inc(&rdev->nr_pending);
 
2323				r1_sync_page_io(rdev, sect, s,
2324						conf->tmppage, REQ_OP_WRITE);
2325				rdev_dec_pending(rdev, mddev);
2326			}
 
2327		}
2328		d = start;
2329		while (d != read_disk) {
2330			if (d==0)
2331				d = conf->raid_disks * 2;
2332			d--;
2333			rdev = conf->mirrors[d].rdev;
 
2334			if (rdev &&
2335			    !test_bit(Faulty, &rdev->flags)) {
2336				atomic_inc(&rdev->nr_pending);
 
2337				if (r1_sync_page_io(rdev, sect, s,
2338						conf->tmppage, REQ_OP_READ)) {
2339					atomic_add(s, &rdev->corrected_errors);
2340					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2341						mdname(mddev), s,
2342						(unsigned long long)(sect +
2343								     rdev->data_offset),
2344						rdev->bdev);
2345				}
2346				rdev_dec_pending(rdev, mddev);
2347			}
 
2348		}
2349		sectors -= s;
2350		sect += s;
2351	}
2352}
2353
2354static int narrow_write_error(struct r1bio *r1_bio, int i)
2355{
2356	struct mddev *mddev = r1_bio->mddev;
2357	struct r1conf *conf = mddev->private;
2358	struct md_rdev *rdev = conf->mirrors[i].rdev;
2359
2360	/* bio has the data to be written to device 'i' where
2361	 * we just recently had a write error.
2362	 * We repeatedly clone the bio and trim down to one block,
2363	 * then try the write.  Where the write fails we record
2364	 * a bad block.
2365	 * It is conceivable that the bio doesn't exactly align with
2366	 * blocks.  We must handle this somehow.
2367	 *
2368	 * We currently own a reference on the rdev.
2369	 */
2370
2371	int block_sectors;
2372	sector_t sector;
2373	int sectors;
2374	int sect_to_write = r1_bio->sectors;
2375	int ok = 1;
2376
2377	if (rdev->badblocks.shift < 0)
2378		return 0;
2379
2380	block_sectors = roundup(1 << rdev->badblocks.shift,
2381				bdev_logical_block_size(rdev->bdev) >> 9);
2382	sector = r1_bio->sector;
2383	sectors = ((sector + block_sectors)
2384		   & ~(sector_t)(block_sectors - 1))
2385		- sector;
2386
2387	while (sect_to_write) {
2388		struct bio *wbio;
2389		if (sectors > sect_to_write)
2390			sectors = sect_to_write;
2391		/* Write at 'sector' for 'sectors'*/
2392
2393		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2394			wbio = bio_alloc_clone(rdev->bdev,
2395					       r1_bio->behind_master_bio,
2396					       GFP_NOIO, &mddev->bio_set);
2397		} else {
2398			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2399					       GFP_NOIO, &mddev->bio_set);
2400		}
2401
2402		wbio->bi_opf = REQ_OP_WRITE;
2403		wbio->bi_iter.bi_sector = r1_bio->sector;
2404		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2405
2406		bio_trim(wbio, sector - r1_bio->sector, sectors);
2407		wbio->bi_iter.bi_sector += rdev->data_offset;
2408
2409		if (submit_bio_wait(wbio) < 0)
2410			/* failure! */
2411			ok = rdev_set_badblocks(rdev, sector,
2412						sectors, 0)
2413				&& ok;
2414
2415		bio_put(wbio);
2416		sect_to_write -= sectors;
2417		sector += sectors;
2418		sectors = block_sectors;
2419	}
2420	return ok;
2421}
2422
2423static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2424{
2425	int m;
2426	int s = r1_bio->sectors;
2427	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2428		struct md_rdev *rdev = conf->mirrors[m].rdev;
2429		struct bio *bio = r1_bio->bios[m];
2430		if (bio->bi_end_io == NULL)
2431			continue;
2432		if (!bio->bi_status &&
2433		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2434			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2435		}
2436		if (bio->bi_status &&
2437		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2438			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2439				md_error(conf->mddev, rdev);
2440		}
2441	}
2442	put_buf(r1_bio);
2443	md_done_sync(conf->mddev, s, 1);
2444}
2445
2446static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447{
2448	int m, idx;
2449	bool fail = false;
2450
2451	for (m = 0; m < conf->raid_disks * 2 ; m++)
2452		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2453			struct md_rdev *rdev = conf->mirrors[m].rdev;
2454			rdev_clear_badblocks(rdev,
2455					     r1_bio->sector,
2456					     r1_bio->sectors, 0);
2457			rdev_dec_pending(rdev, conf->mddev);
2458		} else if (r1_bio->bios[m] != NULL) {
2459			/* This drive got a write error.  We need to
2460			 * narrow down and record precise write
2461			 * errors.
