Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)				\
  50	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#include "raid1-10.c"
  53
  54#define START(node) ((node)->start)
  55#define LAST(node) ((node)->last)
  56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  57		     START, LAST, static inline, raid1_rb);
  58
  59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  60				struct serial_info *si, int idx)
  61{
  62	unsigned long flags;
  63	int ret = 0;
  64	sector_t lo = r1_bio->sector;
  65	sector_t hi = lo + r1_bio->sectors;
  66	struct serial_in_rdev *serial = &rdev->serial[idx];
  67
  68	spin_lock_irqsave(&serial->serial_lock, flags);
  69	/* collision happened */
  70	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  71		ret = -EBUSY;
  72	else {
  73		si->start = lo;
  74		si->last = hi;
  75		raid1_rb_insert(si, &serial->serial_rb);
  76	}
  77	spin_unlock_irqrestore(&serial->serial_lock, flags);
  78
  79	return ret;
  80}
  81
  82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  83{
  84	struct mddev *mddev = rdev->mddev;
  85	struct serial_info *si;
  86	int idx = sector_to_idx(r1_bio->sector);
  87	struct serial_in_rdev *serial = &rdev->serial[idx];
  88
  89	if (WARN_ON(!mddev->serial_info_pool))
  90		return;
  91	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  92	wait_event(serial->serial_io_wait,
  93		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  94}
 
 
 
 
 
  95
  96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  97{
  98	struct serial_info *si;
  99	unsigned long flags;
 100	int found = 0;
 101	struct mddev *mddev = rdev->mddev;
 102	int idx = sector_to_idx(lo);
 103	struct serial_in_rdev *serial = &rdev->serial[idx];
 104
 105	spin_lock_irqsave(&serial->serial_lock, flags);
 106	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 107	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 108		if (si->start == lo && si->last == hi) {
 109			raid1_rb_remove(si, &serial->serial_rb);
 110			mempool_free(si, mddev->serial_info_pool);
 111			found = 1;
 112			break;
 113		}
 114	}
 115	if (!found)
 116		WARN(1, "The write IO is not recorded for serialization\n");
 117	spin_unlock_irqrestore(&serial->serial_lock, flags);
 118	wake_up(&serial->serial_io_wait);
 119}
 120
 121/*
 122 * for resync bio, r1bio pointer can be retrieved from the per-bio
 123 * 'struct resync_pages'.
 124 */
 125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 126{
 127	return get_resync_pages(bio)->raid_bio;
 128}
 
 129
 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 131{
 132	struct pool_info *pi = data;
 133	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 134
 135	/* allocate a r1bio with room for raid_disks entries in the bios array */
 136	return kzalloc(size, gfp_flags);
 137}
 138
 
 
 
 
 
 
 139#define RESYNC_DEPTH 32
 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 
 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 145
 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 147{
 148	struct pool_info *pi = data;
 149	struct r1bio *r1_bio;
 150	struct bio *bio;
 151	int need_pages;
 152	int j;
 153	struct resync_pages *rps;
 154
 155	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 156	if (!r1_bio)
 157		return NULL;
 158
 159	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 160			    gfp_flags);
 161	if (!rps)
 162		goto out_free_r1bio;
 163
 164	/*
 165	 * Allocate bios : 1 for reading, n-1 for writing
 166	 */
 167	for (j = pi->raid_disks ; j-- ; ) {
 168		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 169		if (!bio)
 170			goto out_free_bio;
 171		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 172		r1_bio->bios[j] = bio;
 173	}
 174	/*
 175	 * Allocate RESYNC_PAGES data pages and attach them to
 176	 * the first bio.
 177	 * If this is a user-requested check/repair, allocate
 178	 * RESYNC_PAGES for each bio.
 179	 */
 180	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 181		need_pages = pi->raid_disks;
 182	else
 183		need_pages = 1;
 184	for (j = 0; j < pi->raid_disks; j++) {
 185		struct resync_pages *rp = &rps[j];
 186
 187		bio = r1_bio->bios[j];
 
 188
 189		if (j < need_pages) {
 190			if (resync_alloc_pages(rp, gfp_flags))
 191				goto out_free_pages;
 192		} else {
 193			memcpy(rp, &rps[0], sizeof(*rp));
 194			resync_get_all_pages(rp);
 195		}
 196
 197		rp->raid_bio = r1_bio;
 198		bio->bi_private = rp;
 199	}
 200
 201	r1_bio->master_bio = NULL;
 202
 203	return r1_bio;
 204
 205out_free_pages:
 206	while (--j >= 0)
 207		resync_free_pages(&rps[j]);
 208
 209out_free_bio:
 210	while (++j < pi->raid_disks) {
 211		bio_uninit(r1_bio->bios[j]);
 212		kfree(r1_bio->bios[j]);
 213	}
 214	kfree(rps);
 215
 216out_free_r1bio:
 217	rbio_pool_free(r1_bio, data);
 
 
 218	return NULL;
 219}
 220
 221static void r1buf_pool_free(void *__r1_bio, void *data)
 222{
 223	struct pool_info *pi = data;
 224	int i;
 225	struct r1bio *r1bio = __r1_bio;
 226	struct resync_pages *rp = NULL;
 227
 228	for (i = pi->raid_disks; i--; ) {
 229		rp = get_resync_pages(r1bio->bios[i]);
 230		resync_free_pages(rp);
 231		bio_uninit(r1bio->bios[i]);
 232		kfree(r1bio->bios[i]);
 233	}
 234
 235	/* resync pages array stored in the 1st bio's .bi_private */
 236	kfree(rp);
 
 
 
 
 
 
 
 237
 238	rbio_pool_free(r1bio, data);
 239}
 240
 241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 242{
 243	int i;
 244
 245	for (i = 0; i < conf->raid_disks * 2; i++) {
 246		struct bio **bio = r1_bio->bios + i;
 247		if (!BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r1bio(struct r1bio *r1_bio)
 254{
 255	struct r1conf *conf = r1_bio->mddev->private;
 256
 257	put_all_bios(conf, r1_bio);
 258	mempool_free(r1_bio, &conf->r1bio_pool);
 259}
 260
 261static void put_buf(struct r1bio *r1_bio)
 262{
 263	struct r1conf *conf = r1_bio->mddev->private;
 264	sector_t sect = r1_bio->sector;
 265	int i;
 266
 267	for (i = 0; i < conf->raid_disks * 2; i++) {
 268		struct bio *bio = r1_bio->bios[i];
 269		if (bio->bi_end_io)
 270			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 271	}
 272
 273	mempool_free(r1_bio, &conf->r1buf_pool);
 274
 275	lower_barrier(conf, sect);
 276}
 277
 278static void reschedule_retry(struct r1bio *r1_bio)
 279{
 280	unsigned long flags;
 281	struct mddev *mddev = r1_bio->mddev;
 282	struct r1conf *conf = mddev->private;
 283	int idx;
 284
 285	idx = sector_to_idx(r1_bio->sector);
 286	spin_lock_irqsave(&conf->device_lock, flags);
 287	list_add(&r1_bio->retry_list, &conf->retry_list);
 288	atomic_inc(&conf->nr_queued[idx]);
 289	spin_unlock_irqrestore(&conf->device_lock, flags);
 290
 291	wake_up(&conf->wait_barrier);
 292	md_wakeup_thread(mddev->thread);
 293}
 294
 295/*
 296 * raid_end_bio_io() is called when we have finished servicing a mirrored
 297 * operation and are ready to return a success/failure code to the buffer
 298 * cache layer.
 299 */
 300static void call_bio_endio(struct r1bio *r1_bio)
 301{
 302	struct bio *bio = r1_bio->master_bio;
 
 
 
 
 303
 304	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 305		bio->bi_status = BLK_STS_IOERR;
 
 
 
 
 
 
 
 
 
 
 
 306
 307	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 308		bio_end_io_acct(bio, r1_bio->start_time);
 309	bio_endio(bio);
 
 
 
 
 
 
 
 310}
 311
 312static void raid_end_bio_io(struct r1bio *r1_bio)
 313{
 314	struct bio *bio = r1_bio->master_bio;
 315	struct r1conf *conf = r1_bio->mddev->private;
 316
 317	/* if nobody has done the final endio yet, do it now */
 318	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 319		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 320			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 321			 (unsigned long long) bio->bi_iter.bi_sector,
 322			 (unsigned long long) bio_end_sector(bio) - 1);
 323
 324		call_bio_endio(r1_bio);
 325	}
 326	/*
 327	 * Wake up any possible resync thread that waits for the device
 328	 * to go idle.  All I/Os, even write-behind writes, are done.
 329	 */
 330	allow_barrier(conf, r1_bio->sector);
 331
 332	free_r1bio(r1_bio);
 333}
 334
 335/*
 336 * Update disk head position estimator based on IRQ completion info.
 337 */
 338static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 339{
 340	struct r1conf *conf = r1_bio->mddev->private;
 341
 342	conf->mirrors[disk].head_position =
 343		r1_bio->sector + (r1_bio->sectors);
 344}
 345
 346/*
 347 * Find the disk number which triggered given bio
 348 */
 349static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 350{
 351	int mirror;
 352	struct r1conf *conf = r1_bio->mddev->private;
 353	int raid_disks = conf->raid_disks;
 354
 355	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 356		if (r1_bio->bios[mirror] == bio)
 357			break;
 358
 359	BUG_ON(mirror == raid_disks * 2);
 360	update_head_pos(mirror, r1_bio);
 361
 362	return mirror;
 363}
 364
 365static void raid1_end_read_request(struct bio *bio)
 366{
 367	int uptodate = !bio->bi_status;
 368	struct r1bio *r1_bio = bio->bi_private;
 
 369	struct r1conf *conf = r1_bio->mddev->private;
 370	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 371
 
 372	/*
 373	 * this branch is our 'one mirror IO has finished' event handler:
 374	 */
 375	update_head_pos(r1_bio->read_disk, r1_bio);
 376
 377	if (uptodate)
 378		set_bit(R1BIO_Uptodate, &r1_bio->state);
 379	else if (test_bit(FailFast, &rdev->flags) &&
 380		 test_bit(R1BIO_FailFast, &r1_bio->state))
 381		/* This was a fail-fast read so we definitely
 382		 * want to retry */
 383		;
 384	else {
 385		/* If all other devices have failed, we want to return
 386		 * the error upwards rather than fail the last device.
 387		 * Here we redefine "uptodate" to mean "Don't want to retry"
 388		 */
 389		unsigned long flags;
 390		spin_lock_irqsave(&conf->device_lock, flags);
 391		if (r1_bio->mddev->degraded == conf->raid_disks ||
 392		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 393		     test_bit(In_sync, &rdev->flags)))
 394			uptodate = 1;
 395		spin_unlock_irqrestore(&conf->device_lock, flags);
 396	}
 397
 398	if (uptodate) {
 399		raid_end_bio_io(r1_bio);
 400		rdev_dec_pending(rdev, conf->mddev);
 401	} else {
 402		/*
 403		 * oops, read error:
 404		 */
 405		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 406				   mdname(conf->mddev),
 407				   rdev->bdev,
 408				   (unsigned long long)r1_bio->sector);
 
 
 
 
 409		set_bit(R1BIO_ReadError, &r1_bio->state);
 410		reschedule_retry(r1_bio);
 411		/* don't drop the reference on read_disk yet */
 412	}
 413}
 414
 415static void close_write(struct r1bio *r1_bio)
 416{
 417	/* it really is the end of this request */
 418	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 419		bio_free_pages(r1_bio->behind_master_bio);
 420		bio_put(r1_bio->behind_master_bio);
 421		r1_bio->behind_master_bio = NULL;
 
 
 
 422	}
 423	/* clear the bitmap if all writes complete successfully */
 424	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 425			   r1_bio->sectors,
 426			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 427			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 428	md_write_end(r1_bio->mddev);
 429}
 430
 431static void r1_bio_write_done(struct r1bio *r1_bio)
 432{
 433	if (!atomic_dec_and_test(&r1_bio->remaining))
 434		return;
 435
 436	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 437		reschedule_retry(r1_bio);
 438	else {
 439		close_write(r1_bio);
 440		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 441			reschedule_retry(r1_bio);
 442		else
 443			raid_end_bio_io(r1_bio);
 444	}
 445}
 446
 447static void raid1_end_write_request(struct bio *bio)
 448{
 
 449	struct r1bio *r1_bio = bio->bi_private;
 450	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 451	struct r1conf *conf = r1_bio->mddev->private;
 452	struct bio *to_put = NULL;
 453	int mirror = find_bio_disk(r1_bio, bio);
 454	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 455	bool discard_error;
 456	sector_t lo = r1_bio->sector;
 457	sector_t hi = r1_bio->sector + r1_bio->sectors;
 458
 459	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 460
 461	/*
 462	 * 'one mirror IO has finished' event handler:
 463	 */
 464	if (bio->bi_status && !discard_error) {
 465		set_bit(WriteErrorSeen,	&rdev->flags);
 466		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 467			set_bit(MD_RECOVERY_NEEDED, &
 468				conf->mddev->recovery);
 469
 470		if (test_bit(FailFast, &rdev->flags) &&
 471		    (bio->bi_opf & MD_FAILFAST) &&
 472		    /* We never try FailFast to WriteMostly devices */
 473		    !test_bit(WriteMostly, &rdev->flags)) {
 474			md_error(r1_bio->mddev, rdev);
 475		}
 476
 477		/*
 478		 * When the device is faulty, it is not necessary to
 479		 * handle write error.
 480		 */
 481		if (!test_bit(Faulty, &rdev->flags))
 482			set_bit(R1BIO_WriteError, &r1_bio->state);
 483		else {
 484			/* Fail the request */
 485			set_bit(R1BIO_Degraded, &r1_bio->state);
 486			/* Finished with this branch */
 487			r1_bio->bios[mirror] = NULL;
 488			to_put = bio;
 489		}
 490	} else {
 491		/*
 492		 * Set R1BIO_Uptodate in our master bio, so that we
 493		 * will return a good error code for to the higher
 494		 * levels even if IO on some other mirrored buffer
 495		 * fails.
 496		 *
 497		 * The 'master' represents the composite IO operation
 498		 * to user-side. So if something waits for IO, then it
 499		 * will wait for the 'master' bio.
 500		 */
 501		sector_t first_bad;
 502		int bad_sectors;
 503
 504		r1_bio->bios[mirror] = NULL;
 505		to_put = bio;
 506		/*
 507		 * Do not set R1BIO_Uptodate if the current device is
 508		 * rebuilding or Faulty. This is because we cannot use
 509		 * such device for properly reading the data back (we could
 510		 * potentially use it, if the current write would have felt
 511		 * before rdev->recovery_offset, but for simplicity we don't
 512		 * check this here.
 513		 */
 514		if (test_bit(In_sync, &rdev->flags) &&
 515		    !test_bit(Faulty, &rdev->flags))
 516			set_bit(R1BIO_Uptodate, &r1_bio->state);
 517
 518		/* Maybe we can clear some bad blocks. */
 519		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 520				&first_bad, &bad_sectors) && !discard_error) {
 
 521			r1_bio->bios[mirror] = IO_MADE_GOOD;
 522			set_bit(R1BIO_MadeGood, &r1_bio->state);
 523		}
 524	}
 525
 526	if (behind) {
 527		if (test_bit(CollisionCheck, &rdev->flags))
 528			remove_serial(rdev, lo, hi);
 529		if (test_bit(WriteMostly, &rdev->flags))
 530			atomic_dec(&r1_bio->behind_remaining);
 531
 532		/*
 533		 * In behind mode, we ACK the master bio once the I/O
 534		 * has safely reached all non-writemostly
 535		 * disks. Setting the Returned bit ensures that this
 536		 * gets done only once -- we don't ever want to return
 537		 * -EIO here, instead we'll wait
 538		 */
 539		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 540		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 541			/* Maybe we can return now */
 542			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 543				struct bio *mbio = r1_bio->master_bio;
 544				pr_debug("raid1: behind end write sectors"
 545					 " %llu-%llu\n",
 546					 (unsigned long long) mbio->bi_iter.bi_sector,
 547					 (unsigned long long) bio_end_sector(mbio) - 1);
 548				call_bio_endio(r1_bio);
 549			}
 550		}
 551	} else if (rdev->mddev->serialize_policy)
 552		remove_serial(rdev, lo, hi);
 553	if (r1_bio->bios[mirror] == NULL)
 554		rdev_dec_pending(rdev, conf->mddev);
 
 555
 556	/*
 557	 * Let's see if all mirrored write operations have finished
 558	 * already.
 559	 */
 560	r1_bio_write_done(r1_bio);
 561
 562	if (to_put)
 563		bio_put(to_put);
 564}
 565
 566static sector_t align_to_barrier_unit_end(sector_t start_sector,
 567					  sector_t sectors)
 568{
 569	sector_t len;
 570
 571	WARN_ON(sectors == 0);
 572	/*
 573	 * len is the number of sectors from start_sector to end of the
 574	 * barrier unit which start_sector belongs to.
 575	 */
 576	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 577	      start_sector;
 578
 579	if (len > sectors)
 580		len = sectors;
 581
 582	return len;
 583}
 584
 585/*
 586 * This routine returns the disk from which the requested read should
 587 * be done. There is a per-array 'next expected sequential IO' sector
 588 * number - if this matches on the next IO then we use the last disk.
 589 * There is also a per-disk 'last know head position' sector that is
 590 * maintained from IRQ contexts, both the normal and the resync IO
 591 * completion handlers update this position correctly. If there is no
 592 * perfect sequential match then we pick the disk whose head is closest.
 593 *
 594 * If there are 2 mirrors in the same 2 devices, performance degrades
 595 * because position is mirror, not device based.
 596 *
 597 * The rdev for the device selected will have nr_pending incremented.
 598 */
 599static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 600{
 601	const sector_t this_sector = r1_bio->sector;
 602	int sectors;
 603	int best_good_sectors;
 604	int best_disk, best_dist_disk, best_pending_disk;
 605	int has_nonrot_disk;
 606	int disk;
 607	sector_t best_dist;
 608	unsigned int min_pending;
 609	struct md_rdev *rdev;
 610	int choose_first;
 611	int choose_next_idle;
 612
 613	rcu_read_lock();
 614	/*
 615	 * Check if we can balance. We can balance on the whole
 616	 * device if no resync is going on, or below the resync window.
 617	 * We take the first readable disk when above the resync window.
 618	 */
 619 retry:
 620	sectors = r1_bio->sectors;
 621	best_disk = -1;
 622	best_dist_disk = -1;
 623	best_dist = MaxSector;
 624	best_pending_disk = -1;
 625	min_pending = UINT_MAX;
 626	best_good_sectors = 0;
 627	has_nonrot_disk = 0;
 628	choose_next_idle = 0;
 629	clear_bit(R1BIO_FailFast, &r1_bio->state);
 630
 631	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 632	    (mddev_is_clustered(conf->mddev) &&
 633	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 634		    this_sector + sectors)))
 635		choose_first = 1;
 636	else
 637		choose_first = 0;
 638
 639	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 640		sector_t dist;
 641		sector_t first_bad;
 642		int bad_sectors;
 643		unsigned int pending;
 644		bool nonrot;
 645
 646		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 647		if (r1_bio->bios[disk] == IO_BLOCKED
 648		    || rdev == NULL
 
 649		    || test_bit(Faulty, &rdev->flags))
 650			continue;
 651		if (!test_bit(In_sync, &rdev->flags) &&
 652		    rdev->recovery_offset < this_sector + sectors)
 653			continue;
 654		if (test_bit(WriteMostly, &rdev->flags)) {
 655			/* Don't balance among write-mostly, just
 656			 * use the first as a last resort */
 657			if (best_dist_disk < 0) {
 658				if (is_badblock(rdev, this_sector, sectors,
 659						&first_bad, &bad_sectors)) {
 660					if (first_bad <= this_sector)
 661						/* Cannot use this */
 662						continue;
 663					best_good_sectors = first_bad - this_sector;
 664				} else
 665					best_good_sectors = sectors;
 666				best_dist_disk = disk;
 667				best_pending_disk = disk;
 668			}
 669			continue;
 670		}
 671		/* This is a reasonable device to use.  It might
 672		 * even be best.
 673		 */
 674		if (is_badblock(rdev, this_sector, sectors,
 675				&first_bad, &bad_sectors)) {
 676			if (best_dist < MaxSector)
 677				/* already have a better device */
 678				continue;
 679			if (first_bad <= this_sector) {
 680				/* cannot read here. If this is the 'primary'
 681				 * device, then we must not read beyond
 682				 * bad_sectors from another device..
 683				 */
 684				bad_sectors -= (this_sector - first_bad);
 685				if (choose_first && sectors > bad_sectors)
 686					sectors = bad_sectors;
 687				if (best_good_sectors > sectors)
 688					best_good_sectors = sectors;
 689
 690			} else {
 691				sector_t good_sectors = first_bad - this_sector;
 692				if (good_sectors > best_good_sectors) {
 693					best_good_sectors = good_sectors;
 694					best_disk = disk;
 695				}
 696				if (choose_first)
 697					break;
 698			}
 699			continue;
 700		} else {
 701			if ((sectors > best_good_sectors) && (best_disk >= 0))
 702				best_disk = -1;
 703			best_good_sectors = sectors;
 704		}
 705
 706		if (best_disk >= 0)
 707			/* At least two disks to choose from so failfast is OK */
 708			set_bit(R1BIO_FailFast, &r1_bio->state);
 709
 710		nonrot = bdev_nonrot(rdev->bdev);
 711		has_nonrot_disk |= nonrot;
 712		pending = atomic_read(&rdev->nr_pending);
 713		dist = abs(this_sector - conf->mirrors[disk].head_position);
 714		if (choose_first) {
 715			best_disk = disk;
 716			break;
 717		}
 718		/* Don't change to another disk for sequential reads */
 719		if (conf->mirrors[disk].next_seq_sect == this_sector
 720		    || dist == 0) {
 721			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 722			struct raid1_info *mirror = &conf->mirrors[disk];
 723
 724			best_disk = disk;
 725			/*
 726			 * If buffered sequential IO size exceeds optimal
 727			 * iosize, check if there is idle disk. If yes, choose
 728			 * the idle disk. read_balance could already choose an
 729			 * idle disk before noticing it's a sequential IO in
 730			 * this disk. This doesn't matter because this disk
 731			 * will idle, next time it will be utilized after the
 732			 * first disk has IO size exceeds optimal iosize. In
 733			 * this way, iosize of the first disk will be optimal
 734			 * iosize at least. iosize of the second disk might be
 735			 * small, but not a big deal since when the second disk
 736			 * starts IO, the first disk is likely still busy.
 737			 */
 738			if (nonrot && opt_iosize > 0 &&
 739			    mirror->seq_start != MaxSector &&
 740			    mirror->next_seq_sect > opt_iosize &&
 741			    mirror->next_seq_sect - opt_iosize >=
 742			    mirror->seq_start) {
 743				choose_next_idle = 1;
 744				continue;
 745			}
 746			break;
 747		}
 
 
 
 
 
 748
 749		if (choose_next_idle)
 750			continue;
 751
 752		if (min_pending > pending) {
 753			min_pending = pending;
 754			best_pending_disk = disk;
 755		}
 756
 757		if (dist < best_dist) {
 758			best_dist = dist;
 759			best_dist_disk = disk;
 760		}
 761	}
 762
 763	/*
 764	 * If all disks are rotational, choose the closest disk. If any disk is
 765	 * non-rotational, choose the disk with less pending request even the
 766	 * disk is rotational, which might/might not be optimal for raids with
 767	 * mixed ratation/non-rotational disks depending on workload.
 768	 */
 769	if (best_disk == -1) {
 770		if (has_nonrot_disk || min_pending == 0)
 771			best_disk = best_pending_disk;
 772		else
 773			best_disk = best_dist_disk;
 774	}
 775
 776	if (best_disk >= 0) {
 777		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 778		if (!rdev)
 779			goto retry;
 780		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 781		sectors = best_good_sectors;
 782
 783		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 784			conf->mirrors[best_disk].seq_start = this_sector;
 785
 786		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 787	}
 788	rcu_read_unlock();
 789	*max_sectors = sectors;
 790
 791	return best_disk;
 792}
 793
 794static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 
 
 795{
 796	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 797	md_bitmap_unplug(conf->mddev->bitmap);
 798	wake_up(&conf->wait_barrier);
 
 799
 800	while (bio) { /* submit pending writes */
 801		struct bio *next = bio->bi_next;
 802		struct md_rdev *rdev = (void *)bio->bi_bdev;
 803		bio->bi_next = NULL;
 804		bio_set_dev(bio, rdev->bdev);
 805		if (test_bit(Faulty, &rdev->flags)) {
 806			bio_io_error(bio);
 807		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 808				    !bdev_max_discard_sectors(bio->bi_bdev)))
 809			/* Just ignore it */
 810			bio_endio(bio);
 811		else
 812			submit_bio_noacct(bio);
 813		bio = next;
 814		cond_resched();
 
 
 
 
 815	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816}
 817
 818static void flush_pending_writes(struct r1conf *conf)
 819{
 820	/* Any writes that have been queued but are awaiting
 821	 * bitmap updates get flushed here.
 822	 */
 823	spin_lock_irq(&conf->device_lock);
 824
 825	if (conf->pending_bio_list.head) {
 826		struct blk_plug plug;
 827		struct bio *bio;
 828
 829		bio = bio_list_get(&conf->pending_bio_list);
 
 830		spin_unlock_irq(&conf->device_lock);
 
 
 
 
 831
 832		/*
 833		 * As this is called in a wait_event() loop (see freeze_array),
 834		 * current->state might be TASK_UNINTERRUPTIBLE which will
 835		 * cause a warning when we prepare to wait again.  As it is
 836		 * rare that this path is taken, it is perfectly safe to force
 837		 * us to go around the wait_event() loop again, so the warning
 838		 * is a false-positive.  Silence the warning by resetting
 839		 * thread state
 840		 */
 841		__set_current_state(TASK_RUNNING);
 842		blk_start_plug(&plug);
 843		flush_bio_list(conf, bio);
 844		blk_finish_plug(&plug);
 845	} else
 846		spin_unlock_irq(&conf->device_lock);
 847}
 848
 849/* Barriers....
 850 * Sometimes we need to suspend IO while we do something else,
 851 * either some resync/recovery, or reconfigure the array.
 852 * To do this we raise a 'barrier'.
 853 * The 'barrier' is a counter that can be raised multiple times
 854 * to count how many activities are happening which preclude
 855 * normal IO.
 856 * We can only raise the barrier if there is no pending IO.
 857 * i.e. if nr_pending == 0.
 858 * We choose only to raise the barrier if no-one is waiting for the
 859 * barrier to go down.  This means that as soon as an IO request
 860 * is ready, no other operations which require a barrier will start
 861 * until the IO request has had a chance.
 862 *
 863 * So: regular IO calls 'wait_barrier'.  When that returns there
 864 *    is no backgroup IO happening,  It must arrange to call
 865 *    allow_barrier when it has finished its IO.
 866 * backgroup IO calls must call raise_barrier.  Once that returns
 867 *    there is no normal IO happeing.  It must arrange to call
 868 *    lower_barrier when the particular background IO completes.
 869 *
 870 * If resync/recovery is interrupted, returns -EINTR;
 871 * Otherwise, returns 0.
 872 */
 873static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 874{
 875	int idx = sector_to_idx(sector_nr);
 876
 877	spin_lock_irq(&conf->resync_lock);
 878
 879	/* Wait until no block IO is waiting */
 880	wait_event_lock_irq(conf->wait_barrier,
 881			    !atomic_read(&conf->nr_waiting[idx]),
 882			    conf->resync_lock);
 883
 884	/* block any new IO from starting */
 885	atomic_inc(&conf->barrier[idx]);
 886	/*
 887	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 888	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 889	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 890	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 891	 * be fetched before conf->barrier[idx] is increased. Otherwise
 892	 * there will be a race between raise_barrier() and _wait_barrier().
 893	 */
 894	smp_mb__after_atomic();
 895
 896	/* For these conditions we must wait:
 897	 * A: while the array is in frozen state
 898	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 899	 *    existing in corresponding I/O barrier bucket.
 900	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 901	 *    max resync count which allowed on current I/O barrier bucket.
 
