Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36#include "blk-rq-qos.h"
37
38/*
39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41 * policy [un]register operations including cgroup file additions /
42 * removals. Putting cgroup file registration outside blkcg_pol_mutex
43 * allows grabbing it from cgroup callbacks.
44 */
45static DEFINE_MUTEX(blkcg_pol_register_mutex);
46static DEFINE_MUTEX(blkcg_pol_mutex);
47
48struct blkcg blkcg_root;
49EXPORT_SYMBOL_GPL(blkcg_root);
50
51struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52EXPORT_SYMBOL_GPL(blkcg_root_css);
53
54static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55
56static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
57
58bool blkcg_debug_stats = false;
59static struct workqueue_struct *blkcg_punt_bio_wq;
60
61#define BLKG_DESTROY_BATCH_SIZE 64
62
63/*
64 * Lockless lists for tracking IO stats update
65 *
66 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
67 * There are multiple blkg's (one for each block device) attached to each
68 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
69 * but it doesn't know which blkg has the updated stats. If there are many
70 * block devices in a system, the cost of iterating all the blkg's to flush
71 * out the IO stats can be high. To reduce such overhead, a set of percpu
72 * lockless lists (lhead) per blkcg are used to track the set of recently
73 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
74 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
75 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
76 * References to blkg are gotten and then put back in the process to
77 * protect against blkg removal.
78 *
79 * Return: 0 if successful or -ENOMEM if allocation fails.
80 */
81static int init_blkcg_llists(struct blkcg *blkcg)
82{
83 int cpu;
84
85 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
86 if (!blkcg->lhead)
87 return -ENOMEM;
88
89 for_each_possible_cpu(cpu)
90 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
91 return 0;
92}
93
94/**
95 * blkcg_css - find the current css
96 *
97 * Find the css associated with either the kthread or the current task.
98 * This may return a dying css, so it is up to the caller to use tryget logic
99 * to confirm it is alive and well.
100 */
101static struct cgroup_subsys_state *blkcg_css(void)
102{
103 struct cgroup_subsys_state *css;
104
105 css = kthread_blkcg();
106 if (css)
107 return css;
108 return task_css(current, io_cgrp_id);
109}
110
111static bool blkcg_policy_enabled(struct request_queue *q,
112 const struct blkcg_policy *pol)
113{
114 return pol && test_bit(pol->plid, q->blkcg_pols);
115}
116
117static void blkg_free_workfn(struct work_struct *work)
118{
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 free_work);
121 int i;
122
123 for (i = 0; i < BLKCG_MAX_POLS; i++)
124 if (blkg->pd[i])
125 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
126
127 if (blkg->q)
128 blk_put_queue(blkg->q);
129 free_percpu(blkg->iostat_cpu);
130 percpu_ref_exit(&blkg->refcnt);
131 kfree(blkg);
132}
133
134/**
135 * blkg_free - free a blkg
136 * @blkg: blkg to free
137 *
138 * Free @blkg which may be partially allocated.
139 */
140static void blkg_free(struct blkcg_gq *blkg)
141{
142 if (!blkg)
143 return;
144
145 /*
146 * Both ->pd_free_fn() and request queue's release handler may
147 * sleep, so free us by scheduling one work func
148 */
149 INIT_WORK(&blkg->free_work, blkg_free_workfn);
150 schedule_work(&blkg->free_work);
151}
152
153static void __blkg_release(struct rcu_head *rcu)
154{
155 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
156
157 WARN_ON(!bio_list_empty(&blkg->async_bios));
158
159 /* release the blkcg and parent blkg refs this blkg has been holding */
160 css_put(&blkg->blkcg->css);
161 if (blkg->parent)
162 blkg_put(blkg->parent);
163 blkg_free(blkg);
164}
165
166/*
167 * A group is RCU protected, but having an rcu lock does not mean that one
168 * can access all the fields of blkg and assume these are valid. For
169 * example, don't try to follow throtl_data and request queue links.
170 *
171 * Having a reference to blkg under an rcu allows accesses to only values
172 * local to groups like group stats and group rate limits.
173 */
174static void blkg_release(struct percpu_ref *ref)
175{
176 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
177
178 call_rcu(&blkg->rcu_head, __blkg_release);
179}
180
181static void blkg_async_bio_workfn(struct work_struct *work)
182{
183 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
184 async_bio_work);
185 struct bio_list bios = BIO_EMPTY_LIST;
186 struct bio *bio;
187 struct blk_plug plug;
188 bool need_plug = false;
189
190 /* as long as there are pending bios, @blkg can't go away */
191 spin_lock_bh(&blkg->async_bio_lock);
192 bio_list_merge(&bios, &blkg->async_bios);
193 bio_list_init(&blkg->async_bios);
194 spin_unlock_bh(&blkg->async_bio_lock);
195
196 /* start plug only when bio_list contains at least 2 bios */
197 if (bios.head && bios.head->bi_next) {
198 need_plug = true;
199 blk_start_plug(&plug);
200 }
201 while ((bio = bio_list_pop(&bios)))
202 submit_bio(bio);
203 if (need_plug)
204 blk_finish_plug(&plug);
205}
206
207/**
208 * bio_blkcg_css - return the blkcg CSS associated with a bio
209 * @bio: target bio
210 *
211 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
212 * associated. Callers are expected to either handle %NULL or know association
213 * has been done prior to calling this.
214 */
215struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
216{
217 if (!bio || !bio->bi_blkg)
218 return NULL;
219 return &bio->bi_blkg->blkcg->css;
220}
221EXPORT_SYMBOL_GPL(bio_blkcg_css);
222
223/**
224 * blkcg_parent - get the parent of a blkcg
225 * @blkcg: blkcg of interest
226 *
227 * Return the parent blkcg of @blkcg. Can be called anytime.
228 */
229static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
230{
231 return css_to_blkcg(blkcg->css.parent);
232}
233
234/**
235 * blkg_alloc - allocate a blkg
236 * @blkcg: block cgroup the new blkg is associated with
237 * @disk: gendisk the new blkg is associated with
238 * @gfp_mask: allocation mask to use
239 *
240 * Allocate a new blkg assocating @blkcg and @q.
241 */
242static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
243 gfp_t gfp_mask)
244{
245 struct blkcg_gq *blkg;
246 int i, cpu;
247
248 /* alloc and init base part */
249 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
250 if (!blkg)
251 return NULL;
252
253 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
254 goto err_free;
255
256 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
257 if (!blkg->iostat_cpu)
258 goto err_free;
259
260 if (!blk_get_queue(disk->queue))
261 goto err_free;
262
263 blkg->q = disk->queue;
264 INIT_LIST_HEAD(&blkg->q_node);
265 spin_lock_init(&blkg->async_bio_lock);
266 bio_list_init(&blkg->async_bios);
267 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
268 blkg->blkcg = blkcg;
269
270 u64_stats_init(&blkg->iostat.sync);
271 for_each_possible_cpu(cpu) {
272 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
273 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
274 }
275
276 for (i = 0; i < BLKCG_MAX_POLS; i++) {
277 struct blkcg_policy *pol = blkcg_policy[i];
278 struct blkg_policy_data *pd;
279
280 if (!blkcg_policy_enabled(disk->queue, pol))
281 continue;
282
283 /* alloc per-policy data and attach it to blkg */
284 pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg);
285 if (!pd)
286 goto err_free;
287
288 blkg->pd[i] = pd;
289 pd->blkg = blkg;
290 pd->plid = i;
291 }
292
293 return blkg;
294
295err_free:
296 blkg_free(blkg);
297 return NULL;
298}
299
300/*
301 * If @new_blkg is %NULL, this function tries to allocate a new one as
302 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
303 */
304static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
305 struct blkcg_gq *new_blkg)
306{
307 struct blkcg_gq *blkg;
308 int i, ret;
309
310 lockdep_assert_held(&disk->queue->queue_lock);
311
312 /* request_queue is dying, do not create/recreate a blkg */
313 if (blk_queue_dying(disk->queue)) {
314 ret = -ENODEV;
315 goto err_free_blkg;
316 }
317
318 /* blkg holds a reference to blkcg */
319 if (!css_tryget_online(&blkcg->css)) {
320 ret = -ENODEV;
321 goto err_free_blkg;
322 }
323
324 /* allocate */
325 if (!new_blkg) {
326 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
327 if (unlikely(!new_blkg)) {
328 ret = -ENOMEM;
329 goto err_put_css;
330 }
331 }
332 blkg = new_blkg;
333
334 /* link parent */
335 if (blkcg_parent(blkcg)) {
336 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
337 if (WARN_ON_ONCE(!blkg->parent)) {
338 ret = -ENODEV;
339 goto err_put_css;
340 }
341 blkg_get(blkg->parent);
342 }
343
344 /* invoke per-policy init */
345 for (i = 0; i < BLKCG_MAX_POLS; i++) {
346 struct blkcg_policy *pol = blkcg_policy[i];
347
348 if (blkg->pd[i] && pol->pd_init_fn)
349 pol->pd_init_fn(blkg->pd[i]);
350 }
351
352 /* insert */
353 spin_lock(&blkcg->lock);
354 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
355 if (likely(!ret)) {
356 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
357 list_add(&blkg->q_node, &disk->queue->blkg_list);
358
359 for (i = 0; i < BLKCG_MAX_POLS; i++) {
360 struct blkcg_policy *pol = blkcg_policy[i];
361
362 if (blkg->pd[i] && pol->pd_online_fn)
363 pol->pd_online_fn(blkg->pd[i]);
364 }
365 }
366 blkg->online = true;
367 spin_unlock(&blkcg->lock);
368
369 if (!ret)
370 return blkg;
371
372 /* @blkg failed fully initialized, use the usual release path */
373 blkg_put(blkg);
374 return ERR_PTR(ret);
375
376err_put_css:
377 css_put(&blkcg->css);
378err_free_blkg:
379 blkg_free(new_blkg);
380 return ERR_PTR(ret);
381}
382
383/**
384 * blkg_lookup_create - lookup blkg, try to create one if not there
385 * @blkcg: blkcg of interest
386 * @disk: gendisk of interest
387 *
388 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
389 * create one. blkg creation is performed recursively from blkcg_root such
390 * that all non-root blkg's have access to the parent blkg. This function
391 * should be called under RCU read lock and takes @disk->queue->queue_lock.
392 *
393 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
394 * down from root.
395 */
396static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
397 struct gendisk *disk)
398{
399 struct request_queue *q = disk->queue;
400 struct blkcg_gq *blkg;
401 unsigned long flags;
402
403 WARN_ON_ONCE(!rcu_read_lock_held());
404
405 blkg = blkg_lookup(blkcg, q);
406 if (blkg)
407 return blkg;
408
409 spin_lock_irqsave(&q->queue_lock, flags);
410 blkg = blkg_lookup(blkcg, q);
411 if (blkg) {
412 if (blkcg != &blkcg_root &&
413 blkg != rcu_dereference(blkcg->blkg_hint))
414 rcu_assign_pointer(blkcg->blkg_hint, blkg);
415 goto found;
416 }
417
418 /*
419 * Create blkgs walking down from blkcg_root to @blkcg, so that all
420 * non-root blkgs have access to their parents. Returns the closest
421 * blkg to the intended blkg should blkg_create() fail.
422 */
423 while (true) {
424 struct blkcg *pos = blkcg;
425 struct blkcg *parent = blkcg_parent(blkcg);
426 struct blkcg_gq *ret_blkg = q->root_blkg;
427
428 while (parent) {
429 blkg = blkg_lookup(parent, q);
430 if (blkg) {
431 /* remember closest blkg */
432 ret_blkg = blkg;
433 break;
434 }
435 pos = parent;
436 parent = blkcg_parent(parent);
437 }
438
439 blkg = blkg_create(pos, disk, NULL);
440 if (IS_ERR(blkg)) {
441 blkg = ret_blkg;
442 break;
443 }
444 if (pos == blkcg)
445 break;
446 }
447
448found:
449 spin_unlock_irqrestore(&q->queue_lock, flags);
450 return blkg;
451}
452
453static void blkg_destroy(struct blkcg_gq *blkg)
454{
455 struct blkcg *blkcg = blkg->blkcg;
456 int i;
457
458 lockdep_assert_held(&blkg->q->queue_lock);
459 lockdep_assert_held(&blkcg->lock);
460
461 /* Something wrong if we are trying to remove same group twice */
462 WARN_ON_ONCE(list_empty(&blkg->q_node));
463 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
464
465 for (i = 0; i < BLKCG_MAX_POLS; i++) {
466 struct blkcg_policy *pol = blkcg_policy[i];
467
468 if (blkg->pd[i] && pol->pd_offline_fn)
469 pol->pd_offline_fn(blkg->pd[i]);
470 }
471
472 blkg->online = false;
473
474 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
475 list_del_init(&blkg->q_node);
476 hlist_del_init_rcu(&blkg->blkcg_node);
477
478 /*
479 * Both setting lookup hint to and clearing it from @blkg are done
480 * under queue_lock. If it's not pointing to @blkg now, it never
481 * will. Hint assignment itself can race safely.
482 */
483 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
484 rcu_assign_pointer(blkcg->blkg_hint, NULL);
485
486 /*
487 * Put the reference taken at the time of creation so that when all
488 * queues are gone, group can be destroyed.
489 */
490 percpu_ref_kill(&blkg->refcnt);
491}
492
493static void blkg_destroy_all(struct gendisk *disk)
494{
495 struct request_queue *q = disk->queue;
496 struct blkcg_gq *blkg, *n;
497 int count = BLKG_DESTROY_BATCH_SIZE;
498
499restart:
500 spin_lock_irq(&q->queue_lock);
501 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
502 struct blkcg *blkcg = blkg->blkcg;
503
504 spin_lock(&blkcg->lock);
505 blkg_destroy(blkg);
506 spin_unlock(&blkcg->lock);
507
508 /*
509 * in order to avoid holding the spin lock for too long, release
510 * it when a batch of blkgs are destroyed.
511 */
512 if (!(--count)) {
513 count = BLKG_DESTROY_BATCH_SIZE;
514 spin_unlock_irq(&q->queue_lock);
515 cond_resched();
516 goto restart;
517 }
518 }
519
520 q->root_blkg = NULL;
521 spin_unlock_irq(&q->queue_lock);
522}
523
524static int blkcg_reset_stats(struct cgroup_subsys_state *css,
525 struct cftype *cftype, u64 val)
526{
527 struct blkcg *blkcg = css_to_blkcg(css);
528 struct blkcg_gq *blkg;
529 int i, cpu;
530
531 mutex_lock(&blkcg_pol_mutex);
532 spin_lock_irq(&blkcg->lock);
533
534 /*
535 * Note that stat reset is racy - it doesn't synchronize against
536 * stat updates. This is a debug feature which shouldn't exist
537 * anyway. If you get hit by a race, retry.