2462			 */
2463			fail = true;
2464			if (!narrow_write_error(r1_bio, m)) {
2465				md_error(conf->mddev,
2466					 conf->mirrors[m].rdev);
2467				/* an I/O failed, we can't clear the bitmap */
2468				set_bit(R1BIO_Degraded, &r1_bio->state);
2469			}
2470			rdev_dec_pending(conf->mirrors[m].rdev,
2471					 conf->mddev);
2472		}
2473	if (fail) {
2474		spin_lock_irq(&conf->device_lock);
2475		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2476		idx = sector_to_idx(r1_bio->sector);
2477		atomic_inc(&conf->nr_queued[idx]);
2478		spin_unlock_irq(&conf->device_lock);
2479		/*
2480		 * In case freeze_array() is waiting for condition
2481		 * get_unqueued_pending() == extra to be true.
2482		 */
2483		wake_up(&conf->wait_barrier);
2484		md_wakeup_thread(conf->mddev->thread);
2485	} else {
2486		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487			close_write(r1_bio);
2488		raid_end_bio_io(r1_bio);
2489	}
2490}
2491
2492static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2493{
2494	struct mddev *mddev = conf->mddev;
2495	struct bio *bio;
2496	struct md_rdev *rdev;
2497	sector_t sector;
2498
2499	clear_bit(R1BIO_ReadError, &r1_bio->state);
2500	/* we got a read error. Maybe the drive is bad.  Maybe just
2501	 * the block and we can fix it.
2502	 * We freeze all other IO, and try reading the block from
2503	 * other devices.  When we find one, we re-write
2504	 * and check it that fixes the read error.
2505	 * This is all done synchronously while the array is
2506	 * frozen
2507	 */
2508
2509	bio = r1_bio->bios[r1_bio->read_disk];
2510	bio_put(bio);
2511	r1_bio->bios[r1_bio->read_disk] = NULL;
2512
2513	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2514	if (mddev->ro == 0
2515	    && !test_bit(FailFast, &rdev->flags)) {
2516		freeze_array(conf, 1);
2517		fix_read_error(conf, r1_bio);
 
2518		unfreeze_array(conf);
2519	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2520		md_error(mddev, rdev);
2521	} else {
2522		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2523	}
2524
2525	rdev_dec_pending(rdev, conf->mddev);
2526	sector = r1_bio->sector;
2527	bio = r1_bio->master_bio;
2528
2529	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2530	r1_bio->state = 0;
2531	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2532	allow_barrier(conf, sector);
2533}
2534
2535static void raid1d(struct md_thread *thread)
2536{
2537	struct mddev *mddev = thread->mddev;
2538	struct r1bio *r1_bio;
2539	unsigned long flags;
2540	struct r1conf *conf = mddev->private;
2541	struct list_head *head = &conf->retry_list;
2542	struct blk_plug plug;
2543	int idx;
2544
2545	md_check_recovery(mddev);
2546
2547	if (!list_empty_careful(&conf->bio_end_io_list) &&
2548	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2549		LIST_HEAD(tmp);
2550		spin_lock_irqsave(&conf->device_lock, flags);
2551		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2552			list_splice_init(&conf->bio_end_io_list, &tmp);
2553		spin_unlock_irqrestore(&conf->device_lock, flags);
2554		while (!list_empty(&tmp)) {
2555			r1_bio = list_first_entry(&tmp, struct r1bio,
2556						  retry_list);
2557			list_del(&r1_bio->retry_list);
2558			idx = sector_to_idx(r1_bio->sector);
2559			atomic_dec(&conf->nr_queued[idx]);
2560			if (mddev->degraded)
2561				set_bit(R1BIO_Degraded, &r1_bio->state);
2562			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2563				close_write(r1_bio);
2564			raid_end_bio_io(r1_bio);
2565		}
2566	}
2567
2568	blk_start_plug(&plug);
2569	for (;;) {
2570
2571		flush_pending_writes(conf);
2572
2573		spin_lock_irqsave(&conf->device_lock, flags);
2574		if (list_empty(head)) {
2575			spin_unlock_irqrestore(&conf->device_lock, flags);
2576			break;
2577		}
2578		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2579		list_del(head->prev);
2580		idx = sector_to_idx(r1_bio->sector);
2581		atomic_dec(&conf->nr_queued[idx]);
2582		spin_unlock_irqrestore(&conf->device_lock, flags);
2583
2584		mddev = r1_bio->mddev;
2585		conf = mddev->private;
2586		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2587			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2588			    test_bit(R1BIO_WriteError, &r1_bio->state))
2589				handle_sync_write_finished(conf, r1_bio);
2590			else
2591				sync_request_write(mddev, r1_bio);
2592		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2593			   test_bit(R1BIO_WriteError, &r1_bio->state))
