Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Freescale MXS I2C bus driver
  4 *
  5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
  6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
  7 *
  8 * based on a (non-working) driver which was:
  9 *
 10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
 11 */
 12
 13#include <linux/slab.h>
 14#include <linux/device.h>
 15#include <linux/module.h>
 16#include <linux/i2c.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/completion.h>
 20#include <linux/platform_device.h>
 21#include <linux/jiffies.h>
 22#include <linux/io.h>
 23#include <linux/stmp_device.h>
 24#include <linux/of.h>
 25#include <linux/of_device.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/dmaengine.h>
 28#include <linux/dma/mxs-dma.h>
 29
 30#define DRIVER_NAME "mxs-i2c"
 31
 32#define MXS_I2C_CTRL0		(0x00)
 33#define MXS_I2C_CTRL0_SET	(0x04)
 34#define MXS_I2C_CTRL0_CLR	(0x08)
 35
 36#define MXS_I2C_CTRL0_SFTRST			0x80000000
 37#define MXS_I2C_CTRL0_RUN			0x20000000
 38#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
 39#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
 40#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
 41#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
 42#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
 43#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
 44#define MXS_I2C_CTRL0_DIRECTION			0x00010000
 45#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
 46
 47#define MXS_I2C_TIMING0		(0x10)
 48#define MXS_I2C_TIMING1		(0x20)
 49#define MXS_I2C_TIMING2		(0x30)
 50
 51#define MXS_I2C_CTRL1		(0x40)
 52#define MXS_I2C_CTRL1_SET	(0x44)
 53#define MXS_I2C_CTRL1_CLR	(0x48)
 54
 55#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
 56#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
 57#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
 58#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
 59#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
 60#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
 61#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
 62#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
 63#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
 64
 65#define MXS_I2C_STAT		(0x50)
 66#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
 67#define MXS_I2C_STAT_BUS_BUSY			0x00000800
 68#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
 69
 70#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
 71
 72#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
 73
 74#define MXS_I2C_DEBUG0_DMAREQ	0x80000000
 75
 76#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
 77				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
 78				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
 79				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
 80				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
 81				 MXS_I2C_CTRL1_SLAVE_IRQ)
 82
 83
 84#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
 85				 MXS_I2C_CTRL0_PRE_SEND_START |	\
 86				 MXS_I2C_CTRL0_MASTER_MODE |	\
 87				 MXS_I2C_CTRL0_DIRECTION |	\
 88				 MXS_I2C_CTRL0_XFER_COUNT(1))
 89
 90#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
 91				 MXS_I2C_CTRL0_MASTER_MODE |	\
 92				 MXS_I2C_CTRL0_DIRECTION)
 93
 94#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
 95				 MXS_I2C_CTRL0_MASTER_MODE)
 96
 97enum mxs_i2c_devtype {
 98	MXS_I2C_UNKNOWN = 0,
 99	MXS_I2C_V1,
100	MXS_I2C_V2,
101};
102
103/**
104 * struct mxs_i2c_dev - per device, private MXS-I2C data
105 *
106 * @dev: driver model device node
107 * @dev_type: distinguish i.MX23/i.MX28 features
108 * @regs: IO registers pointer
109 * @cmd_complete: completion object for transaction wait
110 * @cmd_err: error code for last transaction
111 * @adapter: i2c subsystem adapter node
112 */
113struct mxs_i2c_dev {
114	struct device *dev;
115	enum mxs_i2c_devtype dev_type;
116	void __iomem *regs;
117	struct completion cmd_complete;
118	int cmd_err;
119	struct i2c_adapter adapter;
120
121	uint32_t timing0;
122	uint32_t timing1;
123	uint32_t timing2;
124
125	/* DMA support components */
126	struct dma_chan			*dmach;
127	uint32_t			pio_data[2];
128	uint32_t			addr_data;
129	struct scatterlist		sg_io[2];
130	bool				dma_read;
131};
132
133static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
134{
135	int ret = stmp_reset_block(i2c->regs);
136	if (ret)
137		return ret;
138
139	/*
140	 * Configure timing for the I2C block. The I2C TIMING2 register has to
141	 * be programmed with this particular magic number. The rest is derived
142	 * from the XTAL speed and requested I2C speed.
143	 *
144	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
145	 */
146	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
147	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
148	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
149
150	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
151
152	return 0;
153}
154
155static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
156{
157	if (i2c->dma_read) {
158		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
159		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
160	} else {
161		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
162	}
163}
164
165static void mxs_i2c_dma_irq_callback(void *param)
166{
167	struct mxs_i2c_dev *i2c = param;
168
169	complete(&i2c->cmd_complete);
170	mxs_i2c_dma_finish(i2c);
171}
172
173static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
174			struct i2c_msg *msg, uint32_t flags)
175{
176	struct dma_async_tx_descriptor *desc;
177	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
178
179	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
180
181	if (msg->flags & I2C_M_RD) {
182		i2c->dma_read = true;
183
184		/*
185		 * SELECT command.
186		 */
187
188		/* Queue the PIO register write transfer. */
189		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
190		desc = dmaengine_prep_slave_sg(i2c->dmach,
191					(struct scatterlist *)&i2c->pio_data[0],
192					1, DMA_TRANS_NONE, 0);
193		if (!desc) {
194			dev_err(i2c->dev,
195				"Failed to get PIO reg. write descriptor.\n");
196			goto select_init_pio_fail;
197		}
198
199		/* Queue the DMA data transfer. */
200		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
201		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
202		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
203					DMA_MEM_TO_DEV,
204					DMA_PREP_INTERRUPT |
205					MXS_DMA_CTRL_WAIT4END);
206		if (!desc) {
207			dev_err(i2c->dev,
208				"Failed to get DMA data write descriptor.\n");
209			goto select_init_dma_fail;
210		}
211
212		/*
213		 * READ command.
214		 */
215
216		/* Queue the PIO register write transfer. */
217		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
218				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
219		desc = dmaengine_prep_slave_sg(i2c->dmach,
220					(struct scatterlist *)&i2c->pio_data[1],
221					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
222		if (!desc) {
223			dev_err(i2c->dev,
224				"Failed to get PIO reg. write descriptor.\n");
225			goto select_init_dma_fail;
226		}
227
228		/* Queue the DMA data transfer. */
229		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
230		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
231		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
232					DMA_DEV_TO_MEM,
233					DMA_PREP_INTERRUPT |
234					MXS_DMA_CTRL_WAIT4END);
235		if (!desc) {
236			dev_err(i2c->dev,
237				"Failed to get DMA data write descriptor.\n");
238			goto read_init_dma_fail;
239		}
240	} else {
241		i2c->dma_read = false;
242
243		/*
244		 * WRITE command.