538 */
539 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
540 for_each_possible_cpu(cpu) {
541 struct blkg_iostat_set *bis =
542 per_cpu_ptr(blkg->iostat_cpu, cpu);
543 memset(bis, 0, sizeof(*bis));
544 }
545 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
546
547 for (i = 0; i < BLKCG_MAX_POLS; i++) {
548 struct blkcg_policy *pol = blkcg_policy[i];
549
550 if (blkg->pd[i] && pol->pd_reset_stats_fn)
551 pol->pd_reset_stats_fn(blkg->pd[i]);
552 }
553 }
554
555 spin_unlock_irq(&blkcg->lock);
556 mutex_unlock(&blkcg_pol_mutex);
557 return 0;
558}
559
560const char *blkg_dev_name(struct blkcg_gq *blkg)
561{
562 if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
563 return NULL;
564 return bdi_dev_name(blkg->q->disk->bdi);
565}
566
567/**
568 * blkcg_print_blkgs - helper for printing per-blkg data
569 * @sf: seq_file to print to
570 * @blkcg: blkcg of interest
571 * @prfill: fill function to print out a blkg
572 * @pol: policy in question
573 * @data: data to be passed to @prfill
574 * @show_total: to print out sum of prfill return values or not
575 *
576 * This function invokes @prfill on each blkg of @blkcg if pd for the
577 * policy specified by @pol exists. @prfill is invoked with @sf, the
578 * policy data and @data and the matching queue lock held. If @show_total
579 * is %true, the sum of the return values from @prfill is printed with
580 * "Total" label at the end.
581 *
582 * This is to be used to construct print functions for
583 * cftype->read_seq_string method.
584 */
585void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
586 u64 (*prfill)(struct seq_file *,
587 struct blkg_policy_data *, int),
588 const struct blkcg_policy *pol, int data,
589 bool show_total)
590{
591 struct blkcg_gq *blkg;
592 u64 total = 0;
593
594 rcu_read_lock();
595 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
596 spin_lock_irq(&blkg->q->queue_lock);
597 if (blkcg_policy_enabled(blkg->q, pol))
598 total += prfill(sf, blkg->pd[pol->plid], data);
599 spin_unlock_irq(&blkg->q->queue_lock);
600 }
601 rcu_read_unlock();
602
603 if (show_total)
604 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
605}
606EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
607
608/**
609 * __blkg_prfill_u64 - prfill helper for a single u64 value
610 * @sf: seq_file to print to
611 * @pd: policy private data of interest
612 * @v: value to print
613 *
614 * Print @v to @sf for the device associated with @pd.
615 */
616u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
617{
618 const char *dname = blkg_dev_name(pd->blkg);
619
620 if (!dname)
621 return 0;
622
623 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
624 return v;
625}
626EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
627
628/**
629 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
630 * @inputp: input string pointer
631 *
632 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
633 * from @input and get and return the matching bdev. *@inputp is
634 * updated to point past the device node prefix. Returns an ERR_PTR()
635 * value on error.
636 *
637 * Use this function iff blkg_conf_prep() can't be used for some reason.
638 */
639struct block_device *blkcg_conf_open_bdev(char **inputp)
640{
641 char *input = *inputp;
642 unsigned int major, minor;
643 struct block_device *bdev;
644 int key_len;
645
646 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
647 return ERR_PTR(-EINVAL);
648
649 input += key_len;
650 if (!isspace(*input))
651 return ERR_PTR(-EINVAL);
652 input = skip_spaces(input);
653
654 bdev = blkdev_get_no_open(MKDEV(major, minor));
655 if (!bdev)
656 return ERR_PTR(-ENODEV);
657 if (bdev_is_partition(bdev)) {
658 blkdev_put_no_open(bdev);
659 return ERR_PTR(-ENODEV);
660 }
661
662 *inputp = input;
663 return bdev;
664}
665
666/**
667 * blkg_conf_prep - parse and prepare for per-blkg config update
668 * @blkcg: target block cgroup
669 * @pol: target policy
670 * @input: input string
671 * @ctx: blkg_conf_ctx to be filled
672 *
673 * Parse per-blkg config update from @input and initialize @ctx with the
674 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
675 * part of @input following MAJ:MIN. This function returns with RCU read
676 * lock and queue lock held and must be paired with blkg_conf_finish().
677 */
678int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
679 char *input, struct blkg_conf_ctx *ctx)
680 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
681{
682 struct block_device *bdev;
683 struct gendisk *disk;
684 struct request_queue *q;
685 struct blkcg_gq *blkg;
686 int ret;
687
688 bdev = blkcg_conf_open_bdev(&input);
689 if (IS_ERR(bdev))
690 return PTR_ERR(bdev);
691 disk = bdev->bd_disk;
692 q = disk->queue;
693
694 /*
695 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
696 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
697 */
698 ret = blk_queue_enter(q, 0);
699 if (ret)
700 goto fail;
701
702 rcu_read_lock();
703 spin_lock_irq(&q->queue_lock);
704
705 if (!blkcg_policy_enabled(q, pol)) {
706 ret = -EOPNOTSUPP;
707 goto fail_unlock;
708 }
709
710 blkg = blkg_lookup(blkcg, q);
711 if (blkg)
712 goto success;
713
714 /*
715 * Create blkgs walking down from blkcg_root to @blkcg, so that all
716 * non-root blkgs have access to their parents.
717 */
718 while (true) {
719 struct blkcg *pos = blkcg;
720 struct blkcg *parent;
721 struct blkcg_gq *new_blkg;
722
723 parent = blkcg_parent(blkcg);
724 while (parent && !blkg_lookup(parent, q)) {
725 pos = parent;
726 parent = blkcg_parent(parent);
727 }
728
729 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
730 spin_unlock_irq(&q->queue_lock);
731 rcu_read_unlock();
732
733 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
734 if (unlikely(!new_blkg)) {
735 ret = -ENOMEM;
736 goto fail_exit_queue;
737 }
738
739 if (radix_tree_preload(GFP_KERNEL)) {
740 blkg_free(new_blkg);
741 ret = -ENOMEM;
742 goto fail_exit_queue;
743 }
744
745 rcu_read_lock();
746 spin_lock_irq(&q->queue_lock);
747
748 if (!blkcg_policy_enabled(q, pol)) {
749 blkg_free(new_blkg);
750 ret = -EOPNOTSUPP;
751 goto fail_preloaded;
752 }
753
754 blkg = blkg_lookup(pos, q);
755 if (blkg) {
756 blkg_free(new_blkg);
757 } else {
758 blkg = blkg_create(pos, disk, new_blkg);
759 if (IS_ERR(blkg)) {
760 ret = PTR_ERR(blkg);
761 goto fail_preloaded;
762 }
763 }
764
765 radix_tree_preload_end();
766
767 if (pos == blkcg)
768 goto success;
769 }
770success:
771 blk_queue_exit(q);
772 ctx->bdev = bdev;
773 ctx->blkg = blkg;
774 ctx->body = input;
775 return 0;
776
777fail_preloaded:
778 radix_tree_preload_end();
779fail_unlock:
780 spin_unlock_irq(&q->queue_lock);
781 rcu_read_unlock();
782fail_exit_queue:
783 blk_queue_exit(q);
784fail:
785 blkdev_put_no_open(bdev);
786 /*
787 * If queue was bypassing, we should retry. Do so after a
788 * short msleep(). It isn't strictly necessary but queue
789 * can be bypassing for some time and it's always nice to
790 * avoid busy looping.
791 */
792 if (ret == -EBUSY) {
793 msleep(10);
794 ret = restart_syscall();
795 }
796 return ret;
797}
798EXPORT_SYMBOL_GPL(blkg_conf_prep);
799
800/**
801 * blkg_conf_finish - finish up per-blkg config update
802 * @ctx: blkg_conf_ctx initialized by blkg_conf_prep()
803 *
804 * Finish up after per-blkg config update. This function must be paired
805 * with blkg_conf_prep().
806 */
807void blkg_conf_finish(struct blkg_conf_ctx *ctx)
808 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
809{
810 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
811 rcu_read_unlock();
812 blkdev_put_no_open(ctx->bdev);
813}
814EXPORT_SYMBOL_GPL(blkg_conf_finish);
815
816static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
817{
818 int i;
819
820 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
821 dst->bytes[i] = src->bytes[i];
822 dst->ios[i] = src->ios[i];
823 }
824}
825
826static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
827{
828 int i;
829
830 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
831 dst->bytes[i] += src->bytes[i];
832 dst->ios[i] += src->ios[i];
833 }
834}
835
836static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
837{
838 int i;
839
840 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
841 dst->bytes[i] -= src->bytes[i];
842 dst->ios[i] -= src->ios[i];
843 }
844}
845
846static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
847 struct blkg_iostat *last)
848{
849 struct blkg_iostat delta;
850 unsigned long flags;
851
852 /* propagate percpu delta to global */
853 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
854 blkg_iostat_set(&delta, cur);
855 blkg_iostat_sub(&delta, last);
856 blkg_iostat_add(&blkg->iostat.cur, &delta);
857 blkg_iostat_add(last, &delta);
858 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
859}
860
861static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
862{
863 struct blkcg *blkcg = css_to_blkcg(css);
864 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
865 struct llist_node *lnode;
866 struct blkg_iostat_set *bisc, *next_bisc;
867
868 /* Root-level stats are sourced from system-wide IO stats */
869 if (!cgroup_parent(css->cgroup))
870 return;
871
872 rcu_read_lock();
873
874 lnode = llist_del_all(lhead);
875 if (!lnode)
876 goto out;
877
878 /*
879 * Iterate only the iostat_cpu's queued in the lockless list.
880 */
881 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
882 struct blkcg_gq *blkg = bisc->blkg;
883 struct blkcg_gq *parent = blkg->parent;
884 struct blkg_iostat cur;
885 unsigned int seq;
886
887 WRITE_ONCE(bisc->lqueued, false);
888
889 /* fetch the current per-cpu values */
890 do {
891 seq = u64_stats_fetch_begin(&bisc->sync);
892 blkg_iostat_set(&cur, &bisc->cur);
893 } while (u64_stats_fetch_retry(&bisc->sync, seq));
894
895 blkcg_iostat_update(blkg, &cur, &bisc->last);
896
897 /* propagate global delta to parent (unless that's root) */
898 if (parent && parent->parent)
899 blkcg_iostat_update(parent, &blkg->iostat.cur,
900 &blkg->iostat.last);
901 percpu_ref_put(&blkg->refcnt);
902 }
903
904out:
905 rcu_read_unlock();
906}
907
908/*
909 * We source root cgroup stats from the system-wide stats to avoid
910 * tracking the same information twice and incurring overhead when no
911 * cgroups are defined. For that reason, cgroup_rstat_flush in
912 * blkcg_print_stat does not actually fill out the iostat in the root
913 * cgroup's blkcg_gq.
914 *
915 * However, we would like to re-use the printing code between the root and
916 * non-root cgroups to the extent possible. For that reason, we simulate
917 * flushing the root cgroup's stats by explicitly filling in the iostat
918 * with disk level statistics.
919 */
920static void blkcg_fill_root_iostats(void)
921{
922 struct class_dev_iter iter;
923 struct device *dev;
924
925 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
926 while ((dev = class_dev_iter_next(&iter))) {
927 struct block_device *bdev = dev_to_bdev(dev);
928 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
929 struct blkg_iostat tmp;
930 int cpu;
931 unsigned long flags;
932
933 memset(&tmp, 0, sizeof(tmp));
934 for_each_possible_cpu(cpu) {
935 struct disk_stats *cpu_dkstats;
936
937 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
938 tmp.ios[BLKG_IOSTAT_READ] +=
939 cpu_dkstats->ios[STAT_READ];
940 tmp.ios[BLKG_IOSTAT_WRITE] +=
941 cpu_dkstats->ios[STAT_WRITE];
942 tmp.ios[BLKG_IOSTAT_DISCARD] +=
943 cpu_dkstats->ios[STAT_DISCARD];
944 // convert sectors to bytes
945 tmp.bytes[BLKG_IOSTAT_READ] +=
946 cpu_dkstats->sectors[STAT_READ] << 9;
947 tmp.bytes[BLKG_IOSTAT_WRITE] +=
948 cpu_dkstats->sectors[STAT_WRITE] << 9;
949 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
950 cpu_dkstats->sectors[STAT_DISCARD] << 9;
951 }
952
953 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
954 blkg_iostat_set(&blkg->iostat.cur, &tmp);
955 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
956 }
957}
958
959static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
960{
961 struct blkg_iostat_set *bis = &blkg->iostat;
962 u64 rbytes, wbytes, rios, wios, dbytes, dios;
963 const char *dname;
964 unsigned seq;
965 int i;
966
967 if (!blkg->online)
968 return;
969
970 dname = blkg_dev_name(blkg);
971 if (!dname)
972 return;
973
974 seq_printf(s, "%s ", dname);
975
976 do {
977 seq = u64_stats_fetch_begin(&bis->sync);
978
979 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
980 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
981 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
982 rios = bis->cur.ios[BLKG_IOSTAT_READ];
983 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
984 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
985 } while (u64_stats_fetch_retry(&bis->sync, seq));
986
987 if (rbytes || wbytes || rios || wios) {
988 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
989 rbytes, wbytes, rios, wios,
990 dbytes, dios);
991 }
992
993 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
994 seq_printf(s, " use_delay=%d delay_nsec=%llu",
995 atomic_read(&blkg->use_delay),
996 atomic64_read(&blkg->delay_nsec));
997 }
998
999 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1000 struct blkcg_policy *pol = blkcg_policy[i];
1001
1002 if (!blkg->pd[i] || !pol->pd_stat_fn)
1003 continue;
1004
1005 pol->pd_stat_fn(blkg->pd[i], s);
1006 }
1007
1008 seq_puts(s, "\n");
1009}
1010
1011static int blkcg_print_stat(struct seq_file *sf, void *v)
1012{
1013 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1014 struct blkcg_gq *blkg;
1015
1016 if (!seq_css(sf)->parent)
1017 blkcg_fill_root_iostats();
1018 else
1019 cgroup_rstat_flush(blkcg->css.cgroup);
1020
1021 rcu_read_lock();
1022 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1023 spin_lock_irq(&blkg->q->queue_lock);
1024 blkcg_print_one_stat(blkg, sf);
1025 spin_unlock_irq(&blkg->q->queue_lock);
1026 }
1027 rcu_read_unlock();
1028 return 0;
1029}
1030
1031static struct cftype blkcg_files[] = {
1032 {
1033 .name = "stat",
1034 .seq_show = blkcg_print_stat,
1035 },
1036 { } /* terminate */
1037};
1038
1039static struct cftype blkcg_legacy_files[] = {
1040 {
1041 .name = "reset_stats",
1042 .write_u64 = blkcg_reset_stats,
1043 },
1044 { } /* terminate */
1045};
1046
1047#ifdef CONFIG_CGROUP_WRITEBACK
1048struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1049{
1050 return &css_to_blkcg(css)->cgwb_list;
1051}
1052#endif
1053
1054/*
1055 * blkcg destruction is a three-stage process.
1056 *
1057 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1058 * which offlines writeback. Here we tie the next stage of blkg destruction
1059 * to the completion of writeback associated with the blkcg. This lets us
1060 * avoid punting potentially large amounts of outstanding writeback to root
1061 * while maintaining any ongoing policies. The next stage is triggered when
1062 * the nr_cgwbs count goes to zero.