2594			handle_write_finished(conf, r1_bio);
2595		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2596			handle_read_error(conf, r1_bio);
2597		else
2598			WARN_ON_ONCE(1);
2599
2600		cond_resched();
2601		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2602			md_check_recovery(mddev);
2603	}
2604	blk_finish_plug(&plug);
2605}
2606
2607static int init_resync(struct r1conf *conf)
2608{
2609	int buffs;
2610
2611	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2612	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2613
2614	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2615			    r1buf_pool_free, conf->poolinfo);
2616}
2617
2618static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2619{
2620	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2621	struct resync_pages *rps;
2622	struct bio *bio;
2623	int i;
2624
2625	for (i = conf->poolinfo->raid_disks; i--; ) {
2626		bio = r1bio->bios[i];
2627		rps = bio->bi_private;
2628		bio_reset(bio, NULL, 0);
2629		bio->bi_private = rps;
2630	}
2631	r1bio->master_bio = NULL;
2632	return r1bio;
2633}
2634
2635/*
2636 * perform a "sync" on one "block"
2637 *
2638 * We need to make sure that no normal I/O request - particularly write
2639 * requests - conflict with active sync requests.
2640 *
2641 * This is achieved by tracking pending requests and a 'barrier' concept
2642 * that can be installed to exclude normal IO requests.
2643 */
2644
2645static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2646				   int *skipped)
2647{
2648	struct r1conf *conf = mddev->private;
2649	struct r1bio *r1_bio;
2650	struct bio *bio;
2651	sector_t max_sector, nr_sectors;
2652	int disk = -1;
2653	int i;
2654	int wonly = -1;
2655	int write_targets = 0, read_targets = 0;
2656	sector_t sync_blocks;
2657	int still_degraded = 0;
2658	int good_sectors = RESYNC_SECTORS;
2659	int min_bad = 0; /* number of sectors that are bad in all devices */
2660	int idx = sector_to_idx(sector_nr);
2661	int page_idx = 0;
2662
2663	if (!mempool_initialized(&conf->r1buf_pool))
2664		if (init_resync(conf))
2665			return 0;
2666
2667	max_sector = mddev->dev_sectors;
2668	if (sector_nr >= max_sector) {
2669		/* If we aborted, we need to abort the
2670		 * sync on the 'current' bitmap chunk (there will
2671		 * only be one in raid1 resync.
2672		 * We can find the current addess in mddev->curr_resync
2673		 */
2674		if (mddev->curr_resync < max_sector) /* aborted */
2675			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2676					   &sync_blocks, 1);
2677		else /* completed sync */
2678			conf->fullsync = 0;
2679
2680		md_bitmap_close_sync(mddev->bitmap);
2681		close_sync(conf);
2682
2683		if (mddev_is_clustered(mddev)) {
2684			conf->cluster_sync_low = 0;
2685			conf->cluster_sync_high = 0;
2686		}
2687		return 0;
2688	}
2689
2690	if (mddev->bitmap == NULL &&
2691	    mddev->recovery_cp == MaxSector &&
2692	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2693	    conf->fullsync == 0) {
2694		*skipped = 1;
2695		return max_sector - sector_nr;
2696	}
2697	/* before building a request, check if we can skip these blocks..
2698	 * This call the bitmap_start_sync doesn't actually record anything
2699	 */
2700	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2701	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2702		/* We can skip this block, and probably several more */
2703		*skipped = 1;
2704		return sync_blocks;
2705	}
2706
2707	/*
2708	 * If there is non-resync activity waiting for a turn, then let it
2709	 * though before starting on this new sync request.
2710	 */
2711	if (atomic_read(&conf->nr_waiting[idx]))
2712		schedule_timeout_uninterruptible(1);
2713
2714	/* we are incrementing sector_nr below. To be safe, we check against
2715	 * sector_nr + two times RESYNC_SECTORS
2716	 */
2717
2718	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2719		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2720
2721
2722	if (raise_barrier(conf, sector_nr))
2723		return 0;
2724
2725	r1_bio = raid1_alloc_init_r1buf(conf);
2726
 
2727	/*
2728	 * If we get a correctably read error during resync or recovery,
2729	 * we might want to read from a different device.  So we
2730	 * flag all drives that could conceivably be read from for READ,
2731	 * and any others (which will be non-In_sync devices) for WRITE.