245		 */
246
247		/* Queue the PIO register write transfer. */
248		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
249				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
250		desc = dmaengine_prep_slave_sg(i2c->dmach,
251					(struct scatterlist *)&i2c->pio_data[0],
252					1, DMA_TRANS_NONE, 0);
253		if (!desc) {
254			dev_err(i2c->dev,
255				"Failed to get PIO reg. write descriptor.\n");
256			goto write_init_pio_fail;
257		}
258
259		/* Queue the DMA data transfer. */
260		sg_init_table(i2c->sg_io, 2);
261		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
262		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
263		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
264		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
265					DMA_MEM_TO_DEV,
266					DMA_PREP_INTERRUPT |
267					MXS_DMA_CTRL_WAIT4END);
268		if (!desc) {
269			dev_err(i2c->dev,
270				"Failed to get DMA data write descriptor.\n");
271			goto write_init_dma_fail;
272		}
273	}
274
275	/*
276	 * The last descriptor must have this callback,
277	 * to finish the DMA transaction.
278	 */
279	desc->callback = mxs_i2c_dma_irq_callback;
280	desc->callback_param = i2c;
281
282	/* Start the transfer. */
283	dmaengine_submit(desc);
284	dma_async_issue_pending(i2c->dmach);
285	return 0;
286
287/* Read failpath. */
288read_init_dma_fail:
289	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
290select_init_dma_fail:
291	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
292select_init_pio_fail:
293	dmaengine_terminate_sync(i2c->dmach);
294	return -EINVAL;
295
296/* Write failpath. */
297write_init_dma_fail:
298	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
299write_init_pio_fail:
300	dmaengine_terminate_sync(i2c->dmach);
301	return -EINVAL;
302}
303
304static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
305{
306	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
307
308	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
309		if (readl(i2c->regs + MXS_I2C_CTRL1) &
310				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
311			return -ENXIO;
312		if (time_after(jiffies, timeout))
313			return -ETIMEDOUT;
314		cond_resched();
315	}
316
317	return 0;
318}
319
320static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
321{
322	u32 state;
323
324	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
325
326	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
327		i2c->cmd_err = -ENXIO;
328	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
329			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
330			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
331			  MXS_I2C_CTRL1_SLAVE_IRQ))
332		i2c->cmd_err = -EIO;
333
334	return i2c->cmd_err;
335}
336
337static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
338{
339	u32 reg;
340
341	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
342
343	/* readback makes sure the write is latched into hardware */
344	reg = readl(i2c->regs + MXS_I2C_CTRL0);
345	reg |= MXS_I2C_CTRL0_RUN;
346	writel(reg, i2c->regs + MXS_I2C_CTRL0);
347}
348
349/*
350 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
351 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
352 * must be written during PIO mode operation. First, the CTRL0 register has
353 * to be programmed with all the necessary bits but the RUN bit. Then the
354 * payload has to be written into the DATA register. Finally, the transmission
355 * is executed by setting the RUN bit in CTRL0.
356 */
357static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
358					  u32 data)
359{
360	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
361
362	if (i2c->dev_type == MXS_I2C_V1)
363		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
364
365	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
366	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
367}
368
369static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
370			struct i2c_msg *msg, uint32_t flags)
371{
372	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
373	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
374	uint32_t data = 0;
375	int i, ret, xlen = 0, xmit = 0;
376	uint32_t start;
377
378	/* Mute IRQs coming from this block. */
379	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
380
381	/*
382	 * MX23 idea:
383	 * - Enable CTRL0::PIO_MODE (1 << 24)
384	 * - Enable CTRL1::ACK_MODE (1 << 27)
385	 *
386	 * WARNING! The MX23 is broken in some way, even if it claims
387	 * to support PIO, when we try to transfer any amount of data
388	 * that is not aligned to 4 bytes, the DMA engine will have
389	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
390	 * transfer. This in turn will mess up the next transfer as
391	 * the block it emit one byte write onto the bus terminated
392	 * with a NAK+STOP. A possible workaround is to reset the IP
393	 * block after every PIO transmission, which might just work.
394	 *
395	 * NOTE: The CTRL0::PIO_MODE description is important, since
396	 * it outlines how the PIO mode is really supposed to work.
397	 */
398	if (msg->flags & I2C_M_RD) {
399		/*
400		 * PIO READ transfer:
401		 *
402		 * This transfer MUST be limited to 4 bytes maximum. It is not
403		 * possible to transfer more than four bytes via PIO, since we
404		 * can not in any way make sure we can read the data from the
405		 * DATA register fast enough. Besides, the RX FIFO is only four
406		 * bytes deep, thus we can only really read up to four bytes at
407		 * time. Finally, there is no bit indicating us that new data
408		 * arrived at the FIFO and can thus be fetched from the DATA
409		 * register.
410		 */
411		BUG_ON(msg->len > 4);
412
413		/* SELECT command. */
414		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
415					      addr_data);
416
417		ret = mxs_i2c_pio_wait_xfer_end(i2c);
418		if (ret) {
419			dev_dbg(i2c->dev,
420				"PIO: Failed to send SELECT command!\n");
421			goto cleanup;
422		}
423
424		/* READ command. */
425		mxs_i2c_pio_trigger_cmd(i2c,
426					MXS_CMD_I2C_READ | flags |
427					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
428
429		ret = mxs_i2c_pio_wait_xfer_end(i2c);
430		if (ret) {
431			dev_dbg(i2c->dev,
432				"PIO: Failed to send READ command!\n");
433			goto cleanup;
434		}
435
436		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
437		for (i = 0; i < msg->len; i++) {
438			msg->buf[i] = data & 0xff;
439			data >>= 8;
440		}
441	} else {
442		/*
443		 * PIO WRITE transfer:
444		 *
445		 * The code below implements clock stretching to circumvent
446		 * the possibility of kernel not being able to supply data
447		 * fast enough. It is possible to transfer arbitrary amount
448		 * of data using PIO write.