 902	 */
 903	wait_event_lock_irq(conf->wait_barrier,
 904			    (!conf->array_frozen &&
 905			     !atomic_read(&conf->nr_pending[idx]) &&
 906			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 907				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 908			    conf->resync_lock);
 909
 910	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 911		atomic_dec(&conf->barrier[idx]);
 912		spin_unlock_irq(&conf->resync_lock);
 913		wake_up(&conf->wait_barrier);
 914		return -EINTR;
 915	}
 916
 917	atomic_inc(&conf->nr_sync_pending);
 918	spin_unlock_irq(&conf->resync_lock);
 919
 920	return 0;
 921}
 922
 923static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 924{
 925	int idx = sector_to_idx(sector_nr);
 926
 927	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 928
 929	atomic_dec(&conf->barrier[idx]);
 930	atomic_dec(&conf->nr_sync_pending);
 931	wake_up(&conf->wait_barrier);
 932}
 933
 934static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 935{
 936	bool ret = true;
 937
 938	/*
 939	 * We need to increase conf->nr_pending[idx] very early here,
 940	 * then raise_barrier() can be blocked when it waits for
 941	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 942	 * conf->resync_lock when there is no barrier raised in same
 943	 * barrier unit bucket. Also if the array is frozen, I/O
 944	 * should be blocked until array is unfrozen.
 945	 */
 946	atomic_inc(&conf->nr_pending[idx]);
 947	/*
 948	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 949	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 950	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 951	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 952	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 953	 * will be a race between _wait_barrier() and raise_barrier().
 954	 */
 955	smp_mb__after_atomic();
 956
 957	/*
 958	 * Don't worry about checking two atomic_t variables at same time
 959	 * here. If during we check conf->barrier[idx], the array is
 960	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 961	 * 0, it is safe to return and make the I/O continue. Because the
 962	 * array is frozen, all I/O returned here will eventually complete
 963	 * or be queued, no race will happen. See code comment in
 964	 * frozen_array().
 965	 */
 966	if (!READ_ONCE(conf->array_frozen) &&
 967	    !atomic_read(&conf->barrier[idx]))
 968		return ret;
 969
 970	/*
 971	 * After holding conf->resync_lock, conf->nr_pending[idx]
 972	 * should be decreased before waiting for barrier to drop.
 973	 * Otherwise, we may encounter a race condition because
 974	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 975	 * to be 0 at same time.
 976	 */
 977	spin_lock_irq(&conf->resync_lock);
 978	atomic_inc(&conf->nr_waiting[idx]);
 979	atomic_dec(&conf->nr_pending[idx]);
 980	/*
 981	 * In case freeze_array() is waiting for
 982	 * get_unqueued_pending() == extra
 983	 */
 984	wake_up(&conf->wait_barrier);
 985	/* Wait for the barrier in same barrier unit bucket to drop. */
 986
 987	/* Return false when nowait flag is set */
 988	if (nowait) {
 989		ret = false;
 990	} else {
 991		wait_event_lock_irq(conf->wait_barrier,
 992				!conf->array_frozen &&
 993				!atomic_read(&conf->barrier[idx]),
 994				conf->resync_lock);
 995		atomic_inc(&conf->nr_pending[idx]);
 996	}
 997
 998	atomic_dec(&conf->nr_waiting[idx]);
 999	spin_unlock_irq(&conf->resync_lock);
1000	return ret;
1001}
1002
1003static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1004{
1005	int idx = sector_to_idx(sector_nr);
1006	bool ret = true;
1007
1008	/*
1009	 * Very similar to _wait_barrier(). The difference is, for read
1010	 * I/O we don't need wait for sync I/O, but if the whole array
1011	 * is frozen, the read I/O still has to wait until the array is
1012	 * unfrozen. Since there is no ordering requirement with
1013	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1014	 */
1015	atomic_inc(&conf->nr_pending[idx]);
1016
1017	if (!READ_ONCE(conf->array_frozen))
1018		return ret;
1019
1020	spin_lock_irq(&conf->resync_lock);
1021	atomic_inc(&conf->nr_waiting[idx]);
1022	atomic_dec(&conf->nr_pending[idx]);
1023	/*
1024	 * In case freeze_array() is waiting for
1025	 * get_unqueued_pending() == extra
1026	 */
1027	wake_up(&conf->wait_barrier);
1028	/* Wait for array to be unfrozen */
1029
1030	/* Return false when nowait flag is set */
1031	if (nowait) {
1032		/* Return false when nowait flag is set */
1033		ret = false;
1034	} else {
1035		wait_event_lock_irq(conf->wait_barrier,
1036				!conf->array_frozen,
1037				conf->resync_lock);
1038		atomic_inc(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	}
1040
1041	atomic_dec(&conf->nr_waiting[idx]);
1042	spin_unlock_irq(&conf->resync_lock);
1043	return ret;
1044}
1045
1046static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 
1047{
1048	int idx = sector_to_idx(sector_nr);
1049
1050	return _wait_barrier(conf, idx, nowait);
1051}
 
 
 
 
 
 
 
 
 
1052
1053static void _allow_barrier(struct r1conf *conf, int idx)
1054{
1055	atomic_dec(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 
 
1056	wake_up(&conf->wait_barrier);
1057}
1058
1059static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1060{
1061	int idx = sector_to_idx(sector_nr);
1062
1063	_allow_barrier(conf, idx);
1064}
1065
1066/* conf->resync_lock should be held */
1067static int get_unqueued_pending(struct r1conf *conf)
1068{
1069	int idx, ret;
1070
1071	ret = atomic_read(&conf->nr_sync_pending);
1072	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1073		ret += atomic_read(&conf->nr_pending[idx]) -
1074			atomic_read(&conf->nr_queued[idx]);
1075
1076	return ret;
1077}
1078
1079static void freeze_array(struct r1conf *conf, int extra)
1080{
1081	/* Stop sync I/O and normal I/O and wait for everything to
1082	 * go quiet.
1083	 * This is called in two situations:
1084	 * 1) management command handlers (reshape, remove disk, quiesce).
1085	 * 2) one normal I/O request failed.
1086
1087	 * After array_frozen is set to 1, new sync IO will be blocked at
1088	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1089	 * or wait_read_barrier(). The flying I/Os will either complete or be
1090	 * queued. When everything goes quite, there are only queued I/Os left.
1091
1092	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1093	 * barrier bucket index which this I/O request hits. When all sync and
1094	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1095	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1096	 * in handle_read_error(), we may call freeze_array() before trying to
1097	 * fix the read error. In this case, the error read I/O is not queued,
1098	 * so get_unqueued_pending() == 1.
1099	 *
1100	 * Therefore before this function returns, we need to wait until
1101	 * get_unqueued_pendings(conf) gets equal to extra. For
1102	 * normal I/O context, extra is 1, in rested situations extra is 0.
1103	 */
1104	spin_lock_irq(&conf->resync_lock);
1105	conf->array_frozen = 1;
1106	raid1_log(conf->mddev, "wait freeze");
1107	wait_event_lock_irq_cmd(
1108		conf->wait_barrier,
1109		get_unqueued_pending(conf) == extra,
1110		conf->resync_lock,
1111		flush_pending_writes(conf));
1112	spin_unlock_irq(&conf->resync_lock);
1113}
1114static void unfreeze_array(struct r1conf *conf)
1115{
1116	/* reverse the effect of the freeze */
1117	spin_lock_irq(&conf->resync_lock);
1118	conf->array_frozen = 0;
1119	spin_unlock_irq(&conf->resync_lock);
1120	wake_up(&conf->wait_barrier);
 
1121}
1122
1123static void alloc_behind_master_bio(struct r1bio *r1_bio,
1124					   struct bio *bio)
 
 
1125{
1126	int size = bio->bi_iter.bi_size;
1127	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128	int i = 0;
1129	struct bio *behind_bio = NULL;
1130
1131	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1132				      &r1_bio->mddev->bio_set);
1133	if (!behind_bio)
1134		return;
1135
1136	/* discard op, we don't support writezero/writesame yet */
1137	if (!bio_has_data(bio)) {
1138		behind_bio->bi_iter.bi_size = size;
1139		goto skip_copy;
1140	}
1141
1142	while (i < vcnt && size) {
1143		struct page *page;
1144		int len = min_t(int, PAGE_SIZE, size);
1145
1146		page = alloc_page(GFP_NOIO);
1147		if (unlikely(!page))
1148			goto free_pages;
1149
1150		bio_add_page(behind_bio, page, len, 0);
1151
1152		size -= len;
1153		i++;
1154	}
1155
1156	bio_copy_data(behind_bio, bio);
1157skip_copy:
1158	r1_bio->behind_master_bio = behind_bio;
1159	set_bit(R1BIO_BehindIO, &r1_bio->state);
1160
1161	return;
1162
1163free_pages:
 
 
 
 
1164	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1165		 bio->bi_iter.bi_size);
1166	bio_free_pages(behind_bio);
1167	bio_put(behind_bio);
1168}
1169
 
 
 
 
 
 
1170static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1171{
1172	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1173						  cb);
1174	struct mddev *mddev = plug->cb.data;
1175	struct r1conf *conf = mddev->private;
1176	struct bio *bio;
1177
1178	if (from_schedule || current->bio_list) {
1179		spin_lock_irq(&conf->device_lock);
1180		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 
1181		spin_unlock_irq(&conf->device_lock);
1182		wake_up(&conf->wait_barrier);
1183		md_wakeup_thread(mddev->thread);
1184		kfree(plug);
1185		return;
1186	}
1187
1188	/* we aren't scheduling, so we can do the write-out directly. */
1189	bio = bio_list_get(&plug->pending);
1190	flush_bio_list(conf, bio);
1191	kfree(plug);
1192}
1193
1194static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1195{
1196	r1_bio->master_bio = bio;
1197	r1_bio->sectors = bio_sectors(bio);
1198	r1_bio->state = 0;
1199	r1_bio->mddev = mddev;
1200	r1_bio->sector = bio->bi_iter.bi_sector;
1201}
1202
1203static inline struct r1bio *
1204alloc_r1bio(struct mddev *mddev, struct bio *bio)
1205{
1206	struct r1conf *conf = mddev->private;
1207	struct r1bio *r1_bio;
1208
1209	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1210	/* Ensure no bio records IO_BLOCKED */
1211	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1212	init_r1bio(r1_bio, mddev, bio);
1213	return r1_bio;
 
 
 
 
 
 
 
1214}
1215
1216static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1217			       int max_read_sectors, struct r1bio *r1_bio)
1218{
1219	struct r1conf *conf = mddev->private;
1220	struct raid1_info *mirror;
 
1221	struct bio *read_bio;
1222	struct bitmap *bitmap = mddev->bitmap;
1223	const enum req_op op = bio_op(bio);
1224	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
 
 
 
 
 
 
 
 
 
 
 
1225	int max_sectors;
1226	int rdisk;
1227	bool r1bio_existed = !!r1_bio;
1228	char b[BDEVNAME_SIZE];
1229
1230	/*
1231	 * If r1_bio is set, we are blocking the raid1d thread
1232	 * so there is a tiny risk of deadlock.  So ask for
1233	 * emergency memory if needed.
1234	 */
1235	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1236
1237	if (r1bio_existed) {
1238		/* Need to get the block device name carefully */
1239		struct md_rdev *rdev;
1240		rcu_read_lock();
1241		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1242		if (rdev)
1243			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1244		else
1245			strcpy(b, "???");
1246		rcu_read_unlock();
1247	}
1248
1249	/*
1250	 * Still need barrier for READ in case that whole
1251	 * array is frozen.
1252	 */
1253	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1254				bio->bi_opf & REQ_NOWAIT)) {
1255		bio_wouldblock_error(bio);
1256		return;
 
 
 
 
 
 
 
 
 
 
1257	}
1258
1259	if (!r1_bio)
1260		r1_bio = alloc_r1bio(mddev, bio);
1261	else
1262		init_r1bio(r1_bio, mddev, bio);
1263	r1_bio->sectors = max_read_sectors;
1264
1265	/*
1266	 * make_request() can abort the operation when read-ahead is being
1267	 * used and no empty request is available.
 
1268	 */
1269	rdisk = read_balance(conf, r1_bio, &max_sectors);
1270
1271	if (rdisk < 0) {
1272		/* couldn't find anywhere to read from */
1273		if (r1bio_existed) {
1274			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1275					    mdname(mddev),
1276					    b,
1277					    (unsigned long long)r1_bio->sector);
1278		}
1279		raid_end_bio_io(r1_bio);
1280		return;
1281	}
1282	mirror = conf->mirrors + rdisk;
1283
1284	if (r1bio_existed)
1285		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1286				    mdname(mddev),
1287				    (unsigned long long)r1_bio->sector,
1288				    mirror->rdev->bdev);
 
 
 
 
1289
1290	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1291	    bitmap) {
1292		/*
1293		 * Reading from a write-mostly device must take care not to
1294		 * over-take any writes that are 'behind'
1295		 */
1296		raid1_log(mddev, "wait behind writes");
1297		wait_event(bitmap->behind_wait,
1298			   atomic_read(&bitmap->behind_writes) == 0);
1299	}
1300
1301	if (max_sectors < bio_sectors(bio)) {
1302		struct bio *split = bio_split(bio, max_sectors,
1303					      gfp, &conf->bio_split);
1304		bio_chain(split, bio);
1305		submit_bio_noacct(bio);
1306		bio = split;
1307		r1_bio->master_bio = bio;
1308		r1_bio->sectors = max_sectors;
1309	}
1310
1311	r1_bio->read_disk = rdisk;
 
1312
1313	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1314		r1_bio->start_time = bio_start_io_acct(bio);
1315
1316	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1317				   &mddev->bio_set);
1318
1319	r1_bio->bios[rdisk] = read_bio;
1320
1321	read_bio->bi_iter.bi_sector = r1_bio->sector +
1322		mirror->rdev->data_offset;
1323	read_bio->bi_end_io = raid1_end_read_request;
1324	read_bio->bi_opf = op | do_sync;
1325	if (test_bit(FailFast, &mirror->rdev->flags) &&
1326	    test_bit(R1BIO_FailFast, &r1_bio->state))
1327	        read_bio->bi_opf |= MD_FAILFAST;
1328	read_bio->bi_private = r1_bio;
1329
1330	if (mddev->gendisk)
1331	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1332				      r1_bio->sector);
 
 
 
 
 
 
 
1333
1334	submit_bio_noacct(read_bio);
1335}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
1337static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1338				int max_write_sectors)
1339{
1340	struct r1conf *conf = mddev->private;
1341	struct r1bio *r1_bio;
1342	int i, disks;
1343	struct bitmap *bitmap = mddev->bitmap;
1344	unsigned long flags;
1345	struct md_rdev *blocked_rdev;
1346	struct blk_plug_cb *cb;
1347	struct raid1_plug_cb *plug = NULL;
1348	int first_clone;
1349	int max_sectors;
1350	bool write_behind = false;
 
1351
1352	if (mddev_is_clustered(mddev) &&
1353	     md_cluster_ops->area_resyncing(mddev, WRITE,
1354		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1355
1356		DEFINE_WAIT(w);
1357		if (bio->bi_opf & REQ_NOWAIT) {
1358			bio_wouldblock_error(bio);
1359			return;
1360		}
1361		for (;;) {
1362			prepare_to_wait(&conf->wait_barrier,
1363					&w, TASK_IDLE);
1364			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1365							bio->bi_iter.bi_sector,
1366							bio_end_sector(bio)))
1367				break;
1368			schedule();
1369		}
1370		finish_wait(&conf->wait_barrier, &w);
1371	}
1372
1373	/*
1374	 * Register the new request and wait if the reconstruction
1375	 * thread has put up a bar for new requests.
1376	 * Continue immediately if no resync is active currently.
1377	 */
1378	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1379				bio->bi_opf & REQ_NOWAIT)) {
1380		bio_wouldblock_error(bio);
1381		return;
1382	}
1383
1384	r1_bio = alloc_r1bio(mddev, bio);
1385	r1_bio->sectors = max_write_sectors;
1386
1387	/* first select target devices under rcu_lock and
1388	 * inc refcount on their rdev.  Record them by setting
1389	 * bios[x] to bio
1390	 * If there are known/acknowledged bad blocks on any device on
1391	 * which we have seen a write error, we want to avoid writing those
1392	 * blocks.
1393	 * This potentially requires several writes to write around
1394	 * the bad blocks.  Each set of writes gets it's own r1bio
1395	 * with a set of bios attached.
1396	 */
1397
1398	disks = conf->raid_disks * 2;
1399 retry_write:
 
1400	blocked_rdev = NULL;
1401	rcu_read_lock();
1402	max_sectors = r1_bio->sectors;
1403	for (i = 0;  i < disks; i++) {
1404		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1405
1406		/*
1407		 * The write-behind io is only attempted on drives marked as
1408		 * write-mostly, which means we could allocate write behind
1409		 * bio later.
1410		 */
1411		if (rdev && test_bit(WriteMostly, &rdev->flags))
1412			write_behind = true;
1413
1414		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1415			atomic_inc(&rdev->nr_pending);
1416			blocked_rdev = rdev;
1417			break;
1418		}
1419		r1_bio->bios[i] = NULL;
1420		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 
1421			if (i < conf->raid_disks)
1422				set_bit(R1BIO_Degraded, &r1_bio->state);
1423			continue;
1424		}
1425
1426		atomic_inc(&rdev->nr_pending);
1427		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1428			sector_t first_bad;
1429			int bad_sectors;
1430			int is_bad;
1431
1432			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1433					     &first_bad, &bad_sectors);
1434			if (is_bad < 0) {
1435				/* mustn't write here until the bad block is
1436				 * acknowledged*/
1437				set_bit(BlockedBadBlocks, &rdev->flags);
1438				blocked_rdev = rdev;
1439				break;
1440			}
1441			if (is_bad && first_bad <= r1_bio->sector) {
1442				/* Cannot write here at all */
1443				bad_sectors -= (r1_bio->sector - first_bad);
1444				if (bad_sectors < max_sectors)
1445					/* mustn't write more than bad_sectors
1446					 * to other devices yet
1447					 */
1448					max_sectors = bad_sectors;
1449				rdev_dec_pending(rdev, mddev);
1450				/* We don't set R1BIO_Degraded as that
1451				 * only applies if the disk is
1452				 * missing, so it might be re-added,
1453				 * and we want to know to recover this
1454				 * chunk.
1455				 * In this case the device is here,
1456				 * and the fact that this chunk is not
1457				 * in-sync is recorded in the bad
1458				 * block log
1459				 */
1460				continue;
1461			}
1462			if (is_bad) {
1463				int good_sectors = first_bad - r1_bio->sector;
1464				if (good_sectors < max_sectors)
1465					max_sectors = good_sectors;
1466			}
1467		}
1468		r1_bio->bios[i] = bio;
1469	}
1470	rcu_read_unlock();
1471
1472	if (unlikely(blocked_rdev)) {
1473		/* Wait for this device to become unblocked */
1474		int j;
 
1475
1476		for (j = 0; j < i; j++)
1477			if (r1_bio->bios[j])
1478				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1479		r1_bio->state = 0;
1480		allow_barrier(conf, bio->bi_iter.bi_sector);
1481
1482		if (bio->bi_opf & REQ_NOWAIT) {
1483			bio_wouldblock_error(bio);
1484			return;
1485		}
1486		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1487		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488		wait_barrier(conf, bio->bi_iter.bi_sector, false);
 
 
 
 
 
 
 
 
 
1489		goto retry_write;
1490	}
1491
1492	/*
1493	 * When using a bitmap, we may call alloc_behind_master_bio below.
1494	 * alloc_behind_master_bio allocates a copy of the data payload a page
1495	 * at a time and thus needs a new bio that can fit the whole payload
1496	 * this bio in page sized chunks.
1497	 */
1498	if (write_behind && bitmap)
1499		max_sectors = min_t(int, max_sectors,
1500				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1501	if (max_sectors < bio_sectors(bio)) {
1502		struct bio *split = bio_split(bio, max_sectors,
1503					      GFP_NOIO, &conf->bio_split);
1504		bio_chain(split, bio);
1505		submit_bio_noacct(bio);
1506		bio = split;
1507		r1_bio->master_bio = bio;
1508		r1_bio->sectors = max_sectors;
 
 
 
 
 
 
1509	}
 
1510
1511	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1512		r1_bio->start_time = bio_start_io_acct(bio);
1513	atomic_set(&r1_bio->remaining, 1);
1514	atomic_set(&r1_bio->behind_remaining, 0);
1515
1516	first_clone = 1;
1517
1518	for (i = 0; i < disks; i++) {
1519		struct bio *mbio = NULL;
1520		struct md_rdev *rdev = conf->mirrors[i].rdev;
1521		if (!r1_bio->bios[i])
1522			continue;
1523
 
 
 
1524		if (first_clone) {
1525			/* do behind I/O ?
1526			 * Not if there are too many, or cannot
1527			 * allocate memory, or a reader on WriteMostly
1528			 * is waiting for behind writes to flush */
1529			if (bitmap &&
1530			    test_bit(WriteMostly, &rdev->flags) &&
1531			    (atomic_read(&bitmap->behind_writes)
1532			     < mddev->bitmap_info.max_write_behind) &&
1533			    !waitqueue_active(&bitmap->behind_wait)) {
1534				alloc_behind_master_bio(r1_bio, bio);
1535			}
1536
1537			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1538					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 
 
1539			first_clone = 0;
1540		}
 
 
 
1541
1542		if (r1_bio->behind_master_bio) {
1543			mbio = bio_alloc_clone(rdev->bdev,
1544					       r1_bio->behind_master_bio,
1545					       GFP_NOIO, &mddev->bio_set);
1546			if (test_bit(CollisionCheck, &rdev->flags))
1547				wait_for_serialization(rdev, r1_bio);
1548			if (test_bit(WriteMostly, &rdev->flags))
1549				atomic_inc(&r1_bio->behind_remaining);
1550		} else {
1551			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1552					       &mddev->bio_set);
1553
1554			if (mddev->serialize_policy)
1555				wait_for_serialization(rdev, r1_bio);
1556		}
1557
1558		r1_bio->bios[i] = mbio;
1559
1560		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 
 
1561		mbio->bi_end_io	= raid1_end_write_request;
1562		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1563		if (test_bit(FailFast, &rdev->flags) &&
1564		    !test_bit(WriteMostly, &rdev->flags) &&
1565		    conf->raid_disks - mddev->degraded > 1)
1566			mbio->bi_opf |= MD_FAILFAST;
1567		mbio->bi_private = r1_bio;
1568
1569		atomic_inc(&r1_bio->remaining);
1570
1571		if (mddev->gendisk)
1572			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1573					      r1_bio->sector);
1574		/* flush_pending_writes() needs access to the rdev so...*/
1575		mbio->bi_bdev = (void *)rdev;
1576
1577		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1578		if (cb)
1579			plug = container_of(cb, struct raid1_plug_cb, cb);
1580		else
1581			plug = NULL;
 
1582		if (plug) {
1583			bio_list_add(&plug->pending, mbio);
 
1584		} else {
1585			spin_lock_irqsave(&conf->device_lock, flags);
1586			bio_list_add(&conf->pending_bio_list, mbio);
1587			spin_unlock_irqrestore(&conf->device_lock, flags);
1588			md_wakeup_thread(mddev->thread);
1589		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590	}
1591
1592	r1_bio_write_done(r1_bio);
1593
1594	/* In case raid1d snuck in to freeze_array */
1595	wake_up(&conf->wait_barrier);
1596}
1597
1598static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1599{
1600	sector_t sectors;
1601
1602	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1603	    && md_flush_request(mddev, bio))
1604		return true;
1605
1606	/*
1607	 * There is a limit to the maximum size, but
1608	 * the read/write handler might find a lower limit
1609	 * due to bad blocks.  To avoid multiple splits,
1610	 * we pass the maximum number of sectors down
1611	 * and let the lower level perform the split.
1612	 */
1613	sectors = align_to_barrier_unit_end(
1614		bio->bi_iter.bi_sector, bio_sectors(bio));
1615
1616	if (bio_data_dir(bio) == READ)
1617		raid1_read_request(mddev, bio, sectors, NULL);
1618	else {
1619		if (!md_write_start(mddev,bio))
1620			return false;
1621		raid1_write_request(mddev, bio, sectors);
1622	}
1623	return true;
1624}
1625
1626static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1627{
1628	struct r1conf *conf = mddev->private;
1629	int i;
1630
1631	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1632		   conf->raid_disks - mddev->degraded);
1633	rcu_read_lock();
1634	for (i = 0; i < conf->raid_disks; i++) {
1635		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1636		seq_printf(seq, "%s",
1637			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1638	}
1639	rcu_read_unlock();
1640	seq_printf(seq, "]");
1641}
1642
1643/**
1644 * raid1_error() - RAID1 error handler.
1645 * @mddev: affected md device.
1646 * @rdev: member device to fail.
1647 *
1648 * The routine acknowledges &rdev failure and determines new @mddev state.
1649 * If it failed, then:
1650 *	- &MD_BROKEN flag is set in &mddev->flags.
1651 *	- recovery is disabled.
1652 * Otherwise, it must be degraded:
1653 *	- recovery is interrupted.
1654 *	- &mddev->degraded is bumped.
1655 *
1656 * @rdev is marked as &Faulty excluding case when array is failed and
1657 * &mddev->fail_last_dev is off.
1658 */
1659static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1660{
 