2732	 * If a read fails, we try reading from something else for which READ
2733	 * is OK.
2734	 */
2735
2736	r1_bio->mddev = mddev;
2737	r1_bio->sector = sector_nr;
2738	r1_bio->state = 0;
2739	set_bit(R1BIO_IsSync, &r1_bio->state);
2740	/* make sure good_sectors won't go across barrier unit boundary */
2741	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2742
2743	for (i = 0; i < conf->raid_disks * 2; i++) {
2744		struct md_rdev *rdev;
2745		bio = r1_bio->bios[i];
2746
2747		rdev = conf->mirrors[i].rdev;
2748		if (rdev == NULL ||
2749		    test_bit(Faulty, &rdev->flags)) {
2750			if (i < conf->raid_disks)
2751				still_degraded = 1;
2752		} else if (!test_bit(In_sync, &rdev->flags)) {
2753			bio->bi_opf = REQ_OP_WRITE;
2754			bio->bi_end_io = end_sync_write;
2755			write_targets ++;
2756		} else {
2757			/* may need to read from here */
2758			sector_t first_bad = MaxSector;
2759			int bad_sectors;
2760
2761			if (is_badblock(rdev, sector_nr, good_sectors,
2762					&first_bad, &bad_sectors)) {
2763				if (first_bad > sector_nr)
2764					good_sectors = first_bad - sector_nr;
2765				else {
2766					bad_sectors -= (sector_nr - first_bad);
2767					if (min_bad == 0 ||
2768					    min_bad > bad_sectors)
2769						min_bad = bad_sectors;
2770				}
2771			}
2772			if (sector_nr < first_bad) {
2773				if (test_bit(WriteMostly, &rdev->flags)) {
2774					if (wonly < 0)
2775						wonly = i;
2776				} else {
2777					if (disk < 0)
2778						disk = i;
2779				}
2780				bio->bi_opf = REQ_OP_READ;
2781				bio->bi_end_io = end_sync_read;
2782				read_targets++;
2783			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2784				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2785				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2786				/*
2787				 * The device is suitable for reading (InSync),
2788				 * but has bad block(s) here. Let's try to correct them,
2789				 * if we are doing resync or repair. Otherwise, leave
2790				 * this device alone for this sync request.
2791				 */
2792				bio->bi_opf = REQ_OP_WRITE;
2793				bio->bi_end_io = end_sync_write;
2794				write_targets++;
2795			}
2796		}
2797		if (rdev && bio->bi_end_io) {
2798			atomic_inc(&rdev->nr_pending);
2799			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2800			bio_set_dev(bio, rdev->bdev);
2801			if (test_bit(FailFast, &rdev->flags))
2802				bio->bi_opf |= MD_FAILFAST;
2803		}
2804	}
 
2805	if (disk < 0)
2806		disk = wonly;
2807	r1_bio->read_disk = disk;
2808
2809	if (read_targets == 0 && min_bad > 0) {
2810		/* These sectors are bad on all InSync devices, so we
2811		 * need to mark them bad on all write targets
2812		 */
2813		int ok = 1;
2814		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2815			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2816				struct md_rdev *rdev = conf->mirrors[i].rdev;
2817				ok = rdev_set_badblocks(rdev, sector_nr,
2818							min_bad, 0
2819					) && ok;
2820			}
2821		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2822		*skipped = 1;
2823		put_buf(r1_bio);
2824
2825		if (!ok) {
2826			/* Cannot record the badblocks, so need to
2827			 * abort the resync.
2828			 * If there are multiple read targets, could just
2829			 * fail the really bad ones ???