449		 */
450
451		/*
452		 * The LSB of data buffer is the first byte blasted across
453		 * the bus. Higher order bytes follow. Thus the following
454		 * filling schematic.
455		 */
456
457		data = addr_data << 24;
458
459		/* Start the transfer with START condition. */
460		start = MXS_I2C_CTRL0_PRE_SEND_START;
461
462		/* If the transfer is long, use clock stretching. */
463		if (msg->len > 3)
464			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
465
466		for (i = 0; i < msg->len; i++) {
467			data >>= 8;
468			data |= (msg->buf[i] << 24);
469
470			xmit = 0;
471
472			/* This is the last transfer of the message. */
473			if (i + 1 == msg->len) {
474				/* Add optional STOP flag. */
475				start |= flags;
476				/* Remove RETAIN_CLOCK bit. */
477				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
478				xmit = 1;
479			}
480
481			/* Four bytes are ready in the "data" variable. */
482			if ((i & 3) == 2)
483				xmit = 1;
484
485			/* Nothing interesting happened, continue stuffing. */
486			if (!xmit)
487				continue;
488
489			/*
490			 * Compute the size of the transfer and shift the
491			 * data accordingly.
492			 *
493			 * i = (4k + 0) .... xlen = 2
494			 * i = (4k + 1) .... xlen = 3
495			 * i = (4k + 2) .... xlen = 4
496			 * i = (4k + 3) .... xlen = 1
497			 */
498
499			if ((i % 4) == 3)
500				xlen = 1;
501			else
502				xlen = (i % 4) + 2;
503
504			data >>= (4 - xlen) * 8;
505
506			dev_dbg(i2c->dev,
507				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
508				xlen, i, msg->len,
509				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
510				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
511				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
512
513			writel(MXS_I2C_DEBUG0_DMAREQ,
514			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
515
516			mxs_i2c_pio_trigger_write_cmd(i2c,
517				start | MXS_I2C_CTRL0_MASTER_MODE |
518				MXS_I2C_CTRL0_DIRECTION |
519				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
520
521			/* The START condition is sent only once. */
522			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
523
524			/* Wait for the end of the transfer. */
525			ret = mxs_i2c_pio_wait_xfer_end(i2c);
526			if (ret) {
527				dev_dbg(i2c->dev,
528					"PIO: Failed to finish WRITE cmd!\n");
529				break;
530			}
531
532			/* Check NAK here. */
533			ret = readl(i2c->regs + MXS_I2C_STAT) &
534				    MXS_I2C_STAT_GOT_A_NAK;
535			if (ret) {
536				ret = -ENXIO;
537				goto cleanup;
538			}
539		}
540	}
541
542	/* make sure we capture any occurred error into cmd_err */
543	ret = mxs_i2c_pio_check_error_state(i2c);
544
545cleanup:
546	/* Clear any dangling IRQs and re-enable interrupts. */
547	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
548	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
549
550	/* Clear the PIO_MODE on i.MX23 */
551	if (i2c->dev_type == MXS_I2C_V1)
552		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
553
554	return ret;
555}
556
557/*
558 * Low level master read/write transaction.
559 */
560static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
561				int stop)
562{
563	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
564	int ret;
565	int flags;
 
566	int use_pio = 0;
567	unsigned long time_left;
568
569	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570
571	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572		msg->addr, msg->len, msg->flags, stop);
573
574	/*
575	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576	 * 4 bytes of length. The write transfer is not limited as it can use
577	 * clock stretching to avoid FIFO underruns.
578	 */
579	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580		use_pio = 1;
581	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582		use_pio = 1;
583
584	i2c->cmd_err = 0;
585	if (use_pio) {
586		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587		/* No need to reset the block if NAK was received. */
588		if (ret && (ret != -ENXIO))
589			mxs_i2c_reset(i2c);
590	} else {
 
 
 
 
591		reinit_completion(&i2c->cmd_complete);
592		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
593		if (ret)
 
594			return ret;
 
595
596		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
597						msecs_to_jiffies(1000));
 
598		if (!time_left)
599			goto timeout;
600
601		ret = i2c->cmd_err;
602	}
603
604	if (ret == -ENXIO) {
605		/*
606		 * If the transfer fails with a NAK from the slave the
607		 * controller halts until it gets told to return to idle state.
608		 */
609		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
610		       i2c->regs + MXS_I2C_CTRL1_SET);
611	}
612
613	/*
614	 * WARNING!
615	 * The i.MX23 is strange. After each and every operation, it's I2C IP
616	 * block must be reset, otherwise the IP block will misbehave. This can
617	 * be observed on the bus by the block sending out one single byte onto
618	 * the bus. In case such an error happens, bit 27 will be set in the
619	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
620	 * and is marked as "TBD" instead. To reset this bit to a correct state,
621	 * reset the whole block. Since the block reset does not take long, do
622	 * reset the block after every transfer to play safe.