1661	struct r1conf *conf = mddev->private;
1662	unsigned long flags;
1663
1664	spin_lock_irqsave(&conf->device_lock, flags);
1665
1666	if (test_bit(In_sync, &rdev->flags) &&
1667	    (conf->raid_disks - mddev->degraded) == 1) {
1668		set_bit(MD_BROKEN, &mddev->flags);
1669
1670		if (!mddev->fail_last_dev) {
1671			conf->recovery_disabled = mddev->recovery_disabled;
1672			spin_unlock_irqrestore(&conf->device_lock, flags);
1673			return;
1674		}
 
 
 
 
 
1675	}
1676	set_bit(Blocked, &rdev->flags);
1677	if (test_and_clear_bit(In_sync, &rdev->flags))
 
 
1678		mddev->degraded++;
1679	set_bit(Faulty, &rdev->flags);
1680	spin_unlock_irqrestore(&conf->device_lock, flags);
1681	/*
1682	 * if recovery is running, make sure it aborts.
1683	 */
1684	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1685	set_mask_bits(&mddev->sb_flags, 0,
1686		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1687	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1688		"md/raid1:%s: Operation continuing on %d devices.\n",
1689		mdname(mddev), rdev->bdev,
1690		mdname(mddev), conf->raid_disks - mddev->degraded);
 
 
1691}
1692
1693static void print_conf(struct r1conf *conf)
1694{
1695	int i;
1696
1697	pr_debug("RAID1 conf printout:\n");
1698	if (!conf) {
1699		pr_debug("(!conf)\n");
1700		return;
1701	}
1702	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1703		 conf->raid_disks);
1704
1705	rcu_read_lock();
1706	for (i = 0; i < conf->raid_disks; i++) {
 
1707		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1708		if (rdev)
1709			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1710				 i, !test_bit(In_sync, &rdev->flags),
1711				 !test_bit(Faulty, &rdev->flags),
1712				 rdev->bdev);
1713	}
1714	rcu_read_unlock();
1715}
1716
1717static void close_sync(struct r1conf *conf)
1718{
1719	int idx;
 
1720
1721	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1722		_wait_barrier(conf, idx, false);
1723		_allow_barrier(conf, idx);
1724	}
1725
1726	mempool_exit(&conf->r1buf_pool);
 
1727}
1728
1729static int raid1_spare_active(struct mddev *mddev)
1730{
1731	int i;
1732	struct r1conf *conf = mddev->private;
1733	int count = 0;
1734	unsigned long flags;
1735
1736	/*
1737	 * Find all failed disks within the RAID1 configuration
1738	 * and mark them readable.
1739	 * Called under mddev lock, so rcu protection not needed.
1740	 * device_lock used to avoid races with raid1_end_read_request
1741	 * which expects 'In_sync' flags and ->degraded to be consistent.
1742	 */
1743	spin_lock_irqsave(&conf->device_lock, flags);
1744	for (i = 0; i < conf->raid_disks; i++) {
1745		struct md_rdev *rdev = conf->mirrors[i].rdev;
1746		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747		if (repl
1748		    && !test_bit(Candidate, &repl->flags)
1749		    && repl->recovery_offset == MaxSector
1750		    && !test_bit(Faulty, &repl->flags)
1751		    && !test_and_set_bit(In_sync, &repl->flags)) {
1752			/* replacement has just become active */
1753			if (!rdev ||
1754			    !test_and_clear_bit(In_sync, &rdev->flags))
1755				count++;
1756			if (rdev) {
1757				/* Replaced device not technically
1758				 * faulty, but we need to be sure
1759				 * it gets removed and never re-added
1760				 */
1761				set_bit(Faulty, &rdev->flags);
1762				sysfs_notify_dirent_safe(
1763					rdev->sysfs_state);
1764			}
1765		}
1766		if (rdev
1767		    && rdev->recovery_offset == MaxSector
1768		    && !test_bit(Faulty, &rdev->flags)
1769		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1770			count++;
1771			sysfs_notify_dirent_safe(rdev->sysfs_state);
1772		}
1773	}
 
1774	mddev->degraded -= count;
1775	spin_unlock_irqrestore(&conf->device_lock, flags);
1776
1777	print_conf(conf);
1778	return count;
1779}
1780
 
1781static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1782{
1783	struct r1conf *conf = mddev->private;
1784	int err = -EEXIST;
1785	int mirror = 0;
1786	struct raid1_info *p;
1787	int first = 0;
1788	int last = conf->raid_disks - 1;
 
1789
1790	if (mddev->recovery_disabled == conf->recovery_disabled)
1791		return -EBUSY;
1792
1793	if (md_integrity_add_rdev(rdev, mddev))
1794		return -ENXIO;
1795
1796	if (rdev->raid_disk >= 0)
1797		first = last = rdev->raid_disk;
1798
1799	/*
1800	 * find the disk ... but prefer rdev->saved_raid_disk
1801	 * if possible.
1802	 */
1803	if (rdev->saved_raid_disk >= 0 &&
1804	    rdev->saved_raid_disk >= first &&
1805	    rdev->saved_raid_disk < conf->raid_disks &&
1806	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807		first = last = rdev->saved_raid_disk;
1808
1809	for (mirror = first; mirror <= last; mirror++) {
1810		p = conf->mirrors + mirror;
1811		if (!p->rdev) {
 
1812			if (mddev->gendisk)
1813				disk_stack_limits(mddev->gendisk, rdev->bdev,
1814						  rdev->data_offset << 9);
1815
1816			p->head_position = 0;
1817			rdev->raid_disk = mirror;
1818			err = 0;
1819			/* As all devices are equivalent, we don't need a full recovery
1820			 * if this was recently any drive of the array
1821			 */
1822			if (rdev->saved_raid_disk < 0)
1823				conf->fullsync = 1;
1824			rcu_assign_pointer(p->rdev, rdev);
1825			break;
1826		}
1827		if (test_bit(WantReplacement, &p->rdev->flags) &&
1828		    p[conf->raid_disks].rdev == NULL) {
1829			/* Add this device as a replacement */
1830			clear_bit(In_sync, &rdev->flags);
1831			set_bit(Replacement, &rdev->flags);
1832			rdev->raid_disk = mirror;
1833			err = 0;
1834			conf->fullsync = 1;
1835			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836			break;
1837		}
1838	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839	print_conf(conf);
1840	return err;
1841}
1842
1843static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1844{
1845	struct r1conf *conf = mddev->private;
1846	int err = 0;
1847	int number = rdev->raid_disk;
1848	struct raid1_info *p = conf->mirrors + number;
1849
1850	if (rdev != p->rdev)
1851		p = conf->mirrors + conf->raid_disks + number;
1852
1853	print_conf(conf);
1854	if (rdev == p->rdev) {
1855		if (test_bit(In_sync, &rdev->flags) ||
1856		    atomic_read(&rdev->nr_pending)) {
1857			err = -EBUSY;
1858			goto abort;
1859		}
1860		/* Only remove non-faulty devices if recovery
1861		 * is not possible.
1862		 */
1863		if (!test_bit(Faulty, &rdev->flags) &&
1864		    mddev->recovery_disabled != conf->recovery_disabled &&
1865		    mddev->degraded < conf->raid_disks) {
1866			err = -EBUSY;
1867			goto abort;
1868		}
1869		p->rdev = NULL;
1870		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1871			synchronize_rcu();
1872			if (atomic_read(&rdev->nr_pending)) {
1873				/* lost the race, try later */
1874				err = -EBUSY;
1875				p->rdev = rdev;
1876				goto abort;
1877			}
1878		}
1879		if (conf->mirrors[conf->raid_disks + number].rdev) {
1880			/* We just removed a device that is being replaced.
1881			 * Move down the replacement.  We drain all IO before
1882			 * doing this to avoid confusion.
1883			 */
1884			struct md_rdev *repl =
1885				conf->mirrors[conf->raid_disks + number].rdev;
1886			freeze_array(conf, 0);
1887			if (atomic_read(&repl->nr_pending)) {
1888				/* It means that some queued IO of retry_list
1889				 * hold repl. Thus, we cannot set replacement
1890				 * as NULL, avoiding rdev NULL pointer
1891				 * dereference in sync_request_write and
1892				 * handle_write_finished.
1893				 */
1894				err = -EBUSY;
1895				unfreeze_array(conf);
1896				goto abort;
1897			}
1898			clear_bit(Replacement, &repl->flags);
1899			p->rdev = repl;
1900			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1901			unfreeze_array(conf);
1902		}
1903
1904		clear_bit(WantReplacement, &rdev->flags);
1905		err = md_integrity_register(mddev);
1906	}
1907abort:
1908
1909	print_conf(conf);
1910	return err;
1911}
1912
1913static void end_sync_read(struct bio *bio)
 
1914{
1915	struct r1bio *r1_bio = get_resync_r1bio(bio);
1916
1917	update_head_pos(r1_bio->read_disk, r1_bio);
1918
1919	/*
1920	 * we have read a block, now it needs to be re-written,
1921	 * or re-read if the read failed.
1922	 * We don't do much here, just schedule handling by raid1d
1923	 */
1924	if (!bio->bi_status)
1925		set_bit(R1BIO_Uptodate, &r1_bio->state);
1926
1927	if (atomic_dec_and_test(&r1_bio->remaining))
1928		reschedule_retry(r1_bio);
1929}
1930
1931static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1932{
1933	sector_t sync_blocks = 0;
1934	sector_t s = r1_bio->sector;
1935	long sectors_to_go = r1_bio->sectors;
1936
1937	/* make sure these bits don't get cleared. */
1938	do {
1939		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1940		s += sync_blocks;
1941		sectors_to_go -= sync_blocks;
1942	} while (sectors_to_go > 0);
1943}
1944
1945static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1946{
1947	if (atomic_dec_and_test(&r1_bio->remaining)) {
1948		struct mddev *mddev = r1_bio->mddev;
1949		int s = r1_bio->sectors;
1950
1951		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1952		    test_bit(R1BIO_WriteError, &r1_bio->state))
1953			reschedule_retry(r1_bio);
1954		else {
1955			put_buf(r1_bio);
1956			md_done_sync(mddev, s, uptodate);
1957		}
1958	}
1959}
1960
1961static void end_sync_write(struct bio *bio)
1962{
1963	int uptodate = !bio->bi_status;
1964	struct r1bio *r1_bio = get_resync_r1bio(bio);
1965	struct mddev *mddev = r1_bio->mddev;
1966	struct r1conf *conf = mddev->private;
 
1967	sector_t first_bad;
1968	int bad_sectors;
1969	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 
1970
1971	if (!uptodate) {
1972		abort_sync_write(mddev, r1_bio);
1973		set_bit(WriteErrorSeen, &rdev->flags);
1974		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 
 
 
 
 
 
 
 
 
1975			set_bit(MD_RECOVERY_NEEDED, &
1976				mddev->recovery);
1977		set_bit(R1BIO_WriteError, &r1_bio->state);
1978	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 
 
1979			       &first_bad, &bad_sectors) &&
1980		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1981				r1_bio->sector,
1982				r1_bio->sectors,
1983				&first_bad, &bad_sectors)
1984		)
1985		set_bit(R1BIO_MadeGood, &r1_bio->state);
1986
1987	put_sync_write_buf(r1_bio, uptodate);
 
 
 
 
 
 
 
 
 
1988}
1989
1990static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1991			   int sectors, struct page *page, int rw)
1992{
1993	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1994		/* success */
1995		return 1;
1996	if (rw == WRITE) {
1997		set_bit(WriteErrorSeen, &rdev->flags);
1998		if (!test_and_set_bit(WantReplacement,
1999				      &rdev->flags))
2000			set_bit(MD_RECOVERY_NEEDED, &
2001				rdev->mddev->recovery);
2002	}
2003	/* need to record an error - either for the block or the device */
2004	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2005		md_error(rdev->mddev, rdev);
2006	return 0;
2007}
2008
2009static int fix_sync_read_error(struct r1bio *r1_bio)
2010{
2011	/* Try some synchronous reads of other devices to get
2012	 * good data, much like with normal read errors.  Only
2013	 * read into the pages we already have so we don't
2014	 * need to re-issue the read request.
2015	 * We don't need to freeze the array, because being in an
2016	 * active sync request, there is no normal IO, and
2017	 * no overlapping syncs.
2018	 * We don't need to check is_badblock() again as we
2019	 * made sure that anything with a bad block in range
2020	 * will have bi_end_io clear.
2021	 */
2022	struct mddev *mddev = r1_bio->mddev;
2023	struct r1conf *conf = mddev->private;
2024	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2025	struct page **pages = get_resync_pages(bio)->pages;
2026	sector_t sect = r1_bio->sector;
2027	int sectors = r1_bio->sectors;
2028	int idx = 0;
2029	struct md_rdev *rdev;
2030
2031	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2032	if (test_bit(FailFast, &rdev->flags)) {
2033		/* Don't try recovering from here - just fail it
2034		 * ... unless it is the last working device of course */
2035		md_error(mddev, rdev);
2036		if (test_bit(Faulty, &rdev->flags))
2037			/* Don't try to read from here, but make sure
2038			 * put_buf does it's thing
2039			 */
2040			bio->bi_end_io = end_sync_write;
2041	}
2042
2043	while(sectors) {
2044		int s = sectors;
2045		int d = r1_bio->read_disk;
2046		int success = 0;
 
2047		int start;
2048
2049		if (s > (PAGE_SIZE>>9))
2050			s = PAGE_SIZE >> 9;
2051		do {
2052			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2053				/* No rcu protection needed here devices
2054				 * can only be removed when no resync is
2055				 * active, and resync is currently active
2056				 */
2057				rdev = conf->mirrors[d].rdev;
2058				if (sync_page_io(rdev, sect, s<<9,
2059						 pages[idx],
2060						 REQ_OP_READ, false)) {
2061					success = 1;
2062					break;
2063				}
2064			}
2065			d++;
2066			if (d == conf->raid_disks * 2)
2067				d = 0;
2068		} while (!success && d != r1_bio->read_disk);
2069
2070		if (!success) {
 
2071			int abort = 0;
2072			/* Cannot read from anywhere, this block is lost.
2073			 * Record a bad block on each device.  If that doesn't
2074			 * work just disable and interrupt the recovery.
2075			 * Don't fail devices as that won't really help.
2076			 */
2077			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2078					    mdname(mddev), bio->bi_bdev,
2079					    (unsigned long long)r1_bio->sector);
 
 
2080			for (d = 0; d < conf->raid_disks * 2; d++) {
2081				rdev = conf->mirrors[d].rdev;
2082				if (!rdev || test_bit(Faulty, &rdev->flags))
2083					continue;
2084				if (!rdev_set_badblocks(rdev, sect, s, 0))
2085					abort = 1;
2086			}
2087			if (abort) {
2088				conf->recovery_disabled =
2089					mddev->recovery_disabled;
2090				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2091				md_done_sync(mddev, r1_bio->sectors, 0);
2092				put_buf(r1_bio);
2093				return 0;
2094			}
2095			/* Try next page */
2096			sectors -= s;
2097			sect += s;
2098			idx++;
2099			continue;
2100		}
2101
2102		start = d;
2103		/* write it back and re-read */
2104		while (d != r1_bio->read_disk) {
2105			if (d == 0)
2106				d = conf->raid_disks * 2;
2107			d--;
2108			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2109				continue;
2110			rdev = conf->mirrors[d].rdev;
2111			if (r1_sync_page_io(rdev, sect, s,
2112					    pages[idx],
2113					    WRITE) == 0) {
2114				r1_bio->bios[d]->bi_end_io = NULL;
2115				rdev_dec_pending(rdev, mddev);
2116			}
2117		}
2118		d = start;
2119		while (d != r1_bio->read_disk) {
2120			if (d == 0)
2121				d = conf->raid_disks * 2;
2122			d--;
2123			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2124				continue;
2125			rdev = conf->mirrors[d].rdev;
2126			if (r1_sync_page_io(rdev, sect, s,
2127					    pages[idx],
2128					    READ) != 0)
2129				atomic_add(s, &rdev->corrected_errors);
2130		}
2131		sectors -= s;
2132		sect += s;
2133		idx ++;
2134	}
2135	set_bit(R1BIO_Uptodate, &r1_bio->state);
2136	bio->bi_status = 0;
2137	return 1;
2138}
2139
2140static void process_checks(struct r1bio *r1_bio)
2141{
2142	/* We have read all readable devices.  If we haven't
2143	 * got the block, then there is no hope left.
2144	 * If we have, then we want to do a comparison
2145	 * and skip the write if everything is the same.
2146	 * If any blocks failed to read, then we need to
2147	 * attempt an over-write
2148	 */
2149	struct mddev *mddev = r1_bio->mddev;
2150	struct r1conf *conf = mddev->private;
2151	int primary;
2152	int i;
2153	int vcnt;
2154
2155	/* Fix variable parts of all bios */
2156	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2157	for (i = 0; i < conf->raid_disks * 2; i++) {
2158		blk_status_t status;
 
 
2159		struct bio *b = r1_bio->bios[i];
2160		struct resync_pages *rp = get_resync_pages(b);
2161		if (b->bi_end_io != end_sync_read)
2162			continue;
2163		/* fixup the bio for reuse, but preserve errno */
2164		status = b->bi_status;
2165		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2166		b->bi_status = status;
 
 
 
2167		b->bi_iter.bi_sector = r1_bio->sector +
2168			conf->mirrors[i].rdev->data_offset;
 
2169		b->bi_end_io = end_sync_read;
2170		rp->raid_bio = r1_bio;
2171		b->bi_private = rp;
2172
2173		/* initialize bvec table again */
2174		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
 
 
 
 
 
 
 
 
 
2175	}
2176	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2177		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2178		    !r1_bio->bios[primary]->bi_status) {
2179			r1_bio->bios[primary]->bi_end_io = NULL;
2180			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2181			break;
2182		}
2183	r1_bio->read_disk = primary;
2184	for (i = 0; i < conf->raid_disks * 2; i++) {
2185		int j = 0;
2186		struct bio *pbio = r1_bio->bios[primary];
2187		struct bio *sbio = r1_bio->bios[i];
2188		blk_status_t status = sbio->bi_status;
2189		struct page **ppages = get_resync_pages(pbio)->pages;
2190		struct page **spages = get_resync_pages(sbio)->pages;
2191		struct bio_vec *bi;
2192		int page_len[RESYNC_PAGES] = { 0 };
2193		struct bvec_iter_all iter_all;
2194
2195		if (sbio->bi_end_io != end_sync_read)
2196			continue;
2197		/* Now we can 'fixup' the error value */
2198		sbio->bi_status = 0;
2199
2200		bio_for_each_segment_all(bi, sbio, iter_all)
2201			page_len[j++] = bi->bv_len;
2202
2203		if (!status) {
2204			for (j = vcnt; j-- ; ) {
2205				if (memcmp(page_address(ppages[j]),
2206					   page_address(spages[j]),
2207					   page_len[j]))
 
 
 
2208					break;
2209			}
2210		} else
2211			j = 0;
2212		if (j >= 0)
2213			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2214		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2215			      && !status)) {
2216			/* No need to write to this device. */
2217			sbio->bi_end_io = NULL;
2218			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2219			continue;
2220		}
2221
2222		bio_copy_data(sbio, pbio);
2223	}
 
2224}
2225
2226static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2227{
2228	struct r1conf *conf = mddev->private;
2229	int i;
2230	int disks = conf->raid_disks * 2;
2231	struct bio *wbio;
 
 
2232
2233	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2234		/* ouch - failed to read all of that. */
2235		if (!fix_sync_read_error(r1_bio))
2236			return;
2237
2238	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2239		process_checks(r1_bio);
2240
2241	/*
2242	 * schedule writes
2243	 */
2244	atomic_set(&r1_bio->remaining, 1);
2245	for (i = 0; i < disks ; i++) {
2246		wbio = r1_bio->bios[i];
2247		if (wbio->bi_end_io == NULL ||
2248		    (wbio->bi_end_io == end_sync_read &&
2249		     (i == r1_bio->read_disk ||
2250		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2251			continue;
2252		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2253			abort_sync_write(mddev, r1_bio);
2254			continue;
2255		}
2256
2257		wbio->bi_opf = REQ_OP_WRITE;
2258		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2259			wbio->bi_opf |= MD_FAILFAST;
2260
 
2261		wbio->bi_end_io = end_sync_write;
2262		atomic_inc(&r1_bio->remaining);
2263		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2264
2265		submit_bio_noacct(wbio);
2266	}
2267
2268	put_sync_write_buf(r1_bio, 1);
 
 
 
 
 
 
 
 
 
 
2269}
2270
2271/*
2272 * This is a kernel thread which:
2273 *
2274 *	1.	Retries failed read operations on working mirrors.
2275 *	2.	Updates the raid superblock when problems encounter.
2276 *	3.	Performs writes following reads for array synchronising.
2277 */
2278
2279static void fix_read_error(struct r1conf *conf, int read_disk,
2280			   sector_t sect, int sectors)
2281{
2282	struct mddev *mddev = conf->mddev;
2283	while(sectors) {
2284		int s = sectors;
2285		int d = read_disk;
2286		int success = 0;
2287		int start;
2288		struct md_rdev *rdev;
2289
2290		if (s > (PAGE_SIZE>>9))
2291			s = PAGE_SIZE >> 9;
2292
2293		do {
 
 
 
 
 
2294			sector_t first_bad;
2295			int bad_sectors;
2296
2297			rcu_read_lock();
2298			rdev = rcu_dereference(conf->mirrors[d].rdev);
2299			if (rdev &&
2300			    (test_bit(In_sync, &rdev->flags) ||
2301			     (!test_bit(Faulty, &rdev->flags) &&
2302			      rdev->recovery_offset >= sect + s)) &&
2303			    is_badblock(rdev, sect, s,
2304					&first_bad, &bad_sectors) == 0) {
2305				atomic_inc(&rdev->nr_pending);
2306				rcu_read_unlock();
2307				if (sync_page_io(rdev, sect, s<<9,
2308					 conf->tmppage, REQ_OP_READ, false))
2309					success = 1;
2310				rdev_dec_pending(rdev, mddev);
2311				if (success)
2312					break;
2313			} else
2314				rcu_read_unlock();
2315			d++;
2316			if (d == conf->raid_disks * 2)
2317				d = 0;
2318		} while (!success && d != read_disk);
2319
2320		if (!success) {
2321			/* Cannot read from anywhere - mark it bad */
2322			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2323			if (!rdev_set_badblocks(rdev, sect, s, 0))
2324				md_error(mddev, rdev);
2325			break;
2326		}
2327		/* write it back and re-read */
2328		start = d;
2329		while (d != read_disk) {
2330			if (d==0)
2331				d = conf->raid_disks * 2;
2332			d--;
2333			rcu_read_lock();
2334			rdev = rcu_dereference(conf->mirrors[d].rdev);
2335			if (rdev &&
2336			    !test_bit(Faulty, &rdev->flags)) {
2337				atomic_inc(&rdev->nr_pending);
2338				rcu_read_unlock();
2339				r1_sync_page_io(rdev, sect, s,
2340						conf->tmppage, WRITE);
2341				rdev_dec_pending(rdev, mddev);
2342			} else
2343				rcu_read_unlock();
2344		}
2345		d = start;
2346		while (d != read_disk) {
 
2347			if (d==0)
2348				d = conf->raid_disks * 2;
2349			d--;
2350			rcu_read_lock();
2351			rdev = rcu_dereference(conf->mirrors[d].rdev);
2352			if (rdev &&
2353			    !test_bit(Faulty, &rdev->flags)) {
2354				atomic_inc(&rdev->nr_pending);
2355				rcu_read_unlock();
2356				if (r1_sync_page_io(rdev, sect, s,
2357						    conf->tmppage, READ)) {
2358					atomic_add(s, &rdev->corrected_errors);
2359					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2360						mdname(mddev), s,
2361						(unsigned long long)(sect +
2362								     rdev->data_offset),
2363						rdev->bdev);
 
 
2364				}
2365				rdev_dec_pending(rdev, mddev);
2366			} else
2367				rcu_read_unlock();
2368		}
2369		sectors -= s;
2370		sect += s;
2371	}
2372}
2373
2374static int narrow_write_error(struct r1bio *r1_bio, int i)
2375{
2376	struct mddev *mddev = r1_bio->mddev;
2377	struct r1conf *conf = mddev->private;
2378	struct md_rdev *rdev = conf->mirrors[i].rdev;
2379
2380	/* bio has the data to be written to device 'i' where
2381	 * we just recently had a write error.
2382	 * We repeatedly clone the bio and trim down to one block,
2383	 * then try the write.  Where the write fails we record
2384	 * a bad block.
2385	 * It is conceivable that the bio doesn't exactly align with
2386	 * blocks.  We must handle this somehow.
2387	 *
2388	 * We currently own a reference on the rdev.
2389	 */
2390
2391	int block_sectors;
2392	sector_t sector;
2393	int sectors;
2394	int sect_to_write = r1_bio->sectors;
2395	int ok = 1;
2396
2397	if (rdev->badblocks.shift < 0)
2398		return 0;
2399
2400	block_sectors = roundup(1 << rdev->badblocks.shift,
2401				bdev_logical_block_size(rdev->bdev) >> 9);
2402	sector = r1_bio->sector;
2403	sectors = ((sector + block_sectors)
2404		   & ~(sector_t)(block_sectors - 1))
2405		- sector;
2406
2407	while (sect_to_write) {
2408		struct bio *wbio;
2409		if (sectors > sect_to_write)
2410			sectors = sect_to_write;
2411		/* Write at 'sector' for 'sectors'*/
2412
2413		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2414			wbio = bio_alloc_clone(rdev->bdev,
2415					       r1_bio->behind_master_bio,
2416					       GFP_NOIO, &mddev->bio_set);
 