1063 *
1064 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1065 * and handles the destruction of blkgs. Here the css reference held by
1066 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1067 * This work may occur in cgwb_release_workfn() on the cgwb_release
1068 * workqueue. Any submitted ios that fail to get the blkg ref will be
1069 * punted to the root_blkg.
1070 *
1071 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1072 * This finally frees the blkcg.
1073 */
1074
1075/**
1076 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1077 * @blkcg: blkcg of interest
1078 *
1079 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1080 * is nested inside q lock, this function performs reverse double lock dancing.
1081 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1082 * blkcg_css_free to eventually be called.
1083 *
1084 * This is the blkcg counterpart of ioc_release_fn().
1085 */
1086static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1087{
1088 might_sleep();
1089
1090 spin_lock_irq(&blkcg->lock);
1091
1092 while (!hlist_empty(&blkcg->blkg_list)) {
1093 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1094 struct blkcg_gq, blkcg_node);
1095 struct request_queue *q = blkg->q;
1096
1097 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1098 /*
1099 * Given that the system can accumulate a huge number
1100 * of blkgs in pathological cases, check to see if we
1101 * need to rescheduling to avoid softlockup.
1102 */
1103 spin_unlock_irq(&blkcg->lock);
1104 cond_resched();
1105 spin_lock_irq(&blkcg->lock);
1106 continue;
1107 }
1108
1109 blkg_destroy(blkg);
1110 spin_unlock(&q->queue_lock);
1111 }
1112
1113 spin_unlock_irq(&blkcg->lock);
1114}
1115
1116/**
1117 * blkcg_pin_online - pin online state
1118 * @blkcg_css: blkcg of interest
1119 *
1120 * While pinned, a blkcg is kept online. This is primarily used to
1121 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1122 * while an associated cgwb is still active.
1123 */
1124void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1125{
1126 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1127}
1128
1129/**
1130 * blkcg_unpin_online - unpin online state
1131 * @blkcg_css: blkcg of interest
1132 *
1133 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1134 * that blkg doesn't go offline while an associated cgwb is still active.
1135 * When this count goes to zero, all active cgwbs have finished so the
1136 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1137 */
1138void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1139{
1140 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1141
1142 do {
1143 if (!refcount_dec_and_test(&blkcg->online_pin))
1144 break;
1145 blkcg_destroy_blkgs(blkcg);
1146 blkcg = blkcg_parent(blkcg);
1147 } while (blkcg);
1148}
1149
1150/**
1151 * blkcg_css_offline - cgroup css_offline callback
1152 * @css: css of interest
1153 *
1154 * This function is called when @css is about to go away. Here the cgwbs are
1155 * offlined first and only once writeback associated with the blkcg has
1156 * finished do we start step 2 (see above).
1157 */
1158static void blkcg_css_offline(struct cgroup_subsys_state *css)
1159{
1160 /* this prevents anyone from attaching or migrating to this blkcg */
1161 wb_blkcg_offline(css);
1162
1163 /* put the base online pin allowing step 2 to be triggered */
1164 blkcg_unpin_online(css);
1165}
1166
1167static void blkcg_css_free(struct cgroup_subsys_state *css)
1168{
1169 struct blkcg *blkcg = css_to_blkcg(css);
1170 int i;
1171
1172 mutex_lock(&blkcg_pol_mutex);
1173
1174 list_del(&blkcg->all_blkcgs_node);
1175
1176 for (i = 0; i < BLKCG_MAX_POLS; i++)
1177 if (blkcg->cpd[i])
1178 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1179
1180 mutex_unlock(&blkcg_pol_mutex);
1181
1182 free_percpu(blkcg->lhead);
1183 kfree(blkcg);
1184}
1185
1186static struct cgroup_subsys_state *
1187blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1188{
1189 struct blkcg *blkcg;
1190 int i;
1191
1192 mutex_lock(&blkcg_pol_mutex);
1193
1194 if (!parent_css) {
1195 blkcg = &blkcg_root;
1196 } else {
1197 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1198 if (!blkcg)
1199 goto unlock;
1200 }
1201
1202 if (init_blkcg_llists(blkcg))
1203 goto free_blkcg;
1204
1205 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1206 struct blkcg_policy *pol = blkcg_policy[i];
1207 struct blkcg_policy_data *cpd;
1208
1209 /*
1210 * If the policy hasn't been attached yet, wait for it
1211 * to be attached before doing anything else. Otherwise,
1212 * check if the policy requires any specific per-cgroup
1213 * data: if it does, allocate and initialize it.
1214 */
1215 if (!pol || !pol->cpd_alloc_fn)
1216 continue;
1217
1218 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1219 if (!cpd)
1220 goto free_pd_blkcg;
1221
1222 blkcg->cpd[i] = cpd;
1223 cpd->blkcg = blkcg;
1224 cpd->plid = i;
1225 if (pol->cpd_init_fn)
1226 pol->cpd_init_fn(cpd);
1227 }
1228
1229 spin_lock_init(&blkcg->lock);
1230 refcount_set(&blkcg->online_pin, 1);
1231 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1232 INIT_HLIST_HEAD(&blkcg->blkg_list);
1233#ifdef CONFIG_CGROUP_WRITEBACK
1234 INIT_LIST_HEAD(&blkcg->cgwb_list);
1235#endif
1236 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1237
1238 mutex_unlock(&blkcg_pol_mutex);
1239 return &blkcg->css;
1240
1241free_pd_blkcg:
1242 for (i--; i >= 0; i--)
1243 if (blkcg->cpd[i])
1244 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1245 free_percpu(blkcg->lhead);
1246free_blkcg:
1247 if (blkcg != &blkcg_root)
1248 kfree(blkcg);
1249unlock:
1250 mutex_unlock(&blkcg_pol_mutex);
1251 return ERR_PTR(-ENOMEM);
1252}
1253
1254static int blkcg_css_online(struct cgroup_subsys_state *css)
1255{
1256 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1257
1258 /*
1259 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1260 * don't go offline while cgwbs are still active on them. Pin the
1261 * parent so that offline always happens towards the root.
1262 */
1263 if (parent)
1264 blkcg_pin_online(&parent->css);
1265 return 0;
1266}
1267
1268int blkcg_init_disk(struct gendisk *disk)
1269{
1270 struct request_queue *q = disk->queue;
1271 struct blkcg_gq *new_blkg, *blkg;
1272 bool preloaded;
1273 int ret;
1274
1275 INIT_LIST_HEAD(&q->blkg_list);
1276
1277 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1278 if (!new_blkg)
1279 return -ENOMEM;
1280
1281 preloaded = !radix_tree_preload(GFP_KERNEL);
1282
1283 /* Make sure the root blkg exists. */
1284 /* spin_lock_irq can serve as RCU read-side critical section. */
1285 spin_lock_irq(&q->queue_lock);
1286 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1287 if (IS_ERR(blkg))
1288 goto err_unlock;
1289 q->root_blkg = blkg;
1290 spin_unlock_irq(&q->queue_lock);
1291
1292 if (preloaded)
1293 radix_tree_preload_end();
1294
1295 ret = blk_ioprio_init(disk);
1296 if (ret)
1297 goto err_destroy_all;
1298
1299 ret = blk_throtl_init(disk);
1300 if (ret)
1301 goto err_ioprio_exit;
1302
1303 ret = blk_iolatency_init(disk);
1304 if (ret)
1305 goto err_throtl_exit;
1306
1307 return 0;
1308
1309err_throtl_exit:
1310 blk_throtl_exit(disk);
1311err_ioprio_exit:
1312 blk_ioprio_exit(disk);
1313err_destroy_all:
1314 blkg_destroy_all(disk);
1315 return ret;
1316err_unlock:
1317 spin_unlock_irq(&q->queue_lock);
1318 if (preloaded)
1319 radix_tree_preload_end();
1320 return PTR_ERR(blkg);
1321}
1322
1323void blkcg_exit_disk(struct gendisk *disk)
1324{
1325 blkg_destroy_all(disk);
1326 rq_qos_exit(disk->queue);
1327 blk_throtl_exit(disk);
1328}
1329
1330static void blkcg_bind(struct cgroup_subsys_state *root_css)
1331{
1332 int i;
1333
1334 mutex_lock(&blkcg_pol_mutex);
1335
1336 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1337 struct blkcg_policy *pol = blkcg_policy[i];
1338 struct blkcg *blkcg;
1339
1340 if (!pol || !pol->cpd_bind_fn)
1341 continue;
1342
1343 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1344 if (blkcg->cpd[pol->plid])
1345 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1346 }
1347 mutex_unlock(&blkcg_pol_mutex);
1348}
1349
1350static void blkcg_exit(struct task_struct *tsk)
1351{
1352 if (tsk->throttle_queue)
1353 blk_put_queue(tsk->throttle_queue);
1354 tsk->throttle_queue = NULL;
1355}
1356
1357struct cgroup_subsys io_cgrp_subsys = {
1358 .css_alloc = blkcg_css_alloc,
1359 .css_online = blkcg_css_online,
1360 .css_offline = blkcg_css_offline,
1361 .css_free = blkcg_css_free,
1362 .css_rstat_flush = blkcg_rstat_flush,
1363 .bind = blkcg_bind,
1364 .dfl_cftypes = blkcg_files,
1365 .legacy_cftypes = blkcg_legacy_files,
1366 .legacy_name = "blkio",
1367 .exit = blkcg_exit,
1368#ifdef CONFIG_MEMCG
1369 /*
1370 * This ensures that, if available, memcg is automatically enabled
1371 * together on the default hierarchy so that the owner cgroup can
1372 * be retrieved from writeback pages.
1373 */
1374 .depends_on = 1 << memory_cgrp_id,
1375#endif
1376};
1377EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1378
1379/**
1380 * blkcg_activate_policy - activate a blkcg policy on a request_queue
1381 * @q: request_queue of interest
1382 * @pol: blkcg policy to activate
1383 *
1384 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through
1385 * bypass mode to populate its blkgs with policy_data for @pol.
1386 *
1387 * Activation happens with @q bypassed, so nobody would be accessing blkgs
1388 * from IO path. Update of each blkg is protected by both queue and blkcg
1389 * locks so that holding either lock and testing blkcg_policy_enabled() is
1390 * always enough for dereferencing policy data.
1391 *
1392 * The caller is responsible for synchronizing [de]activations and policy
1393 * [un]registerations. Returns 0 on success, -errno on failure.
1394 */
1395int blkcg_activate_policy(struct request_queue *q,
1396 const struct blkcg_policy *pol)
1397{
1398 struct blkg_policy_data *pd_prealloc = NULL;
1399 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1400 int ret;
1401
1402 if (blkcg_policy_enabled(q, pol))
1403 return 0;
1404
1405 if (queue_is_mq(q))
1406 blk_mq_freeze_queue(q);
1407retry:
1408 spin_lock_irq(&q->queue_lock);
1409
1410 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1411 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1412 struct blkg_policy_data *pd;
1413
1414 if (blkg->pd[pol->plid])
1415 continue;
1416
1417 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1418 if (blkg == pinned_blkg) {
1419 pd = pd_prealloc;
1420 pd_prealloc = NULL;
1421 } else {
1422 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1423 blkg->blkcg);
1424 }
1425
1426 if (!pd) {
1427 /*
1428 * GFP_NOWAIT failed. Free the existing one and
1429 * prealloc for @blkg w/ GFP_KERNEL.
1430 */
1431 if (pinned_blkg)
1432 blkg_put(pinned_blkg);
1433 blkg_get(blkg);
1434 pinned_blkg = blkg;
1435
1436 spin_unlock_irq(&q->queue_lock);
1437
1438 if (pd_prealloc)
1439 pol->pd_free_fn(pd_prealloc);
1440 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1441 blkg->blkcg);
1442 if (pd_prealloc)
1443 goto retry;
1444 else
1445 goto enomem;
1446 }
1447
1448 blkg->pd[pol->plid] = pd;
1449 pd->blkg = blkg;
1450 pd->plid = pol->plid;
1451 }
1452
1453 /* all allocated, init in the same order */
1454 if (pol->pd_init_fn)
1455 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1456 pol->pd_init_fn(blkg->pd[pol->plid]);
1457
1458 if (pol->pd_online_fn)
1459 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1460 pol->pd_online_fn(blkg->pd[pol->plid]);
1461
1462 __set_bit(pol->plid, q->blkcg_pols);
1463 ret = 0;
1464
1465 spin_unlock_irq(&q->queue_lock);
1466out:
1467 if (queue_is_mq(q))
1468 blk_mq_unfreeze_queue(q);
1469 if (pinned_blkg)
1470 blkg_put(pinned_blkg);
1471 if (pd_prealloc)
1472 pol->pd_free_fn(pd_prealloc);
1473 return ret;
1474
1475enomem:
1476 /* alloc failed, nothing's initialized yet, free everything */
1477 spin_lock_irq(&q->queue_lock);
1478 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1479 struct blkcg *blkcg = blkg->blkcg;
1480
1481 spin_lock(&blkcg->lock);
1482 if (blkg->pd[pol->plid]) {
1483 pol->pd_free_fn(blkg->pd[pol->plid]);
1484 blkg->pd[pol->plid] = NULL;
1485 }
1486 spin_unlock(&blkcg->lock);
1487 }
1488 spin_unlock_irq(&q->queue_lock);
1489 ret = -ENOMEM;
1490 goto out;
1491}
1492EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1493
1494/**
1495 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1496 * @q: request_queue of interest
1497 * @pol: blkcg policy to deactivate
1498 *
1499 * Deactivate @pol on @q. Follows the same synchronization rules as
1500 * blkcg_activate_policy().
1501 */
1502void blkcg_deactivate_policy(struct request_queue *q,
1503 const struct blkcg_policy *pol)
1504{
1505 struct blkcg_gq *blkg;
1506
1507 if (!blkcg_policy_enabled(q, pol))
1508 return;
1509
1510 if (queue_is_mq(q))
1511 blk_mq_freeze_queue(q);
1512
1513 spin_lock_irq(&q->queue_lock);
1514
1515 __clear_bit(pol->plid, q->blkcg_pols);
1516
1517 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1518 struct blkcg *blkcg = blkg->blkcg;
1519
1520 spin_lock(&blkcg->lock);
1521 if (blkg->pd[pol->plid]) {
1522 if (pol->pd_offline_fn)
1523 pol->pd_offline_fn(blkg->pd[pol->plid]);
1524 pol->pd_free_fn(blkg->pd[pol->plid]);
1525 blkg->pd[pol->plid] = NULL;
1526 }
1527 spin_unlock(&blkcg->lock);
1528 }
1529
1530 spin_unlock_irq(&q->queue_lock);
1531
1532 if (queue_is_mq(q))
1533 blk_mq_unfreeze_queue(q);
1534}
1535EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1536
1537static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1538{
1539 struct blkcg *blkcg;
1540
1541 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1542 if (blkcg->cpd[pol->plid]) {
1543 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1544 blkcg->cpd[pol->plid] = NULL;
1545 }
1546 }
1547}
1548
1549/**
1550 * blkcg_policy_register - register a blkcg policy
1551 * @pol: blkcg policy to register
1552 *
1553 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1554 * successful registration. Returns 0 on success and -errno on failure.