623	 */
624	if (i2c->dev_type == MXS_I2C_V1)
625		mxs_i2c_reset(i2c);
626
627	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
628
629	return ret;
630
631timeout:
632	dev_dbg(i2c->dev, "Timeout!\n");
633	mxs_i2c_dma_finish(i2c);
634	ret = mxs_i2c_reset(i2c);
635	if (ret)
636		return ret;
637
638	return -ETIMEDOUT;
639}
640
641static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
642			int num)
643{
644	int i;
645	int err;
646
647	for (i = 0; i < num; i++) {
648		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
649		if (err)
650			return err;
651	}
652
653	return num;
654}
655
656static u32 mxs_i2c_func(struct i2c_adapter *adap)
657{
658	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
659}
660
661static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
662{
663	struct mxs_i2c_dev *i2c = dev_id;
664	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
665
666	if (!stat)
667		return IRQ_NONE;
668
669	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
670		i2c->cmd_err = -ENXIO;
671	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
672		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
673		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
674		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
675		i2c->cmd_err = -EIO;
676
677	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
678
679	return IRQ_HANDLED;
680}
681
682static const struct i2c_algorithm mxs_i2c_algo = {
683	.master_xfer = mxs_i2c_xfer,
684	.functionality = mxs_i2c_func,
685};
686
687static const struct i2c_adapter_quirks mxs_i2c_quirks = {
688	.flags = I2C_AQ_NO_ZERO_LEN,
689};
690
691static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
692{
693	/* The I2C block clock runs at 24MHz */
694	const uint32_t clk = 24000000;
695	uint32_t divider;
696	uint16_t high_count, low_count, rcv_count, xmit_count;
697	uint32_t bus_free, leadin;
698	struct device *dev = i2c->dev;
699
700	divider = DIV_ROUND_UP(clk, speed);
701
702	if (divider < 25) {
703		/*
704		 * limit the divider, so that min(low_count, high_count)
705		 * is >= 1
706		 */
707		divider = 25;
708		dev_warn(dev,
709			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
710			speed / 1000, speed % 1000,
711			clk / divider / 1000, clk / divider % 1000);
712	} else if (divider > 1897) {
713		/*
714		 * limit the divider, so that max(low_count, high_count)
715		 * cannot exceed 1023
716		 */
717		divider = 1897;
718		dev_warn(dev,
719			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
720			speed / 1000, speed % 1000,
721			clk / divider / 1000, clk / divider % 1000);
722	}
723
724	/*
725	 * The I2C spec specifies the following timing data:
726	 *                          standard mode  fast mode Bitfield name
727	 * tLOW (SCL LOW period)     4700 ns        1300 ns
728	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
729	 * tSU;DAT (data setup time)  250 ns         100 ns
730	 * tHD;STA (START hold time) 4000 ns         600 ns
731	 * tBUF (bus free time)      4700 ns        1300 ns
732	 *
733	 * The hardware (of the i.MX28 at least) seems to add 2 additional
734	 * clock cycles to the low_count and 7 cycles to the high_count.
735	 * This is compensated for by subtracting the respective constants
736	 * from the values written to the timing registers.
737	 */
738	if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
739		/* fast mode */
740		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
741		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
742		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
743		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
744	} else {
745		/* normal mode */
746		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
747		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
748		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
749		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
750	}
751	rcv_count = high_count * 3 / 8;
752	xmit_count = low_count * 3 / 8;
753
754	dev_dbg(dev,
755		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
756		speed, clk / divider, divider, low_count, high_count,
757		xmit_count, rcv_count, leadin, bus_free);
758
759	low_count -= 2;
760	high_count -= 7;
761	i2c->timing0 = (high_count << 16) | rcv_count;
762	i2c->timing1 = (low_count << 16) | xmit_count;
763	i2c->timing2 = (bus_free << 16 | leadin);
764}
765
766static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
767{
768	uint32_t speed;
769	struct device *dev = i2c->dev;
770	struct device_node *node = dev->of_node;
771	int ret;
772
773	ret = of_property_read_u32(node, "clock-frequency", &speed);
774	if (ret) {
775		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
776		speed = I2C_MAX_STANDARD_MODE_FREQ;
777	}
778
779	mxs_i2c_derive_timing(i2c, speed);
780
781	return 0;
782}
783
784static const struct of_device_id mxs_i2c_dt_ids[] = {
785	{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
786	{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
787	{ /* sentinel */ }
788};
789MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
790
791static int mxs_i2c_probe(struct platform_device *pdev)
792{
793	struct device *dev = &pdev->dev;
794	struct mxs_i2c_dev *i2c;
795	struct i2c_adapter *adap;
796	int err, irq;
797
798	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
799	if (!i2c)
800		return -ENOMEM;
801
802	i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
803
804	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
805	if (IS_ERR(i2c->regs))
806		return PTR_ERR(i2c->regs);
807
808	irq = platform_get_irq(pdev, 0);
809	if (irq < 0)
810		return irq;
811
812	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
813	if (err)
814		return err;
815
816	i2c->dev = dev;
817
818	init_completion(&i2c->cmd_complete);
819
820	if (dev->of_node) {
821		err = mxs_i2c_get_ofdata(i2c);
822		if (err)
823			return err;
824	}
825
826	/* Setup the DMA */
827	i2c->dmach = dma_request_chan(dev, "rx-tx");
828	if (IS_ERR(i2c->dmach)) {
829		return dev_err_probe(dev, PTR_ERR(i2c->dmach),
830				     "Failed to request dma\n");
831	}
832
833	platform_set_drvdata(pdev, i2c);
834
835	/* Do reset to enforce correct startup after pinmuxing */
836	err = mxs_i2c_reset(i2c);
837	if (err)
838		return err;
839
840	adap = &i2c->adapter;
841	strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
842	adap->owner = THIS_MODULE;
843	adap->algo = &mxs_i2c_algo;
844	adap->quirks = &mxs_i2c_quirks;
845	adap->dev.parent = dev;
846	adap->nr = pdev->id;
847	adap->dev.of_node = pdev->dev.of_node;
848	i2c_set_adapdata(adap, i2c);
849	err = i2c_add_numbered_adapter(adap);
850	if (err) {
851		writel(MXS_I2C_CTRL0_SFTRST,
852				i2c->regs + MXS_I2C_CTRL0_SET);
853		return err;
854	}
855
856	return 0;
857}
858
859static int mxs_i2c_remove(struct platform_device *pdev)
860{
861	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
862
863	i2c_del_adapter(&i2c->adapter);
864
865	if (i2c->dmach)
866		dma_release_channel(i2c->dmach);
867
868	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
869
870	return 0;
871}
872
873static struct platform_driver mxs_i2c_driver = {
874	.driver = {
875		   .name = DRIVER_NAME,
876		   .of_match_table = mxs_i2c_dt_ids,
877		   },
878	.probe = mxs_i2c_probe,
879	.remove = mxs_i2c_remove,
880};
881
882static int __init mxs_i2c_init(void)
883{
884	return platform_driver_register(&mxs_i2c_driver);
885}
886subsys_initcall(mxs_i2c_init);
887
888static void __exit mxs_i2c_exit(void)
889{
890	platform_driver_unregister(&mxs_i2c_driver);
891}
892module_exit(mxs_i2c_exit);
893
894MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
895MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
896MODULE_DESCRIPTION("MXS I2C Bus Driver");
897MODULE_LICENSE("GPL");
898MODULE_ALIAS("platform:" DRIVER_NAME);
v6.8
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Freescale MXS I2C bus driver
  4 *
  5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
  6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
  7 *
  8 * based on a (non-working) driver which was:
  9 *
 10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
 11 */
 12
 13#include <linux/slab.h>
 14#include <linux/device.h>
 15#include <linux/module.h>
 16#include <linux/i2c.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/completion.h>
 20#include <linux/platform_device.h>
 21#include <linux/jiffies.h>
 22#include <linux/io.h>
 23#include <linux/stmp_device.h>
 24#include <linux/of.h>
 
 25#include <linux/dma-mapping.h>
 26#include <linux/dmaengine.h>
 27#include <linux/dma/mxs-dma.h>
 28
 29#define DRIVER_NAME "mxs-i2c"
 30
 31#define MXS_I2C_CTRL0		(0x00)
 32#define MXS_I2C_CTRL0_SET	(0x04)
 33#define MXS_I2C_CTRL0_CLR	(0x08)
 34
 35#define MXS_I2C_CTRL0_SFTRST			0x80000000
 36#define MXS_I2C_CTRL0_RUN			0x20000000
 37#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
 38#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
 39#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
 40#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
 41#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
 42#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
 43#define MXS_I2C_CTRL0_DIRECTION			0x00010000
 44#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
 45
 46#define MXS_I2C_TIMING0		(0x10)
 47#define MXS_I2C_TIMING1		(0x20)
 48#define MXS_I2C_TIMING2		(0x30)
 49
 50#define MXS_I2C_CTRL1		(0x40)
 51#define MXS_I2C_CTRL1_SET	(0x44)
 52#define MXS_I2C_CTRL1_CLR	(0x48)
 53
 54#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
 55#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
 56#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
 57#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
 58#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
 59#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
 60#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
 61#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
 62#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
 63
 64#define MXS_I2C_STAT		(0x50)
 65#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
 66#define MXS_I2C_STAT_BUS_BUSY			0x00000800
 67#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
 68
 69#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
 70
 71#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
 72
 73#define MXS_I2C_DEBUG0_DMAREQ	0x80000000
 74
 75#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
 76				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
 77				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
 78				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
 79				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
 80				 MXS_I2C_CTRL1_SLAVE_IRQ)
 81
 82
 83#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
 84				 MXS_I2C_CTRL0_PRE_SEND_START |	\
 85				 MXS_I2C_CTRL0_MASTER_MODE |	\
 86				 MXS_I2C_CTRL0_DIRECTION |	\
 87				 MXS_I2C_CTRL0_XFER_COUNT(1))
 88
 89#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
 90				 MXS_I2C_CTRL0_MASTER_MODE |	\
 91				 MXS_I2C_CTRL0_DIRECTION)
 92
 93#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
 94				 MXS_I2C_CTRL0_MASTER_MODE)
 95
 96enum mxs_i2c_devtype {
 97	MXS_I2C_UNKNOWN = 0,
 98	MXS_I2C_V1,
 99	MXS_I2C_V2,
100};
101
102/**
103 * struct mxs_i2c_dev - per device, private MXS-I2C data
104 *
105 * @dev: driver model device node
106 * @dev_type: distinguish i.MX23/i.MX28 features
107 * @regs: IO registers pointer
108 * @cmd_complete: completion object for transaction wait
109 * @cmd_err: error code for last transaction
110 * @adapter: i2c subsystem adapter node
111 */
112struct mxs_i2c_dev {
113	struct device *dev;
114	enum mxs_i2c_devtype dev_type;
115	void __iomem *regs;
116	struct completion cmd_complete;
117	int cmd_err;
118	struct i2c_adapter adapter;
119
120	uint32_t timing0;
121	uint32_t timing1;
122	uint32_t timing2;
123
124	/* DMA support components */
125	struct dma_chan			*dmach;
126	uint32_t			pio_data[2];
127	uint32_t			addr_data;
128	struct scatterlist		sg_io[2];
129	bool				dma_read;
130};
131
132static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133{
134	int ret = stmp_reset_block(i2c->regs);
135	if (ret)
136		return ret;
137
138	/*
139	 * Configure timing for the I2C block. The I2C TIMING2 register has to
140	 * be programmed with this particular magic number. The rest is derived
141	 * from the XTAL speed and requested I2C speed.
142	 *
143	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144	 */
145	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148
149	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150
151	return 0;
152}
153
154static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155{
156	if (i2c->dma_read) {
157		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159	} else {
160		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161	}
162}
163
164static void mxs_i2c_dma_irq_callback(void *param)
165{
166	struct mxs_i2c_dev *i2c = param;
167
168	complete(&i2c->cmd_complete);
169	mxs_i2c_dma_finish(i2c);
170}
171
172static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173			struct i2c_msg *msg, u8 *buf, uint32_t flags)
174{
175	struct dma_async_tx_descriptor *desc;
176	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177
178	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179
180	if (msg->flags & I2C_M_RD) {
181		i2c->dma_read = true;
182
183		/*
184		 * SELECT command.
185		 */
186
187		/* Queue the PIO register write transfer. */
188		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189		desc = dmaengine_prep_slave_sg(i2c->dmach,
190					(struct scatterlist *)&i2c->pio_data[0],
191					1, DMA_TRANS_NONE, 0);
192		if (!desc) {
193			dev_err(i2c->dev,
194				"Failed to get PIO reg. write descriptor.\n");
195			goto select_init_pio_fail;
196		}
197
198		/* Queue the DMA data transfer. */
199		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202					DMA_MEM_TO_DEV,
203					DMA_PREP_INTERRUPT |
204					MXS_DMA_CTRL_WAIT4END);
205		if (!desc) {
206			dev_err(i2c->dev,
207				"Failed to get DMA data write descriptor.\n");
208			goto select_init_dma_fail;
209		}
210
211		/*
212		 * READ command.
213		 */
214
215		/* Queue the PIO register write transfer. */
216		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
217				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
218		desc = dmaengine_prep_slave_sg(i2c->dmach,
219					(struct scatterlist *)&i2c->pio_data[1],
220					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
221		if (!desc) {
222			dev_err(i2c->dev,
223				"Failed to get PIO reg. write descriptor.\n");
224			goto select_init_dma_fail;
225		}
226
227		/* Queue the DMA data transfer. */
228		sg_init_one(&i2c->sg_io[1], buf, msg->len);
229		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
230		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
231					DMA_DEV_TO_MEM,
232					DMA_PREP_INTERRUPT |
233					MXS_DMA_CTRL_WAIT4END);
234		if (!desc) {
235			dev_err(i2c->dev,
236				"Failed to get DMA data write descriptor.\n");
237			goto read_init_dma_fail;
238		}
239	} else {
240		i2c->dma_read = false;
241
242		/*
243		 * WRITE command.