 
 
 
 
 
 
 
 
2417		} else {
2418			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2419					       GFP_NOIO, &mddev->bio_set);
2420		}
2421
2422		wbio->bi_opf = REQ_OP_WRITE;
2423		wbio->bi_iter.bi_sector = r1_bio->sector;
2424		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2425
2426		bio_trim(wbio, sector - r1_bio->sector, sectors);
2427		wbio->bi_iter.bi_sector += rdev->data_offset;
2428
2429		if (submit_bio_wait(wbio) < 0)
2430			/* failure! */
2431			ok = rdev_set_badblocks(rdev, sector,
2432						sectors, 0)
2433				&& ok;
2434
2435		bio_put(wbio);
2436		sect_to_write -= sectors;
2437		sector += sectors;
2438		sectors = block_sectors;
2439	}
2440	return ok;
2441}
2442
2443static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2444{
2445	int m;
2446	int s = r1_bio->sectors;
2447	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2448		struct md_rdev *rdev = conf->mirrors[m].rdev;
2449		struct bio *bio = r1_bio->bios[m];
2450		if (bio->bi_end_io == NULL)
2451			continue;
2452		if (!bio->bi_status &&
2453		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2454			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2455		}
2456		if (bio->bi_status &&
2457		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2458			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2459				md_error(conf->mddev, rdev);
2460		}
2461	}
2462	put_buf(r1_bio);
2463	md_done_sync(conf->mddev, s, 1);
2464}
2465
2466static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2467{
2468	int m, idx;
2469	bool fail = false;
2470
2471	for (m = 0; m < conf->raid_disks * 2 ; m++)
2472		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2473			struct md_rdev *rdev = conf->mirrors[m].rdev;
2474			rdev_clear_badblocks(rdev,
2475					     r1_bio->sector,
2476					     r1_bio->sectors, 0);
2477			rdev_dec_pending(rdev, conf->mddev);
2478		} else if (r1_bio->bios[m] != NULL) {
2479			/* This drive got a write error.  We need to
2480			 * narrow down and record precise write
2481			 * errors.
2482			 */
2483			fail = true;
2484			if (!narrow_write_error(r1_bio, m)) {
2485				md_error(conf->mddev,
2486					 conf->mirrors[m].rdev);
2487				/* an I/O failed, we can't clear the bitmap */
2488				set_bit(R1BIO_Degraded, &r1_bio->state);
2489			}
2490			rdev_dec_pending(conf->mirrors[m].rdev,
2491					 conf->mddev);
2492		}
2493	if (fail) {
2494		spin_lock_irq(&conf->device_lock);
2495		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2496		idx = sector_to_idx(r1_bio->sector);
2497		atomic_inc(&conf->nr_queued[idx]);
2498		spin_unlock_irq(&conf->device_lock);
2499		/*
2500		 * In case freeze_array() is waiting for condition
2501		 * get_unqueued_pending() == extra to be true.
2502		 */
2503		wake_up(&conf->wait_barrier);
2504		md_wakeup_thread(conf->mddev->thread);
2505	} else {
2506		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507			close_write(r1_bio);
2508		raid_end_bio_io(r1_bio);
2509	}
2510}
2511
2512static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2513{
 
 
2514	struct mddev *mddev = conf->mddev;
2515	struct bio *bio;
 
2516	struct md_rdev *rdev;
2517
2518	clear_bit(R1BIO_ReadError, &r1_bio->state);
2519	/* we got a read error. Maybe the drive is bad.  Maybe just
2520	 * the block and we can fix it.
2521	 * We freeze all other IO, and try reading the block from
2522	 * other devices.  When we find one, we re-write
2523	 * and check it that fixes the read error.
2524	 * This is all done synchronously while the array is
2525	 * frozen
2526	 */
2527
2528	bio = r1_bio->bios[r1_bio->read_disk];
2529	bio_put(bio);
2530	r1_bio->bios[r1_bio->read_disk] = NULL;
2531
2532	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2533	if (mddev->ro == 0
2534	    && !test_bit(FailFast, &rdev->flags)) {
2535		freeze_array(conf, 1);
2536		fix_read_error(conf, r1_bio->read_disk,
2537			       r1_bio->sector, r1_bio->sectors);
2538		unfreeze_array(conf);
2539	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2540		md_error(mddev, rdev);
2541	} else {
2542		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2543	}
2544
2545	rdev_dec_pending(rdev, conf->mddev);
2546	allow_barrier(conf, r1_bio->sector);
2547	bio = r1_bio->master_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548
2549	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2550	r1_bio->state = 0;
2551	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 
2552}
2553
2554static void raid1d(struct md_thread *thread)
2555{
2556	struct mddev *mddev = thread->mddev;
2557	struct r1bio *r1_bio;
2558	unsigned long flags;
2559	struct r1conf *conf = mddev->private;
2560	struct list_head *head = &conf->retry_list;
2561	struct blk_plug plug;
2562	int idx;
2563
2564	md_check_recovery(mddev);
2565
2566	if (!list_empty_careful(&conf->bio_end_io_list) &&
2567	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2568		LIST_HEAD(tmp);
2569		spin_lock_irqsave(&conf->device_lock, flags);
2570		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2571			list_splice_init(&conf->bio_end_io_list, &tmp);
2572		spin_unlock_irqrestore(&conf->device_lock, flags);
2573		while (!list_empty(&tmp)) {
2574			r1_bio = list_first_entry(&tmp, struct r1bio,
2575						  retry_list);
2576			list_del(&r1_bio->retry_list);
2577			idx = sector_to_idx(r1_bio->sector);
2578			atomic_dec(&conf->nr_queued[idx]);
2579			if (mddev->degraded)
2580				set_bit(R1BIO_Degraded, &r1_bio->state);
2581			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2582				close_write(r1_bio);
2583			raid_end_bio_io(r1_bio);
2584		}
2585	}
2586
2587	blk_start_plug(&plug);
2588	for (;;) {
2589
2590		flush_pending_writes(conf);
2591
2592		spin_lock_irqsave(&conf->device_lock, flags);
2593		if (list_empty(head)) {
2594			spin_unlock_irqrestore(&conf->device_lock, flags);
2595			break;
2596		}
2597		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2598		list_del(head->prev);
2599		idx = sector_to_idx(r1_bio->sector);
2600		atomic_dec(&conf->nr_queued[idx]);
2601		spin_unlock_irqrestore(&conf->device_lock, flags);
2602
2603		mddev = r1_bio->mddev;
2604		conf = mddev->private;
2605		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2606			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2607			    test_bit(R1BIO_WriteError, &r1_bio->state))
2608				handle_sync_write_finished(conf, r1_bio);
2609			else
2610				sync_request_write(mddev, r1_bio);
2611		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2612			   test_bit(R1BIO_WriteError, &r1_bio->state))
2613			handle_write_finished(conf, r1_bio);
2614		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2615			handle_read_error(conf, r1_bio);
2616		else
2617			WARN_ON_ONCE(1);
 
 
 
2618
2619		cond_resched();
2620		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2621			md_check_recovery(mddev);
2622	}
2623	blk_finish_plug(&plug);
2624}
2625
 
2626static int init_resync(struct r1conf *conf)
2627{
2628	int buffs;
2629
2630	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2631	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2632
2633	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2634			    r1buf_pool_free, conf->poolinfo);
2635}
2636
2637static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2638{
2639	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2640	struct resync_pages *rps;
2641	struct bio *bio;
2642	int i;
2643
2644	for (i = conf->poolinfo->raid_disks; i--; ) {
2645		bio = r1bio->bios[i];
2646		rps = bio->bi_private;
2647		bio_reset(bio, NULL, 0);
2648		bio->bi_private = rps;
2649	}
2650	r1bio->master_bio = NULL;
2651	return r1bio;
2652}
2653
2654/*
2655 * perform a "sync" on one "block"
2656 *
2657 * We need to make sure that no normal I/O request - particularly write
2658 * requests - conflict with active sync requests.
2659 *
2660 * This is achieved by tracking pending requests and a 'barrier' concept
2661 * that can be installed to exclude normal IO requests.
2662 */
2663
2664static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2665				   int *skipped)
2666{
2667	struct r1conf *conf = mddev->private;
2668	struct r1bio *r1_bio;
2669	struct bio *bio;
2670	sector_t max_sector, nr_sectors;
2671	int disk = -1;
2672	int i;
2673	int wonly = -1;
2674	int write_targets = 0, read_targets = 0;
2675	sector_t sync_blocks;
2676	int still_degraded = 0;
2677	int good_sectors = RESYNC_SECTORS;
2678	int min_bad = 0; /* number of sectors that are bad in all devices */
2679	int idx = sector_to_idx(sector_nr);
2680	int page_idx = 0;
2681
2682	if (!mempool_initialized(&conf->r1buf_pool))
2683		if (init_resync(conf))
2684			return 0;
2685
2686	max_sector = mddev->dev_sectors;
2687	if (sector_nr >= max_sector) {
2688		/* If we aborted, we need to abort the
2689		 * sync on the 'current' bitmap chunk (there will
2690		 * only be one in raid1 resync.
2691		 * We can find the current addess in mddev->curr_resync
2692		 */
2693		if (mddev->curr_resync < max_sector) /* aborted */
2694			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2695					   &sync_blocks, 1);
2696		else /* completed sync */
2697			conf->fullsync = 0;
2698
2699		md_bitmap_close_sync(mddev->bitmap);
2700		close_sync(conf);
2701
2702		if (mddev_is_clustered(mddev)) {
2703			conf->cluster_sync_low = 0;
2704			conf->cluster_sync_high = 0;
2705		}
2706		return 0;
2707	}
2708
2709	if (mddev->bitmap == NULL &&
2710	    mddev->recovery_cp == MaxSector &&
2711	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2712	    conf->fullsync == 0) {
2713		*skipped = 1;
2714		return max_sector - sector_nr;
2715	}
2716	/* before building a request, check if we can skip these blocks..
2717	 * This call the bitmap_start_sync doesn't actually record anything
2718	 */
2719	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2720	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2721		/* We can skip this block, and probably several more */
2722		*skipped = 1;
2723		return sync_blocks;
2724	}
2725
2726	/*
2727	 * If there is non-resync activity waiting for a turn, then let it
2728	 * though before starting on this new sync request.
2729	 */
2730	if (atomic_read(&conf->nr_waiting[idx]))
2731		schedule_timeout_uninterruptible(1);
 
 
 
 
 
2732
2733	/* we are incrementing sector_nr below. To be safe, we check against
2734	 * sector_nr + two times RESYNC_SECTORS
2735	 */
2736
2737	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2738		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2739
2740
2741	if (raise_barrier(conf, sector_nr))
2742		return 0;
2743
2744	r1_bio = raid1_alloc_init_r1buf(conf);
2745
2746	rcu_read_lock();
2747	/*
2748	 * If we get a correctably read error during resync or recovery,
2749	 * we might want to read from a different device.  So we
2750	 * flag all drives that could conceivably be read from for READ,
2751	 * and any others (which will be non-In_sync devices) for WRITE.
2752	 * If a read fails, we try reading from something else for which READ
2753	 * is OK.
2754	 */
2755
2756	r1_bio->mddev = mddev;
2757	r1_bio->sector = sector_nr;
2758	r1_bio->state = 0;
2759	set_bit(R1BIO_IsSync, &r1_bio->state);
2760	/* make sure good_sectors won't go across barrier unit boundary */
2761	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2762
2763	for (i = 0; i < conf->raid_disks * 2; i++) {
2764		struct md_rdev *rdev;
2765		bio = r1_bio->bios[i];
 
2766
2767		rdev = rcu_dereference(conf->mirrors[i].rdev);
2768		if (rdev == NULL ||
2769		    test_bit(Faulty, &rdev->flags)) {
2770			if (i < conf->raid_disks)
2771				still_degraded = 1;
2772		} else if (!test_bit(In_sync, &rdev->flags)) {
2773			bio->bi_opf = REQ_OP_WRITE;
2774			bio->bi_end_io = end_sync_write;
2775			write_targets ++;
2776		} else {
2777			/* may need to read from here */
2778			sector_t first_bad = MaxSector;
2779			int bad_sectors;
2780
2781			if (is_badblock(rdev, sector_nr, good_sectors,
2782					&first_bad, &bad_sectors)) {
2783				if (first_bad > sector_nr)
2784					good_sectors = first_bad - sector_nr;
2785				else {
2786					bad_sectors -= (sector_nr - first_bad);
2787					if (min_bad == 0 ||
2788					    min_bad > bad_sectors)
2789						min_bad = bad_sectors;
2790				}
2791			}
2792			if (sector_nr < first_bad) {
2793				if (test_bit(WriteMostly, &rdev->flags)) {
2794					if (wonly < 0)
2795						wonly = i;
2796				} else {
2797					if (disk < 0)
2798						disk = i;
2799				}
2800				bio->bi_opf = REQ_OP_READ;
2801				bio->bi_end_io = end_sync_read;
2802				read_targets++;
2803			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2804				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2805				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2806				/*
2807				 * The device is suitable for reading (InSync),
2808				 * but has bad block(s) here. Let's try to correct them,
2809				 * if we are doing resync or repair. Otherwise, leave
2810				 * this device alone for this sync request.
2811				 */
2812				bio->bi_opf = REQ_OP_WRITE;
2813				bio->bi_end_io = end_sync_write;
2814				write_targets++;
2815			}
2816		}
2817		if (rdev && bio->bi_end_io) {
2818			atomic_inc(&rdev->nr_pending);
2819			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2820			bio_set_dev(bio, rdev->bdev);
2821			if (test_bit(FailFast, &rdev->flags))
2822				bio->bi_opf |= MD_FAILFAST;
2823		}
2824	}
2825	rcu_read_unlock();
2826	if (disk < 0)
2827		disk = wonly;
2828	r1_bio->read_disk = disk;
2829
2830	if (read_targets == 0 && min_bad > 0) {
2831		/* These sectors are bad on all InSync devices, so we
2832		 * need to mark them bad on all write targets
2833		 */
2834		int ok = 1;
2835		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2836			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2837				struct md_rdev *rdev = conf->mirrors[i].rdev;
2838				ok = rdev_set_badblocks(rdev, sector_nr,
2839							min_bad, 0
2840					) && ok;
2841			}
2842		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2843		*skipped = 1;
2844		put_buf(r1_bio);
2845
2846		if (!ok) {
2847			/* Cannot record the badblocks, so need to
2848			 * abort the resync.
2849			 * If there are multiple read targets, could just
2850			 * fail the really bad ones ???
2851			 */
2852			conf->recovery_disabled = mddev->recovery_disabled;
2853			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2854			return 0;
2855		} else
2856			return min_bad;
2857
2858	}
2859	if (min_bad > 0 && min_bad < good_sectors) {
2860		/* only resync enough to reach the next bad->good
2861		 * transition */
2862		good_sectors = min_bad;
2863	}
2864
2865	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2866		/* extra read targets are also write targets */
2867		write_targets += read_targets-1;
2868
2869	if (write_targets == 0 || read_targets == 0) {
2870		/* There is nowhere to write, so all non-sync
2871		 * drives must be failed - so we are finished
2872		 */
2873		sector_t rv;
2874		if (min_bad > 0)
2875			max_sector = sector_nr + min_bad;
2876		rv = max_sector - sector_nr;
2877		*skipped = 1;
2878		put_buf(r1_bio);
2879		return rv;
2880	}
2881
2882	if (max_sector > mddev->resync_max)
2883		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2884	if (max_sector > sector_nr + good_sectors)
2885		max_sector = sector_nr + good_sectors;
2886	nr_sectors = 0;
2887	sync_blocks = 0;
2888	do {
2889		struct page *page;
2890		int len = PAGE_SIZE;
2891		if (sector_nr + (len>>9) > max_sector)
2892			len = (max_sector - sector_nr) << 9;
2893		if (len == 0)
2894			break;
2895		if (sync_blocks == 0) {
2896			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2897						  &sync_blocks, still_degraded) &&
2898			    !conf->fullsync &&
2899			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2900				break;
 
2901			if ((len >> 9) > sync_blocks)
2902				len = sync_blocks<<9;
2903		}
2904
2905		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2906			struct resync_pages *rp;
2907
2908			bio = r1_bio->bios[i];
2909			rp = get_resync_pages(bio);
2910			if (bio->bi_end_io) {
2911				page = resync_fetch_page(rp, page_idx);
2912
2913				/*
2914				 * won't fail because the vec table is big
2915				 * enough to hold all these pages
2916				 */
2917				bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
2918			}
2919		}
2920		nr_sectors += len>>9;
2921		sector_nr += len>>9;
2922		sync_blocks -= (len>>9);
2923	} while (++page_idx < RESYNC_PAGES);
2924
2925	r1_bio->sectors = nr_sectors;
2926
2927	if (mddev_is_clustered(mddev) &&
2928			conf->cluster_sync_high < sector_nr + nr_sectors) {
2929		conf->cluster_sync_low = mddev->curr_resync_completed;
2930		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2931		/* Send resync message */
2932		md_cluster_ops->resync_info_update(mddev,
2933				conf->cluster_sync_low,
2934				conf->cluster_sync_high);
2935	}
2936
2937	/* For a user-requested sync, we read all readable devices and do a
2938	 * compare
2939	 */
2940	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2941		atomic_set(&r1_bio->remaining, read_targets);
2942		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2943			bio = r1_bio->bios[i];
2944			if (bio->bi_end_io == end_sync_read) {
2945				read_targets--;
2946				md_sync_acct_bio(bio, nr_sectors);
2947				if (read_targets == 1)
2948					bio->bi_opf &= ~MD_FAILFAST;
2949				submit_bio_noacct(bio);
2950			}
2951		}
2952	} else {
2953		atomic_set(&r1_bio->remaining, 1);
2954		bio = r1_bio->bios[r1_bio->read_disk];
2955		md_sync_acct_bio(bio, nr_sectors);
2956		if (read_targets == 1)
2957			bio->bi_opf &= ~MD_FAILFAST;
2958		submit_bio_noacct(bio);
2959	}
2960	return nr_sectors;
2961}
2962
2963static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2964{
2965	if (sectors)
2966		return sectors;
2967
2968	return mddev->dev_sectors;
2969}
2970
2971static struct r1conf *setup_conf(struct mddev *mddev)
2972{
2973	struct r1conf *conf;
2974	int i;
2975	struct raid1_info *disk;
2976	struct md_rdev *rdev;
2977	int err = -ENOMEM;
2978
2979	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2980	if (!conf)
2981		goto abort;
2982
2983	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2984				   sizeof(atomic_t), GFP_KERNEL);
2985	if (!conf->nr_pending)
2986		goto abort;
2987
2988	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2989				   sizeof(atomic_t), GFP_KERNEL);
2990	if (!conf->nr_waiting)
2991		goto abort;
2992
2993	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2994				  sizeof(atomic_t), GFP_KERNEL);
2995	if (!conf->nr_queued)
2996		goto abort;
2997
2998	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2999				sizeof(atomic_t), GFP_KERNEL);
3000	if (!conf->barrier)
3001		goto abort;
3002
3003	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3004					    mddev->raid_disks, 2),
3005				GFP_KERNEL);
3006	if (!conf->mirrors)
3007		goto abort;
3008
3009	conf->tmppage = alloc_page(GFP_KERNEL);
3010	if (!conf->tmppage)
3011		goto abort;
3012
3013	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3014	if (!conf->poolinfo)
3015		goto abort;
3016	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3017	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3018			   rbio_pool_free, conf->poolinfo);
3019	if (err)
3020		goto abort;
3021
3022	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3023	if (err)
3024		goto abort;
3025
3026	conf->poolinfo->mddev = mddev;
3027
3028	err = -EINVAL;
3029	spin_lock_init(&conf->device_lock);
3030	rdev_for_each(rdev, mddev) {
 
3031		int disk_idx = rdev->raid_disk;
3032		if (disk_idx >= mddev->raid_disks
3033		    || disk_idx < 0)
3034			continue;
3035		if (test_bit(Replacement, &rdev->flags))
3036			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3037		else
3038			disk = conf->mirrors + disk_idx;
3039
3040		if (disk->rdev)
3041			goto abort;
3042		disk->rdev = rdev;
 
 
 
 
3043		disk->head_position = 0;
3044		disk->seq_start = MaxSector;
3045	}
3046	conf->raid_disks = mddev->raid_disks;
3047	conf->mddev = mddev;
3048	INIT_LIST_HEAD(&conf->retry_list);
3049	INIT_LIST_HEAD(&conf->bio_end_io_list);
3050
3051	spin_lock_init(&conf->resync_lock);
3052	init_waitqueue_head(&conf->wait_barrier);
3053
3054	bio_list_init(&conf->pending_bio_list);
 
3055	conf->recovery_disabled = mddev->recovery_disabled - 1;
3056
 
 
 
3057	err = -EIO;
3058	for (i = 0; i < conf->raid_disks * 2; i++) {
3059
3060		disk = conf->mirrors + i;
3061
3062		if (i < conf->raid_disks &&
3063		    disk[conf->raid_disks].rdev) {
3064			/* This slot has a replacement. */
3065			if (!disk->rdev) {
3066				/* No original, just make the replacement
3067				 * a recovering spare
3068				 */
3069				disk->rdev =
3070					disk[conf->raid_disks].rdev;
3071				disk[conf->raid_disks].rdev = NULL;
3072			} else if (!test_bit(In_sync, &disk->rdev->flags))
3073				/* Original is not in_sync - bad */
3074				goto abort;
3075		}
3076
3077		if (!disk->rdev ||
3078		    !test_bit(In_sync, &disk->rdev->flags)) {
3079			disk->head_position = 0;
3080			if (disk->rdev &&
3081			    (disk->rdev->saved_raid_disk < 0))
3082				conf->fullsync = 1;
3083		}
3084	}
3085
3086	err = -ENOMEM;
3087	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3088	if (!conf->thread)
 
 
 
3089		goto abort;
 
3090
3091	return conf;
3092
3093 abort:
3094	if (conf) {
3095		mempool_exit(&conf->r1bio_pool);
 
3096		kfree(conf->mirrors);
3097		safe_put_page(conf->tmppage);
3098		kfree(conf->poolinfo);
3099		kfree(conf->nr_pending);
3100		kfree(conf->nr_waiting);
3101		kfree(conf->nr_queued);
3102		kfree(conf->barrier);
3103		bioset_exit(&conf->bio_split);
3104		kfree(conf);
3105	}
3106	return ERR_PTR(err);
3107}
3108
3109static void raid1_free(struct mddev *mddev, void *priv);
3110static int raid1_run(struct mddev *mddev)
3111{
3112	struct r1conf *conf;
3113	int i;
3114	struct md_rdev *rdev;
3115	int ret;
 
3116
3117	if (mddev->level != 1) {
3118		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3119			mdname(mddev), mddev->level);
3120		return -EIO;
3121	}
3122	if (mddev->reshape_position != MaxSector) {
3123		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3124			mdname(mddev));
3125		return -EIO;
3126	}
3127	if (mddev_init_writes_pending(mddev) < 0)
3128		return -ENOMEM;
3129	/*
3130	 * copy the already verified devices into our private RAID1
3131	 * bookkeeping area. [whatever we allocate in run(),
3132	 * should be freed in raid1_free()]
3133	 */
3134	if (mddev->private == NULL)
3135		conf = setup_conf(mddev);
3136	else
3137		conf = mddev->private;
3138
3139	if (IS_ERR(conf))
3140		return PTR_ERR(conf);
3141
3142	if (mddev->queue)
3143		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3144
3145	rdev_for_each(rdev, mddev) {
3146		if (!mddev->gendisk)
3147			continue;
3148		disk_stack_limits(mddev->gendisk, rdev->bdev,
3149				  rdev->data_offset << 9);
 
 
3150	}
3151
3152	mddev->degraded = 0;
3153	for (i = 0; i < conf->raid_disks; i++)
3154		if (conf->mirrors[i].rdev == NULL ||
3155		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3156		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3157			mddev->degraded++;
3158	/*
3159	 * RAID1 needs at least one disk in active
3160	 */
3161	if (conf->raid_disks - mddev->degraded < 1) {
3162		md_unregister_thread(&conf->thread);
3163		ret = -EINVAL;
3164		goto abort;
3165	}
3166
3167	if (conf->raid_disks - mddev->degraded == 1)
3168		mddev->recovery_cp = MaxSector;
3169
3170	if (mddev->recovery_cp != MaxSector)
3171		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3172			mdname(mddev));
3173	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3174		mdname(mddev), mddev->raid_disks - mddev->degraded,
 
 
3175		mddev->raid_disks);
3176
3177	/*
3178	 * Ok, everything is just fine now
3179	 */
3180	mddev->thread = conf->thread;
3181	conf->thread = NULL;
3182	mddev->private = conf;
3183	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3184
3185	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3186
3187	ret = md_integrity_register(mddev);
3188	if (ret) {
3189		md_unregister_thread(&mddev->thread);
3190		goto abort;
 
 
 
 
 
 
 
3191	}
3192	return 0;
3193
3194abort:
3195	raid1_free(mddev, conf);
 
3196	return ret;
3197}
3198
3199static void raid1_free(struct mddev *mddev, void *priv)
3200{
3201	struct r1conf *conf = priv;
 
 
 
 
 
 
 
 
 
 
3202
3203	mempool_exit(&conf->r1bio_pool);
 
 
 
 
 
3204	kfree(conf->mirrors);
3205	safe_put_page(conf->tmppage);
3206	kfree(conf->poolinfo);
3207	kfree(conf->nr_pending);
3208	kfree(conf->nr_waiting);
3209	kfree(conf->nr_queued);
3210	kfree(conf->barrier);
3211	bioset_exit(&conf->bio_split);
3212	kfree(conf);
 
 
3213}
3214
3215static int raid1_resize(struct mddev *mddev, sector_t sectors)
3216{
3217	/* no resync is happening, and there is enough space
3218	 * on all devices, so we can resize.
3219	 * We need to make sure resync covers any new space.
3220	 * If the array is shrinking we should possibly wait until
3221	 * any io in the removed space completes, but it hardly seems
3222	 * worth it.
3223	 */
3224	sector_t newsize = raid1_size(mddev, sectors, 0);
3225	if (mddev->external_size &&
3226	    mddev->array_sectors > newsize)
3227		return -EINVAL;
3228	if (mddev->bitmap) {
3229		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3230		if (ret)
3231			return ret;
3232	}
3233	md_set_array_sectors(mddev, newsize);
 