1555 */
1556int blkcg_policy_register(struct blkcg_policy *pol)
1557{
1558 struct blkcg *blkcg;
1559 int i, ret;
1560
1561 mutex_lock(&blkcg_pol_register_mutex);
1562 mutex_lock(&blkcg_pol_mutex);
1563
1564 /* find an empty slot */
1565 ret = -ENOSPC;
1566 for (i = 0; i < BLKCG_MAX_POLS; i++)
1567 if (!blkcg_policy[i])
1568 break;
1569 if (i >= BLKCG_MAX_POLS) {
1570 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1571 goto err_unlock;
1572 }
1573
1574 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1575 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1576 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1577 goto err_unlock;
1578
1579 /* register @pol */
1580 pol->plid = i;
1581 blkcg_policy[pol->plid] = pol;
1582
1583 /* allocate and install cpd's */
1584 if (pol->cpd_alloc_fn) {
1585 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1586 struct blkcg_policy_data *cpd;
1587
1588 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1589 if (!cpd)
1590 goto err_free_cpds;
1591
1592 blkcg->cpd[pol->plid] = cpd;
1593 cpd->blkcg = blkcg;
1594 cpd->plid = pol->plid;
1595 if (pol->cpd_init_fn)
1596 pol->cpd_init_fn(cpd);
1597 }
1598 }
1599
1600 mutex_unlock(&blkcg_pol_mutex);
1601
1602 /* everything is in place, add intf files for the new policy */
1603 if (pol->dfl_cftypes)
1604 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1605 pol->dfl_cftypes));
1606 if (pol->legacy_cftypes)
1607 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1608 pol->legacy_cftypes));
1609 mutex_unlock(&blkcg_pol_register_mutex);
1610 return 0;
1611
1612err_free_cpds:
1613 if (pol->cpd_free_fn)
1614 blkcg_free_all_cpd(pol);
1615
1616 blkcg_policy[pol->plid] = NULL;
1617err_unlock:
1618 mutex_unlock(&blkcg_pol_mutex);
1619 mutex_unlock(&blkcg_pol_register_mutex);
1620 return ret;
1621}
1622EXPORT_SYMBOL_GPL(blkcg_policy_register);
1623
1624/**
1625 * blkcg_policy_unregister - unregister a blkcg policy
1626 * @pol: blkcg policy to unregister
1627 *
1628 * Undo blkcg_policy_register(@pol). Might sleep.
1629 */
1630void blkcg_policy_unregister(struct blkcg_policy *pol)
1631{
1632 mutex_lock(&blkcg_pol_register_mutex);
1633
1634 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1635 goto out_unlock;
1636
1637 /* kill the intf files first */
1638 if (pol->dfl_cftypes)
1639 cgroup_rm_cftypes(pol->dfl_cftypes);
1640 if (pol->legacy_cftypes)
1641 cgroup_rm_cftypes(pol->legacy_cftypes);
1642
1643 /* remove cpds and unregister */
1644 mutex_lock(&blkcg_pol_mutex);
1645
1646 if (pol->cpd_free_fn)
1647 blkcg_free_all_cpd(pol);
1648
1649 blkcg_policy[pol->plid] = NULL;
1650
1651 mutex_unlock(&blkcg_pol_mutex);
1652out_unlock:
1653 mutex_unlock(&blkcg_pol_register_mutex);
1654}
1655EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1656
1657bool __blkcg_punt_bio_submit(struct bio *bio)
1658{
1659 struct blkcg_gq *blkg = bio->bi_blkg;
1660
1661 /* consume the flag first */
1662 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1663
1664 /* never bounce for the root cgroup */
1665 if (!blkg->parent)
1666 return false;
1667
1668 spin_lock_bh(&blkg->async_bio_lock);
1669 bio_list_add(&blkg->async_bios, bio);
1670 spin_unlock_bh(&blkg->async_bio_lock);
1671
1672 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1673 return true;
1674}
1675
1676/*
1677 * Scale the accumulated delay based on how long it has been since we updated
1678 * the delay. We only call this when we are adding delay, in case it's been a
1679 * while since we added delay, and when we are checking to see if we need to
1680 * delay a task, to account for any delays that may have occurred.
1681 */
1682static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1683{
1684 u64 old = atomic64_read(&blkg->delay_start);
1685
1686 /* negative use_delay means no scaling, see blkcg_set_delay() */
1687 if (atomic_read(&blkg->use_delay) < 0)
1688 return;
1689
1690 /*
1691 * We only want to scale down every second. The idea here is that we
1692 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1693 * time window. We only want to throttle tasks for recent delay that
1694 * has occurred, in 1 second time windows since that's the maximum
1695 * things can be throttled. We save the current delay window in
1696 * blkg->last_delay so we know what amount is still left to be charged
1697 * to the blkg from this point onward. blkg->last_use keeps track of
1698 * the use_delay counter. The idea is if we're unthrottling the blkg we
1699 * are ok with whatever is happening now, and we can take away more of
1700 * the accumulated delay as we've already throttled enough that
1701 * everybody is happy with their IO latencies.
1702 */
1703 if (time_before64(old + NSEC_PER_SEC, now) &&
1704 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1705 u64 cur = atomic64_read(&blkg->delay_nsec);
1706 u64 sub = min_t(u64, blkg->last_delay, now - old);
1707 int cur_use = atomic_read(&blkg->use_delay);
1708
1709 /*
1710 * We've been unthrottled, subtract a larger chunk of our
1711 * accumulated delay.
1712 */
1713 if (cur_use < blkg->last_use)
1714 sub = max_t(u64, sub, blkg->last_delay >> 1);
1715
1716 /*
1717 * This shouldn't happen, but handle it anyway. Our delay_nsec
1718 * should only ever be growing except here where we subtract out
1719 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1720 * rather not end up with negative numbers.
1721 */
1722 if (unlikely(cur < sub)) {
1723 atomic64_set(&blkg->delay_nsec, 0);
1724 blkg->last_delay = 0;
1725 } else {
1726 atomic64_sub(sub, &blkg->delay_nsec);
1727 blkg->last_delay = cur - sub;
1728 }
1729 blkg->last_use = cur_use;
1730 }
1731}
1732
1733/*
1734 * This is called when we want to actually walk up the hierarchy and check to
1735 * see if we need to throttle, and then actually throttle if there is some
1736 * accumulated delay. This should only be called upon return to user space so
1737 * we're not holding some lock that would induce a priority inversion.
1738 */
1739static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1740{
1741 unsigned long pflags;
1742 bool clamp;
1743 u64 now = ktime_to_ns(ktime_get());
1744 u64 exp;
1745 u64 delay_nsec = 0;
1746 int tok;
1747
1748 while (blkg->parent) {
1749 int use_delay = atomic_read(&blkg->use_delay);
1750
1751 if (use_delay) {
1752 u64 this_delay;
1753
1754 blkcg_scale_delay(blkg, now);
1755 this_delay = atomic64_read(&blkg->delay_nsec);
1756 if (this_delay > delay_nsec) {
1757 delay_nsec = this_delay;
1758 clamp = use_delay > 0;
1759 }
1760 }
1761 blkg = blkg->parent;
1762 }
1763
1764 if (!delay_nsec)
1765 return;
1766
1767 /*
1768 * Let's not sleep for all eternity if we've amassed a huge delay.
1769 * Swapping or metadata IO can accumulate 10's of seconds worth of
1770 * delay, and we want userspace to be able to do _something_ so cap the
1771 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1772 * tasks will be delayed for 0.25 second for every syscall. If
1773 * blkcg_set_delay() was used as indicated by negative use_delay, the
1774 * caller is responsible for regulating the range.
1775 */
1776 if (clamp)
1777 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1778
1779 if (use_memdelay)
1780 psi_memstall_enter(&pflags);
1781
1782 exp = ktime_add_ns(now, delay_nsec);
1783 tok = io_schedule_prepare();
1784 do {
1785 __set_current_state(TASK_KILLABLE);
1786 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1787 break;
1788 } while (!fatal_signal_pending(current));
1789 io_schedule_finish(tok);
1790
1791 if (use_memdelay)
1792 psi_memstall_leave(&pflags);
1793}
1794
1795/**
1796 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1797 *
1798 * This is only called if we've been marked with set_notify_resume(). Obviously
1799 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1800 * check to see if current->throttle_queue is set and if not this doesn't do
1801 * anything. This should only ever be called by the resume code, it's not meant
1802 * to be called by people willy-nilly as it will actually do the work to
1803 * throttle the task if it is setup for throttling.
1804 */
1805void blkcg_maybe_throttle_current(void)
1806{
1807 struct request_queue *q = current->throttle_queue;
1808 struct blkcg *blkcg;
1809 struct blkcg_gq *blkg;
1810 bool use_memdelay = current->use_memdelay;
1811
1812 if (!q)
1813 return;
1814
1815 current->throttle_queue = NULL;
1816 current->use_memdelay = false;
1817
1818 rcu_read_lock();
1819 blkcg = css_to_blkcg(blkcg_css());
1820 if (!blkcg)
1821 goto out;
1822 blkg = blkg_lookup(blkcg, q);
1823 if (!blkg)
1824 goto out;
1825 if (!blkg_tryget(blkg))
1826 goto out;
1827 rcu_read_unlock();
1828
1829 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1830 blkg_put(blkg);
1831 blk_put_queue(q);
1832 return;
1833out:
1834 rcu_read_unlock();
1835 blk_put_queue(q);
1836}
1837
1838/**
1839 * blkcg_schedule_throttle - this task needs to check for throttling
1840 * @disk: disk to throttle
1841 * @use_memdelay: do we charge this to memory delay for PSI
1842 *
1843 * This is called by the IO controller when we know there's delay accumulated
1844 * for the blkg for this task. We do not pass the blkg because there are places
1845 * we call this that may not have that information, the swapping code for
1846 * instance will only have a block_device at that point. This set's the
1847 * notify_resume for the task to check and see if it requires throttling before
1848 * returning to user space.
1849 *
1850 * We will only schedule once per syscall. You can call this over and over
1851 * again and it will only do the check once upon return to user space, and only
1852 * throttle once. If the task needs to be throttled again it'll need to be
1853 * re-set at the next time we see the task.
1854 */
1855void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1856{
1857 struct request_queue *q = disk->queue;
1858
1859 if (unlikely(current->flags & PF_KTHREAD))
1860 return;
1861
1862 if (current->throttle_queue != q) {
1863 if (!blk_get_queue(q))
1864 return;
1865
1866 if (current->throttle_queue)
1867 blk_put_queue(current->throttle_queue);
1868 current->throttle_queue = q;
1869 }
1870
1871 if (use_memdelay)
1872 current->use_memdelay = use_memdelay;
1873 set_notify_resume(current);
1874}
1875
1876/**
1877 * blkcg_add_delay - add delay to this blkg
1878 * @blkg: blkg of interest
1879 * @now: the current time in nanoseconds
1880 * @delta: how many nanoseconds of delay to add
1881 *
1882 * Charge @delta to the blkg's current delay accumulation. This is used to
1883 * throttle tasks if an IO controller thinks we need more throttling.
1884 */
1885void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1886{
1887 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1888 return;
1889 blkcg_scale_delay(blkg, now);
1890 atomic64_add(delta, &blkg->delay_nsec);
1891}
1892
1893/**
1894 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1895 * @bio: target bio
1896 * @css: target css
1897 *
1898 * As the failure mode here is to walk up the blkg tree, this ensure that the
1899 * blkg->parent pointers are always valid. This returns the blkg that it ended
1900 * up taking a reference on or %NULL if no reference was taken.
1901 */
1902static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1903 struct cgroup_subsys_state *css)
1904{
1905 struct blkcg_gq *blkg, *ret_blkg = NULL;
1906
1907 rcu_read_lock();
1908 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1909 while (blkg) {
1910 if (blkg_tryget(blkg)) {
1911 ret_blkg = blkg;
1912 break;
1913 }
1914 blkg = blkg->parent;
1915 }
1916 rcu_read_unlock();
1917
1918 return ret_blkg;
1919}
1920
1921/**
1922 * bio_associate_blkg_from_css - associate a bio with a specified css
1923 * @bio: target bio
1924 * @css: target css
1925 *
1926 * Associate @bio with the blkg found by combining the css's blkg and the
1927 * request_queue of the @bio. An association failure is handled by walking up
1928 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1929 * and q->root_blkg. This situation only happens when a cgroup is dying and
1930 * then the remaining bios will spill to the closest alive blkg.
1931 *
1932 * A reference will be taken on the blkg and will be released when @bio is
1933 * freed.
1934 */
1935void bio_associate_blkg_from_css(struct bio *bio,
1936 struct cgroup_subsys_state *css)
1937{
1938 if (bio->bi_blkg)
1939 blkg_put(bio->bi_blkg);
1940
1941 if (css && css->parent) {
1942 bio->bi_blkg = blkg_tryget_closest(bio, css);
1943 } else {
1944 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1945 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1946 }
1947}
1948EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1949
1950/**
1951 * bio_associate_blkg - associate a bio with a blkg
1952 * @bio: target bio
1953 *
1954 * Associate @bio with the blkg found from the bio's css and request_queue.
1955 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1956 * already associated, the css is reused and association redone as the
1957 * request_queue may have changed.
1958 */
1959void bio_associate_blkg(struct bio *bio)
1960{
1961 struct cgroup_subsys_state *css;
1962
1963 rcu_read_lock();
1964
1965 if (bio->bi_blkg)
1966 css = bio_blkcg_css(bio);
1967 else
1968 css = blkcg_css();
1969
1970 bio_associate_blkg_from_css(bio, css);
1971
1972 rcu_read_unlock();
1973}
1974EXPORT_SYMBOL_GPL(bio_associate_blkg);
1975
1976/**
1977 * bio_clone_blkg_association - clone blkg association from src to dst bio
1978 * @dst: destination bio
1979 * @src: source bio
1980 */
1981void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1982{
1983 if (src->bi_blkg)
1984 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1985}
1986EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1987
1988static int blk_cgroup_io_type(struct bio *bio)
1989{
1990 if (op_is_discard(bio->bi_opf))
1991 return BLKG_IOSTAT_DISCARD;
1992 if (op_is_write(bio->bi_opf))
1993 return BLKG_IOSTAT_WRITE;
1994 return BLKG_IOSTAT_READ;
1995}
1996
1997void blk_cgroup_bio_start(struct bio *bio)
1998{
1999 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2000 int rwd = blk_cgroup_io_type(bio), cpu;
2001 struct blkg_iostat_set *bis;
2002 unsigned long flags;
2003
2004 /* Root-level stats are sourced from system-wide IO stats */
2005 if (!cgroup_parent(blkcg->css.cgroup))
2006 return;
2007
2008 cpu = get_cpu();
2009 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2010 flags = u64_stats_update_begin_irqsave(&bis->sync);
2011
2012 /*
2013 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2014 * bio and we would have already accounted for the size of the bio.
2015 */
2016 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2017 bio_set_flag(bio, BIO_CGROUP_ACCT);
2018 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2019 }
2020 bis->cur.ios[rwd]++;
2021
2022 /*
2023 * If the iostat_cpu isn't in a lockless list, put it into the
2024 * list to indicate that a stat update is pending.