2830			 */
2831			conf->recovery_disabled = mddev->recovery_disabled;
2832			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2833			return 0;
2834		} else
2835			return min_bad;
2836
2837	}
2838	if (min_bad > 0 && min_bad < good_sectors) {
2839		/* only resync enough to reach the next bad->good
2840		 * transition */
2841		good_sectors = min_bad;
2842	}
2843
2844	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2845		/* extra read targets are also write targets */
2846		write_targets += read_targets-1;
2847
2848	if (write_targets == 0 || read_targets == 0) {
2849		/* There is nowhere to write, so all non-sync
2850		 * drives must be failed - so we are finished
2851		 */
2852		sector_t rv;
2853		if (min_bad > 0)
2854			max_sector = sector_nr + min_bad;
2855		rv = max_sector - sector_nr;
2856		*skipped = 1;
2857		put_buf(r1_bio);
2858		return rv;
2859	}
2860
2861	if (max_sector > mddev->resync_max)
2862		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863	if (max_sector > sector_nr + good_sectors)
2864		max_sector = sector_nr + good_sectors;
2865	nr_sectors = 0;
2866	sync_blocks = 0;
2867	do {
2868		struct page *page;
2869		int len = PAGE_SIZE;
2870		if (sector_nr + (len>>9) > max_sector)
2871			len = (max_sector - sector_nr) << 9;
2872		if (len == 0)
2873			break;
2874		if (sync_blocks == 0) {
2875			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2876						  &sync_blocks, still_degraded) &&
2877			    !conf->fullsync &&
2878			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2879				break;
2880			if ((len >> 9) > sync_blocks)
2881				len = sync_blocks<<9;
2882		}
2883
2884		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2885			struct resync_pages *rp;
2886
2887			bio = r1_bio->bios[i];
2888			rp = get_resync_pages(bio);
2889			if (bio->bi_end_io) {
2890				page = resync_fetch_page(rp, page_idx);
2891
2892				/*
2893				 * won't fail because the vec table is big
2894				 * enough to hold all these pages
2895				 */
2896				__bio_add_page(bio, page, len, 0);
2897			}
2898		}
2899		nr_sectors += len>>9;
2900		sector_nr += len>>9;
2901		sync_blocks -= (len>>9);
2902	} while (++page_idx < RESYNC_PAGES);
2903
2904	r1_bio->sectors = nr_sectors;
2905
2906	if (mddev_is_clustered(mddev) &&
2907			conf->cluster_sync_high < sector_nr + nr_sectors) {
2908		conf->cluster_sync_low = mddev->curr_resync_completed;
2909		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2910		/* Send resync message */
2911		md_cluster_ops->resync_info_update(mddev,
2912				conf->cluster_sync_low,
2913				conf->cluster_sync_high);
2914	}
2915
2916	/* For a user-requested sync, we read all readable devices and do a
2917	 * compare
2918	 */
2919	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2920		atomic_set(&r1_bio->remaining, read_targets);
2921		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2922			bio = r1_bio->bios[i];
2923			if (bio->bi_end_io == end_sync_read) {
2924				read_targets--;
2925				md_sync_acct_bio(bio, nr_sectors);
2926				if (read_targets == 1)
2927					bio->bi_opf &= ~MD_FAILFAST;
2928				submit_bio_noacct(bio);
2929			}
2930		}
2931	} else {
2932		atomic_set(&r1_bio->remaining, 1);
2933		bio = r1_bio->bios[r1_bio->read_disk];
2934		md_sync_acct_bio(bio, nr_sectors);
2935		if (read_targets == 1)
2936			bio->bi_opf &= ~MD_FAILFAST;
2937		submit_bio_noacct(bio);
2938	}
2939	return nr_sectors;
2940}
2941
2942static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2943{
2944	if (sectors)
2945		return sectors;
2946
2947	return mddev->dev_sectors;
2948}
2949
2950static struct r1conf *setup_conf(struct mddev *mddev)
2951{
2952	struct r1conf *conf;
2953	int i;
2954	struct raid1_info *disk;
2955	struct md_rdev *rdev;
2956	int err = -ENOMEM;
2957
2958	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2959	if (!conf)
2960		goto abort;
2961
2962	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2963				   sizeof(atomic_t), GFP_KERNEL);
2964	if (!conf->nr_pending)
2965		goto abort;
2966
2967	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2968				   sizeof(atomic_t), GFP_KERNEL);
2969	if (!conf->nr_waiting)
2970		goto abort;