 
3234	if (sectors > mddev->dev_sectors &&
3235	    mddev->recovery_cp > mddev->dev_sectors) {
3236		mddev->recovery_cp = mddev->dev_sectors;
3237		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3238	}
3239	mddev->dev_sectors = sectors;
3240	mddev->resync_max_sectors = sectors;
3241	return 0;
3242}
3243
3244static int raid1_reshape(struct mddev *mddev)
3245{
3246	/* We need to:
3247	 * 1/ resize the r1bio_pool
3248	 * 2/ resize conf->mirrors
3249	 *
3250	 * We allocate a new r1bio_pool if we can.
3251	 * Then raise a device barrier and wait until all IO stops.
3252	 * Then resize conf->mirrors and swap in the new r1bio pool.
3253	 *
3254	 * At the same time, we "pack" the devices so that all the missing
3255	 * devices have the higher raid_disk numbers.
3256	 */
3257	mempool_t newpool, oldpool;
3258	struct pool_info *newpoolinfo;
3259	struct raid1_info *newmirrors;
3260	struct r1conf *conf = mddev->private;
3261	int cnt, raid_disks;
3262	unsigned long flags;
3263	int d, d2;
3264	int ret;
3265
3266	memset(&newpool, 0, sizeof(newpool));
3267	memset(&oldpool, 0, sizeof(oldpool));
3268
3269	/* Cannot change chunk_size, layout, or level */
3270	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3271	    mddev->layout != mddev->new_layout ||
3272	    mddev->level != mddev->new_level) {
3273		mddev->new_chunk_sectors = mddev->chunk_sectors;
3274		mddev->new_layout = mddev->layout;
3275		mddev->new_level = mddev->level;
3276		return -EINVAL;
3277	}
3278
3279	if (!mddev_is_clustered(mddev))
3280		md_allow_write(mddev);
 
3281
3282	raid_disks = mddev->raid_disks + mddev->delta_disks;
3283
3284	if (raid_disks < conf->raid_disks) {
3285		cnt=0;
3286		for (d= 0; d < conf->raid_disks; d++)
3287			if (conf->mirrors[d].rdev)
3288				cnt++;
3289		if (cnt > raid_disks)
3290			return -EBUSY;
3291	}
3292
3293	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3294	if (!newpoolinfo)
3295		return -ENOMEM;
3296	newpoolinfo->mddev = mddev;
3297	newpoolinfo->raid_disks = raid_disks * 2;
3298
3299	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3300			   rbio_pool_free, newpoolinfo);
3301	if (ret) {
3302		kfree(newpoolinfo);
3303		return ret;
3304	}
3305	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3306					 raid_disks, 2),
3307			     GFP_KERNEL);
3308	if (!newmirrors) {
3309		kfree(newpoolinfo);
3310		mempool_exit(&newpool);
3311		return -ENOMEM;
3312	}
3313
3314	freeze_array(conf, 0);
3315
3316	/* ok, everything is stopped */
3317	oldpool = conf->r1bio_pool;
3318	conf->r1bio_pool = newpool;
3319
3320	for (d = d2 = 0; d < conf->raid_disks; d++) {
3321		struct md_rdev *rdev = conf->mirrors[d].rdev;
3322		if (rdev && rdev->raid_disk != d2) {
3323			sysfs_unlink_rdev(mddev, rdev);
3324			rdev->raid_disk = d2;
3325			sysfs_unlink_rdev(mddev, rdev);
3326			if (sysfs_link_rdev(mddev, rdev))
3327				pr_warn("md/raid1:%s: cannot register rd%d\n",
3328					mdname(mddev), rdev->raid_disk);
 
3329		}
3330		if (rdev)
3331			newmirrors[d2++].rdev = rdev;
3332	}
3333	kfree(conf->mirrors);
3334	conf->mirrors = newmirrors;
3335	kfree(conf->poolinfo);
3336	conf->poolinfo = newpoolinfo;
3337
3338	spin_lock_irqsave(&conf->device_lock, flags);
3339	mddev->degraded += (raid_disks - conf->raid_disks);
3340	spin_unlock_irqrestore(&conf->device_lock, flags);
3341	conf->raid_disks = mddev->raid_disks = raid_disks;
3342	mddev->delta_disks = 0;
3343
3344	unfreeze_array(conf);
3345
3346	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3347	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3348	md_wakeup_thread(mddev->thread);
3349
3350	mempool_exit(&oldpool);
3351	return 0;
3352}
3353
3354static void raid1_quiesce(struct mddev *mddev, int quiesce)
3355{
3356	struct r1conf *conf = mddev->private;
3357
3358	if (quiesce)
 
 
 
 
3359		freeze_array(conf, 0);
3360	else
 
3361		unfreeze_array(conf);
 
 
3362}
3363
3364static void *raid1_takeover(struct mddev *mddev)
3365{
3366	/* raid1 can take over:
3367	 *  raid5 with 2 devices, any layout or chunk size
3368	 */
3369	if (mddev->level == 5 && mddev->raid_disks == 2) {
3370		struct r1conf *conf;
3371		mddev->new_level = 1;
3372		mddev->new_layout = 0;
3373		mddev->new_chunk_sectors = 0;
3374		conf = setup_conf(mddev);
3375		if (!IS_ERR(conf)) {
3376			/* Array must appear to be quiesced */
3377			conf->array_frozen = 1;
3378			mddev_clear_unsupported_flags(mddev,
3379				UNSUPPORTED_MDDEV_FLAGS);
3380		}
3381		return conf;
3382	}
3383	return ERR_PTR(-EINVAL);
3384}
3385
3386static struct md_personality raid1_personality =
3387{
3388	.name		= "raid1",
3389	.level		= 1,
3390	.owner		= THIS_MODULE,
3391	.make_request	= raid1_make_request,
3392	.run		= raid1_run,
3393	.free		= raid1_free,
3394	.status		= raid1_status,
3395	.error_handler	= raid1_error,
3396	.hot_add_disk	= raid1_add_disk,
3397	.hot_remove_disk= raid1_remove_disk,
3398	.spare_active	= raid1_spare_active,
3399	.sync_request	= raid1_sync_request,
3400	.resize		= raid1_resize,
3401	.size		= raid1_size,
3402	.check_reshape	= raid1_reshape,
3403	.quiesce	= raid1_quiesce,
3404	.takeover	= raid1_takeover,
3405};
3406
3407static int __init raid_init(void)
3408{
3409	return register_md_personality(&raid1_personality);
3410}
3411
3412static void raid_exit(void)
3413{
3414	unregister_md_personality(&raid1_personality);
3415}
3416
3417module_init(raid_init);
3418module_exit(raid_exit);
3419MODULE_LICENSE("GPL");
3420MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3421MODULE_ALIAS("md-personality-3"); /* RAID1 */
3422MODULE_ALIAS("md-raid1");
3423MODULE_ALIAS("md-level-1");
v3.15
 
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
 
 
 
 
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
 
 
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
 
  94
  95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97	struct pool_info *pi = data;
  98	struct r1bio *r1_bio;
  99	struct bio *bio;
 100	int need_pages;
 101	int i, j;
 
 102
 103	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 104	if (!r1_bio)
 105		return NULL;
 106
 
 
 
 
 
 107	/*
 108	 * Allocate bios : 1 for reading, n-1 for writing
 109	 */
 110	for (j = pi->raid_disks ; j-- ; ) {
 111		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 112		if (!bio)
 113			goto out_free_bio;
 
 114		r1_bio->bios[j] = bio;
 115	}
 116	/*
 117	 * Allocate RESYNC_PAGES data pages and attach them to
 118	 * the first bio.
 119	 * If this is a user-requested check/repair, allocate
 120	 * RESYNC_PAGES for each bio.
 121	 */
 122	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 123		need_pages = pi->raid_disks;
 124	else
 125		need_pages = 1;
 126	for (j = 0; j < need_pages; j++) {
 
 
 127		bio = r1_bio->bios[j];
 128		bio->bi_vcnt = RESYNC_PAGES;
 129
 130		if (bio_alloc_pages(bio, gfp_flags))
 131			goto out_free_pages;
 132	}
 133	/* If not user-requests, copy the page pointers to all bios */
 134	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 135		for (i=0; i<RESYNC_PAGES ; i++)
 136			for (j=1; j<pi->raid_disks; j++)
 137				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 138					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 
 139	}
 140
 141	r1_bio->master_bio = NULL;
 142
 143	return r1_bio;
 144
 145out_free_pages:
 146	while (--j >= 0) {
 147		struct bio_vec *bv;
 148
 149		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 150			__free_page(bv->bv_page);
 
 
 151	}
 
 152
 153out_free_bio:
 154	while (++j < pi->raid_disks)
 155		bio_put(r1_bio->bios[j]);
 156	r1bio_pool_free(r1_bio, data);
 157	return NULL;
 158}
 159
 160static void r1buf_pool_free(void *__r1_bio, void *data)
 161{
 162	struct pool_info *pi = data;
 163	int i,j;
 164	struct r1bio *r1bio = __r1_bio;
 
 
 
 
 
 
 
 
 165
 166	for (i = 0; i < RESYNC_PAGES; i++)
 167		for (j = pi->raid_disks; j-- ;) {
 168			if (j == 0 ||
 169			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 170			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 171				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 172		}
 173	for (i=0 ; i < pi->raid_disks; i++)
 174		bio_put(r1bio->bios[i]);
 175
 176	r1bio_pool_free(r1bio, data);
 177}
 178
 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 180{
 181	int i;
 182
 183	for (i = 0; i < conf->raid_disks * 2; i++) {
 184		struct bio **bio = r1_bio->bios + i;
 185		if (!BIO_SPECIAL(*bio))
 186			bio_put(*bio);
 187		*bio = NULL;
 188	}
 189}
 190
 191static void free_r1bio(struct r1bio *r1_bio)
 192{
 193	struct r1conf *conf = r1_bio->mddev->private;
 194
 195	put_all_bios(conf, r1_bio);
 196	mempool_free(r1_bio, conf->r1bio_pool);
 197}
 198
 199static void put_buf(struct r1bio *r1_bio)
 200{
 201	struct r1conf *conf = r1_bio->mddev->private;
 
 202	int i;
 203
 204	for (i = 0; i < conf->raid_disks * 2; i++) {
 205		struct bio *bio = r1_bio->bios[i];
 206		if (bio->bi_end_io)
 207			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 208	}
 209
 210	mempool_free(r1_bio, conf->r1buf_pool);
 211
 212	lower_barrier(conf);
 213}
 214
 215static void reschedule_retry(struct r1bio *r1_bio)
 216{
 217	unsigned long flags;
 218	struct mddev *mddev = r1_bio->mddev;
 219	struct r1conf *conf = mddev->private;
 
 220
 
 221	spin_lock_irqsave(&conf->device_lock, flags);
 222	list_add(&r1_bio->retry_list, &conf->retry_list);
 223	conf->nr_queued ++;
 224	spin_unlock_irqrestore(&conf->device_lock, flags);
 225
 226	wake_up(&conf->wait_barrier);
 227	md_wakeup_thread(mddev->thread);
 228}
 229
 230/*
 231 * raid_end_bio_io() is called when we have finished servicing a mirrored
 232 * operation and are ready to return a success/failure code to the buffer
 233 * cache layer.
 234 */
 235static void call_bio_endio(struct r1bio *r1_bio)
 236{
 237	struct bio *bio = r1_bio->master_bio;
 238	int done;
 239	struct r1conf *conf = r1_bio->mddev->private;
 240	sector_t start_next_window = r1_bio->start_next_window;
 241	sector_t bi_sector = bio->bi_iter.bi_sector;
 242
 243	if (bio->bi_phys_segments) {
 244		unsigned long flags;
 245		spin_lock_irqsave(&conf->device_lock, flags);
 246		bio->bi_phys_segments--;
 247		done = (bio->bi_phys_segments == 0);
 248		spin_unlock_irqrestore(&conf->device_lock, flags);
 249		/*
 250		 * make_request() might be waiting for
 251		 * bi_phys_segments to decrease
 252		 */
 253		wake_up(&conf->wait_barrier);
 254	} else
 255		done = 1;
 256
 257	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 258		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 259	if (done) {
 260		bio_endio(bio, 0);
 261		/*
 262		 * Wake up any possible resync thread that waits for the device
 263		 * to go idle.
 264		 */
 265		allow_barrier(conf, start_next_window, bi_sector);
 266	}
 267}
 268
 269static void raid_end_bio_io(struct r1bio *r1_bio)
 270{
 271	struct bio *bio = r1_bio->master_bio;
 
 272
 273	/* if nobody has done the final endio yet, do it now */
 274	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 275		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 276			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 277			 (unsigned long long) bio->bi_iter.bi_sector,
 278			 (unsigned long long) bio_end_sector(bio) - 1);
 279
 280		call_bio_endio(r1_bio);
 281	}
 
 
 
 
 
 
 282	free_r1bio(r1_bio);
 283}
 284
 285/*
 286 * Update disk head position estimator based on IRQ completion info.
 287 */
 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 289{
 290	struct r1conf *conf = r1_bio->mddev->private;
 291
 292	conf->mirrors[disk].head_position =
 293		r1_bio->sector + (r1_bio->sectors);
 294}
 295
 296/*
 297 * Find the disk number which triggered given bio
 298 */
 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 300{
 301	int mirror;
 302	struct r1conf *conf = r1_bio->mddev->private;
 303	int raid_disks = conf->raid_disks;
 304
 305	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 306		if (r1_bio->bios[mirror] == bio)
 307			break;
 308
 309	BUG_ON(mirror == raid_disks * 2);
 310	update_head_pos(mirror, r1_bio);
 311
 312	return mirror;
 313}
 314
 315static void raid1_end_read_request(struct bio *bio, int error)
 316{
 317	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 318	struct r1bio *r1_bio = bio->bi_private;
 319	int mirror;
 320	struct r1conf *conf = r1_bio->mddev->private;
 
 321
 322	mirror = r1_bio->read_disk;
 323	/*
 324	 * this branch is our 'one mirror IO has finished' event handler:
 325	 */
 326	update_head_pos(mirror, r1_bio);
 327
 328	if (uptodate)
 329		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 330	else {
 331		/* If all other devices have failed, we want to return
 332		 * the error upwards rather than fail the last device.
 333		 * Here we redefine "uptodate" to mean "Don't want to retry"
 334		 */
 335		unsigned long flags;
 336		spin_lock_irqsave(&conf->device_lock, flags);
 337		if (r1_bio->mddev->degraded == conf->raid_disks ||
 338		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 339		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 340			uptodate = 1;
 341		spin_unlock_irqrestore(&conf->device_lock, flags);
 342	}
 343
 344	if (uptodate) {
 345		raid_end_bio_io(r1_bio);
 346		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 347	} else {
 348		/*
 349		 * oops, read error:
 350		 */
 351		char b[BDEVNAME_SIZE];
 352		printk_ratelimited(
 353			KERN_ERR "md/raid1:%s: %s: "
 354			"rescheduling sector %llu\n",
 355			mdname(conf->mddev),
 356			bdevname(conf->mirrors[mirror].rdev->bdev,
 357				 b),
 358			(unsigned long long)r1_bio->sector);
 359		set_bit(R1BIO_ReadError, &r1_bio->state);
 360		reschedule_retry(r1_bio);
 361		/* don't drop the reference on read_disk yet */
 362	}
 363}
 364
 365static void close_write(struct r1bio *r1_bio)
 366{
 367	/* it really is the end of this request */
 368	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 369		/* free extra copy of the data pages */
 370		int i = r1_bio->behind_page_count;
 371		while (i--)
 372			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 373		kfree(r1_bio->behind_bvecs);
 374		r1_bio->behind_bvecs = NULL;
 375	}
 376	/* clear the bitmap if all writes complete successfully */
 377	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 378			r1_bio->sectors,
 379			!test_bit(R1BIO_Degraded, &r1_bio->state),
 380			test_bit(R1BIO_BehindIO, &r1_bio->state));
 381	md_write_end(r1_bio->mddev);
 382}
 383
 384static void r1_bio_write_done(struct r1bio *r1_bio)
 385{
 386	if (!atomic_dec_and_test(&r1_bio->remaining))
 387		return;
 388
 389	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 390		reschedule_retry(r1_bio);
 391	else {
 392		close_write(r1_bio);
 393		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 394			reschedule_retry(r1_bio);
 395		else
 396			raid_end_bio_io(r1_bio);
 397	}
 398}
 399
 400static void raid1_end_write_request(struct bio *bio, int error)
 401{
 402	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 403	struct r1bio *r1_bio = bio->bi_private;
 404	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 405	struct r1conf *conf = r1_bio->mddev->private;
 406	struct bio *to_put = NULL;
 
 
 
 
 
 407
 408	mirror = find_bio_disk(r1_bio, bio);
 409
 410	/*
 411	 * 'one mirror IO has finished' event handler:
 412	 */
 413	if (!uptodate) {
 414		set_bit(WriteErrorSeen,
 415			&conf->mirrors[mirror].rdev->flags);
 416		if (!test_and_set_bit(WantReplacement,
 417				      &conf->mirrors[mirror].rdev->flags))
 418			set_bit(MD_RECOVERY_NEEDED, &
 419				conf->mddev->recovery);
 420
 421		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422	} else {
 423		/*
 424		 * Set R1BIO_Uptodate in our master bio, so that we
 425		 * will return a good error code for to the higher
 426		 * levels even if IO on some other mirrored buffer
 427		 * fails.
 428		 *
 429		 * The 'master' represents the composite IO operation
 430		 * to user-side. So if something waits for IO, then it
 431		 * will wait for the 'master' bio.
 432		 */
 433		sector_t first_bad;
 434		int bad_sectors;
 435
 436		r1_bio->bios[mirror] = NULL;
 437		to_put = bio;
 438		/*
 439		 * Do not set R1BIO_Uptodate if the current device is
 440		 * rebuilding or Faulty. This is because we cannot use
 441		 * such device for properly reading the data back (we could
 442		 * potentially use it, if the current write would have felt
 443		 * before rdev->recovery_offset, but for simplicity we don't
 444		 * check this here.
 445		 */
 446		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 447		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 448			set_bit(R1BIO_Uptodate, &r1_bio->state);
 449
 450		/* Maybe we can clear some bad blocks. */
 451		if (is_badblock(conf->mirrors[mirror].rdev,
 452				r1_bio->sector, r1_bio->sectors,
 453				&first_bad, &bad_sectors)) {
 454			r1_bio->bios[mirror] = IO_MADE_GOOD;
 455			set_bit(R1BIO_MadeGood, &r1_bio->state);
 456		}
 457	}
 458
 459	if (behind) {
 460		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 
 
 461			atomic_dec(&r1_bio->behind_remaining);
 462
 463		/*
 464		 * In behind mode, we ACK the master bio once the I/O
 465		 * has safely reached all non-writemostly
 466		 * disks. Setting the Returned bit ensures that this
 467		 * gets done only once -- we don't ever want to return
 468		 * -EIO here, instead we'll wait
 469		 */
 470		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 471		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 472			/* Maybe we can return now */
 473			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 474				struct bio *mbio = r1_bio->master_bio;
 475				pr_debug("raid1: behind end write sectors"
 476					 " %llu-%llu\n",
 477					 (unsigned long long) mbio->bi_iter.bi_sector,
 478					 (unsigned long long) bio_end_sector(mbio) - 1);
 479				call_bio_endio(r1_bio);
 480			}
 481		}
 482	}
 
 483	if (r1_bio->bios[mirror] == NULL)
 484		rdev_dec_pending(conf->mirrors[mirror].rdev,
 485				 conf->mddev);
 486
 487	/*
 488	 * Let's see if all mirrored write operations have finished
 489	 * already.
 490	 */
 491	r1_bio_write_done(r1_bio);
 492
 493	if (to_put)
 494		bio_put(to_put);
 495}
 496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498/*
 499 * This routine returns the disk from which the requested read should
 500 * be done. There is a per-array 'next expected sequential IO' sector
 501 * number - if this matches on the next IO then we use the last disk.
 502 * There is also a per-disk 'last know head position' sector that is
 503 * maintained from IRQ contexts, both the normal and the resync IO
 504 * completion handlers update this position correctly. If there is no
 505 * perfect sequential match then we pick the disk whose head is closest.
 506 *
 507 * If there are 2 mirrors in the same 2 devices, performance degrades
 508 * because position is mirror, not device based.
 509 *
 510 * The rdev for the device selected will have nr_pending incremented.
 511 */
 512static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 513{
 514	const sector_t this_sector = r1_bio->sector;
 515	int sectors;
 516	int best_good_sectors;
 517	int best_disk, best_dist_disk, best_pending_disk;
 518	int has_nonrot_disk;
 519	int disk;
 520	sector_t best_dist;
 521	unsigned int min_pending;
 522	struct md_rdev *rdev;
 523	int choose_first;
 524	int choose_next_idle;
 525
 526	rcu_read_lock();
 527	/*
 528	 * Check if we can balance. We can balance on the whole
 529	 * device if no resync is going on, or below the resync window.
 530	 * We take the first readable disk when above the resync window.
 531	 */
 532 retry:
 533	sectors = r1_bio->sectors;
 534	best_disk = -1;
 535	best_dist_disk = -1;
 536	best_dist = MaxSector;
 537	best_pending_disk = -1;
 538	min_pending = UINT_MAX;
 539	best_good_sectors = 0;
 540	has_nonrot_disk = 0;
 541	choose_next_idle = 0;
 
 542
 543	if (conf->mddev->recovery_cp < MaxSector &&
 544	    (this_sector + sectors >= conf->next_resync))
 
 
 545		choose_first = 1;
 546	else
 547		choose_first = 0;
 548
 549	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 550		sector_t dist;
 551		sector_t first_bad;
 552		int bad_sectors;
 553		unsigned int pending;
 554		bool nonrot;
 555
 556		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 557		if (r1_bio->bios[disk] == IO_BLOCKED
 558		    || rdev == NULL
 559		    || test_bit(Unmerged, &rdev->flags)
 560		    || test_bit(Faulty, &rdev->flags))
 561			continue;
 562		if (!test_bit(In_sync, &rdev->flags) &&
 563		    rdev->recovery_offset < this_sector + sectors)
 564			continue;
 565		if (test_bit(WriteMostly, &rdev->flags)) {
 566			/* Don't balance among write-mostly, just
 567			 * use the first as a last resort */
 568			if (best_disk < 0) {
 569				if (is_badblock(rdev, this_sector, sectors,
 570						&first_bad, &bad_sectors)) {
 571					if (first_bad < this_sector)
 572						/* Cannot use this */
 573						continue;
 574					best_good_sectors = first_bad - this_sector;
 575				} else
 576					best_good_sectors = sectors;
 577				best_disk = disk;
 
 578			}
 579			continue;
 580		}
 581		/* This is a reasonable device to use.  It might
 582		 * even be best.
 583		 */
 584		if (is_badblock(rdev, this_sector, sectors,
 585				&first_bad, &bad_sectors)) {
 586			if (best_dist < MaxSector)
 587				/* already have a better device */
 588				continue;
 589			if (first_bad <= this_sector) {
 590				/* cannot read here. If this is the 'primary'
 591				 * device, then we must not read beyond
 592				 * bad_sectors from another device..
 593				 */
 594				bad_sectors -= (this_sector - first_bad);
 595				if (choose_first && sectors > bad_sectors)
 596					sectors = bad_sectors;
 597				if (best_good_sectors > sectors)
 598					best_good_sectors = sectors;
 599
 600			} else {
 601				sector_t good_sectors = first_bad - this_sector;
 602				if (good_sectors > best_good_sectors) {
 603					best_good_sectors = good_sectors;
 604					best_disk = disk;
 605				}
 606				if (choose_first)
 607					break;
 608			}
 609			continue;
 610		} else
 
 
 611			best_good_sectors = sectors;
 
 
 
 
 