244		 */
245
246		/* Queue the PIO register write transfer. */
247		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
248				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
249		desc = dmaengine_prep_slave_sg(i2c->dmach,
250					(struct scatterlist *)&i2c->pio_data[0],
251					1, DMA_TRANS_NONE, 0);
252		if (!desc) {
253			dev_err(i2c->dev,
254				"Failed to get PIO reg. write descriptor.\n");
255			goto write_init_pio_fail;
256		}
257
258		/* Queue the DMA data transfer. */
259		sg_init_table(i2c->sg_io, 2);
260		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
261		sg_set_buf(&i2c->sg_io[1], buf, msg->len);
262		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
263		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
264					DMA_MEM_TO_DEV,
265					DMA_PREP_INTERRUPT |
266					MXS_DMA_CTRL_WAIT4END);
267		if (!desc) {
268			dev_err(i2c->dev,
269				"Failed to get DMA data write descriptor.\n");
270			goto write_init_dma_fail;
271		}
272	}
273
274	/*
275	 * The last descriptor must have this callback,
276	 * to finish the DMA transaction.
277	 */
278	desc->callback = mxs_i2c_dma_irq_callback;
279	desc->callback_param = i2c;
280
281	/* Start the transfer. */
282	dmaengine_submit(desc);
283	dma_async_issue_pending(i2c->dmach);
284	return 0;
285
286/* Read failpath. */
287read_init_dma_fail:
288	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
289select_init_dma_fail:
290	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
291select_init_pio_fail:
292	dmaengine_terminate_sync(i2c->dmach);
293	return -EINVAL;
294
295/* Write failpath. */
296write_init_dma_fail:
297	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
298write_init_pio_fail:
299	dmaengine_terminate_sync(i2c->dmach);
300	return -EINVAL;
301}
302
303static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
304{
305	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
306
307	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
308		if (readl(i2c->regs + MXS_I2C_CTRL1) &
309				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
310			return -ENXIO;
311		if (time_after(jiffies, timeout))
312			return -ETIMEDOUT;
313		cond_resched();
314	}
315
316	return 0;
317}
318
319static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
320{
321	u32 state;
322
323	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
324
325	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
326		i2c->cmd_err = -ENXIO;
327	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
328			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
329			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
330			  MXS_I2C_CTRL1_SLAVE_IRQ))
331		i2c->cmd_err = -EIO;
332
333	return i2c->cmd_err;
334}
335
336static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
337{
338	u32 reg;
339
340	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
341
342	/* readback makes sure the write is latched into hardware */
343	reg = readl(i2c->regs + MXS_I2C_CTRL0);
344	reg |= MXS_I2C_CTRL0_RUN;
345	writel(reg, i2c->regs + MXS_I2C_CTRL0);
346}
347
348/*
349 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
350 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
351 * must be written during PIO mode operation. First, the CTRL0 register has
352 * to be programmed with all the necessary bits but the RUN bit. Then the
353 * payload has to be written into the DATA register. Finally, the transmission
354 * is executed by setting the RUN bit in CTRL0.
355 */
356static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
357					  u32 data)
358{
359	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
360
361	if (i2c->dev_type == MXS_I2C_V1)
362		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
363
364	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
365	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
366}
367
368static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
369			struct i2c_msg *msg, uint32_t flags)
370{
371	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
372	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
373	uint32_t data = 0;
374	int i, ret, xlen = 0, xmit = 0;
375	uint32_t start;
376
377	/* Mute IRQs coming from this block. */
378	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
379
380	/*
381	 * MX23 idea:
382	 * - Enable CTRL0::PIO_MODE (1 << 24)
383	 * - Enable CTRL1::ACK_MODE (1 << 27)
384	 *
385	 * WARNING! The MX23 is broken in some way, even if it claims
386	 * to support PIO, when we try to transfer any amount of data
387	 * that is not aligned to 4 bytes, the DMA engine will have
388	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
389	 * transfer. This in turn will mess up the next transfer as
390	 * the block it emit one byte write onto the bus terminated
391	 * with a NAK+STOP. A possible workaround is to reset the IP
392	 * block after every PIO transmission, which might just work.
393	 *
394	 * NOTE: The CTRL0::PIO_MODE description is important, since
395	 * it outlines how the PIO mode is really supposed to work.
396	 */
397	if (msg->flags & I2C_M_RD) {
398		/*
399		 * PIO READ transfer:
400		 *
401		 * This transfer MUST be limited to 4 bytes maximum. It is not
402		 * possible to transfer more than four bytes via PIO, since we
403		 * can not in any way make sure we can read the data from the
404		 * DATA register fast enough. Besides, the RX FIFO is only four
405		 * bytes deep, thus we can only really read up to four bytes at
406		 * time. Finally, there is no bit indicating us that new data
407		 * arrived at the FIFO and can thus be fetched from the DATA
408		 * register.
409		 */
410		BUG_ON(msg->len > 4);
411
412		/* SELECT command. */
413		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
414					      addr_data);
415
416		ret = mxs_i2c_pio_wait_xfer_end(i2c);
417		if (ret) {
418			dev_dbg(i2c->dev,
419				"PIO: Failed to send SELECT command!\n");
420			goto cleanup;
421		}
422
423		/* READ command. */
424		mxs_i2c_pio_trigger_cmd(i2c,
425					MXS_CMD_I2C_READ | flags |
426					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
427
428		ret = mxs_i2c_pio_wait_xfer_end(i2c);
429		if (ret) {
430			dev_dbg(i2c->dev,
431				"PIO: Failed to send READ command!\n");
432			goto cleanup;
433		}
434
435		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
436		for (i = 0; i < msg->len; i++) {
437			msg->buf[i] = data & 0xff;
438			data >>= 8;
439		}
440	} else {
441		/*
442		 * PIO WRITE transfer:
443		 *
444		 * The code below implements clock stretching to circumvent
445		 * the possibility of kernel not being able to supply data
446		 * fast enough. It is possible to transfer arbitrary amount
447		 * of data using PIO write.