2971
2972	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2973				  sizeof(atomic_t), GFP_KERNEL);
2974	if (!conf->nr_queued)
2975		goto abort;
2976
2977	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2978				sizeof(atomic_t), GFP_KERNEL);
2979	if (!conf->barrier)
2980		goto abort;
2981
2982	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2983					    mddev->raid_disks, 2),
2984				GFP_KERNEL);
2985	if (!conf->mirrors)
2986		goto abort;
2987
2988	conf->tmppage = alloc_page(GFP_KERNEL);
2989	if (!conf->tmppage)
2990		goto abort;
2991
2992	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2993	if (!conf->poolinfo)
2994		goto abort;
2995	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2996	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2997			   rbio_pool_free, conf->poolinfo);
2998	if (err)
2999		goto abort;
3000
3001	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3002	if (err)
3003		goto abort;
3004
3005	conf->poolinfo->mddev = mddev;
3006
3007	err = -EINVAL;
3008	spin_lock_init(&conf->device_lock);
3009	rdev_for_each(rdev, mddev) {
3010		int disk_idx = rdev->raid_disk;
3011		if (disk_idx >= mddev->raid_disks
3012		    || disk_idx < 0)
3013			continue;
3014		if (test_bit(Replacement, &rdev->flags))
3015			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3016		else
3017			disk = conf->mirrors + disk_idx;
3018
3019		if (disk->rdev)
3020			goto abort;
3021		disk->rdev = rdev;
3022		disk->head_position = 0;
3023		disk->seq_start = MaxSector;
3024	}
3025	conf->raid_disks = mddev->raid_disks;
3026	conf->mddev = mddev;
3027	INIT_LIST_HEAD(&conf->retry_list);
3028	INIT_LIST_HEAD(&conf->bio_end_io_list);
3029
3030	spin_lock_init(&conf->resync_lock);
3031	init_waitqueue_head(&conf->wait_barrier);
3032
3033	bio_list_init(&conf->pending_bio_list);
3034	conf->recovery_disabled = mddev->recovery_disabled - 1;
3035
3036	err = -EIO;
3037	for (i = 0; i < conf->raid_disks * 2; i++) {
3038
3039		disk = conf->mirrors + i;
3040
3041		if (i < conf->raid_disks &&
3042		    disk[conf->raid_disks].rdev) {
3043			/* This slot has a replacement. */
3044			if (!disk->rdev) {
3045				/* No original, just make the replacement
3046				 * a recovering spare
3047				 */
3048				disk->rdev =
3049					disk[conf->raid_disks].rdev;
3050				disk[conf->raid_disks].rdev = NULL;
3051			} else if (!test_bit(In_sync, &disk->rdev->flags))
3052				/* Original is not in_sync - bad */
3053				goto abort;
3054		}
3055
3056		if (!disk->rdev ||
3057		    !test_bit(In_sync, &disk->rdev->flags)) {
3058			disk->head_position = 0;
3059			if (disk->rdev &&
3060			    (disk->rdev->saved_raid_disk < 0))
3061				conf->fullsync = 1;
3062		}
3063	}
3064
3065	err = -ENOMEM;
3066	rcu_assign_pointer(conf->thread,
3067			   md_register_thread(raid1d, mddev, "raid1"));
3068	if (!conf->thread)
3069		goto abort;
3070
3071	return conf;
3072
3073 abort:
3074	if (conf) {
3075		mempool_exit(&conf->r1bio_pool);
3076		kfree(conf->mirrors);
3077		safe_put_page(conf->tmppage);
3078		kfree(conf->poolinfo);
3079		kfree(conf->nr_pending);
3080		kfree(conf->nr_waiting);
3081		kfree(conf->nr_queued);
3082		kfree(conf->barrier);
3083		bioset_exit(&conf->bio_split);
3084		kfree(conf);
3085	}
3086	return ERR_PTR(err);
3087}
3088
3089static void raid1_free(struct mddev *mddev, void *priv);
3090static int raid1_run(struct mddev *mddev)
3091{
3092	struct r1conf *conf;
3093	int i;
3094	struct md_rdev *rdev;
3095	int ret;
3096
3097	if (mddev->level != 1) {
3098		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3099			mdname(mddev), mddev->level);
3100		return -EIO;
3101	}
3102	if (mddev->reshape_position != MaxSector) {
3103		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3104			mdname(mddev));
3105		return -EIO;
3106	}
3107
 
3108	/*
3109	 * copy the already verified devices into our private RAID1
3110	 * bookkeeping area. [whatever we allocate in run(),
3111	 * should be freed in raid1_free()]
3112	 */
3113	if (mddev->private == NULL)
3114		conf = setup_conf(mddev);
3115	else
3116		conf = mddev->private;
3117
3118	if (IS_ERR(conf))
3119		return PTR_ERR(conf);
3120
3121	if (mddev->queue)