 612
 613		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 614		has_nonrot_disk |= nonrot;
 615		pending = atomic_read(&rdev->nr_pending);
 616		dist = abs(this_sector - conf->mirrors[disk].head_position);
 617		if (choose_first) {
 618			best_disk = disk;
 619			break;
 620		}
 621		/* Don't change to another disk for sequential reads */
 622		if (conf->mirrors[disk].next_seq_sect == this_sector
 623		    || dist == 0) {
 624			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 625			struct raid1_info *mirror = &conf->mirrors[disk];
 626
 627			best_disk = disk;
 628			/*
 629			 * If buffered sequential IO size exceeds optimal
 630			 * iosize, check if there is idle disk. If yes, choose
 631			 * the idle disk. read_balance could already choose an
 632			 * idle disk before noticing it's a sequential IO in
 633			 * this disk. This doesn't matter because this disk
 634			 * will idle, next time it will be utilized after the
 635			 * first disk has IO size exceeds optimal iosize. In
 636			 * this way, iosize of the first disk will be optimal
 637			 * iosize at least. iosize of the second disk might be
 638			 * small, but not a big deal since when the second disk
 639			 * starts IO, the first disk is likely still busy.
 640			 */
 641			if (nonrot && opt_iosize > 0 &&
 642			    mirror->seq_start != MaxSector &&
 643			    mirror->next_seq_sect > opt_iosize &&
 644			    mirror->next_seq_sect - opt_iosize >=
 645			    mirror->seq_start) {
 646				choose_next_idle = 1;
 647				continue;
 648			}
 649			break;
 650		}
 651		/* If device is idle, use it */
 652		if (pending == 0) {
 653			best_disk = disk;
 654			break;
 655		}
 656
 657		if (choose_next_idle)
 658			continue;
 659
 660		if (min_pending > pending) {
 661			min_pending = pending;
 662			best_pending_disk = disk;
 663		}
 664
 665		if (dist < best_dist) {
 666			best_dist = dist;
 667			best_dist_disk = disk;
 668		}
 669	}
 670
 671	/*
 672	 * If all disks are rotational, choose the closest disk. If any disk is
 673	 * non-rotational, choose the disk with less pending request even the
 674	 * disk is rotational, which might/might not be optimal for raids with
 675	 * mixed ratation/non-rotational disks depending on workload.
 676	 */
 677	if (best_disk == -1) {
 678		if (has_nonrot_disk)
 679			best_disk = best_pending_disk;
 680		else
 681			best_disk = best_dist_disk;
 682	}
 683
 684	if (best_disk >= 0) {
 685		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 686		if (!rdev)
 687			goto retry;
 688		atomic_inc(&rdev->nr_pending);
 689		if (test_bit(Faulty, &rdev->flags)) {
 690			/* cannot risk returning a device that failed
 691			 * before we inc'ed nr_pending
 692			 */
 693			rdev_dec_pending(rdev, conf->mddev);
 694			goto retry;
 695		}
 696		sectors = best_good_sectors;
 697
 698		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 699			conf->mirrors[best_disk].seq_start = this_sector;
 700
 701		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 702	}
 703	rcu_read_unlock();
 704	*max_sectors = sectors;
 705
 706	return best_disk;
 707}
 708
 709static int raid1_mergeable_bvec(struct request_queue *q,
 710				struct bvec_merge_data *bvm,
 711				struct bio_vec *biovec)
 712{
 713	struct mddev *mddev = q->queuedata;
 714	struct r1conf *conf = mddev->private;
 715	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 716	int max = biovec->bv_len;
 717
 718	if (mddev->merge_check_needed) {
 719		int disk;
 720		rcu_read_lock();
 721		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 722			struct md_rdev *rdev = rcu_dereference(
 723				conf->mirrors[disk].rdev);
 724			if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725				struct request_queue *q =
 726					bdev_get_queue(rdev->bdev);
 727				if (q->merge_bvec_fn) {
 728					bvm->bi_sector = sector +
 729						rdev->data_offset;
 730					bvm->bi_bdev = rdev->bdev;
 731					max = min(max, q->merge_bvec_fn(
 732							  q, bvm, biovec));
 733				}
 734			}
 735		}
 736		rcu_read_unlock();
 737	}
 738	return max;
 739
 740}
 741
 742int md_raid1_congested(struct mddev *mddev, int bits)
 743{
 744	struct r1conf *conf = mddev->private;
 745	int i, ret = 0;
 746
 747	if ((bits & (1 << BDI_async_congested)) &&
 748	    conf->pending_count >= max_queued_requests)
 749		return 1;
 750
 751	rcu_read_lock();
 752	for (i = 0; i < conf->raid_disks * 2; i++) {
 753		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 754		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 755			struct request_queue *q = bdev_get_queue(rdev->bdev);
 756
 757			BUG_ON(!q);
 758
 759			/* Note the '|| 1' - when read_balance prefers
 760			 * non-congested targets, it can be removed
 761			 */
 762			if ((bits & (1<<BDI_async_congested)) || 1)
 763				ret |= bdi_congested(&q->backing_dev_info, bits);
 764			else
 765				ret &= bdi_congested(&q->backing_dev_info, bits);
 766		}
 767	}
 768	rcu_read_unlock();
 769	return ret;
 770}
 771EXPORT_SYMBOL_GPL(md_raid1_congested);
 772
 773static int raid1_congested(void *data, int bits)
 774{
 775	struct mddev *mddev = data;
 776
 777	return mddev_congested(mddev, bits) ||
 778		md_raid1_congested(mddev, bits);
 779}
 780
 781static void flush_pending_writes(struct r1conf *conf)
 782{
 783	/* Any writes that have been queued but are awaiting
 784	 * bitmap updates get flushed here.
 785	 */
 786	spin_lock_irq(&conf->device_lock);
 787
 788	if (conf->pending_bio_list.head) {
 
 789		struct bio *bio;
 
 790		bio = bio_list_get(&conf->pending_bio_list);
 791		conf->pending_count = 0;
 792		spin_unlock_irq(&conf->device_lock);
 793		/* flush any pending bitmap writes to
 794		 * disk before proceeding w/ I/O */
 795		bitmap_unplug(conf->mddev->bitmap);
 796		wake_up(&conf->wait_barrier);
 797
 798		while (bio) { /* submit pending writes */
 799			struct bio *next = bio->bi_next;
 800			bio->bi_next = NULL;
 801			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 802			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 803				/* Just ignore it */
 804				bio_endio(bio, 0);
 805			else
 806				generic_make_request(bio);
 807			bio = next;
 808		}
 
 
 809	} else
 810		spin_unlock_irq(&conf->device_lock);
 811}
 812
 813/* Barriers....
 814 * Sometimes we need to suspend IO while we do something else,
 815 * either some resync/recovery, or reconfigure the array.
 816 * To do this we raise a 'barrier'.
 817 * The 'barrier' is a counter that can be raised multiple times
 818 * to count how many activities are happening which preclude
 819 * normal IO.
 820 * We can only raise the barrier if there is no pending IO.
 821 * i.e. if nr_pending == 0.
 822 * We choose only to raise the barrier if no-one is waiting for the
 823 * barrier to go down.  This means that as soon as an IO request
 824 * is ready, no other operations which require a barrier will start
 825 * until the IO request has had a chance.
 826 *
 827 * So: regular IO calls 'wait_barrier'.  When that returns there
 828 *    is no backgroup IO happening,  It must arrange to call
 829 *    allow_barrier when it has finished its IO.
 830 * backgroup IO calls must call raise_barrier.  Once that returns
 831 *    there is no normal IO happeing.  It must arrange to call
 832 *    lower_barrier when the particular background IO completes.
 
 
 
 833 */
 834static void raise_barrier(struct r1conf *conf)
 835{
 
 
 836	spin_lock_irq(&conf->resync_lock);
 837
 838	/* Wait until no block IO is waiting */
 839	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 
 840			    conf->resync_lock);
 841
 842	/* block any new IO from starting */
 843	conf->barrier++;
 
 
 
 
 
 
 
 
 
 844
 845	/* For these conditions we must wait:
 846	 * A: while the array is in frozen state
 847	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 848	 *    the max count which allowed.
 849	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 850	 *    next resync will reach to the window which normal bios are
 851	 *    handling.
 852	 */
 853	wait_event_lock_irq(conf->wait_barrier,
 854			    !conf->array_frozen &&
 855			    conf->barrier < RESYNC_DEPTH &&
 856			    (conf->start_next_window >=
 857			     conf->next_resync + RESYNC_SECTORS),
 858			    conf->resync_lock);
 859
 
 
 
 
 
 
 
 
 860	spin_unlock_irq(&conf->resync_lock);
 
 
 861}
 862
 863static void lower_barrier(struct r1conf *conf)
 864{
 865	unsigned long flags;
 866	BUG_ON(conf->barrier <= 0);
 867	spin_lock_irqsave(&conf->resync_lock, flags);
 868	conf->barrier--;
 869	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 870	wake_up(&conf->wait_barrier);
 871}
 872
 873static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 874{
 875	bool wait = false;
 876
 877	if (conf->array_frozen || !bio)
 878		wait = true;
 879	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 880		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
 881			wait = true;
 882		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
 883				>= bio_end_sector(bio)) ||
 884			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
 885				<= bio->bi_iter.bi_sector))
 886			wait = false;
 887		else
 888			wait = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889	}
 890
 891	return wait;
 
 
 892}
 893
 894static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 895{
 896	sector_t sector = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 897
 898	spin_lock_irq(&conf->resync_lock);
 899	if (need_to_wait_for_sync(conf, bio)) {
 900		conf->nr_waiting++;
 901		/* Wait for the barrier to drop.
 902		 * However if there are already pending
 903		 * requests (preventing the barrier from
 904		 * rising completely), and the
 905		 * pre-process bio queue isn't empty,
 906		 * then don't wait, as we need to empty
 907		 * that queue to get the nr_pending
 908		 * count down.
 909		 */
 
 
 
 910		wait_event_lock_irq(conf->wait_barrier,
 911				    !conf->array_frozen &&
 912				    (!conf->barrier ||
 913				    ((conf->start_next_window <
 914				      conf->next_resync + RESYNC_SECTORS) &&
 915				     current->bio_list &&
 916				     !bio_list_empty(current->bio_list))),
 917				    conf->resync_lock);
 918		conf->nr_waiting--;
 919	}
 920
 921	if (bio && bio_data_dir(bio) == WRITE) {
 922		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
 923		    <= bio->bi_iter.bi_sector) {
 924			if (conf->start_next_window == MaxSector)
 925				conf->start_next_window =
 926					conf->next_resync +
 927					NEXT_NORMALIO_DISTANCE;
 928
 929			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 930			    <= bio->bi_iter.bi_sector)
 931				conf->next_window_requests++;
 932			else
 933				conf->current_window_requests++;
 934			sector = conf->start_next_window;
 935		}
 936	}
 937
 938	conf->nr_pending++;
 939	spin_unlock_irq(&conf->resync_lock);
 940	return sector;
 941}
 942
 943static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 944			  sector_t bi_sector)
 945{
 946	unsigned long flags;
 947
 948	spin_lock_irqsave(&conf->resync_lock, flags);
 949	conf->nr_pending--;
 950	if (start_next_window) {
 951		if (start_next_window == conf->start_next_window) {
 952			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 953			    <= bi_sector)
 954				conf->next_window_requests--;
 955			else
 956				conf->current_window_requests--;
 957		} else
 958			conf->current_window_requests--;
 959
 960		if (!conf->current_window_requests) {
 961			if (conf->next_window_requests) {
 962				conf->current_window_requests =
 963					conf->next_window_requests;
 964				conf->next_window_requests = 0;
 965				conf->start_next_window +=
 966					NEXT_NORMALIO_DISTANCE;
 967			} else
 968				conf->start_next_window = MaxSector;
 969		}
 970	}
 971	spin_unlock_irqrestore(&conf->resync_lock, flags);
 972	wake_up(&conf->wait_barrier);
 973}
 974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975static void freeze_array(struct r1conf *conf, int extra)
 976{
 977	/* stop syncio and normal IO and wait for everything to
 978	 * go quite.
 979	 * We wait until nr_pending match nr_queued+extra
 980	 * This is called in the context of one normal IO request
 981	 * that has failed. Thus any sync request that might be pending
 982	 * will be blocked by nr_pending, and we need to wait for
 983	 * pending IO requests to complete or be queued for re-try.
 984	 * Thus the number queued (nr_queued) plus this request (extra)
 985	 * must match the number of pending IOs (nr_pending) before
 986	 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 
 987	 */
 988	spin_lock_irq(&conf->resync_lock);
 989	conf->array_frozen = 1;
 990	wait_event_lock_irq_cmd(conf->wait_barrier,
 991				conf->nr_pending == conf->nr_queued+extra,
 992				conf->resync_lock,
 993				flush_pending_writes(conf));
 
 
 994	spin_unlock_irq(&conf->resync_lock);
 995}
 996static void unfreeze_array(struct r1conf *conf)
 997{
 998	/* reverse the effect of the freeze */
 999	spin_lock_irq(&conf->resync_lock);
1000	conf->array_frozen = 0;
 
1001	wake_up(&conf->wait_barrier);
1002	spin_unlock_irq(&conf->resync_lock);
1003}
1004
1005
1006/* duplicate the data pages for behind I/O 
1007 */
1008static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1009{
1010	int i;
1011	struct bio_vec *bvec;
1012	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013					GFP_NOIO);
1014	if (unlikely(!bvecs))
 
 
 
1015		return;
1016
1017	bio_for_each_segment_all(bvec, bio, i) {
1018		bvecs[i] = *bvec;
1019		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020		if (unlikely(!bvecs[i].bv_page))
1021			goto do_sync_io;
1022		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024		kunmap(bvecs[i].bv_page);
1025		kunmap(bvec->bv_page);
 
 
 
 
 
 
 
 
 
1026	}
1027	r1_bio->behind_bvecs = bvecs;
1028	r1_bio->behind_page_count = bio->bi_vcnt;
 
 
1029	set_bit(R1BIO_BehindIO, &r1_bio->state);
 
1030	return;
1031
1032do_sync_io:
1033	for (i = 0; i < bio->bi_vcnt; i++)
1034		if (bvecs[i].bv_page)
1035			put_page(bvecs[i].bv_page);
1036	kfree(bvecs);
1037	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038		 bio->bi_iter.bi_size);
 
 
1039}
1040
1041struct raid1_plug_cb {
1042	struct blk_plug_cb	cb;
1043	struct bio_list		pending;
1044	int			pending_cnt;
1045};
1046
1047static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048{
1049	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050						  cb);
1051	struct mddev *mddev = plug->cb.data;
1052	struct r1conf *conf = mddev->private;
1053	struct bio *bio;
1054
1055	if (from_schedule || current->bio_list) {
1056		spin_lock_irq(&conf->device_lock);
1057		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058		conf->pending_count += plug->pending_cnt;
1059		spin_unlock_irq(&conf->device_lock);
1060		wake_up(&conf->wait_barrier);
1061		md_wakeup_thread(mddev->thread);
1062		kfree(plug);
1063		return;
1064	}
1065
1066	/* we aren't scheduling, so we can do the write-out directly. */
1067	bio = bio_list_get(&plug->pending);
1068	bitmap_unplug(mddev->bitmap);
1069	wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	while (bio) { /* submit pending writes */
1072		struct bio *next = bio->bi_next;
1073		bio->bi_next = NULL;
1074		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076			/* Just ignore it */
1077			bio_endio(bio, 0);
1078		else
1079			generic_make_request(bio);
1080		bio = next;
1081	}
1082	kfree(plug);
1083}
1084
1085static void make_request(struct mddev *mddev, struct bio * bio)
 
1086{
1087	struct r1conf *conf = mddev->private;
1088	struct raid1_info *mirror;
1089	struct r1bio *r1_bio;
1090	struct bio *read_bio;
1091	int i, disks;
1092	struct bitmap *bitmap;
1093	unsigned long flags;
1094	const int rw = bio_data_dir(bio);
1095	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097	const unsigned long do_discard = (bio->bi_rw
1098					  & (REQ_DISCARD | REQ_SECURE));
1099	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100	struct md_rdev *blocked_rdev;
1101	struct blk_plug_cb *cb;
1102	struct raid1_plug_cb *plug = NULL;
1103	int first_clone;
1104	int sectors_handled;
1105	int max_sectors;
1106	sector_t start_next_window;
 
 
1107
1108	/*
1109	 * Register the new request and wait if the reconstruction
1110	 * thread has put up a bar for new requests.
1111	 * Continue immediately if no resync is active currently.
1112	 */
 
1113
1114	md_write_start(mddev, bio); /* wait on superblock update early */
 
 
 
 
 
 
 
 
 
 
1115
1116	if (bio_data_dir(bio) == WRITE &&
1117	    bio_end_sector(bio) > mddev->suspend_lo &&
1118	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119		/* As the suspend_* range is controlled by
1120		 * userspace, we want an interruptible
1121		 * wait.
1122		 */
1123		DEFINE_WAIT(w);
1124		for (;;) {
1125			flush_signals(current);
1126			prepare_to_wait(&conf->wait_barrier,
1127					&w, TASK_INTERRUPTIBLE);
1128			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130				break;
1131			schedule();
1132		}
1133		finish_wait(&conf->wait_barrier, &w);
1134	}
1135
1136	start_next_window = wait_barrier(conf, bio);
1137
1138	bitmap = mddev->bitmap;
 
 
1139
1140	/*
1141	 * make_request() can abort the operation when READA is being
1142	 * used and no empty request is available.
1143	 *
1144	 */
1145	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147	r1_bio->master_bio = bio;
1148	r1_bio->sectors = bio_sectors(bio);
1149	r1_bio->state = 0;
1150	r1_bio->mddev = mddev;
1151	r1_bio->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
 
1152
1153	/* We might need to issue multiple reads to different
1154	 * devices if there are bad blocks around, so we keep
1155	 * track of the number of reads in bio->bi_phys_segments.
1156	 * If this is 0, there is only one r1_bio and no locking
1157	 * will be needed when requests complete.  If it is
1158	 * non-zero, then it is the number of not-completed requests.
1159	 */
1160	bio->bi_phys_segments = 0;
1161	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163	if (rw == READ) {
 
1164		/*
1165		 * read balancing logic:
 
1166		 */
1167		int rdisk;
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169read_again:
1170		rdisk = read_balance(conf, r1_bio, &max_sectors);
1171
1172		if (rdisk < 0) {
1173			/* couldn't find anywhere to read from */
1174			raid_end_bio_io(r1_bio);
1175			return;
1176		}
1177		mirror = conf->mirrors + rdisk;
 
 
 
 
 
 
 
 
 
 
1178
1179		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180		    bitmap) {
1181			/* Reading from a write-mostly device must
1182			 * take care not to over-take any writes
1183			 * that are 'behind'
1184			 */
1185			wait_event(bitmap->behind_wait,
1186				   atomic_read(&bitmap->behind_writes) == 0);
1187		}
1188		r1_bio->read_disk = rdisk;
1189
1190		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192			 max_sectors);
1193
1194		r1_bio->bios[rdisk] = read_bio;
1195
1196		read_bio->bi_iter.bi_sector = r1_bio->sector +
1197			mirror->rdev->data_offset;
1198		read_bio->bi_bdev = mirror->rdev->bdev;
1199		read_bio->bi_end_io = raid1_end_read_request;
1200		read_bio->bi_rw = READ | do_sync;
1201		read_bio->bi_private = r1_bio;
1202
1203		if (max_sectors < r1_bio->sectors) {
1204			/* could not read all from this device, so we will
1205			 * need another r1_bio.
1206			 */
1207
1208			sectors_handled = (r1_bio->sector + max_sectors
1209					   - bio->bi_iter.bi_sector);
1210			r1_bio->sectors = max_sectors;
1211			spin_lock_irq(&conf->device_lock);
1212			if (bio->bi_phys_segments == 0)
1213				bio->bi_phys_segments = 2;
1214			else
1215				bio->bi_phys_segments++;
1216			spin_unlock_irq(&conf->device_lock);
1217			/* Cannot call generic_make_request directly
1218			 * as that will be queued in __make_request
1219			 * and subsequent mempool_alloc might block waiting
1220			 * for it.  So hand bio over to raid1d.
1221			 */
1222			reschedule_retry(r1_bio);
1223
1224			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 
 
1225
1226			r1_bio->master_bio = bio;
1227			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228			r1_bio->state = 0;
1229			r1_bio->mddev = mddev;
1230			r1_bio->sector = bio->bi_iter.bi_sector +
1231				sectors_handled;
1232			goto read_again;
1233		} else
1234			generic_make_request(read_bio);
1235		return;
 
 
 
 
 
1236	}
1237
1238	/*
1239	 * WRITE:
 
 
1240	 */
1241	if (conf->pending_count >= max_queued_requests) {
1242		md_wakeup_thread(mddev->thread);
1243		wait_event(conf->wait_barrier,
1244			   conf->pending_count < max_queued_requests);
1245	}
 
 
 
 
1246	/* first select target devices under rcu_lock and
1247	 * inc refcount on their rdev.  Record them by setting
1248	 * bios[x] to bio
1249	 * If there are known/acknowledged bad blocks on any device on
1250	 * which we have seen a write error, we want to avoid writing those
1251	 * blocks.
1252	 * This potentially requires several writes to write around
1253	 * the bad blocks.  Each set of writes gets it's own r1bio
1254	 * with a set of bios attached.
1255	 */
1256
1257	disks = conf->raid_disks * 2;
1258 retry_write:
1259	r1_bio->start_next_window = start_next_window;
1260	blocked_rdev = NULL;
1261	rcu_read_lock();
1262	max_sectors = r1_bio->sectors;
1263	for (i = 0;  i < disks; i++) {
1264		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 
 
 
 
 
 
1265		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266			atomic_inc(&rdev->nr_pending);
1267			blocked_rdev = rdev;
1268			break;
1269		}
1270		r1_bio->bios[i] = NULL;
1271		if (!rdev || test_bit(Faulty, &rdev->flags)
1272		    || test_bit(Unmerged, &rdev->flags)) {
1273			if (i < conf->raid_disks)
1274				set_bit(R1BIO_Degraded, &r1_bio->state);
1275			continue;
1276		}
1277
1278		atomic_inc(&rdev->nr_pending);
1279		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280			sector_t first_bad;
1281			int bad_sectors;
1282			int is_bad;
1283
1284			is_bad = is_badblock(rdev, r1_bio->sector,
1285					     max_sectors,
1286					     &first_bad, &bad_sectors);
1287			if (is_bad < 0) {
1288				/* mustn't write here until the bad block is
1289				 * acknowledged*/
1290				set_bit(BlockedBadBlocks, &rdev->flags);
1291				blocked_rdev = rdev;
1292				break;
1293			}
1294			if (is_bad && first_bad <= r1_bio->sector) {
1295				/* Cannot write here at all */
1296				bad_sectors -= (r1_bio->sector - first_bad);
1297				if (bad_sectors < max_sectors)
1298					/* mustn't write more than bad_sectors
1299					 * to other devices yet
1300					 */
1301					max_sectors = bad_sectors;
1302				rdev_dec_pending(rdev, mddev);
1303				/* We don't set R1BIO_Degraded as that
1304				 * only applies if the disk is
1305				 * missing, so it might be re-added,
1306				 * and we want to know to recover this
1307				 * chunk.
1308				 * In this case the device is here,
1309				 * and the fact that this chunk is not
1310				 * in-sync is recorded in the bad
1311				 * block log
1312				 */
1313				continue;
1314			}
1315			if (is_bad) {
1316				int good_sectors = first_bad - r1_bio->sector;
1317				if (good_sectors < max_sectors)
1318					max_sectors = good_sectors;
1319			}
1320		}
1321		r1_bio->bios[i] = bio;
1322	}
1323	rcu_read_unlock();
1324
1325	if (unlikely(blocked_rdev)) {
1326		/* Wait for this device to become unblocked */
1327		int j;
1328		sector_t old = start_next_window;
1329
1330		for (j = 0; j < i; j++)
1331			if (r1_bio->bios[j])
1332				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333		r1_bio->state = 0;
1334		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
 
 
 
 
 
 
1335		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336		start_next_window = wait_barrier(conf, bio);
1337		/*
1338		 * We must make sure the multi r1bios of bio have
1339		 * the same value of bi_phys_segments
1340		 */
1341		if (bio->bi_phys_segments && old &&
1342		    old != start_next_window)
1343			/* Wait for the former r1bio(s) to complete */
1344			wait_event(conf->wait_barrier,
1345				   bio->bi_phys_segments == 1);
1346		goto retry_write;
1347	}
1348
1349	if (max_sectors < r1_bio->sectors) {
1350		/* We are splitting this write into multiple parts, so
1351		 * we need to prepare for allocating another r1_bio.
1352		 */
 
 
 
 
 
 
 
 
 
 
 
 
1353		r1_bio->sectors = max_sectors;
1354		spin_lock_irq(&conf->device_lock);
1355		if (bio->bi_phys_segments == 0)
1356			bio->bi_phys_segments = 2;
1357		else
1358			bio->bi_phys_segments++;
1359		spin_unlock_irq(&conf->device_lock);
1360	}
1361	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362
 
 
1363	atomic_set(&r1_bio->remaining, 1);
1364	atomic_set(&r1_bio->behind_remaining, 0);
1365
1366	first_clone = 1;
 
1367	for (i = 0; i < disks; i++) {
1368		struct bio *mbio;
 
1369		if (!r1_bio->bios[i])
1370			continue;
1371
1372		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374
1375		if (first_clone) {
1376			/* do behind I/O ?
1377			 * Not if there are too many, or cannot
1378			 * allocate memory, or a reader on WriteMostly
1379			 * is waiting for behind writes to flush */
1380			if (bitmap &&
 
1381			    (atomic_read(&bitmap->behind_writes)
1382			     < mddev->bitmap_info.max_write_behind) &&
1383			    !waitqueue_active(&bitmap->behind_wait))
1384				alloc_behind_pages(mbio, r1_bio);
 
1385
1386			bitmap_startwrite(bitmap, r1_bio->sector,
1387					  r1_bio->sectors,
1388					  test_bit(R1BIO_BehindIO,
1389						   &r1_bio->state));
1390			first_clone = 0;
1391		}
1392		if (r1_bio->behind_bvecs) {
1393			struct bio_vec *bvec;
1394			int j;
1395
1396			/*
1397			 * We trimmed the bio, so _all is legit
1398			 */
1399			bio_for_each_segment_all(bvec, mbio, j)
1400				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
 
1402				atomic_inc(&r1_bio->behind_remaining);
 
 
 
 
 
 
1403		}
1404
1405		r1_bio->bios[i] = mbio;
1406
1407		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1408				   conf->mirrors[i].rdev->data_offset);
1409		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410		mbio->bi_end_io	= raid1_end_write_request;
1411		mbio->bi_rw =
1412			WRITE | do_flush_fua | do_sync | do_discard | do_same;
 
 
 
1413		mbio->bi_private = r1_bio;
1414
1415		atomic_inc(&r1_bio->remaining);
1416
 
 
 
 
 
 
1417		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418		if (cb)
1419			plug = container_of(cb, struct raid1_plug_cb, cb);
1420		else
1421			plug = NULL;
1422		spin_lock_irqsave(&conf->device_lock, flags);
1423		if (plug) {
1424			bio_list_add(&plug->pending, mbio);
1425			plug->pending_cnt++;
1426		} else {
 
1427			bio_list_add(&conf->pending_bio_list, mbio);
1428			conf->pending_count++;
 
1429		}
1430		spin_unlock_irqrestore(&conf->device_lock, flags);
1431		if (!plug)
1432			md_wakeup_thread(mddev->thread);
1433	}
1434	/* Mustn't call r1_bio_write_done before this next test,
1435	 * as it could result in the bio being freed.
1436	 */
1437	if (sectors_handled < bio_sectors(bio)) {
1438		r1_bio_write_done(r1_bio);
1439		/* We need another r1_bio.  It has already been counted
1440		 * in bio->bi_phys_segments
1441		 */
1442		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443		r1_bio->master_bio = bio;
1444		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445		r1_bio->state = 0;
1446		r1_bio->mddev = mddev;
1447		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448		goto retry_write;
1449	}
1450
1451	r1_bio_write_done(r1_bio);
1452
1453	/* In case raid1d snuck in to freeze_array */
1454	wake_up(&conf->wait_barrier);
1455}
1456
1457static void status(struct seq_file *seq, struct mddev *mddev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458{
1459	struct r1conf *conf = mddev->private;
1460	int i;
1461
1462	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463		   conf->raid_disks - mddev->degraded);
1464	rcu_read_lock();
1465	for (i = 0; i < conf->raid_disks; i++) {
1466		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467		seq_printf(seq, "%s",
1468			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469	}
1470	rcu_read_unlock();
1471	seq_printf(seq, "]");
1472}
1473
1474
1475static void error(struct mddev *mddev, struct md_rdev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476{
1477	char b[BDEVNAME_SIZE];
1478	struct r1conf *conf = mddev->private;
 
1479
1480	/*
1481	 * If it is not operational, then we have already marked it as dead
1482	 * else if it is the last working disks, ignore the error, let the
1483	 * next level up know.
1484	 * else mark the drive as failed
1485	 */
1486	if (test_bit(In_sync, &rdev->flags)
1487	    && (conf->raid_disks - mddev->degraded) == 1) {
1488		/*
1489		 * Don't fail the drive, act as though we were just a
1490		 * normal single drive.
1491		 * However don't try a recovery from this drive as
1492		 * it is very likely to fail.
1493		 */
1494		conf->recovery_disabled = mddev->recovery_disabled;
1495		return;
1496	}
1497	set_bit(Blocked, &rdev->flags);
1498	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499		unsigned long flags;
1500		spin_lock_irqsave(&conf->device_lock, flags);
1501		mddev->degraded++;
1502		set_bit(Faulty, &rdev->flags);
1503		spin_unlock_irqrestore(&conf->device_lock, flags);
1504		/*
1505		 * if recovery is running, make sure it aborts.
1506		 */
1507		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508	} else
1509		set_bit(Faulty, &rdev->flags);
1510	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511	printk(KERN_ALERT
1512	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513	       "md/raid1:%s: Operation continuing on %d devices.\n",
1514	       mdname(mddev), bdevname(rdev->bdev, b),
1515	       mdname(mddev), conf->raid_disks - mddev->degraded);
1516}
1517
1518static void print_conf(struct r1conf *conf)
1519{
1520	int i;
1521
1522	printk(KERN_DEBUG "RAID1 conf printout:\n");
1523	if (!conf) {
1524		printk(KERN_DEBUG "(!conf)\n");
1525		return;
1526	}
1527	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528		conf->raid_disks);
1529
1530	rcu_read_lock();
1531	for (i = 0; i < conf->raid_disks; i++) {
1532		char b[BDEVNAME_SIZE];
1533		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534		if (rdev)
1535			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536			       i, !test_bit(In_sync, &rdev->flags),
1537			       !test_bit(Faulty, &rdev->flags),
1538			       bdevname(rdev->bdev,b));
1539	}
1540	rcu_read_unlock();
1541}
1542
1543static void close_sync(struct r1conf *conf)
1544{
1545	wait_barrier(conf, NULL);
1546	allow_barrier(conf, 0, 0);
1547
1548	mempool_destroy(conf->r1buf_pool);
1549	conf->r1buf_pool = NULL;
 
 
1550
1551	conf->next_resync = 0;
1552	conf->start_next_window = MaxSector;
1553}
1554
1555static int raid1_spare_active(struct mddev *mddev)
1556{
1557	int i;
1558	struct r1conf *conf = mddev->private;
1559	int count = 0;
1560	unsigned long flags;
1561
1562	/*
1563	 * Find all failed disks within the RAID1 configuration 
1564	 * and mark them readable.
1565	 * Called under mddev lock, so rcu protection not needed.
 