2025 */
2026 if (!READ_ONCE(bis->lqueued)) {
2027 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2028
2029 llist_add(&bis->lnode, lhead);
2030 WRITE_ONCE(bis->lqueued, true);
2031 percpu_ref_get(&bis->blkg->refcnt);
2032 }
2033
2034 u64_stats_update_end_irqrestore(&bis->sync, flags);
2035 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2036 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2037 put_cpu();
2038}
2039
2040bool blk_cgroup_congested(void)
2041{
2042 struct cgroup_subsys_state *css;
2043 bool ret = false;
2044
2045 rcu_read_lock();
2046 for (css = blkcg_css(); css; css = css->parent) {
2047 if (atomic_read(&css->cgroup->congestion_count)) {
2048 ret = true;
2049 break;
2050 }
2051 }
2052 rcu_read_unlock();
2053 return ret;
2054}
2055
2056static int __init blkcg_init(void)
2057{
2058 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2059 WQ_MEM_RECLAIM | WQ_FREEZABLE |
2060 WQ_UNBOUND | WQ_SYSFS, 0);
2061 if (!blkcg_punt_bio_wq)
2062 return -ENOMEM;
2063 return 0;
2064}
2065subsys_initcall(blkcg_init);
2066
2067module_param(blkcg_debug_stats, bool, 0644);
2068MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36
37static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39/*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46static DEFINE_MUTEX(blkcg_pol_register_mutex);
47static DEFINE_MUTEX(blkcg_pol_mutex);
48
49struct blkcg blkcg_root;
50EXPORT_SYMBOL_GPL(blkcg_root);
51
52struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59bool blkcg_debug_stats = false;
60
61static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63#define BLKG_DESTROY_BATCH_SIZE 64
64
65/*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
83static int init_blkcg_llists(struct blkcg *blkcg)
84{
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94}
95
96/**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
103static struct cgroup_subsys_state *blkcg_css(void)
104{
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, io_cgrp_id);
111}
112
113static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115{
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117}
118
119static void blkg_free_workfn(struct work_struct *work)
120{
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg->parent);
139 spin_lock_irq(&q->queue_lock);
140 list_del_init(&blkg->q_node);
141 spin_unlock_irq(&q->queue_lock);
142 mutex_unlock(&q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(blkg->iostat_cpu);
146 percpu_ref_exit(&blkg->refcnt);
147 kfree(blkg);
148}
149
150/**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
156static void blkg_free(struct blkcg_gq *blkg)
157{
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(&blkg->free_work);
167}
168
169static void __blkg_release(struct rcu_head *rcu)
170{
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177#endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg->blkcg->css);
189 blkg_free(blkg);
190}
191
192/*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
200static void blkg_release(struct percpu_ref *ref)
201{
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(&blkg->rcu_head, __blkg_release);
205}
206
207#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208static struct workqueue_struct *blkcg_punt_bio_wq;
209
210static void blkg_async_bio_workfn(struct work_struct *work)
211{
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg->async_bio_lock);
221 bio_list_merge(&bios, &blkg->async_bios);
222 bio_list_init(&blkg->async_bios);
223 spin_unlock(&blkg->async_bio_lock);
224
225 /* start plug only when bio_list contains at least 2 bios */
226 if (bios.head && bios.head->bi_next) {
227 need_plug = true;
228 blk_start_plug(&plug);
229 }
230 while ((bio = bio_list_pop(&bios)))
231 submit_bio(bio);
232 if (need_plug)
233 blk_finish_plug(&plug);
234}
235
236/*
237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238 * lead to priority inversions as the kthread can be trapped waiting for that
239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
240 * a dedicated per-blkcg work item to avoid such priority inversions.
241 */
242void blkcg_punt_bio_submit(struct bio *bio)
243{
244 struct blkcg_gq *blkg = bio->bi_blkg;
245
246 if (blkg->parent) {
247 spin_lock(&blkg->async_bio_lock);
248 bio_list_add(&blkg->async_bios, bio);
249 spin_unlock(&blkg->async_bio_lock);
250 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251 } else {
252 /* never bounce for the root cgroup */
253 submit_bio(bio);
254 }
255}
256EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257
258static int __init blkcg_punt_bio_init(void)
259{
260 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
261 WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 WQ_UNBOUND | WQ_SYSFS, 0);
263 if (!blkcg_punt_bio_wq)
264 return -ENOMEM;
265 return 0;
266}
267subsys_initcall(blkcg_punt_bio_init);
268#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269
270/**
271 * bio_blkcg_css - return the blkcg CSS associated with a bio
272 * @bio: target bio
273 *
274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275 * associated. Callers are expected to either handle %NULL or know association
276 * has been done prior to calling this.
277 */
278struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279{
280 if (!bio || !bio->bi_blkg)
281 return NULL;
282 return &bio->bi_blkg->blkcg->css;
283}
284EXPORT_SYMBOL_GPL(bio_blkcg_css);
285
286/**
287 * blkcg_parent - get the parent of a blkcg
288 * @blkcg: blkcg of interest
289 *
290 * Return the parent blkcg of @blkcg. Can be called anytime.
291 */
292static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293{
294 return css_to_blkcg(blkcg->css.parent);
295}
296
297/**
298 * blkg_alloc - allocate a blkg
299 * @blkcg: block cgroup the new blkg is associated with
300 * @disk: gendisk the new blkg is associated with
301 * @gfp_mask: allocation mask to use
302 *
303 * Allocate a new blkg associating @blkcg and @disk.
304 */
305static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 gfp_t gfp_mask)
307{
308 struct blkcg_gq *blkg;
309 int i, cpu;
310
311 /* alloc and init base part */
312 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
313 if (!blkg)
314 return NULL;
315 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316 goto out_free_blkg;
317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 if (!blkg->iostat_cpu)
319 goto out_exit_refcnt;
320 if (!blk_get_queue(disk->queue))
321 goto out_free_iostat;
322
323 blkg->q = disk->queue;
324 INIT_LIST_HEAD(&blkg->q_node);
325 blkg->blkcg = blkcg;
326#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 spin_lock_init(&blkg->async_bio_lock);
328 bio_list_init(&blkg->async_bios);
329 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330#endif
331
332 u64_stats_init(&blkg->iostat.sync);
333 for_each_possible_cpu(cpu) {
334 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 }
337
338 for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 struct blkcg_policy *pol = blkcg_policy[i];
340 struct blkg_policy_data *pd;
341
342 if (!blkcg_policy_enabled(disk->queue, pol))
343 continue;
344
345 /* alloc per-policy data and attach it to blkg */
346 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 if (!pd)
348 goto out_free_pds;
349 blkg->pd[i] = pd;
350 pd->blkg = blkg;
351 pd->plid = i;
352 pd->online = false;
353 }
354
355 return blkg;
356
357out_free_pds:
358 while (--i >= 0)
359 if (blkg->pd[i])
360 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 blk_put_queue(disk->queue);
362out_free_iostat:
363 free_percpu(blkg->iostat_cpu);
364out_exit_refcnt:
365 percpu_ref_exit(&blkg->refcnt);
366out_free_blkg:
367 kfree(blkg);
368 return NULL;
369}
370
371/*
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374 */
375static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 struct blkcg_gq *new_blkg)
377{
378 struct blkcg_gq *blkg;
379 int i, ret;
380
381 lockdep_assert_held(&disk->queue->queue_lock);
382
383 /* request_queue is dying, do not create/recreate a blkg */
384 if (blk_queue_dying(disk->queue)) {
385 ret = -ENODEV;
386 goto err_free_blkg;
387 }
388
389 /* blkg holds a reference to blkcg */
390 if (!css_tryget_online(&blkcg->css)) {
391 ret = -ENODEV;
392 goto err_free_blkg;
393 }
394
395 /* allocate */
396 if (!new_blkg) {
397 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 if (unlikely(!new_blkg)) {
399 ret = -ENOMEM;
400 goto err_put_css;
401 }
402 }
403 blkg = new_blkg;
404
405 /* link parent */
406 if (blkcg_parent(blkcg)) {
407 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408 if (WARN_ON_ONCE(!blkg->parent)) {
409 ret = -ENODEV;
410 goto err_put_css;
411 }
412 blkg_get(blkg->parent);
413 }
414
415 /* invoke per-policy init */
416 for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 struct blkcg_policy *pol = blkcg_policy[i];
418
419 if (blkg->pd[i] && pol->pd_init_fn)
420 pol->pd_init_fn(blkg->pd[i]);
421 }
422
423 /* insert */
424 spin_lock(&blkcg->lock);
425 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426 if (likely(!ret)) {
427 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428 list_add(&blkg->q_node, &disk->queue->blkg_list);
429
430 for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 struct blkcg_policy *pol = blkcg_policy[i];
432
433 if (blkg->pd[i]) {
434 if (pol->pd_online_fn)
435 pol->pd_online_fn(blkg->pd[i]);
436 blkg->pd[i]->online = true;
437 }
438 }
439 }
440 blkg->online = true;
441 spin_unlock(&blkcg->lock);
442
443 if (!ret)
444 return blkg;
445
446 /* @blkg failed fully initialized, use the usual release path */
447 blkg_put(blkg);
448 return ERR_PTR(ret);
449
450err_put_css:
451 css_put(&blkcg->css);
452err_free_blkg:
453 if (new_blkg)
454 blkg_free(new_blkg);
455 return ERR_PTR(ret);
456}
457
458/**
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
462 *
463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464 * create one. blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg. This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 *
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469 * down from root.
470 */
471static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 struct gendisk *disk)
473{
474 struct request_queue *q = disk->queue;
475 struct blkcg_gq *blkg;
476 unsigned long flags;
477
478 WARN_ON_ONCE(!rcu_read_lock_held());
479
480 blkg = blkg_lookup(blkcg, q);
481 if (blkg)
482 return blkg;
483
484 spin_lock_irqsave(&q->queue_lock, flags);
485 blkg = blkg_lookup(blkcg, q);
486 if (blkg) {
487 if (blkcg != &blkcg_root &&
488 blkg != rcu_dereference(blkcg->blkg_hint))
489 rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 goto found;
491 }
492
493 /*
494 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 * non-root blkgs have access to their parents. Returns the closest
496 * blkg to the intended blkg should blkg_create() fail.
497 */
498 while (true) {
499 struct blkcg *pos = blkcg;
500 struct blkcg *parent = blkcg_parent(blkcg);
501 struct blkcg_gq *ret_blkg = q->root_blkg;
502
503 while (parent) {
504 blkg = blkg_lookup(parent, q);
505 if (blkg) {
506 /* remember closest blkg */
507 ret_blkg = blkg;
508 break;
509 }
510 pos = parent;
511 parent = blkcg_parent(parent);
512 }
513
514 blkg = blkg_create(pos, disk, NULL);
515 if (IS_ERR(blkg)) {
516 blkg = ret_blkg;
517 break;
518 }
519 if (pos == blkcg)
520 break;
521 }
522
523found:
524 spin_unlock_irqrestore(&q->queue_lock, flags);
525 return blkg;
526}
527
528static void blkg_destroy(struct blkcg_gq *blkg)
529{
530 struct blkcg *blkcg = blkg->blkcg;
531 int i;
532
533 lockdep_assert_held(&blkg->q->queue_lock);
534 lockdep_assert_held(&blkcg->lock);
535
536 /*
537 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 * blkg_free_workfn(), hence this function can be called from
539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 * blkg_free_workfn().
541 */
542 if (hlist_unhashed(&blkg->blkcg_node))
543 return;
544
545 for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 struct blkcg_policy *pol = blkcg_policy[i];
547
548 if (blkg->pd[i] && blkg->pd[i]->online) {
549 blkg->pd[i]->online = false;
550 if (pol->pd_offline_fn)
551 pol->pd_offline_fn(blkg->pd[i]);
552 }
553 }
554
555 blkg->online = false;
556
557 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 hlist_del_init_rcu(&blkg->blkcg_node);
559
560 /*
561 * Both setting lookup hint to and clearing it from @blkg are done
562 * under queue_lock. If it's not pointing to @blkg now, it never
563 * will. Hint assignment itself can race safely.
564 */
565 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568 /*
569 * Put the reference taken at the time of creation so that when all
570 * queues are gone, group can be destroyed.
571 */
572 percpu_ref_kill(&blkg->refcnt);
573}
574
575static void blkg_destroy_all(struct gendisk *disk)
576{
577 struct request_queue *q = disk->queue;
578 struct blkcg_gq *blkg;
579 int count = BLKG_DESTROY_BATCH_SIZE;
580 int i;
581
582restart:
583 spin_lock_irq(&q->queue_lock);
584 list_for_each_entry(blkg, &q->blkg_list, q_node) {
585 struct blkcg *blkcg = blkg->blkcg;
586
587 if (hlist_unhashed(&blkg->blkcg_node))
588 continue;
589
590 spin_lock(&blkcg->lock);
591 blkg_destroy(blkg);
592 spin_unlock(&blkcg->lock);
593
594 /*
595 * in order to avoid holding the spin lock for too long, release
596 * it when a batch of blkgs are destroyed.
597 */
598 if (!(--count)) {
599 count = BLKG_DESTROY_BATCH_SIZE;
600 spin_unlock_irq(&q->queue_lock);
601 cond_resched();
602 goto restart;
603 }
604 }
605
606 /*
607 * Mark policy deactivated since policy offline has been done, and
608 * the free is scheduled, so future blkcg_deactivate_policy() can
609 * be bypassed
610 */
611 for (i = 0; i < BLKCG_MAX_POLS; i++) {
612 struct blkcg_policy *pol = blkcg_policy[i];
613
614 if (pol)
615 __clear_bit(pol->plid, q->blkcg_pols);
616 }
617
618 q->root_blkg = NULL;
619 spin_unlock_irq(&q->queue_lock);
620}
621
622static int blkcg_reset_stats(struct cgroup_subsys_state *css,
623 struct cftype *cftype, u64 val)
624{
625 struct blkcg *blkcg = css_to_blkcg(css);
626 struct blkcg_gq *blkg;
627 int i, cpu;
628
629 mutex_lock(&blkcg_pol_mutex);
630 spin_lock_irq(&blkcg->lock);
631
632 /*
633 * Note that stat reset is racy - it doesn't synchronize against
634 * stat updates. This is a debug feature which shouldn't exist
635 * anyway. If you get hit by a race, retry.