448		 */
449
450		/*
451		 * The LSB of data buffer is the first byte blasted across
452		 * the bus. Higher order bytes follow. Thus the following
453		 * filling schematic.
454		 */
455
456		data = addr_data << 24;
457
458		/* Start the transfer with START condition. */
459		start = MXS_I2C_CTRL0_PRE_SEND_START;
460
461		/* If the transfer is long, use clock stretching. */
462		if (msg->len > 3)
463			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
464
465		for (i = 0; i < msg->len; i++) {
466			data >>= 8;
467			data |= (msg->buf[i] << 24);
468
469			xmit = 0;
470
471			/* This is the last transfer of the message. */
472			if (i + 1 == msg->len) {
473				/* Add optional STOP flag. */
474				start |= flags;
475				/* Remove RETAIN_CLOCK bit. */
476				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
477				xmit = 1;
478			}
479
480			/* Four bytes are ready in the "data" variable. */
481			if ((i & 3) == 2)
482				xmit = 1;
483
484			/* Nothing interesting happened, continue stuffing. */
485			if (!xmit)
486				continue;
487
488			/*
489			 * Compute the size of the transfer and shift the
490			 * data accordingly.
491			 *
492			 * i = (4k + 0) .... xlen = 2
493			 * i = (4k + 1) .... xlen = 3
494			 * i = (4k + 2) .... xlen = 4
495			 * i = (4k + 3) .... xlen = 1
496			 */
497
498			if ((i % 4) == 3)
499				xlen = 1;
500			else
501				xlen = (i % 4) + 2;
502
503			data >>= (4 - xlen) * 8;
504
505			dev_dbg(i2c->dev,
506				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
507				xlen, i, msg->len,
508				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
509				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
510				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
511
512			writel(MXS_I2C_DEBUG0_DMAREQ,
513			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
514
515			mxs_i2c_pio_trigger_write_cmd(i2c,
516				start | MXS_I2C_CTRL0_MASTER_MODE |
517				MXS_I2C_CTRL0_DIRECTION |
518				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
519
520			/* The START condition is sent only once. */
521			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
522
523			/* Wait for the end of the transfer. */
524			ret = mxs_i2c_pio_wait_xfer_end(i2c);
525			if (ret) {
526				dev_dbg(i2c->dev,
527					"PIO: Failed to finish WRITE cmd!\n");
528				break;
529			}
530
531			/* Check NAK here. */
532			ret = readl(i2c->regs + MXS_I2C_STAT) &
533				    MXS_I2C_STAT_GOT_A_NAK;
534			if (ret) {
535				ret = -ENXIO;
536				goto cleanup;
537			}
538		}
539	}
540
541	/* make sure we capture any occurred error into cmd_err */
542	ret = mxs_i2c_pio_check_error_state(i2c);
543
544cleanup:
545	/* Clear any dangling IRQs and re-enable interrupts. */
546	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
547	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
548
549	/* Clear the PIO_MODE on i.MX23 */
550	if (i2c->dev_type == MXS_I2C_V1)
551		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
552
553	return ret;
554}
555
556/*
557 * Low level master read/write transaction.
558 */
559static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
560				int stop)
561{
562	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
563	int ret;
564	int flags;
565	u8 *dma_buf;
566	int use_pio = 0;
567	unsigned long time_left;
568
569	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570
571	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572		msg->addr, msg->len, msg->flags, stop);
573
574	/*
575	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576	 * 4 bytes of length. The write transfer is not limited as it can use
577	 * clock stretching to avoid FIFO underruns.
578	 */
579	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580		use_pio = 1;
581	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582		use_pio = 1;
583
584	i2c->cmd_err = 0;
585	if (use_pio) {
586		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587		/* No need to reset the block if NAK was received. */
588		if (ret && (ret != -ENXIO))
589			mxs_i2c_reset(i2c);
590	} else {
591		dma_buf = i2c_get_dma_safe_msg_buf(msg, 1);
592		if (!dma_buf)
593			return -ENOMEM;
594
595		reinit_completion(&i2c->cmd_complete);
596		ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags);
597		if (ret) {
598			i2c_put_dma_safe_msg_buf(dma_buf, msg, false);
599			return ret;
600		}
601
602		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
603						msecs_to_jiffies(1000));
604		i2c_put_dma_safe_msg_buf(dma_buf, msg, true);
605		if (!time_left)
606			goto timeout;
607
608		ret = i2c->cmd_err;
609	}
610
611	if (ret == -ENXIO) {
612		/*
613		 * If the transfer fails with a NAK from the slave the
614		 * controller halts until it gets told to return to idle state.
615		 */
616		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
617		       i2c->regs + MXS_I2C_CTRL1_SET);
618	}
619
620	/*
621	 * WARNING!
622	 * The i.MX23 is strange. After each and every operation, it's I2C IP
623	 * block must be reset, otherwise the IP block will misbehave. This can
624	 * be observed on the bus by the block sending out one single byte onto
625	 * the bus. In case such an error happens, bit 27 will be set in the
626	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627	 * and is marked as "TBD" instead. To reset this bit to a correct state,
628	 * reset the whole block. Since the block reset does not take long, do
629	 * reset the block after every transfer to play safe.