3122		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3123
3124	rdev_for_each(rdev, mddev) {
3125		if (!mddev->gendisk)
3126			continue;
3127		disk_stack_limits(mddev->gendisk, rdev->bdev,
3128				  rdev->data_offset << 9);
3129	}
3130
3131	mddev->degraded = 0;
3132	for (i = 0; i < conf->raid_disks; i++)
3133		if (conf->mirrors[i].rdev == NULL ||
3134		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3135		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3136			mddev->degraded++;
3137	/*
3138	 * RAID1 needs at least one disk in active
3139	 */
3140	if (conf->raid_disks - mddev->degraded < 1) {
3141		md_unregister_thread(mddev, &conf->thread);
3142		ret = -EINVAL;
3143		goto abort;
3144	}
3145
3146	if (conf->raid_disks - mddev->degraded == 1)
3147		mddev->recovery_cp = MaxSector;
3148
3149	if (mddev->recovery_cp != MaxSector)
3150		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3151			mdname(mddev));
3152	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3153		mdname(mddev), mddev->raid_disks - mddev->degraded,
3154		mddev->raid_disks);
3155
3156	/*
3157	 * Ok, everything is just fine now
3158	 */
3159	rcu_assign_pointer(mddev->thread, conf->thread);
3160	rcu_assign_pointer(conf->thread, NULL);
3161	mddev->private = conf;
3162	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3163
3164	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3165
3166	ret = md_integrity_register(mddev);
3167	if (ret) {
3168		md_unregister_thread(mddev, &mddev->thread);
3169		goto abort;
3170	}
3171	return 0;
3172
3173abort:
3174	raid1_free(mddev, conf);
3175	return ret;
3176}
3177
3178static void raid1_free(struct mddev *mddev, void *priv)
3179{
3180	struct r1conf *conf = priv;
3181
3182	mempool_exit(&conf->r1bio_pool);
3183	kfree(conf->mirrors);
3184	safe_put_page(conf->tmppage);
3185	kfree(conf->poolinfo);
3186	kfree(conf->nr_pending);
3187	kfree(conf->nr_waiting);
3188	kfree(conf->nr_queued);
3189	kfree(conf->barrier);
3190	bioset_exit(&conf->bio_split);
3191	kfree(conf);
3192}
3193
3194static int raid1_resize(struct mddev *mddev, sector_t sectors)
3195{
3196	/* no resync is happening, and there is enough space
3197	 * on all devices, so we can resize.
3198	 * We need to make sure resync covers any new space.
3199	 * If the array is shrinking we should possibly wait until
3200	 * any io in the removed space completes, but it hardly seems
3201	 * worth it.
3202	 */
3203	sector_t newsize = raid1_size(mddev, sectors, 0);
3204	if (mddev->external_size &&
3205	    mddev->array_sectors > newsize)
3206		return -EINVAL;
3207	if (mddev->bitmap) {
3208		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3209		if (ret)
3210			return ret;
3211	}
3212	md_set_array_sectors(mddev, newsize);
3213	if (sectors > mddev->dev_sectors &&
3214	    mddev->recovery_cp > mddev->dev_sectors) {
3215		mddev->recovery_cp = mddev->dev_sectors;
3216		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3217	}
3218	mddev->dev_sectors = sectors;
3219	mddev->resync_max_sectors = sectors;
3220	return 0;
3221}
3222
3223static int raid1_reshape(struct mddev *mddev)
3224{
3225	/* We need to:
3226	 * 1/ resize the r1bio_pool
3227	 * 2/ resize conf->mirrors
3228	 *
3229	 * We allocate a new r1bio_pool if we can.
3230	 * Then raise a device barrier and wait until all IO stops.
3231	 * Then resize conf->mirrors and swap in the new r1bio pool.
3232	 *
3233	 * At the same time, we "pack" the devices so that all the missing
3234	 * devices have the higher raid_disk numbers.
3235	 */
3236	mempool_t newpool, oldpool;
3237	struct pool_info *newpoolinfo;
3238	struct raid1_info *newmirrors;
3239	struct r1conf *conf = mddev->private;
3240	int cnt, raid_disks;
3241	unsigned long flags;
3242	int d, d2;
3243	int ret;
3244
3245	memset(&newpool, 0, sizeof(newpool));
3246	memset(&oldpool, 0, sizeof(oldpool));
3247
3248	/* Cannot change chunk_size, layout, or level */
3249	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3250	    mddev->layout != mddev->new_layout ||
3251	    mddev->level != mddev->new_level) {
3252		mddev->new_chunk_sectors = mddev->chunk_sectors;
3253		mddev->new_layout = mddev->layout;