636 */
637 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
638 for_each_possible_cpu(cpu) {
639 struct blkg_iostat_set *bis =
640 per_cpu_ptr(blkg->iostat_cpu, cpu);
641 memset(bis, 0, sizeof(*bis));
642
643 /* Re-initialize the cleared blkg_iostat_set */
644 u64_stats_init(&bis->sync);
645 bis->blkg = blkg;
646 }
647 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
648 u64_stats_init(&blkg->iostat.sync);
649
650 for (i = 0; i < BLKCG_MAX_POLS; i++) {
651 struct blkcg_policy *pol = blkcg_policy[i];
652
653 if (blkg->pd[i] && pol->pd_reset_stats_fn)
654 pol->pd_reset_stats_fn(blkg->pd[i]);
655 }
656 }
657
658 spin_unlock_irq(&blkcg->lock);
659 mutex_unlock(&blkcg_pol_mutex);
660 return 0;
661}
662
663const char *blkg_dev_name(struct blkcg_gq *blkg)
664{
665 if (!blkg->q->disk)
666 return NULL;
667 return bdi_dev_name(blkg->q->disk->bdi);
668}
669
670/**
671 * blkcg_print_blkgs - helper for printing per-blkg data
672 * @sf: seq_file to print to
673 * @blkcg: blkcg of interest
674 * @prfill: fill function to print out a blkg
675 * @pol: policy in question
676 * @data: data to be passed to @prfill
677 * @show_total: to print out sum of prfill return values or not
678 *
679 * This function invokes @prfill on each blkg of @blkcg if pd for the
680 * policy specified by @pol exists. @prfill is invoked with @sf, the
681 * policy data and @data and the matching queue lock held. If @show_total
682 * is %true, the sum of the return values from @prfill is printed with
683 * "Total" label at the end.
684 *
685 * This is to be used to construct print functions for
686 * cftype->read_seq_string method.
687 */
688void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
689 u64 (*prfill)(struct seq_file *,
690 struct blkg_policy_data *, int),
691 const struct blkcg_policy *pol, int data,
692 bool show_total)
693{
694 struct blkcg_gq *blkg;
695 u64 total = 0;
696
697 rcu_read_lock();
698 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
699 spin_lock_irq(&blkg->q->queue_lock);
700 if (blkcg_policy_enabled(blkg->q, pol))
701 total += prfill(sf, blkg->pd[pol->plid], data);
702 spin_unlock_irq(&blkg->q->queue_lock);
703 }
704 rcu_read_unlock();
705
706 if (show_total)
707 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
708}
709EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
710
711/**
712 * __blkg_prfill_u64 - prfill helper for a single u64 value
713 * @sf: seq_file to print to
714 * @pd: policy private data of interest
715 * @v: value to print
716 *
717 * Print @v to @sf for the device associated with @pd.
718 */
719u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
720{
721 const char *dname = blkg_dev_name(pd->blkg);
722
723 if (!dname)
724 return 0;
725
726 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
727 return v;
728}
729EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
730
731/**
732 * blkg_conf_init - initialize a blkg_conf_ctx
733 * @ctx: blkg_conf_ctx to initialize
734 * @input: input string
735 *
736 * Initialize @ctx which can be used to parse blkg config input string @input.
737 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
738 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
739 */
740void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
741{
742 *ctx = (struct blkg_conf_ctx){ .input = input };
743}
744EXPORT_SYMBOL_GPL(blkg_conf_init);
745
746/**
747 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
748 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
749 *
750 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
751 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
752 * set to point past the device node prefix.
753 *
754 * This function may be called multiple times on @ctx and the extra calls become
755 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
756 * explicitly if bdev access is needed without resolving the blkcg / policy part
757 * of @ctx->input. Returns -errno on error.
758 */
759int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
760{
761 char *input = ctx->input;
762 unsigned int major, minor;
763 struct block_device *bdev;
764 int key_len;
765
766 if (ctx->bdev)
767 return 0;
768
769 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
770 return -EINVAL;
771
772 input += key_len;
773 if (!isspace(*input))
774 return -EINVAL;
775 input = skip_spaces(input);
776
777 bdev = blkdev_get_no_open(MKDEV(major, minor));
778 if (!bdev)
779 return -ENODEV;
780 if (bdev_is_partition(bdev)) {
781 blkdev_put_no_open(bdev);
782 return -ENODEV;
783 }
784
785 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
786 if (!disk_live(bdev->bd_disk)) {
787 blkdev_put_no_open(bdev);
788 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
789 return -ENODEV;
790 }
791
792 ctx->body = input;
793 ctx->bdev = bdev;
794 return 0;
795}
796
797/**
798 * blkg_conf_prep - parse and prepare for per-blkg config update
799 * @blkcg: target block cgroup
800 * @pol: target policy
801 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
802 *
803 * Parse per-blkg config update from @ctx->input and initialize @ctx
804 * accordingly. On success, @ctx->body points to the part of @ctx->input
805 * following MAJ:MIN, @ctx->bdev points to the target block device and
806 * @ctx->blkg to the blkg being configured.
807 *
808 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
809 * function returns with queue lock held and must be followed by
810 * blkg_conf_exit().
811 */
812int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
813 struct blkg_conf_ctx *ctx)
814 __acquires(&bdev->bd_queue->queue_lock)
815{
816 struct gendisk *disk;
817 struct request_queue *q;
818 struct blkcg_gq *blkg;
819 int ret;
820
821 ret = blkg_conf_open_bdev(ctx);
822 if (ret)
823 return ret;
824
825 disk = ctx->bdev->bd_disk;
826 q = disk->queue;
827
828 /*
829 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
830 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
831 */
832 ret = blk_queue_enter(q, 0);
833 if (ret)
834 goto fail;
835
836 spin_lock_irq(&q->queue_lock);
837
838 if (!blkcg_policy_enabled(q, pol)) {
839 ret = -EOPNOTSUPP;
840 goto fail_unlock;
841 }
842
843 blkg = blkg_lookup(blkcg, q);
844 if (blkg)
845 goto success;
846
847 /*
848 * Create blkgs walking down from blkcg_root to @blkcg, so that all
849 * non-root blkgs have access to their parents.
850 */
851 while (true) {
852 struct blkcg *pos = blkcg;
853 struct blkcg *parent;
854 struct blkcg_gq *new_blkg;
855
856 parent = blkcg_parent(blkcg);
857 while (parent && !blkg_lookup(parent, q)) {
858 pos = parent;
859 parent = blkcg_parent(parent);
860 }
861
862 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
863 spin_unlock_irq(&q->queue_lock);
864
865 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
866 if (unlikely(!new_blkg)) {
867 ret = -ENOMEM;
868 goto fail_exit_queue;
869 }
870
871 if (radix_tree_preload(GFP_KERNEL)) {
872 blkg_free(new_blkg);
873 ret = -ENOMEM;
874 goto fail_exit_queue;
875 }
876
877 spin_lock_irq(&q->queue_lock);
878
879 if (!blkcg_policy_enabled(q, pol)) {
880 blkg_free(new_blkg);
881 ret = -EOPNOTSUPP;
882 goto fail_preloaded;
883 }
884
885 blkg = blkg_lookup(pos, q);
886 if (blkg) {
887 blkg_free(new_blkg);
888 } else {
889 blkg = blkg_create(pos, disk, new_blkg);
890 if (IS_ERR(blkg)) {
891 ret = PTR_ERR(blkg);
892 goto fail_preloaded;
893 }
894 }
895
896 radix_tree_preload_end();
897
898 if (pos == blkcg)
899 goto success;
900 }
901success:
902 blk_queue_exit(q);
903 ctx->blkg = blkg;
904 return 0;
905
906fail_preloaded:
907 radix_tree_preload_end();
908fail_unlock:
909 spin_unlock_irq(&q->queue_lock);
910fail_exit_queue:
911 blk_queue_exit(q);
912fail:
913 /*
914 * If queue was bypassing, we should retry. Do so after a
915 * short msleep(). It isn't strictly necessary but queue
916 * can be bypassing for some time and it's always nice to
917 * avoid busy looping.
918 */
919 if (ret == -EBUSY) {
920 msleep(10);
921 ret = restart_syscall();
922 }
923 return ret;
924}
925EXPORT_SYMBOL_GPL(blkg_conf_prep);
926
927/**
928 * blkg_conf_exit - clean up per-blkg config update
929 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
930 *
931 * Clean up after per-blkg config update. This function must be called on all
932 * blkg_conf_ctx's initialized with blkg_conf_init().
933 */
934void blkg_conf_exit(struct blkg_conf_ctx *ctx)
935 __releases(&ctx->bdev->bd_queue->queue_lock)
936 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
937{
938 if (ctx->blkg) {
939 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
940 ctx->blkg = NULL;
941 }
942
943 if (ctx->bdev) {
944 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
945 blkdev_put_no_open(ctx->bdev);
946 ctx->body = NULL;
947 ctx->bdev = NULL;
948 }
949}
950EXPORT_SYMBOL_GPL(blkg_conf_exit);
951
952static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
953{
954 int i;
955
956 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
957 dst->bytes[i] = src->bytes[i];
958 dst->ios[i] = src->ios[i];
959 }
960}
961
962static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
963{
964 int i;
965
966 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
967 dst->bytes[i] += src->bytes[i];
968 dst->ios[i] += src->ios[i];
969 }
970}
971
972static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
973{
974 int i;
975
976 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
977 dst->bytes[i] -= src->bytes[i];
978 dst->ios[i] -= src->ios[i];
979 }
980}
981
982static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
983 struct blkg_iostat *last)
984{
985 struct blkg_iostat delta;
986 unsigned long flags;
987
988 /* propagate percpu delta to global */
989 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
990 blkg_iostat_set(&delta, cur);
991 blkg_iostat_sub(&delta, last);
992 blkg_iostat_add(&blkg->iostat.cur, &delta);
993 blkg_iostat_add(last, &delta);
994 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
995}
996
997static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
998{
999 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1000 struct llist_node *lnode;
1001 struct blkg_iostat_set *bisc, *next_bisc;
1002 unsigned long flags;
1003
1004 rcu_read_lock();
1005
1006 lnode = llist_del_all(lhead);
1007 if (!lnode)
1008 goto out;
1009
1010 /*
1011 * For covering concurrent parent blkg update from blkg_release().
1012 *
1013 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1014 * this lock won't cause contention most of time.
1015 */
1016 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1017
1018 /*
1019 * Iterate only the iostat_cpu's queued in the lockless list.
1020 */
1021 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1022 struct blkcg_gq *blkg = bisc->blkg;
1023 struct blkcg_gq *parent = blkg->parent;
1024 struct blkg_iostat cur;
1025 unsigned int seq;
1026
1027 WRITE_ONCE(bisc->lqueued, false);
1028
1029 /* fetch the current per-cpu values */
1030 do {
1031 seq = u64_stats_fetch_begin(&bisc->sync);
1032 blkg_iostat_set(&cur, &bisc->cur);
1033 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1034
1035 blkcg_iostat_update(blkg, &cur, &bisc->last);
1036
1037 /* propagate global delta to parent (unless that's root) */
1038 if (parent && parent->parent)
1039 blkcg_iostat_update(parent, &blkg->iostat.cur,
1040 &blkg->iostat.last);
1041 }
1042 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1043out:
1044 rcu_read_unlock();
1045}
1046
1047static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1048{
1049 /* Root-level stats are sourced from system-wide IO stats */
1050 if (cgroup_parent(css->cgroup))
1051 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1052}
1053
1054/*
1055 * We source root cgroup stats from the system-wide stats to avoid
1056 * tracking the same information twice and incurring overhead when no
1057 * cgroups are defined. For that reason, cgroup_rstat_flush in
1058 * blkcg_print_stat does not actually fill out the iostat in the root
1059 * cgroup's blkcg_gq.
1060 *
1061 * However, we would like to re-use the printing code between the root and
1062 * non-root cgroups to the extent possible. For that reason, we simulate
1063 * flushing the root cgroup's stats by explicitly filling in the iostat
1064 * with disk level statistics.
1065 */
1066static void blkcg_fill_root_iostats(void)
1067{
1068 struct class_dev_iter iter;
1069 struct device *dev;
1070
1071 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1072 while ((dev = class_dev_iter_next(&iter))) {
1073 struct block_device *bdev = dev_to_bdev(dev);
1074 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1075 struct blkg_iostat tmp;
1076 int cpu;
1077 unsigned long flags;
1078
1079 memset(&tmp, 0, sizeof(tmp));
1080 for_each_possible_cpu(cpu) {
1081 struct disk_stats *cpu_dkstats;
1082
1083 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1084 tmp.ios[BLKG_IOSTAT_READ] +=
1085 cpu_dkstats->ios[STAT_READ];
1086 tmp.ios[BLKG_IOSTAT_WRITE] +=
1087 cpu_dkstats->ios[STAT_WRITE];
1088 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1089 cpu_dkstats->ios[STAT_DISCARD];
1090 // convert sectors to bytes
1091 tmp.bytes[BLKG_IOSTAT_READ] +=
1092 cpu_dkstats->sectors[STAT_READ] << 9;
1093 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1094 cpu_dkstats->sectors[STAT_WRITE] << 9;
1095 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1096 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1097 }
1098
1099 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1100 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1101 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1102 }
1103}
1104
1105static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1106{
1107 struct blkg_iostat_set *bis = &blkg->iostat;
1108 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1109 const char *dname;
1110 unsigned seq;
1111 int i;
1112
1113 if (!blkg->online)
1114 return;
1115
1116 dname = blkg_dev_name(blkg);
1117 if (!dname)
1118 return;
1119
1120 seq_printf(s, "%s ", dname);
1121
1122 do {
1123 seq = u64_stats_fetch_begin(&bis->sync);
1124
1125 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1126 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1127 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1128 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1129 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1130 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1131 } while (u64_stats_fetch_retry(&bis->sync, seq));
1132
1133 if (rbytes || wbytes || rios || wios) {
1134 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1135 rbytes, wbytes, rios, wios,
1136 dbytes, dios);
1137 }
1138
1139 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1140 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1141 atomic_read(&blkg->use_delay),
1142 atomic64_read(&blkg->delay_nsec));
1143 }
1144
1145 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1146 struct blkcg_policy *pol = blkcg_policy[i];
1147
1148 if (!blkg->pd[i] || !pol->pd_stat_fn)
1149 continue;
1150
1151 pol->pd_stat_fn(blkg->pd[i], s);
1152 }
1153
1154 seq_puts(s, "\n");
1155}
1156
1157static int blkcg_print_stat(struct seq_file *sf, void *v)
1158{
1159 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1160 struct blkcg_gq *blkg;
1161
1162 if (!seq_css(sf)->parent)
1163 blkcg_fill_root_iostats();
1164 else
1165 cgroup_rstat_flush(blkcg->css.cgroup);
1166
1167 rcu_read_lock();
1168 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1169 spin_lock_irq(&blkg->q->queue_lock);
1170 blkcg_print_one_stat(blkg, sf);
1171 spin_unlock_irq(&blkg->q->queue_lock);
1172 }
1173 rcu_read_unlock();
1174 return 0;
1175}
1176
1177static struct cftype blkcg_files[] = {
1178 {
1179 .name = "stat",
1180 .seq_show = blkcg_print_stat,
1181 },
1182 { } /* terminate */
1183};
1184
1185static struct cftype blkcg_legacy_files[] = {
1186 {
1187 .name = "reset_stats",
1188 .write_u64 = blkcg_reset_stats,
1189 },
1190 { } /* terminate */
1191};
1192
1193#ifdef CONFIG_CGROUP_WRITEBACK
1194struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1195{
1196 return &css_to_blkcg(css)->cgwb_list;
1197}
1198#endif
1199
1200/*
1201 * blkcg destruction is a three-stage process.