 
1566	 */
 
1567	for (i = 0; i < conf->raid_disks; i++) {
1568		struct md_rdev *rdev = conf->mirrors[i].rdev;
1569		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1570		if (repl
 
1571		    && repl->recovery_offset == MaxSector
1572		    && !test_bit(Faulty, &repl->flags)
1573		    && !test_and_set_bit(In_sync, &repl->flags)) {
1574			/* replacement has just become active */
1575			if (!rdev ||
1576			    !test_and_clear_bit(In_sync, &rdev->flags))
1577				count++;
1578			if (rdev) {
1579				/* Replaced device not technically
1580				 * faulty, but we need to be sure
1581				 * it gets removed and never re-added
1582				 */
1583				set_bit(Faulty, &rdev->flags);
1584				sysfs_notify_dirent_safe(
1585					rdev->sysfs_state);
1586			}
1587		}
1588		if (rdev
1589		    && rdev->recovery_offset == MaxSector
1590		    && !test_bit(Faulty, &rdev->flags)
1591		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1592			count++;
1593			sysfs_notify_dirent_safe(rdev->sysfs_state);
1594		}
1595	}
1596	spin_lock_irqsave(&conf->device_lock, flags);
1597	mddev->degraded -= count;
1598	spin_unlock_irqrestore(&conf->device_lock, flags);
1599
1600	print_conf(conf);
1601	return count;
1602}
1603
1604
1605static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1606{
1607	struct r1conf *conf = mddev->private;
1608	int err = -EEXIST;
1609	int mirror = 0;
1610	struct raid1_info *p;
1611	int first = 0;
1612	int last = conf->raid_disks - 1;
1613	struct request_queue *q = bdev_get_queue(rdev->bdev);
1614
1615	if (mddev->recovery_disabled == conf->recovery_disabled)
1616		return -EBUSY;
1617
 
 
 
1618	if (rdev->raid_disk >= 0)
1619		first = last = rdev->raid_disk;
1620
1621	if (q->merge_bvec_fn) {
1622		set_bit(Unmerged, &rdev->flags);
1623		mddev->merge_check_needed = 1;
1624	}
 
 
 
 
 
1625
1626	for (mirror = first; mirror <= last; mirror++) {
1627		p = conf->mirrors+mirror;
1628		if (!p->rdev) {
1629
1630			if (mddev->gendisk)
1631				disk_stack_limits(mddev->gendisk, rdev->bdev,
1632						  rdev->data_offset << 9);
1633
1634			p->head_position = 0;
1635			rdev->raid_disk = mirror;
1636			err = 0;
1637			/* As all devices are equivalent, we don't need a full recovery
1638			 * if this was recently any drive of the array
1639			 */
1640			if (rdev->saved_raid_disk < 0)
1641				conf->fullsync = 1;
1642			rcu_assign_pointer(p->rdev, rdev);
1643			break;
1644		}
1645		if (test_bit(WantReplacement, &p->rdev->flags) &&
1646		    p[conf->raid_disks].rdev == NULL) {
1647			/* Add this device as a replacement */
1648			clear_bit(In_sync, &rdev->flags);
1649			set_bit(Replacement, &rdev->flags);
1650			rdev->raid_disk = mirror;
1651			err = 0;
1652			conf->fullsync = 1;
1653			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1654			break;
1655		}
1656	}
1657	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1658		/* Some requests might not have seen this new
1659		 * merge_bvec_fn.  We must wait for them to complete
1660		 * before merging the device fully.
1661		 * First we make sure any code which has tested
1662		 * our function has submitted the request, then
1663		 * we wait for all outstanding requests to complete.
1664		 */
1665		synchronize_sched();
1666		freeze_array(conf, 0);
1667		unfreeze_array(conf);
1668		clear_bit(Unmerged, &rdev->flags);
1669	}
1670	md_integrity_add_rdev(rdev, mddev);
1671	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1672		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1673	print_conf(conf);
1674	return err;
1675}
1676
1677static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1678{
1679	struct r1conf *conf = mddev->private;
1680	int err = 0;
1681	int number = rdev->raid_disk;
1682	struct raid1_info *p = conf->mirrors + number;
1683
1684	if (rdev != p->rdev)
1685		p = conf->mirrors + conf->raid_disks + number;
1686
1687	print_conf(conf);
1688	if (rdev == p->rdev) {
1689		if (test_bit(In_sync, &rdev->flags) ||
1690		    atomic_read(&rdev->nr_pending)) {
1691			err = -EBUSY;
1692			goto abort;
1693		}
1694		/* Only remove non-faulty devices if recovery
1695		 * is not possible.
1696		 */
1697		if (!test_bit(Faulty, &rdev->flags) &&
1698		    mddev->recovery_disabled != conf->recovery_disabled &&
1699		    mddev->degraded < conf->raid_disks) {
1700			err = -EBUSY;
1701			goto abort;
1702		}
1703		p->rdev = NULL;
1704		synchronize_rcu();
1705		if (atomic_read(&rdev->nr_pending)) {
1706			/* lost the race, try later */
1707			err = -EBUSY;
1708			p->rdev = rdev;
1709			goto abort;
1710		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
 
 
 
1711			/* We just removed a device that is being replaced.
1712			 * Move down the replacement.  We drain all IO before
1713			 * doing this to avoid confusion.
1714			 */
1715			struct md_rdev *repl =
1716				conf->mirrors[conf->raid_disks + number].rdev;
1717			freeze_array(conf, 0);
 
 
 
 
 
 
 
 
 
 
 
1718			clear_bit(Replacement, &repl->flags);
1719			p->rdev = repl;
1720			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1721			unfreeze_array(conf);
1722			clear_bit(WantReplacement, &rdev->flags);
1723		} else
1724			clear_bit(WantReplacement, &rdev->flags);
1725		err = md_integrity_register(mddev);
1726	}
1727abort:
1728
1729	print_conf(conf);
1730	return err;
1731}
1732
1733
1734static void end_sync_read(struct bio *bio, int error)
1735{
1736	struct r1bio *r1_bio = bio->bi_private;
1737
1738	update_head_pos(r1_bio->read_disk, r1_bio);
1739
1740	/*
1741	 * we have read a block, now it needs to be re-written,
1742	 * or re-read if the read failed.
1743	 * We don't do much here, just schedule handling by raid1d
1744	 */
1745	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746		set_bit(R1BIO_Uptodate, &r1_bio->state);
1747
1748	if (atomic_dec_and_test(&r1_bio->remaining))
1749		reschedule_retry(r1_bio);
1750}
1751
1752static void end_sync_write(struct bio *bio, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753{
1754	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755	struct r1bio *r1_bio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756	struct mddev *mddev = r1_bio->mddev;
1757	struct r1conf *conf = mddev->private;
1758	int mirror=0;
1759	sector_t first_bad;
1760	int bad_sectors;
1761
1762	mirror = find_bio_disk(r1_bio, bio);
1763
1764	if (!uptodate) {
1765		sector_t sync_blocks = 0;
1766		sector_t s = r1_bio->sector;
1767		long sectors_to_go = r1_bio->sectors;
1768		/* make sure these bits doesn't get cleared. */
1769		do {
1770			bitmap_end_sync(mddev->bitmap, s,
1771					&sync_blocks, 1);
1772			s += sync_blocks;
1773			sectors_to_go -= sync_blocks;
1774		} while (sectors_to_go > 0);
1775		set_bit(WriteErrorSeen,
1776			&conf->mirrors[mirror].rdev->flags);
1777		if (!test_and_set_bit(WantReplacement,
1778				      &conf->mirrors[mirror].rdev->flags))
1779			set_bit(MD_RECOVERY_NEEDED, &
1780				mddev->recovery);
1781		set_bit(R1BIO_WriteError, &r1_bio->state);
1782	} else if (is_badblock(conf->mirrors[mirror].rdev,
1783			       r1_bio->sector,
1784			       r1_bio->sectors,
1785			       &first_bad, &bad_sectors) &&
1786		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787				r1_bio->sector,
1788				r1_bio->sectors,
1789				&first_bad, &bad_sectors)
1790		)
1791		set_bit(R1BIO_MadeGood, &r1_bio->state);
1792
1793	if (atomic_dec_and_test(&r1_bio->remaining)) {
1794		int s = r1_bio->sectors;
1795		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796		    test_bit(R1BIO_WriteError, &r1_bio->state))
1797			reschedule_retry(r1_bio);
1798		else {
1799			put_buf(r1_bio);
1800			md_done_sync(mddev, s, uptodate);
1801		}
1802	}
1803}
1804
1805static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806			    int sectors, struct page *page, int rw)
1807{
1808	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809		/* success */
1810		return 1;
1811	if (rw == WRITE) {
1812		set_bit(WriteErrorSeen, &rdev->flags);
1813		if (!test_and_set_bit(WantReplacement,
1814				      &rdev->flags))
1815			set_bit(MD_RECOVERY_NEEDED, &
1816				rdev->mddev->recovery);
1817	}
1818	/* need to record an error - either for the block or the device */
1819	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820		md_error(rdev->mddev, rdev);
1821	return 0;
1822}
1823
1824static int fix_sync_read_error(struct r1bio *r1_bio)
1825{
1826	/* Try some synchronous reads of other devices to get
1827	 * good data, much like with normal read errors.  Only
1828	 * read into the pages we already have so we don't
1829	 * need to re-issue the read request.
1830	 * We don't need to freeze the array, because being in an
1831	 * active sync request, there is no normal IO, and
1832	 * no overlapping syncs.
1833	 * We don't need to check is_badblock() again as we
1834	 * made sure that anything with a bad block in range
1835	 * will have bi_end_io clear.
1836	 */
1837	struct mddev *mddev = r1_bio->mddev;
1838	struct r1conf *conf = mddev->private;
1839	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 
1840	sector_t sect = r1_bio->sector;
1841	int sectors = r1_bio->sectors;
1842	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1843
1844	while(sectors) {
1845		int s = sectors;
1846		int d = r1_bio->read_disk;
1847		int success = 0;
1848		struct md_rdev *rdev;
1849		int start;
1850
1851		if (s > (PAGE_SIZE>>9))
1852			s = PAGE_SIZE >> 9;
1853		do {
1854			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855				/* No rcu protection needed here devices
1856				 * can only be removed when no resync is
1857				 * active, and resync is currently active
1858				 */
1859				rdev = conf->mirrors[d].rdev;
1860				if (sync_page_io(rdev, sect, s<<9,
1861						 bio->bi_io_vec[idx].bv_page,
1862						 READ, false)) {
1863					success = 1;
1864					break;
1865				}
1866			}
1867			d++;
1868			if (d == conf->raid_disks * 2)
1869				d = 0;
1870		} while (!success && d != r1_bio->read_disk);
1871
1872		if (!success) {
1873			char b[BDEVNAME_SIZE];
1874			int abort = 0;
1875			/* Cannot read from anywhere, this block is lost.
1876			 * Record a bad block on each device.  If that doesn't
1877			 * work just disable and interrupt the recovery.
1878			 * Don't fail devices as that won't really help.
1879			 */
1880			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881			       " for block %llu\n",
1882			       mdname(mddev),
1883			       bdevname(bio->bi_bdev, b),
1884			       (unsigned long long)r1_bio->sector);
1885			for (d = 0; d < conf->raid_disks * 2; d++) {
1886				rdev = conf->mirrors[d].rdev;
1887				if (!rdev || test_bit(Faulty, &rdev->flags))
1888					continue;
1889				if (!rdev_set_badblocks(rdev, sect, s, 0))
1890					abort = 1;
1891			}
1892			if (abort) {
1893				conf->recovery_disabled =
1894					mddev->recovery_disabled;
1895				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896				md_done_sync(mddev, r1_bio->sectors, 0);
1897				put_buf(r1_bio);
1898				return 0;
1899			}
1900			/* Try next page */
1901			sectors -= s;
1902			sect += s;
1903			idx++;
1904			continue;
1905		}
1906
1907		start = d;
1908		/* write it back and re-read */
1909		while (d != r1_bio->read_disk) {
1910			if (d == 0)
1911				d = conf->raid_disks * 2;
1912			d--;
1913			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914				continue;
1915			rdev = conf->mirrors[d].rdev;
1916			if (r1_sync_page_io(rdev, sect, s,
1917					    bio->bi_io_vec[idx].bv_page,
1918					    WRITE) == 0) {
1919				r1_bio->bios[d]->bi_end_io = NULL;
1920				rdev_dec_pending(rdev, mddev);
1921			}
1922		}
1923		d = start;
1924		while (d != r1_bio->read_disk) {
1925			if (d == 0)
1926				d = conf->raid_disks * 2;
1927			d--;
1928			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929				continue;
1930			rdev = conf->mirrors[d].rdev;
1931			if (r1_sync_page_io(rdev, sect, s,
1932					    bio->bi_io_vec[idx].bv_page,
1933					    READ) != 0)
1934				atomic_add(s, &rdev->corrected_errors);
1935		}
1936		sectors -= s;
1937		sect += s;
1938		idx ++;
1939	}
1940	set_bit(R1BIO_Uptodate, &r1_bio->state);
1941	set_bit(BIO_UPTODATE, &bio->bi_flags);
1942	return 1;
1943}
1944
1945static int process_checks(struct r1bio *r1_bio)
1946{
1947	/* We have read all readable devices.  If we haven't
1948	 * got the block, then there is no hope left.
1949	 * If we have, then we want to do a comparison
1950	 * and skip the write if everything is the same.
1951	 * If any blocks failed to read, then we need to
1952	 * attempt an over-write
1953	 */
1954	struct mddev *mddev = r1_bio->mddev;
1955	struct r1conf *conf = mddev->private;
1956	int primary;
1957	int i;
1958	int vcnt;
1959
1960	/* Fix variable parts of all bios */
1961	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962	for (i = 0; i < conf->raid_disks * 2; i++) {
1963		int j;
1964		int size;
1965		int uptodate;
1966		struct bio *b = r1_bio->bios[i];
 
1967		if (b->bi_end_io != end_sync_read)
1968			continue;
1969		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971		bio_reset(b);
1972		if (!uptodate)
1973			clear_bit(BIO_UPTODATE, &b->bi_flags);
1974		b->bi_vcnt = vcnt;
1975		b->bi_iter.bi_size = r1_bio->sectors << 9;
1976		b->bi_iter.bi_sector = r1_bio->sector +
1977			conf->mirrors[i].rdev->data_offset;
1978		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979		b->bi_end_io = end_sync_read;
1980		b->bi_private = r1_bio;
 
1981
1982		size = b->bi_iter.bi_size;
1983		for (j = 0; j < vcnt ; j++) {
1984			struct bio_vec *bi;
1985			bi = &b->bi_io_vec[j];
1986			bi->bv_offset = 0;
1987			if (size > PAGE_SIZE)
1988				bi->bv_len = PAGE_SIZE;
1989			else
1990				bi->bv_len = size;
1991			size -= PAGE_SIZE;
1992		}
1993	}
1994	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997			r1_bio->bios[primary]->bi_end_io = NULL;
1998			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999			break;
2000		}
2001	r1_bio->read_disk = primary;
2002	for (i = 0; i < conf->raid_disks * 2; i++) {
2003		int j;
2004		struct bio *pbio = r1_bio->bios[primary];
2005		struct bio *sbio = r1_bio->bios[i];
2006		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
 
 
 
 
 
2007
2008		if (sbio->bi_end_io != end_sync_read)
2009			continue;
2010		/* Now we can 'fixup' the BIO_UPTODATE flag */
2011		set_bit(BIO_UPTODATE, &sbio->bi_flags);
 
 
 
2012
2013		if (uptodate) {
2014			for (j = vcnt; j-- ; ) {
2015				struct page *p, *s;
2016				p = pbio->bi_io_vec[j].bv_page;
2017				s = sbio->bi_io_vec[j].bv_page;
2018				if (memcmp(page_address(p),
2019					   page_address(s),
2020					   sbio->bi_io_vec[j].bv_len))
2021					break;
2022			}
2023		} else
2024			j = 0;
2025		if (j >= 0)
2026			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028			      && uptodate)) {
2029			/* No need to write to this device. */
2030			sbio->bi_end_io = NULL;
2031			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032			continue;
2033		}
2034
2035		bio_copy_data(sbio, pbio);
2036	}
2037	return 0;
2038}
2039
2040static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041{
2042	struct r1conf *conf = mddev->private;
2043	int i;
2044	int disks = conf->raid_disks * 2;
2045	struct bio *bio, *wbio;
2046
2047	bio = r1_bio->bios[r1_bio->read_disk];
2048
2049	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050		/* ouch - failed to read all of that. */
2051		if (!fix_sync_read_error(r1_bio))
2052			return;
2053
2054	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055		if (process_checks(r1_bio) < 0)
2056			return;
2057	/*
2058	 * schedule writes
2059	 */
2060	atomic_set(&r1_bio->remaining, 1);
2061	for (i = 0; i < disks ; i++) {
2062		wbio = r1_bio->bios[i];
2063		if (wbio->bi_end_io == NULL ||
2064		    (wbio->bi_end_io == end_sync_read &&
2065		     (i == r1_bio->read_disk ||
2066		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067			continue;
 
 
 
 
 
 
 
 
2068
2069		wbio->bi_rw = WRITE;
2070		wbio->bi_end_io = end_sync_write;
2071		atomic_inc(&r1_bio->remaining);
2072		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073
2074		generic_make_request(wbio);
2075	}
2076
2077	if (atomic_dec_and_test(&r1_bio->remaining)) {
2078		/* if we're here, all write(s) have completed, so clean up */
2079		int s = r1_bio->sectors;
2080		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081		    test_bit(R1BIO_WriteError, &r1_bio->state))
2082			reschedule_retry(r1_bio);
2083		else {
2084			put_buf(r1_bio);
2085			md_done_sync(mddev, s, 1);
2086		}
2087	}
2088}
2089
2090/*
2091 * This is a kernel thread which:
2092 *
2093 *	1.	Retries failed read operations on working mirrors.
2094 *	2.	Updates the raid superblock when problems encounter.
2095 *	3.	Performs writes following reads for array synchronising.
2096 */
2097
2098static void fix_read_error(struct r1conf *conf, int read_disk,
2099			   sector_t sect, int sectors)
2100{
2101	struct mddev *mddev = conf->mddev;
2102	while(sectors) {
2103		int s = sectors;
2104		int d = read_disk;
2105		int success = 0;
2106		int start;
2107		struct md_rdev *rdev;
2108
2109		if (s > (PAGE_SIZE>>9))
2110			s = PAGE_SIZE >> 9;
2111
2112		do {
2113			/* Note: no rcu protection needed here
2114			 * as this is synchronous in the raid1d thread
2115			 * which is the thread that might remove
2116			 * a device.  If raid1d ever becomes multi-threaded....
2117			 */
2118			sector_t first_bad;
2119			int bad_sectors;
2120
2121			rdev = conf->mirrors[d].rdev;
 
2122			if (rdev &&
2123			    (test_bit(In_sync, &rdev->flags) ||
2124			     (!test_bit(Faulty, &rdev->flags) &&
2125			      rdev->recovery_offset >= sect + s)) &&
2126			    is_badblock(rdev, sect, s,
2127					&first_bad, &bad_sectors) == 0 &&
2128			    sync_page_io(rdev, sect, s<<9,
2129					 conf->tmppage, READ, false))
2130				success = 1;
2131			else {
2132				d++;
2133				if (d == conf->raid_disks * 2)
2134					d = 0;
2135			}
 
 
 
 
 
2136		} while (!success && d != read_disk);
2137
2138		if (!success) {
2139			/* Cannot read from anywhere - mark it bad */
2140			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141			if (!rdev_set_badblocks(rdev, sect, s, 0))
2142				md_error(mddev, rdev);
2143			break;
2144		}
2145		/* write it back and re-read */
2146		start = d;
2147		while (d != read_disk) {
2148			if (d==0)
2149				d = conf->raid_disks * 2;
2150			d--;
2151			rdev = conf->mirrors[d].rdev;
 
2152			if (rdev &&
2153			    test_bit(In_sync, &rdev->flags))
 
 
2154				r1_sync_page_io(rdev, sect, s,
2155						conf->tmppage, WRITE);
 
 
 
2156		}
2157		d = start;
2158		while (d != read_disk) {
2159			char b[BDEVNAME_SIZE];
2160			if (d==0)
2161				d = conf->raid_disks * 2;
2162			d--;
2163			rdev = conf->mirrors[d].rdev;
 
2164			if (rdev &&
2165			    test_bit(In_sync, &rdev->flags)) {
 
 
2166				if (r1_sync_page_io(rdev, sect, s,
2167						    conf->tmppage, READ)) {
2168					atomic_add(s, &rdev->corrected_errors);
2169					printk(KERN_INFO
2170					       "md/raid1:%s: read error corrected "
2171					       "(%d sectors at %llu on %s)\n",
2172					       mdname(mddev), s,
2173					       (unsigned long long)(sect +
2174					           rdev->data_offset),
2175					       bdevname(rdev->bdev, b));
2176				}
2177			}
 
 
2178		}
2179		sectors -= s;
2180		sect += s;
2181	}
2182}
2183
2184static int narrow_write_error(struct r1bio *r1_bio, int i)
2185{
2186	struct mddev *mddev = r1_bio->mddev;
2187	struct r1conf *conf = mddev->private;
2188	struct md_rdev *rdev = conf->mirrors[i].rdev;
2189
2190	/* bio has the data to be written to device 'i' where
2191	 * we just recently had a write error.
2192	 * We repeatedly clone the bio and trim down to one block,
2193	 * then try the write.  Where the write fails we record
2194	 * a bad block.
2195	 * It is conceivable that the bio doesn't exactly align with
2196	 * blocks.  We must handle this somehow.
2197	 *
2198	 * We currently own a reference on the rdev.
2199	 */
2200
2201	int block_sectors;
2202	sector_t sector;
2203	int sectors;
2204	int sect_to_write = r1_bio->sectors;
2205	int ok = 1;
2206
2207	if (rdev->badblocks.shift < 0)
2208		return 0;
2209
2210	block_sectors = 1 << rdev->badblocks.shift;
 
2211	sector = r1_bio->sector;
2212	sectors = ((sector + block_sectors)
2213		   & ~(sector_t)(block_sectors - 1))
2214		- sector;
2215
2216	while (sect_to_write) {
2217		struct bio *wbio;
2218		if (sectors > sect_to_write)
2219			sectors = sect_to_write;
2220		/* Write at 'sector' for 'sectors'*/
2221
2222		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2223			unsigned vcnt = r1_bio->behind_page_count;
2224			struct bio_vec *vec = r1_bio->behind_bvecs;
2225
2226			while (!vec->bv_page) {
2227				vec++;
2228				vcnt--;
2229			}
2230
2231			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2232			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2233
2234			wbio->bi_vcnt = vcnt;
2235		} else {
2236			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
 