630	 */
631	if (i2c->dev_type == MXS_I2C_V1)
632		mxs_i2c_reset(i2c);
633
634	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635
636	return ret;
637
638timeout:
639	dev_dbg(i2c->dev, "Timeout!\n");
640	mxs_i2c_dma_finish(i2c);
641	ret = mxs_i2c_reset(i2c);
642	if (ret)
643		return ret;
644
645	return -ETIMEDOUT;
646}
647
648static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
649			int num)
650{
651	int i;
652	int err;
653
654	for (i = 0; i < num; i++) {
655		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
656		if (err)
657			return err;
658	}
659
660	return num;
661}
662
663static u32 mxs_i2c_func(struct i2c_adapter *adap)
664{
665	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666}
667
668static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
669{
670	struct mxs_i2c_dev *i2c = dev_id;
671	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
672
673	if (!stat)
674		return IRQ_NONE;
675
676	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
677		i2c->cmd_err = -ENXIO;
678	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
679		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
680		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
681		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
682		i2c->cmd_err = -EIO;
683
684	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685
686	return IRQ_HANDLED;
687}
688
689static const struct i2c_algorithm mxs_i2c_algo = {
690	.master_xfer = mxs_i2c_xfer,
691	.functionality = mxs_i2c_func,
692};
693
694static const struct i2c_adapter_quirks mxs_i2c_quirks = {
695	.flags = I2C_AQ_NO_ZERO_LEN,
696};
697
698static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
699{
700	/* The I2C block clock runs at 24MHz */
701	const uint32_t clk = 24000000;
702	uint32_t divider;
703	uint16_t high_count, low_count, rcv_count, xmit_count;
704	uint32_t bus_free, leadin;
705	struct device *dev = i2c->dev;
706
707	divider = DIV_ROUND_UP(clk, speed);
708
709	if (divider < 25) {
710		/*
711		 * limit the divider, so that min(low_count, high_count)
712		 * is >= 1
713		 */
714		divider = 25;
715		dev_warn(dev,
716			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
717			speed / 1000, speed % 1000,
718			clk / divider / 1000, clk / divider % 1000);
719	} else if (divider > 1897) {
720		/*
721		 * limit the divider, so that max(low_count, high_count)
722		 * cannot exceed 1023
723		 */
724		divider = 1897;
725		dev_warn(dev,
726			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
727			speed / 1000, speed % 1000,
728			clk / divider / 1000, clk / divider % 1000);
729	}
730
731	/*
732	 * The I2C spec specifies the following timing data:
733	 *                          standard mode  fast mode Bitfield name
734	 * tLOW (SCL LOW period)     4700 ns        1300 ns
735	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
736	 * tSU;DAT (data setup time)  250 ns         100 ns
737	 * tHD;STA (START hold time) 4000 ns         600 ns
738	 * tBUF (bus free time)      4700 ns        1300 ns
739	 *
740	 * The hardware (of the i.MX28 at least) seems to add 2 additional
741	 * clock cycles to the low_count and 7 cycles to the high_count.
742	 * This is compensated for by subtracting the respective constants
743	 * from the values written to the timing registers.
744	 */
745	if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
746		/* fast mode */
747		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
748		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
749		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
750		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
751	} else {
752		/* normal mode */
753		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
754		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
755		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
756		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
757	}
758	rcv_count = high_count * 3 / 8;
759	xmit_count = low_count * 3 / 8;
760
761	dev_dbg(dev,
762		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
763		speed, clk / divider, divider, low_count, high_count,
764		xmit_count, rcv_count, leadin, bus_free);
765
766	low_count -= 2;
767	high_count -= 7;
768	i2c->timing0 = (high_count << 16) | rcv_count;
769	i2c->timing1 = (low_count << 16) | xmit_count;
770	i2c->timing2 = (bus_free << 16 | leadin);
771}
772
773static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
774{
775	uint32_t speed;
776	struct device *dev = i2c->dev;
777	struct device_node *node = dev->of_node;
778	int ret;
779
780	ret = of_property_read_u32(node, "clock-frequency", &speed);
781	if (ret) {
782		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
783		speed = I2C_MAX_STANDARD_MODE_FREQ;
784	}
785
786	mxs_i2c_derive_timing(i2c, speed);
787
788	return 0;
789}
790
791static const struct of_device_id mxs_i2c_dt_ids[] = {
792	{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
793	{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
794	{ /* sentinel */ }
795};
796MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797
798static int mxs_i2c_probe(struct platform_device *pdev)
799{
800	struct device *dev = &pdev->dev;
801	struct mxs_i2c_dev *i2c;
802	struct i2c_adapter *adap;
803	int err, irq;
804
805	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
806	if (!i2c)
807		return -ENOMEM;
808
809	i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
810
811	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
812	if (IS_ERR(i2c->regs))
813		return PTR_ERR(i2c->regs);
814
815	irq = platform_get_irq(pdev, 0);
816	if (irq < 0)
817		return irq;
818
819	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
820	if (err)
821		return err;
822
823	i2c->dev = dev;
824
825	init_completion(&i2c->cmd_complete);
826
827	if (dev->of_node) {
828		err = mxs_i2c_get_ofdata(i2c);
829		if (err)
830			return err;
831	}
832
833	/* Setup the DMA */
834	i2c->dmach = dma_request_chan(dev, "rx-tx");
835	if (IS_ERR(i2c->dmach)) {
836		return dev_err_probe(dev, PTR_ERR(i2c->dmach),
837				     "Failed to request dma\n");
838	}
839
840	platform_set_drvdata(pdev, i2c);
841
842	/* Do reset to enforce correct startup after pinmuxing */
843	err = mxs_i2c_reset(i2c);
844	if (err)
845		return err;
846
847	adap = &i2c->adapter;
848	strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
849	adap->owner = THIS_MODULE;
850	adap->algo = &mxs_i2c_algo;
851	adap->quirks = &mxs_i2c_quirks;
852	adap->dev.parent = dev;
853	adap->nr = pdev->id;
854	adap->dev.of_node = pdev->dev.of_node;
855	i2c_set_adapdata(adap, i2c);
856	err = i2c_add_numbered_adapter(adap);
857	if (err) {
858		writel(MXS_I2C_CTRL0_SFTRST,
859				i2c->regs + MXS_I2C_CTRL0_SET);
860		return err;
861	}
862
863	return 0;
864}
865
866static void mxs_i2c_remove(struct platform_device *pdev)
867{
868	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
869
870	i2c_del_adapter(&i2c->adapter);
871
872	if (i2c->dmach)
873		dma_release_channel(i2c->dmach);
874
875	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
 
 
876}
877
878static struct platform_driver mxs_i2c_driver = {
879	.driver = {
880		   .name = DRIVER_NAME,
881		   .of_match_table = mxs_i2c_dt_ids,
882		   },
883	.probe = mxs_i2c_probe,
884	.remove_new = mxs_i2c_remove,
885};
886
887static int __init mxs_i2c_init(void)
888{
889	return platform_driver_register(&mxs_i2c_driver);
890}
891subsys_initcall(mxs_i2c_init);
892
893static void __exit mxs_i2c_exit(void)
894{
895	platform_driver_unregister(&mxs_i2c_driver);
896}
897module_exit(mxs_i2c_exit);
898
899MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
901MODULE_DESCRIPTION("MXS I2C Bus Driver");
902MODULE_LICENSE("GPL");
903MODULE_ALIAS("platform:" DRIVER_NAME);