1202 *
1203 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1204 * which offlines writeback. Here we tie the next stage of blkg destruction
1205 * to the completion of writeback associated with the blkcg. This lets us
1206 * avoid punting potentially large amounts of outstanding writeback to root
1207 * while maintaining any ongoing policies. The next stage is triggered when
1208 * the nr_cgwbs count goes to zero.
1209 *
1210 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1211 * and handles the destruction of blkgs. Here the css reference held by
1212 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1213 * This work may occur in cgwb_release_workfn() on the cgwb_release
1214 * workqueue. Any submitted ios that fail to get the blkg ref will be
1215 * punted to the root_blkg.
1216 *
1217 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1218 * This finally frees the blkcg.
1219 */
1220
1221/**
1222 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1223 * @blkcg: blkcg of interest
1224 *
1225 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1226 * is nested inside q lock, this function performs reverse double lock dancing.
1227 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1228 * blkcg_css_free to eventually be called.
1229 *
1230 * This is the blkcg counterpart of ioc_release_fn().
1231 */
1232static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1233{
1234 might_sleep();
1235
1236 spin_lock_irq(&blkcg->lock);
1237
1238 while (!hlist_empty(&blkcg->blkg_list)) {
1239 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1240 struct blkcg_gq, blkcg_node);
1241 struct request_queue *q = blkg->q;
1242
1243 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1244 /*
1245 * Given that the system can accumulate a huge number
1246 * of blkgs in pathological cases, check to see if we
1247 * need to rescheduling to avoid softlockup.
1248 */
1249 spin_unlock_irq(&blkcg->lock);
1250 cond_resched();
1251 spin_lock_irq(&blkcg->lock);
1252 continue;
1253 }
1254
1255 blkg_destroy(blkg);
1256 spin_unlock(&q->queue_lock);
1257 }
1258
1259 spin_unlock_irq(&blkcg->lock);
1260}
1261
1262/**
1263 * blkcg_pin_online - pin online state
1264 * @blkcg_css: blkcg of interest
1265 *
1266 * While pinned, a blkcg is kept online. This is primarily used to
1267 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1268 * while an associated cgwb is still active.
1269 */
1270void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1271{
1272 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1273}
1274
1275/**
1276 * blkcg_unpin_online - unpin online state
1277 * @blkcg_css: blkcg of interest
1278 *
1279 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1280 * that blkg doesn't go offline while an associated cgwb is still active.
1281 * When this count goes to zero, all active cgwbs have finished so the
1282 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1283 */
1284void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1285{
1286 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1287
1288 do {
1289 if (!refcount_dec_and_test(&blkcg->online_pin))
1290 break;
1291 blkcg_destroy_blkgs(blkcg);
1292 blkcg = blkcg_parent(blkcg);
1293 } while (blkcg);
1294}
1295
1296/**
1297 * blkcg_css_offline - cgroup css_offline callback
1298 * @css: css of interest
1299 *
1300 * This function is called when @css is about to go away. Here the cgwbs are
1301 * offlined first and only once writeback associated with the blkcg has
1302 * finished do we start step 2 (see above).
1303 */
1304static void blkcg_css_offline(struct cgroup_subsys_state *css)
1305{
1306 /* this prevents anyone from attaching or migrating to this blkcg */
1307 wb_blkcg_offline(css);
1308
1309 /* put the base online pin allowing step 2 to be triggered */
1310 blkcg_unpin_online(css);
1311}
1312
1313static void blkcg_css_free(struct cgroup_subsys_state *css)
1314{
1315 struct blkcg *blkcg = css_to_blkcg(css);
1316 int i;
1317
1318 mutex_lock(&blkcg_pol_mutex);
1319
1320 list_del(&blkcg->all_blkcgs_node);
1321
1322 for (i = 0; i < BLKCG_MAX_POLS; i++)
1323 if (blkcg->cpd[i])
1324 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1325
1326 mutex_unlock(&blkcg_pol_mutex);
1327
1328 free_percpu(blkcg->lhead);
1329 kfree(blkcg);
1330}
1331
1332static struct cgroup_subsys_state *
1333blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1334{
1335 struct blkcg *blkcg;
1336 int i;
1337
1338 mutex_lock(&blkcg_pol_mutex);
1339
1340 if (!parent_css) {
1341 blkcg = &blkcg_root;
1342 } else {
1343 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1344 if (!blkcg)
1345 goto unlock;
1346 }
1347
1348 if (init_blkcg_llists(blkcg))
1349 goto free_blkcg;
1350
1351 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1352 struct blkcg_policy *pol = blkcg_policy[i];
1353 struct blkcg_policy_data *cpd;
1354
1355 /*
1356 * If the policy hasn't been attached yet, wait for it
1357 * to be attached before doing anything else. Otherwise,
1358 * check if the policy requires any specific per-cgroup
1359 * data: if it does, allocate and initialize it.
1360 */
1361 if (!pol || !pol->cpd_alloc_fn)
1362 continue;
1363
1364 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1365 if (!cpd)
1366 goto free_pd_blkcg;
1367
1368 blkcg->cpd[i] = cpd;
1369 cpd->blkcg = blkcg;
1370 cpd->plid = i;
1371 }
1372
1373 spin_lock_init(&blkcg->lock);
1374 refcount_set(&blkcg->online_pin, 1);
1375 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1376 INIT_HLIST_HEAD(&blkcg->blkg_list);
1377#ifdef CONFIG_CGROUP_WRITEBACK
1378 INIT_LIST_HEAD(&blkcg->cgwb_list);
1379#endif
1380 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1381
1382 mutex_unlock(&blkcg_pol_mutex);
1383 return &blkcg->css;
1384
1385free_pd_blkcg:
1386 for (i--; i >= 0; i--)
1387 if (blkcg->cpd[i])
1388 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1389 free_percpu(blkcg->lhead);
1390free_blkcg:
1391 if (blkcg != &blkcg_root)
1392 kfree(blkcg);
1393unlock:
1394 mutex_unlock(&blkcg_pol_mutex);
1395 return ERR_PTR(-ENOMEM);
1396}
1397
1398static int blkcg_css_online(struct cgroup_subsys_state *css)
1399{
1400 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1401
1402 /*
1403 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1404 * don't go offline while cgwbs are still active on them. Pin the
1405 * parent so that offline always happens towards the root.
1406 */
1407 if (parent)
1408 blkcg_pin_online(&parent->css);
1409 return 0;
1410}
1411
1412int blkcg_init_disk(struct gendisk *disk)
1413{
1414 struct request_queue *q = disk->queue;
1415 struct blkcg_gq *new_blkg, *blkg;
1416 bool preloaded;
1417 int ret;
1418
1419 INIT_LIST_HEAD(&q->blkg_list);
1420 mutex_init(&q->blkcg_mutex);
1421
1422 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1423 if (!new_blkg)
1424 return -ENOMEM;
1425
1426 preloaded = !radix_tree_preload(GFP_KERNEL);
1427
1428 /* Make sure the root blkg exists. */
1429 /* spin_lock_irq can serve as RCU read-side critical section. */
1430 spin_lock_irq(&q->queue_lock);
1431 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1432 if (IS_ERR(blkg))
1433 goto err_unlock;
1434 q->root_blkg = blkg;
1435 spin_unlock_irq(&q->queue_lock);
1436
1437 if (preloaded)
1438 radix_tree_preload_end();
1439
1440 ret = blk_ioprio_init(disk);
1441 if (ret)
1442 goto err_destroy_all;
1443
1444 ret = blk_throtl_init(disk);
1445 if (ret)
1446 goto err_ioprio_exit;
1447
1448 return 0;
1449
1450err_ioprio_exit:
1451 blk_ioprio_exit(disk);
1452err_destroy_all:
1453 blkg_destroy_all(disk);
1454 return ret;
1455err_unlock:
1456 spin_unlock_irq(&q->queue_lock);
1457 if (preloaded)
1458 radix_tree_preload_end();
1459 return PTR_ERR(blkg);
1460}
1461
1462void blkcg_exit_disk(struct gendisk *disk)
1463{
1464 blkg_destroy_all(disk);
1465 blk_throtl_exit(disk);
1466}
1467
1468static void blkcg_exit(struct task_struct *tsk)
1469{
1470 if (tsk->throttle_disk)
1471 put_disk(tsk->throttle_disk);
1472 tsk->throttle_disk = NULL;
1473}
1474
1475struct cgroup_subsys io_cgrp_subsys = {
1476 .css_alloc = blkcg_css_alloc,
1477 .css_online = blkcg_css_online,
1478 .css_offline = blkcg_css_offline,
1479 .css_free = blkcg_css_free,
1480 .css_rstat_flush = blkcg_rstat_flush,
1481 .dfl_cftypes = blkcg_files,
1482 .legacy_cftypes = blkcg_legacy_files,
1483 .legacy_name = "blkio",
1484 .exit = blkcg_exit,
1485#ifdef CONFIG_MEMCG
1486 /*
1487 * This ensures that, if available, memcg is automatically enabled
1488 * together on the default hierarchy so that the owner cgroup can
1489 * be retrieved from writeback pages.
1490 */
1491 .depends_on = 1 << memory_cgrp_id,
1492#endif
1493};
1494EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1495
1496/**
1497 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1498 * @disk: gendisk of interest
1499 * @pol: blkcg policy to activate
1500 *
1501 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1502 * bypass mode to populate its blkgs with policy_data for @pol.
1503 *
1504 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1505 * from IO path. Update of each blkg is protected by both queue and blkcg
1506 * locks so that holding either lock and testing blkcg_policy_enabled() is
1507 * always enough for dereferencing policy data.
1508 *
1509 * The caller is responsible for synchronizing [de]activations and policy
1510 * [un]registerations. Returns 0 on success, -errno on failure.
1511 */
1512int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1513{
1514 struct request_queue *q = disk->queue;
1515 struct blkg_policy_data *pd_prealloc = NULL;
1516 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1517 int ret;
1518
1519 if (blkcg_policy_enabled(q, pol))
1520 return 0;
1521
1522 if (queue_is_mq(q))
1523 blk_mq_freeze_queue(q);
1524retry:
1525 spin_lock_irq(&q->queue_lock);
1526
1527 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1528 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1529 struct blkg_policy_data *pd;
1530
1531 if (blkg->pd[pol->plid])
1532 continue;
1533
1534 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1535 if (blkg == pinned_blkg) {
1536 pd = pd_prealloc;
1537 pd_prealloc = NULL;
1538 } else {
1539 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1540 GFP_NOWAIT | __GFP_NOWARN);
1541 }
1542
1543 if (!pd) {
1544 /*
1545 * GFP_NOWAIT failed. Free the existing one and
1546 * prealloc for @blkg w/ GFP_KERNEL.
1547 */
1548 if (pinned_blkg)
1549 blkg_put(pinned_blkg);
1550 blkg_get(blkg);
1551 pinned_blkg = blkg;
1552
1553 spin_unlock_irq(&q->queue_lock);
1554
1555 if (pd_prealloc)
1556 pol->pd_free_fn(pd_prealloc);
1557 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1558 GFP_KERNEL);
1559 if (pd_prealloc)
1560 goto retry;
1561 else
1562 goto enomem;
1563 }
1564
1565 spin_lock(&blkg->blkcg->lock);
1566
1567 pd->blkg = blkg;
1568 pd->plid = pol->plid;
1569 blkg->pd[pol->plid] = pd;
1570
1571 if (pol->pd_init_fn)
1572 pol->pd_init_fn(pd);
1573
1574 if (pol->pd_online_fn)
1575 pol->pd_online_fn(pd);
1576 pd->online = true;
1577
1578 spin_unlock(&blkg->blkcg->lock);
1579 }
1580
1581 __set_bit(pol->plid, q->blkcg_pols);
1582 ret = 0;
1583
1584 spin_unlock_irq(&q->queue_lock);
1585out:
1586 if (queue_is_mq(q))
1587 blk_mq_unfreeze_queue(q);
1588 if (pinned_blkg)
1589 blkg_put(pinned_blkg);
1590 if (pd_prealloc)
1591 pol->pd_free_fn(pd_prealloc);
1592 return ret;
1593
1594enomem:
1595 /* alloc failed, take down everything */
1596 spin_lock_irq(&q->queue_lock);
1597 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1598 struct blkcg *blkcg = blkg->blkcg;
1599 struct blkg_policy_data *pd;
1600
1601 spin_lock(&blkcg->lock);
1602 pd = blkg->pd[pol->plid];
1603 if (pd) {
1604 if (pd->online && pol->pd_offline_fn)
1605 pol->pd_offline_fn(pd);
1606 pd->online = false;
1607 pol->pd_free_fn(pd);
1608 blkg->pd[pol->plid] = NULL;
1609 }
1610 spin_unlock(&blkcg->lock);
1611 }
1612 spin_unlock_irq(&q->queue_lock);
1613 ret = -ENOMEM;
1614 goto out;
1615}
1616EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1617
1618/**
1619 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1620 * @disk: gendisk of interest
1621 * @pol: blkcg policy to deactivate
1622 *
1623 * Deactivate @pol on @disk. Follows the same synchronization rules as
1624 * blkcg_activate_policy().
1625 */
1626void blkcg_deactivate_policy(struct gendisk *disk,
1627 const struct blkcg_policy *pol)
1628{
1629 struct request_queue *q = disk->queue;
1630 struct blkcg_gq *blkg;
1631
1632 if (!blkcg_policy_enabled(q, pol))
1633 return;
1634
1635 if (queue_is_mq(q))
1636 blk_mq_freeze_queue(q);
1637
1638 mutex_lock(&q->blkcg_mutex);
1639 spin_lock_irq(&q->queue_lock);
1640
1641 __clear_bit(pol->plid, q->blkcg_pols);
1642
1643 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1644 struct blkcg *blkcg = blkg->blkcg;
1645
1646 spin_lock(&blkcg->lock);
1647 if (blkg->pd[pol->plid]) {
1648 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1649 pol->pd_offline_fn(blkg->pd[pol->plid]);
1650 pol->pd_free_fn(blkg->pd[pol->plid]);
1651 blkg->pd[pol->plid] = NULL;
1652 }
1653 spin_unlock(&blkcg->lock);
1654 }
1655
1656 spin_unlock_irq(&q->queue_lock);
1657 mutex_unlock(&q->blkcg_mutex);
1658
1659 if (queue_is_mq(q))
1660 blk_mq_unfreeze_queue(q);
1661}
1662EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1663
1664static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1665{
1666 struct blkcg *blkcg;
1667
1668 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1669 if (blkcg->cpd[pol->plid]) {
1670 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1671 blkcg->cpd[pol->plid] = NULL;
1672 }
1673 }
1674}
1675
1676/**
1677 * blkcg_policy_register - register a blkcg policy
1678 * @pol: blkcg policy to register
1679 *
1680 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1681 * successful registration. Returns 0 on success and -errno on failure.