2237		}
2238
2239		wbio->bi_rw = WRITE;
2240		wbio->bi_iter.bi_sector = r1_bio->sector;
2241		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2242
2243		bio_trim(wbio, sector - r1_bio->sector, sectors);
2244		wbio->bi_iter.bi_sector += rdev->data_offset;
2245		wbio->bi_bdev = rdev->bdev;
2246		if (submit_bio_wait(WRITE, wbio) == 0)
2247			/* failure! */
2248			ok = rdev_set_badblocks(rdev, sector,
2249						sectors, 0)
2250				&& ok;
2251
2252		bio_put(wbio);
2253		sect_to_write -= sectors;
2254		sector += sectors;
2255		sectors = block_sectors;
2256	}
2257	return ok;
2258}
2259
2260static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2261{
2262	int m;
2263	int s = r1_bio->sectors;
2264	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2265		struct md_rdev *rdev = conf->mirrors[m].rdev;
2266		struct bio *bio = r1_bio->bios[m];
2267		if (bio->bi_end_io == NULL)
2268			continue;
2269		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2270		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2271			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2272		}
2273		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2274		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2275			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2276				md_error(conf->mddev, rdev);
2277		}
2278	}
2279	put_buf(r1_bio);
2280	md_done_sync(conf->mddev, s, 1);
2281}
2282
2283static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2284{
2285	int m;
 
 
2286	for (m = 0; m < conf->raid_disks * 2 ; m++)
2287		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2288			struct md_rdev *rdev = conf->mirrors[m].rdev;
2289			rdev_clear_badblocks(rdev,
2290					     r1_bio->sector,
2291					     r1_bio->sectors, 0);
2292			rdev_dec_pending(rdev, conf->mddev);
2293		} else if (r1_bio->bios[m] != NULL) {
2294			/* This drive got a write error.  We need to
2295			 * narrow down and record precise write
2296			 * errors.
2297			 */
 
2298			if (!narrow_write_error(r1_bio, m)) {
2299				md_error(conf->mddev,
2300					 conf->mirrors[m].rdev);
2301				/* an I/O failed, we can't clear the bitmap */
2302				set_bit(R1BIO_Degraded, &r1_bio->state);
2303			}
2304			rdev_dec_pending(conf->mirrors[m].rdev,
2305					 conf->mddev);
2306		}
2307	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2308		close_write(r1_bio);
2309	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310}
2311
2312static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2313{
2314	int disk;
2315	int max_sectors;
2316	struct mddev *mddev = conf->mddev;
2317	struct bio *bio;
2318	char b[BDEVNAME_SIZE];
2319	struct md_rdev *rdev;
2320
2321	clear_bit(R1BIO_ReadError, &r1_bio->state);
2322	/* we got a read error. Maybe the drive is bad.  Maybe just
2323	 * the block and we can fix it.
2324	 * We freeze all other IO, and try reading the block from
2325	 * other devices.  When we find one, we re-write
2326	 * and check it that fixes the read error.
2327	 * This is all done synchronously while the array is
2328	 * frozen
2329	 */
2330	if (mddev->ro == 0) {
 
 
 
 
 
 
 
2331		freeze_array(conf, 1);
2332		fix_read_error(conf, r1_bio->read_disk,
2333			       r1_bio->sector, r1_bio->sectors);
2334		unfreeze_array(conf);
2335	} else
2336		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2337	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
 
 
2338
2339	bio = r1_bio->bios[r1_bio->read_disk];
2340	bdevname(bio->bi_bdev, b);
2341read_more:
2342	disk = read_balance(conf, r1_bio, &max_sectors);
2343	if (disk == -1) {
2344		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2345		       " read error for block %llu\n",
2346		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2347		raid_end_bio_io(r1_bio);
2348	} else {
2349		const unsigned long do_sync
2350			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2351		if (bio) {
2352			r1_bio->bios[r1_bio->read_disk] =
2353				mddev->ro ? IO_BLOCKED : NULL;
2354			bio_put(bio);
2355		}
2356		r1_bio->read_disk = disk;
2357		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2358		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359			 max_sectors);
2360		r1_bio->bios[r1_bio->read_disk] = bio;
2361		rdev = conf->mirrors[disk].rdev;
2362		printk_ratelimited(KERN_ERR
2363				   "md/raid1:%s: redirecting sector %llu"
2364				   " to other mirror: %s\n",
2365				   mdname(mddev),
2366				   (unsigned long long)r1_bio->sector,
2367				   bdevname(rdev->bdev, b));
2368		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2369		bio->bi_bdev = rdev->bdev;
2370		bio->bi_end_io = raid1_end_read_request;
2371		bio->bi_rw = READ | do_sync;
2372		bio->bi_private = r1_bio;
2373		if (max_sectors < r1_bio->sectors) {
2374			/* Drat - have to split this up more */
2375			struct bio *mbio = r1_bio->master_bio;
2376			int sectors_handled = (r1_bio->sector + max_sectors
2377					       - mbio->bi_iter.bi_sector);
2378			r1_bio->sectors = max_sectors;
2379			spin_lock_irq(&conf->device_lock);
2380			if (mbio->bi_phys_segments == 0)
2381				mbio->bi_phys_segments = 2;
2382			else
2383				mbio->bi_phys_segments++;
2384			spin_unlock_irq(&conf->device_lock);
2385			generic_make_request(bio);
2386			bio = NULL;
2387
2388			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2389
2390			r1_bio->master_bio = mbio;
2391			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392			r1_bio->state = 0;
2393			set_bit(R1BIO_ReadError, &r1_bio->state);
2394			r1_bio->mddev = mddev;
2395			r1_bio->sector = mbio->bi_iter.bi_sector +
2396				sectors_handled;
2397
2398			goto read_more;
2399		} else
2400			generic_make_request(bio);
2401	}
2402}
2403
2404static void raid1d(struct md_thread *thread)
2405{
2406	struct mddev *mddev = thread->mddev;
2407	struct r1bio *r1_bio;
2408	unsigned long flags;
2409	struct r1conf *conf = mddev->private;
2410	struct list_head *head = &conf->retry_list;
2411	struct blk_plug plug;
 
2412
2413	md_check_recovery(mddev);
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415	blk_start_plug(&plug);
2416	for (;;) {
2417
2418		flush_pending_writes(conf);
2419
2420		spin_lock_irqsave(&conf->device_lock, flags);
2421		if (list_empty(head)) {
2422			spin_unlock_irqrestore(&conf->device_lock, flags);
2423			break;
2424		}
2425		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2426		list_del(head->prev);
2427		conf->nr_queued--;
 
2428		spin_unlock_irqrestore(&conf->device_lock, flags);
2429
2430		mddev = r1_bio->mddev;
2431		conf = mddev->private;
2432		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2433			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434			    test_bit(R1BIO_WriteError, &r1_bio->state))
2435				handle_sync_write_finished(conf, r1_bio);
2436			else
2437				sync_request_write(mddev, r1_bio);
2438		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439			   test_bit(R1BIO_WriteError, &r1_bio->state))
2440			handle_write_finished(conf, r1_bio);
2441		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2442			handle_read_error(conf, r1_bio);
2443		else
2444			/* just a partial read to be scheduled from separate
2445			 * context
2446			 */
2447			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2448
2449		cond_resched();
2450		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2451			md_check_recovery(mddev);
2452	}
2453	blk_finish_plug(&plug);
2454}
2455
2456
2457static int init_resync(struct r1conf *conf)
2458{
2459	int buffs;
2460
2461	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462	BUG_ON(conf->r1buf_pool);
2463	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464					  conf->poolinfo);
2465	if (!conf->r1buf_pool)
2466		return -ENOMEM;
2467	conf->next_resync = 0;
2468	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469}
2470
2471/*
2472 * perform a "sync" on one "block"
2473 *
2474 * We need to make sure that no normal I/O request - particularly write
2475 * requests - conflict with active sync requests.
2476 *
2477 * This is achieved by tracking pending requests and a 'barrier' concept
2478 * that can be installed to exclude normal IO requests.
2479 */
2480
2481static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2482{
2483	struct r1conf *conf = mddev->private;
2484	struct r1bio *r1_bio;
2485	struct bio *bio;
2486	sector_t max_sector, nr_sectors;
2487	int disk = -1;
2488	int i;
2489	int wonly = -1;
2490	int write_targets = 0, read_targets = 0;
2491	sector_t sync_blocks;
2492	int still_degraded = 0;
2493	int good_sectors = RESYNC_SECTORS;
2494	int min_bad = 0; /* number of sectors that are bad in all devices */
 
 
2495
2496	if (!conf->r1buf_pool)
2497		if (init_resync(conf))
2498			return 0;
2499
2500	max_sector = mddev->dev_sectors;
2501	if (sector_nr >= max_sector) {
2502		/* If we aborted, we need to abort the
2503		 * sync on the 'current' bitmap chunk (there will
2504		 * only be one in raid1 resync.
2505		 * We can find the current addess in mddev->curr_resync
2506		 */
2507		if (mddev->curr_resync < max_sector) /* aborted */
2508			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509						&sync_blocks, 1);
2510		else /* completed sync */
2511			conf->fullsync = 0;
2512
2513		bitmap_close_sync(mddev->bitmap);
2514		close_sync(conf);
 
 
 
 
 
2515		return 0;
2516	}
2517
2518	if (mddev->bitmap == NULL &&
2519	    mddev->recovery_cp == MaxSector &&
2520	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521	    conf->fullsync == 0) {
2522		*skipped = 1;
2523		return max_sector - sector_nr;
2524	}
2525	/* before building a request, check if we can skip these blocks..
2526	 * This call the bitmap_start_sync doesn't actually record anything
2527	 */
2528	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530		/* We can skip this block, and probably several more */
2531		*skipped = 1;
2532		return sync_blocks;
2533	}
 
2534	/*
2535	 * If there is non-resync activity waiting for a turn,
2536	 * and resync is going fast enough,
2537	 * then let it though before starting on this new sync request.
2538	 */
2539	if (!go_faster && conf->nr_waiting)
2540		msleep_interruptible(1000);
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2543	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544	raise_barrier(conf);
2545
2546	conf->next_resync = sector_nr;
 
 
 
 
 
 
 
 
 
 
 
2547
2548	rcu_read_lock();
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
 
 
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
 
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
2701			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702			if ((len >> 9) > sync_blocks)
2703				len = sync_blocks<<9;
2704		}
2705
2706		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 
 
2707			bio = r1_bio->bios[i];
 
2708			if (bio->bi_end_io) {
2709				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710				if (bio_add_page(bio, page, len, 0) == 0) {
2711					/* stop here */
2712					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713					while (i > 0) {
2714						i--;
2715						bio = r1_bio->bios[i];
2716						if (bio->bi_end_io==NULL)
2717							continue;
2718						/* remove last page from this bio */
2719						bio->bi_vcnt--;
2720						bio->bi_iter.bi_size -= len;
2721						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2722					}
2723					goto bio_full;
2724				}
2725			}
2726		}
2727		nr_sectors += len>>9;
2728		sector_nr += len>>9;
2729		sync_blocks -= (len>>9);
2730	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731 bio_full:
2732	r1_bio->sectors = nr_sectors;
2733
 
 
 
 
 
 
 
 
 
 
2734	/* For a user-requested sync, we read all readable devices and do a
2735	 * compare
2736	 */
2737	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738		atomic_set(&r1_bio->remaining, read_targets);
2739		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740			bio = r1_bio->bios[i];
2741			if (bio->bi_end_io == end_sync_read) {
2742				read_targets--;
2743				md_sync_acct(bio->bi_bdev, nr_sectors);
2744				generic_make_request(bio);
 
 
2745			}
2746		}
2747	} else {
2748		atomic_set(&r1_bio->remaining, 1);
2749		bio = r1_bio->bios[r1_bio->read_disk];
2750		md_sync_acct(bio->bi_bdev, nr_sectors);
2751		generic_make_request(bio);
2752
 
2753	}
2754	return nr_sectors;
2755}
2756
2757static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758{
2759	if (sectors)
2760		return sectors;
2761
2762	return mddev->dev_sectors;
2763}
2764
2765static struct r1conf *setup_conf(struct mddev *mddev)
2766{
2767	struct r1conf *conf;
2768	int i;
2769	struct raid1_info *disk;
2770	struct md_rdev *rdev;
2771	int err = -ENOMEM;
2772
2773	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774	if (!conf)
2775		goto abort;
2776
2777	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778				* mddev->raid_disks * 2,
2779				 GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780	if (!conf->mirrors)
2781		goto abort;
2782
2783	conf->tmppage = alloc_page(GFP_KERNEL);
2784	if (!conf->tmppage)
2785		goto abort;
2786
2787	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788	if (!conf->poolinfo)
2789		goto abort;
2790	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792					  r1bio_pool_free,
2793					  conf->poolinfo);
2794	if (!conf->r1bio_pool)
 
 
 
2795		goto abort;
2796
2797	conf->poolinfo->mddev = mddev;
2798
2799	err = -EINVAL;
2800	spin_lock_init(&conf->device_lock);
2801	rdev_for_each(rdev, mddev) {
2802		struct request_queue *q;
2803		int disk_idx = rdev->raid_disk;
2804		if (disk_idx >= mddev->raid_disks
2805		    || disk_idx < 0)
2806			continue;
2807		if (test_bit(Replacement, &rdev->flags))
2808			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809		else
2810			disk = conf->mirrors + disk_idx;
2811
2812		if (disk->rdev)
2813			goto abort;
2814		disk->rdev = rdev;
2815		q = bdev_get_queue(rdev->bdev);
2816		if (q->merge_bvec_fn)
2817			mddev->merge_check_needed = 1;
2818
2819		disk->head_position = 0;
2820		disk->seq_start = MaxSector;
2821	}
2822	conf->raid_disks = mddev->raid_disks;
2823	conf->mddev = mddev;
2824	INIT_LIST_HEAD(&conf->retry_list);
 
2825
2826	spin_lock_init(&conf->resync_lock);
2827	init_waitqueue_head(&conf->wait_barrier);
2828
2829	bio_list_init(&conf->pending_bio_list);
2830	conf->pending_count = 0;
2831	conf->recovery_disabled = mddev->recovery_disabled - 1;
2832
2833	conf->start_next_window = MaxSector;
2834	conf->current_window_requests = conf->next_window_requests = 0;
2835
2836	err = -EIO;
2837	for (i = 0; i < conf->raid_disks * 2; i++) {
2838
2839		disk = conf->mirrors + i;
2840
2841		if (i < conf->raid_disks &&
2842		    disk[conf->raid_disks].rdev) {
2843			/* This slot has a replacement. */
2844			if (!disk->rdev) {
2845				/* No original, just make the replacement
2846				 * a recovering spare
2847				 */
2848				disk->rdev =
2849					disk[conf->raid_disks].rdev;
2850				disk[conf->raid_disks].rdev = NULL;
2851			} else if (!test_bit(In_sync, &disk->rdev->flags))
2852				/* Original is not in_sync - bad */
2853				goto abort;
2854		}
2855
2856		if (!disk->rdev ||
2857		    !test_bit(In_sync, &disk->rdev->flags)) {
2858			disk->head_position = 0;
2859			if (disk->rdev &&
2860			    (disk->rdev->saved_raid_disk < 0))
2861				conf->fullsync = 1;
2862		}
2863	}
2864
2865	err = -ENOMEM;
2866	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867	if (!conf->thread) {
2868		printk(KERN_ERR
2869		       "md/raid1:%s: couldn't allocate thread\n",
2870		       mdname(mddev));
2871		goto abort;
2872	}
2873
2874	return conf;
2875
2876 abort:
2877	if (conf) {
2878		if (conf->r1bio_pool)
2879			mempool_destroy(conf->r1bio_pool);
2880		kfree(conf->mirrors);
2881		safe_put_page(conf->tmppage);
2882		kfree(conf->poolinfo);
 
 
 
 
 
2883		kfree(conf);
2884	}
2885	return ERR_PTR(err);
2886}
2887
2888static int stop(struct mddev *mddev);
2889static int run(struct mddev *mddev)
2890{
2891	struct r1conf *conf;
2892	int i;
2893	struct md_rdev *rdev;
2894	int ret;
2895	bool discard_supported = false;
2896
2897	if (mddev->level != 1) {
2898		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899		       mdname(mddev), mddev->level);
2900		return -EIO;
2901	}
2902	if (mddev->reshape_position != MaxSector) {
2903		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904		       mdname(mddev));
2905		return -EIO;
2906	}
 
 
2907	/*
2908	 * copy the already verified devices into our private RAID1
2909	 * bookkeeping area. [whatever we allocate in run(),
2910	 * should be freed in stop()]
2911	 */
2912	if (mddev->private == NULL)
2913		conf = setup_conf(mddev);
2914	else
2915		conf = mddev->private;
2916
2917	if (IS_ERR(conf))
2918		return PTR_ERR(conf);
2919
2920	if (mddev->queue)
2921		blk_queue_max_write_same_sectors(mddev->queue, 0);
2922
2923	rdev_for_each(rdev, mddev) {
2924		if (!mddev->gendisk)
2925			continue;
2926		disk_stack_limits(mddev->gendisk, rdev->bdev,
2927				  rdev->data_offset << 9);
2928		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929			discard_supported = true;
2930	}
2931
2932	mddev->degraded = 0;
2933	for (i=0; i < conf->raid_disks; i++)
2934		if (conf->mirrors[i].rdev == NULL ||
2935		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937			mddev->degraded++;
 
 
 
 
 
 
 
 
2938
2939	if (conf->raid_disks - mddev->degraded == 1)
2940		mddev->recovery_cp = MaxSector;
2941
2942	if (mddev->recovery_cp != MaxSector)
2943		printk(KERN_NOTICE "md/raid1:%s: not clean"
2944		       " -- starting background reconstruction\n",
2945		       mdname(mddev));
2946	printk(KERN_INFO 
2947		"md/raid1:%s: active with %d out of %d mirrors\n",
2948		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2949		mddev->raid_disks);
2950
2951	/*
2952	 * Ok, everything is just fine now
2953	 */
2954	mddev->thread = conf->thread;
2955	conf->thread = NULL;
2956	mddev->private = conf;
 
2957
2958	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959
2960	if (mddev->queue) {
2961		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2962		mddev->queue->backing_dev_info.congested_data = mddev;
2963		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2964
2965		if (discard_supported)
2966			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967						mddev->queue);
2968		else
2969			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970						  mddev->queue);
2971	}
 
2972
2973	ret =  md_integrity_register(mddev);
2974	if (ret)
2975		stop(mddev);
2976	return ret;
2977}
2978
2979static int stop(struct mddev *mddev)
2980{
2981	struct r1conf *conf = mddev->private;
2982	struct bitmap *bitmap = mddev->bitmap;
2983
2984	/* wait for behind writes to complete */
2985	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2986		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2987		       mdname(mddev));
2988		/* need to kick something here to make sure I/O goes? */
2989		wait_event(bitmap->behind_wait,
2990			   atomic_read(&bitmap->behind_writes) == 0);
2991	}
2992
2993	freeze_array(conf, 0);
2994	unfreeze_array(conf);
2995
2996	md_unregister_thread(&mddev->thread);
2997	if (conf->r1bio_pool)
2998		mempool_destroy(conf->r1bio_pool);
2999	kfree(conf->mirrors);
3000	safe_put_page(conf->tmppage);
3001	kfree(conf->poolinfo);
 
 
 
 
 
3002	kfree(conf);
3003	mddev->private = NULL;
3004	return 0;
3005}
3006
3007static int raid1_resize(struct mddev *mddev, sector_t sectors)
3008{
3009	/* no resync is happening, and there is enough space
3010	 * on all devices, so we can resize.
3011	 * We need to make sure resync covers any new space.
3012	 * If the array is shrinking we should possibly wait until
3013	 * any io in the removed space completes, but it hardly seems
3014	 * worth it.
3015	 */
3016	sector_t newsize = raid1_size(mddev, sectors, 0);
3017	if (mddev->external_size &&
3018	    mddev->array_sectors > newsize)
3019		return -EINVAL;
3020	if (mddev->bitmap) {
3021		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022		if (ret)
3023			return ret;
3024	}
3025	md_set_array_sectors(mddev, newsize);
3026	set_capacity(mddev->gendisk, mddev->array_sectors);
3027	revalidate_disk(mddev->gendisk);
3028	if (sectors > mddev->dev_sectors &&
3029	    mddev->recovery_cp > mddev->dev_sectors) {
3030		mddev->recovery_cp = mddev->dev_sectors;
3031		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3032	}
3033	mddev->dev_sectors = sectors;
3034	mddev->resync_max_sectors = sectors;
3035	return 0;
3036}
3037
3038static int raid1_reshape(struct mddev *mddev)
3039{
3040	/* We need to:
3041	 * 1/ resize the r1bio_pool
3042	 * 2/ resize conf->mirrors
3043	 *
3044	 * We allocate a new r1bio_pool if we can.
3045	 * Then raise a device barrier and wait until all IO stops.
3046	 * Then resize conf->mirrors and swap in the new r1bio pool.
3047	 *
3048	 * At the same time, we "pack" the devices so that all the missing
3049	 * devices have the higher raid_disk numbers.
3050	 */
3051	mempool_t *newpool, *oldpool;
3052	struct pool_info *newpoolinfo;
3053	struct raid1_info *newmirrors;
3054	struct r1conf *conf = mddev->private;
3055	int cnt, raid_disks;
3056	unsigned long flags;
3057	int d, d2, err;
 
 
 
 
3058
3059	/* Cannot change chunk_size, layout, or level */
3060	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3061	    mddev->layout != mddev->new_layout ||
3062	    mddev->level != mddev->new_level) {
3063		mddev->new_chunk_sectors = mddev->chunk_sectors;
3064		mddev->new_layout = mddev->layout;
3065		mddev->new_level = mddev->level;
3066		return -EINVAL;
3067	}
3068
3069	err = md_allow_write(mddev);
3070	if (err)
3071		return err;
3072
3073	raid_disks = mddev->raid_disks + mddev->delta_disks;
3074
3075	if (raid_disks < conf->raid_disks) {
3076		cnt=0;
3077		for (d= 0; d < conf->raid_disks; d++)
3078			if (conf->mirrors[d].rdev)
3079				cnt++;
3080		if (cnt > raid_disks)
3081			return -EBUSY;
3082	}
3083
3084	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3085	if (!newpoolinfo)
3086		return -ENOMEM;
3087	newpoolinfo->mddev = mddev;
3088	newpoolinfo->raid_disks = raid_disks * 2;
3089
3090	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3091				 r1bio_pool_free, newpoolinfo);
3092	if (!newpool) {
3093		kfree(newpoolinfo);
3094		return -ENOMEM;
3095	}
3096	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
 
3097			     GFP_KERNEL);
3098	if (!newmirrors) {
3099		kfree(newpoolinfo);
3100		mempool_destroy(newpool);
3101		return -ENOMEM;
3102	}
3103
3104	freeze_array(conf, 0);
3105
3106	/* ok, everything is stopped */
3107	oldpool = conf->r1bio_pool;
3108	conf->r1bio_pool = newpool;
3109
3110	for (d = d2 = 0; d < conf->raid_disks; d++) {
3111		struct md_rdev *rdev = conf->mirrors[d].rdev;
3112		if (rdev && rdev->raid_disk != d2) {
3113			sysfs_unlink_rdev(mddev, rdev);
3114			rdev->raid_disk = d2;
3115			sysfs_unlink_rdev(mddev, rdev);
3116			if (sysfs_link_rdev(mddev, rdev))
3117				printk(KERN_WARNING
3118				       "md/raid1:%s: cannot register rd%d\n",
3119				       mdname(mddev), rdev->raid_disk);
3120		}
3121		if (rdev)
3122			newmirrors[d2++].rdev = rdev;
3123	}
3124	kfree(conf->mirrors);
3125	conf->mirrors = newmirrors;
3126	kfree(conf->poolinfo);
3127	conf->poolinfo = newpoolinfo;
3128
3129	spin_lock_irqsave(&conf->device_lock, flags);
3130	mddev->degraded += (raid_disks - conf->raid_disks);
3131	spin_unlock_irqrestore(&conf->device_lock, flags);
3132	conf->raid_disks = mddev->raid_disks = raid_disks;
3133	mddev->delta_disks = 0;
3134
3135	unfreeze_array(conf);
3136
 
3137	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3138	md_wakeup_thread(mddev->thread);
3139
3140	mempool_destroy(oldpool);
3141	return 0;
3142}
3143
3144static void raid1_quiesce(struct mddev *mddev, int state)
3145{
3146	struct r1conf *conf = mddev->private;
3147
3148	switch(state) {
3149	case 2: /* wake for suspend */
3150		wake_up(&conf->wait_barrier);
3151		break;
3152	case 1:
3153		freeze_array(conf, 0);
3154		break;
3155	case 0:
3156		unfreeze_array(conf);
3157		break;
3158	}
3159}
3160
3161static void *raid1_takeover(struct mddev *mddev)
3162{
3163	/* raid1 can take over:
3164	 *  raid5 with 2 devices, any layout or chunk size
3165	 */
3166	if (mddev->level == 5 && mddev->raid_disks == 2) {
3167		struct r1conf *conf;
3168		mddev->new_level = 1;
3169		mddev->new_layout = 0;
3170		mddev->new_chunk_sectors = 0;
3171		conf = setup_conf(mddev);
3172		if (!IS_ERR(conf))
3173			/* Array must appear to be quiesced */
3174			conf->array_frozen = 1;
 
 
 
3175		return conf;
3176	}
3177	return ERR_PTR(-EINVAL);
3178}
3179
3180static struct md_personality raid1_personality =
3181{
3182	.name		= "raid1",
3183	.level		= 1,
3184	.owner		= THIS_MODULE,
3185	.make_request	= make_request,
3186	.run		= run,
3187	.stop		= stop,
3188	.status		= status,
3189	.error_handler	= error,
3190	.hot_add_disk	= raid1_add_disk,
3191	.hot_remove_disk= raid1_remove_disk,
3192	.spare_active	= raid1_spare_active,
3193	.sync_request	= sync_request,
3194	.resize		= raid1_resize,
3195	.size		= raid1_size,
3196	.check_reshape	= raid1_reshape,
3197	.quiesce	= raid1_quiesce,
3198	.takeover	= raid1_takeover,
3199};
3200
3201static int __init raid_init(void)
3202{
3203	return register_md_personality(&raid1_personality);
3204}
3205
3206static void raid_exit(void)
3207{
3208	unregister_md_personality(&raid1_personality);
3209}
3210
3211module_init(raid_init);
3212module_exit(raid_exit);
3213MODULE_LICENSE("GPL");
3214MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216MODULE_ALIAS("md-raid1");
3217MODULE_ALIAS("md-level-1");
3218
3219module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);