3254		mddev->new_level = mddev->level;
3255		return -EINVAL;
3256	}
3257
3258	if (!mddev_is_clustered(mddev))
3259		md_allow_write(mddev);
3260
3261	raid_disks = mddev->raid_disks + mddev->delta_disks;
3262
3263	if (raid_disks < conf->raid_disks) {
3264		cnt=0;
3265		for (d= 0; d < conf->raid_disks; d++)
3266			if (conf->mirrors[d].rdev)
3267				cnt++;
3268		if (cnt > raid_disks)
3269			return -EBUSY;
3270	}
3271
3272	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3273	if (!newpoolinfo)
3274		return -ENOMEM;
3275	newpoolinfo->mddev = mddev;
3276	newpoolinfo->raid_disks = raid_disks * 2;
3277
3278	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3279			   rbio_pool_free, newpoolinfo);
3280	if (ret) {
3281		kfree(newpoolinfo);
3282		return ret;
3283	}
3284	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3285					 raid_disks, 2),
3286			     GFP_KERNEL);
3287	if (!newmirrors) {
3288		kfree(newpoolinfo);
3289		mempool_exit(&newpool);
3290		return -ENOMEM;
3291	}
3292
3293	freeze_array(conf, 0);
3294
3295	/* ok, everything is stopped */
3296	oldpool = conf->r1bio_pool;
3297	conf->r1bio_pool = newpool;
3298
3299	for (d = d2 = 0; d < conf->raid_disks; d++) {
3300		struct md_rdev *rdev = conf->mirrors[d].rdev;
3301		if (rdev && rdev->raid_disk != d2) {
3302			sysfs_unlink_rdev(mddev, rdev);
3303			rdev->raid_disk = d2;
3304			sysfs_unlink_rdev(mddev, rdev);
3305			if (sysfs_link_rdev(mddev, rdev))
3306				pr_warn("md/raid1:%s: cannot register rd%d\n",
3307					mdname(mddev), rdev->raid_disk);
3308		}
3309		if (rdev)
3310			newmirrors[d2++].rdev = rdev;
3311	}
3312	kfree(conf->mirrors);
3313	conf->mirrors = newmirrors;
3314	kfree(conf->poolinfo);
3315	conf->poolinfo = newpoolinfo;
3316
3317	spin_lock_irqsave(&conf->device_lock, flags);
3318	mddev->degraded += (raid_disks - conf->raid_disks);
3319	spin_unlock_irqrestore(&conf->device_lock, flags);
3320	conf->raid_disks = mddev->raid_disks = raid_disks;
3321	mddev->delta_disks = 0;
3322
3323	unfreeze_array(conf);
3324
3325	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3326	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3327	md_wakeup_thread(mddev->thread);
3328
3329	mempool_exit(&oldpool);
3330	return 0;
3331}
3332
3333static void raid1_quiesce(struct mddev *mddev, int quiesce)
3334{
3335	struct r1conf *conf = mddev->private;
3336
3337	if (quiesce)
3338		freeze_array(conf, 0);
3339	else
3340		unfreeze_array(conf);
3341}
3342
3343static void *raid1_takeover(struct mddev *mddev)
3344{
3345	/* raid1 can take over:
3346	 *  raid5 with 2 devices, any layout or chunk size
3347	 */
3348	if (mddev->level == 5 && mddev->raid_disks == 2) {
3349		struct r1conf *conf;
3350		mddev->new_level = 1;
3351		mddev->new_layout = 0;
3352		mddev->new_chunk_sectors = 0;
3353		conf = setup_conf(mddev);
3354		if (!IS_ERR(conf)) {
3355			/* Array must appear to be quiesced */
3356			conf->array_frozen = 1;
3357			mddev_clear_unsupported_flags(mddev,
3358				UNSUPPORTED_MDDEV_FLAGS);
3359		}
3360		return conf;
3361	}
3362	return ERR_PTR(-EINVAL);
3363}
3364
3365static struct md_personality raid1_personality =
3366{
3367	.name		= "raid1",
3368	.level		= 1,
3369	.owner		= THIS_MODULE,
3370	.make_request	= raid1_make_request,
3371	.run		= raid1_run,
3372	.free		= raid1_free,
3373	.status		= raid1_status,
3374	.error_handler	= raid1_error,
3375	.hot_add_disk	= raid1_add_disk,
3376	.hot_remove_disk= raid1_remove_disk,
3377	.spare_active	= raid1_spare_active,
3378	.sync_request	= raid1_sync_request,
3379	.resize		= raid1_resize,
3380	.size		= raid1_size,
3381	.check_reshape	= raid1_reshape,
3382	.quiesce	= raid1_quiesce,
3383	.takeover	= raid1_takeover,
3384};
3385
3386static int __init raid_init(void)
3387{
3388	return register_md_personality(&raid1_personality);
3389}
3390
3391static void raid_exit(void)
3392{
3393	unregister_md_personality(&raid1_personality);
3394}
3395
3396module_init(raid_init);
3397module_exit(raid_exit);
3398MODULE_LICENSE("GPL");
3399MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3400MODULE_ALIAS("md-personality-3"); /* RAID1 */
3401MODULE_ALIAS("md-raid1");
3402MODULE_ALIAS("md-level-1");