1682 */
1683int blkcg_policy_register(struct blkcg_policy *pol)
1684{
1685 struct blkcg *blkcg;
1686 int i, ret;
1687
1688 mutex_lock(&blkcg_pol_register_mutex);
1689 mutex_lock(&blkcg_pol_mutex);
1690
1691 /* find an empty slot */
1692 ret = -ENOSPC;
1693 for (i = 0; i < BLKCG_MAX_POLS; i++)
1694 if (!blkcg_policy[i])
1695 break;
1696 if (i >= BLKCG_MAX_POLS) {
1697 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1698 goto err_unlock;
1699 }
1700
1701 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1702 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1703 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1704 goto err_unlock;
1705
1706 /* register @pol */
1707 pol->plid = i;
1708 blkcg_policy[pol->plid] = pol;
1709
1710 /* allocate and install cpd's */
1711 if (pol->cpd_alloc_fn) {
1712 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1713 struct blkcg_policy_data *cpd;
1714
1715 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1716 if (!cpd)
1717 goto err_free_cpds;
1718
1719 blkcg->cpd[pol->plid] = cpd;
1720 cpd->blkcg = blkcg;
1721 cpd->plid = pol->plid;
1722 }
1723 }
1724
1725 mutex_unlock(&blkcg_pol_mutex);
1726
1727 /* everything is in place, add intf files for the new policy */
1728 if (pol->dfl_cftypes)
1729 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1730 pol->dfl_cftypes));
1731 if (pol->legacy_cftypes)
1732 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1733 pol->legacy_cftypes));
1734 mutex_unlock(&blkcg_pol_register_mutex);
1735 return 0;
1736
1737err_free_cpds:
1738 if (pol->cpd_free_fn)
1739 blkcg_free_all_cpd(pol);
1740
1741 blkcg_policy[pol->plid] = NULL;
1742err_unlock:
1743 mutex_unlock(&blkcg_pol_mutex);
1744 mutex_unlock(&blkcg_pol_register_mutex);
1745 return ret;
1746}
1747EXPORT_SYMBOL_GPL(blkcg_policy_register);
1748
1749/**
1750 * blkcg_policy_unregister - unregister a blkcg policy
1751 * @pol: blkcg policy to unregister
1752 *
1753 * Undo blkcg_policy_register(@pol). Might sleep.
1754 */
1755void blkcg_policy_unregister(struct blkcg_policy *pol)
1756{
1757 mutex_lock(&blkcg_pol_register_mutex);
1758
1759 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1760 goto out_unlock;
1761
1762 /* kill the intf files first */
1763 if (pol->dfl_cftypes)
1764 cgroup_rm_cftypes(pol->dfl_cftypes);
1765 if (pol->legacy_cftypes)
1766 cgroup_rm_cftypes(pol->legacy_cftypes);
1767
1768 /* remove cpds and unregister */
1769 mutex_lock(&blkcg_pol_mutex);
1770
1771 if (pol->cpd_free_fn)
1772 blkcg_free_all_cpd(pol);
1773
1774 blkcg_policy[pol->plid] = NULL;
1775
1776 mutex_unlock(&blkcg_pol_mutex);
1777out_unlock:
1778 mutex_unlock(&blkcg_pol_register_mutex);
1779}
1780EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1781
1782/*
1783 * Scale the accumulated delay based on how long it has been since we updated
1784 * the delay. We only call this when we are adding delay, in case it's been a
1785 * while since we added delay, and when we are checking to see if we need to
1786 * delay a task, to account for any delays that may have occurred.
1787 */
1788static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1789{
1790 u64 old = atomic64_read(&blkg->delay_start);
1791
1792 /* negative use_delay means no scaling, see blkcg_set_delay() */
1793 if (atomic_read(&blkg->use_delay) < 0)
1794 return;
1795
1796 /*
1797 * We only want to scale down every second. The idea here is that we
1798 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1799 * time window. We only want to throttle tasks for recent delay that
1800 * has occurred, in 1 second time windows since that's the maximum
1801 * things can be throttled. We save the current delay window in
1802 * blkg->last_delay so we know what amount is still left to be charged
1803 * to the blkg from this point onward. blkg->last_use keeps track of
1804 * the use_delay counter. The idea is if we're unthrottling the blkg we
1805 * are ok with whatever is happening now, and we can take away more of
1806 * the accumulated delay as we've already throttled enough that
1807 * everybody is happy with their IO latencies.
1808 */
1809 if (time_before64(old + NSEC_PER_SEC, now) &&
1810 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1811 u64 cur = atomic64_read(&blkg->delay_nsec);
1812 u64 sub = min_t(u64, blkg->last_delay, now - old);
1813 int cur_use = atomic_read(&blkg->use_delay);
1814
1815 /*
1816 * We've been unthrottled, subtract a larger chunk of our
1817 * accumulated delay.
1818 */
1819 if (cur_use < blkg->last_use)
1820 sub = max_t(u64, sub, blkg->last_delay >> 1);
1821
1822 /*
1823 * This shouldn't happen, but handle it anyway. Our delay_nsec
1824 * should only ever be growing except here where we subtract out
1825 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1826 * rather not end up with negative numbers.
1827 */
1828 if (unlikely(cur < sub)) {
1829 atomic64_set(&blkg->delay_nsec, 0);
1830 blkg->last_delay = 0;
1831 } else {
1832 atomic64_sub(sub, &blkg->delay_nsec);
1833 blkg->last_delay = cur - sub;
1834 }
1835 blkg->last_use = cur_use;
1836 }
1837}
1838
1839/*
1840 * This is called when we want to actually walk up the hierarchy and check to
1841 * see if we need to throttle, and then actually throttle if there is some
1842 * accumulated delay. This should only be called upon return to user space so
1843 * we're not holding some lock that would induce a priority inversion.
1844 */
1845static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1846{
1847 unsigned long pflags;
1848 bool clamp;
1849 u64 now = ktime_to_ns(ktime_get());
1850 u64 exp;
1851 u64 delay_nsec = 0;
1852 int tok;
1853
1854 while (blkg->parent) {
1855 int use_delay = atomic_read(&blkg->use_delay);
1856
1857 if (use_delay) {
1858 u64 this_delay;
1859
1860 blkcg_scale_delay(blkg, now);
1861 this_delay = atomic64_read(&blkg->delay_nsec);
1862 if (this_delay > delay_nsec) {
1863 delay_nsec = this_delay;
1864 clamp = use_delay > 0;
1865 }
1866 }
1867 blkg = blkg->parent;
1868 }
1869
1870 if (!delay_nsec)
1871 return;
1872
1873 /*
1874 * Let's not sleep for all eternity if we've amassed a huge delay.
1875 * Swapping or metadata IO can accumulate 10's of seconds worth of
1876 * delay, and we want userspace to be able to do _something_ so cap the
1877 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1878 * tasks will be delayed for 0.25 second for every syscall. If
1879 * blkcg_set_delay() was used as indicated by negative use_delay, the
1880 * caller is responsible for regulating the range.
1881 */
1882 if (clamp)
1883 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1884
1885 if (use_memdelay)
1886 psi_memstall_enter(&pflags);
1887
1888 exp = ktime_add_ns(now, delay_nsec);
1889 tok = io_schedule_prepare();
1890 do {
1891 __set_current_state(TASK_KILLABLE);
1892 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1893 break;
1894 } while (!fatal_signal_pending(current));
1895 io_schedule_finish(tok);
1896
1897 if (use_memdelay)
1898 psi_memstall_leave(&pflags);
1899}
1900
1901/**
1902 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1903 *
1904 * This is only called if we've been marked with set_notify_resume(). Obviously
1905 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1906 * check to see if current->throttle_disk is set and if not this doesn't do
1907 * anything. This should only ever be called by the resume code, it's not meant
1908 * to be called by people willy-nilly as it will actually do the work to
1909 * throttle the task if it is setup for throttling.
1910 */
1911void blkcg_maybe_throttle_current(void)
1912{
1913 struct gendisk *disk = current->throttle_disk;
1914 struct blkcg *blkcg;
1915 struct blkcg_gq *blkg;
1916 bool use_memdelay = current->use_memdelay;
1917
1918 if (!disk)
1919 return;
1920
1921 current->throttle_disk = NULL;
1922 current->use_memdelay = false;
1923
1924 rcu_read_lock();
1925 blkcg = css_to_blkcg(blkcg_css());
1926 if (!blkcg)
1927 goto out;
1928 blkg = blkg_lookup(blkcg, disk->queue);
1929 if (!blkg)
1930 goto out;
1931 if (!blkg_tryget(blkg))
1932 goto out;
1933 rcu_read_unlock();
1934
1935 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1936 blkg_put(blkg);
1937 put_disk(disk);
1938 return;
1939out:
1940 rcu_read_unlock();
1941}
1942
1943/**
1944 * blkcg_schedule_throttle - this task needs to check for throttling
1945 * @disk: disk to throttle
1946 * @use_memdelay: do we charge this to memory delay for PSI
1947 *
1948 * This is called by the IO controller when we know there's delay accumulated
1949 * for the blkg for this task. We do not pass the blkg because there are places
1950 * we call this that may not have that information, the swapping code for
1951 * instance will only have a block_device at that point. This set's the
1952 * notify_resume for the task to check and see if it requires throttling before
1953 * returning to user space.
1954 *
1955 * We will only schedule once per syscall. You can call this over and over
1956 * again and it will only do the check once upon return to user space, and only
1957 * throttle once. If the task needs to be throttled again it'll need to be
1958 * re-set at the next time we see the task.
1959 */
1960void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1961{
1962 if (unlikely(current->flags & PF_KTHREAD))
1963 return;
1964
1965 if (current->throttle_disk != disk) {
1966 if (test_bit(GD_DEAD, &disk->state))
1967 return;
1968 get_device(disk_to_dev(disk));
1969
1970 if (current->throttle_disk)
1971 put_disk(current->throttle_disk);
1972 current->throttle_disk = disk;
1973 }
1974
1975 if (use_memdelay)
1976 current->use_memdelay = use_memdelay;
1977 set_notify_resume(current);
1978}
1979
1980/**
1981 * blkcg_add_delay - add delay to this blkg
1982 * @blkg: blkg of interest
1983 * @now: the current time in nanoseconds
1984 * @delta: how many nanoseconds of delay to add
1985 *
1986 * Charge @delta to the blkg's current delay accumulation. This is used to
1987 * throttle tasks if an IO controller thinks we need more throttling.
1988 */
1989void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1990{
1991 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1992 return;
1993 blkcg_scale_delay(blkg, now);
1994 atomic64_add(delta, &blkg->delay_nsec);
1995}
1996
1997/**
1998 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1999 * @bio: target bio
2000 * @css: target css
2001 *
2002 * As the failure mode here is to walk up the blkg tree, this ensure that the
2003 * blkg->parent pointers are always valid. This returns the blkg that it ended
2004 * up taking a reference on or %NULL if no reference was taken.
2005 */
2006static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2007 struct cgroup_subsys_state *css)
2008{
2009 struct blkcg_gq *blkg, *ret_blkg = NULL;
2010
2011 rcu_read_lock();
2012 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2013 while (blkg) {
2014 if (blkg_tryget(blkg)) {
2015 ret_blkg = blkg;
2016 break;
2017 }
2018 blkg = blkg->parent;
2019 }
2020 rcu_read_unlock();
2021
2022 return ret_blkg;
2023}
2024
2025/**
2026 * bio_associate_blkg_from_css - associate a bio with a specified css
2027 * @bio: target bio
2028 * @css: target css
2029 *
2030 * Associate @bio with the blkg found by combining the css's blkg and the
2031 * request_queue of the @bio. An association failure is handled by walking up
2032 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2033 * and q->root_blkg. This situation only happens when a cgroup is dying and
2034 * then the remaining bios will spill to the closest alive blkg.
2035 *
2036 * A reference will be taken on the blkg and will be released when @bio is
2037 * freed.
2038 */
2039void bio_associate_blkg_from_css(struct bio *bio,
2040 struct cgroup_subsys_state *css)
2041{
2042 if (bio->bi_blkg)
2043 blkg_put(bio->bi_blkg);
2044
2045 if (css && css->parent) {
2046 bio->bi_blkg = blkg_tryget_closest(bio, css);
2047 } else {
2048 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2049 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2050 }
2051}
2052EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2053
2054/**
2055 * bio_associate_blkg - associate a bio with a blkg
2056 * @bio: target bio
2057 *
2058 * Associate @bio with the blkg found from the bio's css and request_queue.
2059 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2060 * already associated, the css is reused and association redone as the
2061 * request_queue may have changed.
2062 */
2063void bio_associate_blkg(struct bio *bio)
2064{
2065 struct cgroup_subsys_state *css;
2066
2067 if (blk_op_is_passthrough(bio->bi_opf))
2068 return;
2069
2070 rcu_read_lock();
2071
2072 if (bio->bi_blkg)
2073 css = bio_blkcg_css(bio);
2074 else
2075 css = blkcg_css();
2076
2077 bio_associate_blkg_from_css(bio, css);
2078
2079 rcu_read_unlock();
2080}
2081EXPORT_SYMBOL_GPL(bio_associate_blkg);
2082
2083/**
2084 * bio_clone_blkg_association - clone blkg association from src to dst bio
2085 * @dst: destination bio
2086 * @src: source bio
2087 */
2088void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2089{
2090 if (src->bi_blkg)
2091 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2092}
2093EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2094
2095static int blk_cgroup_io_type(struct bio *bio)
2096{
2097 if (op_is_discard(bio->bi_opf))
2098 return BLKG_IOSTAT_DISCARD;
2099 if (op_is_write(bio->bi_opf))
2100 return BLKG_IOSTAT_WRITE;
2101 return BLKG_IOSTAT_READ;
2102}
2103
2104void blk_cgroup_bio_start(struct bio *bio)
2105{
2106 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2107 int rwd = blk_cgroup_io_type(bio), cpu;
2108 struct blkg_iostat_set *bis;
2109 unsigned long flags;
2110
2111 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2112 return;
2113
2114 /* Root-level stats are sourced from system-wide IO stats */
2115 if (!cgroup_parent(blkcg->css.cgroup))
2116 return;
2117
2118 cpu = get_cpu();
2119 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2120 flags = u64_stats_update_begin_irqsave(&bis->sync);
2121
2122 /*
2123 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2124 * bio and we would have already accounted for the size of the bio.
2125 */
2126 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2127 bio_set_flag(bio, BIO_CGROUP_ACCT);
2128 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2129 }
2130 bis->cur.ios[rwd]++;
2131
2132 /*
2133 * If the iostat_cpu isn't in a lockless list, put it into the
2134 * list to indicate that a stat update is pending.
2135 */
2136 if (!READ_ONCE(bis->lqueued)) {
2137 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2138
2139 llist_add(&bis->lnode, lhead);
2140 WRITE_ONCE(bis->lqueued, true);
2141 }
2142
2143 u64_stats_update_end_irqrestore(&bis->sync, flags);
2144 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2145 put_cpu();
2146}
2147
2148bool blk_cgroup_congested(void)
2149{
2150 struct cgroup_subsys_state *css;
2151 bool ret = false;
2152
2153 rcu_read_lock();
2154 for (css = blkcg_css(); css; css = css->parent) {
2155 if (atomic_read(&css->cgroup->congestion_count)) {
2156 ret = true;
2157 break;
2158 }
2159 }
2160 rcu_read_unlock();
2161 return ret;
2162}
2163
2164module_param(blkcg_debug_stats, bool, 0644);
2165MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");